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Presubstitution, and Continued Fractions 

Abstract: 
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E. E. & C. S. Dept 
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This is a case study of attempts to program the computation of a continued fraction and its 
first derivative in a way that avoids spurious behavior caused by roundoff, over/underflow 
and, most important, division by zero. The program is easier to find for a machine that 
does not merely abort computation but continues in a reasonable way after division by zero, 
as do machines that meet IEEE standards 754 and 854 for floating-point arithmetic. And 
machines that offered a feature that I call "Presubstitution" would be particularly easy 
to program. But programming on other machines is a challenge that I prefer to leave to 
someone else. 

Introduction: 
A typical continued fraction is 

3 
c/(x):=4- 1 

x-2- 10 
x-7+ 2 

x-2- -­
x-3 

for which an algebraically equivalent form is 

r f(x) := 622 - x(751 - x{324 - x(59 - 4x))) 
112 - x{151- x(72 - x(14- x))) 

( 4 div.), 

{7 mul., 1 div.). 

Both expressions represent the same rational function, one whose graph is smooth and 
unexceptional: 

** 
** * cf(x) = rf(x) 

'** * 
****' 

I 
I 
I 

* 
* ************ 
* ** 

** 
----+----------------------------> X 

Although r f( x) = cf( x) as rational functions go, they are not computationally equivalent 
ways to compute that function. For instance, 

r/(1)=7, r/(2)=4, r/(3)=8/5, r/(4)=5/2; 
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but the corresponding values of cf ( x) encounter divisions by zero that stop many computers. 
However, provided the computer conforms to IEEE 754 or 854, in which case 

±(nonzero)/0 = ±oo, oo ±(finite)= oo, (finite)/oo = 0, 

we find that the computed values of cf(x) = r f(x) at those arguments. On the other hand, 
if Ix I is so big that x'1 must overflow, then the computed value of cf(x) = cf(oo) = 4 but 
r f(x) encounters ( overflow)/( overflow) , which yields something else. And at arguments 
x between 1.6 and 2.4 the formula r f ( x) suffers from roundoff usually much worse than 
cf ( x ). For instance, typical values obtained for r f ( x) and cf ( x) at a few values x are 
tabulated below, as computed on a calculator that rounds to 10 s_ig. dee., together with a 
value computed correctly: 

X : 1.6063193 1.959 2.101010101 2.3263 2.4005 
"rf": 8.752378651 4.823132981 2.304822296 .1966166480 .7407074217 
"cf": 8. 752378523 4.823133133 2.304822346 . 79661657 80 . 1407073780 

.. / : 8.752378524 4.823133133 2.304822344 .7966165794 .7407073784 
That is why cf(x) is preferable tor f(x) if division is not too much slower than multiplication 
and if division by zero produces something huge enough instead of stopping computation. 

Many other ways to compute this function are worth considering. For instance, 

r f(x) := 4- 3(x - 2)((x - 5)2 + 4)/(((x - 5)2 + 3)(x - 2)2 + x) 

entails less work (5 mul., 1 div.) and much less trouble with roundoff, and a little less 
trouble with overflow on those machines that overflow to a huge number instead of just 
stopping. But if the coefficients of cf ( x) were arbitrary floating-point numbers instead of 
simply integers like 4, 3, 2, 1, 7, ... then the resulting coefficients of r f (x ), regardless of 
which form be chosen, would almost certainly be contaminated by roundoff to an extent 
difficult to ascertain. Ideally we should prefer to compute cf(x) as it stands, but that may 
be impractical on a machine that balks at division by zero. What should we do then? 

There is another trick to consider. Choose a tiny positive number E so small that 
1.0 ± ,f'i rounds to 1.0 when computed in the same :floating-point arithmetic as is being 
used to compute cf(x ), but not so small that 10/e overflows. Then very slightly alter the 
expression for cf( x) thus: 

cf(x) := 4 -
3 

1 
(x - 2)- 10 

((x - 7) + 2 + E 

((x - 2) - ( 3) + E x- +e 

Both versions of cf ( x) yield exactly the same computed values except that division by zero 
never happens to the latter version ! In general, if cf ( x) were more complicated, with 
coefficients that ran over a very wide range, the values to use for E might be difficult even 
for a skilled error-analyst to determine. This is not a trick that typical programmers might 
be expected to find. 

A Continued Fraction and its Derivative: 
How should programmers generally deal with continued fractions and similar computations 
in which divisions by zero that might occur would be harmless if handled properly? Consider 

2 



the general "Jacobi" continued fraction, which takes the form 

bo 
f(x) := ao + ------.....--­b1 

x + a1 + ------b.--
2
--

x+a2+---­
x+--­

x+aN 

Continued fractions like this figure in formulas for various transcendental functions of in­
terest to mathematical physicists and statisticians. For instance, for large y > 0, 

100 exp( -t2 /2)dt = y X _______ ex_rp ___ ( -_y_2.;....I;.,.;..) _____ _ 

y y2 + 1 - ---------1-=2------
y2 + 5 - ---------3""""0.....---­

y2 +9-
2 56 

y + 13 - 2 17 y + - ... 
A Jacobi fraction can be computed by a very simple recurrence: 

/ := aN; 
for j = N - 1 to O step -1 do f := aj + bj/(x + /); 

after which f = f(x) provided division by zero, if it occurs, produces a sufficiently huge 
quotient ( like oo) rather than stop the machine. Any expedient introduced here to preclude 
division by zero or to handle it some other way would encumber that simple recurrence 
intolerably. But oo is no panacea; it cannot cure all divisions by zero equally easily. Let us 
turn to a more realistic illustration of the role played by oo. 

Both f = f(x) and its first derivative/'= f'(x) = df(x)/dx are generated simultane-
ously by the recurrence 

f , ·- O· f ·- aN· .- ' ·- ' 
for j = N - 1 to O step -1 do 

{ d := X + f; 
q := bi/d; 
f' := -(1 + f')q/d; 
f :=a;+ q }; 

provided the divisor d never vanishes. But if d = 0 at some pass around the loop, followed 
by q = f = oo and/'= oo, the next pass around the loop will put d = oo, q = 0 and f = a; 
correctly, but f' = oo * 0 or 00/00, which turns into NaN (Not a Number) when arithmetic 
conforms to IEEE 754 or 854. This NaN is not the correct value for f'. One way to get/' 
correctly is to use thee- trick; replace the statement "d := x+ J;" by "d := (x+ f)+ e;" for 
some suitably tiny positive e that has to be computed differently around each pass of the 
loop. But this is an expedient for error-analysts, not for programmers who seek algebraic 
and combinatorial cures for programming maladies. Alas, all other recurrences known to 
cope with division-by-zero and spurious over/underflow correctly seem obliged to include 
some kind of test-and-branch. The simplest such scheme I know is this: 

Choose a positive£ so tiny that 1.0 - ../e rounds to 1.0; 
f , ·- O· f ·- ai-.r• 

.- , ■- '"'' 
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for j = N - 1 to 0 step -1 do 
{ d := x + f; d' := (1 + !') + E; 

q := bi/d; 
if Id' I= oo then f' := p 

else f' := -(q/d)d'; 
f := ai + q; p := bj-1d' /b; }. 

Complicated though it may appear, this recurrence is far simpler than the proof that it 
is correct, which involves taking limits as d --+ 0 and a verification that d' ::f: 0. The 
la.st condition is assured by a simple version of the £-trick, which prevents 0/0 or 0*oo in 
examples like the following at x = 0: 

f(x) := ... 
1 

... + 1 + 1 
x+l+ l 

x-1+--
x+l 

On a vectorized computer like the CRAYs the last recurrence is applicable to vectors 
x, f', f, d, d', q and p elementwise provided the conditional statement "if ld'I = oo ... " is 
replaced by a vectorized conditional assignment 

"J' := if Id' I= oo then p else - (q/d)d';" 

that exploits the computer's ability to select a vector's elements in accordance with a bit-
mask derived from the boolean expression "I d' I= oo". On a heavily pipelined computer ,~ 
with multiple arithmetic units the operations in the recurrence will overlap to an extent 
indicated partially by the way the statements have been written. But if division by zero 
is disallowed, or if division is too much slower than multiplication, all programs I know to 
calculate f and /' robustly seem obliged either to branch in ways that slow down many of 
today's fastest computers, or else to exploit extremely devious perturbations calculated to 
vanish amongst the rounding errors. 

Presubstit ution: 
In the past, programming languages have required that exceptions like Overflow and Division­
by-Zero be either precluded by apt tests and branches, or else handled by "Error-Handlers" 
invoked via special statements like 

"ON ERROR GOTO <line>" or "ON ERROR GOSUB <line>" in BASIC, 
"ON <Error-Condition> <Action to be taken>" in PL-1. 

These statements require a Precise Interrupt if their error- handling actions are to be fol­
lowed by resumption of the program from the point where the Error-Condition was detected. 
But a Precise Interrupt is expensive to implement in fast computers that achieve part of 
their speed by overlapping instructions, by pipelining them, or by vectorizing. The trouble 
is that several instructions may be executing simultaneously when one of them signals an 
exception, and then the computer will have to undo whatever was done by instructions that 
were issued after the one that signalled but before the signal was received. Otherwise some 
variables referenced by the Action to be taken might have changed since the exceptional 
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instruction was issued. Much extra hardware is needed to remember what was done so it 
can be undone. 

A different approa.ch prnvides most of the benefits of those kinds of error-handling 
statements at a small fraction of the cost. The essential insight is the realization that, if 
an exceptional operation can be so redefined by the Action to be taken as would justify 
resuming execution afterwards, then mathematicians would call the exception a Removable 
Singularity. Examples are ... 
• Operation Type Example 

Add/Subtract oo - oo cot(x) - 1/x -+ 0 as x-+ 0, 
Multiply 0*oo xcot(x) -+1 as x-+0, 
Divide 0/0 x/ sin(2x) -+ 1/2 as x-+ 0; 

00/00 x/(3x + 1) -+ 1/3 as x-+ oo. 
IEEE Standards 754 and 854 prescribe NaN as the default result of such operations because 
any other value, prescribed without knowledge of the exceptional circumstances, would 
cause confusion more often than help; that is why the standards do not assign 1 to 0/0 as 
APL does. Only the programmer's special Action to be taken can remove the singularity 
correctly. 

If that special Action to be taken is complicated enough, a well placed test-and-branch in 
the program costs little more than what has to be there anyway. It may cost less at run-time 
than an ON < Condition> <Action> statement whose Action inhibits all concurrency that 
would interfere with a precise interrupt at any operation that the hardware thinks might 
encounter the Condition. An explicit test-and-branch encumbers only those operations that 
the programmer thinks might encounter the Condition. 

When the programmer intends that execution resume after a very simple Action, the 
inhibition of concurrency required to achieve precise interrupts is too high a price to pay. 
Another mechanism would be cheaper; consider a statement of the form 

ON < Condition> PRESUBSTITUTE < Value> 

that caused any Condition drawn from the set 

{ 00 - oo, 0 * oo, 0/0, 00/00} 

to deliver Value instead of NaN. The hardware required to implement this statement entails 
only presettable registers in lieu of the read-only registers from which a NaN would be 
drawn. The programmer has to precompute Value before initiating any operation that 
might encounter the Condition. Let's see how well this scheme would handle a simple 
example first: 

Define S(x) := sin(x)/x with the understanding that S(0) := 1, and suppose we wish 
to compute the vector w := S(v) elementwise. A very simple program would suffice: 

ON 0/0 PRESUBSTITUTE 1.0 ; 
FOR j IN {1..DIM(v)} DO wi := sin(vi)/v; IN PARALLEL. 

No tests; no branches; no precise interrupts. The value 1.0 would go to the divider in 
anticipation of invalid divides, and would be used only if some Vj turned out to be O . • 

How well would presubstitution handle the continued fraction f(x) and its derivative 
f'( x )? Consider this program: 
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On 0/0 or 00/00 presubstitute oo; 

! ' ·- O· f ·- aN· .- , .- , 
for j = N - 1 to O step -1 do 

{ d := x + f; d' := 1 + f'; 
q := bi/d; 
J' := -(d' /d)q; f := ai + q; 
on O * oo presubstitute b;_1d' /b; }. 

No tests; no branches; no e. This program works well if all variables are scalars and 
arithmetic is overlapped or concurrent. 

But if all unsubscripted variables were vectors interpreted elementwise, then the pre­
substitution operation would have to be interpreted elementwise too, which is impractical 
on a machine with the CRAY's architecture where operations upon vector registers are 
performed in a few pipelined arithmetic elements. On such a machine the most practical 
program would resemble the earlier one with a vectorized conditional assignment statement. 
So presubstitution is no panacea for exceptions on vectorized machines. It is a compromise 
between expensive hardware that interrupts precisely to handle exceptions and cheap hard­
ware that ignores them, between unfettered software allowed to do anything in response to 
exceptions and software in a straitjacket. 

Presubstitution would be useful also for handling some other classes of exceptions, 
namely 

Over/underflow, to a presubstituted magnitude with its sign inherited from the 
operation's true result; 

Division by Zero, or any operation that would produce oo exactly from finite 
operands, to a finite presubstituted magnitude with inherited sign. 

Dereferencing a Null Pointer, to a presubstituted entity. 
Element Outside an Array ( or other data structure), to a presubstituted entity. 
Uninitialized variable, to a presubstituted entity. 

The last three exceptions' presubstituted entities could be NaNs for debugging, or zeros 
for compatibility with certain higher- level language interpreters; presubstituting instead of 
aborting could simplify beginnings or ends of loops, especially in matrix functions and in 
programs that search through data structures. On heavily pipelined machines, compilers 
would be allowed to overlap :floating-point operations and anticipatory fetches of data, with 
the expectation that an invalid fetch would not abort computation but would instead fetch 
a presubstituted value destined for discard. 

Further discussion leads beyond the intended scope of this paper. 
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The IEEE Standards 754 and 854 are explained in "A Proposed Radix- and Word­
Length-Independent Standard for Floating-Point Arithmetic" by W. J. Cody et al. in the 
IEEE magazine MICRO (Aug. 1984) pp. 86-100. 

Continued fractions for various transcendental functions can be found in the Handbook 
of Mathematical Functions edited by M. Abramowitz and Irene Stegun, no. 55 in the 
National Bureau of Standards Applied Math. Series, issued in 1964 but reprinted now 

6 



by Dover, New York. Programs to convert them from one form to another can be found 
in Computer Approximations by J. F. Hart et al., published in 1968 by Wiley but now 
reprinted by Krieger in Huntington, New York. 

Presubstitution has been implemented by David Barnett on a DEC VAX™ running 4.3 
BSD Berkeley UNIX™, and on a SUN™ III ; his work is still in progress. 
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