
\ f

r- - --

I •

1,_ ____ _

RECTO
___ Addison-Wesley Casebo=~dition _ t

I
I

I I

Apple •. Apple Numerics Manual
H- '

I i

!
i
i

••
-yyl

Second Edition •

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingtiam, England Almterdam Bonn
Sydney Singapore Tokyo Sanjuan

I
I
I

: '
I

------------------·---- ··---···--,---~
i i

- - - - - - - --~~'-'-:::- - - - - ----i- I

,,,(

I /

! :
I I

I

I .
I :

I :

: I
! I
' I

i i

; ..
I

Chapter 1

About. IEEE Standard
Arithmetic

3

~ I Addison-Wesley Casebound Edition
VERSO ----------- --- --·- ----------

You can use this book to help you understand what goes on in IEEE Standard ftoating
:x,int arithmetic. nus chapter introduces some of the salient features of IEEE
arithmetic and desaibes some of the ways you can use those features in your
programs.

Starting to use IEEE standard arithmetic
You can get the benefit of many of the features described in this chapter without
special programming techniques. Other features may require changes to your
programs. If you are just Stalting out with SANE, you can approach the new features in
three inaements:

c Recompile your old programs with no changes; you'll get some of the benefits.

c Make small changes to obtain more benefits.

C Use the advanced features for special applications.

1he rest of this chapter introduces features that are in the first two categories and
concludes with a brief introduction to the advanced features. For complete
desaiptions of the °features of SANE, refer to the other chapters in this book.

Well-behaved arithmetic
.: For most programs, using IEEE Standard arithmetic is quite simple: you just do

arithmetic in the nonnal way. Usually, the results are as good as or better than those
from other computer arithmetics.

These fearures make SANE a well-behaved arithmetic:

c extended precision and mnge

o accurate results

□ careful rounding

□ gradual underflow

Extended precision and range
To make expression evaluation simpler and more accurate, IEEE arithmetic allows
operations to be performed and results to be delivered in an extended data format that
has significantly greater precision and range than the single-precision and double
precision types. The increased precision provides more accuracy; the greater range
avoids undeseived overflow and underflow.

4 Chapter 1: About IEEE Standard Arithmetic

-------·---------- ··•-- ---·· -- - - _~_,.._::;, __ -- - -

\:.!:;::. ·:···l' ~,. F,,.11: i:~··
;- ... :· . .-~ : ~ . '),..; :.!_ -:: ~-

. I
r--

1

I
I

I !
1

I !
I

I I

Addison-Wesley Cascbound Edition

RECTO
----------- _L

-·-·. -- ···-··-. - •• --- --- - -·- • ··-. - ------- ---

High-level languages evaluate expressions in extended format and allow :ne
programmer to dedare extended-precision temporary variables. Using rhe extended
format throughout a computation and rounding the final results back to single or
double. often give improved accuracy.

Accurate results
All the fundamental operations in extended-format IEEE arithmetic produce the best
possible results, limited only by the precision and range of the extended da~ type.
Those operations (addition, subtraction, multiplication, division, square root,
remainder, rounding to integer, and conversions between floating-point formats)
deliver results that are accurate to the last bit. Conversions between binary and
decimal are equally accurate, except when values are extremely large or extremely
small, and even then they are almost that accurate.

Before IEEE Standard arithmetic, it would have been unwise to assume that your
computer's arithmetic was this accurate. Now, with SANE, even for complicated
calculations, you usually don't need to worry about accuracy.

Gradual underflow
When a nonzero result is too small for nonnal representation in the data format, it has
to be replaced by something else. Many computers simply replace such tiny results
with zero. When they do that, they produce an error that is much worse than the
rounding error in slightly larger numbers. Gradual underflow avoids most of this error
by using a denormalized value, as described in Chapter S, Mlnfinities, NaNs, and
Denormalized Numbers.•

Because of gradual underfow, the following is always true in IEEE arithmetic:

x-y• 0 if and only if x• y

That statement is not crue on ma~es that lack gradual underflow.

Careful rounding
IEEE arithmetic normally rounds results to the nearest value. You can choose to round
in other- wa~:s-see th"e section MConcrol of Rounding" later in this chapter-but
generally the default rounding delivers the desired results. The following example is a
simple demonstration of the advantages of careful rounding.

Well-behaved arithmetic 5

------·-----···· ·--- ---· -- ··---•-•. --- --··
-- - --·~-"""""'"-::- - - -- - - --

I . Addison-Wesley Casebound Edition
VERSO --

I ,

I

" ._
..J

Example: Inverse operations

Suppose your program performs operations that are mutually inverse; that is,
ope~tions y • ftx), x • g(y) such that g(/(x)) • x. There are many such o~tions,
~as

y • log(x), x • cxp(y)
y • 375X. X • y'375

The computed values F(x) and G(y) will sometimes differ fromftxJ and g(y). Even
so, if both functions are continuous and well-behaved, and if you always round F(x)
and G(y) to the _nearest value, you might expect your computer arithmetic to return x
when it performs the cycle of inverse operations, G(F(x)). It is difficult to predict when
this rcb.tion will hold for computer numbers. Experience with other computers says it
is too much to expect, but SANE very often rerums the correct inverse value.

There are two reasons for SANE's good behavior with respect to inverse operations.
One is that SANE normally uses the extended data type for intermediate values. When
you store the result in a narrower format, SANE rounds the result to the nearest value,
often rounding away the errors. Another reason is that SANE rounds so carefully. Even
with all operations in, say, single precision, SANE evaluates the expression 3 x (1/3) to
1.0 cx:actly; some other computers don't. If you find that surprising, you might enjoy
running the following example on a computer that doesn't use IEEE arithmetic and on
an Apple~ computer using SANE. SANE's default rounding gives good results: the
Apple computer prints 'No failur~s ' . The program will fail on a computer that
doesn't have IEEE arithmetic-in particular, IEEE arithmetic's treatment of halfway
cases of rounding to nearest.

PROGRAM invop;

VAR
x, y, a, b: single;
ix, iy: integer;
nofail : boolean;

BEGIN
nofail : • true;
FOR ix: • l TO 12 DO

IF ix<>7 AND ix<>ll THEN (so ix is a sum of two powers of 2)
FOR iy : • l TO 50 DO

BEGIN
X ·- ix;
y ·- iy;
a ·- y /x;
b :• x•a;
IF b<>y THEN

BEGIN
nofail :• false ;
writeln (' It failed for x •', ix, ' y •' iy)

£.ND;
£.ND;

IF nofail THEN writeln('No failures');
ENO.

6 Chapter 1: About IEEE Standard Arithmetic

: jh .\ ,,

r . ' ,: • •r • - f I • •

l ·,.,,1 I ·2 •.
' '<

----- -- - -- ·- - ·- . - ·- - ··-- . . ·- - ------- - - - -

~ -t. ·- =· -

J_ RECTO
---------------- - ------------------i ---

♦ Note: This example deliberately avoids the use of extended in order to demonstrate
one effect of careful rounding. Declaring the temporary variable a to be
extended-nonnally good programming practice with SANE-removes the
necessity for restricting ixto sums of two powers of 2.

Alternatives to stopping
There are limits to everything; when you exceed them, something exceptional
happens. The exceptional events are

o invalid operation

o undedlow

o overflow

□ division by zero

o inexact result

Many computers either stop on these exceptions or simply ignore them. IEEE
Standard arithmetic gives programmers the choice of continuing, stopping, or
executing special code.

iEEE arithmetic includes special values NaN {Not-a-Number) and Infinity. When a
program encounters an invalid operation, overflow, or division by zero, the
arithmetic returns the appropriate NaN or Infinity so that the progrant can continue.
For detailed descriptions of NaN and Infinity, please see Chapter 5, "Infinities, NaNs,
and Denormalized Numbers.•

IEEE Standard arithmetic allows (and SANE provides) the option to stop computation
when these situations arise, but there are good reasons why you might prefer not to
have to stop. The following examples illustrate some of them.

Example: compound conditional statements
Suppose a programmer wants to write a simple statement to perform cwo tests, one of
which can cause an invalid operation such as 0/0. In Pascal, the statement might look
like this:

if x ~ 0 or y/>C< 3 then writeln ('Eureka!');

When x and y are both equal to O, the programmer intends this statement to print
"Eureka!" With a Pascal compiler that supports SANE,.the statement will produce the
desired result To obtain the desired result on all computers, the programmer would
have to be careful and write something more cumbersome. By allowing y/ xwhen x
and y are zero, SANE lets the programmer write simpler code.

Altematlves to stopping 7

-- ---·· ----- -------------------. ----· -
- -- - - - - -- ·- - ·: L. '- ... -::, - - - - - - -

1 •

...
\I

T

-

I Addison-Wesley Casebound Edition
VERSO

---- ------- - - - - - - ---------

I I

This program fragment demonsuates the principal seivice pedonned by NaNs:
permitting deferred judgments about variables whose values may be unavailable (that
is, uninitialized) or the result of invalid operations. Instead of having the computer
stop a computation as soon as a NaN appears, you might prefer to have it continue in
the hope that whatever caused the NaN will tum out to be inelew.nt to the solution.

♦ Pascal note: Apple's MPW Pascal compilen include a short-circuit option ($SC+)
that causes the program not to evaluate the second part of a compound conditional
if the result value is already determined. Code compiled with that option avoids
evaluating 0/0 in the fragment above, but not in the following similar one:

if y/x < 3 or x • 0 then writeln ('Eureka!');

Searching without stopping
Suppose your program has to search through a database for something like a
maximum value that has to be calculated. The search loop might call a subroutine to
pedonn some calculation on the data in each tte:0rd and rerum a value for the
program to test or compare. for some records, data might be nonexistent or invalid
On many machines, that would cause the program to stop. To avoid having the
program stop during the search, you'd have to add tests for all the exceptional cases.
With SANE, the subroutine doesn't stop for nonexistent or invalid data; it simply
returns a NaN.

'Ibis is another example of the way arithmetic that includes NaN allows the program to
ignore iaelevandes, even when they cause invalid operations. Using arithmetic
without NaNs, you would have to anticipate all exceptional cases and add code to the
program to handle eve,y one of them in advance. With NaNs at your disposal, you can
handle all exceptional cases after they have occurred.

Example: parallel resistances
Like NaNs, Infinities enable the program to handle cases that otherwise would require
special programming to keep from stopping. Here is an example where arithmetic
with Infinities is entirely reasonable.

Rl

A R2 R123 B'

R3 :

Figure 1-1
Parallel resistances

8 Chapter 1: About IEEE Standard Arithmetic

. r
r- - - - - -

RECTO

------------ ---· - -· - -

. i
I I

I

:

When three electric:al resistances Rl, R2, and R3 are connected in parallel as shown in
Figure: 1-1, their effective resistance is the same as a single resistance whose value Rl23
is given by this fonnula:

1
R123• 1 1 1

Rl +12+ R3

The formula gives conec:t results for positive resistance values between 0
(corresponding to a shott circuit) and infinity (corresponding to an open drcuit)
inclusive. On computers that dontt allow di.vision by zero, the programmer would
have to add testS designed to filter out the cases with resistance values of zero.
(Negative values can cause trouble for this fonnula, regardless of the style of the
arithmetic, but that reflectS their troublesome nature in circuits, where they can cause
instability.)

Arithmetic with Infinities usually gives reas<?nable results for expres.,ions in which each
independent variable appeatS only once.

Advanced features
SANE also includes more advanced features, such as control of rounding direction
and precision, tools for handling exceptional cases, and a set of elementary
(transcendental) functions suitable for use ~ core routines in mathematic:al functions.
These features are only introduced here; for complete desaiptions, please see
Chapter 7, •Controlling the SANE Environment,• and Chapter 8, •Elementary
Functions in SANE.•

Control of rounding
Rounding is normally carried out to the nearest value, but IEEE Standard arithmetic
gives the programmer complete control of rounding precision and direction (see the
section "Rounding Direction• in Chapter 7).

Sometimes you may want to know that roundoff has not invalidated a computation.
One way to do that would be to force the rounding direction so that you can be sure
your results are higher than the exact answer. IEEE arithmetic gives you a means of
doing that- Fully developed, this strategy is called interval arithmetic. See Kahan (22).

Advanced features 9

~-----·---·-----~---- -------- --- - ··--··-· -··- -·

I Addison-Wesley Casebound Edition
VERSO

·- - - - - - - - - - - - - - - - - - - -------------:

. :

·•·

Exception handling
1b~ are three ways for a program to deal with exceptions:

c continue operation

c stop on excel)tions, if you think they're causing trouble

c include code to do something special when exceptions happen

The features of IEEE arithmetic enable programs to deal with the exceptions in
reasonable ways, as this book explains. lbe.re are the special values NaN and Infinity
so a program can continue operation: see the sections •Infinities" and •NaNs" in
Chapter S. There are also flags, which a program can test to detect exceptional events,
and halts, which transfer control to code for handling special cases: see the section
•Exception Flags and Halts" in Chapter 7 .

Elementary functions
SANE includes high-precision elementary functions that are consistent with the IEEE
Standard and that can be used as building blocks in numerical functions. The
elementary functions include the usual logarithmic and exponential functions, plus
ln(l + x) and e"- 1; financial functions for compound interest arid annuity •
calculations; trigonometric functions; and a random number generator.

1 O Chapter 1: About IEEE Standard Arithmetic

•• --··--··--···---·---·-------- -·-· -------·-----
- - - _:-;_ .. ,_=--

Trim: 7 -,·;,l • X 9··
~targin."· T11p: ~.:,··. F1lul: Ii:?··.

Chapter 7

Controlling the SANE
Environment

51

Addison-Wesley C:isebound Edition

\"ERSO

Environmental controls include the rounding direction, rounding precision.
exception flags, and halt settings.

Rounding direction
RoundDir • (ToNearest, Opward, Downward, TowardZero);

PROCEDORE SetRound(r: RoundDir);
FUNCTION GetRound: RoundDir;

The aV2ilable rounding directions are

CJ to-nearest

Cl upward

Cl downward

CJ toward-zero

The rounding direction affcas all conversions except conversions between decimal
records and decimal strings and all arithmetic operations except remainder. Except
for conversions between birwy and decimal (described in Chapter 3, •conversions
in SANE•), all operauons are computed as if with infinite precision and range and
then rounded to the destination format according to the current rounding direction.
The rounding direction may be interrogated and set by the user.

♦ Note: Transcendental functions are not arithmetic operations and do not produce
the correctly rounded value described here.

The default rounding direction is to-nearest In this direction the representable value
nearest to the infinitely precise result is delivered; if the two nearest representable
values are equally near, the one with least significant bit zero is delivered. Hence,
halfway cases round to even when the destination is the comp or a system-specific
integer type or when the round-to-integral-value operation is used. If the magnitude of
the infinitely precise result exceeds the format's largest value (by at least one half unit
in the last place), then the Infinicy with the corresponding sign is delivered.

The other rounding directions are upward, downward, and toward-zero. When
rounding upward, the result is the format's value (possibly INF) closest to and no less
than the infinitely precise result When rounding downward, the result is the format's
value (possibly -INF) closest to and no greater than the infinitely precise result When
rounding toward zero, the result is the format's value closest to and no greater in
magnitude than the infinitely precise result. To truncate a number to an integral value,
use toward-zero rounding either with conversion into an integer format or with the
round-to-integral-value operation. (See also the sections on expressions in "Pascal
SANE Extensions• and •c SANE Extensions• in Appendix A.)

52 Chapter 7: Controlling the SANE Environment

J ___ _ ,- -··-·

Addison-Wesley Ca~ebound Edition

R~CTO

Ex1.1mple: rounding upward
One reason to change the rounding direction would be to put bounds on errors (at
least for the rational operations and square root). Suppose you want to evaluate an
expression like

z• (ax b + ex 4) I(/+ g)

wheie ~ b, c, c(f, and gue positive.

To make sure that the result is always larger than the exact value, you C3ll change the
expression such that all roundings cause errors in the same direction. lhe following
code fragment changes the rounding direction to compute an upper bound for the
expression, then restores the previous rounding.

VAR
r: Round.Dir;
xOp: extended;

r :• GetRound;
SetRound(Downward);
xUp :• f+g;

(local storage tor rounding direction}

(save rounding direction)
(downwud rounding for denominator)

. SetRound(Upward); (upward rounding for expression)
xOp :• (a•b+c•d)/xUp;
SetRound(r) {restore previous rounding direction)

Rounding precision
RoundPre m (ExtPrecision, 0blPrecision, RealPrecision);

PROCEDURE SetPrecision(p: RoundPre);
FUNCTION GetPrecision: RoundPre;

Normally, SANE arithmetic computations produce results· to extended precision and
range. To facilitate simulations of arithmetic systems that an: not extended-based, the
IEEE Standard requires that the user be able to set the rounding precision to single or
to double. If the SANE user sets rounding precision to single (or to double), then all
arithmetic operations produce results that are correctly rounded and that overllow or
underflow as if the desgnation were single (or double), even though results ate
typically delivered to extended formats. Conversions to double and to extended
fonnats are affected if rounding precision is set to single,.and conversions to extended
fonnats are affected if rounding precision is set to double; conversions to decimal,
comp, and system-specific integer types are not affected by the rounding precision.
Rounding precision can be interrogated as well as set.

Setting rounding precision to single or to double does not significantly enhance
performance, and in some SANE implementations may hinder performance.

Rounding precision 53

-- : - :: - -

-·---

Addison-Wesley Casebound Edition

Exception flags and halts
TYPE

Exception• integer;

CONST
Invalid• l;
Underflow• 2;
Overflow• 4;
DivByZero • 8;
Inexact• 16;

PROCEDURE SetException(e: Exception; b : boolean);
FUNCTION TestException(e: Exception): boolean;
PROCEDURE SetHalt(e: Exception; b: boolean);
FUNCTION TestHalt(e: Exception): boolean;

♦ Note: The values of the exception constants and the type definition for
Exception vary among different implementations of SANE, but code that uses
the functions, procedures, and symbolic constant names to access exceptions and
halts should pon aaoss the different implementations. Please refer to other pans
of this manual for implementation-dependent infonnation.

Exceptions are signaled when detected; if the corresponding halt is enabled, the ·SANE
engine transfers control to a user-specified location. (A high-level language may not
pass on to its user the f.lcility to set this location, but instead may stop the user's
program.) The user's program can examine or set individual exception flags and
halts, and can save and get the entire environment (rounding direction, rounding
precision, exception flags, and halt senings).

{If halt vector is to be made available to Pascal users:)
FUNCTION _GetHaltVector: longint;
PROCEDURE Set Hal tVector (v : . long int) ;

A control mechanism such as this can also be provided by hardware-for example,
the Motorola MC68881 floating-point coprocessor. On machines with hardware
exception trapping, programs should use the hardware mechanism instead of the
software-supported mechanism described here. For information about the hale (trap)
mechapism on the MC68881, please refer to Chapter 30, -nie MC68881 Trap
Mechanism,• and co Motorola's MC68881 Floating-Point Coprocessor User's
Manual.

54 Chapter 7: Controlling the SANE Environment

Types of exceptions
SANE supports five exception flags with corresponding halt settings:

c invalid operation (often called simply invalid)

c undetflow

c overflow

c divide-by-zero

c inexad

Invalid operation

The invalid-operation exception is signaled if an operand is invalid for the operation
to be perfonned. The result is a quiet NaN, provided the destination format is single,
double, extended, or comp. Tite invalid conditions for the different operations are
these:

c addition or subtraction: magnitude subtraction of Infinities, for example,
(+INF) + (-INP)

c multiplication: 0 x INF

c division: 0/0 or INF /INF

c remainder: x rem y, ~here y is zero or z is infinite

c square root: if the operand is less than zero

a conversion: to the comp format or to a system-specific integer format when
excessive magnitude, Infinity, or NaN precludes a faithful representation in that
fonnat (see Chapter 3, •conversions in SANE,• for details)

c comparison: with predicates involving less-than or greater-than, but not
unordered, when at least one operand is a NaN

c any operation on a signaling NaN except the following: class and sign inquiries and,
on some implementations, sign manipulations (Negate, Absolute Value, and
CopySign)

♦ Note: Compilers for high-level languages may move extended-format numbers
either by extended-t~ended conversions, which detect signaling NaNs, or by
bit copies, which don't. Thus, some compiler-generated moves cause signaling
NaNs to raise the invalid exception earlier than expected.

Exception flags and halts

I Addison-Wesley C:isc:hound Edition

- - - - • -·. - - - - - - - ·- ·- --- - - - - -

Underflow

1be (unbalted) undedlow exception is signaled when a floating-point iesult is both
tiny and inexact (and thetefore is perhaps significantly less accumte than it would be if
the exponent range were unbounded). A result is considered tiny if i1s magnitude is
smaller than its format's smallest positive normalized number.

♦ Nole: Different SANE engines may test for a tiny result either before or after
rounding the result to its destinadon formaL If the underflow halt is set, the halt
occws either when the result is tiny and inexact or when the result is simply tiny; see
•Example: Gmdual Underilow" in Chapter 5. For details about the 65C816 and 6502
SANE engines, tefer to Chapter 15. For deaails about the MC68000 SANE engine,
refer to Chapter 23. For derails about the MC68881 SANE engine, refer to
Chapter 30 and to Motorola's MC68881 Floating-Point Coprocessor User's
Manual.

Divide-by-zero

The divide-by-zero exception is signaled when a finite nonzero number is divided by
zero. It is also signaled, in the more general c:ase;when an operation on finite
operands produces an exact infinite result; for example, Logb (O) returns -INF and
signals divide-by-zero. (Overflow, mther than divide-by-zero', flags the production of
an inexact infmite result.)

Overflow

The ovetflow exception is signaled when a floating-point destination format's largest
finite number is exceeded in magnirude by what would have been the rounded
floating-point result were the exponent mnge unbounded. Onvalid, rather than
overflow, flags the production of an out-of-range value for an integral destination
fonnat.)

Inexact

The inexact exception is signaled if the rounded result of an operation is not identical
to the mathematical (exact) result. Thus, inexact is always signaled in conjunction with
overflow or.underflow. Valid operations on Infmities are always exact and therefore
signal no exceptions. Invalid operations on Infinities are described at the beginning of
this section.

56 Chapter 7: Controlling the SANE Environment

J Addison-W~s!~y Cas~hnund Edi;ion

Managing environmental settings
Environmental settings inducle the rounding direction, rounding precision,
exception flags, and halt settings. These settings are global and can be expliddy
changed by the program. Thus, all routines inherit these settings and are capable of
changing thein. Conventionally, routines that change these settings first save them,
then restore when finished.

Environment• integer;

PROCEDURE SetEnvironment(e: Environment);
PROCEDURE GetEnvironment(var e: Environment);
PROCEDURE ProcEntry(var e: Environment);
PROCEDURE ProcExit(e: Environment);

♦ Note: 1be type definition of the Environment word can be cliffeient for different
SANE implementations, but code that uses the procedures to access the
environment should port aaoss the different implementations. On a machine with
an MC66881, the SANE environment is stored in the MC68881 's control and status
registers; see Chapter 29, •conttolling the MC68881 Environment.•

Exa~ple: setting rounding direction
A subroutine that includes the following statements uses to-nearest rounding while ·not
affecting its caller's rounding direction.

VM.
r: RoundOir;

BEGIN
r :• GetRound;
SetRound(ToNearest);

(local storage tor rounding direction}

{save caller's rounding direction}
(set to-nearest rounding}

(subroutine's operations here}

SetRound(r)
END;

(restore caller's rounding direction)

Notice that if the subroutine is to be reentrant, then storage for the caller's
environmP.nt must 'be local

SANE implementations may provide two efficient procedures for managing the
environment as a whole: the Procedure-Entry and Procedure-Exit procedures.

The Procedure-Entry procedure returns the current environment (for saving in local
storage) and sets the default environment: roundfug direction to-nearest, rounding
precision extended, and exception flags and halts clear.

Managing environmental settings 57

-·· --- ---=-- -~'- -.________.... -------·· ... ,... - - -· - . . -

I Addison-Wesley Casebound Edition

----------- --- -- ---------

Example: setting environment
A subroutine that includes the following statements runs under the default
~vuonment while not affecting its caller's environment

VAR
e: Environment;

BEGIN·
ProcEntry (e);

(auoroutine's operations here

SetEnvironment(e)
END;

(local storage for environmenc}

{aave caller's environment and set
default environmenc)

{restore caller's environment)

Example: setting exceptions
"Ibe Procedure-Exit procedure facilitates writing subroutines that appear to their
callers to be atomic operations (such as addition, square root, and others). Atomic
operations pass extra infonnation back to their callers by signaling exceptions;
however, they hide internal exc~ptions, which may be ilTelevant or misleading. The
Procedure-Exit procedure, which takes a saved environment as argument, does the
following:

1. It temporarily saves the exception flags (raised by the subroutine).

2. It restores the environment received as argument.

3. It signals the temporarily saved exceptions. (Note that if ~led, halts could occur
at this step.)

Thus, exceptions signaled between the Procedure-Entry and Procedure-Exit
procedures are hidden from the calling program unless the exceptions remain raised
when the Procedure-Exit procedure is c:alled.

58 Chapter 7: Controfllng the SANE Environment

Addi~on-W \!~ky Cas~hound Edition

1be following function signals underflow if its result is denormalized, ovedlow if its
result is Infinity, and inexact alw-ays, but hides spurious exceptions occurring from
internal computations:

FUNCTION NumFcn: extended;•

VAR
e:
c:

BEGIN
Proc:Entry(e);

Environment;
NumClaH;

NumFcn :• Result;
c :• ClassExtended(Result);

(local storage for environment)
(for class inquiry)

(NumFcn)
(save caller's environment and set
default environment - now halts are
disabled)

(internal computation)

(result to be returned)
(class inquiry)

SetException(Invalid +Underflow+ overflow+ DivByZero, false);
(clear exceptions)

SetException(Inexact, true); (signal inexact)

IF C - Infinite THEN
SetException (OVerflow,· true)

ELSE IF C - DenormalNum THEN
• SetException(Underflow, true);
ProcExit(e)

ENO

{restore caller's environment, including
any halt enables, and then signal
exceptions from subroutine)

{NumFcn) ;

Managing environmental settings 59

_l

