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You can use this book to help you understand what goes on in IEEE Standard ftoating
:x,int arithmetic. nus chapter introduces some of the salient features of IEEE 
arithmetic and desaibes some of the ways you can use those features in your 
programs. 

Starting to use IEEE standard arithmetic 
You can get the benefit of many of the features described in this chapter without 
special programming techniques. Other features may require changes to your 
programs. If you are just Stalting out with SANE, you can approach the new features in 
three inaements: 

c Recompile your old programs with no changes; you'll get some of the benefits. 

c Make small changes to obtain more benefits. 

C Use the advanced features for special applications. 

1he rest of this chapter introduces features that are in the first two categories and 
concludes with a brief introduction to the advanced features. For complete 
desaiptions of the °features of SANE, refer to the other chapters in this book. 

Well-behaved arithmetic 
.: For most programs, using IEEE Standard arithmetic is quite simple: you just do 

arithmetic in the nonnal way. Usually, the results are as good as or better than those 
from other computer arithmetics. 

These fearures make SANE a well-behaved arithmetic: 

c extended precision and mnge 

o accurate results 

□ careful rounding 

□ gradual underflow 

Extended precision and range 
To make expression evaluation simpler and more accurate, IEEE arithmetic allows 
operations to be performed and results to be delivered in an extended data format that 
has significantly greater precision and range than the single-precision and double
precision types. The increased precision provides more accuracy; the greater range 
avoids undeseived overflow and underflow. 

4 Chapter 1: About IEEE Standard Arithmetic 

-------·---------- ··•-- ---·· -- - - _~_,.._::;, __ -- - -

\:.!:;::. ·:···l' ~,. F,,.11: i:~·· 
;- ... :· . .-~ : ~ . '),..; :.!_ -:: ~-



. I 
r--

1 

I 
I 

I ! 
1 

I ! 
I 

I I 

Addison-Wesley Cascbound Edition 

RECTO 
----------- _L 

-·-·. -- ···-··-. - •• --- --- - -·- • ··-. - ------- ---

High-level languages evaluate expressions in extended format and allow :ne 
programmer to dedare extended-precision temporary variables. Using rhe extended 
format throughout a computation and rounding the final results back to single or 
double. often give improved accuracy. 

Accurate results 
All the fundamental operations in extended-format IEEE arithmetic produce the best 
possible results, limited only by the precision and range of the extended da~ type. 
Those operations (addition, subtraction, multiplication, division, square root, 
remainder, rounding to integer, and conversions between floating-point formats) 
deliver results that are accurate to the last bit. Conversions between binary and 
decimal are equally accurate, except when values are extremely large or extremely 
small, and even then they are almost that accurate. 

Before IEEE Standard arithmetic, it would have been unwise to assume that your 
computer's arithmetic was this accurate. Now, with SANE, even for complicated 
calculations, you usually don't need to worry about accuracy. 

Gradual underflow 
When a nonzero result is too small for nonnal representation in the data format, it has 
to be replaced by something else. Many computers simply replace such tiny results 
with zero. When they do that, they produce an error that is much worse than the 
rounding error in slightly larger numbers. Gradual underflow avoids most of this error 
by using a denormalized value, as described in Chapter S, Mlnfinities, NaNs, and 
Denormalized Numbers.• 

Because of gradual underfow, the following is always true in IEEE arithmetic: 

x-y• 0 if and only if x• y 

That statement is not crue on ma~es that lack gradual underflow. 

Careful rounding 
IEEE arithmetic normally rounds results to the nearest value. You can choose to round 
in other- wa~:s-see th"e section MConcrol of Rounding" later in this chapter-but 
generally the default rounding delivers the desired results. The following example is a 
simple demonstration of the advantages of careful rounding. 

Well-behaved arithmetic 5 
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Example: Inverse operations 

Suppose your program performs operations that are mutually inverse; that is, 
ope~tions y • ftx), x • g(y) such that g(/(x)) • x. There are many such o~tions, 
~as 

y • log(x), x • cxp(y) 
y • 375X. X • y'375 

The computed values F(x) and G(y) will sometimes differ fromftxJ and g(y). Even 
so, if both functions are continuous and well-behaved, and if you always round F(x) 
and G(y) to the _nearest value, you might expect your computer arithmetic to return x 
when it performs the cycle of inverse operations, G(F(x)). It is difficult to predict when 
this rcb.tion will hold for computer numbers. Experience with other computers says it 
is too much to expect, but SANE very often rerums the correct inverse value. 

There are two reasons for SANE's good behavior with respect to inverse operations. 
One is that SANE normally uses the extended data type for intermediate values. When 
you store the result in a narrower format, SANE rounds the result to the nearest value, 
often rounding away the errors. Another reason is that SANE rounds so carefully. Even 
with all operations in, say, single precision, SANE evaluates the expression 3 x (1/3) to 
1.0 cx:actly; some other computers don't. If you find that surprising, you might enjoy 
running the following example on a computer that doesn't use IEEE arithmetic and on 
an Apple~ computer using SANE. SANE's default rounding gives good results: the 
Apple computer prints 'No failur~s ' . The program will fail on a computer that 
doesn't have IEEE arithmetic-in particular, IEEE arithmetic's treatment of halfway 
cases of rounding to nearest. 

PROGRAM invop; 

VAR 
x, y, a, b: single; 
ix, iy: integer; 
nofail : boolean; 

BEGIN 
nofail : • true; 
FOR ix: • l TO 12 DO 

IF ix<>7 AND ix<>ll THEN ( so ix is a sum of two powers of 2 ) 
FOR iy : • l TO 50 DO 

BEGIN 
X ·- ix; 
y ·- iy; 
a ·- y /x; 
b :• x•a; 
IF b<>y THEN 

BEGIN 
nofail :• false ; 
writeln (' It failed for x •', ix, ' y •' iy) 

£.ND; 
£.ND; 

IF nofail THEN writeln('No failures'); 
ENO. 
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♦ Note: This example deliberately avoids the use of extended in order to demonstrate 
one effect of careful rounding. Declaring the temporary variable a to be 
extended-nonnally good programming practice with SANE-removes the 
necessity for restricting ixto sums of two powers of 2. 

Alternatives to stopping 
There are limits to everything; when you exceed them, something exceptional 
happens. The exceptional events are 

o invalid operation 

o undedlow 

o overflow 

□ division by zero 

o inexact result 

Many computers either stop on these exceptions or simply ignore them. IEEE 
Standard arithmetic gives programmers the choice of continuing, stopping, or 
executing special code. 

iEEE arithmetic includes special values NaN {Not-a-Number) and Infinity. When a 
program encounters an invalid operation, overflow, or division by zero, the 
arithmetic returns the appropriate NaN or Infinity so that the progrant can continue. 
For detailed descriptions of NaN and Infinity, please see Chapter 5, "Infinities, NaNs, 
and Denormalized Numbers.• 

IEEE Standard arithmetic allows (and SANE provides) the option to stop computation 
when these situations arise, but there are good reasons why you might prefer not to 
have to stop. The following examples illustrate some of them. 

Example: compound conditional statements 
Suppose a programmer wants to write a simple statement to perform cwo tests, one of 
which can cause an invalid operation such as 0/0. In Pascal, the statement might look 
like this: 

if x ~ 0 or y/>C< 3 then writeln ('Eureka!'); 

When x and y are both equal to O, the programmer intends this statement to print 
"Eureka!" With a Pascal compiler that supports SANE,.the statement will produce the 
desired result To obtain the desired result on all computers, the programmer would 
have to be careful and write something more cumbersome. By allowing y/ xwhen x 
and y are zero, SANE lets the programmer write simpler code. 

Altematlves to stopping 7 
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This program fragment demonsuates the principal seivice pedonned by NaNs: 
permitting deferred judgments about variables whose values may be unavailable (that 
is, uninitialized) or the result of invalid operations. Instead of having the computer 
stop a computation as soon as a NaN appears, you might prefer to have it continue in 
the hope that whatever caused the NaN will tum out to be inelew.nt to the solution. 

♦ Pascal note: Apple's MPW Pascal compilen include a short-circuit option ($SC+) 
that causes the program not to evaluate the second part of a compound conditional 
if the result value is already determined. Code compiled with that option avoids 
evaluating 0/0 in the fragment above, but not in the following similar one: 

if y/x < 3 or x • 0 then writeln ('Eureka!'); 

Searching without stopping 
Suppose your program has to search through a database for something like a 
maximum value that has to be calculated. The search loop might call a subroutine to 
pedonn some calculation on the data in each tte:0rd and rerum a value for the 
program to test or compare. for some records, data might be nonexistent or invalid 
On many machines, that would cause the program to stop. To avoid having the 
program stop during the search, you'd have to add tests for all the exceptional cases. 
With SANE, the subroutine doesn't stop for nonexistent or invalid data; it simply 
returns a NaN. 

'Ibis is another example of the way arithmetic that includes NaN allows the program to 
ignore iaelevandes, even when they cause invalid operations. Using arithmetic 
without NaNs, you would have to anticipate all exceptional cases and add code to the 
program to handle eve,y one of them in advance. With NaNs at your disposal, you can 
handle all exceptional cases after they have occurred. 

Example: parallel resistances 
Like NaNs, Infinities enable the program to handle cases that otherwise would require 
special programming to keep from stopping. Here is an example where arithmetic 
with Infinities is entirely reasonable. 

Rl 

A R2 R123 B' 

R3 : 

Figure 1-1 
Parallel resistances 
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When three electric:al resistances Rl, R2, and R3 are connected in parallel as shown in 
Figure: 1-1, their effective resistance is the same as a single resistance whose value Rl23 
is given by this fonnula: 

1 
R123• 1 1 1 

Rl +12+ R3 

The formula gives conec:t results for positive resistance values between 0 
(corresponding to a shott circuit) and infinity (corresponding to an open drcuit) 
inclusive. On computers that dontt allow di.vision by zero, the programmer would 
have to add testS designed to filter out the cases with resistance values of zero. 
(Negative values can cause trouble for this fonnula, regardless of the style of the 
arithmetic, but that reflectS their troublesome nature in circuits, where they can cause 
instability.) 

Arithmetic with Infinities usually gives reas<?nable results for expres.,ions in which each 
independent variable appeatS only once. 

Advanced features 
SANE also includes more advanced features, such as control of rounding direction 
and precision, tools for handling exceptional cases, and a set of elementary 
(transcendental) functions suitable for use ~ core routines in mathematic:al functions. 
These features are only introduced here; for complete desaiptions, please see 
Chapter 7, •Controlling the SANE Environment,• and Chapter 8, •Elementary 
Functions in SANE.• 

Control of rounding 
Rounding is normally carried out to the nearest value, but IEEE Standard arithmetic 
gives the programmer complete control of rounding precision and direction (see the 
section "Rounding Direction• in Chapter 7). 

Sometimes you may want to know that roundoff has not invalidated a computation. 
One way to do that would be to force the rounding direction so that you can be sure 
your results are higher than the exact answer. IEEE arithmetic gives you a means of 
doing that- Fully developed, this strategy is called interval arithmetic. See Kahan (22). 

Advanced features 9 
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Exception handling 
1b~ are three ways for a program to deal with exceptions: 

c continue operation 

c stop on excel)tions, if you think they're causing trouble 

c include code to do something special when exceptions happen 

The features of IEEE arithmetic enable programs to deal with the exceptions in 
reasonable ways, as this book explains. lbe.re are the special values NaN and Infinity 
so a program can continue operation: see the sections •Infinities" and •NaNs" in 
Chapter S. There are also flags, which a program can test to detect exceptional events, 
and halts, which transfer control to code for handling special cases: see the section 
•Exception Flags and Halts" in Chapter 7 . 

Elementary functions 
SANE includes high-precision elementary functions that are consistent with the IEEE 
Standard and that can be used as building blocks in numerical functions. The 
elementary functions include the usual logarithmic and exponential functions, plus 
ln(l + x) and e"- 1; financial functions for compound interest arid annuity • 
calculations; trigonometric functions; and a random number generator. 
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Environmental controls include the rounding direction, rounding precision. 
exception flags, and halt settings. 

Rounding direction 
RoundDir • (ToNearest, Opward, Downward, TowardZero); 

PROCEDORE SetRound(r: RoundDir); 
FUNCTION GetRound: RoundDir; 

The aV2ilable rounding directions are 

CJ to-nearest 

Cl upward 

Cl downward 

CJ toward-zero 

The rounding direction affcas all conversions except conversions between decimal 
records and decimal strings and all arithmetic operations except remainder. Except 
for conversions between birwy and decimal (described in Chapter 3, •conversions 
in SANE•), all operauons are computed as if with infinite precision and range and 
then rounded to the destination format according to the current rounding direction. 
The rounding direction may be interrogated and set by the user. 

♦ Note: Transcendental functions are not arithmetic operations and do not produce 
the correctly rounded value described here. 

The default rounding direction is to-nearest In this direction the representable value 
nearest to the infinitely precise result is delivered; if the two nearest representable 
values are equally near, the one with least significant bit zero is delivered. Hence, 
halfway cases round to even when the destination is the comp or a system-specific 
integer type or when the round-to-integral-value operation is used. If the magnitude of 
the infinitely precise result exceeds the format's largest value (by at least one half unit 
in the last place), then the Infinicy with the corresponding sign is delivered. 

The other rounding directions are upward, downward, and toward-zero. When 
rounding upward, the result is the format's value (possibly INF) closest to and no less 
than the infinitely precise result When rounding downward, the result is the format's 
value (possibly -INF) closest to and no greater than the infinitely precise result When 
rounding toward zero, the result is the format's value closest to and no greater in 
magnitude than the infinitely precise result. To truncate a number to an integral value, 
use toward-zero rounding either with conversion into an integer format or with the 
round-to-integral-value operation. (See also the sections on expressions in "Pascal 
SANE Extensions• and •c SANE Extensions• in Appendix A.) 
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Ex1.1mple: rounding upward 
One reason to change the rounding direction would be to put bounds on errors (at 
least for the rational operations and square root). Suppose you want to evaluate an 
expression like 

z• (ax b + ex 4) I(/+ g) 

wheie ~ b, c, c(f, and gue positive. 

To make sure that the result is always larger than the exact value, you C3ll change the 
expression such that all roundings cause errors in the same direction. lhe following 
code fragment changes the rounding direction to compute an upper bound for the 
expression, then restores the previous rounding. 

VAR 
r: Round.Dir; 
xOp: extended; 

r :• GetRound; 
SetRound(Downward); 
xUp :• f+g; 

(local storage tor rounding direction} 

(save rounding direction) 
(downwud rounding for denominator) 

. SetRound(Upward); (upward rounding for expression) 
xOp :• (a•b+c•d)/xUp; 
SetRound(r) {restore previous rounding direction) 

Rounding precision 
RoundPre m (ExtPrecision, 0blPrecision, RealPrecision); 

PROCEDURE SetPrecision(p: RoundPre); 
FUNCTION GetPrecision: RoundPre; 

Normally, SANE arithmetic computations produce results· to extended precision and 
range. To facilitate simulations of arithmetic systems that an: not extended-based, the 
IEEE Standard requires that the user be able to set the rounding precision to single or 
to double. If the SANE user sets rounding precision to single (or to double), then all 
arithmetic operations produce results that are correctly rounded and that overllow or 
underflow as if the desgnation were single (or double), even though results ate 
typically delivered to extended formats. Conversions to double and to extended 
fonnats are affected if rounding precision is set to single,.and conversions to extended 
fonnats are affected if rounding precision is set to double; conversions to decimal, 
comp, and system-specific integer types are not affected by the rounding precision. 
Rounding precision can be interrogated as well as set. 

Setting rounding precision to single or to double does not significantly enhance 
performance, and in some SANE implementations may hinder performance. 
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Exception flags and halts 
TYPE 

Exception• integer; 

CONST 
Invalid• l; 
Underflow• 2; 
Overflow• 4; 
DivByZero • 8; 
Inexact• 16; 

PROCEDURE SetException(e: Exception; b : boolean); 
FUNCTION TestException(e: Exception): boolean; 
PROCEDURE SetHalt(e: Exception; b: boolean); 
FUNCTION TestHalt(e: Exception): boolean; 

♦ Note: The values of the exception constants and the type definition for 
Exception vary among different implementations of SANE, but code that uses 
the functions, procedures, and symbolic constant names to access exceptions and 
halts should pon aaoss the different implementations. Please refer to other pans 
of this manual for implementation-dependent infonnation. 

Exceptions are signaled when detected; if the corresponding halt is enabled, the ·SANE 
engine transfers control to a user-specified location. (A high-level language may not 
pass on to its user the f.lcility to set this location, but instead may stop the user's 
program.) The user's program can examine or set individual exception flags and 
halts, and can save and get the entire environment (rounding direction, rounding 
precision, exception flags, and halt senings). 

{If halt vector is to be made available to Pascal users:) 
FUNCTION _GetHaltVector: longint; 
PROCEDURE Set Hal tVector (v : . long int) ; 

A control mechanism such as this can also be provided by hardware-for example, 
the Motorola MC68881 floating-point coprocessor. On machines with hardware 
exception trapping, programs should use the hardware mechanism instead of the 
software-supported mechanism described here. For information about the hale (trap) 
mechapism on the MC68881, please refer to Chapter 30, -nie MC68881 Trap 
Mechanism,• and co Motorola's MC68881 Floating-Point Coprocessor User's 
Manual. 
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Types of exceptions 
SANE supports five exception flags with corresponding halt settings: 

c invalid operation (often called simply invalid) 

c undetflow 

c overflow 

c divide-by-zero 

c inexad 

Invalid operation 

The invalid-operation exception is signaled if an operand is invalid for the operation 
to be perfonned. The result is a quiet NaN, provided the destination format is single, 
double, extended, or comp. Tite invalid conditions for the different operations are 
these: 

c addition or subtraction: magnitude subtraction of Infinities, for example, 
( +INF) + (-INP) 

c multiplication: 0 x INF 

c division: 0/0 or INF /INF 

c remainder: x rem y, ~here y is zero or z is infinite 

c square root: if the operand is less than zero 

a conversion: to the comp format or to a system-specific integer format when 
excessive magnitude, Infinity, or NaN precludes a faithful representation in that 
fonnat (see Chapter 3, •conversions in SANE,• for details) 

c comparison: with predicates involving less-than or greater-than, but not 
unordered, when at least one operand is a NaN 

c any operation on a signaling NaN except the following: class and sign inquiries and, 
on some implementations, sign manipulations (Negate, Absolute Value, and 
CopySign) 

♦ Note: Compilers for high-level languages may move extended-format numbers 
either by extended-t~ended conversions, which detect signaling NaNs, or by 
bit copies, which don't. Thus, some compiler-generated moves cause signaling 
NaNs to raise the invalid exception earlier than expected. 

Exception flags and halts 
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Underflow 

1be (unbalted) undedlow exception is signaled when a floating-point iesult is both 
tiny and inexact (and thetefore is perhaps significantly less accumte than it would be if 
the exponent range were unbounded). A result is considered tiny if i1s magnitude is 
smaller than its format's smallest positive normalized number. 

♦ Nole: Different SANE engines may test for a tiny result either before or after 
rounding the result to its destinadon formaL If the underflow halt is set, the halt 
occws either when the result is tiny and inexact or when the result is simply tiny; see 
•Example: Gmdual Underilow" in Chapter 5. For details about the 65C816 and 6502 
SANE engines, tefer to Chapter 15. For deaails about the MC68000 SANE engine, 
refer to Chapter 23. For derails about the MC68881 SANE engine, refer to 
Chapter 30 and to Motorola's MC68881 Floating-Point Coprocessor User's 
Manual. 

Divide-by-zero 

The divide-by-zero exception is signaled when a finite nonzero number is divided by 
zero. It is also signaled, in the more general c:ase;when an operation on finite 
operands produces an exact infinite result; for example, Logb ( O) returns -INF and 
signals divide-by-zero. (Overflow, mther than divide-by-zero', flags the production of 
an inexact infmite result.) 

Overflow 

The ovetflow exception is signaled when a floating-point destination format's largest 
finite number is exceeded in magnirude by what would have been the rounded 
floating-point result were the exponent mnge unbounded. Onvalid, rather than 
overflow, flags the production of an out-of-range value for an integral destination 
fonnat.) 

Inexact 

The inexact exception is signaled if the rounded result of an operation is not identical 
to the mathematical (exact) result. Thus, inexact is always signaled in conjunction with 
overflow or.underflow. Valid operations on Infmities are always exact and therefore 
signal no exceptions. Invalid operations on Infinities are described at the beginning of 
this section. 
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Managing environmental settings 
Environmental settings inducle the rounding direction, rounding precision, 
exception flags, and halt settings. These settings are global and can be expliddy 
changed by the program. Thus, all routines inherit these settings and are capable of 
changing thein. Conventionally, routines that change these settings first save them, 
then restore when finished. 

Environment• integer; 

PROCEDURE SetEnvironment(e: Environment); 
PROCEDURE GetEnvironment(var e: Environment); 
PROCEDURE ProcEntry(var e: Environment); 
PROCEDURE ProcExit(e: Environment); 

♦ Note: 1be type definition of the Environment word can be cliffeient for different 
SANE implementations, but code that uses the procedures to access the 
environment should port aaoss the different implementations. On a machine with 
an MC66881, the SANE environment is stored in the MC68881 's control and status 
registers; see Chapter 29, •conttolling the MC68881 Environment.• 

Exa~ple: setting rounding direction 
A subroutine that includes the following statements uses to-nearest rounding while ·not 
affecting its caller's rounding direction. 

VM. 
r: RoundOir; 

BEGIN 
r :• GetRound; 
SetRound(ToNearest); 

(local storage tor rounding direction} 

{save caller's rounding direction} 
(set to-nearest rounding} 

( subroutine's operations here} 

SetRound(r) 
END; 

(restore caller's rounding direction) 

Notice that if the subroutine is to be reentrant, then storage for the caller's 
environmP.nt must 'be local 

SANE implementations may provide two efficient procedures for managing the 
environment as a whole: the Procedure-Entry and Procedure-Exit procedures. 

The Procedure-Entry procedure returns the current environment (for saving in local 
storage) and sets the default environment: roundfug direction to-nearest, rounding 
precision extended, and exception flags and halts clear. 

Managing environmental settings 57 
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Example: setting environment 
A subroutine that includes the following statements runs under the default 
~vuonment while not affecting its caller's environment 

VAR 
e: Environment; 

BEGIN· 
ProcEntry (e); 

( auoroutine's operations here 

SetEnvironment(e) 
END; 

(local storage for environmenc} 

{aave caller's environment and set 
default environmenc) 

{restore caller's environment) 

Example: setting exceptions 
"Ibe Procedure-Exit procedure facilitates writing subroutines that appear to their 
callers to be atomic operations (such as addition, square root, and others). Atomic 
operations pass extra infonnation back to their callers by signaling exceptions; 
however, they hide internal exc~ptions, which may be ilTelevant or misleading. The 
Procedure-Exit procedure, which takes a saved environment as argument, does the 
following: 

1. It temporarily saves the exception flags (raised by the subroutine). 

2. It restores the environment received as argument. 

3. It signals the temporarily saved exceptions. (Note that if ~led, halts could occur 
at this step.) 

Thus, exceptions signaled between the Procedure-Entry and Procedure-Exit 
procedures are hidden from the calling program unless the exceptions remain raised 
when the Procedure-Exit procedure is c:alled. 
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1be following function signals underflow if its result is denormalized, ovedlow if its 
result is Infinity, and inexact alw-ays, but hides spurious exceptions occurring from 
internal computations: 

FUNCTION NumFcn: extended;• 

VAR 
e: 
c: 

BEGIN 
Proc:Entry(e); 

Environment; 
NumClaH; 

NumFcn :• Result; 
c :• ClassExtended(Result); 

(local storage for environment) 
(for class inquiry) 

(NumFcn) 
(save caller's environment and set 
default environment - now halts are 
disabled) 

(internal computation) 

(result to be returned) 
(class inquiry) 

SetException(Invalid +Underflow+ overflow+ DivByZero, false); 
(clear exceptions) 

SetException(Inexact, true); (signal inexact) 

IF C - Infinite THEN 
SetException (OVerflow,· true) 

ELSE IF C - DenormalNum THEN 
• SetException(Underflow, true); 
ProcExit(e) 

ENO 

{restore caller's environment, including 
any halt enables, and then signal 
exceptions from subroutine) 

{NumFcn) ; 
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