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Solving Sparse Linear ~ystems with Sparse Backward Error 
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ABSTRACT 
When solving sparse linear systems, it is desirable to produce the solution of a 

nearby sparse problem with the same sparsity structure. 1bis kind of backward stability 
helps guarantee, for example, that one has solved a problem with the same physical 
connectivity as the original problem. Theorems of Oettli, Prager and Skeel show that 
one step of iterative refinement, even with single precision accumulation of residuals, 
guarantees such a small backward error if the final matrix is not too ill-conditioned and 
the solution components do not vary too much in magnitude. We incorporate these 
results into the stopping criterion of the iterative refinement step of a direct sparse 
matrix solver and verify by numerical experiments that the algorithm frequently stops 
after one step of iterative refinement with a componentwise relative backward error .at 
the level of the machine precision. Furthermore, calculating this stopping criterion is 
very inexpensive. We also discuss a condition estimator corresponding to this new 
back.ward error which provides an error estimate for the computed solution. This error 
estimate is generally tighter than estimates provided by standard condition estimators. 
We also consider the effects of using a drop tolerance during the LU decomposition. 
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1 Introduction 

When solving systems of n linear equations Ax= b by means of Ga~ian elimination with 
pivoting, a classical analysis, (Wtlkinson 1961), shows that we should expect to get the exact 

solution i of a slightly different linear system (A+6A}i=b+6b where 6A and 6b are both 

small with respect to A and b. By small we mean small in norm, i.e. 116A n Sic£ II A II and 

U 6b II s k £ U b II where O . II is a matrix noim, £ is the machine precision (that is, the greatest 

positive number such that fl( 1 +£),the floating-point representation of ( 1 + e), equals 1) and k is 
the product of the pivot growth factor and a modestly growing function of the dimension n. This 

classical view permits any entry of 6A or 6b to be equally large, and in particular A+6A may be 

dense even if A is quite sparse. 1bis is unsatisfactory because zero entries of A may represent 

nonexistent physical connections in a system being modelled, and so may be known exactly. 

A more satisfying approach to backward error than merely bounding 116A O. and 1161> II would 

permit the user to specify scaling factors e ii ~ 0 and/;~ 0 for each entry of 6A and 6b, and would 

compute the smallest a>~ 0 such that 

16aulSa>eu, l6b;ISa>/;. (1) 

By setting some eii to zero, we can insist that, if a><_oo, the corresponding au are known exactly. 

For example, if e;; = la ;;I and/i = lb ii, m bounds the relative perturbation in each component of A 

and b needed to make i an ~xact solution, and, in particular, 6A and 6b have the same sparsity 

structures as A and- b. We will call this m the componentwise relative backward e"or. It is 

important to use this different error estimate when considering these restricted perturbations, since 

Gear (197S) has shown that the conventional error bounds are not appropriate in this case. It turns 

out that the backward error m is quite easy to compute, and in fact costs as little as two 

matrix-vector multiplications. 

In the following, if u and v are vectors of entries u; and vi and Q and P are matrices of ~ntries 

q ii and p ii, lul is the vector of entries I u ;I, IQI is the matrix of entries I q iii, us v means u; s vi for 

all i, and Q s P means q ii Sp ij for all i and J. 

Theorem 1: [Oettli and Prager 1964) . The smallest m satisfying (1) is given by 

IAi-bl; 
a>=m:x CElil +I); • (2) 

In this expression, 0/0 should be inteipreted as O and ,, 0 (, ¢ 0) as infinity. m= oo implies that no 

a> satisfying (1) exists. In particular, the smallest componentwise relative penurbation of A and b 

that makes i an exact solution is 

• fAi-bli 
m=mr (IAI lil+lbl); • (3) 

. ~ Thus, this theorem gives an a posteriori mea.mre of the backward error that is cheap to compute. 

Gaussian elimination with pivoting does not guarantee that the backward error m will be small 
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for all possible E and f. However, a theorem of Skeel (1980) shows that as long as A is not too 

ill-conditioned, and as long as the quantities (IAI Iii) i in the denominator of (3) do not vary too 

much in magnitude, then one step of iterative refinement is enough to guarantee that co will be 

small for the componentwise relative backward error in (3). 1bis is true even if the residual 

r = Ai-b is computed in the same arithmetic precision as used for the Gaussian elimination. The 

acrual conditions under which the following theorem is true are quite complicated, and we refer 

for details to Skeel (1980, Theorem 5.1) 

Theorem 2: [Skeel 1980) Let £ be the machine precision. and let the arithmetic be such that the 

floating-point result fl(a◊b) of the operation a0b,(0e { +,-,xJ}) satisfies 

fl(a◊ b)=(a◊b)(l+e), with lei Se. There is a function}{ A,b), typically behaving as O (n), such that 

when the product of K (A) .. 11 IAI IA - 1111 and u(A,x) = max(IAI lxl) / min(IAI lxl) i is less than 
i i 

(j{A,b) £)-1
, and there is no overflow or underflow, the following iterative refinement algorithm 

will converge after one u~te of i : 

Solve Ax= busing Gaussian elimination, obtaining solution i and saving the LU factors; 

Compute the residual r=Ai-b (using arithmetic of machine precision£); 

while m= maxlr ii I (IAI lil~bl) i > ( n + 1 ) e do 
i 

begin 

end; 

Solve Ad=r ford using the saved LU factors of A; 

Update i =:i-d; 

1bis theorem may also be extended to take into account underflow and the possibility that, for lack 
of a guard digit in the hardware, we can only assert that 

fl(a±b)=a(l+e 1 )±b(l+e2), 

where led Se. (Demmel 1984). 

For sparse systems, it is also possible to improve the stopping criterion of Theorem 2 by 

changing n to r, the maximum number of nonzero entries in one row of A. 

Note that this theorem contradicts the usual advice that iterative refinement is not worth doing 

unless the residual r = Ai-b is computed using arithmetic of machine precision e2. Note also that 

the theorem does not say that the refined solution will be more accurate, just that it reflects the 

structure of the original problem more closely than the unrefined solution. If each of the nonzero 

entries of the original A is uncertain in its least significant bit and if co=£, then one could say that 

one has computed the solution as accurately as the data warrants, since the answer is exact for a 

problem indistinguishable from_ the problem one really wanted to solve. 

To use Theorem 2 as the basis of a practical scheme for solving sparse linear'. systems, some 
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modifications are necessary. In particular, when solving sparse linear systems where both A and b 

are sparse (orb has components of widely varying magnitude), it often happens that the quantity 

a(A,x) in Theorem 2 is huge, and convergence does not occur. Therefore, we must ~ake another 

choice for f, taking less account of the smaller components b ;• 1bis can be done quite e•ily using 

a modification of Theorem 1, and is discussed in Section 2.2. 

There is a new condition number corresponding to the new definition of backward error in (1). 

In the case of E=IAI and f=lbl, this condition number is just DIA-11IAII- 1bis new condition 

number is no larger than the traditional condition number II A-1 II a A 1- In fact, it may be much 

smaller than II A-1 ll II A II if the rows of A are badly scaled. Thus, combining the componentwise 
relative backwanl error with the new condition number, we obtain bounds for the real error which 

are independent of row scaling. We discuss this further in Section 2.1. 

It has become common to use inexpensive estimators for the usual condition number 
U A-1 II II A II to estimate a bound for the error in the computed solution of Ax= b (Cine et al. 

1979, Higham 1987a, Dongarra et al. 1979). In Section 4, we present an inexpensive and accurate 

condition estimator for the new condition number II IA-1 I IAI II (and its variations). The new 

condition estimator is based on recent work by Hager (1984) and Higham (1987). 

F"mally, we tested our algorithm and associated condition estimator in a modified version of the 

sparse linear system solver MA28 (Duff 1977) from the Harwell Subroutine Library, which uses 
the pivotal strategy of Markowitz (19S7) and a relative pivot test 

la Ci> I~" max la C~> I 
/di: i>" kj 

on the elements a f> of the k-th pivot row. Here u (the threshold parameter) is a pre•signed factor,. 

usually set to 0.1. MA28 can also drop entries of L and U that fall below a 'drop tolerance' in 

order to further decrease fill-in. The L and U factors are used to solve Ax= b for x by forward and 
back substitution in the usual way, followed by some stei- of iterative refinement. We repcHt on 

the details of the experiments in Section S. Our conclusion is that a stopping criterion like the one 

in Theorem 2 (but suitably modified as discussed in Section S) is a reliable and inexpensive 
stopping criterion for iterative refinement, often stopping after one or no update of x. When drop 

tolerances are used and we have convergence, the rate of convergence degrades slightly but is still 

quite good. The new condition estimator of Section 4 also proves to be inexpensive to calculate 

and is an accurate estimate on our test matrices, usually providing good accuracy for the cost of a 
few forwanl and back substitutions with the LU factors of A. 

The rest of this paper is organized as follows. Section 2 discusses the componentwise backward 

error further and also the conditioning of Ax= b with respect to this backward error measure. 

Section 3 examines how the statement of 1beorem 2 must change when either the floating-point 

arithmetic has no guard digit (such as on the CRAY) or undertlow occurs .. Section 4 presents a 

. condition estimator corresponding to componentwise relative backward enor. Section S discusses 
the IDlDlerical experiments. Section 6 has conclusions. 
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2 Backward error and conditioning 

2.1 Condition number 

The condition number of a problem is the least upper bowid of the ratio of the norm of 
perturbation in the solution to the norm of the perturbation in the input data, in the limit as the 

perturbation in the input data goes to 7.elO. To compute it, we need a norm for the perturbation .d x 

in the solution as well as a norm for the pertUibations .d A and :db in the input data. The norm for 

the input data will depend on E and fas described above: U (.d A,.d b) II El is defined as the smallest 
o, such that l.d Al S mE and l.d bl S mt. For the norm of the output, we choose the usu~ sup norm 

Ix 000 • max lx;I, in order to cater for 7.elO components in x. With this notation we can write 
i 

. 0.dxll./lxO. 
rEl(A,b)a~!f 11(.dA,.db)(I E.r 

41~ 

where x+.dx=(A+.dA)-1(b+.db). Following Skeel (1979), this may be easily evaluated as 

I IA-11 E lxl+IA-1 I fll. 
ru(A,b)- OxD. • 

For example, if we choose E= IAI and f = lbl for the componentwise relative error, 

I IA-11 IAI txl+IA-1 I lbl U. 
rlAIJlll(A,b)= Ix I. • 

(4) 

(5) 

(6) 

Sometimes it is convenient to have a condition number which is independent of the right-hand side 
b.Since 

11 IA-
1 
IIAI lxlll. s (Ab) s 

2 
II IA-

1 I IAI fxl II. 
II x II. rlALlbl ' II x II. 

and D IA-11 IAI lxl 800 / II x II. S II IA -t I IAI ll., we get the simpler condition number 

rlAl(A)a II IA-11 IAI lie.~ O.S rlAIJbl(A,b) . 

(7) 

(8) 

The purpose of the condition number is, of course, to provide error bounds: if A is pertwbed by 

l.d Al S cotAI and b by l.d bl S a>lbl, and if o, is small enough, then x will be pertuibed by no more 
than about t»KIAIJbl(A,b). More rigorously, Skeet (1979) shows that, for a>defined as in (3), 

II 6x a. m "1AL11tiCA,b) 

n x 11. s 1-0 "IAl<A> • 
(9) 

Similarly, if we define 

rE(A)e ll1A-11EII. , (10) 

we have, for OJ defined as in (2), 
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II cS'x(I. to«-u(A,b) 
[lx(I. ~ 1-toKE(A) • 

(11) 

It is easy to see that the problem is no more badly conditioned with respect to the 

componentwise relative backward error measure than with respect to the usual normed backward 

error measure. This is because 

(12) 

It is possible for rlAl(A) to be much smaller than r(A). For example, we can m~e r(A) 

arbitrarily large by multiplying one of the rows of A by a large enough ~nstant. However, KIAl(A) 

is independent of the row scaling of A. 

2.2 Backward error 

As stated in the introduction, it is in practice necessary to modify the choice I= lbl of the 

componentwise relative backward e1T0r. 'Ibis need arises because of the factor a(A,x) in Theorem 

2; when a(A,x) is large, convergence of the backwanl error to in equation (3) to the roundoff level 

is not guaranteed. Take, for example, A sparse and irreducible, and x sparse such that some 

b;=taiixi are zero because each auxi=O. Since A-1 is structurally full (Duff, Erisman, Gear, 
J ~ 

and Reid 1985), x will be structurally full as well, so that a computed comp,nent i,: catt be zero 

only through exact cancellation. In practice, this means that all ~mponents of the computed 

solution i: will be nonzero, with the entries which should be zero containing roundoff error of 

unpredictable sign. Therefore both r; =(Ai-b); and (IAI lil+fbl); may be small but of similar 

orders of magnitude, so that OJ stays large even after some stepS of iterative refinement. 

Ideally, we would like to choose f to satisfy the following four criteria: 

(i) the backward error OJ (in (2)) usually converges to machine precision after one step of 

iterative refinement, 

(ii) tof is "small" compared to b, 

(iii) the resulting error bound in (11) is as small as possible, and 

(iv) to is row-scaling independent. 

We have experimented with two choices for f which come close to meeting these four criteria; 

this will be borne out by the numerical experiments in Section S. It turns out we must sacrifice the 
sparsity structure of bin order to guarantee a small backwanl error bound OJ (criterion (i)). A 

trivial way to do this is to set E = 0 and f = lrt / £= IAi-bl / e, whence 6A = 0, 6b=r and OJ= e. Of 

course this is unsatisfactory because cS'b= r may be much larger in norm than b if the system is 

ill-conditioned, violating criterion (ii). Our approach is to keep E = IAI and choose/; larger than 

lb;I only if it is necessary to keep OJ small. 

We will choo~ fin an a posteriori way, letting it depend on the computation as follows: Let 

s 



i! 

I 
! 
ii 

11 

,. ., 

w=IAI lil+lbl be the vector of denominators in equation (3). We then choose a threshold -r; for 

each w ;, so that when w ;>-r; we can use the usual scaling factor/;= lb ;I. Otherwise, when w; S -r;, 

we choose a larger/;• Correspondingly, we divide the equations of Ax=b into two categories, 

those where w ;>'r;, and those where w; S -r;. We may amune without loss of generality that the 

leading m equations of Ax=b, which we denote by A0>x<l) =bCl>, belong to the first category, 

and the remaining n-m equations, A <2>xt2> = b (2), belong to the second. As stated above, we will 

let r<1> =lb0>1 in the first category. There are several po~sibilities for -r;, but in practice the 

following one bu worked well: -r; = 1000 n e( II A;. I. Ii U. +lb ;I>, where A;. is the ith row of A. 

Note that -r; is about 1000 times larger than the maximum possible roundoff error committed in 

computing w;, and w; can only be less than -r; if each product a9ii is tiny. We performed other 

mns to check the sensitivity of this choice and found that a change of say a factor of ten (to 100) 

could occasionally change the number of iterations and the ~nor estimate but usually not by much. 

We note, however, that this can be viewed as a local choice and could be varied while perfonning 

iterative refinement, possibly increasing it in order to decrease m. 

Given the vector 't of the tllremolds -r;, we can choose ,<2> in at least two ways. The first way 

that we consider is as follows. We let r<2> = IA (2) I e U i II., where e is the column vector of all ones. 

1bis conesponds to the usual nonnwise backward enor, and so the components r i of the residual 

are almost guaranteed to be small compared to these ff>, insofar as Gaussian elimination alone ~ 
guaranteeS a small residual in the noim sense. Since we have not modified the definition of E, we 

are further guaranteed a solution i which preserves the sparsity structure of A. 

There is a difficulty with this choice off, however: we are no longer guaranteed that (I ob D. is 

small compared to II b II.. 1bis can only happen when A is very ill-conditioned, since 

IA(2) II. Hill.I llbll. is a lower bound on the condition number UA-1 n. DAD. of A. We have 

constructed artificial examples where this happens, but not observed it in practice. There is also 

the possibility that large components in f will make the condition number KIAl.r(A,b) too large and 

so make the error estimate m rlAl.,CA,b) too pessimistic, but note that this condition number is still 

bounded by 2 rlA1(A). We may avoid this possibility as follows. Given the two backward errors 

(13) 

the residual satisfies 

(14) 

and, to first order, the error is bounded by 
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The advantage of this formulation is that components of ,<2> may be yery large compared to the 

components of b <2>, causing 012 to be very small and r.
2 

to be correspondingly large but without 
affecting a,1 or r •. This formulation is tested in the numerical experiments in Section S. 

I 

A second possible choice for r<2> is to use r<2> = g b ll. e. This choice of r<2> assures us that a 

small backwanl error indeed means (16b II. I II b B. will be small, but gives us le&1 assurance that 

the backward error will converge to machine precision. We have not seen it fail in practice. As 

with the other choice off, we can bound the error using two backward errors defined as in (13) and 
the sum of their products with two condition numbers as in (lS). Section S also reports on 

numerical experience with this backward error measure. 

Both the previous choices for ,<%) can violate one of the criteria (d) or (iv). Toe choice 

,<2> =IA<2>1e Hill. guarantees that 01;, i=l,2, are row-scaling independent (~terion (iv)), while 

it can violate criterion (d). The choice r2> = II b I. e satisfies criterion (ii), but the corresponding 
o,2 is row-scaling ~ndent Both, as we shall see, satisfy criteria (i) and (iii). · 

We also see that the bound depends on the accuracy with which we can compute the residual r 
and the backwards error min (2). How much can roundoff contaminate the computed ~ especially 
when r=Ai-b is computed by an arithmetic with machine precision e? A standard error analysis 

shows that the error in the computed r, 6r, is bounded by ( r+I) e(IAI lit+lbl), where r is the 

maximum number of nonzero entries in a row of A. When E=IAI and f=lbl, this means that the 

computed 01 cannot differ from the uue o, by more than about ±( r+ 1)£ which will be within the 

tolerance of our sparse modification of Skeel's stopping criterion in Theorem 2 Since the 
computed a, is almost certainly at leut about r £. the final error bound m rlALlbl (A,b ), can be low 
by no more than a factor of 2. 1be same is true for mi , i = 1, 2. 

At this point, one might ask what choice ofE and fminimizes the resulting error estimate (11). 

It is easy to see that any choice of E and f such that Efxl+f is a multiple of lrl, say E=O and f = lrl, 
yields the minimum product DJ ru(A,b)= D IA-11 frl II. I [Ix a.. Since the nue error is 

n 6s. 11., tis. n. = ll A-1 r ._, [Ix fl., we see that the bound is as tight as ignoring signs in r allows. 

For this special choice of E and f, we should also add ( r+l) e(IAI lif+lbD to lrl since roundoff may 
lower the computed value of lrl by the same amount. nie choice E=O and 

f = lrl +( r+ 1) £(1AI lil+lbf) yields a new em,r bound of 
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(16) 

Thus we see that the condition number KIAIJl>I (A,b) plays a central role independent of the notion 

of backward error, just because it reflects the possible roundoff errors in the computed residual. 

Furthermore, after only a few steps of iterative refinement Theorem 2 guarantees that, to first 

order, the bound (9) will be about the same as the bound (16). In our experiments we have seen 

that. usually, the estimates of the real error given by (9) and (15) have the same order of accuracy 

as the estimates obtained by the bound (16). 

Note that if we set eij= IIAU. and/;= llbll., the backward errorofi with respect to E and fis 

given by I Ai-b II. I ( 11 A 11. II i 11 1 + I b 11.). It is also easy to see that 

IIA-1 II. HAIi. Uxlli+IA-1 I. 1h11. 
KEl(A,b)= lxl. (17) 

which is within a factor of 2n of IA-1 1. IAD .. Thus, this choice of E and f, which pennits 

equally large perturbations in all entries of A and b, gives essentially the same backward error and 

condition number as the usual normed backward error. 

We note, in conclusion, that Skeet's original motivation (Skeel 1979) was to analyze the effects 

of row and column scaling of A on the accuracy and the stability of the LU factorization. He 

concluded that the optimal way to scale depended on the solution: the columns should be scaled 

(thus scaling the solution components) so that the components of the scaled solution are all equal 

in magnitude, and the rows should be scaled so each component of IAI lxl (x is the solution) is 

equal in magnitude. This is unfortunately hard to use in practice since it requires much information 

about the solution. FortunateJy, one step of iterative refinement tends to overcome the effects of 

bad row scaling, as we have seen. 

3 Different models of floating-point arithmetic 

Theorem 2 assumed that arithmetic was implemented rather cleanly, i.e. that the floating-point 

result.fl(aOb) of the operation a◊b,(◊e { +,-,x,/}) satisfies 

fl(a◊ b)=(a◊ b)(l+e) (18) 

with lel Se, where £ is called the machine precision. This model eliminates both the possibility of 
underllow as well as machines like the CRA Ys, where for lack of a guard digit in the hardware we 
can only assert that 

fl(a±b)=a(l+e i)±b(l+ez) (19) 

where le ;IS e. Thus, when a and bare very close and we are subtracting, this model permits a large 

relative error in the computed difference. For example, on any CRAY or many CDC machines, the 

computed difference of 2' and. the next smaller floating-point number is wrong by a factor of 2 
(see, Kahan 1981). 
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Despite this difficulty, it is possible to carry through the proof of Theorem 2 using the weaker 

model (19) instead of (18) and arrive at essentially the same conclusion: one step of iterative 

refinement, even without computing the residual using arithmetic of machine precision i1-, is 
enough to guarantee a small componentwise relative backward error as long as the matrix is not 

too ill-conditioned and a(A,x) is not too large. One might expect problems in bounding the error 

in the computed residualjl(Ai-b ), since the result might be off by a factor of 2, but in the analysis 

this potential enor is dominated by the enor in computing Ai, so ihe proof goes through. 

Similarly, the enor in updating i-d is swamped by larger errors. 

The other exception to the model in (18) is underflow. The extension of error analysis to include 

underflow is discussed in some detail by Demmel (1984), and we just summarize the results here. 

In place of (18) we use the model 

fl(a Ob)= (a O b)(l+e)+v (20) 

where lel S £ as before, and v represents the underflow enor. Let! be the underflow threshold, that 

is the smallest positive, normalized floating-point number. Then, on machines where computed 

quantities which would be smaller than! are replaced by zero, I vi is bounded by A.. On machines 
with IEEE standani floating-point arithmetic (see IEEE 1985, IEEE 1987), gradual underflow 

lowers the bound on I vi to el.. 

The statement of Theorem 2 must be modified as follows to account for underflow. For gradual 
underflow, we can say the following: if the inputs A and b and the output i are normali7.ed (that is, 

exceed ! in magnitude), and if the residuals are computed by an arithmetic of machine precision 

either e or e2, then gradual underflow can only degrade performance to the level of the residual 

computation using the arithmetic of machine precision £. For conventional underflow, the norms 
of A, b and i• must exceed l/ £ for this statement to be true. 

The use of extended range and precision in intermediate computations does not change these 

conclusions. Asmming r and d are stored in the same format as A, b and i:, underflows in r and d 
have the same potential effects on perfolDlance as they did when they were not computed in 
extended format. 

We have not yet considered the effect of underflow on the rate of convergence of the iteration. 
There are matrices for which the iteration converges only if underflows do not occur, but the 

matrices are so ill-conditioned as to make the computed solution untrustworthy anyway. As long 
as some entry of A is large enough (! for gradual underflow and !/£for conventional underflow) 

then undertlows will have an effect on the convergence rate comparable to roundoff. 
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4 An estimator for KIALP>I (A,b) 

In order to estimate the accuracy of a computed solution of Ax= b, two ingredients are needed: 

a bound on the backward error (however it is measured) and a condition number with respect to 

the choice of backward error. As disamed in Section 2.2, 1he product of the two previous 

quantities provides an approximate upper bound on the relative error in the computed solution. 

In the case of the conventional normwise backward error, the condition number is essentially 

given by ,c(A)= 11 A-1 I. I A 11 •. There has been much work on such estimato~ for ,c(A) in recent 

years ( for example Cline et al. 1979, see Higham 1987a for a complete list of references), and 

cheap, reliable estimatoIS are available in standard software packages such as UNPACK 

(Dongarra et al. 1979). h is natural to seek an analogous estimator for rlAl.1111 (A,b ). 

From (S) we see that the quantity we need to estimate is 

(21) 

In place of the true solution x, we may use its computed approximation i. In the case of 

componentwise relative backward error, we may also just use the simpler condition number 

"IAI (A) which requires us to estimate 

(22) 

where e is the vector of all ones. Either way, we need to be able to estimate 

(23) 

where g is a nonnegative ~ector which is euy to compute (in the above examples it costs just one 

matrix-vector multiply). 

Let G = diag(g 1 , ... ,g ,.). Then g =Ge and 

IIIA-11111.= IIA-11GeD.= DIA-1Glell.= DIA-1GIII.= llA-1GII.. (24) 

DA-1G ll. can be estimated by the algorithm of Hager (1984) and Higham (1987), which 

estimates the 1-nonn (or infinity-norm) of a n x n matrix given the ability to multiply a vector by 

both the matrix and its transpose. We can multiply any vector z by the operator A-1G by 

multiplying z by the diagonal matrix G, and then solving Ay = G z using the LU factorization of 
A. Multiplying by (A-1G)T is equally easy. 

Our estimate of condition numbem rlAIJb1(A,b) includes a dependence on the calculated 

solution. We also performed runs for different solutions ( for example, x; = i2, ii=1, ... ,n ) and 

found little sensitivity. Note that the experiments in Set 1 in Section 5 give us results close «! the 

upper bound of twice KIAi. 



S Numerical experiments 

We tested the stopping criteria, the backward errors· (13) and the error bound (1S) by modifying 

the sparse linear system solver MA28 in the Harwell Subroutine Library (Duff 1977). As we 

mentioned in Section 1, MA28 can drop entries of L and U that fall below a tolerance (called 

drop tol in our tables) in order to further decreue fill-in (drop tol=O corresponds to standard 
Gaussian elimination). The resulting L and'U factors are then used to solve Ax=b for x by 
forward and back substitution in the usual way, followed by some st.eps of iterative refinement. 

All tests were done on an IBM 3084. In single precision, the machine precision, e, is 

16-s = 10~. In double precision, it is 16-13 = 2x10-16. 

All our runs are on a common set of test matrices from the Harwell-Boeing test set (Duff, 

Grimes, and Lewis 1987). Their names, number of nonzero entries and condition numbers K(A) 

and KiAl(A) are given in Table 1. The name of each matrix includes its dimensions, for example 
GREllS is 11S by 11S. Two matrices are identified as GRE216. Both of these have the same 

structure, but they have quite different numerical values. We also ran our tests on some other 

matrices from the set and obtained results broaclly comparable with these displayed. 

For each nm, we chose the value of the solution x and then we computed the right-band side b 

by multiplying the solution by the test matrix. All matrices have also been scaled before 

computing the right-hand side, thus obtaining two test problems for each matrix. The scaling is 

computed using the Harwell routine MC19, which makes the nonzeros of the scaled matrix near to 

_unity by rnioirniung the sum of the squares of logarithms of the moduli of the nonzeros (Curtis 

and Reid 1972). This scaling does not guarantee that K(A) and rlAI (A) must decrease (see Table 1) 
although on many mattices the effect is very beneficial, particularly for the classical condition 
number. This is particularly so for the second GRE216 example, where, before the scaling, the 

matrix was essentially singular. Note in general that many of the matrices are poorly conditioned, 

particularly before scaling. 

In all the runs, the standard normwise backward error 

(2S) 

the condition number r(A) and the error bound 77 r(A) were computed and compared to the other 
backward errors, condition numbers and enor bounds. 

We ran our tests with different choices for the vectors ,: and f defined in Section 2.2 and 

different right-hand sides b. According to these different choices, we group the experiments into 3 
sets. We also include some runs using drop tolerances (set 4). 

1be main data for our numerical experiments are presented in Tables- Al-AlS in the Appendix. 
In this section. we display summaries of these results. 
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N0112Z1U1 Bclorc scaling Mia scalin& 
r(A) llAa<A) r(A) ~(A) 

GRB115 421 0.93D+02 0.86D+02 0.69D+04 0.13D+03 
GRB185 f/75 G.38D+06 0.15D+06 0.39D+06 0.141)+()6 
GRB216 812 Q.280+03 0.220+03 G.200+03 0.180+03 
GRB216 812 0.830+15 G.29D+l4 0.560+-08 0.85I>+07 
GRE343 1310 0.47Dt03 0.370+03 0.300+03 G.26D+03 
GRB512 1976 0.46D+03 0.370+03 0.400+03 0.36D+O'J 

GRB1107 5664 0.18D+OIJ 0.98D+-08 0.770+10 Q.2,4D+OI) 

WEST67 294 0.91J>+03 0.310+03 0.300+03 0.130+03 

WBST132 413 0.110+13 0.80l>+07 0.94D+04 G.210+04 
WBST156 362 0.120+32 0.3~ 0.91D+12 O.lSDt-09 

WBSTlfll 506 G.69D+ll 0.520+06 0.46D+04 0.120+04 

WBST381 2134 o.53D+07 0.38D+05 0.38Dt06 o.530+04 
WBST479 1888 0.490+12 0.37Dt07 0.270+-06 D.20D+05 

WBST497 1721 0380+12 0.13D+07 0.42Dt07 0.630+04 
WBS'W5 2808 0.490+12 0.37Dt07 0.420+06 0.36D+Q5 

WEST989 3518 0.130+13 0.100+08 o.580+06 o.52D+05 

WBST1505 5414 0.140+13 0.100+08 0.67Dt08 G.21D+07 

WBST2011 7310 Q.280+13 0.21J>+08 0.86D+06 0.100+06 

Table 1. Condition numbers before and after scaling. 

In all cases, 1he stopping criterion wa 

Stop if o, S £ or o, does not decrease by at least a factor of 2 . 

All the runs used IBM double precision, except for the experiments in single and mixed precision 

in set 1. This stopping criterion differs from that used in Theorem 2 (0> S ( n + 1 ) £). The value in 
Theorem 2 can be too large, especially for very large and sparse matrices, and the iterative 

refinement could stop too early. Generally, our stopping criterion terminates the iterative 
refinement with a value of o, less than £. If the convergence is slow (for example, using double 

precision, the second GRE216 mattix in Table A7 stops after 4 iterations with 
OJ=0.4x 10-ts =2 £), our stopping criterion recognizes this early. However, the final value of mis 

still of order£. Somewhat swprisingly we find there is no advantage in including a factor (r+ 1) in 
our stopping criterion. Indeed, its inclusion would often result in no iterations, and there are only 

few occaions in sets 1 to 3 where the ms£ criterion is not met Note that, in the runs in sets 2 to 4, 

a> is replaced by 011 + 012 (as in equations (13}-{1S) ). If we used a similar condition on 17, in most 
of the examples we did not perform any steps of iterative refinement because the first solution 
satisfied the stopping criterion,_but, before scaling, the estimation of the error II 6x 11_1 U x D. given 
by 17 r(A) wa very poor because of the very large value of r(A). • 

We discuss the experiments for each of our four sets of values in tum. In all the following tables, 

the row corresponding to ''Num. iter." gives the number of steps performed by the iterative 

refinement algorithm and the ~w corresponding to ''Num. cases" gives the number of examples 
for which the iterative refinement performed that number of iterations. By "Error'' we denote the 
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max-norm of the difference between the computed solution and the actual solution used to 

generate the right-hand side, divided by the max-norm of the actual solution.. 

In the following, we denote by co pl and by r~, i = 1,2, J= 1,2,3,4, the componentwise 
backward errors defined by (13) and the corresponding condition numbers defined by (15). The 

superscript identifies the set of tests. 

Set 1: 
For these tests we chose -r, = 0, so that all equations belonged to category 1. Thus the back.wards 

error was given by cof1> as defined in (13), the condition number"~ and the error bound by 

co~1> r~ as defined in (15). Because all the equations belong to category 1, K~ = "IAl.lbt(A,b), 

and coJ1> =0. The right-hand sides b were chosen so that the true solution x had all components 

equal to 1. The drop tolerance was zero. These test were run in single precisio~ double precision, 

and mixed precision (all single precision, except for double precision computation of residuals). 

The Tables Al-AS in the Appendix are relative to Set 1. 

mia avr ma 

Lor r(A) (lhlon 6Clll!!!f.) 
10 r(A) (Aft• IQJWfl) -1.9 4.1 19 

~ (B«[an #IIWII) 

Lo, 10 r<,:: (Aft, $COUllf) 
-4.38 1.4 6.5 

Befom ICllin& Afmscalina 
min aw ma min ll¥r ma 

Lor 1o(r(A)/ r<~) -4.26 3.6 22 -4.26 0.91 3.5 

Table 2. Summary of results for the condition numbers of set 1. 

In Table 2, summarizing the results in Table Al, we observe that the condition number"~ is 

always less, for both scaled and unscaled matrices, than twice the classical condition number 

K(A), as must be the case from the theory. In some examples, K~ is much better than r(A) (for 

example, in the WEST1S6 example before scaling K~ < 3.2 x 10-23 K(A)). Moreover, Table 2 

shows that the clas.1ical condition number r(A), without any fonn of scaling, is rather unreliable 

as a measure of the fil-conditioning of the system. Table 3 (summarizing the results in Tables A2 

and A3) reflects the previous considerations, so that the estimation cop> "~: of the error is 
generally quite tight, while 71 K(A) can be too pessimistic before scaling. Note that it is possible 

for our bound to be less tight than that from the clasmcal theory but, when this happens in the 

experiments, our bound is only 3 times greater than the classical one in the worst case. 

Throughout, our estimate of condition numbem KIAIJbt(A,b) includes a dependence on the 
calculated solution. We also performed runs for different solutions (for example.xi = i2, i=1, ... .n) 
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Before acaliaa Afra scaling 

N111& ua. 0 l ~ 2 0 l ~ 2 

NIIIILCIUO 0 17 l l 16 l 

min 8\11' ma mm 11¥1' mu 

Los10<11> -18 -16 -16 -17 -16 -16 

Los1o<•P>> -16 -16 -16 -16 -16 -16 

Loi 11E<A) 
10 B,ror 0.78 4.7 22 0.93 2.0 4.1 

.p> r<~ 
Los10 Error 

0.48 1.5 2.5 0.43 1.4 33 

,,r(A) 
Lo, 10 o,fl) ~1) -0.32 3.2 20 -0.41 Q.S3 3.0 •• 

Table 3. Summary of results for set 1. 

and found little sensitivity. Note that our choice of x in Set 1 gives us results close to the upper 

• bound of twice rlAI. In Tables A4 and AS, we report the results of the algorithm using single and 

mixed precision. Unfortunately, the test matrices are in many cases so ill-conditioned that the 

iterative refinement diverged, that is mf1> increased after some steps as in, for example, GREl 107 

and the second GRE216 example in Table A4. In practice, IBM single precision is too poor to ~ 

produce good results, and the use of mixed precision does not help. Note, however, that our 

algorithm still temtinares after only ~ few steps. In every case, we tried running the iterative 

refinement for twenty steps and in no cases did we get much improvement ove~ the results shown. 

Our algorithm for computipg the condition numbers encounters numerical difficulties paJtly 

because of the ill-conditioning of these matrices and partly because we use threshold pivoting in 

the LU factorization. We could have used iterative refinement in this computation, but this would 
be at variance with our desire for a cheap estimator. Our feeling is that single precision 

calculations are inappropriate here. 

Set 2: 

For these tests we chose 'r; = 1000 n e( II At 11. II i II. +lb ;D and f<l> = IA (2) I e Ii D •. where e is the 
column vector of all ones. This leads to the backward enors mf> and mf defined in (13) and the 

condition numbers r~ and rf1 and enor bound mf> r~!+mf> r~ defined in (1S). The 
right-hand sides were chosen so that the true solution x bad every fifth entry equal to 1 

(x1 =x6 =x11 = ... =.l) and the rest mro. The drop tolerance was mro. These tests were done in 
double precision only. Tables A6 to A8 show the results of nms on set 2. We present a summary of 
these results in Tables 4 and 5. 
We also ran all the test examples of set 2 replacing mm with 10-16 in x and obtained similar 
results. It is necessary to emphasize that, in most of the examples of set 2, the standard a, ~ 

14 



min avr mn 
Lo r(A) (B•/oN 6"ling) 

110 ll'(A)(Ajw' .rcaling) -1.9 4.1 19 

r.(2) (Be/or• 1calin1) 
7.0 1 • -0.37 1.3 

LoglO ~ (After 1caling) 
1 

r~ (Be/ore .rcalua,) 
-0.43 1.6 6.1 

Loi10 ~) (After xalia1) ., 
Bcfara sca1ina Aftcrsalina 

min aw ma min avr mn 

Lo11o<r(A)/ rf:> 0.45 4.3 23 0.26 u 3.8 

Lo11o<rCA)/ r~) 0.52 4.3 23 o.30 1.8 5.2 

Table 4. Swnmary of results for the condition numbers for sei 2. 

computed by (3) was very large (sometimes of order 1), so that we would get no useful 
information if we use a very large value for -r,. Notice that, in all our runs, o,f is very small 
compared with o,f2>, in agreement with our comments after equation (15). 

It may appear that our error estimate is sometimes poor, but the relatively good solution 
obtained is really fortuitous as can be seen by the results in the Appendix using the same matrix 
but with a different right-band side (the examples shown by the GREl 107 results in Tables A3 and 
AS and by the second GRE216 results in Tables A2 and A 7). 

Bcfont acalina Afterscalina 

N""'- iur. 0 1 :2: 2 0 1 :2: 2 

N11111.t:116G 1 13 4 2· 12 4 

mm aw ma mm 11¥1' ma 

Lor10<'1) -23 -17 -16 -17 -17 -16 

Lor1o<•F> -16 -16 -15 -16 -16 -15 

Lor10<-r'> -32 -'ZI -19 -31 -28 -19 
Lor !f r{A) 

10 Error 0.65 4.5 19 O.'TT 2.2 4.0 

Lorio 
•F~•af>~ o.58 1.7 4.3 o.50 1.6 2.7 

Error 
to, 'lll'(A) 

10 •r> rf: +of>~ -0.17 2.8 16 -0.23 0.63 2.4 

Table S. Summary of results for set 2. 
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Set 3: 

For these tests we chose -r; = 1000 n e( 0 A;. D. 11 i D. +lb ;I> just as in Set 2, and t<2> = II b ll °' e, 
where e is the column vector of all ones. 1bis leads to backward errors mp> and o,p> defined in 

(13) and the condition numbers r~: and r~: and error bound o,p> r:t+mp> r~ defined in (15). 

The right-band sides were chosen so that the true solution x had every fifth entJy equal to 1 and the 
rest zero. 1be drop tolerance was 7.ero. 1bese tests were done in double precision only. The Tables 

A9-All are relative to Set 3 of parameters, and we summarize these in Tables 6 and 7. 

min 11'11' max 

UII 
IC(A) (Be/oN ~) 

10 r(A) (Aft, 60Jlbtg) -1.9 4.1 19 

,rf>(BefanM:tllins) 
Lo. 1 --0.37 13 7.0 

110 ~ (After a:alinf) 
~ 

~ (B,fan ~) 

Loaio ~ Utter =i1ini > 
-1.9 4.0 14 

BcfomlClling Aft.er scaling 

mm aw mu min aw mu 

Ull10Cr(A)/ ~) 0.45 4.3 23 G.26 1.5 3.8 

Loa1o(r(A)/ ~) 0.10 0.97 6.4 0.38 0.86 2.6 

Table 6. Summary of results for the condition numbers for set 3 . 

. 
Bd'otelClling Afmscaling 

N11111. iter. 0 1 2: 2 0 1 2: 2 

N11111.Ctl$0 l 13 4 2 12 4 

min IIYI' mu min avr mu. 

Lo110<'1) -23 -17 -16 -17 -17 -16 

Lo110<01f'>> -16 -16 -15 -16 -16 -ts 

Lo11o<cuf'>> -30 -7:1 -17 -31 -28 -19 
Los 'f&"(A) 

10 Brror 0.65 4.S 19 0.97 2.2 4.0 

Lo110 
cup> ~+cur> r~ 0.58 2.2 7.9 o.so 1.6 2.7 

Error 
!Zr(A) 

Log 10 cuO> ~> + O>iO> ~> --0.17 2.3 11 --0.23 0.63 2.4 
l •1 tli 

Table 7. Summary of results for the set 3. 

Comparing Tables 4 and 6 we observe that, while rf! and r~ are usually quite clo~, r~ can be 
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much larger than "~, (for example, see the WEST156 example before scaling, where "~ is 10
16 

times larger than "~ ) and the error estimation can be pessimistic. Also note that, comparing line 
7 of Tables 5 and 7, this choice of f does not give as good a bound as our choice for f in set 2, 

although the difference is minimal after scaling. 

Set 4: 
For these tests we used nonzero drop tolerances (drop tol= 10-5, drop tol= 10-3). We changed 'r; 

from its earlier value to 'ri=lOOOn(e+droptol)((IAi.ll. llill.+lb;I) and used 
,<2> = IA C2> I e Bi B., where e is the column vector of all ones. 1be entties of b and s were chosen as 

in Set 3. Double precision was used. Tables A12-A15 are the results of runs using this set o~ 

parameters, and the results are summamed in Table 8. • 

drop tol. • 10-5 drop toL • 10-' 

NIIA iur. 0 1 i? 2 0 1 i? 2 

Num.t:tUO 2 6 10 2 1 ·: 15 .. 

min aw ma min. aw ma 

Loi10<11> -18 -16 -16 -18 -15 ~.6 

Lo, 1o<t»f
4>) - -- -17 - - -

1..o, 10< •!4
>) -16 -16 -15 -16 -15 -2.8 

Lo110~) 0.66 2.3 3.7 0.90 2.1 4.6 

Loi10 

o,f 4) r!:: + ~ !_4) ,c~ 
0.66 1.6 2.8 0.64 1.6 3.8 

l!.rror 
!ZIC(A) 

Loi 10 o,f4) ,Cr:+ ~4) ,c<:: -0.14 0.64 2.5 -0.95 0.45 2.9 

Table 8. Summary of results for set 4. 1be -oo entries correspond to values of mf 4> = 0. 

Note that, _in this set, we nearly always have mf 4> = 0. This conesponds to putting all of the error 

into b, that is 6A = 0 and 6b = Ai - b, obtaining the situation which was discussed at the 
beginning of Section 2.2. In this case, f does not depend on b explicidy, but our bounds are still 
good. Note again that our stopping· criterion terminates after only a few iterations if the iteration 
diverges. We checked this divergence by forcing more iterations and observed either oscillation or 
divergence. 

We observed. contrary to Zlatev ( 1986), that little gain in sparsity was obtained (see for example 
Table AlS), while even moderate values of drop tolerance caused divergence of the iterative 
refinement. A drop tolerance strategy appears to wolk well only on very structured sparse matrices 
such as those resulting from discretizalions of partial differential equations. We confirmed this 
with a few test runs. See, for example, the results in Table 9. 
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Fm-in 23619 16085 "69'1 

Nmn. w:r. 2 14 16 

Error 0.320-14 G.25D-14 0.29D-01 

Table 9. Fill-in, numbem of iterations and enor for the five point operator on a 30 x 30 grid, 

using %;= 1, l= 1,. .. ,n and different values of drop tol. 

Finally, Duff, Erisman, and Reid (1986, page 276) described an example of Gear (197S) where 

the error matrix for minimizing the Frobenius norm of the enor becomes arbitrarily large if the 

perturbations are comtrained to the original pattern. On this example, after one step of iterative 

refinement, using as a starting point the solution 

i=((1ff ~. 11=10-15
, 

c 6-cr)t a} 
we can guarantee that the enor matrix E has the same pattern as the original matrix. 1bat is 

Es m(8 I~ Iii 8) = a>IAI, 
1 0 0 1 

with ms 10-16 , 6=10-a.ltisinterestingtonoticethat r(A)=1+1/6and rlA1(A)=4. 

6 Conclusions 

We have shown that, when the iterative refinement is converging, it is possible and inexpensive 

to guarantee solutions of sparse linear systems which are exact solutions of a nearby system whose 

matrix has the same sparsity structure. 1bus we have answered the open problem posed by Duff, 

Erisman and Reid (1986, page 276) concerning obtaining bounded perturbations while 

01aintaining sparsity. If the equations arise from the discretization of a partial differential equation, 

~ a componentwise tiny error should indicate that the solution obtained is that of a 

• neighbouring panial differential equation, a conclusion that would not be available if classical 

error bounds were being used. 

We have extended work of Skeel (1980) and Demmel (1984) to include the possibility of having 

sparse right-hand sides and solutions vectom and have shown that, although we can not always 

guarantee the solution to a nearby problem whose right-band side sparsity is the same, we can 

develop suitable bounds for perturbations in the right-hand side. 

We discuss methods of inexpensively and accurately calculating a condition number appropriate 
to this tighter backward enor. 'Ibis condition number is not bigger than that of Wllldnson and can 
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indeed be much smaller, particularly if the matrix is badly row-scaled. For example, in set 1, the 

average of the logarithms of the ratio of the classical condition number before and after scaling is 

4.1, while for the Skeel condition number the corresponding value is 1.4. 

We have incorporated our backward error estimator in the iterative refinement step of a direct 
sparse matrix solver and find that we often require zero or one step of iterative refinement to 
guarantee that the computed solution is the ·solution of a nearby system with the same sparsity 

structure as the original matrix. We also observe that we do not require any extra precision in 

calculating residuals, thus confuming remarks made by Skeel (1980). Additionally, when 

combined with our condition number estimator, a good estimate of the actual enor is obtained. 
Funhermore, when iterative refinement diverges, our stopping criterion recognizes this early. 

We observed, contrary to Zlatev (1986), that little gain in sparsity was obtained while even 
moderate values of drop tolerance caused divergence of the iterative refineme~ A drop tolerance 

strategy appears to work well only on very structured sparse matrices such as those resulting from 

discretizations of partial differential equations. 

In this paper, we have been using iterative refinement to improve the solution obtained using an 

LU factorization. We have also considered the case when our LU factorization can be quite 

inaccurate (set 4). In this case, one could use other techniques including SOR and CG and it is a 

open question as to bow far our analysis could be continued to cover these cases. 
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APPENDIX Tables of results of numerical experiments 

In all the following tables, the colwnn corresponding to l&Num. iter." gives the number of steps perfonned 
by the iterative refinement algorithm. By ''Error" we denote the max-norm of the difference between the 
computed solution and the actual solution used to generate the right-hand side, divided by the max-nonn of 
the actual solution. 

Befcne scaling Afrascaling 

r(A) 
• (1) K(A) r(l) r-s •1 

GRE11S 0.930+02 0.170+03 0.690+04 0.26Dt03 

GRB185 0.38D+06 Q.30D+06 0.390+06 0.290+06 

GRB216 0.280+03 0.440+03 0.200+03 0.3SD+03 

GRB216 0.830+15 o.58D+14 0.560+08 0.170+08 

GRE343 0.47D+03 0.740+03 0.300+03 0.S1D+03 

ORES12 0.460+03 0.730+03 0.400+03 0.720+03 

GRE1107 0.18D+-09 0.20D+09 0.77D+10 0.48Dt09 

WBST61 0.91D+03 0.1SD+03 0.30D+m 0.160+03 

WBST132 0.11D+13 0.120+-08 0.940+04 0.330+04 
WBST156 0.120+32 o.38D+09 o.910+12 0.300+09 
WBST167 0.69D+11 0.800+06 0.460+04 0.180+04 
WBST381 0.S3D+07 0.750+05 0.380+06 0.8SD+04 

WBST479 0.49D+12 CJ.571)+()7 Q.271)+06 0.2SD+05 
WBST497 0.3S0.12 CUOD+07 0.420+07 0.120+05 

i WBST~5 0.490+12 OS7D+07 0.420+06 0.410+05 

~ WBST989 0.130+13 0.16D+-08 0.S80+-06 0.700+05 
WBST1S05 0.140+13 0.160+-08 0.670+08 0.35D+07 
WBST2021 0.280+13 0.320+08 0.860+06 0.120+-06 

Table Al. Set 1. Condition numbers before and after scaling. 

Num. iler. " f1K(A) a,p> a,fl) ~ Bm,r 

GRE115 1 0.S2D-16 0.480-14 0.590-16 0.lOD-13 0.790-15 
GRE185 1 0.120-15 0.470-10 0.160-15 0.480-10 0.16D-12 
GRB216 1 0.670-16 0.190-13 0.67D-16 0.290-13 0.260-15 
GRB216 1 0.730-16 0.610-01 0.110-15 0.640-02 0.21~ 
GRE343 l 0.lOD-15 0.470-13 0.100-15 0.740-13 O.S0D-15 
GRES12 1 0.830-16 0.380-13 0.830-16 0.610-13 0.261)-15 
GRE1107 1 0.930-16 0.17D-07 O.llD-15 0.22D-07 0.740-10 
WPSI'67 l 0.490-16 0.450-13 0.890-16 0.130-13 0.240-14 
wmT132 l 0.930-17 0.980-05 O.lSD-15 0.180-08 0.181).(Jr) 
WBST1S6 1 0.77D-18 0.900+13 0.110-15 0.420-07 0.381).()9 
wmT167 1 0.801).16 O.SSJ>.05 0.120-15 0.950-10 0.480-11 
WBST381 2 0.450-16 0.240-09 0.16D-1S 0.120-10 0.230-11 
WBST479 1 0.190-16 0.940-05 0.170-15 0.960-09 0.420-10 
WEST497 l 0.77D-16 0.291).()4 O.UD-15 0.221>-09 0.230-10 
WEST655 l 0.190-16 0.94D-05 0.210-15 0.120-08 0.S4D-10 
WFST989 1 0.950-16 0.131>-0'J 0.130-15 0.21D-08 0.171).()9 
wmT1505 1 0.930-16 0.130-03 0.16D-15 0.261>-08 0.171).()9 

I WPSn021 1 0.980-16 0.270-03 0.160-15 0.520-08 0.880-10 

/~ Table A2. Sel 1. x, = 1, i=l, . ..,n, double precision before scaling. 
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Nam.it.er. ,, IJr{A) a,p> a,CI> ~) 
l 91 Error ~ 

GREllS 1 G.648-16 0.448-12 0.83B-16 0.228-13 0.42£-14 

GRE185 1 Q.628-16 Q.248-10 G.64£-16 0.18B-10 G.54B-13 

GRB216 l G.548-16 0.118-13 0.798-16 o.288-13 0.13E-14 

GRB216 l Q.898-16 O..SOE-08 0.938-16 0.16E-08 0.178-09 

GRB343 l 0.768-16 Q.238-13 G.88B-16 0.458-13 O.l0B-14 

GRBS12 1 0.768-16 Q.318-13 0.93B-16 0.668-13 G.27E-14 

GRE1107 1 0398-16 Q.308-06 O.IOB-15 0.48E-07 Q.2SE..10 

WBST67 l 0.358-16 0.118-13 0.14B-15 G.218-13 0.89B-15 

WBST132 1 G.288-16 D.26B-12 0.98B-16 0.338-12 0.738-14 

WBsr156 0 o.578-16 D.52B-04 0.16B-15 0.48B-07 0.988-08 

WBST167 1 G.298-16 0.138-12 0.UE-15 0.20B-12 0.448-14 

WBST381 1 0.158-15 O.SSB-10 0.178-15 0.15B-11 o.56E-l2 

WBST479 l 0.358-16 0.948-11 0.228-15 0.56B-11 0.128-12 

WBST497 1 G.178-16 0.708-10 0.UB-15 0.13B-11 D.26E-12 

WBST6.SS l 0.528-16 0.228-10 0.19E-1S 0.IOE-11 O.l9E-l2 

WBS'N89 1 G.2SB-16 0.158-10 0.12E-1S 0.SOB-11 0.33E-!2 
WBST1505 1 0.SOB-16 0.34B-08 0.17£-15 0.60B-09 0.82B-10 

WBST2021 1 O.SOE-16 0.43E-10 0.ISB-15 0.22B-10 0.19B-12 

Table A3. Set 1. %; = 1, i=l,..,n, double precision after scaling. 

Num.iler. ,, 17r(A) .p> a,Cl) ~) 
l 91 Enm 

GRBllS 1 O.lSB--06 O.lOB-01 G.298-06 o.m-04 0.lSB-04 

GRB18S 2 0.33B-G6 0.138+00 Q.338-06 0.9SE.Ol 0.40B-02 ~. 
GRE216 1 0.3Q!.(J6 0.73B-04 G.39B-o6 0.148-03 0.43B-05 

GRB216 2 o.59B-o6 0.33E+m 0.83B-G6 0.llE..ol 0.43B.Ol 

GllB343 1 0.39B-o6 O.UB-03 0.421!.()6 0.17£-03 0.29B-OS 

GRBS12 1 0.748-06 0308-03 0.748-06 0.428-03 0.158-04 

GRE1107 4 0.18B.QS 0.13!+04 O.ltB-03 0.138+03 0.86B+OO 

WP.ST67 r 0.15B-o6 0.458-04 0.46B-G6 0.l9B-OS 0.97B-OS 

WBST132 1 o.t8B~ 0.17B-02 0.47£-06 0.41E-04 0.828-04 

WEST156 0 0.228-07 0.20B+05 0.548-06 0.42E..01 0.9SB+OO 

WBST167 l 0.84B-G7 0.38B-03 0.41B-G6 0.19B-04 0.40B-04 

WEST381 1 0.48B-G7 0.19B.01 O.SlB-06 0.llB-03 0.238-02 

WBST479 l 0.22.B.()6 0.61B-01 0.9SE-G6 0.628-03 0.83E-03 

WBST497 1 0.12E-o6 0.49B+OO O.SOB-06 0.ISE-03 0.17E-02 

WBSr655 1 0.748-07 0.31E.01 0.73B-o6 0.78E-03 0.77B-03 

WPSJ'989 1 0.11B-o6 0.63B.01 0.49E-o6 0.89B-03 0.72E-03 

WBSI'ISOS 1 0.11B-o6 0.73B+01 0.70B-06 0.63B.01 0.l0B+OO 

WEST2021 l 0.11B-o6 0.93B.01 0.72B-06 0.228-01 0.56E-03 

Table A4. Set 1. xi= 1,i=l,. . .,n, single precision after scaling. 
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~-
Num. iter. " qr(A) a,p> a,fl) ~ Bnor 

GREllS l 0.20B-06 0.148-02 0.408-06 0.l0E-03 0.57B-OS 

GRE18S 2 0.26£-06 0.l0E+OO 0.588-06 0.17E-t-OO 0.168-02 

GRE216 l 0.33£-06 0.66B-04 0.72B-06 0.2SB-03 0.31B:.OS 

GRE216 4 0.168-06 0.898+01 O.llE-05 0.148+02 0.62B-Ol 

GRE343 1 0.33£-06 0.97E-04 0.72B-06 0.27B-03 0.268-05 

GRES12 2 0.2SB-06 Q.l0B-03 0.Q)B-06 0.318-03 0.72B-OS 

GRB1107 4 0.17B-05 0.128+04 Q.20£-03 0.24E+03 0.848+00 

WESI'67 1 0.20B-06 0.608-04 0.518-06 0.21B-OS 0.86B-OS 

WFSl'l32 1 O.lSB-06 0.148-02 0.7SB-06 0.668-04 0.138-03 

WESl'1S6 1 0.118-07 0.988+04 0.598-06 0.4C5E+Ol 0.188+01 

WFSl'ltll 1 0.126-06 0.S3B-03 0.588-06 0.28B-04 0.16B-04 

WEST381 0.17E-06 0.678-01 0.738-06 0.168-03 0.318-03 

WBSr479 l O.TTE-01 0.218-01 0.638-06 0.41B-03 0.248-03 

WBSr497 1 0.128-06 0.SlE+OO 0.678-06 0.20B-03 0.218-03 

WB.ff6SS 1 0.748-07 0.318-01 0.82E-06 0.898-03 0.69B-O'J 

WFSN89 1 0.94B-C17 0.SSE-01 0.888-06 0.16E-02 0.6SE-03 

WBSrlS05 1 0.128-06 0.SOB+Ol 0.79B-06 0.71B-01 0.128+00 

WEST2021 l 0.998-C17 0.861!-0J O.SOB-06 0.2SB-02 0.158-03 

Table AS. Set 1. %1 = 1,i=l, .. .,n, mixed precision after scaling. 

Before acaling After scaling 

~ 
r(A) r<:: rf1 r(A) ~ rf1 

GRB115 0.93D+02 0.33D+01 0.23D+01 0.690+-04 0.SSD+O'l 0.560+02 

GRB185 0.38D+06 o.50D+05 0.54D+05 0.390+06 0.460+05 0.52D+05 

GRB216 0.28D+03 0.90D+()'l 0.82D+G2 0.20D+03 0.lll>t-03 0.10D+03 

GRE216 0.830+15 0.371>+14 0.480+13 o.S6D+08 0.3SD+07 0.37D+07 

GRB343 0.47D+Q3 0.160+03 0.130+03 0.30D+03 0.lOD+O'J 0.110+03 

ORE5U 0.46D+03 0.140+03 0.140+03 0.40D+Q3 0.140+03 0.14D+Ol 

GRE1107 0.18D+OIJ 0.400+08 0.31D+08 O.'TID+lO 0.910+08 0.83D+08 

WBSr67 o.91D+03 0.540+01. 0.78D+01 0.30D+03 0.Slo+O'l 0.41D+01 

WESl'132 0.11D+13 0.260+07 0.25Dt07 0.940+-04 0.61D+03 0.83D+03 

WBSrlS6 0.120+32 0.121>+09 0.13D+09 0.91D+12 0.280+09 0.540+07 
WFSl'ltll 0.69D+ll 0.45D+05 0.35D+06 0.460+-04 0.86D+03 0.400+03 

WBST381 0.53D+07 0.160+05 0.630+04 o.38D+06 0.230+04 0.130+04 

WB.ff479 0.49D+12 0.120+06 0.22D+07 o.27D+06 0S1D+04 0.34D+04 
WB.ff497 o.38D+12 0.75D+-06 0.330+06 0.42D+07 0.730+03 0.54D+04 

WBSI'6S5 0.490+12 0.66D+06 0.140+07 0.42D+06 0.120+05 0.320+04 
WPSN89 0.13D+l3 0.45D+07 0.470+07 0.580+06 0.210+05 0.11D+05 
WFSl'l505 0.14D+l3 0.490+07 0.S3D+07 0.61D+08 0.27D+07 0.170+05 
WEST2011 0.280+13 0.500+07 0.89D+07 0.860+06 0.42.D+OS 0.110+05 

Table A6. Set 2. Condition numbers before and after scaling. 
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Nam. " IJ&"(A) o,f> CDi(2) a,C2> rC2>+ 
1 •1 Bnor 

ircr. cur>~ 

GRBllS 1 Cl.35D-16 0321>-14 0.84D-16 0.89D-28 0.270-14 0.71D-1S 

GRB185 1 0.94D-16 0350-10 0.19D-1S G.24D-25 0.94D-11 0.14D-12 

GRB216 l 0.120-16 G.341>-14 0.560-16 0.64D-27 o.soD-14 0.13D-15 

GRB216 4 O.SlD-16 0.420-01 0.41D-15 G.2.SD-26 0.lSD-01 0.761).()6 

GRE343 1 0.14D-16 0.6SD-14 0.560-16 0.741)..26 0.90D-14 O.llD-15 

GRE512 I G.25D-16 0.UD-13 0.831)..16 G.271).25 0.12D-13 0.191)..15 

GRB1107 2 0.420-16 0.78D-08 G.201)..15 O.SSD-24 0.820-08 0.83D-10 

wmT67 1 0.42.D-16 038D-13 0.16D-l5 G.271).30 0.88D-14 0.120-14 

WBST132 1 G.24D-16 0.250-04 0.13D-1S O.IOD-28 0.341).()9 0.161).10 

WBST1S6 1 O.UD-22 0.140+09 0.86D-16 O.lSl)..31 0.10D-07 0.101)..10 

WBST161 0 Q.281)..17 0.191).()6 G.20D-15 G.2.SD-18 0.920-11 0.37D-12 

WBST381 1 0.780-17 0.410-10 O.ISD-15 0.40D-29 0.240-11 G.29D-12 

WBST4'19 3 0.330-19 0.160-07 0.331).15 0.14D-28 0.39D-10 0.91D-12 

WEST497 1 0.12D-17 0.44D-06 0.16D-15 0.280-28 0.120-09 0.30D-11 

WBST65S 3 0.880-19 0.430-07 0.26D-1S O.lSD-25 0.170-09 0.19D-11 

WP.ST989 l 0.14D-16 0.190-04 0.141)..15 G.291)..27 0.610-09 0.26D-10 

WBSTlSOS 1 G.23D-16 0310-04 0.201)..15 0.670-27 0.990-09 0.460-10 

WBSI'2021 1 0.19D-l6 G.520-04 0.22D-15 G.320-27 O.llD-08 0.24D-10 

Table A 7. Set 2. %; = 1, l=l,6,_, else%; =0, before scaling. 

Num. " 1Jr(A) o,p> CDi(2) 01C2> rC2>+ 
1 •• Bnor 

iter. af>~ 
GRB115 1 Q.32E-17 0.22E-13 0.96B-16 0.36B-27 O.S6B-14 0.29B-1S 

GRB185 1 0.64B-16 0.25B-10 O.UB-15 0.41B-24 0.52E-11 0.57B-13 

GRB216 2 O.Q>B-16 0.12E-13 O.lSB-15 0.10B-28 0.16B-13 0.SlB-15 

GRB216 1 0.128-15 0.68B.()8 0.14B-15 0.94B-25 0.50B.QIJ 0.77B-10 

GRE343 1 O.QlB-16 0.llB-13 G.22B-15 0.48B-26 0.23B-13 0.67E-15 

GRBS12 1 0.86B-16 0.35B-13 0.228-15 G.25E-25 0.31B-13 0.67B-15 

GRB1107 3 O.'T1B-16 G.59B-06 0.20B-14 O.lBB-22 0.lSB-06 0.l0B-08 

~ 1 0.40B-16 0.12B-13 0.168-15 G.28B-30 0.791i-14 0.13B-14 

WBST132 1 0.17E-16 0.168-12 0.178-15 0.788-31 0.UB-12 0.54B-14 

WEST156 0 0.61B-17 0.S6B-05 O.l0B-15 0.14B-29 0.308-07 0.328-08 

WBST1Q 0 G.21B•l6 0.948-13 0.188-15 O.SOB-19 0.168-12 0.24B-14 

WEST381 1 G.35B-16 0.138-10 0.12B-15 0.S7B-29 0.27B-12 0.86B-13 

WEST4'19 2 Q.37B-17 O.lOB-11 0.16B-15 0.33B-30 0.90B-12 0.28B-13 

WEST497 1 o.52B-17 0.22B-10 0.118-15 0.13B-30 0.81B-13 0.228-14 

WPSI'6SS 2 0.13B-16 0.SSB-11 0.19B-15 0.Q)B-29 0.22.E•U 0.61B-14 

WP.ST989 1 G.32E-16 0.19B-10 0.20B-15 0.63B-29 0.43B-11 0.48B-13 

WESTISOS 1 Q.32B-16 0.218-08 0.20E-15 0.36B-28 0.54E.QIJ 0.97E-ll 

WESTlO'll 1 0.32B-16 0.27B-10 0.20B-15 0.9SB-29 0.SSB-11 0.lSB-13 

Table AS. Set 2. z,= 1, l=l,6, .. , elsez;=O, after scaling. 
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Before scaling Af.ta scaling 

ir(A) ~3) lt'('J) ir(A) ir<3l lt'('J) ., az ., ~ 

GRE115 0.93Dt02 0.33Dt02 0.38Dt02 0.69D+04 0.58Dt02 0.29D+04 

GRE185 0.38Dt-06 0.500+05 0.930+05 0.39Dt-06 0.460+-05 0.920+05 

GRE216 0.28D+03 0.90Dt02 0.84Dt02 0.20Dt03 0.11Dt03 0.82Dt02 

GRE216 0.83Dtl5 0.37Dtl4 0.18Dtl5 0.56Dt-08 0.35Dt07 0.19Dt08 

GRE343 0.47Dt03 0.16Dt03 0,10Dt03 0.30D+03 0.l0Dt-03 0.85Dt02 

GRE512 0.46D+03 0.14Dt-03 0.14Dt03 0.40D+03 0.14Dt-03 0.12Dt-03 

GRE1107 0.18Dt-09 0.40Dt08 0.42Dt08 0.77Dtl0 0.91Dt08 0.21Dtl0 

WEST67 0.91D+03 0.54Dt02 0.45Dt02 0.30D+03 0.51Dt02 0.24Dt02 

WEST132 0.11Dtl3 0.26Dt07 0.39Dtll 0.94D+04 0.61Dt-03 0.27D+04 

WFSrl56 0.12Dt32 0.120+09 0.44Dt25 0.91Dtl2 0.28Dt-09 0.23Dtll 

WFSfl(j7 0.69Dtll 0.45D+OS 0.68Dt-09 0.46D+04 0.86Dt03 0.15D+04 

WFSr381 0.53Dt-07 0.16Dt05 0.29Dt-07 0.38Dt-06 0.23Dt04 0.300+05 

WEST479 0.49Dtl2 0.12Dt06 0.28Dtl2 0.27Dt-06 0.57D+04 0.280+05 

WEST497 0.38Dtl2 0.750+06 0.10Dt12 0.42Dt07 0.73Dt-03 0.850+06 

WEST6S5 0.49Dt12 0.660+06 0.18Dtl2 0.42Dt06 0.12Dt05 0.20Dt-OS 

WEST989 0.13Dt13 0.45Dt07 0.73Dt12 0.58Dt-06 0.210+05 0.llDt-06 

WESTlSOS 0.14Dtl3 0.49Dt-07 0.11Dtl3 0.(;7Dt-08 0.27Dt07 0.17Dt-06 

WEST2021 0.28Dt 13 0.S0D+-07 0.14Dt13 0.86Dt-06 0.42Dt05 0.12Dt06 

Table A9. Set 3. Condition numbers before and after scaling. 

Num. ,, 11 ir(A) a,p> °'l('J) 41('3) ir('J)+ 
1 . , Enor 

iJ.er. a>p>~ 

GRE115 1 0.3ID-16 0.320-1-4 0.840-16 0.890-21 0.270-14 0.710-15 

GRE185 1 0.940-16 0.3ID-10 0.190-15 0.240-25 0.940-11 0.140-12 

GRE216 1 0.120-16 0.340-14 0.560-16 0.640-27 0.500-14 0.130-15 

GRE216 4 0.510-16 0.420-01 0.410-15 0.250-26 0.150-01 0.760-06 

GRE343 1 0.140-16 0.6ID-14 0.560-16 0.120-25 0.900-14 0.110-15 

GRE512 0.250-16 0.110-13 0.830-16 0.340-25 0.120-13 0.190-15 

GRE1107 2 0.420-16 0.780-08 0.200-15 o.580-24 0.820-08 0.830-10 

WEST67 1 0.420-16 0.380-13 0.160-15 O.SOD-30 0.880-14 0.120-14 

WFSrl32 0.240-16 0.250-04 0.130-15 0.800-28 0.340-09 0.160-10 

WEST156 0.120-22 0.14Dt-09 0.860-16 0.170-27 0.750-03 0.100-10 

WFSfl(j7 0 0.280-17 0.190-06 0.200-15 0.180-16 0.120-07 0.370-12 

WFSr381 1 0.780-17 0.410-10 0.150-15 0.400-29 0.240-11 0.290-12 

WEST479 3 0.330-19 0.160-07 0.330-15 0.140-21 0.390-10 0.910-12 

WEST497 1 0.120-17 0.440-06 0.160-15 0.280-21 0.120-09 0.300-11 

WEST655 3 0.880-19 0.430-07 0.260-15 0.150-25 0.170-09 0.290-11 

WEST989 l 0.140-16 0.190-04 0.140-15 0.290-27 0.610-09 0.260-10 

WFSrlSOS 0.230-16 0.310-04 0.200-15 0.610-Z'T 0.990-09 0.460-10 

WEST2021 0.190-16 0.520-04 0.220-15 0.32D-Z7 0.110-08 0.240-10 

Table AlO. Set 3. x;= 1, i=l,6 .... elsex;=O, before scaling. 
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Nan. " fJr{A) .p> ~(J) mp> r:.+ Enor 

ila. mp>~ 

GRB115 l G.326-17 G.22B-13 0.966-16 Q.36B-27 o.56E-14 0.29B-15 

GRB185 l 0.648-16 G.2SB-10 0.UB-15 0.418-24 0.52B•ll 0.578-13 

GRE216 2 O.fiOB-16 0.128-13 0.158-15 0.12B-28 0.16£-13 0.BlB-15 

GRE216 1 0.128-15 0.68B-08 0.148-15 0.948-25 0.50B-09 0.77B-10 

GRB343 l O.fiOB-16 O.llB-13 0.22B-15 0.71B-26 0.23B-13 0.67B-15 

GRB512 1 0.86B-16 0.358-13 0.228-15 0.318-25 G.31B·13 0.67B-15 

GRB1107 3 0.778-16 0.59B-06 G.208-14 0.188-22 0.lBE-06 0.l0B-08 

WBST67 l 0.408-16 0.12B-13 0.168-15 057B-30 0.79B-14 0.138-14 

WB.ff132 l 0.17E-16 0.168-12 0.t7E-l5 0.788-31 0.118-11 0.548-14 

WBST156 0 0.618-17 0.568-05 0.108-15 0.148-29 . 0.308-07 0.32B-08 

WBSTttn 0 CUIB-16 0.94B-13 0.188-15 0.508-19 0.168-12 0.248-14 

WISTJ81 t Q.358.16 0.138-10 0.128-15 D.57E-29 0.2'7E-12 G.86B-13 

WBST479 2 G.378-17 O.lOE-11 0.168-15 G.338-30 0.908-12 0.288-13 

WBST497 1 G.528-17 0.228-10 0.118-15 0.138-30 0.818-13 0.228-14 

WBSl'655 2 0.138-16 0.55B-ll 0.198-15 0.fiOB-29 0.228-11 0.61B-14 

WBSl'989 1 D.32E-16 0.198-10 G.208-15 0.638-29 0.43B•l1 0.488-13 

WBST150S 1 G.32B-16 G.218-08 0.208-15 0.368-28 0.548-09 0.97B-11 

WBST2021 1 G.32B-16 0.2'7B-10 G.208-15 0.958-29 0.85B-ll 0.188-13 

Table AU. Set 3. %;= 1, i=l,6, . ., elsez1 =0, after scaling. 

tlroplol -10-s tlroptol •10_, 

K(A) r!"> .. r<4> 
ei 

r!") 
91 

r!") 
ei 

ORB115 0.698+04 O.OOB+OO 0.128+03 0.OOB+OO 0.12B+03 

GRB185 G.398+06 O.OOB+OO 0.178+06 0.00B+OO 0.148+06 

GRE216 0.20B+03 O.OOB+OO G.218+03 0.OOB+OO G.218+03 

GRB216 0.84B+08 O.OOB+OO 0.158+08 0.OOB+OO O.l0B+-07 

GRE343 0.30:s+m O.OOB+OO 0.318+03 O.OOB+OO G.26B+03 .. 
GRES11 0.40B+03 O.OOB+OO 0.43B+03 0.OOB+OO o.37B+03 

GRB1107 0.63B+10 O.OOB+OO G.23B-t-09 0.OOB+OO 0.558+07 

WESTQ '0.30B+03 G.198+01 0.16B+03 0.OOB+OO 0.148+03 

WBST132 0.948+04 O.OOB+OO 0.248+04 O.OOB+OO G.22B+04 

WESl156 0.91B+l2 O.OOB+OO 0.29B-t-09 0.OOB+OO 0.168+06 

WBST167 0.46E+04 O.OOE+OO 0.168+04 0.OOB+OO 0.138+04 

WBST381 0.388+06 O.OOB+OO 0.6SE+04 0.OOB+OO 0.54E+04 

WBST479 0.27B+06 O.OOB+OO 0.238+05 O.OOB+OO 0.20B+OS 

WBST497 0.42B+07 0.00B+00 0.6SE+04 0.OOE+OO 0.63B+04 

WBST655 0.42B+06 O.OOB+OO 0.43B..OS 0.008+00 0.378+05 

WEST989 0.588+06 O.OOB+OO o.63B+a5 0.OOB+OO 0.538+05 
WBST1505 0.67E+08 O.OOE+OO 0.358-t-07 0.OOB+OO G.21E+07 

WBST20'll 0.86B+06 0.008+00 0.12B+06 0.OOE+OO 0.108+06 

Table A12. Set 4. Condition numbers after scaling for droptol.= 10-s and 
drop tol. = 10-3 • 
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Num. ,, 11r(A) ca1<•> I cu!'l o,<'l ~'l+ 
I •1 Bnor 

•• co1•> --~ 
GRB115 2 0.99E•l8 0.68B•l4 0.008+00 0.698·16 0.858-14 0.158-14 

GRR185 3 O.S5E•l6 0.221!-10 0.008+00 0.508·16 0.83E-ll 0.808-13 
GRE216 l 0.90B•l6 0.188-13 0.008+00 0.838-16 0.188-13 0.88B-15 

GR£216 29 0.108•15 0.848-08 0.OOB+OO O.S08-15 0.'nB-08 0.638·10 
GRE343 l 0.908·16 0.278-13 • 0.OOE+OO 0.838·16 0.268-13 0.818-15 
GRB512 l 0.86E•l6 0.358-13 0.OOB+OO 0.118-15 0.488-13 0.68B-15 
GRB1107 15 0.62£·16 0.398-06 0.008+00 0.198-15 0.44B-0'7 0.27B-49 
WESr67 l 0.508•16 0.lSB-13 0.138-16 0.618-16 0.10B-13 0.858-15 
WESTl32 2 0.36Ji.16 0.33B-12 0.OOB+OO 0.67B-16 0.16B-12 0.46B-14 

WPST1S6 0 0.618-17 0.S6B-05 0.OOB+OO 0.54B-16 0.168-07 0.328-08 
WES'l'llfl 0 0.21B-16 0.948-13 0.008+00 0.67B-16 0.118-12 0.248-14 . 
WBST381 2 0.23E•l6 0.898-11 0.008+00 0.548-16 0.368-12 0.788-13 
WESr479 3 0.26B-16 0.718-11 0.00B+00 0.57B-16 0.138-11 0.SSB-13 .. 
WEST497 l O.S88•17 0.25R-10 0.008+00 O.SSE-16 0.368-12 0.418-14 
WPST6S5 2 O.SSE-16 0.238-10 0.008+00 0.918-16 0.39B•ll 0.228-13 
WEST989 l 0.138-15 0.7SB-10 0.OOB+OO 0.198-15 0.128-10 0.188-13 

J 
WEST1S05 2 0.648-16 0.438-08 0.008+00 0.108•15 0.358.QIJ O.l0B-10 
WBff20.21 2 0.958-16 0.82E-l0 0.008+00 0.138-15 0.168-10 0.598-13 

Table Al3. Set 4. z i = 1, i =1,6,.., e'2 xi =0, after scaling and drop tol. = 10-s. 

Nam. ,, r,r(A) o,f4> o,!'l o,f4_) ~'l+ Bnar ... 
ita. el'l r~ 

GRB115 4 Q.358.17 G.241!-13 0.OOB+OO 0.488-16 O.S9B-14 0.808-15 
GRR185 15 0.461!.16 0.158-10 0.OOB+OO 0.61B-16 0.87B-11 0.148-12 
GRB216 l 0.658-16 0.138-13 O.OOB+m 0.748-16 0.168-13 O.UB-14 
GllB116 3 0.268-04 0.lSB-t-03 0.008+00 0.118--0'2 0.128+04 0.228+01 
GRE343 3 0.668-16 0.208-13 0.OOB+OO 0.87B-16 0.238-13 0.728-15 
GRB512 4 0.638-16 0.261!-13 0.008+00 0.898-16 0.328-13 0.798-15 
GRB1107 3 0.648-05 0.lOB-+04 O.OOB+OO 0.16Ji.02 0.908+04 0.13E+Ol 
WPST67 2 0.378-16 0.UE-13 0.OOB+OO 0.4SB-16 0.618-14 0.148-14 
WPST132 3 0.2SB-16 0.238-12 0.OOB+OO Cl.52B-16 0.llB-12 0.218-14 
WESTlS6 0 o.598-18 0.738.QI O.OOB..00 0.548-16 0.87B-ll O.lBB-12 
WPST1lfl 0 0.218-16 0.94B-13 O.OOB+OO 0.67!-16 0.848-13 0.248-14 

• WBST381 4 0.178-16 0.678-11 0.OOB+OO 0.536-16 0.29B-l2 0.338-13 
WEST479 7 0.348-17 0.918-12 0.OOB+OO O.SSB-16 0.UB-11 0.SlB-13 
WESl"497 4 0.308-17 0.138-10 0.OOE..00 O.SBE-16 0.368-12 0.36J!.l4 
WEST655 s 0.288-16 0.128-10 0.OOB+OO 0.658-16 0.248-11 0.558-13 
WBSI'989 5 Q.328-16 0.198-10 0.OOB+OO 0.648-16 0.348-11 0.UB-12 
WPST1S05 10 0.328-16 0.208.QI 0.OOB+OO 0.90B-16 0.198--09 0.238-10 
WBST20'll s 0.328-16 0.278-10 0.OOB+OO 0.94B-16 0.988-11 0.'72B•l3 

Table A14. Set 4. xi= 1, i=l,6_ e1-x, =O, after scaling and droptol.= 10-3• 
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Ncmeral Fill-in ~ 
drop IOl•O.O drop Iola 10-S droplOl• 10-s 

GRE115 421 (A'/ 651 605 

GRB185 975 3173 3028 2929 
GRB216 812 2544 2263 2262 
ORE216 812 rtfil 2580 2180 
GRE343 1310 5334 4891 4890 

GRB512 1976 11535 11020 11007 
GRB1107 5664 476m 45255 41181 
WBST67 194 'J81 202 204 

' WEST132 413 89 tr1 83 

WEST156 362 'ZI 20 15 
WESTlfil 506 96 96 92 
WBST381 2134 "61 1867 1711 

WPSl'479 1888 1121 982 790 

WPSl'497 1721 279 263 252 

WBST6SS 2808 2092 1791 1709 

WBST989 3518 1156 1139 1135 
WESTl505 5414 2032 1934 1821 
WBSl'l021 7310 2539 24'6 2410 

Table AlS. Set 4. Numb« of DC11mO entties in the original matrices and fill-in for 

droptol.=0.0, droptol.= 10-s and droptol.= 10-3 aftez scaling. 

~. 
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