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ABSTRACT 

This paper describes work in progress. 1" particular, the current syntaz of 
the Junction calls occurred more as a side-affect of testing the Jeasibility of imple
menting this package and the ezamples which run under it than as a deliberate 
effort to define a syntactically and semantically clean way of accessing the environ
ment. Any comments you may have on these routines or the contents of this paper 
would be appreciated. I may be contacted as david@lll-lcc.arpa ({ ucbvazllll-crg, 
seismo }!lll-lcc!david). Vaz and Sun/ 68881 source code for the routines and ezam
ples described herein are also available, as well as a test suite to verify the integrity 
of an implementation. 

This paper describes a set or (unctions which establish a robust environment 
for floating-point arithmetic, easing implementation or a great number or problem 
numerical algorithms and increasing their portability between machines and 
architectures. Facilities are provided for exploiting underlying arithmetic con
forming to or approximating that de6ned in the IEEE Standard for Binary 
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985). Extensions to Standard 
requirements allow for efficient exception handling in systems with imprecise 
interrupts, such as vector and concurrent processors; and for arbitrary magnitude 
arithmetic without abnormal loss or precision. 

These routines are intended to be implementable on, and take maximum 
advantage of, both Standard conforming and non-conforming architectures. 
Using the (unctions described herein, programs can determine what floating-point 
features are available and access them in a uniform manner. Thus, their use 
eases the design or portable, numerically sensitive applications. No compiler sup
port is assumed or required. 

The package described herein is currently implemented under the UNIXt 
operating system on the Digital Equipment Corporation VAX, and Sun-3 (with 
68881) processors. 
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A Portable Floating-Point Environment 

Dtwid Barnett 

1. Introduction 

The functions described in this paper are designed to take advantage or and allow access to 
features or the IEEE Standard /or Binary Floating-Point Arithmetic (such as ftags, modes, and 
traps). Several useful extensions to the Standard are also provided. These routines provide a 
portable bridge between applications software and the underlying floating-point hardware. In 
addition to allowing access to Standard confirming arithmetic, these functions provide a basis• for 
future hardware Boating-point implementations, and are often retrofitable to older, non
confirming architectures. 

2. Extensions to the Standard 

Two extensions to the IEEE Standard are provided: presubstitution and exponent wrapping. 

2.1. Presubetltutlon 
Presubstitution is the ability to specify a value to be used as the result of a specific excep

tional operation. The value must be specified in advance or its potential use. There are nine 
exceptional operations for which a result may be presubstituted: the five IEEE exceptions 
(underftow, overflow, inexact~ division by zero, and invalid), with the invalid exception further 
subdivided into 0/0, 00/00, 00-00, OXoo, and other invalid operations (such as domain errors). 

One example of the use or presubstitution is to handle limiting conditions. Prior to comput
ing :r:2/(:r:2+ 7), the value 1 may be presubstituted for 00/00. Ir :r:2 overftows, the correct value will 
be returned (as addition or 7 will have no effect on an z2 large enough to overflow), or the proper 
limit will be returned if z is in fact infinity. "Presubstitution" was coined by Professor W. 
Kahan aod is discussed in detail in his paper Preaubstitution, and Continued Fractions. 

Functionally, presubstitution is similar to the IEEE notion or a trap handler. The Standard 
describes a trap handler as being able to determine the type of exception which caused its invoca
tion, as well as the exceptional operands involved. A trap handler should be able to return a 
value to be used in lieu or the default result. Despite their similarity, presubstitution offers 
several advantages over post-exception trap handling. 

In systems with imprecise interrupts, such as vector and other concurrent architectures, it 
may not always be possible to determine exactly where an exception occurred. Thus, execution 
cannot be resumed (without potential side affects) after an exception causes a trap handler to be 
invoked. In a highly pipelined architecture, speed must be sacrificed in order to allow an excep
tion handler to extract the amount or information it needs, and to resume where processing was 
previously halted. 

For example, consider an architecture in which a floating-point coprocessor is utilized. If 
floating-point operands are allowed to be external to the coprocessor and exceptions are not sig
naled until the main processor attempts its first post-exception Boating-point operation (as with 
the Motorolla 68020/68881), an exceptional operand may be overwritten before the main proces
sor becomes aware ~r the exception. Consider the following program segment: 

tor j = 1 to n do begin 
x(j) := a(j) / b(j); 
a(jj := c(j); 

end. 
After the addresses o( afj/, b/j/ and z/j/ are computed, the division will be scheduled. While the 
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division is taking place, the copy oC c/j/ to a{i/ can take place, as well as the incrementing oC j. Ir 
a division exception is signaled, the values or a{ij and j may have changed rrom what they were 
when the division was initiated. Concurrency would have to be sacrificed (the division waited on) 
in order to make all variables available to an IEEE trap handler. 

Also, consider the problems or a vector architecture in which many identical operations are 
being perrormed concurrently. Since any element pair may be responsible for an exception, the 
exceptional operation must be repeated on each of t·he vector elements individually, at great 
expense, to determine which operands were actually responsible for the exception. 

Finally, in a highly pipelined architecture, several instructions may be executing simultane
ously, and they will not necessarily complete in the order scheduled. The program counter in such 
as system will ref er to the next instruction to be pref etched, rather than to any particular instruc
tion in the execution queue. When an exception occurs, instruction execution can not be resumed 
at the point of the exception even if it is known (that is, every instruction in the pipeline is 
tagged with its address). Resuming execution at the exception point would be impossible as side 
efl'ects of instructions occurring after the exceptional one, but completed beCore it, cannot always 
be undone. 

Presubstitution solves all these problems as it eliminates the need tor an exception to be sig
naled. In a hardware implementation or presubstitution, the presubstituted value could be stored 
in a register and accessed by the ftoating-point hardware just as would be a NaN or other default 
constant. For example, bits in a control register may be the index of an internal register value to 
be used as the result or a specific exceptional operation. As a default this index would refer to the 
IEEE default value, but when presubstitution is specified the prescribed value would be loaded 
into a register and the index changed to refer to it. At the time of the exception the hardware 
would react identically whether presubstitution is taking place or not. 

Presubstitution also offers syntactic advantages over trap handling performed for the same 
ends. Unless the value to be presubstituted is a constant, the trap handler must be made aware or 
that value, most likely through setting or a global variable. In addition to having the same over
head as presubstitution in current software implementations (which actually perform post
exception substitution), this obscures the true objective or the computation. 

Additionally, it may appear as if a trap handler could actually compute the value to be sub
stituted in lieu or the result itself, saving the expense or unnecessarily computing this value when 
it is not needed. This results in a syntactic mess, however. In addition to needing a different trap 
handler for every computation, the exception handler must have access to all relevant variables 
from the routine which produced the exception. Ir these values are copied to global variables, lit
tle, if any, time will be saved over actually performing the computation (provided the computa
tion only involves addition, subtraction, multiplication, and division). Ir the values are global 
variables, it will not be necessary to copy them; however, recursion will have been precluded. 

Many or the syntactic disadvantages or trap handling to substitute valid results for invalid 
ones can be overcome by avoiding exceptions altogether via "if"' tests. Ir the division a/ h could 
potentially produce an undesired exception, (such as division by O or 00/00) the test "if b is finite 
and non-zero ... " could be inserted before the division. Ir the test fails, then an appropriate value 
would be computed. Unfortunately, if this test appears within a loop while presubstitutioo to the 
same ends may be performed outside of the loop, the "if" precludes that loop from taking advan
tage of a vector architecture. Furthermore, if the value to be presubstituted does not vary 
between iterations or the loop, the "if" test will be repeated many times, while a value to be 
presubstituted need only be computed once. If the presubstitution must occur within the loop, 
then the "if" test may be more efficient than presubstitution. This is considered in more detail in 
Professor Kahan 's paper on this subject. 

%.2. Arbitrary Magnitude Arithmetic 

A major problem in implementing numeric algorithms on computers is that of 
underflow /overflow. While underflow is oft neglected, overflow usually aborts computation, or 
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delivers an infinity as the result or an overflowed computation. If the final result of a sequence or 
computations is indeed too large or small to represent in the chosen precision, an infinity or zero 
may be a satisractory result, as numbers as large or small in magnitude as those which would 
overflow or underflow in conventional floating-point schemes are or little practical application. 
Unfortunately, an infinity or zero occurring as an intermediate result in a long series or computa
tions, whose final result is representable, will propagate through those computations, potentially 
leaving no clue as to the true magnitude or the final result. · 

In traditional and IEEE floating-point arithmetic, a number F is represented as 

F=±/re, 

where/ represents a fixed width, unsigned rraction {1/rS/ <l)); e a fixed width, two's comple
ment, biased exponent; and r the radix of e. Overftow occurs if e is too large to represent, and 
underflow ir e is too small. 

Two schemes have recently been proposed to eliminate the problems or underBow and 
overflow. C. W. Clenshaw and W. J. Olver, in their paper Level-indez Arithmetic Operations, 
propose to represent F in the following form: 

I 

, 
where e is the inverse natural log or 1, OS/< 1, and a value l corresponds to the number of 
exponentiations. & l increases, the range of representable numbers is increased, as is the distance
between them. Error in F is then relative to the magnitude or l. 

S. Matsui and M. lri propose an alternate representation in An Overflow/ Underflow-Free 
Floating-Point Representation of Numbers. In their "level 0" arithmetic, a Boating-point number 
is represented in the conventional sense, with the exception that the widths or / and e are vari
able. & many available bits as necessary are allqtted to e, and the remaining are used to 
represent /. Thus, for numbers near :I: 1, arithmetic is highly accurate (since only one bit is 
devoted to the exponent and the remaining to the fraction). As numbers move farther from ± 1, 
bits are shifted from / to e, and arithmetic becomes less accurate. Numbers which would 
underflow or overflow the level O representation are recursively defined. u having e itself 
represented as a level O number. The level or a number corresponds to the number or times e is 
recursively represented by a new Boating-point number. 

Using either or these schemes greatly eases the job or a programmer implementing an algo
rithm which may underflow or overflow in conventional Boating-point systems by eliminating the 
potential ror underflow or overflow altogether. Unfortunately, the job or the error analyst is 
correspondingly increased. James W. Demmel points out in On Error Analysis in Arithmetic with 
Varying Relative Precision that arithmetic involving numbers at the extremes or those represent
able in both schemes are highly inaccurate in comparison to the standard, IEEE adopted format. 
Furthermore, the accumulated error in a result cannot be easily determined since that error is 
highly dependent on the number or bits devoted to the mantissa in the Matsui/Iri scheme , and 
the number or levels or exponentiation in the Clenshaw/Olver implementation. 

In order to simplify the error analyst's task, Demmel suggests that a hardware counter be 
implemented, akin to an IEEE flag, which keeps track or the maximum size obtained by an inter
mediate result. In Clenshaw /Olver this would be the maximum number of levels or exponentia
tion, and in Matsui/Iri level O arithmetic the maximum number or bits devoted to the exponent. 
The maximum error inherent in a result could be determined by examining this counter. 

The scheme adopted in this package avoids the error analysis problem of the methods utiliz
ing varying precision. Numbers are represented in the traditional IEEE style. If specifically 
requested, computations experiencing underflow or overflow deliver as their result a number with 
the same fraction as the true result, and a modified, representable exponent. A counter is incre
mented on each overBow and decremented on each underflow. The result's exponent is adjusted so 
that after a sequence or computations like z = a X 6 X c X d, z will be correct and as precise if 
intermediate underflows and/or overflows occur as ir they do not,· provided that the 
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underflow /overftow counter is zero at the end or the multiplications. 

Traditional error analysis techniques apply to this method, as the width or the mantissa is 
not varied as is done in the Matsui and Iri scheme. The counter effectively extends the width or 
the exponent, by allowing it to "wrap around" when it becomes too large or too small (hence, this 
method is referred to herein as exponent wrapping). The counter used in this technique is akin to 
Demmel's, except that rather than indicating the magnitude or potential error in the rraction, it 
corresponds to the exact error in the exponent. Accuracy and the ability to perform reliable error 
analysis are not sacrificed in defense or underflow and overflow. 

The primary disadvantage of this scheme is that programmer cognition of an algorithm 
being susceptible or sensitive to underftow and/or overflow is required. Floating-point operations 
must be coded to take into account a potentially non-zero wrap count (accumulated 
underflow/overflow count) being associated with each number. While multiplication and division 
are simple (wrap counts are added or subtracted, respectively), other operations are more difficult 
and expensive. Addition and subtraction, for example, require scaling or their operands prior to 
actually carrying out the arithmetic. Since scaling is affected by the wrap count, addition and 
subtraction become depend~nt on the number or bits devoted to the exponent. In order to provide 
machine independence, a function is included in this package which performs addition on numbers 
with wrap counts associated with them. 

Due to the added expense or dealing with this form or extended arithmetic, it should only 
be incorporated when needed. Two examples are included later in this paper which demonstrate 
applications benefiting from this form or arithmetic. One or them runs appreciably raster than an 
algorithm which solves the same problem and is coded to avoid underflow and overftow in tradi .. 
tional floating-point systems. 

This scheme for handling underftow and overflow is also easily implementable in hardware. 
Underflow and overftow are usually detected when rounding a high precision, internal result to a 
lesser precision, external one. Instead or generating an exception or substituting an infinity, zero, 
or denormalized number as the result on detection or underflow or overftow, however, the 
hardware could use its normal, unexceptional algorithm to deliver the result. The difference 
between the true exponent and stored one could be channeled to an underftow /overftow accumula
tor, which could also be accessed and set by applications software. Due to the speed of integer 
arithmetic, a hardware implementation or this wrapping mode should have no affect on the 
overall speed or floating-point arithmetic. 

3. Environment Accesa 

The code comprising this package is written primarily in 'C', with some assembly language 
support. While designed to be accessed from 'C' programs, the functions described here should be 
easily adapted to other languages by appropriately translating the constants defined in the header 
file. No modification to the code comprising the environment should be necessary. 

3.1. Constanta 

Finite floating-point constants are represented in the normal manner. Positive infinity is 
specified via the constant Inftnlty, and negative infinity via Nlnflnlty. A quit NaN may be 
introduced via the constant NaN, and a signaling NaN via SNaN. These constants, as well as 
the declarations or the Collowing (unctions, are defined in the 'C' header file "fp.h". 

3.2. Function• 

Unless otherwise specified, all functions return an integer. Ir a requested feature is unavail
able in a specific implementation, or if there was an error in the parameters to a function, the 
value -1 is returned. Otherwise, the value 0 is returned. A program may take advantage of the -1 
return value to adjust itselr at run time to the features available in the environment above which 
it is running. 
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3.2.1. Inltlallzatlon and Defaults 

This package is initialized via the function call FPlnltQ. FPinltQ takes no parameters and 
returns no value. FPinltQ performs all system dependent initializations and establishes the 
IEEE Standard default environment. 

The current environment may be reset to the default at any point by calling FPDefaul
tEnvQ, which is also void and with no parameters. 

3.2.2. Flags 

Flags are interrogated and set via the function FPFlag(ftag, newVal). FPFlag() returns 
an integer: zero i( the prescribed flag is not set, and an undefined but positive, non-zero value it 
the flag is set (-1 is returned it the specified flag was illegal or ir it is not supported in the underly
ing environment). The parameter flag selects the flag being operated on, and is one or the con
stants FPFLAG_INV (for the invalid operation flag), FPFLAG_OVF (tor the overflow flag), 
FPFLAG_DVZ (for the division by zero 8ag), FPFLAG_UNF (for the underflow flag), or 
FPFLAG_INX (for the inexact flag). A new value (or the ftag is specified in the newVal field. Ir 
newVal is 0, the flag is cleared, and if it is non-zero the ftag is ·set. The current value or the 8ag 
can be preserved (newVal ignored) it FPFLAG_HOLD is OR'ed into the 8ag field. 

A pseudo-Bag is provided for saving and restoring all the Bags. This Bag is FPFLAG_ALL. 
If it is specified in the 8ag field, a value is returned which can be later used in the newVal field, 
in conjunction with FPFLAG_ALL, in order to set all the flags to their state at the time of the 
first call. The meaning or the value returned by FPFlag() when FPFLAG_ALL is specified can 
not be interpreted by a program unless it is 0, in which case it indicates that no flags are set. 

3.2.3. Rounding Modes 
Rounding modes are set and interrogated by the function FPRound(newMode). The new 

mode is specified by newMode, and either the previous mode or -1 (in the· event of an error or 
unsupported request) is returned. Valid modes are FPROUND_NEAR (the default of round to 
nearest), FPROUND_POSINF (round to positive infinity), FPROUND_NEGINF (round to 
negative infinity), and FPROUND_ZERO.(round to zero). 

An additional mask, FPROUND_WRAP, may be OR'ed in with any or the other modes. 
This mask invokes the exponent wrapping mode. When it is specified, operations which 
underflow and overflow will produce a result with an exact fraction and legal exponent. The 
number of underBows and overflows are tabulated in a value which may be requested by calling 
the function FPWrapCount(newCount). The parameter newCount specifies a value to 
which future exponent underflow and overflow corrections are subtracted and added, and is usu
ally zero. 

Since many computations involving extended (wrapped) arithmetic depend on the exponent 
width, three routines are provided to allow programs utilizing this feature to retain portability. 
In order to resolve a potential wrap associated with a number, the call FPResolve(number, 
wrap) is provided. The parameter number is a floating-point number, and wrap is the wrap 
count associated with it. FPResolve() returns a floating-point number equivalent to that 
represented by the pair number and wrap. Ir the quantity is too large or small to represent, an 
appropriately signed infinity or 0, respectively, is returned. This routine is useful when imple
menting functions which wish to hide the fact that they are using the FPROUND_ WRAP 
mode Crom their caller. 

The other extended arithmetic support routines provided add two potentially wrapped 
floating-point numbers, and take the square root of one. The call FPAdd(a, a Wrap, b, bWrap) 
returns a Boating-point number corresponding to "a + b", taking into account the wrap experi
enced by each, represented via the integers a Wrap and bWrap. Any wrap in the result returned 
by FPAdd(} is incorporated into the count obtainable by the call FPWrapCount(). 
FPSqrt(a, a Wrap) likewise returns the square root of the number referred to by a (a 8oating
point number) and its wrap, aWrap. Underflow and overflow are also tabulated into the value 
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returned by FPWrapCount(). 
Consult the accompanying examples for more information on the use of this mode. 

3.2.4. Presubstltutlon 
Presubstitution is the ability to specify a value to be used as the result of an exceptional 

operation. The presubstituted value must be (as the name suggests) specified before an exception 
occurs. The format of the call is FPPresubstltute(condltlon, subVal). After a call to 
FPPresubstltute(), the double precision number pointed to by subVal is used as the result of 
any operation which corresponds to condition, which is one of FPPRE_INFDIV for 00/00, 

FPPRE_ZERODIV for 0/0, FPPRE_INVMULT for 0Xoo, FPPRE_INFSUB for 00-00, 

and FPPRE_OTHERINV for any other invalid exception, such as a domain error. For excep
tional computations which would raise a ftag other then the invalid one, results may be presubsti
tuted using FPPRE_INX, FPPRE_OVF, FPPRE_UNF, or FPPRE_DVZ for the inexact, 
overflow, underflow and division by zero exceptions, respectively. If the pointer subVal is 
NULL, then presubstitution is disabled for the speci6ed exception. 

FPPresubatltuteQ returns -1 if presubstitution· is not possible on the requested condition 
(or the condition is illegal), 0 if presubstitution was previously disabled for the specified condition, 
and 1 if it was previously enabled. In the latter case, aubVal is set to point to a double precision 
floating point number which was the previous value being presubstituted when flag was raised. Ir 
presubstitution is being disabled, ■ubVal can not be changed (since the pointer is NULL), so the 
the previously presubstituted value cannot be determined. However, the currently presubstituted 
value may be determined prior to disabling presubstitution by making two calls to FPPresubstl
tute(). 

Trapping has a higher priority than presubstitution. If trapping is enabled on an exception, 
than that trap is taken regardless of whether or not the condition resulting in the exception has 
had a presubstitution value specified for it. 

3.2.5. Exception Trapping 

In order ror a program to catch its own exceptions, the call FPTrap(flag, newVector, 
oldVector) may be used. When FPTrapQ is called, future events which would raise flag 
instead call the function pointed to by newVector. The specified trap handler may not return. 

The intention or the trap handler is that it "cleanly" handles fatal errors, and then either 
calls ezit() or jumps to a known location within the application's code. 

FPTrap() returns -1 if the specified flag is not supported or is illegal, 0 if traps on flag 
were previously disabled, and 1 if they were enabled. In this last case, the pointer oldVector is 
set to point to the previous trap handler on return from FPTrap(). Ir newVector is NULL, 
then trapping on flag is disabled. 

Trapping on an exception takes priority over presubstitution on a condition which is associ
ated with that exception. 

4. Implementation Detail■ 

This package is currently implemented for two processors, the VAX running 4.3 BSD UNIX 
and Sun-3 equipped with a 68881 running SuoOS release 3.2 (a 4.2 BSD UNIX derivative). This 
section briefly details the method of implementation on each, and the constraints inherent in the 
two architectures. 

4.1. VAX 

The VAX does not support IEEE Standard floating-point arithmetic, so implementation of 
this package and an IEEE style environment required using features of the VAX architecture in 
ways other than that for which they were intended. 
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While the VAX does not have any floating-point flags, it does have three exceptions, 
underflow, overflow, and division by zero, which aUow the corresponding IEEE flags and excep
tions to be simulated. The VAX also does not support infinities or NaNs in the Standard sense, 
although it does have the feature that certain bit strings, when interpreted as floating-point 
numbers are illegal operands, and their access causes an illegal operand exception. Thus, through 
use or these illegal operands and their corresponding exception, NaNs, infinities, and infinity 
arithmetic can be simulated in software via an illegal operand exception handler. Table 1 and 
Table 2 illustrate the relationship between VAX and IEEE exceptions. 

VAX Exception VAX/UNIX Default Enhanced Environment VAX Default 

Division by Zero Abort Program Produce Appropriate NaN or Infinity 
Overflow Abort Program Produce Infinity 

Underftow Ignored (Flush to Zero) Flush to Zero 
Illegal Operand Abort Program Produce Appropriate NaN, Infinity or 0 

Table 1. Comparison of Default Handllng of VAX Arithmetic Exception■ 

IEEE Exception VAX/UNIX Default Enhanced Environment VAX Default 

Division By Zero Abort Program Produce Infinity 
Overftow Abort Program Produce Infinity 

Underflow Ignore (Flush to Zero) Flush to Zero 
Invalid Abort Program Produce NaN 
Inexact Ignore Ignore (Except on Overflow and Underflow) 

Table z. Comparleon of Default Handllng of IEEE Arithmetic Exceptions 
Using these exceptions, the VAX can be extended to nearly approximate a true IEEE 

environment; however, several IEEE features can not be emulated. In particular, the VAX 
representation or floating-point numbers differs Crom that specified in the Standard. These 
differences are summarized in Table 3. 

Format Exponent Fraction 

VAX Single 8 23 
IEEE Single 8 23 
VAX. Double 8 55 
IEEE Double 11 52 

Table 3. Differences In Floating Point Types 
The VAX does not provide any control over rounding, so the rounding mode set with 
FPRound() only applies to numbers which underflow or overflow. The VAX also automatically 
disables underflow each time a new function or procedure is called (the state or underflow detec
tion is restored on each return). Since current compilers do not propagate the underflow detection 
state, a function call is required to explicitly enable underflow detection in each procedure in 
which underflow may occur. This call, FPEnableUnderflow(), takes no parameters and returns 
no value. It is also supported, as a null (unction, in other implementations to ease the porting or 
applications. 

Using the techniques employed in the implementation or this package, the VAX environ
ment can be greatly extended from its default. Use or these extensions does not come without 
costs, however. While the execution time or conventional arithmetic is unaffected by these 
enhancements, the time required to perform operations on infinities and NaNs is dramatically 
greater. This is due to the fact that every illegal operand exception results in the operation being 
attempted having to be simulated in software. Thus, the assignment "x = Infinity" takes 800 
times longer than does "x = 1.0". About 40% or this extra time is spent interpreting and simu
lating the desired operation, and 60% or it in the UNIX kernel processing the exception and return 

May 12, 1987 



-8-

from it. 

4.2. Sun-3 
The Sun implementation is much simpler and more efficient than the VAX. one, owing to the 

Motorola 68881 coprocessor supporting the IEEE floating-point standard. 

There is only one difficulty in implementing this package in its entirety on the 68881. The 
68881 architecture requires that the result and one operand of each arithmetic operation be the 
same 68881 register. One operand may also be anywhere in memory, addressed using the native 
68020 addressing modes. The 68881 does not signal arithmetic exceptions to the 68020 until the 
first post-exception 68881 access. Thus, it is possible that an in memory operand may have been 
overwritten before an exception is acknowledged. In the event of underflow or overflow, the only 
way to reliably retrieve one of the operands is from an internal, privileged register (since the 
68881 source/destination register is overwritten by the default result). Unfortunately, the current 
operating system does not allow access to this register, so the exponent wrapping mode for 
extended range arithmetic is not supported. 

S. Examples 

Three examples of the use of this environment are provided. The first gives a solution to 
the problem of evaluating a continued fraction and its derivative. This evaluation may produce 
an intermediate zero denominator, which in turn produces an infinity. Both infinity arithmetic 
and presubstitution are employed to determine a solution. • 

The second and third examples demonstrate the use of the exponent wrapping mode (or 
extended range arithmetic. The first or these provides a solution to an angular momentum prob
lem in which intermediate results have too great a magnitude to be represented in the normal 
VAX. or IEEE single or double formats. This problem was used by Matsui and Iri to demonstrate 
the utility of their floating-point format. However, using underftow /overflow counting a more 
accurate result can be achieved on a VAX using the normal double precision format than was 
obtained ·by them. 

The final example, that of computing binomial probability, was considered by both 
Matsui/Iri and Clenshaw /Olver. As with the angular momentum problem, it is best solved using 
the exponent wrapping mode. 

5.1. Continued Fraction (Jacobi Form) 

Consider a generalized continued fraction oC the form 

There is an iterative solution for / ( z) and /' (:: ), namely 

( =a11 ; 

r' =O; 
tor m=n-1 downto Odo begin 

b 
r' =-(1+ r' ) m • 

(x + f )2 
' 

end. 
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Isolating common factors gives 

r =au; 

C' =0; 
for m=n-1 downto Odo begin 

d=x+ r; 

end. 

bm 
q=T; 

C' =-(1+ f' ) ; ; 

r =am+q; 

- 9 -

In evaluating the continued fraction, a problem arises if some d =0. Computation of /,,,, 
would not be affected if the underlying numeric environment supported the generation and propa
gation of infinities, since, on the iteration when d became 0, q=oo, thus /=a,,,,+ q=00. On the 
next iteration of the loop, d will be infinity, so q will be O and the infinity removed from the com
putation. If infinities are not supported, an algorithm coded as that above will often abort even 
when a legal, finite answer exists due to the potential for intermediate exception. 

The derivative is more difficult to evaluate when d =0. On the iteration when d vanishes, 

/' will be infinite, as is /, leading to the invalid assignment / 1 =-(1+ oo)~ on the following 
00 

iteration. In this case, the value which should be assigned to /' is 6m ( 1 + /' )/ 6m+ 1. There is an 
additional hazard in evaluating the derivative. If I+ /' is 0 concurrently with d, there will be a 
different invalid assignment: /' =-0 X 00 /0. As with the previous case, the desired value here is 
6m(l+ / 1 )/6m+l• 

Fortunately, this problem is not without solution. Using presubstitution, the desired value 
for an exceptional right hand side or the assignment to /' can be specified in advance, so in the 
event that an exception does occur the appropriate value will be automatically used. By s~bsti
tuting 00 tor either 00/00 or 0/0 and performing the division (1+ / 1 )/ d prior to the multiplica
tion, the invalid computation of / 1 will always be revealed as a OX 00. Thus substituting 
b,,,,_1(1+ / 1 )/6,,,, for 0X00 at the end of each iteration or the for will result in the proper compu
tation being performed on the next iteration. This is illustrated in the rollowing algorithm: 

presubstitute 00 for 00/00;presubstitute 00 for 0/0;f =a0 ; 

r' =0; 
for m =n-l downto O do begin 

d=x+ f, 

end. 

d' =1+ f' 
bm 

q=y, 

f' _ =-(q /d )d' 

f =aui+q, 

d' 
presubstitute bm-l b for OX oo; 

m 

A program implementing this algorithm is given in Listing 1. Consult Professor Kahan for its 
proof. 
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/• compute r and C' using infinity arithmetic and presubstitution • / 
void compute(a, b, x, n, r, fprime) 
double a[), bl), /• coefficients * / 

x; 
int n; / • number or coefficients • / 

/* results •/ double •r, •fprime; 
{ 

double rune, 
deriv, 
d, dprime, q, 
to_sub; 

int j; 

/• value or rat this iteration•/ 
/• value or derivative at this iteration •/ 

/ • common denominator factors * / 
/• value which will be presubstituted •/ 

to_sub = Infinity; FPPresubstitute(FPPRE_ZERODIV, &to_sub); 
to_sub = Infinity; FPPresubstitute(FPPRE_INFDIV, &to_sub); 

deriv = 0.0; 
rune= a[nJ; 

for (j = n-1; j >= 0; j-) { 
d = X + rune; 

} 

dprime = 1.0 + deriv; 
q == b(j+ 1) / d; 
/• presubstitution may occur here •/ 
deriv =· -(dprime/d); deriv •= q; 
rune = a(j) + q; 
to_sub = b(j) • dprime / b(j+ l); 
FPPresu bstitute(FPPRE_INVMUL T, &to_sub ); 

/* store results •/ 
•r = rune; 
•fprime = deriv; 

Listing 1. Solution to Continued Fraction Using Presubstitution and lnftnit7 arithmetic 

There is an additional solution to the problem of evaluating a continued fraction and its 
derivative which does not depend on the underlying arithmetic environment supporting either 
infinities or presubstitution. This solution, also due to Professor Kahan, avoids division by zero 
by adding a small perturbation, E, to the divisor d. This E should have the property that it 
z + I 111 + 1~0, then z+ f m+i+ E=z+ / 111+ 1; that is, E is smaller than any roundoff in the addition 
oC z and / 111 +1· Ir z+ / m+ 1=0, then d will equal E, and q will be approximately 1/E. Thus, 1/E 
will function similarly to an infinity. Since the expression q / d appears in the evaluation or /' , E 

must be large enough so that 1/E2 is representable. A program to evaluate a continued fraction 
using the E method is given in Liating2. 
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/• The following function iteratively computes rand r• avoiding exceptions • / 
void compute(a, b, x, n, r, (prime) 
double a(), b(I, /• coefficients •/ 

x; 
int n; /* nQmber or coefficients •/ 

/• results •/ double •r, •Cprime; 
{ 

l 

double rune, 
deriv, 
d, q, 

/• value or r at this iteration •/ 
/• value of derivative at this iteration * / 

/* common factors•/ 
epsilon= 1.0e-15; /• to prevent O divisors •/ 

int j; 

deriv = 0.0; 
rune= a(nJ; 

ror (j = n-1; j >= O; j-) { 

} 

/• epsilon has to be added separately so it isn't swamped •/ 
d = X + rune; d + = epsilon; 
q = b(j+ 1) / d; 
deriv = -(1 + deriv)•q/d; 
rune = a(jJ + · q; 

/• store results • / 
•r = rune; 
•(prime = deriv; 

Listing 2. Solution to Continued Fraction Using f to Avoid Exceptions 

The solution using E is not as nice as that involving presubstitution, since its validity 
depends on the chosen coefficients. For certain coefficients, it may be necessary to recalculate 
epsilon each iteration of the loop. Furthermore, the appropriate value for f will vary between 
m:,.chines since it depends on the accuracy or arithmetic and the range of numbers. For some 
coefficients and floating-point implementations, there may be no satisfactory value of e unless pre
cision is sacrificed. 

Table 4 compares the running time of the two programs, on both the VAX and Sun, on the 
following fraction: 

/(z)=4-----3-1 ---
(z-2)-------

(z-7)+ 10 
2 

(z-2)--z_-
3 

Method and Computation 
Proiuam Input 

Enhanced Environment Exceptional 
Unexceptional 

Epsilon Method Exceptional 
Unexceptional 

User 

18.7 
7.9 
2.3 
2.3 

VAX-11/750 Sun-3 
Svstem Total User System 

13.4 32.1 0.8 0.3 
5.1 13.0 0.5 0.1 
0.4 2.7 0.5 0.1 
0.2 2.5 0.5 0.1 

Table 4. Running Time of Continued Fraction Solution• 
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The programs were run with ;: values o( 0,1,2,3,4, and 5. The zero divisor problem is exhi
bited on inputs z=l,2,3, and 4. 

where 

~(abc}==y'(a+ 6-c)!(a-6+ c)!(-a+ b+ c)!, 
. (a+ 6+ c+ l)! 

. {it i2 ia}==E (-1)1 (z+ 1)! 
w li l2 la I F(z ,ii,i2,is,l1,l2,ls)' 

and F(z,ji,j21j 3,l1,l21la}=(z-it-iria)!(z-ii-lrls)!(z-l1-irla)!(z-l 1-lri,}!(ii+ i,2+ l1+ lrz }! 
X(j2+ ia+ 12+ ls-z)!(is+ j 1+ la+ 11-z)!. According to Matsui and Iri, the "'j.s and l.s are nonne
gative hall integen such that the three arguments appearing in one and the same ~( abc) may 
satisfy the triangular inequality, and the summation E is taken tor all integers such that the 

I 

arguments or factorials may be nonnegative."' 

The problem in evaluating the 6-j symbols is the huge intermediate results generated by the 
products of factorials. For j and I values. greater than 8, intermediate results become too large to 
store in the VAX or IEEE double format. Final results, however, are or the order or to-3 and 
Ur-', easily representable. 

A program to evaluate the symbols ror all values or j and I using the enhancements 
described in this paper is given in Section e.1. This program takes advantage or the exponent 
wrapping mode to keep track or the cumulative exponent underftow / overftow. Hence, expressions 
with intermediate results out or the normal exponent range may be evaluated without loss or pre
cision (beyond that due to normal rounding). 

In order to implement arithmetic with potentially out of range exponents, two pieces or 
information must be maintained (or each real number: the fractional part and the 
underflow /over8ow count. In order to maintain this information, a new type is introduced, called 
wayout in the listing. 

As arithmetic: with out or range numbers requires expensive function calls in place or what is 
normally straightforward expression evaluation with inline multiplication, it signiftcantly slows 
down the rate at which calculation is done. No gain is had if the numbers involved are in tact 
wholly representable in the double format. Accordingly, extended arithmetic should be accommo
dated only if it is absolutely needed to compute results otherwise incalculable. 

Using the program given in Section e.1 to evaluate the 6-j symbols revealed a rather large 
discrepancy between results obtained using the VAX double format and those claimed by Matsui 
and Iri using their scheme. In order to determine which set or results was in fact correct, the 
algorithm was run under V AXIMA, an· implementation of MIT's MACSYMA (or the VAX. The 
symbols evaluated at the values selected by Matsui and Iri are revealed by V AXIMA to be 
rational numbers. V AXIMA postpones converting real expressions, such as Jri., to finite precision. 
real numbers until explicitly requested to do so. As it turns out, all square roots in the 6-j symbols 
cancel. The following are the true values or the 6-j symbols: • 
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{
10 10 10} 
10 10 10 

{
20 20 20} 
20 20 20 

481673 
165002460 

33188637458619 
6598917336119836 

{
30 30 30} 36082186869033479581 
30 30 30 = 87954851694828981714124 

- 13 -

{
40 40 40} 15532984259505189067801665773 
40 40 40 8495829465052598504989585496460 

{
5050 50} 654336373212807556721454203468255683 
50 50 50 =- 583512578555569910271819677105299348360 

{
60 60 60} 
60 60 60 

689702489298339102537670065690020673546392459151 
685156255050893201410177587912464646581542678203700 

Table 5 compares the results obtained using underflow/overflow counting to those obtained 
by Matsui and Iri. 

z VAXIMA VAX Double Format Matsui And lri 

10 -2.G 19188'180609210E-(] 3-2.919188780609209E-O 1-2.919188780809217E-( 
20 -5.0H4084S888'19S'TE-(] 3-s.02u4oa,seseso11E-rn -5.0H4064568885tfE-0 
30 4.102353216'141346E-O 4 4.1023532157 4320 lE-0~ 4.1023&3215969980E-0• l 

40 1.8283089'13839313E-0 3 1.s2saoe91a842854E-m l.828306972165H76E-m 

50 -1.1213'14923828420E-O 4-1.121374G27247416E-04 -1.12137431660991<.E-04 
60 -1.00883S324738411E-<l 3 -1.00883S318034354E-03 -1.0086362563069.etE-03 

Table &. Results Obtained In Evaluation of 8-J Symbols 
Figures shown in bold are accurate decimal digits. The italicized figures in the Matsui an Iri 
results are those which they claimed to be the only inaccurate figures. Table 8 summarizes the 
decimal accuracy obtained using the -various methods. 

Value VAXIMA VAX Double Precision Matsui And Iri (claimed) 

10 infinite 14 15 (14) 

20 infinite 12 12 (13) 

30 infinite 12 10 (13) 

40 infinite 11 9 (13) 

50 infinite 9 7 (12) 

60 infinite 8 6 (12) 

Table 6. Decimal Precision In Evaluating 8-J Symbols 

A digit is considered correct if the result would be correct to that digit if rounded to it. 
Noteworthy are the facts that Matsui and Iri were overly optimistic in their error analysis, and 
that the VAX double format delivers a more accurate result for inputs greater than 10. 

6.3. Binomial Probablllty Distribution 

The problem o( computing the cumulative binomial probability distribution is considered by 
both Matsui/lri and Clenshaw /Olver. The equation for this distribution is 

/(n ,m,p )= E 1~1pJ( 1-p )"-J, 
1=> J 
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where 0:5p :51 and the integers n ~ m ~O. 

The above equation is equivalent to the following: 

q=l-p, 

, =In lp"'q"-"' 11,m m , 

"' J(n,m,p )= E t 11 ,1• 
J=(J 

The t 'scan be computed iteratively using 

mq 
tn,m-1= (n-m-l)p t,.,m. 

Ir tn,m-l < ln,m, then an optimal approach to this problem would be to sum term, from the largest 
t to the smallest, as smaller t 's may be so small that when added to the cumulative sum or previ
ous t 's they may have no aJJect on the sum. Thus, the Et need only be done r or the t 's which 
will contribute to the 6nal result. 

Unfortunately, application of this strategy requires that l:J, p"', and q"-"' all be computed: 

the first of these expressions is subject to overftow, and the latter two to underftow. As with the 
6-j symbols problem, these difficulties may be overcome using exponent wrapping. A program to 
compute binomial probability distribution using the method outlined above is given in Section 
6.2. Table 7 contains an overview or the performance of this program. 

result 
Execution Time n m p 

user system total 

2000 200 0.1 0.5188204006 0.06 0.05 0.11 
30000 3000 0.1 0.5048623033 0.8 0.7 1.5 

Table 7. Performance of Binomial Probablllty Distribution Solution 

6. Listings 

6.1. Functions to Evaluate 8-J Symbols 
#Include "fp.h • 

#define MAXF ACT 300 / • number of factorials to pre-compute • / 

/ • structure for holding not normally representable floating-point numbers • / 
typedef struct { double real; Int exp1 } wayout; 

wayout fact(MAXFACT+l)J /• the pre-computed factorials•/ 

void compute_factorlala() 
{ 

register Int I; 

FPEnableUnderftow(); 

tact(0].real = 1.0; 
tor (1=1; l<=MAXFACT; I++) { 

tact~).real = tact[l-1).real • I; 
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fact[l].exp = fact~-1].exp + FPWrapCount(O); 
} 

} 

void delta( a,b,c,result) 
Int a,b,c; 
way out • result; 
{ 

} 

wayout numerator,denomlnator; 

FPEnableUnderftow(); 
numerator.real = fact[a+b-c].real•fact[a-b+c].real•fact[-a+b+c].real; 
numerator.exp = tact[a+b-c).exp+tact[a-b+c).exp+ fact(-a+b+c).exp+FPWrapCount(O); 
denominator.real== fact(a+b+c+l).real; 
denominator.exp= fact(a+b+c+l).exp; 

result->real =numerator.real/ denominator.real; 
result->exp = numerator.exp - denominator.exp + FPWrapCount(O); 

reault->real = FPSqrt(result-> real, result-> exp); 
result->exp = FPWrapCount(O); 

void F(zJ1J2J3,ll,12,13,result) 
Int z, Jl, J2, J3, 11, 12, 13; 
wayout •result; 
{ 

} 

FPEnableUnderflow(); 
result->real = fact(z-J1-J2-J3].real • f~t[z-Jl-12-13).real • 

fact(z-11-J2-13).real • fact(z-11-12-J3].real • 
factUl+J2+11+12 .. z).real • factU2+J3+12+13-z].real • 
fact03+Jl+I3+11-z].real; 

result->exp = fact(z-Jl-J2-J3].exp + fact(z-Jl-12-13).exp + 
tact[z-11-J2-13].exp + fact[z-ll-12-J3].exp + 
factUl+J2+11+12-z].exp + factU2+J3+12+13-z].exp + 
factU3+Jl+I3+11-z).exp + FPWrapCount(O); 

Int max3(a,b,c) 
Int a, b, c; 

/ • return maximum of 3 arga • / 

{ 

} 

a= a> b Ta: b; 
return(a>c r a , c); 

lnt mln4(a,b,c,d) /• return minimum of 4 args •/ 
lnt a, b, c, d1 
{ 

. } 

a= a<b Ta: b; 
C = c<d r C: d; 
return(a<c T a : c); 
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void w(J1J2J3,11,12,13,result) 
lnt J 1, J2, J3, 11, 12, 13; 
wayout • result; 
{ 

} 

Int z, zmln, zmax; 
wayout numerator, denominator, sum, temp; 

FPEnableUnderftow(); 
sum.real= 0.0; 
sum.exp= O; 

zmln = -mln4(-J1-J2-J3,-J1-12-13,-11-J2-13,-11-12-J3); 
zmax = max3(Jl+J2+11+12J2+J3+12+13J3+J1+13+11); 

tor (z=zmln; z<==zmax; z++) { 

} 

numerator.real = tact[z+1).real1 
numerator.exp = fact[z+l).exp; 
It (z%2) numerator.real = -numerator.real; 
F(zJ1J2J3,11,12,13,&denomlnator)J 
(void) FPWrapCount(O); 
temp.real= numerator.real/ denominator.real; 
temp.exp = numerator.exp - denominator.exp + FPWrapCount(O); 
sum.real = FPAdd(aum.real, sum.exp, temp.real, temp.exp); 
sum.exp = FPWrapCount(O); 

result-> real = ■um.real; 
result->exp = ■um.exp; 

double racah(J1J2J3,ll,12,13) 
Int J1J2J3,ll,12,13; 
{ 

wayout tempt, temp2, temp3, temp4, temp&; 
wayout result; 

FPEnableUnderftow(); 
delta01J2J3,&templ); 
deltaO 1,12,13,&temp2); 
delta(l1J2,13,&temp3); 
delta(ll ,12J3,&temp4 ); 
w(Jl, J2, J3, 11, 12, 13, &temp5); 

result.real== tempi.real • temp2.real • temp3.real • temp4.real • temps.real; 
result.exp= tempi.exp+ temp:Z.exp + temp3.exp + temp4.exp + tempS.exp + FPWrapCount(O); 

return(FPReaolve( reault.real,reault.exp) ); 
} 

6.2. Function• to Evaluate Binomial Probablllty Dlatrlbutlon 
/• epow(e, k) computes e·k taking Into account poeelble exponent wrapping•/ 
double epow(e, k) 
double e; 
Int k; 
{ 

register double result; / • running value ot result • / 
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register Int pow2=1, /• greatest power or two<= k •/ . 
J=l, /• power currently computed•/ 
orig_ wrap, / • tor preserving entry exponent wrap • / 
wrap=O; /• wrap In exponent ot result•/ 

It (k <= 0) return(l.O); / • nothing to compute • / 

FPEnableUnderftow(); / • tor VAX • / 
orlg_wrap = FPWrapCount(O); /• preserve and add on exit•/ 

/ • ftnd greatest power ot two Iese than or equal to k • / 
whUe (k-pow2>=pow2) pow:+= pow:; 

/• compute e·t baaed on the tact that e .. k = e .. pow2 • e .. (k-pow2) •/ 
result = eJ / • starting point • / 
k •= pow2J / • adjusted power ot k • / 
while (pow2>J) { 

} 

/ • compute 1quare • / 
result•= result; wrap+= wrap; 
J += J; /• power computed • / 
k+=k; 
It (k>=pow2) { k •= pow2; result•= e;} 
wrap += FPWrapCount(O); 

FPWrapCount(wrap + orlg_wrap); /• wrap In result+ wrap on entry•/ 
return(reault ); 

/• compute I(n, m, p) • / 
double blnomlalZ(n, m, p, q) 
tnt n, m; 
double p, q; 
{ 

double p_to_the_m, 
q_to_the_mn, 
m_tactorlal, 
t, 
., 
z, 
c, old_c; 

Int mn, 
J; 

FPEnableUnderftow()J 

/• p·m •/ 
/• q .. mn •/ 
/• m! •/ 

/• t(n,m) •/ 
/ • aum of t '• (Incorporating roundoff' • / 
/• aum of t'a •/ 
/ • roundoff • / 
/• mln(m, m-n) •/ 
/ • loop counter • / 

/ • take advantage of the fact that nCm = nCn-m to do minimum comp. • / 
mn = n-m; It (m< mn) mn=m; 

/• compute m! •/ 
tor(m_factorlal=l.O, J=l; J<=mn; J++) m_factorlal •= J; 
/ • negate the wrap count since thla will appear In the denominator • / 
FPWrapCount(-FPWrapCount(O)}; 
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} 

p_to_the_m = epow(p, m); 
q_to_the_mn = epow(q, n-m); 

/• compute mn! •/ 

- 18 -

tor (t=l.O, J=l; J<=mn; J++) t •= n+l-J; 

t / = m.._tactorlal; 
t •= q_to_the_mn; 
t •= p_to_the_m; 

t = FPResolve(t, FPWrapCount(O)); 

/ • t now equal.a the maximum t • / 

/ • loop untll addition of more term• no longer afl'ects sum • / 
for (z = O.O, c = 0.0, • = t; s>z; m-} { 

} 

z= Ill 
/• compute t(n,m) fl'om t(n,m-1) •/ 
t •= m•q/((n-m+l)•p); 
/ • set s to sum of all terms plus previous roundoff' • / 
11 = t+c; s += z; 
/ • compute roundoff' • / 
old_c = c; c = z-11; c += t; c+= old_c; 

return(z); 

/ • compute binomial probablllt;y ao that t will decrease with m • / 
double blnomlal(n, m, p) 
Int n, m; 
double p; 
{ 

If (m<=(n+l}•p) return(blnomlal2(n, m, p, 1.0-p)); 
else return(1.0-blnondal2(n, n-m-1, 1.0-p, p)); 

} 
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