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ABSTRACT 

This paper describes work in progress. In particular, the current synttlJC of the 
function calls occu.rred more as a side-affect of testing the feasibility of implementing this 
package and the examples which run under it than as a deliberate effort to define a syn
tactically and semantically clean way of accessing the environment. Any comments you 
may have on these routines or the contents of this paper would be appreciated. I may be 
contacted as david@lll-lcc.arpa ({ucbvax!lll-crg, seismo}!lll-lcc!david). VtlJC and 
Sun/68881 source code for the routines and examples described herein are also avail
able, as well as a test suite to verify the integrity of an implementation. 

This paper describes a set of functions which establish a robust environment for 
floating-point arithmetic, easing implementation of a great number of problem numerical 
algorithms and increasing their portability between machines and architectures. Facilities 
are provided for exploiting underlying arithmetic conforming to or approximating that 
defined in the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 
754-198S). Extensions to Standard requirements allow for efficient exception handling in 
systems with imprecise interrupts, such as vector and concurrent processors; and for arbi
trmy magnitude arithmetic without abnormal loss of precision. 

These routines are intended to be implementable on, and take maximum advantage 
of, both Standard conforming and non-conforming architectures. Using the functions 
described herein, programs can determine what floating-point features are available and 
access them in a uniform manner. Thus, their use eases the design of portable, numeri
cally sensitive applications. No compiler support is assumed or required. 

The package described herein is currently implemented under the UNJXt operating 
system on the Digital Equipment Corporation VAX, and Sun-3 (with 68881) processors. 
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1. Introduction 
The functions described in this paper are designed to take advantage of arid allow access to featureS 

of the IEEE Standard/or Binary Floating-Point Arithmetic (such as lags, modes, and traps). Several use
ful extensions to the Standard are also provided. These routines provide a portable bridge between applica-

• tions software and the underlying floating-point hardware. In addition to allowing access to Standard 
confirming arithmetic, these functions provide a basis for future hardware Boating-point implementations, 
and are often retrofitable to older, non-confinning architectures. 

2. Extensions to the Standard 
Two extensions to the IEEE Standard are provided: presubstitution and exponent wrapping. 

2.1. Presubstitution 
Presubstitution is the ability to specify a value to be used as the result of a specific exceptional opera

tion. The value must be specified in advance of its potential use. There are nine exceptional operations for 
which a result may be presubstituted: the five IEEE exceptions (underflow, overflow, inexact, division by 
zero, and invalid), with the invalid exception further subdivided into 0/0, 00/00, 00-00, OXoo, and other invalid 
operations (such as domain errors). 

One example of the use of presubstitution is to handle limiting conditions. Prior to computing 
z 2/(x2+7), the value 1 may be presubstituted for 00/00. If x 2 overflows, the correct value will be returned (as 
addition of 7 will have no effect on an x2 large enough to overflow), or the proper limit will be returned if 
x is in fact infinity. "Presubstitution" was coined by Professor W. Kahan and is discussed in detail in his 
paper Presubstitution. and Continued Fractions. 

Functionally, presubstitution is similar to the IEEE notion of a trap handler. The Standard describes a 
trap handler as being able to determine the type of exception which caused its invocation, as well as the 
exceptional operands involved. A trap handler should be able to return a value to be used in lieu of the 
default result. Despite their similarity, presubstitution offers several advantages over post-exception trap 
handling. 

In systems with imprecise interrupts, such as vector and other concurrent architectures, it may not 
always be possible to determine exacdy where an exception occurred. Thus, execution cannot be resumed 
(without potential side affects) after an exception causes a trap handler to be invoked. In a highly pipelined 
architecture, speed must be sacrificed in order to allow an exception handler to extract the amount of infor
mation it needs, and to resume where processing was previously halted. 

For example, consider an architecture in which a floating-point coprocessor is utilized. If floating
point operands are allowed to be external to the coprocessor and exceptio'- are not signaled until the main 
processor attempts its first post-exception floating-point operation (as with the Motorolla 68020/68881), an 
exceptional operand may be overwritten before the main processor becomes aware of the exception. Con
sider the following program segment 

for j = 1 to n do begin 
x[J1 := a[j] / b[j]; 
a[j] := c[j]; 

end. 
After the addresses of a[j], b[j] and x[j] are computed, the division will be scheduled. While the division is 
taking place, the copy of c[j] to a[j] can take place, as well as the incrementing of j. If a division exception 
is signaled. the values of a[j) and j may have changed from what they were wh~ the division was initiated. 
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Concurrency would have to be sacrificed (the division waited on) in order to make all variables available to 
an IEEE trap handler. • 

Also, consider the problems of a vector arclµtecture in which many ide~tical operations are being 
performed concurrently. Since any elem~t pair may be responsible for an exception, the exceptional 
operation must be repeated on each of the vector elements individually, at great expense, to determine 
which operands were actually responsible for the exception. 

Finally, in a highly pipelined architecture, several instructions may be executing simultaneously, and 
they will not necessarily complete in the order scheduled. The program counter in such as system will refer 
to the next instruction to be prefetched, rather than to any particular instruction in the execution queue. 
When an exception occurs, instruction execution can not be resumed at the point of die exception even if it 
is known (that is, every instruction in die pipeline is tagged with its address). Resuming execution at the 
exception point would be impossible as side eff~ts of instructions occuning after the exceptional one, but 
completed before it, cannot always be undone. 

Presubstitution solves all these problems as it eliminates the need for an exception to be signaled. In 
a hardware implementation of presubstitution, the presubstituted value could be stored in a register and 
accessed by the floating-point hardware just as would be a NaN or other default constant. For example, 
bits in a control register may be the index of an internal register value to be used as the result of a specific 
exceptional operation. As a default this index would refer to the IEEE default value, but when presubstitu
tion is specified the prescribed value would be loaded into a register and the index changed to refer to iL 
At the time of the exception the hardware would react identically whether presubstitution is taking place or 
not 

Presubstitution also offers syntactic advantages over trap handling performed for the same ends. 
Unless the value to be presubstituted is a constant, the trap handler must be made aware of that value, most 
likely through setting of a global variable. In addition to having the same overhead as presubstitution in 
current software implementations (which actually perform post-exception substitution), this obscures the 
true objective of the computation. 

Additionally, it may appear as if a trap handler could actually compute the value to be substituted in 
lieu of the result itself, saving the expense of unnecessarily computing this value when it is not needed. 
This results in a syntactic mess, however. In addition to needing a different trap handler for every computa
tion, the exception handler must have access to all relevant variables from the routine which produced the 
exception. If these values are copied to global variables, little, if any, time will be saved over actually per
forming the computation (provided the computation only involves addition, subtraction, multiplication, and 
division). If the values are global variables, it will not be necessary to copy them; however, recursion will 
have been precluded. 

Many of the syntactic disadvantages of trap handling to substitute valid results for invalid ones can 
be overcome by avoiding exceptions altogether via "if" tests. If the division alb could potentially produce 
an undesired exception, (such as division by O or oo/oo) the test "if b is finite and non-zero ... " could be 
inserted before the division. If the test fails, then an appropriate value would be computed. Unfortunately, 
if this test appears within a loop while presubstitution to the same ends may be performed outside of the 
loop, the "if' precludes that loop from taking advantage of a vector architecture. Furthermore, if the value 
to be presubstituted does not vary between iterations of the loop, the "if' ~t will be repeated many times, 
while a value to be presubstiruted need only be computed once. If the presubstitution must occur within the 
loop, then the "if' test may be more efficient than presubstitution. This is ·considered in more detail in Pro
fessor Kahan' s paper on this subject. 

2.2. Arbitrary Magnitude Arithmetic 
A major problem in implementing numeric algorithms on computers is that of underflow/overftow. 

While underflow is oft neglected, overflow usually aborts computation, or delivers an infinity as the result 
of an overflowed computation. If the final result of a sequence of computations is indeed too large or small 
to represent in the chosen precision, an infinity or zero may be a satisfactory result, as numbers as large or 
small in magnitude as those which would overflow or underflow in conventional floating-point schemes are 
of little practical application. Unfortunately, an infinity or zero occurring as an intermediate result in a long 
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series of computations, whose final result is representable, will propagate through those computations, 
potentially leaving no clue as to the true magnitude of the final result. 

In traditional and IEEE floating-point arithmetic, a number F is represented as 

F=±fr', 

where/ represents a fixed width, unsigned fraction (1/rS/ <I)); e a fixed width, two's complement, 
biased exponent; and r the radix of e. Overflow occurs if e is too large to represent, and underflow if e is 
too small. 

Two schemes have recently been proposed to eliminate the problems of underflow and overflow. C. 
W. Clenshaw and W. J. Olver, in their paper Level-index Arithmetic Operations, propose to represent F in 
the following fonn: 

, 
F==±e••·, 

where e is the inverse natural log of 1, ~/ <I, and a value l corresponds to the number of exponentia
tions. As l increases, the range of representable numbers is increased, as is the distance between them. 
Error in F is then relative to the magnitude of l. 

S. Matsui and M. Iri propose an alternate representation in An Overflow/Underflow-Free Floating
Point Representation of Numbers. In their "level O" arithmetic, a floating-point number is represented in 
the conventional sense, with the exception that the widths of/ and e are variable. As many available bits 
as necessary are allotted to e, and the remaining are used to represent/. Thus, for numbers near ±1, arith
metic is highly accurate (since only one bit is devoted to the exponent and the remaining to the fraction). 
As numbers move farther from ±1, bits are shifted from f to e, and arithmetic becomes less accurate. 
Numbers which would underflow or overflow the level O representation are recursively defined as having e 

~- itself represented as a. level O number. The level of a number corresponds to the number of times e is recur
sively represented by a new floating-point number. 

Using either of these schemes greatly eases the job of a programmer implementing an algorithm 
which may underflow or overflow in conventional floating-point systems by eliminating the potential for 
underflow or overflow altogether. Unfortunately, the job of the error analyst is correspondingly increased. 
James W. Demmel points out in On E"or Analysis in Arithmetic with Varying Relative Precision that 
arithmetic involving numbers at the extremes of those representable in both schemes are highly inaccurate 
in comparison to the standard, IEEE adopted format Furthermore, the accumulated error in a result cannot 
be easily determined since that error is highly dependent on the number of bits devoted to the mantissa in 
the Matsui/Iri scheme , and the number of levels of exponentiation in the Clenshaw/Olver implementation. 

In order to simplify the error analyst's task, Demmel suggests that a hardware counter be imple
mented, akin to an IEEE flag, which keeps track of the maximum size obtained by an intennediate result. 
In Clenshaw/Olver this would be the maximum number of levels of exponentiation, and in Matsui/Iri level 
0 arithmetic the maximum number of bits devoted to the exponent. The maximum error inherent in a result 
could be detennined by examining this counter . 

. The scheme adopted in this package avoids the error analysis problem of the methods utilizing vary
ing precision. Numbers are represented in the traditional IEEE style. If specifically requested, computations 
experiencing underflow or overflow deliver as their result a number with the same fraction u the true 
result, and a modified, representable exponent. A counter is incremented on each overflow and decre
mented on each underflow. The result's exponent is adjusted so that after a sequence of computations like 
x=axbxcxd, x will be correct and as precise if intermediate underflows and/or overflows occur as if they 
do not, provided that the underflow/overflow counter is zero at the end of the multiplications. 

Traditional error analysis techniques apply to this method, as the width of the mantissa is not varied 
as is done in the Matsui and Iri scheme. The counter effectively extends the width of the exponent, by 
allowing it to "wrap around" when it becomes too large or too small (hence, this method is refelTed to 
herein as exponent wrapping). The counter used in this technique is akin to Demmel's, except that rather 
than indicating the magnitude of potential error in the fraction, it corresponds to the exact error in the 
exponent. Accuracy and the ability to perform reliable error analysis are not sacrificed in defense of 
underflow and overflow. 
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The primary disadvantage of this scheme is that programmer cognition of an algorithm being suscep
tible or sensitive to underflow and/or overflow is required. Floating-point operations must be coded to take 
into account a potentially non-zero wrap count (accumulated underflow/overflow count) being associated 
with each number. While multiplication and division are simple (wrap counts are added or subtracted, 
respectively), other operations' are more difficult and expensive. Addition and subtraction, for example, 
require scaling of their operands prior to actually canying out the arithmetic. Since scaling is affected by 
the wrap count, addition and subtraction become dependent on the number of bits devoted to the exponenl 
In order to provide machine independence, a function is included in this package which performs addition 
on numbers with wrap counts associated with them. 

Due to the added expense of dealing with this form of extended arithmetic, it should only be incor-
• porated when needed. Two examples are included later in this paper which demonstrate applications 

benefiting from this form of arithmetic. One of them runs appreciably faster than an algorithm which solves 
the same problem and is coded to avoid underflow and overflow in traditional floating-point systems. 

This scheme for handling underflow and overflow is also easily implementable in hardware. 
Underflow and overflow are usually detected when rounding a high precision, internal result to a lesser pre
cision, external one. Instead of generating an exception or substituting an infinity, zero, or denormalized 
number as the result on detection of underflow or overflow, however, the hardware could use its normal, 
unexceptional algorithm to deliver the resull The difference between the true exponent and stored one 
could be channeled to an underflow/overflow accumulator, which could also be accessed and set by appli
cations software. Due to the speed of integer arithmetic, a hardware implementation of this wrapping 
mode should have no affect on the overall speed of floating-point arithmetic. 

3. Environment Acceu 
The code comprising this package is written primarily in 'C', with some assembly language support. 

While designed to be accessed from 'C' programs, the functions described here should be easily adapted to 
other languages by appropriately translating the constants defined in the header file. No modification to the 
code comprising the environment should be necessary. 

3.1. Constants 

Finite floating-point constants are represented in the nonnal manner. Positive infinity is specified via 
the constant Infinity, and negative infinity via Nlnfinity. A quit NaN may be introduced via the constant 
NaN, and a signaling NaN via SNaN. These constants, as well as the declarations of the following func
tions, are defined in the 'C' header file "fp.h". 

3.2. Functions 
Unless otherwise specified, all functions return an integer. If a requested feature is unavailable in a 

specific implementation, or if there was an error in the parameters to a function, the value -1 is returned. 
• Otherwise, the value O is returned. A program may take advantage of the -1 return value to adjust itself at 

nm time to the features available in the environment above which it is running. 

3.2.L lnidalization and Defaults 

This package is initialized via the function call FPlnitO. FPinitO takes no parameters and returns no 
value. FPlnitO performs all system dependent initializations and establishes the IEEE Standard default 
environment. 

The current environment may be reset to the default at any point by calling FPDefaultEnvO, which 
is also void and with no parameters. 

3.2.2. Flags 
Flags are interrogated and set via the function FPFlag(flag, newVal). FPFlagO returns an integer: 

zero if the prescribed flag is not set, and an undefined but positive, non-zero value if the flag is set (-1 is 
returned if the specified flag was illegal or if it is not supported in the underlying environment). The 
parameter flag selects the flag being operated on, and is one of the constants FPFLAG _INV (for the 
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invalid operation flag), FPFLAG_OVF (for the overflow flag), FPFLAG_DVZ (for the division by zero 
flag), FPFLAG_UNF (for the underflow flag), or FPFLAG_INX (for the inexact flag). A new value for 
the flag is specified in the newVal field. If newVal is 0, the flag is cleared, and if it is non-zero the flag is 
set. The current value of the flag can be preserved (newVal ignored) ifFPFLAG_HOLD is OR'ed into the 
ftag field. 

A pseudo-flag is provided for saving and restoring all the flags. This flag is FPFLAG _ALL. If it is 
specified in the Bag field, a value is returned which can be later used in the newVal field, in conjunction 
with FPFLAG ALL, in order to set all the flags to their state at the time of the first call. The meaning of 
the value returiied by FPFlagO when FPFLAG_ALL is specified can not be interpreted by a program 
unless it is 0, in which case it indicates that no flags are set. 

3.2.3. Rounding Modes 
Rounding modes are set and interrogated by the function FPRound(newMode). The new mode is 

specified by newMode, and either the previous mode or -1 (in the event of an error or unsupported request) 
is returned. Valid modes are FPROUND _ NEAR (the default of round to nearest), FPROUND _POSINF 
(round~ positive infinity), FPROUND_NEGINF (round to negative infinity), and FPROUND_ZERO 
(round to zero). 

An additional mask, FPROUND _ WRAP, may be OR'ed in with any of the other modes. This mask 
invokes the exponent wrapping mode. When it is specified, operations which underflow and overflow will 
produce a result with an exact fraction and legal exponent. The number of underflows and overflows are 
tabulated in a value which may be requested by calling the function FPWrapCount(newCount). The 
parameter newCount specifies a value to which future exponent underflow and overflow corrections are 
subtracted and added, and is usually zero. 

Since many computations involving extended (wrapped) arithmetic depend on the exponent width, 
three routines are provided to allow programs utilizing this feature to retain ponability. In order to resolve 
a potential wrap usociated with a number, the call FPResolve(number, wrap) is provided. The parameter 
number is a floating-point number, and wrap is the wrap count usociated with it. FPResolveO returns a 
floating-point number equivalent to that represented by the pair number and wrap. If the quantity is too 
large or small to represent, an appropriately signed infinity or 0, respectively, is returned. This routine is 
useful when implementing functions which wish to hide the fact that they are using the 
FPROUND _ WRAP mode from their caller. 

The other extended arithmetic support routines provided add two potentially wrapped ftoating-point 
numbers, and take the square root of one. The call FPAdd(a, aWrap, b, bWrap) returns a floating-point 
number conesponding to "a+ b", taking into account the wrap experienced by each, represented via the 
integers aWrap and bWrap. Any wrap in the result returned by FPAdd0 is incorporated into the count 
obtainable by the call FPWrapCountO. FPSqrt(a, aWrap) likewise returns the square root of the number 
referred to by a (a floating-point number) and its wrap, a Wrap. Underflow and overflow are also tabulated 
into the value returned by FPWrapCount0. 

Consult the accompanying examples for more infonnation on die use of this mode. 

3.2.4. Presubstitution 

Presubstitution is the ability to specify a value to be used as the result of an exceptional operation. 
The presubstituted value must be (u the name suggests) specified before an exception occurs. The format 
of the call is FPPresubstltute(condition, sub Val). After a call to FPPresubstituteO, the double precision 
number pointed to by sub Val is used as the result of any operation which corresponds to condition, which 
is one of FPPRE INFDIV for 00/00, FPPRE ZERODIV for 0/0, FPPRE INVMULT for 0><00, 

FPPRE_INFSUB for 00-00, and FPPRE_ OTHERINV for any other invalid exception, such as a domain 
eaor. For exceptional computations which would raise a flag other then the invalid one, results may be 
presubstituted using FPPRE_INX, FPPRE_OVF, FPPRE_UNF, or FPPRE_DVZ for the inexact, 

~ overflow, underflow and division by zero exceptions, respectively. If the pointer subVal is NULL, then 
presubstitution is disabled for the specified exception. 
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FPPresubstituteO returns -1 if presubstitution is not possible on the requested condition ( or the con
dition is illegal), 0 if presubstitution was previously disabled for the specified condition, and 1 if it was pre
viously enabled In the latter case, sub Val is set to point to a double precision floating point number which 
was the previous value being presubstituted when flag was raised. If presubstitution is being disabled, sub
Val can not be changed (since the pointer is NULL), so the the previously presubstituted value cannot be 
determined. However, the currently presubstituted value may be determined prior to disabling presubstitu
tion by making two calls to FPPresubstituteQ. 

Trapping has a higher priority than presubstitution. If trapping is enabled on an exception, than that 
trap is taken regardless of whether or not the condition resulting in the exception has bad a presubstitution 
value specified for it. 

3.2.5. Exception Trapping 
In order for a program to catch its own exceptions, the call FPfrap(ftag, newVector, oldVector) 

may be used. When FPI'rapO is called, future events which would raise flag instead call the function 
pointed to by new Vector. The specified trap handler may not return. 

The intention of the trap handler is that it "cleanly" handles fatal errors, and then either calls exit() or 
jumps to a known location within the application's code. 

FPfrapO returns -1 if the specified flag is not supported or is illegal, 0 if traps on flag were previ
ously disabled, and 1 if they were enabled. In this last case, the pointer oldV ector is set to point to the pre
vious trap handler on return from FPfrapQ. If newV ector is NULL, then trapping on flag is disabled. 

Trapping on an exception takes priority over presubstitution on a condition which is associated with 
that exception. 

4. Implementation Details 
This package is currently implemented for two processors, the VAX numing 4.3 BSD UNIX and 

Sun-3 equipped with a 68881 running SunOS release 3.2 (a 4.2 BSD UNIX derivative). This section briefly 
details the method of implementation on each, and the constraints inherent in the two architectures. 

4.1. VAX 
The VAX does not support IEEE Standard floating-point arithmetic, so implementation of this pack

age and an IEEE style environment required using features of the VAX architecture in ways other than that 
for which they were intended. 

While the VAX does not have any floating-point flags, it does have three exceptions, undedlow, 
overflow, and division by zero, which allow the corresponding IEEE flags and exceptions to be simulated. 
The VAX also does not support infinities or NaNs in the Standard sense, although it does have the feature 
that certain bit strings, when interpreted as floating-point numbers are illegal operands, and their access 
causes an illegal operand exception. Thus, through use of these illegal operands and their corresponding 
exception, NaNs, infinities, and infinity arithmetic can be simulated in software via an illegal operand 
exception handler. Table 1 and Table 2 illustrate the relationship between VAX and IEEE exceptions. 

VAX Exception VAX/UNIX Default Enhanced Environment VAX Default 

Division by Zero Abort Program Produce ApproP,riate NaN or Infinity 
Overflow Abort Program Produce Infinity 
Underflow Ignored (Flush to Zero) Flush to Zero 

Illegal Operand Abort Program Produce Appropriate NaN, Infinity or 0 

Table 1. Comparison of Default Handling or VAX Arithmetic Exceptions 
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IEEE Exceotion VAX/UNIX Default Enhanced Environment VAX Default 

Division By Zero Abort Program Produce Infinity 
Overflow Abort Program Produce Infinity 
Underflow Ignore (Flush to 2.ero) Flush to Zero 

Invalid Abort Program Produce NaN 
Inexact Ignore Ignore (Except on Ovedlow and Underflow) 

Table 2. Comparison or Default Handling or IEEE Arithmetic Exceptions 
Using these exceptions, the VAX can be extended to nearly approximate a true IEEE environment; 

however, several IEEE features can not be emulated. In particular, the VAX representation of floating
point numbers differs from that specified in the Standard. These differences are summariz.ed in Table 3. 

Format Exoonent Fraction 

VAX Single 8 23 
IEEE Single 8 23 
VAX Double 8 ss 
IEEE Double 11 52 

Table 3. Differences in Floating Point Types 
The VAX does not provide any control over rounding, so the rounding mode set with FPRoundO only 
applies to numbers which underflow or overflow. The VAX also automatically disables underflow each 
time a new function or procedure is called (the state of underflow detection is restored on each return). 
Since current compilers do not propagate the underflow detection state, a function call is required to expli-

~- citly enable underflow detection in each procedure in which underflow may occur. This call, 
FPEnableUnderftowO, takes no parameters and returns no value. It is also supponed, as a null function, in 
other implementations to ease the porting of applications. 

Using the techniques employed in the implementation of this package, the VAX environment can be 
greatly extended from its default. Use of these extensions does not come without costs, however. While 
the execution time of conventional arithmetic is unaffected by these enhancements, the time required to 
perform operations on infinities and NaNs is dramatically greater. This is due to the fact that every illegal 
operand exception results in the operation being attempted having to be simulated in software. Thus, the 
assignment "x = Infinity" takes 800 times longer than does "x IC 1.fJ'. About 40% of this extra time is spent 
interpreting and simulating the desired operation, and 60% of it in the UNIX kernel processing the excep
tion and return from il 

4.2. Sun-3 

The Sun implementation is much simpler and more efficient than the VAX one, owing to the 
Motorola 68881 coprocessor supporting the IEEE floating-point standard. 

There is only one difficulty in implementing this package in its entirety on the 68881. The 68881 
architecture requires that the result and one operand of each arithmetic operation be the same 68881 regis
ter. One operand may also be anywhere in memory, addressed using the native 68020 addressing modes. 
The 68881 does not signal arithmetic exceptions to the 68020 until the first post-exception 68881 access. 
Thus, it is possible that an in memory operand may have been overwritten before an exception is ack
nowledged. In the event of underflow or overflow, the only way to reliably retrieve one of the operands is 
from an internal, privileged register (since the 68881 source/destination register is overwritten by the 
default result). Unfortunately, the current operating system does not allow access to this register, so the 
exponent wrapping mode for extended range arithmetic is not supported. 

5. Examples 
Three examples of the use of this environment are provided. The first gives a solution to the problem 

of evaluating a continued fraction and its derivative. This evaluation may produce an intennediate zero 
denominator, which in tum produces an infinity. Both infinity arithmetic and presubstitution are employed 
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to determine a solution. 

The second and third examples demonstrate the use of the exponent wrapping mode for extended 
range arithmetic. The first of these provides a solution to an angular momentum problem in which inter
mediate results have too great a magnitude to be represented in the normal VAX or IEEE single or double 
formats. This problem was used by Matsui and Iri to demonstrate the utility of their floating-point formal 
However, using underflow/overflow counting a more accurate result can be achieved on a VAX using the 
normal double precision format than was obtained by them. 

The final example, that of computing binomial probability, was considered by both Matsui/Iri and 
Clenshaw/Olver. As with the angular momentum problem, it is best solved using the exponent wrapping 
mode. 

5.1. Continued Fraction (Jacobi Form) 
Consider a generalized continued fraction of the form 

b11-1 ···+--
an+.x. 

There is an iterative solution for/ (.x) and/' (.x ), namely 

f=8n; 

f'=O; 
for m=n-1 downto Odo begin 

b 
f'=-(l+f') m ; 

(x+f)1 

end. 

Isolating common factors gives 

f=3n; 

f'=O; 

for m=n-1 downto Odo begin 
d=x+f; 

bm 
q=T; 

f' =>-(l+f' >}; 
f=3m+q; 

end. 

In evaluating the continued fraction, a problem arises if some d =O. Computation of/"' would not be 
affected if the underlying numeric environment supported the generation and propagation of infinities, 
since, on the iteration when d became 0, q::oo, thus f =a,,.+q::oo. On the next iteration of the loop, d will 
be infinity, so q will be O and the infinity removed from the computation. If infinities are not supported, an 
algorithm coded as that above will often abort even when a legal, finite answer exists due to the potential 
for intermediate exception. 
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The derivative is more difficult to evaluate when d =O. On the iteration when d vanishes, /' will be 

infinite, as is/, leading to the invalid assignment/'=-(l+oo)_Q_ on the following iteration. In this case, the 
00 

value which should be assigned to f' is b,,.(1+/')lb,,.+1. There is an additional hazard in evaluating the 
derivative. H 1+/' is O concurrently with d, there will be a different invalid assignment/' =--Oxoo/0. As 
with the previous case, the desired value here is b,,.(1+/')/b,,.+1• 

Fortunately, this problem is not without solutioo. Using presubstitution, the desired value for an 
exceptional right hand side of the assignment to f' can be specified in advance, so in the event that an 
exception does occur the appropriate value will be automatically used. By substituting oo for either 00/00 or 
0/0 and performing the division (1+/')/d prior to the multiplication, the in,,alid computation of/' will 
always be revealed as a OXoo. Thus substituting b,,._1(1+/')lb,,. for OXoo at the end of each iteration of the 
for will result in the proper computation being performed on the next iteration. This is illustrated in the fol
lowing algorithm: 

presubstitute oo for oo/oo;presubstitute oo for 0/0;f =In; 

f'=O; 

for m=n-1 downto Odo begin 
d=x+f, 
d'=l+f' 

bm 
q=c1, 

f'm=-(q/d)d' 

f=&m+q, 

d' 
presubstitute bm-l b for OX00; 

m 

end. 

A program implementing this algorithm is given in Listing 1. Consult Professor Kahan for its proof. 
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/* compute f and r using infinity arithmetic and presubstitution */ 
void compute(a, b, x, n, f, fprime) 
double a□, b0, /* coefficients •1 

x; 
intn; /* number of coefficients •t 

t• results • I double *f, *fprime; 
{ 

l 

double func, 
deriv, 

intj; 

d, dprime, q, 
to_sub; 

,. value off at this iteration ., 
t• value of derivative at this iteration •t 

t• common denominator factors •t 
t• value which will be presubstituted •t 

to_sub = Infinity; FPPresubstitute(FPPRE_ZERODIV, &to_sub); 
to_sub = Infinity; FPPresubstitute(FPPRE_lNFDIV, &to_sub); 

deriv = 0.0; 
func = a[n]; 

for (j = n-l;j >= 0;j--) { 
d= x + func; 

} 

dprime = 1.0 + deriv; 
q = bU+l] Id; 
/* presubstitution may occur here •1 
deriv = -(dprimeJd); deriv •= q; 
funcc am +q; 
to_sub = bU] * dprime / bU+l]; 
FPPresubstitute(FPPRE _INVMUL T, &to_ sub); 

I* store results */ 
*f C func; 
*fprime C deriv; 

Listing 1. Solution to Continued Fraction Using Presubstltutlon and lnftnlty arithmetic 

There is an additional solution to the problem of evaluating a continued fraction and its derivative 
which does not depend on the underlying arithmetic environment supporting either infinities or presubstitu-

• tion. This solution, also due to Professor Kahan, avoids division by zero by adding a small perturbation, £, 

to the divisor d. This £ should have the property that if x+/ •+1¢0, then x+/ •+1+~+/ .. +1; that is, £ is 
smaller than any roundoff in the addition of x and/ •+l • If x+/ •+i:::{), then d will equal £, and q will be 
approximately 1/£. Thus, 1/£ will function similarly to an infinity. Since the expression qld appears in the 
evaluation of/', £ must be large enough so that 11£2 is representable. A program to evaluate a continued 
fraction using the e method is given in Listing 2. 
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/* The following function iteratively computes f and r avoiding exceptions */ 
voidcompute(a, b, x, n, f, fprime) 
double a□, bD, /* coefficients */ 

x; 
intn; /* number of coefficients */ 

I* results •1 double •r, •fprime; 
{ 

l 

double func, 1• value off at this iteration •t 
deriv, /* value of derivative at this iteration •1 
d, q, 1• common factors */ 
epsilon=l.Oe-15; 1• to prevent 0 divisors •t 

intj; 

deriv = 0.0; 
func = a[n]; 

for (j = n-l;j >= 0;j-) { 

} 

/* epsilon has to be added separately so it isn't swamped •t 
d a X + func; d += epsilon; 
q = b[j+l] / d; 
deriv = -(1 + deriv)*q/d; 
func = a[j] + q; 

/* store results • / 
*f = func; 
*fprime = deriv; 

Listing 2. Solution to Continued Fnctlon Using £ to A void Exceptions 

The solution using £ is not as nice as that involving presubstitution, since its validity depends on the 
chosen coefficients. For certain coefficients, it may be necessary to recalculate epsilon each iteration of the 
loop. Furthermore, the appropriate value for £ will vary between machines since it depends on the accu
racy of arithmetic and the range of numbers. For some coefficients and floating-point implementations, 
there may be no satisfactory value of£ unless precision is sacrificed. 

Table 4 compares the running time of the two programs, on both the VAX and Sun, on the following 
fraction: 

/(x)=4 
3 

(%-2)1-----1 __ _ 
(x-7)◄ 10 

2 
(x-2)- x-3 

Method and Computation 
Program Input 

Enhanced Environment Exceptional 
Unexceptional 

Epsilon Method Exceptional 
Unexceptional 

User 

18.7 
7.9 
2.3 
2.3 

VAX-nnso 
System Total User 

13.4 32.1 0.8 
S.1 13.0 o.s 
0.4 2.7 o.s 
0.2 2.S o.s 

Table 4. Running Time of Continued Fraction Solutions 

Sun-3 
System Total 

0.3 1.1 
0.1 0.6 
0.1 0.6 
0.1 0.6 

The programs were run with x values of 0,1,2,3,4, and S. The zero divisor problem is exhibited on 
inputs x=l,2,3, and 4. 
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5.2. 6-j Symbols (Racah Symbols) 

The 6-j symbols, {:: :: {,
1
}, are defined by Matsui and lri as follows: 

{:: :: {,
1
}=4(; J 2is)d(iJl2'1lA(I J1l1)A(I 1I Js)i:: :: {,

1
}, 

where 

ll(abc >=✓ (a+b-c )!(a-b+c )!(-a+b+c )! 
(a+b+c+l)! ' 

iii hh}- (-l)'(z+l)! 
I I I ~1:F( • • • l I I ) ' 1 2 3 1 Z J1,}2,}3, lt 2• 3 

and F(z,i1J2,h,l1"2,l3)=(z-j1-h-h)!(z-j1-l2-l3)!(z-l1-h-l3)!(z-l1-l2-h)!U1+i2+l1+l,.-z)! 
xU2+i,+l2+l3-z)!U3+j1+13+11-z)!. According to Matsui and Iri, the "j:s and 1:s are nonnegative half 
integers such that the three arguments appearing in one and the same ll(abc) may satisfy the triangular ine
quality, and the summation l: is taken for all integers such that the arguments of factorials may be nonne-

' gative." 

The problem in evaluating the 6-j symbols is the huge intermediate results generated by the products 
of factorials. For j and I values greater than 8, intermediate results become too large to store in the VAX 
or IEEE double format. Final results, however, are of the order of ur3 and 1 o-4, easily representable. 

A program to evaluate the symbols for all values of j and I using the enhancements described in this 
paper is given in Section 6.1. This program takes advantage of the exponent wrapping mode to keep track 
of the cumulative exponent underflow/overflow. Hence, expressions with intermediate results out of the 
normal exponent range may be evaluated without loss of precision (beyond that due to normal rounding). 

In order to implement arithmetic with potentially out of range exponents, two pieces of information 
must be maintained for each real number: the fractional part and the underflow/overflow count. In order to 
maintain this information, a new type is inttoduced, called wayout in the listing. 

As arithmetic with out of range numbers requires expensive function calls in place of what is nor
mally straightfoJWard expression evaluation with inline multiplication, it significandy slows down the rate 
at which calculation is done. No gain is had if the numbers involved are in fact wholly representable in the 
double fonnat. Accordingly, extended arithmetic should be accommodated only if it is absolutely needed to 
compute results otherwise incalculable. 

Using the program given in Section 6.1 to evaluate the 6-j symbols revealed a rather large 
discrepancy between results obtained using the VAX double format and those claimed by Matsui and Iri 
using their scheme. In order to detennine which set of results was in fact correct, the algorithm was run 
under V AXIMA, an implementation of MIT's MACSYMA for the VAX. The symbols evaluated at the 
values selected by Matsui and Iri are revealed by V AXIMA to be rational numbers. V AXIMA postpones 
converting real expressions, such as "'2, to finite precision real numbers until explicitly requested to do so. 
As it turns out, all square roots in the 6-j symbols cancel. The following are the true values of the 6-j sym
bols: 
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{
10 10 101=- 481673 
10 10 l0J 165002460 

{
20 20 201 33188637458619 
202020J 6598917336119836 

{
30 30 301 36082186869033479581 
30 30 30J 87954851694828981714124 

{
40 40 4~i- 15532984259S0518906780166S773 

. ~o 40 40J 8495829465052598504989585496460 

. {50 SO s01 65433637321280755672145420346825S683 
SO SO SOJ 583512S7855S56991027181967710S299348360 

{
60 60 601 68970248929833910253767006S690020673546392459151 
60 60 60f 685156255050893201410177S87912464646581542678203700 

Table 5 compares the results obtained using underflow/overflow counting to those obtained by 
Matsui and Iri. 

X VAXIMA VAX Double Format Matsui And Iri 

10 -2.919186780609210E-03 -2.919186780609209E-03 -2.919186780609217E-03 
20 -5.0294064S6867957E-03 -S.02940645686801 lE-03 -5.0294064S6868522E-03 
30 4.102353215741345E-04 4.102353215743201E-04 4.102353215969380E-04 
40 1.828306973839313E-03 1.828306973842854E-03 1.828306972165276E-03 
so -1.121374923626420E-04 -l.121374927247416E-04 -1.121374316603310E-04 
60 -1.006635324736411E-03 -1.006635318034354E-03 -1.006636256306322E-03 

Table 5. Results Obtained in Evaluation or 6-j Symbols 
Figures shown in bold are accurate decimal digits. The italicized figures in the Matsui an Iri results are 
those which they claimed to be the only inaccurate figures. Table 6 summarizes the decimal accuracy 
obtained using the various methods. 

Value VAXIMA VAX Double Precision Matsui And lri (claimed) 

10 infinite 14 15 (14) 
20 infinite 12 12 (13) 
30 infinite 12 10 (13) 
40 infinite 11 9 (13) 
so infinite 9 7 (12) 
60 infinite 8 6 (12) 

Table 6. Decimal Precision in Evaluating 6-J Symbols 

A digit is considered correct if the result would be correct to that digit if rounded to iL Noteworthy are the 
facts that Matsui and Iri were overly optimistic in their error analysis, and that the VAX double format 
delivers a more accurate result for inputs greater than 10. 

5.3. Binomial Probability Distribution 
The problem of computing the cumulative binomial probability disttibution is considered by both 

,.--, Matsui/Iri and Clenshaw/Olver. The equation for this distribution is 

/(n,m,p)=i[~l pi(l-p)•-i, 
j=O 1J 
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where ()SpSl and the integers n~~-

The above equation is equivalent to the following: 

q=l-p, 

, ... =[ :kq•-. 
"' I (n ,m ,p )= ~'•j. 

j:::IJ 

The t 'scan be computed iteratively using 

mq 
111,,n-1 .(n-m-l)p t,.,... 

If t,.,.._1<t11 ,,.., then an optimal approach to this problem would be to sum terms from the largest t to the 
smallest, as smaller t 's may be so small that when added to the cumulative sum of previous t 's they may 
have no affect on the sum. Thus, the ~' need only be done for the t 's which will contribute to the final 
result 

Unfortunately, application of lhis strategy requiles that [ :] , p"', and q•- all be computed: the first 

of these expressions is subject to overflow, and the latter two to underflow. As with the 6--j symbols prob
lem, these difficulties may be overcome using exponent wrapping. A program to compute binomial proba
bility distribution using the method outlined above is given in Section 6.2. Table 7 contains an overview of 
the performance of this program. 

result Execution Time n m p 
user system total 

2000 200 0.1 o.s 188204006 0.06 0.05 0.11 
30000 3000 0.1 0.S048623033 0.8 0.7 1.5 

Table 7. Performance of Binomial Probability Distribution Solution 

6. Listings 

6.1. Functions to Evaluate 6-j Symbols 
#include "fp.h" 

#define MAXFACT 300 !• number or factorials to pre-compute •! 

!• structure for holding not normally representable Boating-point numbers •/ 
typedef struct { double real; int exp; ) wayout; 

wayout fact[MAXFACT +1]; J• the pre-computed factorials •J 

void compute _ractorialsO 
{ 

register int i; 

FPEnableUnderftowO; 

fact[0].real = 1.0; 
for (i=l; i<=MAXFACT; i++) { 

fact[i].real = ract[i-1).real • i; 
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fact[i].exp = fact[i-1).exp + FPWrapCount(0); 
} 

} 

void delta(a,b,c,result) 
int a,b,c; 
wayout •result; 
{ 

} 

wayout numerator,denominator; 

FPEnableUnderftowO; 
numerator .real = fact[a+b-c].real•fact[a-b+c].real•fact[-a+b+c].real; 
numerator .exp = fact[a+b-c].exp+fact[a-b+c].exp+ fact[-a+b+c].exp+FPWrapCount(0); 
denominator.real= fact[a+b+c+l].real; 
denominator.exp= fact[a+b+c+l].exp; 

result->real =numerator.real/ denominator.real; 
result->exp = numerator.exp - denominator.exp+ FPWrapCount(0); 

result->real = FPSqrt(result->real, result->exp); 
result->exp = FPWrapCount(0); 

void F(zj1j2j3,11,12,13,result) 
int z, jl, j2, j3, 11, 12, 13; 
wayout •result; 
{ 

} 

FPEnableUnderftowO; 
result•>real = fact[z-jl-j2-j3].real • fact[z-jl-12-13).real • 

fact[z-11-j2-13].real • fact[z-11-12-j3].real • 
factij1+j2+11+12-z].real • factU2+j3+12+13-z].real • 
lactij3+J1+13+1l•z].real; 

result->exp = lact[z-Jt-j2-j3].exp + lact[z-jl-12-13).exp + 
lact[z-11-j2-13].exp + fact[z-11-12-J3].exp + 
lactU1+j2+11+12-z].exp + factij2+j3+12+13-z].exp + 
factU3+j1+13+11-z].exp + FPWrapCount(0); 

int max3(a,b,c) 
int a, b, c; 

/* return maximum of3 args •! 

{ 
a =a> b? a: b; 
return{a>C ? a : c); 

} 

int min4(a,b,c,d) !• return minimum of 4 args •/ 
int a, b, c, d; 
{ 

} 

a =a<b? a: b; 
C = C<d? C: d; 
retum(a<c ? a : c); 
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void w(jlj2j3,11,12,13,result) 
int jl, j2, j3, 11, 12, 13; 
wayout •result; 
{ 

} 

int z, zmin, zma.x; 
wayout numerator, denominator, sum, temp; 

FPEnableUnderflowO; 
sum.real = 0.0; 
sum.exp =0; 

zmin = -min4(-j1-j2-j3,-j1-12-IJ,•ll-j2-13,-11-12-j3); 
zmax = ma.x30l+j2+11+12j2+j3+12+13j3+j1+13+11); 

for (z=zmin; z<=zmax; z++) { 

} 

numerator.real= fact[z+l].real; 
numerator .exp = fact[z+ 1].exp; 
if (z%2) numerator.real= -numerator.real; 
F(zjlj2j3,11,12,13,&denominator); 
(void) FPWrapCount(O); 
temp.real= numerator.real/ denominator.real; 
temp.exp= numerator.exp - denominator.exp+ FPWrapCount(O); 
sum.real= FPAdd(sum.real, sum.exp, temp.real, temp.exp); 
sum.exp = FPWrapCount(O); 

result->real = sum.real; 
result->exp = sum.exp; 

double racah01J2J3,11,12,13) 
int jlj2j3,11,12,13; 
{ 

} 

wayout tempi, temp2, temp3, temp4, tempS; 
wayout result; 

FPEnableUnderflowO; 
delta(jlj2j3,&temp 1); 
delta(j1,12,13,&temp2); 
delta(l1J2,13,&temp3); 
delta(l1,12J3,&temp4); 
w(jl, j2, j3, 11, 12, 13, &temp5); 

result.real = tempi.real • temp2.real • temp3.real • temp4.real • tempS.real; 
result.exp = tempt.exp + temp2.exp + temp3.exp + temp4.exp + tempS.exp + FPWrapCount(O); 
return(FPResolve(result.real,result.exp )); 

6.2. Functions to Evaluate Binomial Probability Distribution 
!• epow(e, k) computes e"k taking into account p~ible exponent wrapping •/ 
double epow(e, k) 
doublee; 
intk; 
{ 

register double result; /• running value of result•/ 
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register int pow2=1, J• greatest power or two<= k •J 
J=l, 1• power currently computed •J 
orig_ wrap, /• for preserving entry exponent wrap •J 
wrap=O; /• wrap in exponent or result •! 

if (k <= 0) retum(l.0); /• nothing to compute •! 

FPEnableUnderflowO; !• for VAX •J 
orig_ wrap = FPWrapCount(0); J• presene and add on exit •! 

/• find greatest power or two le~ than or equal to k •! 
while (k-pow2>=pow2) pow2 += pow2; 

!• compute e"k based on the fact that e .. k = e .. pow2 • e"(k-pow2) •! 
result = e; !• starting point •J 
k •= pow2; !• adjusted power or k •J 
while (pow2>j) { 

} 

/• compute square •! 
result•= result; wrap+= wrap; 
j += j; !• power computed */ 
k+=k; 
if (k>=pow2) { k -= pow2; result •= e; } 
wrap += FPWrapCount(0); 

FPWrapCount(wrap + orig_wrap); J• wrap in result+ wrap on entry •J 
retum(result); 

/* compute l(n, m, p) •/ 
double binomiall(n, m, p, q) 
intn, m; 
doublep,q; 
{ 

double p_to_the_m, 
q_to_ the_mn, 
m _factorial, 
t, 
s, 
z, 
c, old_c; 

intmn, 
j; 

FPEnableUnderflowO; 

J• p .. m •! 
/* q .. mn •J 

/• m! •/ 
J• t(n,m) •J 
/* sum or t's (incorporating roundoff •J 
/* sum or t's •J 
/* roundoff'•! 
!• min(m, m-n) •/ 
!• loop counter •! 

J• take advantage or the fact that nCm = nCn-m to do minimum comp. •! 
mn =n-m; if(m<mn) mn=m; 

!• compute m! •! 
for(m_factorial=l.0, J=l; J<=mn; j++) m_factorial •= j; 
/• negate the wrap count since this will appear in the denominator */ 
FPWrapCount(-FPWrapCount(0)); 
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} 

p_to_the_m = epow(p, m); 
q_to_the_mn = epow(q, n-m); 

/* compute mn! */ 
for (t=l.0, j=l; j<=mn; j++) t •= n+l-j; 

t I= m _factorial; 
t *= q_to_the_mn; 
t *= p_to_the_m; 

t = FPResolve(t, FPWrapCount(0)); 

!• t now equals the maximum t */ 

-18-

/* loop until addition or more terms no longer affects sum •t 
for (z = 0.0, c = 0.0, s = t; S>z; m--) { 

z= s; 
!• compute t(n,m) from t(n,m-1) */ 
t •= m*q/((n-m+l)*p); 
!• sets to sum or all terms plus previous roundoff'*/ 
s = t+c; s += z; 
/* compute roundoff •! 
old_c = c; c = z-s; c += t; c+= old_c; 

} 
return(z); 

/* compute binomial probability so that t will decrease with m */ 
double binomial(n, m, p) 
int n, m; 
doublep; 
{ 

if (m<=(n+l)*p) return(binomial2(n, m, p, 1.0-p)); 
else return(l.0-binomial2(n, n-m-1, 1.0-p, p)); 

} 
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