
An Exercise in Technical Support for Scientific Computation
for a Lecture Course presented at SUN Microsystems

by Prof. W. Kahan, Univ. of Calif. at Berkeley

Floating-point computation is beset by truths, half-truths and mistakes to an extent
little appreciated by the world at large, as this exercise will illustrate. Imagine that you
work for CRAY providing technical support for its salesmen and customers, and you have
been passed the following letter. This letter is based upon actual events embellished only
slightly for didactic effect.

Dear xx.xx,
The Fortran function AMDD in both the CFT and CFT77 compilers on a
CRAY can give vrong results for certain arguments. Here is an example:
PROGRAM:

1
2
3
4

INPUT:

OUTPUT:

format(2z16)
format(3z18)
format()

format()

read 1, x
read 1, y
r = amod(x, y)
print 4, "x", "y", "r"
print 2, x, y, r
print 3, x, y, r
end

4009f9ffffffffff
4009fa0000000000

X y r
4009F9FFFFFFFFFF 4009FAOOOOOOOOOO BDFA800000000000
499.99999999999818 500.00000000000000 -1.818989403545856Se-12

This violates the definition of AMOD(x, y) = x - AIRT(x/y)•y, because vhen
x and y satisfy O < x < y, as they do here, then AMOD(x, y) should give
a positive number x instead of the negative number x - y. This violation
crashed a long benchmark code that had vorked perfectly vell on an IBM 3090,
DEC VAX and SUN III . The code calculates f(x,y) = SQRT(AMOD(x,y))•EXP(-x)
among other things for innocuous values x and y that are alvays positive.

The CRAY has very peculiar division; 240.0/3.0 does not give exactly 80.0
and x/y above yields 1.0 exactly instead of 0.99999 ... as on all other
computers and calculators that I have tried. I can tolerate small errors in
quotients, but negative values for AMOD(positive, positive) is too bizarre
to tolerate in an environment vhere ve must share standard Fortran codes that
run unexceptionably on all our other machines. Negative values cannot occur on
the IBM machines because they chop quotients, so AIRT(x/y) cannot be vrong.
The SUN III conforms to the IEEE standard 754, vhich prescribes an exact
remainder, so it cannot malfunction. The DEC VAX has an EMOD instruction
in its architecture, vhich may explain vhy its AMOD is alvays correct.

The CRAY is the odd man out here; if you can't fix it, ve don't vant it.

Yours

\\That do you recommend that CRAY do?

1

An Exercise in Technical Support for Scientific Computation
for a Lecture Course presented at SUN Microsystems

The allegations about the CRAY's peculiar division are correct as of this date; almost
all other computers and calculators do always deliver a quotient x/y < 1 despite roundoff
whenever O < x < y , so they can guarantee that AMOD(x,y) = x exactly in this case.
Indeed, on almost all machines with binary :floating- point, AMOD(x,y) is just fine so long
as x lies between O and about 2.9999*y ; on non-binary machines, between O and about
1.9999*y. After that, what happens is not easy to predict.

The trouble starts with the definition of AMOD(x,y) . Ideally, this is the remainder r
you would get after you carried out long division (as you learned.it in school) to compute
x/y , but stopped as soon as all the digits of the quotient n that precede the decimal point
had been generated. Then r = x - n*y where O $ r/y < 1 and the quotient n is the integer
nearest x/y on the same side as zero; n would equal AINT(x/y) in the absence of roundoff.
Ideally r can be computed and represented exactly (unless it underflows, but let's skip
that for now) in the same floating-point format as x and y provided all the digits of n are
generated correctly; that is a challenge because there can be so many of them when lx/yl
is very big, so many that most must be rounded away by AINT(n) to fit into the same
:floating-point format. Now you see where the trouble begins; the definition

AMOD(x, y) = x - AINT(x/y)*y

could mean the ideal remainder r , or it could mean the result of computing the rounded
values x/y, AINT(x/y), AINT(x/y)*y and x - AINT(x/y)*y in turn. Which is the correct
AMOD?

Originally, when Fortran was young, all computers computed the version of AMOD
contaminated by a few rounding errors; CRAYs still do it that way and they are not alone.
Unfortunately, the contaminated AMOD(x,y) can fail to lie where most users expect it,
namely between O and y . Only if AINT(x/y) is computed too big in magnitude, as could
happen on machines like DEC VAXs that round quotients correctly, can AMOD have the
wrong sign; but that cannot happen on machines that chop quotients as did all the old IBM
7094s, the old CDC 6400 and 6600 (but not 7600) and many others machines, and as do all
IBM 370's and Amdahls nowadays. Perhaps that explains why the wrong sign for AMOD
is such a surprise for old-timers and their programs. On the other hand, a contaminated
AMOD(x,y) can easily be bigger than y , but not likely by so much as would be obvious.

All machines that conform to IEEE 754/854 should be able to derive an ideal AMOD
quickly from the standards' mandatory remainder operation. Machines that lack a hard
ware remainder can compute it in software like that supplied in the C Math library dis
tributed with 4.3 BSD Berkeley UNIX . Similar but proprietary software resides in DEC's
VAX VMS Fortran library; it doesn't use an EMOD instruction, which is a peculiar multiply.

What should CRAY do? CRA Y's :floating-point hardware is too inaccurate to support
an ideal AMOD at a tolerable cost. The least intrusive alternative may be a loop to test
AMOD(x,y) for the correct sign (the same as y's), although only rarely will that test have
to correct AMOD (by adding y to it). W. K.

1

