
ProdQuot May 1 a; 1988

PROBLEM for CS 179: by Prof. W. Kahan

Exhibit a program that starts from any three given floating-point
numbers x., y and z, and computes p : = >t • Y• z i r, sorne order that
avoids undeserved over/underflow. Do likewise for q := x•y/z .

SOLUTIONS1 The proofs that these programs work correctly depend
upon the properties of three Environmental Constants associated
with the floating-point formats in which x, y, z, p and q are
represented, regardless of whether those constants appear in the
programs. The Overflo~ threshold Q is the biggest finite
number in that format; the UnderfloN threshold ~ is the
smallest normalized positive number. The magnitudes of x, y and
z are presumed to lie between Q and E~ inclusive where e~ is
the smallest nonzero magnitude and may be far tinier than ~ if
underflow is gradual; on machines that underflow abruptly to zero
~~ = ~ except for CDC Cyber 17x's. E~ = 2~· for these Cybers
to cope with "partially i.mderflowed" numbers between lJ and Et,
that behave normally in add, subtract and compare but behave
like zero in multiply and divide. Little is presumed about the
product ~Q, which lies very far from 1 on some machines.

An obvious program to compute p and q would first obtain their
magnitudes using logarith,ns; lpl = e>:p (In lxl + ln IYI + ln lzl >
and lqf = exp(lntxl + lnlyl - lnfzl >. But these formulas lose
accuracy badly when the data are very big or very small; the loss
is caused by rounding each logarithm to working precision, and
can be observed by comparing the computed values of exp(ln fxl
and I>: I when it lies near Q or t, • And computing l ogari thrr,s
and exponentials wastes time. Our programs waste neither accuracy
nor time.

Both programs start by Sorting
thus:

Program for p:

fyl and fz I and continue

Assume now that sorted lxl { tyf f lzl Compute x•z first and
then p := <x•z>•v except on a machine with gradual underflow;
on such a machine if <x•z> underflows recompute p := <z•y>•x.

Proof that p is correct.
If >: • z over f 1 owed , th en t < I>: I ~- I y I s_ Q < I>: • z I < I < >: • z > • y I
so p deserves to overflow too (except perhaps on a CRAY, which
can overflow in certain cases when a product lies between Q/2 and
Q; but that is too perverse to consider here). Similarly if X•Z
underflowed on a machine that underflows abruptly to zero, then

1 > tzl -~ fyl 2: f>:I ~ >? > lx•zl > I <>:•z>•yl
so p must underflow too. On a machine that underflows gradually
conformity with IEEE standards 754/854 requires also the ability
to detect underflow. and this should be exploited if any of the
data can be subnormal (i.e . ., between E~ ar,d ~ in rnagni tude).
Then x•z underflows only when 1/E ~ lzl ~ lyf ~ lxl 1 Et, and
.,., > lx•zl since Q > 1/E 2 on those machines, Q > Z•Y so Z•Y

ProdQuot May 18, 1988

cannot overflow and if it underflows too then either fzf > 1 and
then l>:•y•zl = I (>:•z> (z•y)/zl < 'r/

2 / lzf < 'rJ , or else fzl f 1
and then IX•Y•ZI < lxl'rJ ~ 'rJ , and p deserves to underflow
either way.

Programs for q 1

If we could treat q as a product x • Y• (1 h:. > , we could cornput e
it safely using the program for p; but the risk that 1/z may
over/underflow precludes that option. A safe and simple program
works on machines that allow programs to branch on over/underflow:
First swap x and y if necessary to establish fxl ~ lyl ;

next compute p := X•Y; • subsequently
if < p overflowed and lzl > 1 > then
else if (p underflowed and lzl < 1)

q := (y/z)•X
then

q := (((x/E)/:z)ey)e:::

else q := p/z . (For Cybers use E = t here, not 2 .>
The validity of this program is easy to establish provided we may
presume that 1'('rJ > /s 2 <)?O < t/0 • as appears to be true fc,r al 1
machines I know. But the ability to test for over/underflow and
continue is not so common~ what if over/underflow is silent?
In the absence of a (portable) way to branch on over/underflow.
we must produce a spaghetti-like code with branches that preclude
spurious over/underflows. Such a program follows.

Two constants are needed. One is ~ , the smallest power of the
machine's radix no smaller than maxCt, t/(e~Q) }. The other is
µ • the biggest power of the radix not exceeding minCt, 1/(~0)}.
Multiplication by ~orµ is exact, so it cannot cause underflow
on a machine that conforms to IEEE 754/854.

First sc1rt I>: I , lyl and lz I , keeping track of z . This reduces
the situation to one of three cases. depending upon whether lzl
is minimal, maximal, or neither:

lz I is minimal., say tzl s_ l>~I fyl In case
if lyl > t th en q : = (>: / z) • y

In case fz f
if Ix I <

In case lzl
if Ix I >
else if
else q

else q := (>:l(AZ»•<Ay) •
is ma>:i mal , say lz I• }~. IYI
then q := (ylz>•x

2: 1>:f

else q := (y/(µz))e(µ>t) •

is neither, say lxl ~ lzl f
1 then q := Cy/z)•x
lyl < 1 then q := (x/z)•Y
:= (xey) /z. .

lyl ,

test lvf

test I>: I

test both;

The proof that this program is correct is a tedious exercise in
elementary inequalities. and is left to the reader.

2

