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PROBLEM for CS 179: by Prof. W. Kahan 

Exhibit a program that starts from any three given floating-point 
numbers x., y and z, and computes p : = >t • Y• z i r, sorne order that 
avoids undeserved over/underflow. Do likewise for q := x•y/z . 

SOLUTIONS1 The proofs that these programs work correctly depend 
upon the properties of three Environmental Constants associated 
with the floating-point formats in which x, y, z, p and q are 
represented, regardless of whether those constants appear in the 
programs. The Overflo~ threshold Q is the biggest finite 
number in that format; the UnderfloN threshold ~ is the 
smallest normalized positive number. The magnitudes of x, y and 
z are presumed to lie between Q and E~ inclusive where e~ is 
the smallest nonzero magnitude and may be far tinier than ~ if 
underflow is gradual; on machines that underflow abruptly to zero 
~~ = ~ except for CDC Cyber 17x's. E~ = 2~· for these Cybers 
to cope with "partially i.mderflowed" numbers between lJ and Et, 
that behave normally in add, subtract and compare but behave 
like zero in multiply and divide. Little is presumed about the 
product ~Q, which lies very far from 1 on some machines. 

An obvious program to compute p and q would first obtain their 
magnitudes using logarith,ns; lpl = e>:p ( In lxl + ln IYI + ln lzl > 
and lqf = exp( lntxl + lnlyl - lnfzl >. But these formulas lose 
accuracy badly when the data are very big or very small; the loss 
is caused by rounding each logarithm to working precision, and 
can be observed by comparing the computed values of exp( ln fxl 
and I>: I when it lies near Q or t, • And computing l ogari thrr,s 
and exponentials wastes time. Our programs waste neither accuracy 
nor time. 

Both programs start by Sorting 
thus: 

Program for p: 

fyl and fz I and continue 

Assume now that sorted lxl { tyf f lzl Compute x•z first and 
then p := <x•z>•v except on a machine with gradual underflow; 
on such a machine if <x•z> underflows recompute p := <z•y>•x. 

Proof that p is correct. 
If >: • z over f 1 owed , th en t < I>: I ~- I y I s_ Q < I>: • z I < I < >: • z > • y I 
so p deserves to overflow too (except perhaps on a CRAY, which 
can overflow in certain cases when a product lies between Q/2 and 
Q; but that is too perverse to consider here). Similarly if X•Z 
underflowed on a machine that underflows abruptly to zero, then 

1 > tzl -~ fyl 2: f>:I ~ >? > lx•zl > I <>:•z>•yl 
so p must underflow too. On a machine that underflows gradually 
conformity with IEEE standards 754/854 requires also the ability 
to detect underflow. and this should be exploited if any of the 
data can be subnormal (i.e . ., between E~ ar,d ~ in rnagni tude). 
Then x•z underflows only when 1/E ~ lzl ~ lyf ~ lxl 1 Et, and 
.,., > lx•zl since Q > 1/E 2 on those machines, Q > Z•Y so Z•Y 
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cannot overflow and if it underflows too then either fzf > 1 and 
then l>:•y•zl = I (>:•z> (z•y)/zl < 'r/

2 / lzf < 'rJ , or else fzl f 1 
and then IX•Y•ZI < lxl'rJ ~ 'rJ , and p deserves to underflow 
either way. 

Programs for q 1 

If we could treat q as a product x • Y• ( 1 h:. > , we could cornput e 
it safely using the program for p; but the risk that 1/z may 
over/underflow precludes that option. A safe and simple program 
works on machines that allow programs to branch on over/underflow: 
First swap x and y if necessary to establish fxl ~ lyl ; 

next compute p := X•Y; • subsequently 
if < p overflowed and lzl > 1 > then 
else if ( p underflowed and lzl < 1 ) 

q := (y/z)•X 
then 

q := (((x/E)/:z)ey)e::: 

else q := p/z . ( For Cybers use E = t here, not 2 .> 
The validity of this program is easy to establish provided we may 
presume that 1'('rJ > /s 2 < )?O < t/0 • as appears to be true fc,r al 1 
machines I know. But the ability to test for over/underflow and 
continue is not so common~ what if over/underflow is silent? 
In the absence of a (portable) way to branch on over/underflow. 
we must produce a spaghetti-like code with branches that preclude 
spurious over/underflows. Such a program follows. 

Two constants are needed. One is ~ , the smallest power of the 
machine's radix no smaller than maxCt, t/(e~Q) }. The other is 
µ • the biggest power of the radix not exceeding minCt, 1/(~0)}. 
Multiplication by ~orµ is exact, so it cannot cause underflow 
on a machine that conforms to IEEE 754/854. 

First sc1rt I>: I , lyl and lz I , keeping track of z . This reduces 
the situation to one of three cases. depending upon whether lzl 
is minimal, maximal, or neither: 

lz I is minimal., say tzl s_ l>~I fyl In case 
if lyl > t th en q : = ( >: / z ) • y 

In case fz f 
if Ix I < 

In case lzl 
if Ix I > 
else if 
else q 

else q := (>:l(AZ»•<Ay) • 
is ma>:i mal , say lz I• }~. IYI 
then q := (ylz>•x 

2: 1>:f 

else q := (y/(µz))e(µ>t) • 

is neither, say lxl ~ lzl f 
1 then q := Cy/z)•x 
lyl < 1 then q := (x/z)•Y 
:= (xey) /z. . 

lyl , 

test lvf 

test I>: I 

test both; 

The proof that this program is correct is a tedious exercise in 
elementary inequalities. and is left to the reader. 
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