PROBLEM for CS 179 :

by Prof. W. Kahan

Exhibit a program that starts from any three given floating-point numbers x, y and z, and computes $p := x \cdot y \cdot z$ in some order that avoids undeserved over/underflow. Do likewise for $q := x \cdot y/z$.

SOLUTIONS: The proofs that these programs work correctly depend upon the properties of three *Environmental Constants* associated with the floating-point formats in which x, y, z, p and q are represented, regardless of whether those constants appear in the programs. The *Overflow threshold* Ω is the biggest finite number in that format; the *Underflow threshold* η is the smallest *normalized* positive number. The magnitudes of x, y and z are presumed to lie between Ω and $\varepsilon\eta$ inclusive where $\varepsilon\eta$ is the smallest *nonzero* magnitude and may be far tinier than η if underflow is gradual; on machines that underflow abruptly to zero $\varepsilon\eta = \eta$ except for CDC Cyber 17x's. $\varepsilon\eta = 2\eta$ for these Cybers to cope with "partially underflowed" numbers between η and $\varepsilon\eta$ that behave normally in add, subtract and compare but behave like zero in multiply and divide. Little is presumed about the product $\eta\Omega$, which lies very far from 1 on some machines.

An obvious program to compute p and q would first obtain their magnitudes using logarithms; $|p| = \exp(\ln|x| + \ln|y| + \ln|z|)$ and $|q| = \exp(\ln|x| + \ln|y| - \ln|z|)$. But these formulas lose accuracy badly when the data are very big or very small; the loss is caused by rounding each logarithm to working precision, and can be observed by comparing the computed values of $\exp(\ln|x|)$ and |x| when it lies near Ω or γ . And computing logarithms and exponentials wastes time. Our programs waste neither accuracy nor time.

Both programs start by Sorting |x|, |y| and |z| and continue thus:

Program for p:

Assume now that sorted $|x| \le |y| \le |z|$. Compute x · z first and then p := $(x \cdot z) \cdot y$ except on a machine with gradual underflow; on such a machine if $(x \cdot z)$ underflows recompute p := $(z \cdot y) \cdot x$.

Proof that p is correct.

If x•z overflowed, then $1 < |x| \le |y| \le \Omega < |x•z| < |(x•z)•y|$ so p deserves to overflow too (except perhaps on a CRAY, which can overflow in certain cases when a product lies between $\Omega/2$ and Ω ; but that is too perverse to consider here). Similarly if x•z underflowed on a machine that underflows abruptly to zero, then

1

cannot overflow and if it underflows too then either |z| > 1 and then $|x \cdot y \cdot z| = |(x \cdot z)(z \cdot y)/z| < \eta^2/|z| < \eta$, or else $|z| \leq 1$ and then $|x \cdot y \cdot z| < |x|\eta \leq \eta$, and p deserves to underflow either way.

Programs for q :

If we could treat q as a product $x \cdot y \cdot (1/z)$, we could compute it safely using the program for p; but the risk that 1/z may over/underflow precludes that option. A safe and simple program works on machines that allow programs to branch on over/underflow: First swap x and y if necessary to establish $|x| \le |y|$; next compute p := x \cdot y; subsequently

if (p overflowed and |z| > 1) then $q := (y/z) \cdot x$ else if (p underflowed and |z| < 1) then

 $q := (((x/\varepsilon)/z) \cdot y) \cdot \varepsilon$ else q := p/z. (For Cybers use $\varepsilon = 1$ here, not 2.) The validity of this program is easy to establish provided we may presume that $y'(\eta)/\varepsilon^2 < \eta\Omega < y'\Omega$, as appears to be true for all machines I know. But the ability to test for over/underflow and continue is not so common: what if over/underflow is silent? In the absence of a (portable) way to branch on over/underflow, we must produce a spaghetti-like code with branches that preclude spurious over/underflows. Such a program follows.

Two constants are needed. One is λ , the smallest power of the machine's radix no smaller than max{1, 1/($\epsilon\eta\Omega$)}. The other is μ , the biggest power of the radix not exceeding min(1, 1/($\eta\Omega$)). Multiplication by λ or μ is exact, so it cannot cause underflow on a machine that conforms to IEEE 754/854.

First sort [x], [y] and [z], keeping track of z . This reduces the situation to one of three cases, depending upon whether [z] is minimal, maximal, or neither:

In case |z| is minimal, say $|z| \leq |x| \leq |y|$, test |y|; if |y| > 1 then q := $(x/z) \cdot y$ else q := $(x/(\lambda z)) \cdot (\lambda y)$. In case |z| is maximal, say $|z| \geq |y| \geq |x|$, test |x|; if |x| < 1 then q := $(y/z) \cdot x$ else q := $(y/(\mu z)) \cdot (\mu x)$. In case |z| is neither, say $|x| \leq |z| \leq |y|$, test both; if |x| > 1 then q := $(y/z) \cdot x$ else if |y| < 1 then q := $(x/z) \cdot y$ else q := $(x \cdot y)/z$.

The proof that this program is correct is a tedious exercise in elementary inequalities, and is left to the reader.

2