FrodGuot ' May 18, 1988

PROBLEM for CS 179 : by FProf. W. Kahan

Exhibit a program that starts from any three given floating—-point
numbers x, vy and z, and computes p = deyez in some order that

.

avoids undeserved over/underflow. Do likewise for q = xey/z .

SOLUTIONS: The proofs that these programs work correctly depend
upon the properties of three Environmental Constants associated
with the floating-point formats in which %, y, 2z, p and q are
represented, regardless of whether those constants appear in the
programs. The Overtlowm threshold € is the biggest finite
number in that format; the Undervlow threshold n is the
smallest normalized positive number. The magnitudes of x, v and
z are presumed to lie between and eh inclusive where €7 is
the smallest nonzero magnitude and may be far tinier than n if
underflow is gradual:; on machines that underflow abruptly to zero
£ = n except for CDC Cyber 17x's. en = 2n for these Cybers
to cope with "partially underflowed" numbers between n and €%
that behave normally in add, subtract and compare but behave
like zeroc in multiply and Jdivide. Little is presumed about the
product nQ . which lies very far from 1 on some machines.

An obvious program to compute p and q would first obtain their
magnitudes using logarithms; ipl = exp(1Inixl + Iniyl + 1lnizi|)
and Igl = exp{ Inixl + 1lnjyl - Inizl). But these formulas lose
accuracy badly when the data are very big or very small:; the loss
is caused by rounding each logarithm to working precision, and
can be observed by comparing the computed values of exp(1lnix})
and I) when it lies near R or n . And computing logarithms
and exponentials wastes time. Our programs waste neither accuracvy
nor time.

Both programs start by Sorting %1« tyl and lz| and continue
thus:

Program for p :

Assume now that sorted I} < Iyl £ {1 . Compute »xez +Ffirst and
then p = (xez)ey except on a machine with gradual underflow;
on such & machine if (xezZ) underflows recompute p = (zZey)ex .

Proof that p is correct.

If xez overflowed, then 1 < |[xi < Iyl < Q < {xez| < {[{xez)ey]
s0 p deserves to overflow too (except perhaps on a CRAY, which
can overflow in certain cases when a product lies between Q/2 and
3 but that is too perverse to consider here). Similarly if ez
underflowed on a machine that underflows abruptly to zero, then

1 >z 2 Iyl 2 %] 2 n > ezl > j{Mez)ey|

so p must underflow too. On a machine that underflows gradually
conformity with IEEE standards 754/854 requires also the ability
to detect underflow, and this should be exploited if anvy of the
data can be subnormal (i.e., between tn and 7 in magnitude).
Then xez underflows only when 178 > |z > {yl 2> Ixl > &n and

n > |xezl 3 since Q > 1/52 on those machines, I > 2ey 80 Zey

Prodtuot May 18, 1988

cannot overflow and if it underflows too then either izt > 1 and
then Ixeyez| = [(xez){zey)/z| < n3/|z] < n , or else iz| < 1
and then Ixeyezi < uin < n , and p deserves to underflow
either way.

Programs for q :
If we could treat q as a product xeye(1/z) , we could compute
it safely using the program for p : but the risk that 1/z may
over/underflow precludes that option. A safe and simple program
works on machines that allow programs to branch on over/underflow:
First swap x and y if necessary to establish x| < |yl 3
next compute p = xey 3 subsequently
if (p overflowed and iz} > 1) then q = (y/z)ex
else if (p underflowed and iz} < 1) then
qQ = ({((X/E)/2)ey)es
else q = p/z . (For Cybers use ¢ =1 here, not 2 .)
The validity of this program is easy to establish provided we may
presume that Yinl)/e2 < nQ « ¢yQ , as appears to be true for all
machines I know. But the ability to test for over/underflow and
continue is not so common: what if over/underflow is silent?
In the absence of a (portable) way to branch on over/underflow,.
we must produce & spaghetti-like code with branches that preclude
spurious over/underflows. Such a proaram follows.

Two constants are needed. One is x , the smallest power of the
machine’s radix no smaller than max{l, 1/(enQ) 3. The other is

u o the biggest power of the radix not exceeding min{l, 1/(pM 3.
Multiplication by x or u is exact, sc it cannot cause underflow
on a machine that conforms to IEEE 734/854.

First sort Ixl, |yl and izl, keeping track of z . This reduces
the situation toc one of three cases, depending upon whether fz |
is minimal, maximal, or neither:

In case Jz|l is minimal, say izl < I»xl £ Iyl 4« test vl 3
if Jyl » 1 then q = (t/z)ey
else g = (x/(Az))e(ny) .
In case |z| is maximal, say izl 2> iyl > It , test Int s
if IXl < 1 then g = (y/z)ex
else q = (y/(uz))e(ux) .
In case Iz is neither, say I(x} £ lzf & Iyl 4, test bothg
if Il > 1 then q = (y/z)ex
else if iyl <« 1 then g = (x/z)ey

else q = (yey)/z .

The proof that this program is correct is a tedious exercise in
elementary inequalities, and is left to the reader.

M

