
ProdQuot May 18, 1988

PROBLEM for CS 179 : by Prof. W. Kahan

Exhibit a program that starts from any three given floating-point numbers z, y and z, and
computes p := z • y • z in some order that a.voids undeserved over/underflow. Do likewise
for q := z • y I z.

SOLUTIONS: The proofs that these programs work correctly depend upon the properties
of three Environmental Constants associated with the floating-point formats in which
z, y, z,p and q are represented, regardless of whether those constants appear in the programs.
The Overflow threshold n is the biggest finite number in that format; the Underflow
threshold '1 is the smallest normalized positive number. The magnitudes of z, y and z a.re
presumed to lie between n and £f1 inclusive where £f1 is the smallest nonzero magnitude
and may be far tinier than f/ if underflow is gradual; on machines that underflow abruptly to
zero £'f/ = T/ except for CDC Cyber 17x's. £f'/ = 211 for these Cybers to cope with "partially
underflowed" numbers between 1'J and £fl that behave normally in add, subtract and compare
but behave like zero in multiply and divide. Little is presumed about the product ,,n , which
lies very far from 1 on some machines.

An obvious program to compute p and q would first obtain their magnitudes using loga­
rithms; I p I= exp(ln I x I + 1n I y I + 1n I z I) and I q I= exp(ln I x I + In I y I - ln I z I).
But these formulas lose accuracy badly when the data are very big or very small; the loss is
caused by rounding each logarithm to working precision, and can be observed by comparing
the computed values of exp(ln I x I) and I z I when it lies near O or 'f/• And computing
logarithms and exponentials wastes time. Our programs waste neither accuracy nor time.

Both programs start by Sorting I z I, I y I and I z I and continue thus:

Program for p :
Assume now that sorted Ix l::;I y l::;I z I- Compute x • z first and then p := (z • z) • y ~cept
on a machine with gradual underflow; on such a machine if (z • z) underflows recompute
p := (Z • y) • X.

Proof that p is correct.
If x • z overflowed, then 1 <I z l::;I y 1::; 0 <Ix• z l<I (z • z) • y I sop deserves to overflow
too (except perhaps on a CRAY, which can overflow in certain cases when a product lies
between 0/2 and O; but that is too perverse to consider here). Similarly if z • z underflowed
on a machine that underflows abruptly to zero, then

1 >I z l~I Y l~I z ,~ T/ >I z • z l>I (x • z) •YI
sop must underflow too. On a machine that underflows gradually conformity with IEEE
standards 754/854 requires also the ability to detect underflow, and this should be exploited
if any of the data can be subnormal (i.e., between £'7 and 'f/ in magnitude). Then x • z
underflows only when 1/e ~, z 12:1 y l~I X 12: ef'J and ,, >IX. z I; since n > 1/£2 on those
machines, n > z • y so z • y cannot overflow and if it underflows too then either I z I> 1 and
then I x•y·z 1=1 (x·z)(z•y)/z I< r,2/ I z I< f'/, or else I z I::; 1 and then I x•y•z l<I x I TJ::; 1J,
and p deserves to underflow either way.

1

Programs for q : ~
If we could treat q as a product x • y • (1/z), we could compute it safely using the program
for p; but the risk that 1/z may over/underflow precludes that option. A safe and simple
program works on machines that allow programs to branch on over/underflow:

First swap x and 11 if necessary to establish I x I 5 I y I;
next compute p := x • 11; subsequently

if (p overflowed and I z I> 1) then q := (11/z) • x
else if (p underflowed and I z I< 1) then q := (((x/e)/z) • 11) • e

else q := p/ z. (For Cybers use e = 1 here, not 2.)

The validity of this program is easy to establish provided we may presume that ,/(fJ)/e2 <
,,n < .JO, as appears to be true for all machines I know. But the ability to test for
over/underflow and continue is not so common; what.if over/underflow is silent? In the
absence of a (portable) way to branch on over/underflow, we must produce a spaghetti-like
code with branches that preclude spurious over/underflows. Such a program follows.

Two constants are needed. One is A, the smallest power of the machine's radix no smaller
than max{l, l/(£17fi)}. The other is µ, the biggest power of the radix not exceeding
min{l, l/(77fi)}. Multiplication by A or µ is exact, so it cannot cause underflow on a
machine th~t conforms to IEEE 754/854.

First sort Ix I, I y I and I z I, keeping track of z. This reduces the situation to one of three
cases, depending upon whether I z I is minimal, maximal, or neither:

In case I z I is > minimal, say I z 151 x 15111 I, test I y I;
if I y I> 1 then q := (x / z) • y
else q := (x/(Az)) • (Ay).

In case I z I is maximal, say I z 1$1 y 1$1 x I, test Ix I;
iflxl< 1 thenq:=(y/z)•x
else q := (y/(µz)) • (µx).

In case I z I is neither, say Ix 1$1 z 151 y I, test both;
iflx I> 1 thenq:= (y/z)•x
else if I y I< 1 then q := (x/z) • y

else q := (x • y)/ z.

The proof that this program is correct is a tedious exercise in elementary inequalities, and
is left to the rea.der.

2

