ProdQuot May 18, 1988

PROBLEM for CS 179 : by Prof. W. Kahan

Exhibit a program that starts from any three given floating-point numbers z,y and z, and
computes p := z - y - z in some order that avoids undeserved over/underflow. Do likewise

forg:=z-y/z.

SOLUTIONS: The proofs that these programs work correctly depend upon the properties
of three Environmental Constants associated with the floating-point formats in which
z,y, 2,p and g are represented, regardless of whether those constants appear in the programs.
The Overflow threshold  is the biggest finite number in that format; the Underflow
threshold n is the smallest normalized positive number. The magnitudes of z,y and z are
presumed to lie between  and &7 inclusive where €7 is the smallest nonzero magnitude
and may be far tinier than 7 if underflow is gradual; on machines that underflow abruptly to
zero en = 7 except for CDC Cyber 17x’s. en = 27 for these Cybers to cope with “partially
underflowed” numbers between 7 and £7 that behave normally in edd, subtract and compare
but behave like zero in multiply and divide. Little is presumed about the product 72 , which
lies very far from 1 on some machines.

An obvious program to compute p and ¢ would first obtain their magnitudes using loga-
rithms; | p|=exp(n |z |+In |y |+In|z|)and |g|=exp(ln |z | +In|y|-In]|z]).
But these formulas lose accuracy badly when the data are very big or very small; the loss is
caused by rounding each logarithm to working precision, and can be observed by comparing
the computed values of exp(ln | z |) and | z | when it lies near Q or . And computing
logarithms and exponentials wastes time. Our programs waste neither accuracy nor time.

Both programs start by Sorting | z |,| ¥ | and | z | and continue thus:

Program for p:

Assume now that sorted | z |[<| y |<| z |. Compute z - 2 first and then p:= (z-2)-y except
on a machine with gradual underflow; on such a machine if (z - z) underflows recompute
p:=(z-y) =

Proof that p is correct.

If r -z overflowed, then 1 <| z |[<| y | R <] 22z |<|(z-2)-y | so p deserves to overflow
too (except perhaps on a CRAY, which can overflow in certain cases when a product lies
between /2 and Q; but that is too perverse to consider here). Similarly if z - 2 underflowed
on a machine that underflows abruptly to zero, then

1>[z2|ly 2|z 20>z 2[>(z-2) ¥

so p must underflow too. On a machine that underflows gradually conformity with IEEE
standards 754/854 requires also the ability to detect underflow, and this should be exploited
if any of the data can be subnormal (i.e., between en and 7 in magnitude). Then z - =
. underflows only when 1/e >| 2z [>] ¥ |>| 2 |> en and n >| z - z |; since 2 > 1/¢2 on those
machines, > z-y so z-y cannot overflow and if it underflows too then either | z |> 1 and
then | z-y-z |=| (z-2)(2-y)/z |< 7*/ | z|< m,orelse| z |< 1and then | z-y-z |<|z | R < 7,
and p deserves to underflow either way.



Programs for ¢ :

If we could treat ¢ as a product z - y - (1/2z), we could compute it safely using the program
for p; but the risk that 1/z may over/underflow precludes that option. A safe and simple
program works on machines that allow programs to branch on over/underflow:

First swap z and y if necessary to establish | z |[<| ¥ |;
next compute p := z - y; subsequently
if (p overflowed and | z |[> 1) then ¢:= (y/2z)-z
else if (p underflowed and | z |< 1) then ¢:= (((z/e)/2) - y)- €
else g := p/z. (For Cybers use € = 1 here, not 2.)

The validity of this program is easy to establish provided we may presume that ,/(1)/ e2<
7 < ./, as appears to be true for all machines I know. But the ability to test for
over/underflow and continue is not so common; what if over/underflow is silent? In the
absence of a (portable) way to branch on over/underflow, we must produce a spaghetti-like
code with branches that preclude spurious over/underflows. Such a program follows.

Two constants are needed. One is A, the smallest power of the machine’s radix no smaller
than max{1,1/(enf2)}. The other is p, the biggest power of the radix not exceeding
min{1,1/(79)}. Multiplication by A or p is exact, so it cannot cause underflow on a
machine that conforms to IEEE 754/854.

First sort | z |,| y | and | 2 |, keeping track of z. This reduces the situation to one of three
cases, depending upon whether | z | is minimal, maximal, or neither:

In case | 2 | is > minimal, say | z |<| z |<| ¥ |, test | ¥ |;
if|y|>1then g:=(2/2) -y
else ¢ := (z/(Az2)) - (Ay).

In case | 2 | is maximal, say | z |<| y |<]| z |, test | z |;
if |z |< 1 then g:= (y/z)-z
else g := (y/(pz)) - (uz).

In case | z | is neither, say | z |<| z |<| y |, test both;
if|z|>1thengq:=(y/2) -z
elseif | y |< 1 then ¢ := (2/2)-y

else g :=(z - y)/=.

The proof that this program is correct is a tedious exercise in elementary inequalities, and
is left to the reader.



