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Contributions to a Proposed Standard 

for Binary F1oating-Point Arithmetic 

Jerome T. Coonen 

ABSTRACT 

In the fall of 1977 the Institute of Electrical and Electronics Engineers 

commissioned working group 754 to draft a standard for binary floating-point 

arithmetic. It was intended to prevent the proliferation of disparate arith

metics in the new microprocessor industry. Al that time there were so many 

different flavors of arithmetic available on mainframes and minicomputers 

that the cost of reconciling their differences in numerical software had 

become, and remains, staggering. Now, more than five years later, draft 10.0 

of the proposed standard has been voted out of the working group for IEEE 

approval. 

This thesis consists of a set of "footnotes" to the proposed standard. 

The first of them, an implementation guide published in January 19B0, served 

as a working draft of the standard for over a year. The remaining chapters 

unfolded as the proposed standard did. They include an analysis of gradual 

underflow, the most controversial feature of the standard; an exhaustive dis

cussion of radix conversion, which has been specified in the proposed stan

dard only up to a worst-case error bound; and a revised version of the arith

metic test suite which has been available in machine-readable form from the 

working group. 
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CHAPTER 1 

Introduction 

"Most numerical analysts have no interest in arithmetic." 
B. N. Parlett (1979) 

'.{be lack of interest abounds. Professor Parlett's claim applies to com

puter designers as well as users. And it is usually the speed of arithmetic 

that incites what interest there is. Yet a proposed IEEE standard for binary 

floating point arithmetic is in the last stage of approval before that body's 

Standards Board, and, despite that the proposal is bard to implement, it has 

become already a de facto standard among several of the largest micropro

cessor manufacturers. Why'? 

Calculator and computer users are familiar with the fact that the quo

tient 1/3 must be rounded in order to be representable on a binary or 

decimal machine. But rounding is not to blame when 1/3 differs from 9/27. 

Such a capricious discrepancy can cause a perfectly reasonable program to 

fail mysteriously, arousing dismay, not interest. Also daunting is the pros

pect of developing software to run across the dozens of diverse arithmetics 

in use today, a number that will increase with the rise of the microprocessor 

industry. 

This thesis is about the proposed IEEE standard 754 for binary floating 

point arithmetic. The thesis developed alongside the standard itself, as a set 

of clarifications and elaborations of the terse 754 document; it is an aid to 

implementors, and a demonstration that the implementation is feasible. 

Because of the care taken in the specification of proposed standard 754, and 
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because of its rising support within the industry, there is hope for an end to 

the dismay caused by bad arithmetic. ln a sense, it is the best arithmetic 

that arouses the least interest among users. 

1. A Brief History of IEEE Working Group 754 

In the fall of 1977, working group 754 of the IEEE Computer Society 

Microprocessor Standards Committee was convened lo draft an industry 

standard for floating point arithmetic on microprocessors. It was known that 

Intel Corporation was pursuing high-quality arithmetic for its family of pro

ducts. The orginal intent of the working group was simply to fix a set of com

mon data formals so that binary data could be transferred between different 

microprocessors. The first meetings of the working group were attended by 

microprocessor enthusiasts, including Bob Stewart and Tom Pittman, as well 

as John Palmer of Intel and W. Kahan of the University of California at Berke

ley, then consulting to Intel. Richard Delp chaired the meetings. 

Due chiefly to the leadership of Kahan, the scope of the working group 

quickly expanded from data formats to a thorough specification of arith

metic. In early 1978 Kahan enlisted the support of Harold S. Stone, then 

visiting Berkeley, and the author to draft a proposal whose key ideas were 

drawn from Kahan's years of experience on machines ranging from main

frames to pocket calculators. Kahan estimated that the project would 

require "one hard man-month of effort". He underestimated. Over the next 

three months, drafts of the so-called Kahan-Coonen-Stone proposal were 

presented to the monthly meetings of the working group. Throughout this 

period of refinement, Palmer and others al Intel were developing a major 

VLSI implementation of the proposal. 
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By late 1978 the working group included members from National Sem

iconductor, Motorola, Zilog, Monolithic Memories, Apple Computer, Tektronix, 

and Digital Equipment Corporation. There was a certain irony about the 

standardization process - on the one hand the working group was chartered 

to develop an industry standard, while on the other hand its work was sup

posed to be uninhibited by the kind of partisan politicking that arises natur

ally among competing manufacturers. At that time, the proposal was embo

died in an implementation guide prepared by the author; this paper, finally 

published in January 1980, appears as Chapter 2. 

Over the subsequent year several competing proposals were presented 

to the working group. Mary H. Payne and William Strecker of DEC proposed 

what could be thought of as enhanced VAX-11 arithmetic. Steve Walther and 

Robert Fraley of Hewlett-Packard Laboratories proposed what they thought 

of as a "safer" scheme, with special symbols for underflowed and overflowed 

values. Robert Reid, working independently, developed an idea that arises 

occasionally in the literature, varying the width of a number's exponent field 

dynamically, widening it {while narrowing the significand) in order to accom

modate extremely large or tiny magnitudes. A subcommittee of Pittman, 

Palmer, Kahan. and the author was commissioned to cast the prevailing pro

posal in a form suitable for an IEEE standard. David K. Stevenson later joined 

the group; and subsequently be was voted chairman of the entire working 

group. 

Draft 5.11 of the proposed standard stood v1ithout change for over a 

year. It was revised up to draft 8.0 in preparation for the March 1981 issue of 

IEEE Computer magazine, of which an entire section was devoted to floating 

point standardization. Discussions in the working group continually bogged 



1.4 

down on the issue of underflow - by far the most controversial aspect of the 

proposed standard. In an attempt to present the issues on paper, for surely 

resolution seemed beyond hope, the author prepared the paper which, as 

published in that issue of Computer, appears as Chapter 5. 

Shortly after publication of draft 8.0, the working group voted to develop 

that proposal, to the exclusion of the others. One last round of changes was 

due. Over mid-1981 two features were removed from the proposal, the pro

jective mode interpretation of infinity and the warning mode interpretation 

of the denormalized numbers. In lively debate within the working group it 

was decided that the modicum of safety bought by these modes was not 

worth the known complexity of implementing them and explaining them to 

users. Today, almost seven years since the working group first met, draft 

10.0 of proposed standard 754 has reached the last level of approval, the 

IEEE Standards Board. A slightly abbreviated version of the draft appears as 

Appendix A. 

2. Design Goals - User Friendly Floating Point Arithmetic? 

Although common data formats were the goal when the 754 working 

group was chartered, three simple design principles evolved: ensure that 

most existing programs would run at least as well on standard systems as 

they bad on earlier machines with comparable range and precision; provide 

the most robust arithmetic possible with 19BO's technology; and include 

features to enhance software development by experts. 

In order to preserve the substantial investment in existing software, the 

proposal has to be as least as good as any other arithmetic available. This 

turns out not to be a significant constraint, and is really subsumed by the 

desire to build the best possible arithmetic. But old software could be 
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undermined by excellent arithmetic with features unknown to the original 

programmer. Since most of the innovations in 754 apply when exceptions 

arise, they aflect old programs only when some exception, for example 

overflow or division by zero, occurs. ln such cases an earlier machine would 

probably stop execution anyway. The situation with the comparison operator 

is diflerent; here a mechanism was included specifically to defend old pro

grams and programmers. This is the subject of Chapter 6. 

Who could determine just how much arithmetic could be implemented 

on a chip in the current technology? ln order to bound its eflorts, the work

ing group required some measure of feasibility. This came from two arenas. 

As mentioned before, Intel was well into the design of the i8087 coprocessor 

to the 8086/B0BB CPUs. They stretched the limits in die size and yield. At 

the same time, George Taylor, a Berkeley graduate student, was designing a 

set of circuit boards implementing 754 which could replace the VAX-11/7B0 

floating point accelerator boards. Taylor [9] showed that, with care, the cost 

and complexity of 754 could be reduced to that of the more ordinary VAX, 

whose arithmetic is in fact very good already. 

In the next section we will survey what the standard does include. It is 

appropriate to discuss here what was deliberately excluded. From the start, 

754 was a binary standard. Although decimal arithmetic has obvious advan

tages for most end users (in contrast to computational advantages of 

binary), it was deferred to a later standard [2]. The elementary functions, 

although implemented on chip by Jntel and others, were deemed beyond the 

scope of a standard intended for simple control devices as well as general 

purpose computers. Also, just the standardization of transcendental func

tions is complicated by the discussion of allowable errors. (Chapter 7, on 
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binary-decimal conversions, typifies the kind of analysis involved.) Finally, 

interval arithmetic was omitted despite its potential for computing and 

reporting error bounds. However, the standard requires the implementation 

of modes of rounding that support the economical implementation of interval 

arithmetic in software. 

Adding features to a system is always easy. In the case of 754, to its 

credit, the experts' features arose naturally from the base design, which is 

surveyed below. The availability of special rounding modes, such as just 

mentioned, error flags to check for the occurrence of an exception that 

would otherwise be dispatched in a specified fashion, or special functions, 

such as recommended in the appendix to 754, all support the development of 

high-quality codes. 

The point of the 754 design is to provide the most robust arithmetic pos

sible while limiting "error messages" to those limes when the bounds of its 

capability have been surpassed. This is a delicate line to walk. Cry "Wolf!" 

too often, such as on every occurrence of underflow, and the message will be 

ignored. Let a computation run amok with no indication, all the while substi

tuting, say, 0 for overflowed values, and inevitably some user of another's 

software will be misled. In the parlance of human engineering, 754 is user 

friendly since anyone doing ordinary calculations benefits without knowledge 

of the sometimes arcane underpinnings. Only when necessary, must a user 

be faced with the more elaborate aspects of the system. 

3. An Overview of Proposed Standard 754 

The brew is surprisingly straightforward. Start with single and double 

data formats of 32 and 64 bits, respectively. Suggest somewhat wider single

extended and double-extended formals for use in expression evaluation to 
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alleviate intermediate overflow and underflow. Specify a complement of 

rational arithmetic operations, and include square root, remainder, and 

binary-decimal conversion. Finally, specify the machine arithmetic to be 

closed under all operations on all operands. These ideas are expanded in the 

rest of this section. Chapter 8 gives a top-down specification of the arith

metic from the implementor's point of view. 

The data formats are quite ordinary. Single has the range and precision 

of the PDP-11 float format; double has the range of CDC 6000 class single for

mat {a 60-bit word), which is widely used for scientific computing. The 

extended formats have roots in the lBM 709x and Univac 1108 extended accu

mulators; their widths in range and precision have been chosen to aid in 

binary-decimal conversion and the computation of the exponential xY. 

Square root is required by the standard because of its utility in certain 

calculations, such as least squares, and because it is known to be just a 

minor variation of division. Remainder is harder to implement, because so 

many steps of division may be required before the dividend is reduced to half 

the magnitude of the divisor. But remainder is vital to the argument reduc

tion required for the elementary functions. Binary-decimal conversion, his

torically in the province of the systems programmers or language implemen

tors, is included so that tight error bounds can be specified, in lieu of correct 

rounding which may be infeasible due to cost. Chapter 7 is an extensive 

analysis of the bounds stated in 754. Appendix D shows a correctly-rounded 

conversion implemented in Pascal. Other operations required by 754 are 

means to access and modify the state of the arithmetic engine, for example, 

the rounding modes and error flags. 
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It is arithmetic closure that gives 754 its true flavor. To cope with 

overflow and computations like 1/0, signed 00 symbols were added to the 

number system. And the sign of 00 was made to interact with the sign of zero 

in the ordinary way, so that 1/ - 00 = -0. The cost of this is a sign on zero 

(unlike the real number system) which is sometimes misinformation when it 

must be assigned arbitrarily, as with the result of 3.14 - 3.14. To cope with 

underflow, the controversial denormalized numbers were added at the bot

tom of the number range. Simply put, these values ensure that a difference 

:z: -y is nonzero just when x =y; on most current machines, the difference of 

two tiny values will be flushed to zero if it falls below a certain threshold. 

Chapter 5 discusses this issue in detail. Contention notwithstanding, arith

metics with infinities and denormalized numbers had been implemented 

before, for example on the CDC 6000 class machines and the Dutch Electrolo

gica XB, respectively. 

Closure of invalid operations like 0/ 0 and -v'=s required a new kind of 

symbol, for Not-a-Number. The so-called NaNs are a true innovation within 

the standard. Although they are numerically trivial, since they propagate 

unchanged through arithmetic, the NaNs have a considerable impact on the 

overall architecture of a system, as mentioned with language issues below 

and in Chapter 6. NaNs have already found use not only as diagnostic aids 

but as placeholders for missing or unavailable data in spreadsheets and sta

tistical applications. The key to the NaNs' utility is their propagation 

through arithmetic operations; the "indefinite" operands in the CDC 6000 

class computers and the "reserved" operand in the DEC PDP-11 and VAX-11 

computers trigger a (typically fatal} exception each time they are encoun

tered, rendering them useless for carrying information. 
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4. Yet Another Standard- 854 

When the 754 standard effort was nearing completion, a second standard 

was launched under the chairmanship of William J. Cody [2]. What started as 

a radix- and word.length-independent standard developed into a binary-and

decimal standard, with suggestions about the balance between the range and 

precision to be provided in a given wordlength. The 854 standard was con

strained to be upward compatible from 754. ln fact, the drafts were 

developed by simply modifying 754 in a text editor. The principal difference 

is in the area of binary-decimal conversion, which is even more obscure when 

the binary range and precision are not given specifically. Tables of inequali

ties specify bounds for the allowable errors. 

5. Axiomatic Attempts 

"Of course, if [the axiomatization of rounded floating-point arithmetic] is to 
be useful, the axioms should be simple enough for each comprehension (sic). 
I am afraid this goal has not yet been achieved." 

R Mansfield (1984) 

While standards 754 and 854 maintain essential backward compatibility 

with arithmetics of the past, their main thrust is toward a future of greater 

commonality among machines. A coincident development has attempted to 

make numerical sense of the machines we must program for tod.a.y. W. Stan 

Brown characterizes a machine's arithmetic according to a set of parame

ters [1]. The parameters describe the range and precision of the machine's 

values that satisfy the criteria for Brown model numbers. On many machines 

only a subset of the representable values, such as those not too huge or tiny, 

or those with one or more trailing zero digits, are model numbers satisfying 

constraints like commutativity of multiplication. Brown can confirm a 

machine's parameters by running a crafty test program in portable FORTRAN 
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developed by Norm Schryer [8]. 

Brown's attempt to unify current arithmetics sheds further light on the 

current state of affairs, but falls short of real utility for numerical program

mers. First, since Brown stated as a design goal the development of axioms 

pertinent to every major computer in use in the Free World, his axioms in a 

sense inherited the worst properties of all the machines. They are subtle 

indeed. It has been shown, for example, that because of a certain class of 

division algorithms, one cannot infer from the model that the inequality 

0 < x ~ y implies that x I y ~ 1. Problems like this will be nightmares for 

programmers who would guarantee robustness [ 4]. Chapter 4 suggests FOR

TRAN procedures for interrogating a system about parameters relative to 

both Brown's model and the proposed standards. 

By itself Brown's model is no more than further research into the 

behavior of computer arithmetics, but when taken as the standa.rd charac

terization of arithmetic from which programmers must work, it can actually 

hinder advances like the 754 and 854 proposals from taking effect by strip

ping their advanced features which. of course, don't fit into the "least com

mon denominator" model. A step in this direction has been taken by the Ada 

standards group, which has incoporated the ideas of the Brown model in the 

Ada specification of arithmetic. Fortunately, the use of Ada packages per

mits the incorporation of other arithmetics such as 754 and 854, albeit 

inconveniently [5]. 

Brown's is just the most computationally oriented of several attempts at 

axiomatization. In 1966 A. van Wijngaarden uttered 32 rules for arithmetic, 

introducing a folera.nce operator to describe the deviation of machine arith

metic from real arithemtic [10]. More recently, R Mansfield has listed 45 
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axioms for computer arithmetic in order to prove that a qualifying arith

metic is in fact rounded from an ordered field [7]. As he testifies in the 

quote that opens this section, such a blizzard of axioms is incomprehensible. 

6. An Algebraic Approach 

Another recent development in arithmetic is worth brief mention in con

trast with the 754 and B54 efforts. The latter have been dauntlessly prag

matic. Most of what has been written, and this thesis is a prime example, has 

centered on implementation details and the use of the arithmetic to solve 

well-known problems. A much more formal approach has been taken by 

Ulrich Kulisch and Willard Miranker as described in their book Cbmputer 

Arithmetic in Theory and Practice [6]. Their ultimate goal is a machine ana

log to the algebra of vectors and matrices over the complex domain. The key 

is the ordinary inner product calculation Z: ~ b,. which they specify to be 

correctly rounded for all machine °'i and bi: except when overflow or 

underflow intrude. That is, they implement the inner product as an atomic 

operation through special hardware or software. 

What detracts from the Kulisch-Miranker scheme for general use is the 

cost of implementing the inner product algorithm. It requires what amounts 

to a fixed-point buffer to bold the intermediate results of an inner product 

lest there be massive cancellation, promoting tiny addends to the final 

result. This buffer is as wide in radix digits as the extent of the exponent 

range; applied to a format like the 754 double, it would be over 2000 bits 

wide, virtually infeasible for VLSI implementation today. Moreover, their 

scheme is sufficient to perform reliable computation, aided by devious algo

rithms; there is no evidence that their scheme is necessary, nor that the 

deviousness of their algorithms is unavoidable. 
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7. The Less Mathematical Alternative 

Despite their appearance of mathematical rigor, the schemes described 

in the last two sections miss the true goal of computer arithmetic - robust 

calculations at a price users can afford. The important mathematical idea is 

closure of the arithmetic system, for it is closure that leads to predictability 

when the inevitable exceptional cases arise. Alas, it is here that the 

mathematical purity fades and engineering appears, for deciding feasible 

responses to exceptions involves design tradeoffs. This thesis demonstrates 

that robust computer arithmetic is feasible in the current technology. The 

underlying mathematical principle, closure, is clear from the start. The 

difficulty lies in the careful analysis of all the boundary cases encountered 

enroute. 

8. Arithmetic and Languages - Future Directions 

The substance of this thesis, implementation aspects of proposed stan

dard 754, is just part of the story. What has really been specified in 754 is a 

programming environment. Even after all these years, incorporation of the 

full standard into programming languages has barely started. Chapter 3 

touches on some of the issues, but there are many more. 

The extended formats are strongly suggested by the standard, and are 

known to be quite useful, but should they be made available in all languages? 

Pascal, for example, specifies only one type, real, though enthusiasts would 

extend the language by adding further ones. Arithmetic in C is based on the 

PDP-11 float and double types. ln C, it is natural to have the 754 extended 

format play the role double did for the PDP-11, yet one wants both single and 

double 754 types for data storage and exchange. The prospects for FORTRAN 

have been discussed by R J. Fateman [3]. 
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Sometimes language extension to incorporate 754 features causes 

conflict between two standards; for example, the BASIC standard specifies 

that underflows should be flushed to zero, prohibiting the more useful gra

dual underflow of 754. Cases like this led to the plea in Chapter 3 that 

numerical issues be lifted from language standards and left to the domain of 

numerical enthusiasts. However, some cases are not so clear. The details of 

comparisons involving NaNs lie totally in neither camp, so some cooperation 

will be required. 

There is work in progress now to bring the full features of 754 and 854 to 

people not only in high-speed numerical engines but in commodity calcula

tors and computers as well. Attempts to expand the scope of the working 

groups to include those responsible for languages have not been too success

ful, partly because the number of people involved is much greater than the 

few interested in arithmetic itself. When the 754 effort was begun, the stan

dard was to have stood for twenty years. Now, seven years later, through the 

cooperation of design, language, and systems people, the ideas spawned in 

the working group are finally on the verge of dissemination among millions of 

users. 
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CHAPfER 2 

The Original P754 Implementation Guide 

The following paper, reprinted from Computer magazine with the 

publisher's permission, served as a P754 subcommittee working document 

until its publication in January 1980. Although nominally a monograph, this 

implementation guide reflected the many hours of debate about the form of 

the ultimate proposed IEEE binary floating point arithmetic standard. As 

published, the implementation guide was compatible with draft 5.11 of the 

subcommittee's formal proposal; an errala. sheet at the end brings the guide 

up to date with draft 8.0, as published in Computer in March 1981. 

This implementation guide grew out of an earlier document prepared in 

collaboration with Harold S. Stone and W. Kahan. This author was primarily 

responsible for an appendix consisting of tables specifying the details of the 

operations. When it became clear that one inch square table entries would 

not suffice to describe the arithmetic, the current paper was launched. 

Although every attempt was made to represent subcommittee decisions 

in this implementation guide, it was inadequate for the subcommittee's pur

poses. Most important, it did not satisfy the stylistic requirements for pro

posed standards, set forth in the IEEE "blue book". So work was begun on an 

official version of the proposed standard. W. Kahan, John F. Palmer, Tom 

Pittman, this author and, later, David K. Stevenson worked on this draft. This 

implementation guide was published after the proposal had stabilized at 

draft 5.11. 

2.1 
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Draft 10.0 of proposal P754, as voted out of the floating point subcom

mittee, is fundamentally simpler than draft 8.0 as published in Computer 

magazine and described here. The two principal changes to draft 8.0 were 

the removal of the projective mode interpretation of 00 and the warning mode 

interpretation of denormalized numbers. Draft 10.0 specifies only what were 

known as the affine and normalizing modes for interpreting 00 and denormal

ized numbers, respectively. Among the smaller changes to draft 8.0 were a 

minor modification to the definition of underflow, a decoupling of the overflow 

and underflow error flags from their respective traps, and a response to 

overflow when rounding toward 0 that parallels the response when rounding 

toward +00 or - 00 , according to the sign of the overflowed result. 

The specifications of draft 10.0 are reflected in the pseudo-code descrip

tion of the the standard in chapter B. This chapter presents the 

specifications of draft B.0; it is one of the few articles describing the pro

posed standard as it stood for nearly two years (drafts 5.11 to B.0 were essen

tially identical), and as it was built in early implementations. 
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This guide to an IEEE draft standard provides practical 
algorithms for floating-point arithmetic operations and suggests 

the hardware/software mix for handling exceptions. 

SPECIAL FEATURE 

An Implementation Guide to a 
Proposed Standard 

for Floating-Point Arithmetic 
Jerome T. Coonen 

University of California at Berkeley 

This is an implementation guide• to a draft stan
dard before an IEEE subcommittee whose goal is to 
standardize binary floating-point arithmetic for 
mini- and microcomputers. The purpose of the stan
dard is to assure a uniform floating-point software en
vironment for programmers. It may be implemented 
entirely in hardware or software or, as is most likely, 
in a combination of the two. This document provides 
reasonable algorithms for the arithmetic operations 
and suggestions for the hardware/software mix in 
handling exceptions. 

Except for its additional discussion of quad, this 
guide is in concordance with Draft 5.11 of the pro
posal titled, "A Proposed Standard for Floating 
Point Arithmetic," IEEECS Task P754/D2, by John 
Palmer, Tom Pittman, William Kahan, David 
Stevenson, and J. T. Coonen.*'" W. Kahan made 
substantial contributions throughout the develop
ment of this document, and Harold Stone prepared a 
first draft in April 1978. J. Palmer discussed several 
features of this standard in late 1977.••• Comments 
may be sent to 

Jerome T. Coonen 
Department of Mathematics 

University of California 
Berkeley, CA 94720 

'"This is a much ~ venion of --specifications for a Proposed 
Standard for Floating Point Arithmetic." Memorandum No. 
UCB/ERL M78l72. This work was partiaUy funded by Office of 
Naval Reaee.rch Contract NOOOH-76-C0013. 

.. J. Coonen, W. Kahan. J. Palmer. T. Pittman, D. St.evenson, "A 
Proposed Standard for Floating Point Arithmetic."' SIGNUM 
N,w,ktter, Special Issue, Oct. 19i9, pp. 4-12. Available from 
SIGNUM, c/o ACM, 1133 Avenue of the Americas, N~w York, NY 
10036. 

... J. Palmer, .. The INTEL Standard for Floating-Point 
Arithmetic," Proc. COMPSAC n, pp. 107-112. 

The standard precisely describes its data formats 
and the results of arithmetic operations; it must do so 
to be of use to the producers of microprocessor hard
ware and software, who cannot afford to provide the 
Bupport software and personnel to perform conver
sions between systems conforming to a less rigid 
standard. It allows for future developments such as 
interval arithmetic, which provides a certifiable re
sult despite roundoff, Over/Underflow, and other ex
ceptions. And it allows the use of reserved operands 
to extend the numerical data structure, with complex 
infinities, say, or with pointers into heaps of numbers 
with extended range and precision. 

Programs which now run in higher-level languages 
like Fortran should be portable to a system with the 
new standard arithmetic at the cost of a modest 
amount of editing and a recompilation, and then 
should execute with results almost certainly no worse 
than before, though programs which used to give in
correct results might now give diagnostic messages 
instead. 

1.0 Narrative description of the standard 
arithmetic 

1.1 Sketch of the standard floating-point system. 

Combinations of floating-point formats: one of 
(Al single 
(B) single and single-extended 
(C) single and double 
(D) single, double, and double-extended 
(E) single, double, and quad. 

Arithmetic operations: 

Add, Subtract, Multiply, Divide, Remainder, 
Square Root, Compare, Round to Integer, Con· 
version between various floating-point and in-



teger formats, Binary-Decimal conversion. 

Rounding modes: 

(A) Round to Nearest, or optionally 
(B) Round-to Nearest, toward 0, toward +00, 

toward -00. 

Rounding precision control: 

(A) Allow rounding of an extended result to the 
precision of any other implemented format, 
while retaining the extended exponent. 

(Bl When all operands have the same precision, 
allow rounding of the result to that precision. 

Infinity arithmetic: 

(A) Affine mode: -co< +00. 

(B) Projective mode: -m= +co. 

Denormalized arithmetic: 

(A) Warning mode 
(B) Normalizing mode (optional). 

Floating-point exceptions, with sticky flags and 
specified results. The default response is to proceed; a 
trap to user software is optional. 

(A) Invalid-Operation 
(B) Overflow 
(Cl Underflow 
(Dl Division-by-Zero 
(El Inexact-Result. 

1.2 Basic floating-point formats. Any nonzero real 
number may be expressed in "normalized floating
point" form as ± 2••!, where e is the signed integer ex
ponent and the significant digit field f satisfies l .;; f < 
2. The standard describes a machine representation 
of a finite subset of the real numbers based on this 
floating-point decomposition, and prescribes rules 
for arithmetic on them. 

There are three basic formats, single, double and 
quad (See Table 1). to be implemented in one of the 
combinations shown in Section 1.1. Single is required 
since it is useful as a debugging precision and is effi
cient over a wide range of applications where storage 
economy matters. 

A normalized nonzero number X in the single for
mat (see Section 2 for double and quad) has the form 

X = (-l)s•2E·127*(1.F)where 

S = sign bit 
E = 8-bit exponent biased by 127 
F =X's 23-bit fraction which, together with an im • 

plicit leading 1, yields the significant digit field 
"l.-". 

The values 0 and 255 of E are reserved to designate 
special operands discussed in later sections; one of 
them, signed zero, is represented by E = F = 0. Nor· 
malized nonzero single numbers can range in 
magnitude between 2- 126•1.ooo .. 00 and 
2127• 1.111 ... 11. inclusive. 

The number X above is represented in storage by 
the bit string 

s E 

2.4 
This encoding has the special property that the order 
of floating-point numbers coincides with the lex· 
icographic order of their machine counterparts when 
interpreted as sign-magnitude binary integers. 
facilitating comparisons of numbers in the same for
mat. 

1.3 Extended formats. To perform the arithmetic 
operations on numbers stored in the single and dou
ble formats, e system will generally unpack the bit 
strings into their component fields S, E, and F. 
Moreover, the leading significant bit will be made ex· 
plicit, and perhaps the bias will be removed from the 
exponent. 

The standard provides a way to exploit this un· 
packed format by admitting the optional single
extended and double-extended formats (See Table 2). 
If implemented at all, only one extended format 
should be provided, single-extended in systems with 
single only, and double-extended in systems with 
single and double only. 

Table 1. 
Basic floating-point formats. 

SINGLE DOUBLE 

Fields and Widths In bits: 
S - Sign 
E - Exponent 
L - Leading bit 
F - Fraction 
Total Width 

Sign: 

Exponent: 
Max E 
Min E 
Bias of E 

Normalized numbers: 
Ra~ge of E 
Represented 

number 

Signed zeros: 
E 
L 
F 

Reserved operands 

1 
8 

(1) 
23 

(1)+ 32 

1 
11 
(1) 
52 

(1)+64 

+ I - represented by 0/1 respectively 

biased integer 
255 2047 
0 0 

127 1023 

(quad may be unnormalized) 
(MmE+ 1)to(MaxE-1) 

(-1)'. 2E·8"1S "(LF) 

Min E Min E 
(0) (0) 
0 0 

Denormalized numbers: 
E Min E Mm E 
L (0) (0) 

QUAD 

1 
15 
1 

111 
128 

32767 
0 

16383 

Min E 
0 
0 

Min E 
0 

F nonzero nonzero nonzero 
Represented 

(-1 )S•2E-B~s• (L.F) 
number 

Signed 00 's: 
E Max E Max E Max E 
L (0) (0) 0 or 1 
F 0 0 0 

NaNs 
E MaxE Max E Max E 
L (0) (0) O or 1 
F nonzero nonzero nonzero 
F - system-dependent. possibly diagnostic, informat1oc 
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Double-extended format !see Section 2 for single-
extended) consists of the following fields: 

S=sign bit 
E+ B=biased exponent: Eis a signed integer 

spanning at least therange-16383 to 16384; the 
bias B mav be zero 

L.F=a leading integer bit L followed by a free· 
tion F of at least 63 bits. 

A number Xis then given by X=(-l)S•2E-B•(L.F). 
The case E = maximal-value is discussed in later sec· 
tions. TwopossibleimplementationsofE = minimal· 
value are described below (Section 1.12, Denormal· 
ized and unnormalized numbers); signed zero is repre
sented by E = minimal-value and L.F = 0.0. Zero is 
sometimes referred to as "normal zero" to distin· 
guish it from the' 'unnormal zeros•' with E > minimal· 
value and L.F = 0.0. The latter behave much as 
nonzero numbers in the arithmetic operations. 

To match the exponent range of quad the unbiased 
double extended exponent must range between 
-16383 and 16384 as indicated above. This suggests 
that the exponent be represented in 15 bits by its 
negative in two's complement, biased by 16383 as in 
the basic formats, or biased by -1. The choice of the 
exponent representation impacts the use of the 
nonzero numbers at the bottom of the exponent 
range. 

Table 2. 
Extanded formats. 

SINGLE-EXTENDED DOUBLE·EXTENOED 

Fields and widths in bits: 
S - Sign 
E - Exponent 
L - Lead mg bit 
F - Fraction ;;, 
Total width .. 

Sign: 

Unbiased exponent: 
Max E;;. 
Min E< 

Numbers: 
Range of E 
Represented number 

1 
11 
1 

31 
44 

+ I - represented by 0/1 respectively 

(may be stored with a bias) 

1 
15 
1 

63 
80 

1024 163S4 
-1023 -16383 

(MinE + 1)to(MaxE - 1) 
(-1)S•2E•(LF) 

Bottom o1 the exponent range: 
E 
R 
Represented number 

Signed zeros 
E 
L.F 

Reserved operands: 
Signed "'·s: 
E 
L 
F 

Min E 
0 01 1 

(-1 )5•2E+R•(LF) 

Min E 
O or 1 

use special indicator bits, 01 else 
Min E Min E 
0.0 0.0 

use special indicator bits, or else 
Max E Max E 
0 or 1 0 or 1 

0 0 

NaNs. use special indicator bits, or else 
E Max E Max E 
L 0 or 1 0 or 1 
F nonzero nonzero 
F .. system-dependent, possibly diagnostic, Information. 

2.6 
Extendeds are assumed to be few in number. The 

first implementations of this standard will probably 
allow access to extended entities only in assembly 
language. High-level languages will use extended (in· 
visibly) to evaluate intermediate subexpressions, 
and later may provide extended as a declarable data 
type. 

The presence of at least as many extra bits of preci
sion in extended as in the exponent field of the basic 
format it· supports greatly simplifies the accurate 
computation of the transcendental functions, inner 
products, and the power function yx. In fact, to meet 
the accuracy specifications for binary-decimal con
versions, some extended capability must be 
simulated by system software if an extended format 
is not implemented; this is discussed in Section 2. 

Another way to obtain most of the computational 
benefits of an e::ctended format is to use the next 
wider basic format. Indeed, quad is included in this 
document as an alternative for those not wishing to 
implement double-extended. In most implementa
tions extended will be as fast as the basic format it 
supports, as compared to a factor 2 or 4 loss in speed 
suffered by the next wider basic format, if im· 
plemented. 

1.4 Arithmetic operations. The standard provides a 
notably complete set of arithmetic operations (see 
Section 1.1) in an attempt to facilitate program por
tability by guaranteeing that results obtained using 
standard arithmetic may be reproduced on different 
computer system~. down to the last bit if no extended 
format is used. SQUARE ROOT and REMAINDER 
are included as primitive operations because they ap· 
pear so often, for example in matrix calculations and 
range reduction. REMAINDER is preferable to the 
MODULO function because REMAINDER is com
puted without rounding error. Consider, for example 

0.01 MOD (-95) vs0.01 REM (-95) 

on a 2-digit machine. MODULO yields the result 
round (-94.99) = -95 for a complete loss of ac· 
curacy, while REM A I NDE R yields the correct result 
0.01. The standard·s specification of minimal re
quirements for binary-decimal conversions is an at
tempt to allow comparison of data from different 
systems at the decimal output level rather than via 
hexadecimal dumps. 

All operations except conversions between dif
ferent data formats are presumed to deliver their 
results to destinations having no less exponent range 
than their input operands. This constraint avoids un
necessary complexity in the implementation and 
simplifies the responses to Over/Underflow. The rare 
operation 

double • double - single 

is required to function exactly as 

double • double - double 
MOVE (round) double - single, 

to assure identical results in all sequences of opera
tions performed in the basic formats only. 



Rather than prohibit mixed-format operations, the 
standard is designed to encourage the provision of 
some such operations. The sequence 

(single • single - double) + double - double 

ought to be available without the overhead of pad
ding the single operands to double. 

1.5 Accuracy and rounding. If the infinite precision 
result of an arithmetic operation is exactly represen
table within the exponent range and precision 
specified for the destination, then it must be given ex
actly. Otherwise the result must be rounded as 
follows. Let Z be the infinitely precise result of an 
arithmetic operation, bracketed most closely by Zl 
and Z2, numbers representable exactly in the preci-
11ion of the destination, but whose exponents may be 
out of range. That is, Zl < Z < Z2, barely. 

Round to Nearest(Z) = Unbiased Round (Z) 
= the nearer of Zl and Z2 to Z; in case of a tie 
choose the one of Zl and Z2 whose least signifi
cant bit is 0. 

Round toward Zero(Z) = Chop(Z) = smaller of 
Zl and Z2 in magnitude. 

Round toward +00(Z) = Z2. 
Round toward -00(Z) = Zl. 

The latter two modes, the "directed roundings," are 
intended to support interval arithmetic. Round 
toward Zero is useful in controlling conversions to in
tegers in accordance with conventions embedded in 
programming languages like Fortran. 

An implementation of the standard may support 
either Round to Nearest only, with Round toward 
Zero available for Round to Integer, or all four round· 
ing modes. Round to Nearest shall be the default 
mode for all operations. Calculation of Round to 
Nearest requires the so-called sticky bit, as shown in 
Section 2. Once the sticky· bit is implemented, the 
directed roundings may be supplied at very little ex
tra cost, the bulk of which lies in the mechanism, say 
mode bits or extra opcodes for exercising the choice of 
rounding mode. While the standard leaves this 
mechanism up to the implementor, the mode bits are 
usually preferable. For example, an interval 
arithmetic computation of upper and lower bounds, 
performed by executing the same instructions round· 
ing up during one pass ar.d down the next, is greatly 
expedited if flipping a pair of bits changes rounding 
modes. 

In a system which delivers all floating-point results 
except format conversions in the widest format sup
ported, the user needs control over the precision to 
which a result is rounded. Such a system would en· 
courage the evaluation of long expressions in the 
widest available format, with just one serious round
ing error at the end when the expression's value is 
stored in a narrower destination. But the standard's 
specifications for roundoff control are burdened by 
the current programming languages which prohibit 
mixed-precision calculation. and by the need to mimic 
systems not providing an extended format. Round· 
ing precision control is specified at the end of Section 
2.14. 

2.7 
1.6 Exceptions. Once the data formats and opera
tions are determined, there remains the specification 
of responses to exceptional conditions. The standard 
classifies the exceptions as Invalid-Operation, 
Underflow, Overflow, Division-by-Zero and Inexact· 
Result. They are discussed in the following sections. 

The default response to any exception is to deliver a 
specified result and proceed. However, an implemen
tation may provide optional traps to user software on 
any of the exceptions. If available, the choice to trap 
should be exercised at execution time via a trap
enable bit. 

Associated with each of the exceptions is a 
"sticky" flag which is guaranteed to be set on e.ach oc
currence of the corresponding exception when there 
is no trap. The flags may be tested by a program and 
may be cleared only by the user's program. When the 
end of a job is obviously at hand, a humane operating 
system may draw the user's attention to flags still 
set. 

Since the sticky flags need not be set when a trap is 
to be ta.ken, an implementation may use them to in
dicate which exceptions have just occurred. A trap 
handler could determine which exception(s) arose on 
the aborted operation by checking which have both 
their sticky and trap-enable flags set, and would then 
clear those flags at the end of the operation. 

To deal effectively with traps, programmers need 
certain vital information, such as what exceptions oc
curred, where in the program, and what the operation 

• and operands were. In response, the programmer will 
normally either depart from the offending block of 
code, fix up the aberrant result and resume execution. 
or reinterpret the aberrant operands and recompute 
the result. The trap handler might be passed informa
tion by value, with the option to "return" a result to 
be inserted to the offending operation's destination. 
One might dispense with some of the above informa
tion, for example when the correct result is available 
in encoded form as in Over/Underflow. 

1.7 Invalid-Operation. The Invalid-Operation excep
tion arises in a variety of arithmetic operations on er
rors not frequent or important enough to merit their 
own fault condition. Some samples of Invalid
Operations are: 

(A) v'=5 
(B) (+ 00) - (+00) (See Section 1.8.) 
(C) 0•00• 

One class of reserved operands, the Not-a-Number 
symbols, or NaNs, are specified as the default results 
of Invalid-Operations. In single, double, and quad 
formats, with the format 

I s I E 

NaN s are characterized by 
S = sign bit (which may be irrelevant) 
E =111 ... 11 
F ¢0. 

In extended format NaNs have the most positive ex
ponent. The leading significant bit in extended and 



quad may be O or 1. The sign bit S participates in the 
obvious way in the execution of statements like 
X=-Y and Z=X-Y=X +(-YI without loss of infor
mation in the event that Y is a NaN with a numerical 
connotation. 

The nonzero fraction field F of a NaN will contain 
system-dependent information. For example: 

(A) A distinguished class of NaNs may be used by 
an operating system to initialize storage. The 
fraction of such a NaN may be a name or a 
pointer to the region where the NaN is stored. 

(B) A NaN generated by an invalid arithmetic 
operation on numeric data. for example O • 00 , 

may be a pointer to the offending line or block of 
code. 

(C) When complex arithmetic is implemented, it is 
often useful to think of co as a line rather than a 
point in the projective plane. A distinguished 
class of NaNs may be used in pairs to provide 
the relative sizes and signs of the real and im
aginary parts of numbers tending to co along a 
fixed ray emanating from the origin. 

(D) Sometimes an operation could generate a result 
acceptable but for its inability to pack that 
result correctly into the intended destination 
<see the discussion of OverfUnderflowsl. In 
such a case, a NaN could be supplied, with a 
fraction pointing to an extended field or a heap 
where the correct result may be found. 

(El Sometimes a subroutine may encounter data 
for which only a partial result can be delivered 
in the time available. The rest of the result can 
be replaced by NaNs pointing to a piece of the 
program which will resume execution of that 
subroutine only if that undelivered portion of 
the result is really needed. 

(F) List-oriented systems like LISP may use single 
format NaNs to point to double numerical data. 

As the list above shows, there are two distinct 
types of NaNs. The Nontrapping NaNs, as in (A) and 
1B), propagate through arithmetic operations 
without precipitating exceptions. If two such NaNs 
are picked up as operands, the result is one of the 
operands, according to a system-dependent 
precedence rule. On the other hand, the Trapping 
NaNs would be useful in situations (Cl through (Fl, 
where an Invalid-Operation trap to user software is 
required to perform arithmetic on the special 
operands; when the trap is disabled, a Nontrapping 
NaN results. The two types of NaNs might be 
distinguished by the leading bits of their fractions. 

1.8 Underflow. Because of the care taken in the treat
ment of Underflows, the range of normaliz.ed 
numbers in single, double, and quad formats has been 
chosen to diminish slightly the risk of Overflow com
pared with the risk of Underflow. This was done by 
picking the exponent bias and alignment of the 
binary point in the significant digit field in such a way 
that the product of the largest and smallest positive 
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normalized numbers is roughly 4 in each of the basic 
formats. 

Underflow occurs if the exponent of a result, tested 
before or after rounding at the implementor's option, 
lies below the exponent range of the destination field, 
or if the rounded extended or quad result of a 
MULTIPLY or DIVIDE with nonzero. finite 
operands is normal zero. Note that a product or quo
tient of grcssly unnorma..lized numbers may have a 
zero significant digit field; the test above prohibits 
such a result from masquerading as a normal zero 
when the operand exponents fortuitously add. to the 
format's minimum. 

Because of the restrictions on arithmetic opera
tions presumed in Section 1.4, the exponent can be 
out of range by at most a factor of 2, except for the 
MOVE instruction which is discussed in Section 2. If 
the Underflow trap is enabled, the exponent is 
wrapped around into the desired range with a bias ad
just specified m Section 2. and the resulting value is 
delivered to the trap handler. The exponent wrap
around is chosen so that the result, while related in a 
simple way to the Underflowed value, lies somewhere 
in the middle of the numerical range of representable 
numbers. This diminish~s the risk that a computa
tional response (like scaling) to Underflow will en
counter almost immediately a rash of consequent 
Overflows. The analogous statement holds for 
Overflows. 

If the Underflow trap is disabled. the result is 
denonna..lized by right-shifting its significant digit 
field while the exponent is incremented until it 
reaches that of the smallest normalized number 
representable in the destination. Then the result is 
rounded to fit into the destination. 

Note that denorma..lization is performed before 
rounding, to avoid double-rounding problems. If the 
Underflow test is made on a rounded result, that 
result must be "unrounded'' before undergoing 
denonna..lization. The difference betw.een testing 
Underflow before and after rounding is that the 
Underflow threshold (i.e. the largest infinite preci
sion number that Underflows I is the higher in the lat
ter case by one quarter of a unit in the last place of the 
smallest normalized number; however, both im· 
plernentations yield exactly the same numerical 
values. 

In terms of the format 

s I E 

a nonzero denorma..lized single number X (see Section 
2 for the other formats) is encoded as 

S = sign bit 
E =0 
F = X's 23 significant bits (at least one of which 

must be nonzero I to the right of the binary point. 

X is reconstructed via the formula 

X = (-1is•2- 126•(0.F), 

observing that E is not the true biased exponent in 
single format. Comparing this formula with its 



analog for normalized numbers, one sees that, when 
unpacking a denormalu.ed number, the 1-bit that 
would have gone to the leading bit of the significant 
digit field for a normalized number is instead added 
into the unbiased exponent E-127 + 1. 

The denormalized numbers and signed zeros are 
the reserved operands corresponding t<> a biased ex· 
ponent of zero. The values± 0 are obtained just when 
F=0 above. Zero may result from an Underflow. 
depending on the rounding mode, when the 
Undrrflow is so severe that all nonzero bits are 
shifted out of the significant digit field. 

1.9 Overflow. If the expc,nent of a rounded result of 
an arithmetic operation overflows the range of the 
destination. then the Overflow exception arises. ex· 
cept when Im·alid-Oper;,tion in,.,rvene, becau,-e a 
single or double result is not normalized. If a trap isto 
be taken, then the exponent is wrapped around as 
discussed in Underflow (Section 1.81. except that the 
bias adjust is subtracted rather than added. 

If no trap is to be taken, then the result depends on 
the rounding mode and the sign of the result, as 
discussed in Sectior, 2. One possible result is cc, which 
in single, double, and quad formats with the bit pat 
tern 

I s I E 

is encoded as 

S = sign bit 
E = 111 11 
F = 0. 

In the extended formats E = maximal-value and F = 
0. The explicit leading bit Lin extended and quad 
may be O or 1. 

The cc>'s are given two interpretations. In Affine 
mode 

-oo <{real numbers)< +oo, 

which is appropriate for most engineering calcula
tions involving exponentials or disparate time con· 
stants or cc ·s generated by Overflows. The sign of 00 is 
ignored in Projective mode, which is useful for real 
and complex rational arithmetic. for continued frac· 
tions, and for 00 's generated by division by zeros not 
generated by Underflows. Systems shall provide an 
Affine/Projective mode bit so that the choice can be 
made under program control. Projective mode is the 
default because it is less likely to be abused unwit· 
tingly. 

1.10 Division-by-Zero. The Division-by-Zero excep· 
tion arises in a division operation when the divisor is 
normal zero and the dividend is a finite nonzero 
number. The default result is 00 with sign according 
to convention. 

1.11 Inexact-Result. The Inexact-Result exception 
arises when a roundoff error is committed in an 
arithmetic operation. It is intended for essentially in
teger calculation as in Cobol and to facilitate 
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multiple-precision calculation. Thi: def&ult result is 
the correctly rounded number. 

1.12 Denormalized and unnormalized number!> ln 
this document an unnormalized number is om• whusc: 
Jeading significant bit, whether implicit or explicit. is 
zero. Denormalized numbers, nonzero unnormahzed 
numbers in a given format whose exponents arc· the 
format's minimum, were introduced as the dc-1:.ult 
results of Underflows. They are designed not so much 
to extend the exponent range, but rather tu allow fur
ther computation with some sacrifo" of prl'tision in 
order to dtfer as long ds pus!:>1ble Ln, r,E't'd Lu d.-..:10, 
whether the Underflow will have significant conse
quences. 

While in extended and quad format, wllh theirt·,
phcit leading bits, unnormalized nu1,,u,•b r.i..iy ;·:.11,~, 

over the entire exponent range, tht- ouly unnurn,dl· 
iz.ed numbers that may be represented in 1,ing/f and 
double formats are denormalized. 

Section 2 specifies the results of anth.nLLiL opl'l..i 
tions on unnormalized operand!:>; ir, each case- tht 
algorithms are essentially the samt- a~ lo1 n0! ;;,:.l.JLd 
operands. The only unnormalized result poss1bh ~ it 1, 

normalized operands is a denormaliz.-d numbe-1 01, 

Underflow 
The usual mode of arithmetil on unnorm..iLz<2d 

numbers. which may be called W.:irmng mud, 
recognizes operands· unnorn.alued rn.u·.,uer. Bu: 
the standard allows an optional Norma.hzrng 11,odl JIJ 

which all results are computt-d as though aU dPnu1 
malized operands had first been norm;,L..:td ln ., 
system that offers both, Warning modt sh.ill b~ th,
default, and selection of modes shall b~ exercised Yia 
a single-mode bit accessible to prc,grammers. 

Normalizing mode preclude,- both Lhl• creatwr; c,f 
any unnormalized numbers other tha:i denormaliz.-d 
numbers. and Invalid-Operations duE to thtc ina.b,L t_, 

to store an unnormalized result in a single or doubl.
destination. It might be used by a programmer whc, 
has given some thought to Underflow. since. in most 
cases. the error due to denormalization on Underfluw 
is no worse than that due to roundoff. N orrnalizing 
mode sacrifices the diagnostic capability of the un 
normalized numbers for the predictabilit-y of nor 
malized arithmetic. But if unexpected unnonnaliwd 
(but not denormalized) operands ar.- somehow picked 
up in that mode, they are operated on as in Warning 
mode. 

Because it is so often desired. Normalizing mode is 
recommended for all system~. especlally those 
without an extended format to hold unnormalized in
termediates. In fact, the Normalizing mode is op
tional primarily to free the high-performance pipe
lined array processors from the extra normalizing 
step at the start of each operation; such systems will 
probably compute their intermediates in extended. 

Another way to perform unnormalized arithmetic 
in extended format is according to the rules of 
significance arithmetic. This would be regarded as an 
(expensivel enhancement of the standard. If quad is 
implemented, then unnormalized arithmetic should 



be performed as significance arithmetic to take ad· 
vantage of the extravagant word size. 

As mentioned in the discussion of the extended for· 
mats, the standard does not exactly specify the inter· 
pretation of the nonzero numbers whose exponents 
are the format's minimum. One natural implementa· 
tion simply extends the exponent range one·unit, in· 
terpreting a number with the format's smallest expo
nent as it would any other nonzero number. A prob
lem arises since normal 0 can be the unexceptional 
product or quotient of grossly unnormalized or denor· 
malized numbers. To protect agsinst this anomalous 
situation, the standard specifies that such a product 
or quotient be marked as an Underflow. The extra 
test for normal zero is required after a product or quo
tient of nonzero numbers. 

An alternative encoding of denormalized numbers 
in extended and quad formats uses a redundant expo
nent to permit numbers denormalized by Underflow 
to be distinguished from unnormalized numbers at 
the bottom of the exponent range which are the 
results of operations on unnormalized operands. In a 
scheme with biased exponent, with the notation in
troduced earlier, 

(Al The nonzero normalized numbers with E=0 
have exactly the same numeric connotation as 
their counterparts with E=l. 

(B) The nonzero nonnormalized numbers with 
E=0 and F'l'0 have the same numeric connota· 
tion as the corresponding numbers with E = 1. 
Those with E=0 are denormalized while those 
with E = I are unnormalized. 

(C) The numbers with E=L=F=0 are the signed 
normal zeros. The numbers with E~l and 
L=F=0 are unnormal zeros. 

In this representation normal zero can never be the 
product or quotient of nonzero operands unless expo
nent Underflow occurs (i.e., biased exponent less than 
1), simplifying the test for Underflow. Also, in 
systems which implement Normalizing mode, there 
is a distinction between denormalized numbers and 
unnormalized numbers at the bottom of the exponent 
range. Another advantage, for those who implement 
the standard in hardware that traps to system soft
ware in all exceptional C"ircumstances, is that 
E=maximal-value and E=minimal-value are the 
conditions for a hardware trap on "exceptional 
operand." 

1.13 Hardware vs user traps. The standard specifies 
the trap options for exceptions independently of 
whether the implementation is in hardware, soft
ware, or a combination of the two. These are system 
traps to software that the user has either written or 
invoked from a system library. They are to be dis· 
tingui.shed from hardware traps in the arithmetic 
unit. 

One possible hardware/software implementation 
would provide a hardware trap to system soft ware on 
every Over/Underflow. The system software would 
then test the trap option flag and either deliver the 
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9pecified result and proceed, or trap to user software. 
In this case the exceptions' sticky flags and trap
enable bits could be in software. It is important to 
note that if the hardware trap provided the correctly 
rounded result with an extended exponent, then the 
system software would require sufficient informa· 
tion to "unround" the number in case a denormalized 
result is to be delivered on Underflow; otherwise a 
second rounding could occur during denormaliza tion, 
in violation of the standard. 

The Invalid-Operation and Division-by-Zero excep
tions could be handled by similar hardware/software 
combinations. 

Inexact-Result requires more care. Because this ex· 
ception will arise (and be ignored) so frequently in 
floating-point computations, it is impractical to have 
a hardware trap executed on every occurrence. If the 
Inexact-Result exception is to be handled by a hard
ware trap and system software, then that trap should 
be maskable. In one possible implementation: 

(1) The trap would be masked off until .. 

(2) enabled by the library routine invoked by the 
user to clear the Inexact-Result sticky flag or to 
enable the user trap, and ... 

(3) on the first occurrence of a rounding error, the 
hardware trap would set the sticky flag. The 
user trap would be invoked if enabled; other
wise the syst.em software would disable the 
hardware trap and resume execution. leaving 
the sticky flag as an indication of a rounding er
ror. 

A possible hardware trap on denormalized operand 
was mentioned at the end of the last section. A 
system implementing the Normalizing mode of com· 
putation would have software test the Warning/Nor• 
malizing mode bit and normalize the denormalized 
operand if necessary, handling the details of extend
ed exponent range required to represent the operand 
as normaliz.ed. 

2.0 Specifications for a conforming 
Implementation of standard arithmetic 

2.1 Floating-point formats.Single, double, and quad 
are the basic floating-point formats. A standard 
system shall provide single only, both single and dou· 
ble, or all three basic formats. In addition, either of 
the first two systems above may provide the extend· 
ed format corresponding to the wider basic format 
supported. The formats are described in Tables I and 
2. 

2.2 Data types. This standard defines the following 
floating-point data types: normalized numbers. 
denormalized numbers, unnormalized numbers 
(available only in extended and quad), the normal 
zeros (±0), ± 00 , and the NaNs. They are described in 
detail in Tables 1 and 2. 

A standard system must produce denormalized 
numbers as the default response to Underflow; un· 



normalized numbers are their descendants in extend
ed or quad. A system may optionally allow users to 
normalize all denormalized numbers when they ap
pear as input operands in arithmetic operations. This 
shall be called Normalizing mode in contrast to the 
default, Warning mode. The choice of Normaliz
ing,Warning modes shall be made via a single bit ac· 
cessible to users. 

Signed 00 's are produced as the default response to 
Division-by-Zero and certain Overflows. Systems 
shall provide 00 arithmetic as specified. Users must 
be able to choose, via a single-mode bit, whether ± 00 

will be interpreted in the Affine or Projective closures 
of the real numbers. The sign of 00 is respected in Af
fine mode and ignored in Projective, the default. 

NaNs are symbols which may or may not have a 
numeric connotation. Nontrapping NaNs are intend
ed to propagate diagnostic information through 
subsequent arithmetic operations without triggering 
further exceptions. Trapping NaNs, on the other 
hand, shall precipitate the Invalid-Operation excep· 
tion when picked up as operands for an arithmetic 
operation. Systems shall support both types of 
NaNs. In the event that two Nontrapping NaNs oc
cur as operands in an arithmetic operation, the result 
is one of the operands, determined by a system
dependent precedence rule. 

2.3 Arithmetic operations. An implementation of 
this standard must at least provide: 

(Al ADD. SUBTRACT, MULTIPLY, DIVIDE. 
and RE MA I ND ER for any two operands of the 
same format, for each supported format, with 
the destination having no less exponent range 
than the operands. 

(Bl COMPARE and MOVE for operands of any, 
perhaps different, supported formats. 

(Cl ROUND-TO-INTEGER and SQUARE ROOT 
for operands of all supported formats, with the 
result having no less exponent range than the 
input operands. In the former operation, round
ing shall be to the nearest integer or by trunca· 
lion toward zero, at the user's option. 

(DI Conversions between floating-point integers in 
all supported formats and binary integers in 
the host processor. 

(El Binary-decimal conversions to and from all 
supported basic formats. Section 2.21 
describes one possible implementation. 

2.4 Exceptions. One or more of five exceptional con
ditions may arise during an arithmetic operation: 
Overflow, Underflow, Division-by-Zero, Invalid
Operation, and Inexact-Result. 

The default response to an exception is to deliver a 
specified result and proceed, though a system may of
fer traps to user software for any of the exceptions. 
These traps shall be enabled via bits accessible to pro
grammers. 

A system providing a trap on an exceptional condi
tion should give sufficient information to allow cor-
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rection of the fault and allow processing to continue 
at the point of the error or elsewhere, at the option of 
the trap handler. The correct result may be encoded in 
the destination's format (or even in the destination} 
or in a heap pointed to by a NaN. On the other hand. if 
no numeric result can be gi,·en, the opcode and aber
rant operands must be provided; the trap handler 
should be able to return a result to be delivered to the 
destination. 

Associated with each of the exceptions is a sticky 
flag which shall be set on the occurrence of the cor
responding exception when no trap is to be taken. The 
flags may be sensed and changed by user programs, 
and remain set until cleared by the user. 

2.5 Specifications for the arithmetic operations. For 
definiteness the algorithms below specify one con
forming implementation. Single, double, and double
extended formats are implemented; the exception 
flags are set on every occurrence of the corresponding 
exception; the extended exponent is biased by 16383. 
There are many alternative conforming implementa
tions. Those arithmetic operations. exc~pt Decimal 
to Binary conversion, which deliver floating-point 
results rather than strings or binary integers are 
broken into three steps: 

IOI If either operand is a Trapping NaN, then 
signal Invalid-Operation and proceed to Step 2. 
Otherwise, if the Normalize bit is set, then nor· 
malize any denormalli.ed operands. 

(11 Compute preliminary result Zand, if numeric, 
round it to the required precision and check for 
Invalid/Over/Underflow violations. This step 
is peculiar to the specific operation. 

(21 Set exception flags, invoke the trap handler if 
required, and deliver the result Z to its destina
tion. The second step is the same for all opera
tions except REMAINDER and MOVE; the 
minor differences are noted. 

The following table is used in the specification of 
Step 1 of the operations with two input operands. It 
singles out the cases involving special operands. 

y 

X op Y :tO w :!;;00 NaN 

:t 0 a b C y 
X w d e 1 y 

:t 00 g h i y 
NaN X X X M 

W is any finite number, possibly unnormalized but 
not normal zero. While X and Y refer to the input 
operands, the entry M indicates that the system's 
precedence rule is to be applied to the two Nontrap
ping N~Ns. 

Preliminary numeric results may be viewed as: 

sgn j exp I V I N. j 

where V is the overflow bit for the significant digit 
field, N and Lare the most and least significant bits, 



G and Rare the two bits beyond L, and S, the sticky 
bit, is the logical OR of all bits thereafter. 

2.6 ADD/SUBTRACT. For subtraction, X-Y is 
defined as X +(-Y). 

a: Z is +0 in rounding modes RN, RZ, RP, or if 
both operands are +O; Z is -0 in mode RM or 
if both operands are -0. 

c.f: Z=Y. 

g,h: Z=X. 

b,d,e: (Note that in cases band d, a narrow rounding 
precision may cause the result to differ from 
the nonzero input operand.) Compute: 

(1) Align the binary points of X and Y by un· 
normalizing the operand v.'ith the smaller 
exponent until the exponents are equal. 
Note whether either of the resulting 
significands is normalized for (3) below. 
Add the operands. 

(2) Addition of magnitudes: If V=l, then 
right-shift one bit and increment exponent. 
During the shift R is ORed into S. 

(3) Subtraction of magnitudes: 
(a) If all bits of the unrounded significant 

digit field are zero: Set the sign to"+" 
in rounding modes RN, RZ, RP, and set 
the sign to"-" in mode RM. Then, if 
either operand was normalized after 
binary point alignment in (1), the expo
nent is set to its minimum value, i.e., 
the result is true zero. 

(b) Otherwise: If, after binary point align· 
ment in (1), neither operand was nor
malized, then skip to (4). Otherwise, 
normalize the result, i.e., left-shift the 
significand while decrementing the ex
ponent until N=l. S need not par
ticipate in the left shifts; zero or Smay 
be shifted into R from the right. 

(4) Check Underflow, round, and check Invalid 
and Overflow. 

i: In Affine mode (+00) + (+00)- (+00)and (-00) + 
(-00)- (-00). In Affine mode on (+00) + (- 00) 
and (-00) + ( +oo), and in all cases in the Projec
tive mode, signal Invalid-Operation, and if a 
result must be delivered, set Z to NaN. 

2.7 MULTIPLY. 

a,b,d: Z=0 with sign. 

c,g: Signal Invalid-Operation. If a result must be 
delivered, set Z to NaN. 

e: If either operand is an unnormal zero, proceed as 
in c; otherwise, compute: 

(1) Generate sign and exponent according to 
convention. Multiply the significands. 

(2) If V = 1 then right-shift the significand one 
bit and increment the exponent. 

2.12 
(3) Check Underflow, round, and check Invalid 

and Overflow. 

f,h,i: Z=00 with sign equal to the Exclusive-Or of 
the operands' signs. 

2.8 DIVIDE. 

a,i: Signe] Invalid-Operation and if a result must be 
delivered, then set Z to NaN. 

b,c.f: Z=0 with sign. Exception: if X is an unnor
mal zero, proceed as in a. 

d: Z=00 with sign. Signal Division-by-Zero. 
Exception: if Xis an unnormal zero, proceed as 
ina. 

e: If Y is unnormalized, proceed as in a; other
wise, compute: 

(1) Generate sign and exponent according to 
convention. Divide the significands. 

(2) If N=0, then left-shift significand one bit 
and decrement exponent. S need not par
ticipate in the left shift; a zero or S may be 
shifted into R from the right. 

(3) Check Underflow, round, and check Invalid 
and Overflow. 

g,h: Z=oo with sign. 

2.9 REMAINDER. Form the preliminary result Z = 
remainder when Xis divided by Y, with integer quo
tient Q. Q does not participate in Step 2 of the opera
tion unless an exception is raised there, in which case 
if Z is set to NaN, then Q is assigned the same value. 
The sign of Q is the Exclusive-Or of the input 
operands' signs. The standard does not require the 
quotient Q. 

a,d,g.~i: Signal Invalid-Operation. If results must 
be delivered, then set Zand Q to NaN. 

b,c: If Y is unnormal zero, proceed as in a; other· 
wise Z=X and Q = 0. 

e: If Y is unnormalized, proceed as in a. Otherwise, 
normalize X and compute: 

(1) Set Q to the integer nearest X/Y computed 
to as many bits as necessary to round cor· 
rectly: if X/Y lies halfway between two in
tegers. set Q to the even one. If Q contains 
more significant bits than its intended 
destination (the number may be great if 
X>>Y), then discard the excessive high· 
order bits. 

(2) Set Z to the remainder, X-(Q*Y). Nor
malize Z, check Underflow, round, and 
check Invalid and Overflow. There is no 
rounding error if the destination precision 
is no narrower than X's and Y's. 

f: Q=0andZ=X. 

2.10 ROUND-TO-INTEGER. Set Z to X if Xis ±0, 
±00,or NaN; otherwise, compute Z: IfX ·se:xponentis 
so large that it has no (zero or nonzero) significant 



fraction bits, then set Z to X; else: 

(1) Right-shift X's significand while incrementing 
the exponent until no bits of the fractional part 
of X lie within the rounding precision in effect. 

(2) Round Z. The user must hsve the option of 
rounding by truncation as well as to the nearest 
integer. 

(3) If all of the significant bits of Z are O, then set Z 
to.normal zero with the sign of Z; otherwise, 
normalize Z. S, which was set to zero after round
ing in (2), need not participate in the left shifts 
of normalization; zero or Sis shifted into R from 
the right. 

2.11 SQUARE ROOT. Z=vx- If Xis ±0 or NaN, 
then set Z to X. If Xi" unnormalized or -00, then 
signal Invalid-Operation and if a result must be 
delivered, set Z to NaN. If X is +00, then in Affine 
mode set Z to X and in Projective mode proceed as for 

If X is positive, finite, and normalized, compute 
Z=vx to the number of bits required to get a correct
ly rounded result, and round Z. Only two bits of Z 
beyond its rounding precision are required, if that 
precision is no narrower than the precision of X. 

If X is negative, finite, and normalized, signal 
Invalid-Operation. If a result must be delivered, set Z 
to NaN. 

2.12 MOVE. MOVE X - Z (convert between dif
ferent floating-point formats) is an operation whose 
destination may hsve shorter range and precision 
than its source operand, in which case it performs an 
arithmetic operation. If Xis ±0, ±00,or NaN,setZto 
X. Otherwise, check X for Underflow, round to the 
precision of the destination, and check for Invalid 
and Overflow. 

On Over/Underflow with the corresponding trap 
enabled, the exponent may be more than a factor of 2 
(i.e., one bit) beyond the range of the destination, so 
the exponent wrap-around scheme will not work. One 
way to cope is to deliver to the trap handler the result 
in the format of the source, or in the widest format 
supported, but rounded to the precision of the 
destination. Another way involves a heap onto which 
is put the rounded value whose exponent lies beyond 
the range of the intended destination; into the 
destination would go a NaN pointing to thst value in 
the heap. 

2.13 Detection of Underflow. If the exponent of the 
nonzero preliminary result underflows the intended 
destination, then signal Underflow and, if the 
Underflow trap is disabled, denormalize it as follows. 
Shift the significant digit field right while increment· 
ing the exponent until it reaches its most negative 
allowable value. During each right-shift the R bit is 
ORed in to the S bit, itself not shifted. If the trap is 
enabled then, except for the MOVE operation, the ex
ponent is wrapped around as described under Bias 
Adjust (Section 2.16). 
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Another instance of Underflow, tested after round

u_ig, is a normal zero extended or quad product or quo
tient of operands neither of which is normal zero. This 
special case is precluded by the redundant exponent 
scheme discussed in Section 1.12. 

2.14 Rounding. Four rounding modes are described 
by the standard: 

RN Round to Nearest 
RZ Round toward Zero 
RM Round toward -00 

RP Round toward +co. 

An implementation of the standard may support 
either RN only, with RZ for Round to Integer, or all 
four rounding modes. RN shall be the default mode 
for all arithmetic operations. The rounding mode may 
be specified by, say, preset mode bits. rounding mode 
options in each instruction, or rounding instructions 
which can follow the operation whose result is re
rounded, but not double-rounded. 

The preliminary result Z, to be rounded, may be 
viewed as in Section 2.5. S, the sticky bit, assures a 
result rounded as though first computed to infinite 
precision. From Z determine Zl and Z2, the numbers 
representable in the desired rounding precision that 



most closely bracket Z. Since Overflow is not checked 
until after rounding, the exponent of Zl or Z2 or both 
may be overflowed. 

If Zl=Z=Z2, there is no rounding error and 
RN(Z)=RZ(Z)=RP(Z}=RM(Z)=Z. Otherwise, signal 
Inexact-Result, and 

RN(Z)=the nearer of Zl and Z2 to Z; in case of a tie 
choose the one of Zl and Z2 whose least signifi
cant bit is 0. 

RZ(Z) = the smaller of Zl and Z2 in magnitude. 
RM(Z)= Zl. 
RP(Z}= Z2. 

When a system supports an extended format, it 
must provide users with the option of rounding to a 
shorter basic precision a result intended for a v.;der 
extended destination. Also, when all operands in an 
operation are of the same format, it shall be possible 
to round the result to the precision of that format. 
The specification of that option will require at most 
two bits of information: one enables precision control; 
one specifies whether rounding to single or double 
precision, effective only when precision control is 
enabled. 

2.15 Detection of Invalid and Overflow. If an unnor
malized, but not denormalized, number is destined 
for a single or double destination, the Invalid
Operation exception arises. Otherwise ... 

If z· s exponent overflows the intended destination, 
then signal Overflow and, if the corresponding trap is 
enabled, adjust the exponent bias as specified under 
Bias Adjust (Section 2.16}. 

On Overflow with the trap disabled, signal Inexact
Result. Then set Ztooo with the sign of Zif the round
ing mode is RN, RZ, RP and Z is positive, or RM and Z 
is negative. Otherwise, if Z is norm.e.lized, set Z to the 
largest norm.e.lized number representable in the 
destination field, with the sign of Z; and if Z is not nor
malized. simply set Z's exponent to that of the for
mat's largest norm.e.lized number. 

2.16 Bias Adjust. On Over/Underflow, with the cor· 
responding trap enabled, the exponent of a rounded 
result Z is wrapped around into the required range of 
the destination. Compute A= 192 in single, 1536 in 
double, 24576 in quad, and 3•2n·2 in extended, where 
n is the number of bits in the exponent. On Overflow 
subtract A from Z's exponent; on Underflow add A to 
Z's exponent. 

This scheme works only when the Over/Under
flowed exponent exceeds its destination's range by a 
factor no larger than 2. The only exception in this im
plementation is discussed under MOVE (Section 
2.12}. 

2.17 Step 2 of arithmetic operations. Preliminary 
result Z was developed in Step 1. 

(l} In modes RP and RM. "undo" any Over/ 
Underflow signals whose traps were enabled. 

(2) If the Invalid-Operation exception was sig
naled, produce a diagnostic Nontrapping NaN 
as the preliminary result Z. 
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(3) Set the sticky exception flags conesponding to 
the exceptions signaled. Trap if any exception 
has been signaled whose corresponding trap is 
enabled, allowing Z to be modified before 
delivery to the destination. 

(4} Deliver Z to its destination. 

2.18 FLOATING-TO-INTEGER. This instruction 
converts a floating-point number X into a binary in
teger of the host processor. If Xis a NaN or oo, then 
leave the destination unchanged and set the Invalid· 
Operation bit, trapping if the corresponding trap is 
enabled. 

For finite X, replace X by ROUND-TO-INTE· 
GER(X). Convert X to an integer in the desired for
mat and write the result into the destination. If X 
overflows the destination field, then truncate ex· 
cessive high-order bits and signal Integer-Overflow 
in the host processor, if it recognizes such an excep
tion; otherwise, set the Invalid-Operation sticky flag 
and trap if enabled. 

2.19 INTEGER-TO-FLOATING. Map the binary in
teger X in the host processor into a floating-point in
teger. If X cannot be represented exactly, then round 
as described in Rounding and set the Inexact-Result 
bit, trapping if the conesponding trap is enabled. 

2.20 COMPARE. A floating-point comparison can 
have precisely one of four possible results (condition 
codes}:<, =.>,and unordered. When the result is 
reported as the affirmation or negation of a predicate, 
the following implications determine that response: 

=affirms"• =. and ~. and denies <,>.and un
ordered. 

< affirms < and -.; and denies =. ~. >, and un
ordered. 

> affirms ;i, and > and denies <, ..;, =. and un
ordered. 

unordered affirms unordered and denies<,-.. =, 
;i.,and>. 

When two values that are unordered are compared 
via the predicates<,..:,;,?;,>, or their negations, then, 
in addition to the response specified, the Invalid
Operation flag is set and the trap invoked if enabled. 

The following table specifies the compare opera
tion. Unnorm.e.lized (and denormalized} operands are 
treated as though first normalized. 

)( VS Y 
-00 

Finite +00 00 
NaN 

Attine Attine Pro1ect1ve 

-00 

Att1ne 
.. < < NIA a 

Finite > b < a a 

+oo > > .. NIA a Attine 

00 
NIA 

Pro1ective a NIA ~ a 

NaN a a a a a 



a: unordered. 
b: The result is based on the result of X-Y. The 

subtraction may not have to be carried out com· 
pletely, and the possible Underflow and 
Inexact-Result exceptions are suppressed. 

2.21 Radix conversion. A system must provide stan· 
dard conversion to and from its basic formats. The 
specifications are a compromise designed to ensure 
that conversions are uniform and in error by less than 
one unit in the last place delivered, at a nearly 
minimal cost. The scheme below meets the re
quiremen ts for single and double. 

The particular decimal character code and format 
are unspecified. The decimal field widths are: 

single: up to 2-digit exponent and up to 9 
significant digits. 

double: up to 3-digit exponent and up to 17 
significant digits, with the option of using up to 19 
digits in decimal-to-binary conversion. 

Two functions perform conversions between 
binary floating-point integers and character strings 
consisting of a sign followed by one or more decimal 
digits. BINSTR converts a binary floating-point in
teger X, rounded to the nearest integer, to a signed 
decimal string. STRBIN converts a signed decimal 
string with at most 9 digits in single, and 19 in double, 
to a binary floating-point number X whose value is 
that of the decimal integer the string represents. 

The function log10 is required and msy be com
puted from the formula 

log10(X) = log2 (X) • Iog10(2). 

It need be computed only to the nearest integer for 
this calculation. Log2(X) may be approximated by 
X's unbiased exponent. Within the conversion pro
cess. arithmetic must be done with at least 32 signifi
cant bits for single and 64 bits for double. 

Powers of 10 not exactly calculable in the stated 
precision shall be procured from tables. The following 
tables require minimal storage: 

(A) Systems with single precision only: 1013 can be 
represented exactly with 32 significant bits. To 
cover the range up to 1038, a table with the 
single entry 1026 suffices. 

(B) Systems with both single and double precisions 
only: 1027 can be represented exactly with 64 
significant bits. To cover the range up to 10308, 

a table of 105 ◄, 10108, and 10216 suffices. 

Binary-floating-to-Decimal-floating. Given binary 
floating-point number X and integer k with 1-.; k ~ 9 
for single precision and 1~ k~ 17 fordoubleprecision. 
compute signed decimal strings I and E such that I 
has k significant digits and, interpreting I and E as 
the integers they represent, 

X=l • 10E+I-k = sd.ddddddd • IOE 

wheres is the sign of X and the d's are the k decimal 
digits of I. 

(1) Special cases: If Xis +oo, - 00,orNaN,delivera 
nondecimal string. for ex.ample, + +, - - , .. , 
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respectively. If X is zero, then return +O or -0 
as appropriate. Otherwise. 

(2) Set X to its absolute value, saving its sign. 
(3) If Xis normalized, compute U=log

10
(X): other

wise let U =log 10(smallest normalized number). 
(4) Compute V = U + 1-k, rounded to an integer 

inmodeRZ. 
(5) Compute W=X/lov. rounded to an integer in 

mode RN. 
(6) Adjust W: 

lfW~lOk+l. then increment V and go to (5). 
If W=IO•, then increment V, divide W by 10 
(exactly), and go to (7). 
If w..;1ok- 1-1 and X was normalized in (3), 
then decrement V and go to (5). 

17) Return I =BINSTR(W with sign of X) and 
E=BINSTR(V). 

Decimal-floating-to-Binary-floating: The decimal 
floating-point number X has the form X=sddddd. 
DDDDDDD • l0E, where leading zeros are not 
counted as significant digits. The following are given: 

(A) signed decimal string E 
(Bl signed decimal string I= sdddddDDDDDDD 
(Cl integer P indicating how many digits of I are to 

the right of the decimal point so that X can be 
written 

X=I•10·P•10E. 

(1) Compute U=STRBIN(I). 
(2) ComputeW=STRBIN(El. 
(3) Compute result X =U•10w-P. ■ 
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Errata-
"'An Implementation Gulde to a Proposed 
Standard for Floating-Point Arithmetic" 

The changes to Jerome T. Coenen', article in the January 
1980 is~ue of Computer (pp. 68-79) arc of two types. Those 
marked (E) correct errors. while the otheri, marked CU), bring 
the 1uide up to date with the most rcet"nt draft of the proposal. 

(U) Introduction, para. 2, line 2: Replace Draft 5.// with 
Draft 8.0. Also update the footnote •• to refer to the 
March 1981 issue of Computer. 

(U) II.I, under Rounding Modes: Ddcte line (A) and the 
label "(B)'' since all rounding modes an required now. 

(E) Table I: ln the formula for represented denormalized 
aumben the exponent of 2 is incorrect. The correct for
mula is 

(U) 

(U) 

(E) 

(E) 

(E) 

(\)) 

(E) 

(-1)5 X 2£-S...+ I X (L.F). 

fl .S, paragraph beginning An imple-ntalion of. 
. That fint sentence should be sboncned to An implemen
tation of thl! standard shall support all four rounding 
modes. 
I 1.12: Readers should note that the implementation 
guide uses unnormalized in its traditional sense, that is, 
describing any number who,e leading significant digit is 
0; thus denormalized numbers arc simply those unnor
malized numbers whose exponent is the format's 
minimum. On the other hand, Draft 8.0rcstricts the word 
11nnormali:..ed to apply only to oumberi whose leading 
significan1 bit is zero but which arc not denormalized. 
§2. 7: The special case test 

If either operand is 0111m11ormal :.~o then procttd as in 
c; otherwise. 

should be removed from te and inscrtrd at the be&inning 
of §f,h.i. Thus te begins simply Compute.. 
12.8: The Exception clause of §b,c,fshould be changed to 
Exception: If in b, Y is 111111ormal uro, proceed as in a. 
§2.9: lo ~b.c replace unnormalzero by unnormalized. To 
§f append Normali::.e Zand check for underflow. 
§2. J.4, para. I: The i;entencc beginning A.11 implementa
tion of . .should be shoncncd to An im~me11101ion of 
the standard shall support all four rounding modes. 
§2.17: The last word of clause (I )should be changed from 
oabled to disabled. 

2 .16 



CHAPI'ER 3 

Numerical Programming Environments 

The body of this chapter is an article by W. Kahan and this author as 

published in the book "The Relationship between Numerical Computation and 

Programming Languages", edited by J. K Reid. It is reprinted here with the 

permission of the publisher, North-Holland Publishing Company. 

Although the proposed arithmetic standards are intended to specify the 

total numerical programming environment, they address only indirectly 

many of the language issues that arise in actual implementations. This 

chapter is an attempt to defuse some of the conflict between numerical 

requirements and existing language standards with an argument for the 

"near" independence of numerical (semantic) and language (syntactic) 

domains. It is believed that proper partitioning of responsibility for the 

design of a programming system will lead to the best implementations. 
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The Near Orthogonality of Syntax, Semantics, and 
Diagnostics in Numerical Programming Environments 

Jf. Kahan a.nd Jerome T. Coonen 

Mathematics Department 
University of California 

Berkeley, California 94720 
U.S.A. 

lre can improve numerical programming by recognizing that three aspects of the 
computing environment belong lo intellectually separate compartments. One is the 
syntax of the language, be it Ada, C, Fortran or Pascal. which gives legitimacy to 
various expressions without completely specifying their meaning. Another might be 
called "arithmetic semantics". It concerns the diverse values produced by 
different computers for the same expression in a given langue.ge, including the 
values delivered e.fler exceptions like over /underfiow. The third compartment in
cludes diagnostic aids, like error fl..a&s and messages; these too can be specified in 
language-independent ways. However imperfect. this decoupling should spell out 
for all concerned the nature of arithmetic responsibilities to be borne by hardware 
designers, by compiler writers and by operating system programmers. 

"Another of the great advantages or using the axiomatic 
approach is that axioms o!'J'er a simple and fiexible technique for 
leaving certain aspects of a language undefined. for 
example ... eccuracy of !'!eating point... This is absolutely e!nen
tial for standardization purposes ... " 

- C. A. R. Hoare (1969) 

Professor Hoare's attitude toward floating point semantics ref\ects the anarchy 
that befell commercial floating point hardware early in the 1960's [ 1 ]. and wor
sened in the ?O's. That anarchy confounded attempts to characterize all floating 
point arithmetics in one intellectually manageable way. Now there is hope for the 
19BO's. A new standard for binary floating point arithmetic has been proposed 
before the IEEE Computer Society, and a radix-independent sequel is in the works 
Since the binary standard has been adopted by a broad range of computer 
manufacturers, including much of the microprocessor industry, we expect numeri
cal programs to behave more nearly uniformly across different computers, end 
perhaps across different languages as we 11 A draft of the binary standard, along 
with several supporting papers, may be found in the March 19B 1 issue of Computer 
[2-5]. 

Starting in the 1960's programming language designers came to be the 
arbiters of most aspects of the programming environment. With control of the pro
grammers' vocabulary, language designers could control fundamental features 
such as the number of numeric data types available and the extent of run time 
exception handling. The language even limited the numeric values available by 
constraining the literals in the source text. This is not to say that language 
designers acted capriciously. They were disinclined to mention any capability not 
available on all computers. In this respect computer architects have laid a heavy 
hand on the computing environment. Languages must reflect the least common 
denominator of available features, end so they tend to vague oversimplifications 
where floating point is concerned An extreme case is the new language Ada which, 
by incorporating W. Stan Brown's very general model for floating point computation 
(5]. pretends that the difference between one computer's arithmetic and another·s 
is merely a matter of a few environmental parameters. But sometimes the 
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programmer must know his me.chine's arithmetic to the le.st detail, especially when 
trying to circumvent limitations in range or precision. These details, dangling 
between language designers e.nd computer architects. too often receive short shrift 
from both. Tying up these loose ends would improve the computing environment. 

Of course the computing environment invites numerous improvements. to 
graphics, file handling, de.le.base management e.nd others, e.s well e.s floating point 
e.nd languages. But enhancements to which high-level languages deny access are 
enhancements destined to die. Those of us working on the proposed IEEE floating 
point standards have had to face this problem. We believe the solution is a proper 
division of labor, rather than grand attempts to improve loo many aspects of the 
computing environment simultaneously; the latter way would require impractical 
coordination. For example, to encourage independent development of program
ming languages and floating point hardware, we propose that language (syntactic) 
issues be decoupled from arithmetic (semantic) issues to the extent possible. We 
present our view of the interplay between syntax, semantics, and diagnostics as 
parts of the computing environment, and discuss how they interface with each 
other. Given an adequate interface discipline, we hope that responsibility for these 
parts can be divided among language designers, numerical analysts, systems pro
grammers, and others In the past this division has been unclear. Unfortunately, 
when everybody is responsible, or when nobody is responsible, then everybody can 
be irresponsible. 

Portability 
We regard the programming language as just one layer of the computing 

environment, dissenting from a more traditional view that the language is the 
environment. What does this mean for program portability? Until very recently, 
portability of numerical programs was considered to be a quality of source code 
that could be compiled and run successfully without change on a variety of com
puters. The issues appeared largely syntactic. For example, programs like the 
PFORT verifier [7] were developed to check Fortran codes for adherence to a stan
dard for "portable Fortran", their principal task being to weed out various quirks 
of dialect. Nowadays, we acknowledge that the portability issues go deeper than 
differences among Fortran dialects. They entail the (semantic) subtleties of 
over/underflow and rounding that, if ignored, can cause ostensibly portable pro
grams that function beautifully on one machine to fail on another. Programming 
languages that lack the vocabulary required to address these issues aren't very 
helpful here. lfwe cannot "mention" these issues how can we resolve them? 

Ideally, the variation of floating point arithmetic from one machine to another 
should be describable with a few parameters [BJ which portable programs could 
determine through system-dependent environmental inquiries [9]. This scheme 
works satisfactorily for many programs that do not depend critically upon the finer 
points of the arithmetic However, any such parameterization must be based upon 
an .abstract model encompassing simultaneously all current arithmetic engines, 
some of them disconcertingly anomalous [1, 10]. To insist that this model underlie 
portable programming is to dump upon programmers the onus to discover and 
defend against all mishaps the model permits, some of them mere artifacts of gen
erality. This in turn would burden programs with copious tests against subtle (and 
certainly machine-dependent) thresholds to avoid problems with idiosyncratic 
rounding and over/underflow phenomena. A programmer who shirks his responsi
bility to produce robust code obliges the user of his program, possibly another pro
grammer, to unravel a more tangled web Ultimately, the buck may be passed to 
users who find either their programs or their computers to be inexplicably unreli
able. We doubt that any semantic analog of the PFORT verifier will ever be able lo 
test for robust independence of the underlying arithmetic. Computer arithmetics 
are too diverse to allow every potentially useful numerical algorithm to be pro
grammed straightforwardly in a fashion formally independent of the underlying 
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machine. 
Portability at the source code level is nice when inexpensive. When not, we are 

content with "transportability", whereby algorithms can be moved from one 
environment to another by routine text conversion, possibly with some aid from 
automation. An algorithm may depend critically upon the underlying arithmetic 
semantics and upon e system's ability to communicate error reports between sub
programs. It is transportable to the extent that the dependencies can be commun
icated in natural language using mathematical terms, if not in Fortran. We are not 
advocating yet another programming leni;uage. We prefer that programmers 
accompany their codes with some documentation that explains, and can even be 
used to verify, how the program handles its interactions with the underlying sys
tem. Because computing environments ere so diverse, we expect some algorithms 
to be transportable to only a few systems. not all; this does not undermine the 
notion of transportability. Essential to transportability is a manageable corpus of 
information about 
• syntax - the programming language to be used, 

• 

semantics - the arithmetic of the underlying computer, including the run-time 
libraries of functions like cos(), and 
diagnostics - the system's facilities for error reporting and handling, 

preferably no more than can flt on e short bookshelf, and yet enough to cover e 
wide range of manufacturers' equipments. 

Synt.u: 
In this paper. synta.:r: refers to the expressions in e language - which ones are 

legitimate and how they are parsed Issues relevant to numerical calculations 
include the number of date formats available, how they combine to form arrays and 
structures, and the order of evaluation in unperenthesized expressions. Languages 
very greatly in their provision of numeric data formals, usually called "types". 
Both Basic and APL have just one numeric type, which is to be used for both integer 
and floating point calculations; Pascal and Algol 60 have just one real type. Fortran 
and C have single end double types, although in C all floating expressions are of 
type double. PL/I programmers may specify the precision of their floating point 
variables, though they typically map into the single and double types supported by 
the underlying system. The new language Ade provides syntactic "packages" in 
which floating types may be defined to correspond to the host system's facilities, 
but its strong typing prohibits mixing of different user-defined types in expressions 
without explicit coercions, even if the underlying hardware types are the same. 

Expression evaluation is just es varied. For example, in 

1.0 + 3/2 

most compilers would recognize the 3 and 2 as integers. Their ratio would be 
evaluated as the real 1.5 or truncated integer l depending upon the strength of the 
1.0 to coerce their types. Different Fortran compilers have disagreed in this situa
tion. In Ada such an expression would be illegal unless the 3 and 2 were written 
with decimal points to indicate that they were real literals. What about the 
unparenthesized expression 

A • B + C ? 

Most languages, like Fortran, evaluate it as if it were written (A •B) + C, but APL 
evaluates A x B + C as if it were written A x (B + C). The situation gets more com
plicated when relational and boolean operators are involved. In Pascal, the attempt 
to simplify the language by keeping the number of levels of operator precedence 
smell led to some surprises for programmers For exemple, because the conjunc
t10n n has greater precedence than <, the expression 
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:r<yny<z, 

used for checking bounds on the variable y, has the bizarre interpretation 

( :r < (y ny )) < z 

which is illegal because of the appearance of the real y as an operand to n. 
Perhaps the widest syntactic liberties are ta.ken by standard C compilers. 

Expressions of the form 

a+ b + c 

where a, b. and c may be subexpressions, are evaluated m an order determined at 
compile time according to the complexity of a, b, and c. This is so regardJ.ess of 
parentheses such as 

(a + b) + c 

Such a convention is disastrous in floating point where, say, (a+ b) cancels to a 
small residual to be added into the accumulation c. In such cases all accuracy may 
be lost if (b +c) is evaluated first at the compiler's whim. The cautious program
mer who writes 

(:r - 0.5) - 0.5 

to defend against a machine's lack of a guard digit during subtraction will always 
be vulnerable, if not to a C compiler then to an optimizer that collapses the expres
sion into the algebraically, though not numerically, equivalent form (:r - 1.0). 

To jump the gun a bit, it is clear from the examples above that syntax con
strains semantics. Syntax also constrains programmers who, C compilers notwith
standing, are well advised to preclude any ambiguity in expression evaluation by 
inserting parentheses liberally. 

Semantics 
We concentrate here on arithmetic semantics. Thal is, after an expression has 

been parsed - so the computer knows which operations to perform - what does its 
evaluation yield? Floating point semantics depends vitally on the underlying arith
metic engine. The initiated reader realizes that this is where the real headaches 
set in. For example, on machines such as programmable calculators where the 
fundamental constants 11 and e are available in a few strokes, we might expect 

(11 x e) - (e x 11) 

to evaluate to 0.0 since, semantically, we expect multiplication to be commutative 
despite roundoff. Unfortunately, even this simple statement is not universally true. 
Different Texas Instruments calculators yield different tiny values for the expres
sion above; and it's not just a matter of machine size and economy. for early edi
tions of the Cray-I supercomputer exhibited similar noncommutativity. 

Another well-known example of murky semantics is the expression 

X - (1.0xX) 

which is exactly X rather than 0.0 for sufficiently tiny nonzero values X on Cray 
and CDC computers On these machines (1.0xX) flushes to 0.0 for those tiny X. On 
some other machines that lacked a guard digit for multiplication, the expression 
above was nonzero whenever X's last significant digit was odd 1 

Hardware-related anomalies like these seem to predominate in any serious 
treatment of arithmetic semantics. Such distractions are what led Professor Hoare 
to despair about floating point in high-level languages. We will not dig further into 
the lore of arithmetic anomalies Interested readers can find an introduction in 
[ 1]. The technical report [ 1 O] studies the overall impact of anomahes and com
pares two approaches lo improvement. 
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Arithmetic semantics is not restricted to simple operations In languages like 
Basic that include matrix operations, assignments like 

JJATX = JNV(A) •B 

are allowed. As users might expect, most implementations evaluate (A- 1) •B 
(approximately), following the strict mathematical interpretation of the formula. 
However, more robust systems by Tektronix and Hewlett-Packard use Gaussian 
elimination to solve the linear system AX = B for X, thereby obtaining a usually 
more accurate X that is guaranteed to have a residual B - AX small compared 
with I BI + I A I· IX I. If A is close enough to singular, the subexpression JNV(A) 
may be valid or not depending upon good or bad luck with rounding errors - on all 
machines except the Hewlett-Packard HP 85 All machines solve (A + ti.A )X = B 
with llA comparable lo roundoff in A though possibly differing from column to 
column of X. The HP 85 further constrains AA to guarantee that (A + AA)- 1 exists. 
Thus it has no "SJ;-;GULAR MATRIX" diagnostic. Consequently, a program using 
inverse iteration to compute eigenvectors always succeeds on the HP B5 but on 
other machines is certain to fail for some innocuous data. ls such a program, using 
a standard technique, portable or not? Who is to blame if it is not? 

Arithmetic exceptions such as over /underflow and division by zero flt into our 
informal notion of semantics v.·hen they are given "values", We take this view in 
spite of a current trend among authors to consider exceptions under a separate 
heading pragmatics. This trend is understandable, given the variety of exception 
handling schemes across different hardware. Consider for example the expression 
0.0/ 0.0 , When they are to continue calculation (i.e. without a trap) CDC, DEC 
PDP /VA.X-11, and proposed IEEE standard machines stuff a non-numeric error sym
bol in the destination field. This symbol is then propagated through further opera
tions. Most other machines just stop, forcing program termination. At least one 
will store the "answer" 1.0. 

Dividing zero by itself is usually bad news within a program, so the diversity of 
disasters that arise on various machines is not too surprising. A quite different 
situation arises with the exponentiation operator in yx, Since this is part of the 
syntax of several languages, for example Fortran, Basic, and Ada, responsibility for 
its semantics hes been taken by language implementors. Of the many problems 
that arise we will consider just one: what is the domain of yx when both X and Y 
are real variables? Consider the simple case (-3.0)30

, which is: 

-:no 
-26.999 ... 9 

TERMINATION 
undefined 

+27.0 

... on very good machines, 

... on good machines, 

... on bad machines, 

... on cop-outs, 

... on very bad machines. 

Why this bizarre diversity of semantics? Although for arbitrary X the expression yx 
may have no real value when Y is negative, the particular case above is benign 
because X has an integer value 3.0. Thus restricting the domain of Y to nonnega
tive numbers is unnecessarily punitive, We recommend that, should X be a :floalmg 
point Fortran variable with a nonzero integer value, 

Y .. X = Y .,. INT(X) . 

This cannot hurt Fortran users, but will help the Basic programmer (and the 
conversion of programs from Basic) because most implementations of Basic, wilh 
just one numeric data type, cannot distinguish the real 3.0 from the integer 3 in 
the exponent. This recommendation costs extra only when Y is negative. On the 
other hand, if Y is 0.0 we distinguish Yo 0 , which is an error, from Yo= 1.0 which 
mathematics makes obligatory. Note that none of these issues are language issues, 
though until now they have been setlled by language implementors. Ideally, the~e 
responsibilities should be lilted from language designers and implementors, and 
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borne by people like the members of IFIP Working Group 2.5. 

The point of this digression into the murk of pragmatics was to indicate that 
the current situation in exception handling is the result of a host of design flaws 
rather than inherent difficulties. We object to the connotation "pragmatics" car
ries with it of acquiescence to inevitable hazards We prefer to capture all seman
tics, including the anomalies, under one heading even if this entails a different 
semantics for each different implementation of arithmetic. This exposes rather 
than compounds a bad situation. 

A notably clean and complete arithmetic semantics is provided by the pro
posed binary floating point standard. The IEEE subcommittee responsible for the 
proposal set out to specify the result of every operation, balancing safety against 
utility when execution must continue after an exception. Even a cursory glance at 
the proposal indicates the extent to which exception handling motivated the 
design: 

• 
• 

• 
• 

Signed DO for overflow and division by O 0. 
Signed O.Otointeractwith ±DO, e.g. +1.0/-0.0 = -DO. 

Na~ - not a number - symbols for invalid results like 0.0/0.0 and --'=3 . 
Denormalized numbers - unnormalized and with the format's minimum 
exponent - to better approximate underflowed values. 
Sticky flags for all exceptions . 
Optional user traps for alternative exception handling . 

These features promote comprehensible semantics for "standard" programming 
systems. 

Diagnostics 
Afler syntax and semantics, the third aspect of the numerical programming 

environment is the set of execution time diagnohic aids. They may be roughly 
divided into anticipatory and retrospective aids, and according to whether they find 
use during debugging or during (robust) production use. 

The principal anticipatory de bugging aid is the breakpoint for control flow and, 
when the hardware permits, for cl ala too. Some systems can monitor control or 
data flow according to compiler directives inserted in a program. Retrospective 
debugging aids include the familiar warnings and termination eulogies, as well as 
the more voluminous memory dumps and control tracebacks. Systems with sticky 
error flags can list those still standing when execution stops - in a sense they sig
nal unrequited events 

For the production program that would be robust, and perhaps even portable, 
the situation is not so clear. Because most current systems provide neither excep
tion flags (such side effects are anathema to some language designers) nor error 
recovery. a program - if it is not to stop ignominiously on unusual data - must 
include precautionary tests to avoid zero denominators and negative radicands, 
and tests against tiny, but carefully chosen, thresholds to ward off the effects of 
underflow to zero. The lack of flags can force the use of explicit error indicators in 
subprogram argument lists to communicate exception conditions. The languages 
Basic, PL/I, and Ada allow for anticipatory exception handlers (e.g. ON <condition> 
... in PL/I) but do not allow the exception handler to discover anything a bout the 
exception beyond a rough category into which it has been lumped, thereby making 
an automatic response by the program very cumbersome. 

Another variety of anticipatory diagnostic aid is available through an option in 
the proposed floating point standard. It is essentially an extension of the PL/I 
"on-condition" except that it is outside any current language syntax. This feature, 
which might be called trap-with-menu, allows the programmer to preselect from a 
small list of responses an alternative to the default response. By devising the menu 
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carefully, we should be able to give the user sufficient flexibility without having to 
cope with a voluminous floating point "state" at the time of the exception. 

The Syntactic-Semantic Interface 
From the point of view of the numerical analyst, the semantic content of pro· 

gramming languages is given by the following list. 

• 
• 

• 

• 

• 

• 

What are the numeric types, and what is their range and precision? 

Which numeric types are assigned to anonymous variables like intermediate 
expressions, converted literals, arguments passed by value, ... ? 

Which numeric literals are allowed, and are they interpreted differently in the 
source code than the IO stream? 
Which basic arithmetic operations are available, and what is in the library of 
scientific functions? 

Is there a well-understood vocabulary reserved for the concepts and functions 
we need, and defended against collision with user-defined names? 
What happens when exceptions arise? How can error reports be communicated 
between subprograms? 
Is there a way to alter the default options (for, say, rounding or handling of 
underflow) by means of global flags? 

These are among the knottiest issues in numerical computation. But, to a large 
extent. they can be freed from the more conventional language issues and thus 
resolved within the numerical community Only questions about data types and the 
change of control flow on exceptions are necessarily tied to language syntax. 

Consider a hypothetical language with only skeletal numerical features. 
Assume that integer types and arithmetic and character strings are "fully" sup
ported The language supports single and double real variables, pointers to them, 
and allows real variables to be embedded in arrays and structures There is also 
provision for functions returning real values, and for real parameters passed either 
by value or reference. But the only operation on real types is assignment of a sin· 
gle value io a single variable. and of a double value to a double variable. 

To be useful numerically, this hypothetical language would require a support 
library providing the basic arithmetic operations as well as the usual complement 
of elementary functions. But because each operation more complicated than a 
straight copying of bits would result only from an explicit function call, the pro· 
grammer would in principle have complete control of the arithmetic semantics (by 
choosing a suitable library). As an example, consider the evaluation of the inner 
product of the single arrays .:r[] and y[] using a double variable for the intermedi· 
ate accumulation to minimize roundoff: 

double....precision temp_sum; 
temp_sum := DOUBLE.l..JTERAL( "0.0" ); 
for i in l .. n do 

temp_sum := DOUBLE...5UM( temp_sum, 
SlNGLEJO...DOUBLL.PRODUCT( .:r[i), y[i))); od 

inner_product := DOUBLE.JO...SINGLE( temp_su.m ); 

Even this simple example exposes many of the questions that arise in numerical 
programs. Would the constant 0.0 require a special notation (such as 0.0D0) to be 
assigned to a double variable? In a more conventional rendition of the program the 
inner loop would involve a statement of the form 

temp_sum := temp_sum + .:r[i]~[i); 
Would the product be rounded to single precision before the accumulation into 
temp_sum, destroying the advantage of double precision? 
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Semantic Packages 
The skeleton language above may be unambiguous, but it is clearly much too 

cumbersome for calculations involving complicated expressions. What we must do 
is bridge the gap between the handy syntactic expression :r [ i; '"y [ i) and the 
semantically well-defined 

SlNGLEJO-DOUBLLPRODUCT( :r[iJ, y[i]). 
We propose to do this through so-called semantic packages. 

It may be a sign of progress that the new language Ada comes very close to 
suiting our needs. Although Ada incorporates the Brown model for arithmetic by 
providing a set of predefined attributes for each real type available to the program
mer, this is in general insufficient for programs that would be robust. More impor
tant for us, Ada allows the overloading and redefinition of the infix operators+,-. 
etc. and in so doing provides the e:rplicit connection between the operators and the 
real hardware functions they represent. The semantic packages. corresponding 
directly to the (syntactic) packages construct in Ada, could contain exact 
specifications of the arithmetic functions (which are actually implemented m 
hardware). Thus there would be a semantic package for each basic architecture. 
for example IBM 370, DEC PDP /VAX-! 1, and the proposed IEEE binary standard. 
Some semantic packages could be more general. encompassing several machines 
whose arithmetic is similar enough that a few environmental inquiries supply all 
the distinction that is necessary for a wide range of applications. For example. one 
such package might include IBM 370, Amdahl, Data General MV /8000, HP 3000, DEC 
PDP /VAX-11 and PDP-! 0, relegating Tl, CDC 6000. Cray l to another. 

Our attempt to force the gritty details of arithmetic semantics upon program
mers may dismay readers who embrace the modern trend to elevate the program
ming environment above machine details. Such an attempt is made within Ada. by 
means of a small set of predefined attributes associated with each real type We 
have already explained that this is not enough; sometimes the program that would 
be robust must respond to machine peculiarities that defy simple parameteriza· 
lion The report [10] on why we need a standard contains several examples. 

An effort to "package" arithmetic semantics within various programming 
languages may seem impossible. For example, the details of floating point. espe
cially in the proposed IEEE standards. involve global flags to indicate errors, and 
modes to determine how arithmetic be done. In Fortran, such state variables may 
be defined as local data within the standard library functions whose job is to test 
and alter the flags, although the actual implementation involves collusion with the 
hardware flags. This is not a complete formalization, since Fortran provides no way 
to describe the connection between the flags and the arithmetic operations 
Current trends in language design eschew error flags as side effects of the arith· 
me tic operations (functions) Modes and flags seem to violate the principle that all 
causes and effects of expression evaluation should be visible within that expression 
Perhaps surprisingly, Ada again provides us with the desJTed facility - but without 
excessive or expensive generality. In accordance with the Steelman requirements 
of the United States Department of Defense, Ada permits side effects .. limited to 
own variables of encapsulations". This is exactly our intention in using semantic 
packages to describe arithmetic. 

Optimization 
Any treatment of floating point semantics must deal with that favorite whip· 

ping boy, the code optimizer. We considered a most extreme example above, in 
which C compilers would calculate floating sums like 

(a + b) + c , 

without regard to the parentheses, in whatever order makes best use of the regis· 
ter file. This is simply a mistake in the language design 
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Not all anomalies are so clear-cut. Some questions arise when, as in architec
tures suggested by the proposed IEEE standard, extended registers with extra pre
cision and range beyond both single and double types are used as intermediate 
accumulators. Consider the typical code sequence 

:r := a. • b; 
y:=x/c; 

in which all variables are assumed to be of type single. If (a.• b) were computed in 
an extended register, should that value or the single value :r be used in the evalua
tion of y" EtT!ciency dictates the former, saving one register load and lessening 
the risk of spurious over /underflow. But common sense dictates the latter, so that 
what the programmer sees is what the programmer gets. 

A similar situation arises in inner product calculations of the type discussed 
above. Consider the loop 

dou ble._,precision temp_sum; 
temp_sum := 0.0; 
for i in l .. n do 

temp_sum := temp_sum. + :r[i]•y[i]; od 
inner_prociuct := temp_sum; 

in which, like the earlier example, all variables are single except for the double 
temp_sum The fully "optimized" compiler might run this loop with just two 
extended registers, one to compute the products :r[i]•y[i] and one to accumulate 
temp_sum, thereby avoiding (n-1) register loads and stores by simply keeping 
temp_sum in a register. Alas, the programmer asked for a double precision inter
mediate, not extended, so such optimization is precluded. 

The moral of these examples is that declared types must be honored. Also, the 
type assigned by the compiler to anonymous variables must be deducible syntacti
cally, or, better, it should be under the programmer's control. The alleged optimi
zations above were disparaged because named variables were replaced surrepti
tiously by extended counterparts that happened to be in registers. This is not to 
say that extended evaluation is unhealthy; on the contrary, extended temporaries 
can reduce the risk of spurious over /underflow or serious rounding errors, and 
therefore should be used for anonymous variables. But the advantage of extended 
is Jost if languages prevent programmers from requesting it for declared tern; 
poraries. The expression 

temp_sum + :r[i]"y[i] 

in the loop above would best be computed entirely in extended before the store 
into temp_sum. These facilities for extended expression evaluation are not unique 
to the proposed IEEE standard; the benefits of wide accumulation were realized in 
the earliest days of computing. The Fortran 77 standard includes some intention
ally vague language about expression evaluation in order not to prohibit extended 
intermediates, and the Ada standard, which seems to avoid some problems by 
strict typing and requirements for explicit type conversions in programs, uses a 
so-called universaLrea.l type (at least as wide as all supported real types) for the 
evaluation of literal expressions at compile time. 

The use of an extended type for anonymous variables is prone to one class of 
problems. When real values or expressions may be passed by value to subprograms 
there may be a conflict between the implicit type of the expression and the 
declared type of the target formal parameter. This problem arises in current 
implementations of the language C, which supporls bolh single and double types 
but specifies that all reel expressions are of type double. Suppose that a C pro
gram contains the statement 
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y :=J(a"b/c); 

where all variables are of type float (single) and the function J() is defined by 

floalf(x) 
float x; 

! ...... I 
How can the type of the expression (a "b I c) be double while the type of the formal 
parameter x is float" C resolves the discrepancy by silently countermanding the 
declaration of x and replacing float by double. Once again, what you see is not 
what you get This use of wider intermediates, exploiting the PDP-11 floating point 
architecture, is exactly analogous to one use of extended registers. Though it is 
efficient and straightforward to implement: it is not acceptable. 

Conclusion 
We have cited examples to show that progress in numerical computing has 

been slowed by questionable decisions in the design of computing languages and 
systems. We have suggested a rough division into three categories, syntax, seman
tics and diagnostics, so that the difficult issues could be resolved by those most 
qualified - and most profoundly impacted. IFIP Working Group 2.5 might well take 
responsibility for the interfaces with semantics. Ideally their efforts will lead to 
fully specified environments for which reliable numerical software can be derived, 
possibly automatically, from algorithms expressed in a mathematical form if not 
already in a programming language. Programming then becomes a three phase 
translation involving the language (syntax) to be used, the underlying arithmetic 
engine (semantics), and the host system (diagnostics). We acknowledge that these 
categories are not completely independent, and that the boundaries between them 
cannot be drawn precisely, at least not yet. Jl;onetheless, we remain convinced that 
those boundaries must be drawn i1 we are to bring the required expertise to bear 
on the current morass. 
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CHAPTER 4 

Proposed Floating Point Environmental Inquiries in FORI'RAN 

This is a proposal for floating point environmental inquiries in Fortran. 

It was drafted by W. Kahan, J. Demmel, and J. T. Coonen. In February 1982, 

the authors presented it to the ANS] X3J3 Fortran Standards Committee on 

behalf of IEEE Working Groups 754 and B54, which are developing binary and 

decimal standards for floating point arithmetic. Although it is intended for 

inclusion in the next Fortran standard, known for the moment as Fortran BX, 

the scheme is designed to be compatible with Fortran 77 implementations. 

1. Portability 

Fortran is usually associated with high speed computation on main

frames and minicomputers. And numerical Fortran codes are considered 

portable when they behave reasonably across this class of machines. Porta

bility has been achieved by defining parameters that demarcate the boun

daries of the various machines' arithmetics. The Bell Labs PORT Library [ 4] 

is just one significant effort. More recently, W. S. Brown has devised a model 

of arithmetic [2] encompassing nearly all existing arithmetic engines. He 

captures their diversity in an abstract, parameterized machine which is in 

some sense the least common denominator of all existing machines. J. L. 

Blue's program [1] to compute the Euclidean norm of a vector exemplifies 

the programming style that goes with Brown's model -- and the difficulty of 

writing such universally portable codes. 
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But the software situation is changing somewhat. Proposed IEEE stan

dard P754 for binary floating point arithmetic [5] is gaining acceptance in 

the computing industry. For example, significant hardware support for the 

standard is already available from one microprocessor manufacturer (Intel) 

and is expected soon from several others. What is important is that these 

new processors will not be restricted to a few in-house systems. Rather, they 

will be embedded in computer systems marketed by diverse companies, and 

they will perform at the levels of today's minicomputers. The P754 proposal, 

and its decimal sequel PB54, provide features lacking in most previous 

machines, features such as sticky exception flags for errors, a choice of 

responses to exceptions like over /underflow, and a choice of direction of 

rounding. To exploit these features programmers need access to them in 

high-level languages. And the means of access must be standardized for 

each language so that codes can, with minimal extra effort, be made port

able across the entire family of "standard" systems. 

2. Design Constraints 

This proposal serves two rather different needs. Following the lead of 

others who have worked in this area, notably W. S. Brown, W. J. Cody, S. l. 

Feldman, B. Ford, and B. T. Smith, it provides access to machine parameters 

which permit programming in a style that defends against the peculiar ways 

machines handle roundoff and exceptions like over /underflow. This facili

tates the first kind of portability above. On the other hand, the 754/B54 pro

posals are recognized as important enough to warrant functions to access 

lheir features, even though those features are not universal. 
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The capabilities in this proposal are needed in Fortran 77 now. There

fore the proposal has been devised, particularly in its syntax, to be compati

ble with existing Fortran 77 systems. And, in order that the proposal be 

implementable at low cost on a broad range of Fortran engines, it has been 

designed to have negligible impact on compilers. For example, no new 

reserved words like ,HUGE. are used. Instead, all inquiries are made through 

intrinsic functions in the same domain as mathematical functions like COS 

and TAN. This concentrates both the effort and the responsibility where they 

belong. 

Ideally, an inquiry mechanism should be invisible to programmers not 

interested in it, and readily available to those who are. Since there is no sim

ple "include" mechanism in Fortran 77, no convenient way exists to reserve 

a named COMMON area with numerous PARAMETERs and variables related to 

the environment. The prospect that programmers might enter the relevant 

definitions without error (or complaint) is clearly hopeless. So the inquiries 

cannot depend on predefined variables or values. 

With function names restricted to six characters, and no protection for 

the programmer whose names may collide v.ith system routines, parsimony 

is an issue. This proposal consists of a minimal yet useful set of functions 

from which programmers may easily deduce all the commonly used parame

ters. 

Except for scaling by a power of the machine radix, which is deliberately 

specified to be fast, environmental inquiries tend to appear not in critical 

loops but at milestones before and after units of computation. Thus their 

speed is not important, although in many cases "smart" compilers could 

replace calls to environmental intrinsics with simple in-line code. Coupled 
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with the speed issue is exception handling, since there is a price for checking 

special cases. The inquiries specified here are intended to follow a system's 

overall conventions for exception handling. This is consistent with the 

754/854 philosophy, though it is more restrictive than, say, the proposal of 

Brmvn and Feldman [3] which leaves some boundary cases undefined. 

What makes this proposal more complicated than previous schemes 1s 

its conscientious attempt to deal with boundary cases that jeopardize the 

robustness and portability of programs. Three classes of funny numbers lie 

beyond the frontier of Brown's model: 

Many computers support a variety of tiny numbers that correspond roughly 

to underflowed values. These might be denormalized numbers as in the 

754/854 arithmetics, signed UN symbols that stand for the positive and nega

tive intervals of numbers too small to represent, or even a whole range of 

"partial underflows" that behave like O in some operations but not in others, 

as on the Cray-1 and the CDC 7600. Some systems can signal underflow, 

some cannot. Underflow is discussed at length in [5 pp. 75-87]. 

Some computers support huge numbers that correspond roughly to 

overflowed values. The numbers might be ±00 symbols or, as on the Cray-1, a 

family of numbers that behave very much like ±00 in some but not all opera

tions. Systems differ as to when and how overflow ,vill be signaled. 

Many computers reserve a set of non-numbers to accommodate various 

invalid operations and, sometimes, overflows and divisions by zero. Depend

ing on the system, the non-numbers (or "NaNs" as they are called in 

754/854) may either propagate through or trigger an exception in subse

quent operations. 
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3. Outline of the Approach 

Nine intrinsic functions are put forward in the following sections. Those 

that return floating point values are listed as generics: that is, their return 

type is determined by their operands in the same way as for intrinsics like 

COS and TAN. This intrudes very little into the compiler. 

Several of the functions accept an argument that selects from among a 

list of options. The ideal mechanism for this selection would be a compiler

supported enumerated type. However, there is no such thing in Fortran 77, 

and an artificial version using INTEGER variables is either too cumbersome 

(for lack of predefinition) or too cryptic. So the functions use six-character 

strings to specify choices in a reasonably mnemonic fashion. 

Only two of the functions are specific to the 754/854 proposals. They 

concern modes (like the direction of rounding) and flags {to signal errors like 

over /underflow), features of the 754/B54 proposals that, while available in 

some form or other on various older machines, have never been considered 

part of the environment available to portable programs. The mode and flag 

functions are designed to be extensible to other systems, which are accom

modated by augmenting the list of arguments recognized by the intrinsics, 

rather than by adding new names to the system library. On any given sys

tem, meaningless intrinsics would be omitted from the library, so that an 

attempt to use them would cause a fatal error during compilation. However, 

meaningless arguments to legitmate intrinsics must be caught at execution 

time. In any case, programmers will not be fooled about what the environ

ment really is. 



4.6 

4. Huge and Tiny Numbers 

Functions HUGE and TINY return floating point values near the limits of 

a machine's range, according to a string parameter FLAVOR 

FUNCTION HUGE( X, FLAVOR) 
real type X 
CHARACTER*6 FLAVOR 

X is a dummy parameter whose value is ignored but whose format deter

mines the format of the return value. 

FLAVOR return value 
'MACH' biggest ordered value, possibly +OV symbol or +oo (even 

though the machine may not permit the value to be used in 
subsequent comparisons) 

'THRESH' biggest finite value that can be used in or result from some 
arithmetic operations without triggering overflow, though it 
may behave anomalously in some other operations 

'MODEL' biggest number that can be used safely in Brown's model 

Typically, the 'MACH' and 'THRESH' values would differ only on systems 

that support symbols for values outside the range of finite representable 

numbers. Some machines support signed CXl, or something very like it. 

Another possibility is an overflow symbol OV that stands for the interval 

strictly between oo and the largest finite representable number. 'THRESH' 

and 'MODEL' values would differ only when the Brown model penalizes the sys

tem some units of exponent range due to unseemly behavior. Three kinds of 

HUGE may seem extravagant at first sight, but the fact is that the 

corresponding return values from HUGE really do vary on some machines. 

The following table gives the parameter values for the double formats of 

three sample architectures. 
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return value from HUGE(X, FLAVOR} 
FLAVOR P754 double VAX-11 D-format Cray-1 double 
'MACH' +oo 1. 7x1038 +co 

'IBRESH' 1.8x103CB l. 7x 1038 zB191x(l _ z-96) Ri 5.4X102485 

'MODEL' 1.BxlOsoe 1. 7x1038 2s19ox(l _ 2-94) ~ 2. 7x102465 

FUNCTION TJ:NY( X, FLAVOR) 
real type X 
CHARACTER*6 FLAVOR 

As above, X is a dummy parameter whose value is ignored but whose format 

determines the format of the return value. 

FLAVOR return value 
'MACH' smallest positive value, possibly a + UN symbol or a den or-

malized number 
'THRESH' smallest positive value that can be used in or result from 

some arithmetic operations without triggering underflow, 
though it may behave anomalously in some other operations 

'MODEL' smallest positive number that can be used safely in Brown's 
model 

This function is similar to HUGE. TJNY(X, 'MACH') is the smallest 

representable positive value in the format of X. It could be a symbol, UN, 

that behaves arithmetically like the interval between O and the tiniest 

representable magnitude. On some systems, notably 754/B54, TINY(X, 

'MACH') is the smallest of a family of tiny numbers, beneath the stated 

underflow threshold, designed to make underflow gradual rather than abrupt. 

As above, the difference between the 'THRESH' and 'MODEL' values depends 

on the quality of arithmetic near the bottom of the exponent range. The fol

lowing table gives the parameter values for the double formats of three sam

ple architectures. 
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return value from TINY'X, FLAVOR) 
FLAVOR P754 double VAX-11 D-format Cray-1 double 
'MACH' 4.9x10-s24 2.9X 10-39 2-8193 Rj 3 .oxrn-2465 

'THRESH' 2.2x10-308 2.9x10-39 2-B193 i:::i 3 .oxrn-2465 
'MODEL' 2.2X10-30B 2.9x10-39 2-8100 ~ 4.7x10-2439 

5. Successor Functions 

The NEXT and NEXTM functions accept two floating point arguments and 

return, respectively, the next machine or Brown model number after the 

first argument toward the second. 

FUNCTION NEXT( SOURCE, TARGET) ... next machine number 
FUNCTION NEXTM( SOURCE, TARGET) ... next model number 

real type SOURCE, TARGET 

The semantics of NEXT were introduced in the appendix to Draft 8.0 of propo

sal P754. The result is well defined so long as SOURCE and TARGET are 

ordered as <, =, or > (they aren't numerically ordered if either is a NaN). 

When they are equal, NEXT returns that value, and NEXTM returns the 

nearest model number, rounded according to machine convention. When the 

values SOURCE and TARGET are unordered, the operations NEXT and NEXTM 

are invalid, and a NaN is returned. Interestingly, NEXTM is the only function 

strictly related to Brown's model that had to be introduced into this system 

in order to support his model fully. 

6. Radix Logarithm 

The function LOGE, when passed an argument of the form ±b11 d.ddd ... d 

where b is the machine radix and the d's are radix-b digits, returns the 

integer value of the exponent e in the floating point format of the argument. 



FUNCTION LOGB( X) 
real type X 

There are several special cases: 

X LOGB( X) 
±0 -HUGE(X, 'MACH') 
±lXI +oo 

NaN X 
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... on machines with an 00 symbol 

... on machines with nonnumber symbols 

When X is not normalized, 10GB returns the exponent of X if it would be 

treated as unnormalized in subsequent arithmetic, or the exponent of X as 

though prenormalized if X would be prenormalized in subsequent arithmetic. 

Because of the extreme and exceptional cases, and for convenience in some 

approximations, the return value, although typically an integer value, is in 

the floating format of X. In many contexts a programmer ·will use 

INT( LOGB( X ) ) 

but this is not expected to appear in critical looping code, so the extra call to 

INT is a negligible added cost. This also has the advantage of keeping the 

messy exception handling of INT (at least, a conscientious rendition thereof) 

from being duplicated in 10GB. 

7. Scaling 

The function SCALE is the companion to LOGE. 

FUNCTJON SCALE( X, FACTOR) 
real type X 
INTEGER FACTOR 

It returns the value X x b FACTOR, where b is the machine radix. The parame

ter FACTOR is specified as an integer so that SCALE can be fast, since it is 

often used in inner loops. Even so, SCALE is expected to conform to system 

conventions for dealing with exponent over /underflow, which must not occur 
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unless the final value lies out of range. Underflows are denormalized [5] on 

systems that underflow gradually; some systems underflow to zero or TINY(X, 

'MACH'); some systems also set an error flag. Overflows may be set to 

HUGE(X, 'MACH') or, as is more usual, may stop computation altogether; 

there may also be an error flag. Note that because the INTEGER type may be 

much wider than the exponent field of X, severe over /underflow is possible. 

8. Classification 

The function CLASS returns an integer indicating the "character" of the 

floating point argument. This is helpful in filtering special operands. 

INTEGER FUNCTION CLASS( X) 
real type X 

The sign of the returned integer indicates the sign of X, even if the sign has 

no relevance {such as the sign of 0, usually taken to be+, on systems with no 

-0, or the sign of NaNs). The magnitude of the returned value is defined 

from the table: 

maE:nitude X 
1 zero 
2 finite, nonzero, normalized number 
3 00 

4 denormalized number, a la 754/854 proposals 
5 unnormalized number, possibly with zero significand 
6 quiet NaN -- propagates without exceptions 
7 signaling NaN -- triggers exception on attempted use 
8 UN symbol, or numbers between TINY{X, 'MODEL') and 

TINY (X,' MACH') 
HUGE{X, 9 ov symbol, or numbers between 'MODEL') and 

HUGE(X,'MACH') 
... . .. 

The arbitrary breakdown above is intended to facilitate branching with a 

case statement {computed GOTO in Fortran), or the IF-THEN alternative. The 
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commonest cases appear at the top of the list. Although specified for a wide 

class of numeric entities, a particular implementation of CLASS will return 

only the values pertinent for the given machine. 

9. Exception Flags 

Some arithmetics, in particular .754/854, provide flags which are set 

when the corresponding floating point exception arises, and which are 

cleared only at the program's request. The function FLAG gives a program

mer access to such flags. It returns the current setting of the flag, and 

allows the programmer the option of altering the flag. Thus, the exception 

flags appear to the programmer as implicitly defined global variables, 

although they can be accessed only through the function FLAG. 

INTEGER FUNCTJON FLAG( TYPE, VALUE) 
CHARACTER*6 TYPE 
INTEGER VALUE 

where TYPE is one of 

TYPE exception flag: affected 
'UNFLOW' underflow 
'OVFLOW' overflow 
'INVALD' invalid operation 
'DIVZER' (nonzero) / zero 
'INEXCT' inexact result 

... ......... 

The return value of O indicates that the flag is off; and any nonzero value 

indicates that the flag is on. A nonzero flag will typically contain some 

system-dependent reference to what happened and where. Thus there are 

only two portable uses of a value returned from FLAG: test whether or not it 

is zero, and save the value for subsequent restoration. FLAG sets the 

selected flag to VALUE unless the VALUE argument is omitted from the func-
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tion call, in which case the flag is not altered. 

A program that deals with an exception such as underflow will use FLAG 

with a VALUE of O to clear the 'UNFLOW' flag so as not to distract any follow

ing code. It may use FLAG without the VALUE argument to simply test the 

flag during its calculation. A subprogram that deals with its own exceptions 

may use FLAG to save the setting of pertinent flags on entry and restore 

them on exit. 

10. Modes 

Modes are provided by some systems as a way for a program to control 

details, for example exception handling, in subsequent operations. The char

acter function MODES allows the programmer to test and possibly alter arith

metic modes in the host machine, in much the same way that FLAG handles 

flags. All settings are given as six-character strings. 

CHARACTER*6 FUNCTION MODES( TYPE, VALUE) 
CHARACTER*6 TYPE.VALUE 

where TYPE and VALUE are given in the following table, which has been 

tailored for 754/854 systems. 

TYPE VALUE 
'ROUND' 'NEARST' 'ZERO' 'PINF' 'MJNF' 'KEEP' 

... ... . .. ... ... . .. 

The VALUE 'KEEP' allows the programmer to test a mode without alter

ing it. The modes listed here pertain to the 754/854 standards. The four 

options for rounding are to nearest, toward zero (chopping), toward + 00 , and 

toward - 00 • Many existing systems offer both chopping and rounding to 

nearest (after a fashion) but usually they are controlled not by processor 

modes but by extra "rounding" instructions; the use of MODES in such 
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systems would amount to a compiler directive, if the use were allowed at all. 

If user traps are to be provided they might be implemented as mode 

settings, though the handler address and its input/output parameters 

require further discussion. Since general traps are not expected to be port

able constructs, even across 754/854 systems, this is not discussed further 

here. 

11. Relation to Brown's Model 

This section relates the environmental inquiries presented here with 

those Brown and Feldman proposed [3] in connection with Brown's model. On 

a machine of radix b, Brown considers a system of model numbers consisting 

of zero and all numbers of the form 

X = fb" 

where 

/1 = 1. • • ·, b-1, 

/ 2 • • • / = D .. • b -1 t I p ' t t 

and 

The following table gives the model parameters and the computational pro

cedures of Brown and Feldman in terms of the present proposal. 
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RADIX = INT { SCALE { 1.0, 1 ) ) ... b 
MODELEPSILON = NEXTM ( 1.0, 2.0 ) - 1.0 ... maximum relative spacing 

in model 
PRECISlON = 1 - INT ( LOGE { NEXT ( 1.0, 2.0) - 1.0)) ... minimum 

number of radix-b digits 
MODELPRECISlON = 1 - INT ( LOGE ( MODELEPSILON ) ) ... minimum 

number of radix-b digits, including a possible penally 
if rounding is strange 

MODELHUGE = HUGE { X, 'MODEL' ) ... biggest number in Brown's 
model, including a possible penalty if overflow is 
strange 

EMAX = INT ( LOGE { MODELHUGE)) + 1 ... biggest exponent 
MODELTINY = TINY { X, 'MODEL' ) ... smallest number in Brown's 

model. including a possible penalty if underflow is 
strange 

EMIN = INT { LOGE ( MODELTINY ) ) + 1 ... smallest exponent 
exponent(X) = INT ( LOGE { X ) ) + 1 

scale(X, E) = SCALE { X, E) 
fraction(X) = SCALE ( X, -exponent( X) ) 

synthesize(X, E) = SCALE { fraction( X ). E) 
o:{X) = synthesize( 1.0, max ( EMIN, 1 - MODELPRECISlON + 

exponent( X ) ) ) .. .if X is nonzero 
= MODELTINY ... if Xis 0 

X = thesize ABS X , MODELPRECISION 
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CHAPrER 5 

A Guide to Underflow and the Denormalized Numbers 

"Good intelligence work, Control had always preached, was gra
dual and rested on a kind of gentleness.'' 

John Le Carre, 'Pinker, Tailor, Soldier, Spy 

Perhaps it is appropriate to open this chapter with a quote from a spy. 

Over the five years of the IEEE subcommittee meetings the gradual (some

times called gentle) treatment of floating point underflow has been the 

center of controversial arguments and its own share of intrigue. In fact, over 

the first years of its activity, the subcommittee was not mentioned in the 

computing press ·without some reference to the heated controversy. The 

paper presented in this chapter was an attempt to explain and defuse the 

arguments. It is reprinted here, with permission of the publisher, from the 

March 1981 issue of Computer in which draft 8.0 of the proposed standard 

appeared. This paper remains an accurate microscopic view of the issues 

surrounding floating point underflow, despite that the proposed standard 

changed significantly from drafts 8.0 to 10.0. On a somewhat higher level, 

James Demmel's treatment of the implications of gradual underflow for solv

ing linear systems, reference [B] in the attached paper, has been substan

tially updated and accepted for publication as of this writing. 

This paper explains the now-defunct warning mode for handling denor

malized numbers. However, the fact that there was a plausible mathematical 

explanation for warning mode, along with a belief among some early imple

mentors that the mode was at least feasible, did not stop the IEEE subcom

mittee from voting the warning mode out of the proposed standard. Even 

though warning mode could be made to fit into an arithmetic system with 

5.1 
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denormalized numbers, there was no simple, non-algorithmic explanation of 

how warning mode worked. Expositions like the original implementation 

guide in chapter 2 had the flavor of "do as l do, not as I say." Attempts to 

specify warning mode without algorithms in draft 8.0 of the proposed stan

dard led to almost incomprehensible subtleties. This defect ultimately killed 

warning mode, by a nearly unanimous vote of the subcommittee. The pur

pose of warning mode, as discussed in this chapter, was to provide some 

defense for old programs written with the presumption that underflowed 

values would be set to zero; however, the value of this warning was very hard 

to quantify, unlike the complexity of exposition, which was apparent to any

one who read or attempted to improve upon the prose of draft B.0. (This 

same discussion applies to the disappearance of the projective mode for 

interpretation of 00 • Although the projective mode was easy to describe and 

only a minor nuisance to implement, its value as a protection for program

mers trained on machines like the CDC 6000/7000 class was small relative to 

its impact on a proposed standard expected to be in use for many years to 

come.) 

Another change to the proposed standard since the publication of this 

paper is in the definition of underflow. This paper describes underflow as 

arising when a result, computed as though with unbounded exponent range 

and checked either before or after rounding to the target precision, falls 

below a specified threshold. This is a very conventional specification, in view 

of the computers built up to the 19B0's. However, the so-called threshold 

test is pessimistic in an arithmetic with denormalized numbers. For exam

ple, whenever a difference x -y falls below the underflow threshold, the 

result is given exactly by some denormalized number. So why signal 

underflow? And in some systems the assignment z "-W between variables of 
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the same format is performed arithmetically, as opposed to a simple bit 

copy. In this case the "result" stored into z v.ill fall below the underflow 

threshold whenever the source value w is a denormalized number. Should 

underflow be signaled? The answer, according to section 7.4 of draft 10.0 of 

the proposed standard, is NO. That section, using notation explained in 

detail in this paper, ties the underflow signal to both threshold and rounding 

phenomena. 
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Although there have been misconceptions about it, 
gradual underflow fits naturally into the proposed standard 
and leads to simple, general statements about the arithmetic. 

Underflow and 
the Denormalized Numbers 

1111(11 '1 ll 1111 '1111111 '! 111111'111111
1 ~111 Ir!~ 1Jl~ll~ ~ 

Ill I tll, I 11,111, I Ii 1111,i 11111.1111111, f llii~i,lltimlll 
Jerome T. Coonen 

l'niwrsit~ of California. Berkell'~ 
Zilog. Inc. 

In the spring of 1980, after meeting regularly for over 
two years, a subcommittee of the IEEE Computer Soci
ety Microprocessor Stanaards Committee voted to en
dorse a proposed standard for binary floating-point 
arithmetic (see the proposed standard in this issue). The 
ballot ended just the first phase of a continuing contro
versy. Although diverse objections were raised within the 
subcommittee, discussions usually drifted back to 
gradual underflow, the proposed response to exponent 
underflow. The arguments even found their way into the 
computing press, where most articles about the subcom
mittee's work focused on the "underflow issue"-as if 
that were all that divid<!d the subcommittee. 

This article explains gradual underflow, ranging from 
its interaction with floating-point number systems to its 
advantages for numerical software. The discussion is not 
deep, but it is very detailed and would normally interest 
only specialists in computer arithmetic. However, the 
controversy surrounding the proposed standard has be
come so entangled with misconceptions about underflow 
that a study of underflow is now of interest to a broader 
community. 

In fact, underflow should not be an important issue. 
The fundamental issues are the choice of numbers and 
symbob to be included in the arithmetic, their encoding 
in storage, and the specification of operations upon 
them. To this foundation may be added features that 
cope with exceptions such as over/underflow. The pro
posed standard was developed this way. designed to be a 
complete scheme for arithmetic, balanced between utility 
and implementation cost. Ironically, gradual underflow 
was expected to go unnoticed by most users. coming into 
view only when potentially dangerous underflow errors 
were flagged. 

The interconnectedness of the proposed standard's 
basic features complicated attempts to oppose it. Earl) 
challenges within the subcommittee were not easily 
focused on single aspects of the proposed number system 
and its encoding, since so many of the design choices 
were interconnected. These challenges ultimately ad
dressed the proposal as a whole and, quite naturaliy, 
tended to drift to its points of least resistance. Thus was it 
possible for gradual underflow-one of the system's less 
compelling features-to become its most contentious. 

I hope to show that gradual underflow fits naturally 
into the proposal, leading to simple, general statements 
about the arithmetic. What remain disproportionately 
complicated are the arguments about why these state
ments are more valuable than some others. The proposed 
standard does not solve all underflow problems, but it 
does provide many benefits for a small added cost to new 
implementations. Unfortunately, the prospect of retro
fitting existing systems with features such as gradual 
underflow can be daunting, so manufacturers with prior 
commitments are faced with a tough choice. For them, 
gradual underflow is compelling only for systems all of 
whose formats-like the proposed single format-suffer 
from a narrow exponent range. These problems of 
retrofitting added to the controversy regarding 
underflow within the subcommittee. 

Floating-point number systems 

Conventional implementations of normalized binar) 
floating-point arithmetic use a fixed number of bits to 
represent numbers in each data format, with a prede1cr
mined "boundary" between the exponent and signifi-



cant digit fields. For example, single format numbers in 
the proposed standard are 32-bit strings of the form 
shown in Figure l. The fields S, E, and Fare I, 8, and 23 
bits long, respectively. Interpreting£ as an unsigned in
teger in the range Oto 255, bit strings with l ,;;; £,;;; 254 
represent what are called normalized numbers whose 
values are decoded 

(-l)5 x2c-mx1.F 

Since the leading significant bit is known to be l , it is not 
explicitly stored. 

The representable numbers group naturally into inter
vals of the form [2", 2•• 1). We call these intervals 
binades, the binary analog of decade. Within the 
binades, numbers are spaced uniformly at a distance 
equal to one unit in their last place. As the numbers ap
proach zero, this absolute spacing decreases by a factor 
of two across each binade. For example, consider an 
analog of the proposed single format, restricted to six 
bits of precision. The representable numbers would ap
pear as ticks on a line, as shown in Figure 2. Approaching 
zero from the right, each successive binade is half the 
width of its right-hand neighbor, reaching ha! f the re
maining distance to zero. This is a property of all binary 
floating-point systems. 

Normalized arithmetic 

Given the system of normalized numbers established 
above, the nicest model for arithmetic is: 

Compute a result as if with infinite precision and 
range and then, if necessary, round it to the nearest 
representable number in the destination formal. 

The proposed standard, as we will see later, conforms to 
this model whenever the infinitely precise result is 
mathematically defined and does not overflow. But, for 
the moment, consider arithmetic suffering at worst only 
rounding errors, in which case most current implementa
tions correspond roughly to the model. (Some chop 
numbers to the next smaller representable value; others 
round correctly to the nearest value "almost always"; 
some are indescribable.) 

In arithmetic conforming 10 the model above, the 
roundoff error incurred by results is expressed by the for
mula 

(computed results) = (true result)± (roundoff) 

r ......... 1 sl_E~--F --

Figure 1. Form of 32-blt string for single format number. 

I I 

Figure 2. Analog of proposed single format, rastrlcted lo six bits of 
precision. 
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where roundoff,;;; ½ ulp (unit in the last place) of the 
computed result. This error model parallels the earlier 
discussion of the binades since the absolute uncertainty 
of computed results decreases by a factor of two across 
each binade, as did the absolute spacing between adja
cent normalized numbers. 

The roundoff error can also be expressed by the for
mula 

(computed result) = (true result) x (I± l) 

Here c indicates the relative uncertainty of the calcula
tion. In rounded binary arithmetic carrying r bits of 
precision c=2·'. An analogous formula with 2 re
placed by 5 x 10- 1 applies to rounded t-digit decimal 
arithmetic. 

For a numerical example of the relative error formula, 
consider the product 

l.23456·J0- 12 x6.5432l·I0· 3 ... 8.07799 J0- 9 

in a six-digit decimal system. Written in the form of the 
second formula above, 

8.07799· 10· 9 = 
(8.0779853376 • J0 • 9) X ( I + 0.00000057717 ... ) 

which is well within the range 

(8.0779853376 10· 9) X (I± 0.000005) 

since the relative error is 

0.00000057717 ... < 0.000005 = ½ ulp of 1.00000 

The relative error formula implies what Figure 2 shows 
clearly-that the gaps between neighboring represent
able numbers never widen toward the origin. This has an 
important consequence: in any calculation suffering only 
one roundoff, the gap between a computed result and the 
exact result need never exceed any of the gaps bet"een 
the computed result's several representable neighbors. 
For an illustration, consider the highly magnified picture 
of our sample product shown in Figure 3. 

This seemingly obvious statement about gaps underlies 
many important properties of a robust floating-point 
system. Consider the following three properties, valid for 
calculations suffering nothing worse than roundoff: 

(I) X'l'yimpliesx-y'l'O 

(2) (x- y) + y == x to within a rounding error in the 
larger of x and y 

(3) 1/x"' 0 when xis a normalized number, and then 
1/(1 /X) =: X 

Failure to satisfy statements like ())-(3) can lead to in
teresting and elusive anomalies in numerical programs. 
Because it is our object to investigate the proposed stan
dard, rather than review the past abuses that led to it, "e 
will not pursue here the consequences of violating ( I )-(3). 

Interested readers will find W. Kahan's survey' enter
taining; refer to D. Hough 2 and Kahan 3 for more details. 
Suffice it to say that the desirability of an arithmetic 
system depends greatly upon its users' ability to form a 
simple yet accurate mental model of its capabilities. 
Statements(] )-(3) are typical of the high-level propeni~s 
that permit a reasonable analysis of program beha, 1or. 
thus expediting the production of robust numerical code. 



What Is exponent underflow? 

Until now, the presentation has been covered by a 
disclaimer excluding all but normalized arithmetic suf
fering only rounding errors. The discussion applied to 
most current implementations of arithmetic. However, 
there are other sources of error. Because a fixed number 
of bits are allotted to each number's exponent, the 
number system's range is bounded. Some normalized 
binade must be. the "smallest," beyond which there are 
no more normalized numbers. In the hypothetical ~ix-bit 
normalized number system illustrated in Figure 2, the 
bottom of the exponent range would look like the 
representation in Figure 4. We will call the smallest nor
malized number land say that a result whose magnitude 
is less than l has underflowed. The question is how to 
represent underflowed results when computation is to 
continue v.ithout a "trap" to a user's exception handler. 

The proposed standard spans the gap from 0 to A v.ith 
a family of numbers whose absolute spacing is that of the 
numbers in the last normalized binade, as shown in 
Figure 5. These are the so-called denormalized numbers. 
They may be thought of as elements of an extra binade 
beyond l, but spread apart by a factor of two over their 
expected spacing in order to reach 0 uniformly. The 
response to underflow which uses the denormalized 
numbers to represent underflowed values is called 
gradual underflow. 

Gradual underflow has several historical precedents. 
Most often mentioned in the floating-point subcommit
tee's meetings has been the Electrologica XS, a Dutch 

5.6 
the expense of bits of precision. The dynamic position of 
the boundary would be built into the encoding of the 
numbers. R. Reid proposed this to the subcommittee, 7 

though the idea has been attributed by D. Knuth' to J. 
Cocke. Although these schemes benefit from the ex
panded exponent, their fluctuating precision incurs a 
noticeable implementation cost and complicates error 
analysis. I will not discuss them further; however, the 
careful reader can adapt the arguments of this article to 
determine that the expanded numbers do not enjoy the 
simple properties to be attributed to gradual underflow. 

Denormalized numbers and gradual underflow 

The way denormalized numbers fit into a normalized 
number system can also be seen by listing the numbers 
from the smallest binades, with their implicit binary 
points aligned. Figure 6, from a six-bit analog of the pro
posed single format, shows representative "numbers" 
beside their unbiased exponents. X may be 0 or I. This 
figure suggests a very natural representation of the de-

TRUE7 I 
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Figure 3. Highly magnified picture of sample product. 

machine. Using gradual underflow without even an un- • I EMPTY I I I I 
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"never confusing to naive (and other) users." This is not O 1 = 2- 126 2-125 

too surprising, however, since the XS had a 12-bit expo
nent providing a range of about l0'6(XJ; it's unlikely that 
too many naive ("and other") users ever even en
countered underflow. The Burroughs B5500, DEC-JO, 
IBM 7094," and IBM 370 also support gradual under
flow, although the user must provide brief software 
routines to denormalize numbers since the hardware 
delivers underflowed values normalized with their ex
ponents "wrapped around" to within range. 

The only other underflow handling scheme that re
ceived broad support within the subcommiuee is the one 
provided in most current implemen.ations of arithmetic. 
Simplest of all the proposals, Store O would set all 
underflowed values to zero, so that there be no represent
able numbers in the gap between l and 0. 

Another scheme dates back to work by K. Zuse in Ger
many during the 1930's5 and work done independently 
by Kahan in 1966.' It would replace underflowed values 
by a symbol "UN," representing not any particular 
number but rather the interval between 0 and)., which in 
our example would be (0, 2- 126

). R. Fraley and J. S. 
Walther proposed such an UN Symbol scheme to the 
floating-point subcommittee,6 though none has ever 
been implemented. 

Yet another possibility would essentially change the 
"boundary" between the exponent and significant digit 
fields of a number which has underflowed {or over
flowed) in order to obtain some exponent expansion at 

Figure 4. The bottom of the exponent range In the hypothetical system Il
lustrated in Figure 2. 
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Figura 5. The denormalized number& augment the number system shown 
in Figure 4. 

EXPONENT SIGNIFICANT BITS 

- 120 1XXXXX 
- 121 1XXXXX 
- 122 1XXXXX 
- 123 1XXXXX - NORMALIZED NUMBERS 
- 124 1XXXXX 
-125 1XXXXX 
-126 1XXXXX 

- UNDERFLOW THRESHOLD=!.= 2 126 

-126 01XXXX 
- 126 001 XXX 
-126 0001 xx - DENORMALIZED NUMBERS 
- 126 00001 X 
- 126 000001 

(- 126) 000000 - ZERO 

Figure 6. A six-bit analog of the proposed single format. showing 
represenUltlve "numbers" beside their unbiased exponents. 



normalized numbers in a floating-point system, since the 
denormalized numben are precisely the values taken by 
all unnormalized numbers, of the given precision, whose 
exponent is that of .l.. The single and double formats of 
the proposed standard exploit this fact by means appar
ently unknown before I 976. In the single format, for ex
ample, numbers in the interval (A, 2.1.) are encoded with 
the next-to-lowest biased exponent, I. The lowest expo
nent, 0, is reserved for the denormalized numbers and, 
when all significant bits are 0, for floating-point zero. 
Thus, the biased exponent 0 encodes two bits of informa
tion about the denormalized numbers: 

• They have the same effective exponent as the nor
malized numbers, such as .I., with the next higher en
coded exponent, I. 

• Their implicit leading bit is 0 instead of I. 

This encoding fits the denormalized numbers into the 
bottom of the exponent range inexpensively, using bit 
patterns that on many current implementations are sim
ply redundant representations of zero. The name denor
malized distinguishes the underflowed values from the 
usual unnormalized numbers that run across a number 
system's entire exponent range. The single and double 
formats of the proposed standard have no unnormalized 
numbers in this sense. Instead, the) obtain an extra bit of 
precision over the normalized number range by assuming 
an implicit leading I bit for all number, greater than or 
equal to .I.. 

Gradual underflow satisfies the arithmetic model pre
sented earlier since an infinitely precise result. whether or 
not it is smaller than .I., is simply rounded to the nearest 
representable number. Although analogous statements 
can be made about the other underflow handling 
schemes, the striking difference is the extent to which the 
schemes admit high-level statements like (I )-(3) pre
sented above. 

Examples of denormallzatlon 

Figure 7 shows three examples of gradual underflow in 
a six-digit decimal system in which A, the smallest nor
malized number, is 10- 99 _ In (i), the otherwise exact 
product underflows and must be denormalized by four 
digits. The number then requires rounding which, in this 
halfway case, is to the nearest representable number 
who,e least significant digit is even. Intermediate results 
far below the underflow threshold will be denormalized 
all the way to 0, as in (ii). This occurs quite naturally in 
the proposed single and double formats, since signed 0 is 
represented as the • 'denormalized number'' all of whose 
significant bits are zero. 

Example (iii) illustrates how underflowed sums and 
differences of numbers in the same format are always 

2 50rco 10-so x3 50000 10-0 = 8 75000-10- 103- 0.00088 10-!l'l (i) 
2 50800 1 0- &O X 3 50000 1 0- &O = 8 75000 1 0- 1?0 - 0 0 (11) 

5 67834 10·97 -5 67812 10-97 =2.20000 10 101 -002200 10-9'l(111) 

Figure 7. Thrff examples of gradual underilow In a alx-dlglt decimal 
system. 
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free from rounding error. This is simpler than the situa
tion for underflowed products and quotients which must 
be denormalized before rounding to ensure that their er
ror bound is one-half unit in the result's last place. 

These examples suggest the follo'l'ing straightforward 
implementation of gradual underflow. When a com
puted result would have an unbiased exponent too 
small-that is, too negative-to be represented, the 
number is accommodated by right-shifting (denormaliz
ing) the significant digit field while incrementing the ex-

• ponent until the exponent is that of the smallest nor
malized number. The number can then be rounded and 
stored. 

Example (iii) suggests a possible economy in addition 
and subtraction, when the time required to denormalize 
is most likely to be noticed. After a magnitude subtract, 
the result need only be normalized until its exponent is 
that of .I., since further shifting would only be undone by 
subsequent denormalization. Such a simple trick is possi
ble only because the denormalized numbers fit so nat
urally into the number system as a whole. It is typical of 
the ways in which a careful implementor of gradual un
derflow can achieve speeds comparable to the "simpler" 
arithmetic systems, with little additional hardware or 
microcode. 

Error properties of gradual underflow 

The error formula describing model normalized arith
metic expressed only the relative uncertainty £ due to 

roundoff in a result free of other errors such as over/ 
underflow. When underflow occurs, the formula be
comes 

(computed result) = (true result)± { 

The uncertainty { of the result depends on the underflow 
handling scheme. 

For purposes of discussion, we consider a hypothetical 
floating-point system with underflo" threshold l, 
augmented in turn by three underflow handling schemes. 
The bit patterns used for denormalized numbers could 
provide an extra normalized binade in the Store 0 and 
UN Symbol systems, thereby reducing .I. by a factor of 
two. However, we will see that the analysis depends not 
upon the size of .I., but upon whether { is negligible when 
compared with A. 

• Gradual Underflow: When underflow is gradual, 
the error can be no bigger than half an ulp of A, so 
{=u.. 

• Store 0: When all underflows are set to 0, the error 
can be almost as large as the smallest normalized 
number, so ~ = .I.. 

• UN Symbol: When underflows are replaced by UN, 
the error is the same as for Store 0, sot=)._ The dif
ference is that UN is less prone to subsequent misin
terpretation. 

Comparison of { for the various schemes indicates that 
only the denormalized numbers permit underflowed 
values to be represented with no more absolute error than 
is tolerable among numbers in the smallest normalized 



binade. In other words, 

only with gradual underflow do the gaps between 
represeniable numbers not \\iden near zero; instead 
the gaps between computed and exact results are no 
wider than the gaps between any pairs of neighbor
ing representable numbers. 

For an example in six-digit decimal arithmetic \\ith 
). : JO· 99, consider the underflowed product shown in 
Figure 8. The Store 0 and UN Symbol schemes suffer an 
error equal to the product itself, about 8/10 of .I., while 
gradual underflow cuts the error to less than 2/10 ufp of 
.I., a reduction by several orders of magnitude. Figure 9, a 
highly magnified graph of the bottom of the exponent 
range, shows the gaps between true and computed 
results. 

Mindful of the way that gaps around .I. and 0 depend 
on the scheme for handling underflow, let us review the 
three properties we considered earlier: 

(I) x,;.yimpliesx-y.;.o 
(2) (x- y) + y :::: x to within a rounding error in the 

larger of x or y 
(3) J /x,;. 0 when xis a normalized number, and then 

)/(1/x):::: X 

This time we will permit the calculations to suffer 
underflow as well as roundoff errors. Aided by gradual 
underflow, the proposed standard satisfies (I )-(3) with
out a hitch for the same reason as applied to rounded 
normalized arithmetic-that is, the gaps between repre
sentable numbers never widen toward zero. This is the 
sense in which 

gradual underflow tends to make the errors due to 
underflow commensurate with roundoff errors. 

However, (1)-(3) may not apply to the other systems since 
the gap between 0 and A is huge when compared to the 
gaps between J.'s neighbors, the tiny normalized 
numbers. For example, a Store 0 system violates (I) and 
(2) whenever x- y underflows, and violates (3) whenever 
1 Ix underflows. Whether the reciprocal of any number x 
can underflow depends on the balance between the 
largest and least exponents. 

The UN Symbol scheme is more robust despite the fact 
that its error bounds are the same as those of Store 0. 
However, it entails several special cases. (I) is guaranteed 
because UN retains the sign of underflowed x- y and has 
nonzero magnitude. In the same way, when 1/x 
underflows in (3) the quotient is nonzero, but then 
1/(1/x) is OV, the overflow symbol, which is not:::: x. As 
in Store 0, (2) fails once x- y underflows, in which case 
(x- y) + y ... UN+ y ... y. To avoid this type of problem, 
a system bent on safety might deliver an invalid opera
tion warning when UN (known only to lie somewhere be
tween 0 and J.) is added to a tiny y; but, fooled or not, the 
user still gets the wrong answer. 

The statements made here about the gaps are fun
damental to floating-point error analysis. However, 
obsession with tiny errors is not the point. Rather, we 
would like our system to give reasonable results whenever 
possible, and a warning otherwise. In this way, we could 
worry about errors only when necessary and could have 
confidence in our results. 

5.8 
The trade-off between safety and utility is reflected in 

the specification of gradual underflow. We observed that 
if x- y underflowed in (2), gradual underflow would 
always be accurate, Store 0 could give a wrong answer, 
and UN S}mbol would give either a wrong answer or a 
warning. All schemes would raise an underflow flag 
upon computing x- y. However, experience with float
ing-point computation shows that the underflow flag by 
itself is not a reliable indication of serious error since 
most underflows can be safely ignored. To be used effec- • 
tively, the flag must be interrogated after the delicate 
phases of a calculation. As we will see below, figuring out 
what should be tested represents a significant cost which 
is often avoidable when underflow is gradual. This un
dermines the perceived simplicity of the Store 0 scheme. 

Proponents of the UN Symbol scheme emphasize its 
unwillingness to deliver wrong answers due to underflow 
when implemented conservatively. Alas, often when it 
signals an error associated with its symbols, an accurate 
answer could have been obtained using gradual under
flow. And, as conservative as it may be, the UN Symbol 
scheme only catches errors due to underflow; since 
rounding errors are the source of most difficulties in sen
sitive calculations, this conservatism is only nominal. 

Normalizing mode 

The simplest implementation of denormalized 
numbers and gradual underflow, which has been as
sumed so far, specifies that each operation be performed 
without distinguishing denormalized numbers from 
other numbers-that is, as though all denormalized 
operands were first normalized. The proposed standard 
calls this the "normalizing" mode of computation. Such 
a uniform interpretation of nonzero numbers, regardless 
of possible loss of relative precision due to underfl9w, is 
appropriate when analysis shows that errors no bigger in 
absolute value than a half ulp of the smallest normalized 

1 .23456 • 10- 6D x 6 54321 • 10- •o = 8.0779853376 10- 100 (EXACT J 

- 0.80780 • 1 0- 99 (GRADUAL UNDERFLOW) 
- 0 0 (STORE 0) 
- UN (UN SYMBOL I 

Figure 8. Comparison of the various schemes in six-digit decimal arith
metic with 1.-10-". 

EXACT PRODUCT ----r 
----STORt 0 ERROR---: 

I 
0 0. 10000 10 99 0 80000 1 O- 9'l O 90000 10 - !ls ;_ = 

1 . 00000 1 O - 91 

Figure 9. Highly magnified graph oi the bottom of the exponent range. 
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number are no more significant than other comparable 
or larger errors due to roundoff. Most computations are 
this way. 

Since the normalizing mode deals in principle only 
with normalized numbers, it follows essentially the same 
rules for denormalized numbers as for normalized. The 
only significant implementation cost is the prenormaliza
tion step required when denormalized operands par
ticipate in multiplication, division, and mixed-format 
calculations. In addition and subtraction of numbers of 
the same format, the prenormalization need not be car
ried out; since denormalized numbers already have the 
smallest exponent, they will be shifted right, if at all, for 
binary point alignment. As in the implementation discus
sion above, accompanying Figure 7, we see that the 
careful implementor of gradual underflow can trim the 
execution time cost of the denormalized numbers in addi
tion and subtraction. 

To see how gradual underflow works in a program, let 
us consider an inner product expression common in 
matrix calculation, . 

(b+a·y) 1 c (b + :l a,y,) I c 
,. I 

and the program loop to evaluate it: 

sum:= b 
FOR i := I TO n DO sum:= sum+a,xy, 
result : = sum I c 

Suppose nothing worse happens than roundoff and 
underflow. If underflow is gradual, then as long as bis a 
normalized nonzero number, sum must be accurate to 
within the uncertainty of an unexceptional vector inner 
product with normalized numbers, namely a few ulps of 
llall x llyll + lbl, wherellxll denotes the norm of the 
vector x. Consequently, result will be about as accurate 
as roundoff allows. 

However, in a Store O system, a small but nonzero sum 
could be plausible but wrong in nearly every digit because 
of underflow. Figure 10 indicates how the two schemes 
affect small sums in one step of the computational loop 

I I THESE DIGITS COULD BE 
I WRONG IF UNDERFLOWS 
I WERE SET TO O 

I 
I 
I 

OLD SUM 

a, x y, 

NEW SUM I ., 
I THESE DIGITS WOULD BE ~ 

UNDERFLOW /I LOST 1F uNDERFLows l> t =u=SMALLEST 
THRESHOLD=• I WERE SET TOO . OENORMALIZED NUMBER 

I --· ·' . ._, __ ,______ .. 

Figure 10. The effect of gradual underflow and Store O on small sums In 
one step of the cited program loop. 
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above. The accumulation sum and product a,y, are 
represented as bit strings with their binary points aligned. 
When all underflows are set to zero, the information to 
the right of the vertical broken line marked "l" (the 
underflow threshold) is lost-small sums can be seriously 
contaminated. On the other hand, gradual underflov. re
tains enough information beyond A to ensure that any 
sum greater than .l. will be about as accurate as if all 
operands and products had been normalized to full preci
sion. 

Although this example is typical of those in which a 
simple statement describes the behavior of gradual 
underflow, it is not by itself a compelling argument for 
gradual underflow, since a robust program would re
quire scaling to guard against a variety of potential 
nuisances-ranging from the special case b = 0, 10 

overflow in sum when c is so large that the exact resulr 
would be well within range. 

A more interesting, yet complicated, example is the 
calculation of the complex quotient 

a+ixb:= 
p + ixq 
r + ixs 

Assuming Isl..; lrl, the procedure attributed to R. Smith 
by Knuth 8 is to calculate 

p+qx(f) q-px(f) 
a+ixb := ----- +ix-----

r+sx(f) r+sx(f) 

An analysis can be found in a subcommittee working 
paper by Hough. 9 The claim is that, despite roundoff, 
the computed complex result differs from the correct 
result by no more than if p +ix q and r + i x s had each 
been perturbed by a few ulps of its modulus. This conclu
sion is unchanged by underflow, if it is gradual, except 
when both a and b underflow, in which case the error is 
bounded by a few ulps of la+ ix bl. No comparably sim
ple statement holds when all underflows are set to 0. 

The complex quotient is fundamentally different from 
the inner product above since Smith's algorithm pro
duces a correct quotient unless intermediate overflow oc
curs. Furthermore, the formula avoids intermediate 
overflows when a+ i x b is in range, unless Ip I + I q I or 
Ir!+ Isl would overflow. Since gradual underflow copes 
with all problems at the bottom of the exponent range, 
Smith's algorithm is so robust that there is little tempta
tion to introduce scaling and its associated complexity. 

Much ado about nothing? 

Some opponents of the proposed standard have 
argued that programs which encounter gradual under
flow in the normalizing mode would perform "about as 
well" if all underflows were set to zero instead. We can 
formalize the claim and a response as follows. 

Figure 11 summarizes the notation developed through
out the discussion of the single format. We observed that 
). is the absolute uncertainty of an underflowed result in 
the Store O and UN Symbol schemes, and that a nor-



malized computed result x' is related to an exact result x 
by 

x'= xx(l±c) = X:tE.X 

so that E.X is a bound on the absolute error due to round
off. 

We consider programs which do not use special con
tingency code to handle underflow. Of particular interest 
is the class A of programs that succeed when underflow is 
gradual but fail when underflows are set abruptly to 
zero. These programs tolerate underflow errors bounded 
by t = u. because they arc no more significant than 
roundoff errors "r.x" of comparable or larger magni
tude, but cannot tolerate underflow errors as large as .l. 
How many programs are in class A? 

The size of class A is a measure of how many programs 
benefit significantly from gradual underflow. If Store 0 
were good enough for most calculations, as might be ex
pected, the class A would be small, and then the extra 
capability afforded by gradual underflow would be in
consequential. However, the surprising fact is that many 
of the standard techniques of numerical analysis are 
known to fall into class A. This has been shown for linear 
equa,ion solving by J. Demmel 10; for polynomial equa
tion solving by S. Linnainmaa 11 ; for numerical integra
tion and convergence acceleration by Kahan 12 ; and for 
complex division, as indicated in the previous section. 

Once the extent of A is established, one may argue that, 
with only slight amendments, programs in A can be made 
sufficiently robust that they tolerate abrupt underflow to 
O. The reasoning is analogous to the motivation for 
gradual underflow in the first place: since the absolute er
ror due to underflow can be as large as A when all under
flows are set to zero, underflow error can seriously con
taminate numbers of which A represents more than half 
an ulp. This was illustrated by Figure 6. If in that six-bit 
system all numbers below the indicated underflow 
threshold were set to zero, the bound on the incurred er
ror would exceed half an ulp of all the normalized 
numbers less than 2 • 120

. Thus, numbers in the interval 
(2 - 126, 2 - 120) would be suspect in a calculation incurring 
underflow. In general, the number of contaminated 
binades equals the number of bits of precision carried. 
Thus, the threshold of suspicion for the proposed single 
format would be 

v = Alt = 2-102 :: 2.0· 10-31 

if underflow were not gradual. 
For a concrete application of v, consider the calcula

tion 

" 
sum : = b + L a, Y, 

, • I 

in the inner product example presented earlier. We noted 
that setting all underflows to zero can ruin small sums. 
More precisely, if underflow occurs in the summation 
above and lb!< v then sum is not trustworthy. 

Testing critical intermediate results against vis really 
just a poor man's substitute for gradual underflow. In 
the latter, the threshold of suspicion is the more natural 
boundary, the underflow threshold, since the denor-
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malized numbers tend to preserve the granularity of the 
number system down to the least significant bit of .l. 
When this threshold is crossed, the system raises the 
underflow flag. The difference between thresholds v and 
;I. illustrates the completeness that gradual underflow af
fords. In contrast, programs run with Store 0-cven if 
they are augmented with tests to guard against con
tamination by underflow-won't achieve good results 
over so wide a range as simpler programs run with 
gradual underflow. Rather, as in the inner product exam
ple, their authors will be obliged either to explain the 
thresholds like v to their users, or to insert contingency 
code, such as scaling, in order to eliminate artificial 
boundaries. 

Another argument against gradual underflow focuses 
on numbers rather than programs. The claim is that the 
class A is irrelevant since computations rarely encounter 
underflows, and that when they do, the errors are nearly 
always inconsequential. This reasoning forces a dilemma 
upon purveyors of robust software for Store O systems, 
since the cost of the code to handle the rare cases when 
underflow does matter is out of all proportion to the 
benefit in the typical case. On the other hand, gradual 
underflow repays its slightly increased implementation 
cost with accurate results over a wider range of problems 
and data. And, as we will soon see, gradual underflow 
has a built-in warning system to lessen the chance that 
consequential underflows overlooked by programmers 
will be overlooked by users. 

Old programs and the normalizing mode 

Unfortunately, it is not reasonable for the proposed 
standard to specify the normalizing mode of computa
tion as the default way to compute with denormalized 
numbers. Although the error! due to underflow is often 
negligible, the cases where it is not must be handled with 
great care-especially in would-be robust portable pro
grams. Currently, most machines set all underflows to 
zero and most high-level languages lack a flag or name 
for the underflow condition. Consequently. whenever 
existing robust programs test for underflow in sensitive 
calculations, they have no choice but to check for zero 
results. These programs might be fooled by nonzero 
values (and hence presumed not underflowed) which 
have lost significance due to dcnormalization-cspecially 
if these values are later scaled up away from the under
flow threshold. To protect the robustness of such pro
grams, the proposed standard must be specified on the 
side of safety. 

To see how a robust program could go wrong, consider 
the following code fragment intended to avoid errors due 

l = SMALLEST NORMALIZED NUMBER 
, = RELATIVE UNCERTAINTY OF A NORMALIZED RESULT 
( = cl= ABSOLUTE UNCERTAINTY Or A OEtvORMALIZED 

RESULT 

= 2 - 116 =: 1 2 1 0 - JE 

= 2 - ,, =: 6 0 10 - 6 

2- 11C=c 7 0 :0 '' 

Figure 11. Nota1ion for discussion of propo,ed single format. 



to underflow: 

q := (xxy)xz 
IF q = 0.0 THEN q := xx(yx::) 

In a system setting all underflows to zero, the test guaran
tees a reasonable value for q unless overflow occurs. 
However, if (x xy) underflows instead to a denormalized 
nonzero number of only a few significant digits, and if 
lzl >> 1.0, then q may be well within range, though very 
inaccurate. For a numerical example in a six-digit deci
mal system with ,l = 10- 99 let 

X = 4.78295 • 10-'l 
y = 1.22805 • 10- 60 

z= S.76623·10- 90 

Since (xxy) underflows gradually, the program pro
duces 

q:= (xxy)xz - (0.00059·J0- 99)xz 
.... 3.4-0208 · 10- 12 

whereas the intended result, correct to fully six signifi
cant digits, is 

Q: = XX (y X Z)-+ XX (7.08]22· 1030) 

- 3.38691. 10- 12 

The fragment above should ideally be translated to the 
following more robust code in a standard environment, 
in which over/underflow can be tested explicitly: 

underflow-flag : = overflow-flag : = FALSE 
q := (XX)')XZ 

IF (underflow-flag OR overflow-flag) THEN 
BEGIN 

END 

underflow-flag : = overflow-flag : = FALSE 
q := xx(yxz) 

This fragment is typical of those designed to cope 
automatically with what would otherwise be serious er
rors caused by over/underflow. Although the actual er
ror t suffered when underflow is gradual, is several 
orders of magnitude smaller than the possible error ). 
when all underflows are set to zero, the tiny error can 
nonetheless be catastrophic. Running such programs un
changed in the normalizing mode without funher 
analysis is reckless. 

Warning mode 

Reckless or not, users will run programs like the first 
code fragment above, believing-perhaps wrongly-that 
they will compensate for underflow errors as well in a 
new environment as they did in the old. Thus, the pro
posed standard has an obligation to defend such pro
grams against misinterpretation of denormalized num
bers. It prescribes the so-called "warning mode" as its 
default mode of arithmetic on denormalized operands, 
to be in effect unless a program contains an explicit re
quest for the normalizing mode. For example, the 
calculation above of q failed to produce an accurate 
result when the underflowed product (xxy) was nor-
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malized wholesale during its multiplication by z; in the 
warning mode, the second multiplication Y.Luld be de
clared invalid and a Not-a-Number symbol, NaN, would 
be delivered in lieu of the dubious product. By inhibiting 
indiscriminate normalization of results-thus limiting 
the growth of relative error in results whose antecedents 
underflowed-the warning mode protects programs 
written with another scheme in mind as well as some pro
grams written without any thought at all about under
flow. 

The warning mode differs from the normalizing mode 
in that it incorporates a boundary between valid and in
valid operations on denormalized numbers. Although 
the boundary is arbitrary (a paranoid scheme might pro
hibit any funher arithmetic on underflowed results), the 
boundary arises naturally in the proposed system, as we 
will see below. 

A calculation run in the warning mode can be expected 
to achieve results at least as good as those gotten in the 
past; but sometimes NaNs will appear. signaling a poten
tial underflow problem. If indeed the invalid results 
would have been junk, the user is better off with NaNs 
until the program is repaired. However, analysis often 
shows that underflow errors, when gradual, will not con
taminate final results, as indicated earlier in the discus
sion of class a. In this case, accurate results can be ob
tained by a recalculation in the normalizing mode. The 
point is that a user can run programs initially without do
ing anything special about underflow. The warning mode 
is intended to defer as long as possible the judgment of 
whether an error t figures significantly in a computation. 

For an example of the safety provided by the warning 
mode, consider the construction of a unit vector, u: = 
x I I Ix! I. by normalization of a given vector x. This is a 
very common calculation. If xis of modest dimension, n, 
and its elements are in no special order. then u ma} be 
calculated in the obvious way with two loops: 

sum := 0.0 
FOR i := l TO n 
norm := I/sum 
FORi := I TOn 

DO sum:= sum+x,2 

DO u, : = x, I norm 

If underflow is gradual, then as long as sum is a nor
malized nonzero number, norm is accurate to within 
about n 12 ulps, regardless of underflows in the x,2; hence 
u is about as accurate as roundoff allows. 

However, if all the x,2 underflow, the computed sum 
might be denormalized. Then in the normalizing mode, 
norm would be a normalized number well above >., but 
with relative uncenainty much larger than attributable to 
roundoff alone. This could seriously degrade the com
puted u. The warning mode prevents this kind of error 
grov,,1h by declaring the square root of a denormalized 
number, like sum, to be invalid. In the e>.treme case that 
all the x,2 underflow to zero, norm and sum would be 
zero in both modes, and the second loop would be 
marked by division-by-zero errors. 

The simple code above has the propeny that, when run 
in the default warning mode, it produces a result about as 
accurate as roundoff allows, so long as no exception 
besides underflow arises. Only in the rare case that 
overflow, division-by-zero, or invalid-operation is 



flagged will ii contain only zeros, ex>s and NaNs, and then 
the programmer will reject ii and revise the program. 
This case is typical of the relative safety afforded naive 
programs by the warning mode. Of course, a truly robust 
program to compute ii given any valid x. however unlike
ly, would require scaling and some provision to suppress 
roundoff when n is huge. 

This example neatly illustrates how the warning and 
normalizing modes are distinguished by their different 
interpretations of the absolute uncertainty t of denor
malized numbers. The normalizing mode's presump
tion-that the error t is negligible regardless of the asso
ciated relative uncertainty-is replaced in the warning 
mode by rules intended to restrict the relative uncertainty 
of normalized numbers to what is expected because of 
roundoff. 

The warning mode accounts fort by preserving the un
normalized character of denormalized operands. Instead 
of assuming an implicit prenormalization step at the start 
of each operation, the warning mode is specified in the 
proposed standard to be, as much as possible, a 
byproduct of the implementation of the normalized 
arithmetic, but allowing for a leading significant bit 0. In 
fact, the sum or difference of operands of the same for
mat has the same numerical value in both warning and 
normalizing modes. This follows from the observation 
made earlier that prenormalization could be avoided dur
ing addition and subtraction in the normalizing mode. It 
is a reflection of how naturally the denormalized 
numbers augment normalized sums. 

However, products and quotients imolving denor
malized numbers differ in the two modes. The distinction 
is a matter of acceptable error bounds, and may be char
acterized as follows. In the warning mode, a denormal
ized number is considered marked with an uncertainty of 
at least half a unit in its last place. Thus, it is thought of 
as an interval-like UN, though much narrower. The fol
lowing fact, stated for products ax b, applies to quo
tients alb as well. It will be discussed in detail in the sec
tions that follow. We use the subscripts Wand N to in
dicate the warning and normalizing modes, respectively. 

Of a product ax b, suppose that b is known to be 
normalized and presumed exact, and that a is finite, 
perhaps denormalized, and uncertain by 1/2 ulp. 
Then either: 
(I) (ax b)" is not invalid, in which case it equals 
(ax b)1o1 and its error bound, 3/2 ulps, is the same 
regardless of whether a was denormalized; or 
(2) (ax b)" is invalid, in which case (ax b), is 
uncertain by at least 5/2 ulps, and possibly much 
more. 

That is, in the warning mode, the only tolerated errors 
due to underflow are those attributable to the rounding 
phenomena of arithmetic on normalized numbers. 

Consider these statements applied to a recalculation of 
q : = (x xy) x z above, this time in the warning mode. 
The second multiplication 

(0.00059· 10- 99) X 5.76623· 10• 90 = 0.0034020757 • 10- 9 

would not be normalized and rounded to 3.40208 • 10- 12 , 

but would instead be flagged as an invalid result and 
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replaced by a NaN. This would prevent the gross uncer
tainty inherited from 

((0.00059 ± 0.000005)· 10- 99 X 5.76623· }0• 90 

= (3.40208±0.03)·10· 12 

from being overlooked as though the same result 
3.40208 • 10- 12 had been produced from relatively ac
curate normalized operands: 

((5.90000 ± 0.000005)· 10-IOl) x 5.76623 • I0· 90 

= (3.40208 ± 0.000008) • 10- 12 

In this example, normalization of the result would 
have magnified the inherited uncertainty of half a unit in 
the sixth digit of the denormalized operand to a third of a 
unit in the second digit of the normalized result-a ten. 
thousand-fold increase. The warning mode permits no 
magnification bigger than by a factor of two. It is in this 
sense that the valid/invalid boundary is arbitrary, since 
in some computations a growth as large as what occurred 
above might be perfectly acceptable. The warning 
mode's magnification limit two was chosen because that 
is as much as roundoff errors can suffer in one operation, 
regardless of whether denormalized numbers were in
volved. Furthermore, that limit is straightforward to im
plement. 

Valid results and the storage formats 

A very important aspect of the error statements above 
is that they correspond to a straightforward implementa
tion of the warning mode. One consequence of cases (I) 
and (2) is: 

In the warning mode, valid products and quotients 
are precisely those that can be stored in the destina
tion format. 

This connection between the floating-point formats and 
the inherited uncertainty of computed results is tied into 
the implicit leading bit of numbers above the underflow 
threshold .l, the subject of the next sections. 

A binary floating-point product is computed internally 
as 

A. oaa ... ooa 
xB.bbb ... bbb 

CC. CCC ... CCCCCC ... CCC X 2P 

If either of the Cs is a I, then the result can be rounded 
and stored, and will be normalized unless over/under
flow intervenes. However, when both Cs are 0, then the 
result can be stored only if P=N+ Mis no greater than 
the destination format's minimum exponent; otherwise, 
it is invalid because it violates the error statement in the 
last section. 

Every product of a denormalized number and a factor 
bigger than two will have an exponent above the format's 
minimum. But not every such product is invalid. In some 
cases, the product of a number barely denormalized, say 
0. loo ... aoa, and a normalized factor l.bbb ... bbb will 
carry out toa product of the form 01.ccc ... cccccc ... ccc. 
Despite the appearance that the absolute error of a 



relatively inaccurate factor is being magnified, such a 
normalized result satisfies the error statement in the 
previous section. This particular phenomenon of prod
ucts involving denormalized numbers will be considered 
in fun her detail later, in a different context. 

From this discussion we see that the warning mode's 
principal impact upon implementations is the test to 
detect the unnormalized character of the results pro
duced from denormalized operands. The valid/invalid 
boundary is maintained by a simple test to catch denor
malized numbers that have been promoted to unnor
malized numbers bigger than A. 

Analysis of a product 

This section and the next explore the fine details that 
underlie the earlier statements about the error bounds of 
products and quotients in the warning mode. (The trust
ing reader may skip to the section entitled "Funher Im
pact.") 

First we consider a product of operands in the same 
floating-point format. Consider the calculation of 

where A, B, and C have the form X.xxx ... xxx with 
X = 0 or I. Allow (Ax 2M) to be normalized or denor
malized, so that O .;;; A < 2; but assume that (Bx 2") is 
normalized, so that I .;; B < 2. 

First, the exceptional cases: If the product underflows, 
then the denormalized result is the same in both warning 
and normalizing modes. This result does not satisfy the 
relative error bound given below, but instead suffers an 
absolute error bounded by ~, as described earlier. The 
warning and normalizing mode results also agree when 
the product overflows, in which case both operands must 
have been normalized. 

The interesting cases are those whose results are within 
range and whose only errors are rounding phenomena. 
Since A is uncenain by half an ulp, the normalized prod
uct takes the form 

C :t y = 21 x (A :t £) x B :t c 

with exponent P = M + N-1. Soning this formula out 
from left to right, 

y is the error bound of the product, to be expressed in 
ulps of C; 

I is the number of left shifts required in the normal
izing mode and, when / = - I, the one right shift re
quired when the product of the significant digit fields 
is greater than or equal to 2; 

£ is half an ulp of 1.0-the leftmost c expresses the in
herited uncenainty in A, and the trailing c bounds 
the rounding error in the product. 

We examine three cases to interpret the error bound 
y = (21B+ l)xc. 

I= - I: The product of the significant digit fields is at 
least 2, so one right shift is required, producing a nor
malized result. This is possible only if both operands 
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were normalized. Consequently, the warning and nor
malizing results agree and 

y = (B/2 + I) x c < I ulp of C 

I= 0: The product of the significant digit fields is be
tween I and 2, so the result is normalized and requires 
no shifting. Hence the warning and normalizing mode 
results agree. Whether A was normalized or not, 

y=(B+l)xc < 3/2ulpsofC 

I> 0: The product of the significant digit fields is less 
than I, so A must have been denormalized. The warn
ing mode result is invalid and is replaced by a Na~. 
The normalizing mode result requires at least one left 
shift 10 produce a normalized result which satisfies 

r=(21B+l)xc < (2 1 + ½)ulpsofC 

As noted, the first two cases, I= 0 and - I, cover all 
valid warning mode arithmetic, regardless of the oper
ands. Even if the first operand were denormalized (0,.; A 
< I), since the product carried out to a normalized result 
falling into case I= 0, the error bound of the result would 
be no worse than for normalized operands. However, the 
case I> 0 points out an imponant fact alluded to earlier: 

The gap between valid and invalid results in the 
warning mode is noticeably bigger than a rounding 
error, since the error bound of an invalid result ex
ceeds by at least an ulp what it would have been for 
normalized operands. 

In the previous section, we saw the close link between the 
valid/invalid boundary and the single and double storage 
formats. Now, it is clear that the boundary is not simply 
an accident of the implementation nor an arbitrary 
threshold drawn from a continuum. Instead, it is dicta
ted by a jump in the error bound. 

The case analysis above can be viewed in a different 
way. Although B was introduced as a normalized num
ber, presumed exact, the computed error bounds were 
based on the worst case B == 2. When the analysis is re
traced for any particular value I .;;; B < 2 the conclusion is 
the same-namely that y jumps from case / = O to case 
I> 0, even though the panicular values of r are dif
ferent, depending on B. 

The case / = 0 when A is denormalized was mentioned 
in the last section, and will turn up again later. It received 
considerable attention within the floating-point sub
committee because of the apparent breach in the warning 
mode's defense, permitting the absolute uncertainty of 
denormalized numbers to be magnified. However, we 
saw in the analysis above that the associated error bound 
3/2 ulps of C applies to some normalized products as 
well. In fact, this word "some" can be strengthened, 
since there are normalized numbers with A' == A and 
B' == B such that 

C:ty=(A':tc)xB':ti 

Thus, the perceived grmvth of the uncertainty of denor
malized A is unexceptional, since nearby normalized 
operands suffer the same error bound. 



Does a quotient really differ? 

The last three sections have discussed floating-point 
products in considerable detail. All the statements about 
error bounds apply as well to quotients. Given all the 
assumptions about A, B, and C above, consider the 
calculation of 

The normalized quotient takes the form 

C±y = 21x(A±c)/B ±c 

with exponent P=M-N-1. As with the product, three 
cases determine the error bound y = (I + 21 / B) x c, 
namely / = 0, I, > I. These correspond directly to the 
cases J = - I, 0, > 0 for products. 

The offset of I in the cases of I reflects an important 
difference between the two operations. Because B, which 
is normalized between I and 2, is in the denominator. one 
left-shift of the quotient might be required to normalize 
C, even if A is normalized. (Divide 3 into I in binary, for 
example.) So this one left shift is permitted of any quo
tient. Though it may appear to be an extra shift, in the 
sense that no such shift is allowed a product in the warn
ing mode, quotients in cases I= 0, 1 do satisfy the same 
3/2 ulps error bound deduced for products. Quotients 
satisfy the analogous bound (21- 1 + ½) ulps of C when 
I> 1 and shifts beyond the first "free" one are required 
in the normalizing mode. 

A more complicated analysis is required for the calcu
lation of 

Although the computed error bounds are similar, divi
sion by a denormalized number is invalid in the warning 
mode. This is another instance of the somewhat arbitrary 
boundary between valid and invalid results-here, the 
expense of building divide units capable of handling un
normalized divisors was not considered worth the 
dubious utility of dividing by tiny numbers in the warn
ing mode. 

The extra shift that quotients are permitted gives rise 
to a curious difference between the product and quo
tient: 

(0. Jaa .. . aaa x 2M) x (1.000 ... 00 x 2") 

and 

(0. laa ... aaa x 2M) / (I .000 ... OOx 2-N) 

in the warning mode. Suppose that N > 0 and that Mis 
the exponent of .l., the smallest normalized number. 
Thus, the left operand is a number denormalized by just 
one bit, and the right operand is a power of two. Since 
the product would be unnormalized, albeit exact, the 
result is invalid. However, the quotient (Cx2P) is the 
normalized number 1.aaa . .. aaO x 2M+ N- 1. 

This distinction between certain products and quo
tients is an artifact of the measurement of error in ulps, a 
phenomenon that will be discussed below. Were the 
product above allowed one left shift then, as noted in the 
last section, it would be possible to perturb the operands 
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just slightly to get a result suffering an error of up to 5/2 
ulps-an ulp more than could be gotten from normalized 
operands. 

Further Impact 

Now that the rationale behind gradual underflow has 
been presented, it is appropriate to tie the scheme into the 
proposed standard as a whole. This will provide some in
sight into the nature of the arguments that occupied the 
floating-point subcommittee for so long. 

Until now, we have dealt with operations whose 
operands and results were all single or all double. How
ever. the proposed standard recommends wider extended 
formats for intermediate calculations, thus encouraging 
mixed-format operations. As in any scheme of arith
metic, these mixed-format operations somewhat compli
cate the analysis. Also, since the optional extended for. 
mats have an explicit leading bit, they permit unnor
malized numbers over their entire exponent range. Thus, 
the rules for normalized arithmetic with gradual 
underflow must be expanded to accommodate extended 
formats. This also complicates the analysis, but it is 
beyond the scope of this article. 

The specification of the single and double storage for. 
mats is based on several good ideas. It is desirable that 
the numbers retain their natural ordering when interpre
ted as signed integers. This implies that when a floating. 
point number is viewed as a bit string, its most significant 
bit is its sign, followed by its exponent, and then by the 
significant digit field. The leading bit of the latter field is 
stored implicitly for the sake of added precision. This 
ordering property implies that the exponent be biased so 
that the value O of the biased exponent pertains to the 
most negative true exponent. As suggested when the 
denormalized numbers were introduced, the exponent O 
is used in the representation of floating-point zero and 
the denom1alized numbers. 

Unlike underflow, which is gradual, overflowed re
sults arc set abruptly to signed 00. No effective and eco
nomical analog of gradual underflow is known for 
handling overflow. However, abrupt overflow is 
reasonable since calculations can be scaled or otherwise 
transformed so that quantities that must transgress a sys
tem's limits will underflow gradually. For example, most 
iterative procedures are designed to drive a residual value 
to negligibility. When a residual underflows to zero 
gradually, it is known to be negligible compared with 
every normalized number. 

The largest value of the biased exponent is reserved for 
± co (when all significant digits are 0) and the NaNs 
(otherwi5e). In this way. the finite numbers lie between 
and the NaNs lie beyond ± 00 • The specified signed oo 

allows an affine closure of the number set, although a 
projective mode which effectively ignores oo's sign is 
specified, too. So that + 00 and - 00 have distinct recip
rocals, floating-point zero is signed, though the sign can
not be discovered except by taking zero's reciprocal. The 
specification of signed zero led to the important decision 
to use the sign-magnitude ordering of floating-point 
numbers as integers. 



The choice of exponent bias exploits the gradual treat• 
mem of underflows. To diminish slightly the risk of over• 
flow, which is abrupt-though possibly at the cost of 
greater risk of underflow, which is gradual-it favors 
large numbers in the sense that 

.\xA==4 

where .l. and A are the smallest and biggest normalized 
numbers. This means that if xis normalized, then com
monplace expressions like llx, 2/x, 3/x, and nix cannot 
overflow to oo; and if any underflows, it will lose two bits 
of precision at worst. 

The jaggies 

Another argument against gradual underflow arises 
from a graph of the so-called "jaggies." As represented 
in Figure 12, the graph is essentially a bit-by-bit account 
of the case/= 0 as discussed earlier under "Analysis of a 
product" and alluded to in "Valid results and the storage 
formats." Using the notation from the former section, 
the normalized factor (Bx 2") ranges across the 
logarithmic horizontal scale, while the value of A, 
a.,suming (Ax 2...,) has the exponent of .l., ranges across 
the vertical scale. 

The purpose of the graph is to show the jagged edge 
between \'alid and invalid products in the warning mode. 
The edge is the set of pairs A and B such that A x B = I, 
with O <s A < I and I ,.; B < 2. The product of (Ax 2M) 

and (B x 2') is valid unless M + N exceeds the exponent 
of .l. and Ax B < I, in which case the result cannot be en• 
coded in a format whose leading significant bit is impli• 
citly I. The claim is that, despite this simple description, 
users will not tolerate such "jagged" behavior in their 
arithmetic-that changing an operand slightly should 
not make the difference between valid and invalid 
results. 

This argument falls short for several reasons. First, the 
gist of the detailed analysis presented earlier is that, 
despite the result of one or another particular product, 
there is a powerful general statement describing the in
herited error in products and quotients in warning mode. 
And the jagged edge is not peculiar to gradual under• 
flow; indeed. products and quotients were shown to in• 
herit uncertainty v. ith an equally jagged graph. Jagged 
edges abound whenever calculations depend strongly 
upon small differences that amount to rounding errors. 

______ A2-----------------
t 

NORMALIZED A 

t 
DENORMALIZED A 'h 

WARtl INGS ARE GIVEN FDR THESE PRODUCTS 
_ ____;l_ _ _j__...J:,==,j,==~==!e:,:,:=:=:c= ... 

2' 2' 2' 

Figure 12. The jaggles. 
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Independent of the discussion of gradual underflow or 
particular operations, the graph of the jaggies should be 
nothing new to users of floating-point arithmetic. If the 
horizontal scale is simply the real number line and the 
vertical scale measures the relative uncertainty of real 
numbers rounded to the form (Bx 2'), a graph with ex• 
actly the same shape results. And not a single arithmetic 
operation is involved! Thus, the jaggies are simply 
another rounding phenomenon-which is what gradual 
underflow is intended to be. 

Conclusion 

Floating-point computation is intrinsically com-
• plicated. Traditionally, implementors have simplified 
their task at the expense of more complicated-or less re• 
liable-software. However, the proposed standard takes 
the opposite tack. Consequently, the details of im• 
plementation of the proposal are many, as shown in an 
earlier article. 13 But, as proven here for underflow, a 
close look reveals an underlying coherence that leads to 
simple statements about the arithmetic. The implementa• 
tion complexity will be justified if high-quality software 
developed for standard environments proves to be 
simpler, more portable, and thus cheaper than it has been 
in the past. 

New software will tend to employ the normalizing 
mode, by request in the prologue of the program, since 
so many computations lend themselves to an analysis 
proving that denormalized numbers can be normalized 
with impunity. Nonetheless, the constraints of current 
and past software practice dictate that the warning mode 
be specified as the default mode of operation in the pro
posed standard. Periodically, the simplicity of both ex
plaining and implementing the normalizing mode with its 
effective lack of unnormalized operands will be redis• 
covered, and it will be suggested as the default (and 
perhaps only) mode of operation. This may be fine for 
the future, but for now, existing programs have to per
form at least as well as they have in the past-or stimulate 
a warning. For this, the warning mode is vital. 
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CHAPTER 6 

Comparisons and Branching 

1. Introduction 

A basic fact of real arithmetic is that two numbers x and y compare as 

exactly one of less, equal, or greater. However, this so-called trichotomy 

property does not hold when the real number system is expanded to include 

not-a-number symbols (NANs) because these symbols have no natural order

ing with the real numbers. This chapter deals with the issues raised by NA.Ns 

in the number system. 

Loss of the trichotomy property complicates comparisons. Consider the 

simple code sequence: 

if x > 3.1416 then ... 

else ... 

If x is a NAN then the inequality ls surely false, so the else clause must be 

executed. But might the else clause have been written with the presumption 

"x ~ 1r" in mind? If so, a NAN value of x may be disastrous. The problem is 

more historical than technical. Since most computer systems to date have 

simply stopped when a non-numeric reserved operand appeared, this prob

lem has been avoided, though at considerable cost in the utility of the 

reserved operands. Nowadays, when arithmetic operators are overloaded to 

apply to complex numbers, arrays, or intervals, which though "numeric" 

may have no linear ordering, the very same issues arise. 

Here are the subjects to be dealt with in the coming sections: 

6.1 
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(1) In a system supporting partially ordered entities, what rules for com

parisons hold in lieu of the trichotomy property of the real number sys

tem? 

(2) What do the expanded rules for comparisons have to say about the rela

tional operators of current languages? For example, Pascal's relational 

operators 

= <> < <= > >= 

themselves reflect the presumption that if two values are not equal, <>, 

then they are related as less or greater. 

(3) What protection is there for existing programs and programmers who 

labor under the assumption that floating point entities enjoy the tricho

tomy relation? 

(4) How can the relational operators of current languages be expanded in a 

reasonable way? What expansion, if any, is required by the proposed 

binary floating point standard P754? 

(5) What underlying implementations of floating point comparisons best 

serve the needs of language systems and programmers? 

(6) How can the expanded set of relational operators be made compatible 

with existing computers? 

2. Relations 

In the P754 number system with its NANs, the trichotomy is expanded to 

the four-way relation less, equal, greater, or unordered. Determining the 

relation between two floating point values :x and y is actually quite easy. 

Working backward from the special cases: 
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if x is NAN or y is NAN then x and y are unordered ... 

else x and y are less, egual, or greater according to the ordering of real 

numbers with the understanding that 

+0 = -0 = real 0 

and 

- 00 < I all real numbers J < +00 • 

Some computers, notably the CDC 6000 class, have been built without a 

floating point comparison instruction, requiring compilers and assembly 

language programmers to issue code sequences like 

temp +- x-y 

test temp for positive, negative, or zero 

to effect comparisons. However, the proposed standards make this type of 

implementation inconvenient, if not infeasible, by explicitly prohibiting the 

possible side effects of the subtraction - overflow, underflow, inexact result, 

invalid operation {see §5. 7 of draft 10.0). Even with all due care in suppress

ing the extraneous exception flags in the subtraction, the scheme above V.'ill 

require special tests for cases like +00 = +00 , since {+ 00)-(+ 00 ) is invalid, not 

zero. 

Of course, if a signaling NAN appears as an operand in a comparison it 

stimulates the invalid operation exception, just as it would in any other arith

metic operation. Like a quiet NAN, it would compare unordered with the 

other operand, though an invalid operation trap handler might modify the 

relation based on an interpretation of the NAN outside the scope of P754. 
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3. Current Language Predicates 

In a P754 system, current language predicates like =, <, and >= keep 

their literal interpretation despite the new relation unordered. For example, 

consider the Pascal code fragment: 

if x < y th.en begin . . . end 

else begin . . . en<t 

If and only if x is less than y is the then clause executed. If x is equal to, 

greater than, or unordered with y then the else clause is executed. Thus the 

meaning of the relational < has not changed, only the inference drawn from 

its negation; execution of the else clause no longer implies that x ~ y. 

Similar rules apply to the relationals =, <=, >, and >=. Their literal 

interpretation is honored in deciding the fate of an if-then-else clause. How

ever, the situation is more interesting for the relational "not equal" because 

of the way it is written. In Pascal, the literal interpretation of"<>" is "less 

or greater". On the other hand, the literal interpretation of the FORTRAN 

".NE." is more reasonably "less, greater, or unordered". Current user's of 

both languages probably refer to both relationals as "not equal" and might 

be surprised at any semantic difference. Is it better to follow the literal 

interpretation of the syntactic form or to be consistent with the probable 

intent across different languages? One could argue the former case on taste 

and the latter on the basis of portability of algorithms between different 

language systems. Since the computer cannot read the programmer's mind, 

it has to take what is said literally just in case what is said is what is meant 

literally. 
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4. Old Habits 

The fourth relation, unordered, can undermine old programs, old pro

grammers, and even old programming languages. Proposal P754 provides a 

measure of security against mistaken inferences in else clauses such as 

if x < y then begin . . . end 

else begin . . . end; 

by stipulating that in such instances, if x and y are indeed unordered, the 

invalid operation exception should be stimulated. This is the best that can 

be done since there is no floating point "result" from the comparison, with 

which to propagate the NAN operand's diagnostic information. 

According to §5. 7 of P754, the invalid operation exception is to be sig

naled when unordered operands are compared with a predicate "involving" 

the relations less or greater but not unordered. Thus, two families of rela

tionals are deliberately exempted from the protection mechanism for unor

dered operands. First, the FORTRAN ".EQ." and ".NE." are always unexcep

tional since the are used in floating point calculations primarily to weed out 

special, anomalous, values. This is quite different from using ".LT." to distin

guish the condition less from "greater or equal"; this comparison involves a 

presumption that may not be valid. The second exemption from the invalid 

exception is for any predicate that explicitly mentions (i.e., "involves") the 

unordered relation. As of this writing, there are few implementations of 

languages with such relationals. But one could imagine an expanded FOR

TRAN with ". ULE." for "unordered, less, or equal". P754 exempts a state

ment like 

IF (X .ULE. Y) GOTO 2050 
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from the invalid operation exception when X and Y are unordered since, by 

writing ".ULE.", the programmer has shown a modicum of regard for the 

unordered contingency; no protection is required. 

These special relationals exempt from exceptions on unordered raise· 

some additional issues. Consider the two FORTRAN tests 

IF(.NOT. X .GT. Y) GOT02001 

IF (X .ULE. Y) GOTO 2001 

Although the logical negation of "grea.ter" is indeed "unordered, less, or 

equal", the two tests differ in the invalid operation side effect. The latter 

test is exempt from the exception because of its mentipn of unordered in the 

relational; the former test is not. On the other hand all of the tests 

IF (X .NE. Y) GOTO 19B4 

IF (.NOT. X .EQ. Y) GOTO 1984 

IF (X . ULG. Y) GOTO 1984 

cause a branch precisely when x and y are related as "unordered, less, or 

greater", and all are exempt from the invalid operation on unordered. 

5. P754 Predicates 

The following table, adapted from proposal P754, describes the complete 

set of 26 relational predicates. Since there are four possible relations, less, 

equal, greater, or unordered, each of which may be tested for true or false, 

there are in principle z4 or 16 possible combinations. The unconditional true 

and false are omitted, leaving 14. Including the logical negations, that is 

(x <y) and NOT(x <y ), yields 28. But two pairs of these 

(x = y) and NOT(x ? <> y) 

and 
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NOT(x = y) and (x ? <> y) 

are functionally identical; deleting one of each pair leaves 26 functionally dis-

tinct relational predicates. {Note that the 12 other such pairs are function

ally distinct because one member triggers the invalid operation exception if 

the operands are unordered, and the other is unexceptional.) 

6. Extending Existing Languages 

P754 specifies what to do with each of the possible relational predicates 

that can be formed given the four relations equal, less, greater, and 

Predicates Relations Exception 
greater less invalid if 

ad hoc FORTRAN math than than eaual unordered unordered 
= .EQ. = F F T F No 

?<> .NE. -,t. T T F T No 
> .GT. > T F F F Yes 

>= .GE. ~ T F T F Yes 
< .LT. < F T F F Yes 

<= .LE. ~ F T T F Yes 
? unordered F F F T No 

<> .LG. T T F F Yes 

<=> .LEG. T T T F Yes 
?> .UG. T F F T No 

?>= .UGE. T F T T No 
?< .UL. F T F T No 

?<= .ULE. F T T T No 
?-.- .UE. F F T T No 

NOT(>) F T T T Yes 
NOT(>=) F T F T Yes 
NOT(<) T F T T Yes 

NOT(<=} T F F T Yes 
NOT(?) T T T F No 

NOT(<>) F F T T Yes 

NOT(<=>) F F F T Yes 
NOT(?>) F T T F No 

NOT{?>=) F T F F No 
NOT(?<) T F T F No 

NOT(?<=) T F F F No 
NOT(?=) T T F F No 



6.8 

unordered. However, the proposed standards do not force a language imple

mentor to provide any given set of relationals. Virtually every programming 

language provides the set shown here for Pascal, BASIC, C, and FORTRAN. 

Pascal and Basic C FORTRAN 
= .EQ. 
<> != .NE. 
< < .LT. 

<= <= .LE. 
> > .GT. 

>= >= .GE. 

How should this set be expanded, if at all? 

First consider an easy case. Suppose that the C programming environ

ment is expanded to include the predicate function 

integer unordered{x, y) 

fioat X, y; 

which returns the value one if and only if x and y are unordered, without 

raising the invalid operation exception, and returns zero otherwise. Then the 

whole gamt_it of predicates is avaliable through constructions like 

if (unordered{:r, y) II (x < y)) ! ... ~ 

The logical OR operator "II" is such that if the left expression is true (i.e., 

nonzero), then the comparison on the right is bypassed. This short-circuit 

evaluation allows the programmer to bypass the invalid operation exception 

the standards would mandate in case unordered values of x and y were com

pared with "<". C's logical operators were designed with just such uses in 

mind. 

Now consider a Pascal system augmented by 
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function unordered(x, y: real): boolean; 

which returns true if and only if x and y are unordered. The Pascal version 

of the C test above is 

if unordered(x, y) or (x < y) then begin .. . end; 

Unlike C, Pascal does not specify the order of evaluation of the two tests. 

And Pascal says nothing about short-circuit evaluation, in case the first of 

the two expressions is true. So, although the flow of control is unambiguous, 

the invalid operation exception side-effect is left to the whims of the Pascal 

system. The programmer who would avoid unwanted side-effects caused by 

unpredicatable order of evaluation must force the order by nesting the tests: 

if unordered(x, y) 

then begin ... end 

else /* vacuous case * / 

else 

if X < y 

then begin ... end 

else; /* vacuous case * / 

Unhappily for the Pascal programmer, it may be necessary to use goto's to 

avoid duplication of code within the nested cases. 

The Pascal programmer would be aided by an expanded set of relation

als. Consider the set above augmented by the following set (written for FOR

TRAN and C as well): 
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Math Pascal and BASIC C FORTRAN 
unordered ? ? .UO. 

unordered or equal ?= ?-. - .UEQ . 
unordered or less ?< ?< .ULT. 

unordered or greater ?> ?> .UGT. 
unordered, less or equal ?<= ?<= .ULE. 

unordered, greater or equal ?>= ?>= .UGE. 
unordered, greater or less ?<> I- .NE. .-

(not equal) 

The "not equal" operator is now written precisely for all of the languages. 

The "less or greater" operator "<>" of Pascal is not shared by C and FOR

TRAN, but it is not so useful anyway. The symbol "?" in the Pascal and C 

relationals and the letter "U" in the FORTRAN relationals is deliberately 

placed at the head of the relational to suggest its short-circuit effect, that is, 

that no invalid operation exception will arise if the operands are unordered. 

These relationals have two unfortunate properties. The FORTRAN ver

sions are coincidental with the typical assembly-language names for the 

unsigned integer comparisons, which could cause confusion. Also, the ques

tion mark may be inscrutable when used in a context like 

if x ? y then begin . . . end; 

An alternative is to use either the function unordered{), or the complemen

tary relationals with logical negation, like 

if not (x <=> y) then begin ... end; 

In the latter case, P754 calls for the invalid operation side effect when x and 

y are unordered since there is no explicit reference to the unordered rela

tion. 
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7. Hardware Support for Language Constructs 

Now that we have explored the language issues in comparisons we can 

look at the required hardware support. A conditional branch construct like 

the Pascal 

il x < y then begin <block A> end 

else begin <block B> end; 

might be compiled into assembly code of the form: 

LABEL-B: 

F1NI: 

COMPARE 
BRANCH 
<block A> 
BRANCH 

<block B> 

x,y 
UGE, LABEL-B ; skip to block B if?, >, or= 

F1Nl ; unconditionally skip block B 

What is important is that the compiler has "flipped" the sense of the predi

cate being tested, in order to branch around the then clause. In this case 

the relational "<", which triggers invalid if x and y are unordered, is impli

citly replace by "?>=", which is never invalid. And an optimizer may 

attempt later to move code blocks A and B by flipping the relational once 

more. This is bad news if the arithmetic associates the invalid exception with 

the assembly language branch condition. 

The compiler has three fundatmental responsibilities: 

{ 1) Ensure that unordered operands trigger the invalid operation exception 

just when appropriate. 

(2) Ensure that flipping the sense of the relational takes into account the 

four possible relations. 

(3) Ensure that subsequent optimizations are safe. 
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Perhaps the simplest way to a robust implementation is to have two 

comparison instructions: one just a straight arithmetic comparison, and one 

that will also trigger the invalid operation exception on unordered. Then the 

compiler can issue the required flavor of comparison on the basis of the rela

tional that appears in the source program, and the conditional branches can 

be flipped with impunity later. 

8. Implementation Examples 

The following sections illustrate ways of implementing the P754 predi

cates using the conditional branch schemes on existing CPUs. These proces

sors were designed with the trichotomy in mind so some special care has 

been required. 

8.1. 16-bit Microporcessors 

The families of 16-bit microprocessors available today from Intel (8086), 

Motorola (68000), National (16000), and Zilog (ZB000) are two's-complement 

integer-only machines. These CPUs implement trichotomy comparisons 

using a set of condition code bits like: 

C - carry-out of result 

Z - zero result 

S - sign of result 

V - integer overflow 

S is sometimes called N, for "negative bit". These bits are typically set 

according to the result of each integer arithmetic operation They are 

tested using the conditional branch instructions. All the CPUs above either 

already have or are intended to have hardware support for floating point in 

the form of co-processor or slave chips. Will their existing branching 
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schemes suffice, even though the trichotomy property does not apply to 

P754 comparisons? 

The conditional branch instructions come in two flavors depending on 

whether they interpret integer results as unsigned or two's-complement 

signed. The unsigned branches use the C and Z bits, and the signed branches 

use the Z, S, and V bits. By an appropriate mapping of floating point com

parisons into the condition code bits, the two flavors of branches can be rein

terpreted so as to incorporate the unordered relation. 

For definiteness the following discussion is based specifically on the 

Zilog ZBOOO microprocessor. Execpt for notational differences, the situation 

is the same for the other three microprocessors. One possible mapping of 

the condition code bits for floating point comparisons is: 

C - set if! less 

Z - set if! egual 

S - set iff less 

V - set if! unordered 

A useful interpretation of the ZBOOO branches is given for the expanded list of 

Pascal relationals. A question mark signifies unordered in the ad hoc rela

tional predicates that mention that relation. Note that of the fourteen possi

ble combinations of the four relations (ignoring the trivial true and false) 

only one complementary pair cannot be tested with a single ZBOOO condi

tional branch. 

Pascal 
Predicate 

= 
< 

<= 
> 

Integer 
Predicate 

= 
unsigned< 

unsigned<= 
> 

ZBOOO Condition 
Code Setting 

Z=l 
C = 1 

C or Z = 1 
Z or (S xor V) = 0 
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>= >= S xor V = 0 

? < S xor V = 1 
?<= <= Z or (S xor V) = 1 
?> unsigned> C or Z = 0 

?>= unsigned>= C=O 

? overflow V=l 
<=> no overflow V=O 
?<> not equal Z=O 

?-.- NONE Z or V = 1 
<> NONE Z or V = 0 

With this mapping of the condition codes, full support is given the assembly 

language programmer (and the compiler) if the assembler merely recognizes 

the set of "floating relationals" and maps them into the appropriate condi

tion code test. For example, the assembly instruction 

JR FLE, LABEL3 

requesting a Jump (Relative to the current program counter) to LABEL3 if 

the floating relation <= is true, would be interpreted as the actual ZBOOO 

instruction 

JR ULE, LABEL3 

using the integer relation unsigned <=. 

Although this mapping between integer and floating relationals may 

seem nonintuitive at first, it is an exercise to show that this is the best that 

can be done. The only nontrivial flexibility is in choosing which two "double" 

relationals will require two branch intructions. In this case, the relationals 

?= and <> were chosen as the least likely to arise in practice. 

8.2. &bit Microprocessors 

The Intel BOBO, Rockwell 6502, and the Zilog ZBO are three common B-bit 

integer-only microprocessors. Each has 4 condition code bits 



C - carry-out of result 

Z - zero result 

S - sign of result 

V - integer overflow 
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like the 16-bit processors above. But the 8-bit processors lack the full com

plement of signed and unsigned branches. Instead, each of the condition 

code bits must be tested individually with instructions like "branch on carry 

set", "branch on carry clear", etc. 

So there is no clever mapping between the floating point relational 

predicates and the signed and unsigned integer predicates. The best that 

can be done is simply to map each of the the four floating relations onto one 

of the condition code bits: 

C - set ifl less 

Z - set iff equal 

S - set ifl greater 

V - set ifl unordered 

A useful interpretation of the ZBO branches is given for the expanded list of 

Pascal relationals. A question mark signifies unordered in the ad hoc rela

tional predicates that mention that relation. Note that of the fourteen possi

ble combinations of the four relations (ignoring the trivial trne and false) 

only the combinations involving one or three relations can be tested with just 

one conditional branch. 

Pascal 
Predicate 

= 
< 

<= 
> 

Condition 
Code Setting 

Z=l 
C = 1 

C = 1 or Z = 1 
S = 1 
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>= S=l or Z=l 

? V=l 
?<= C=l or V=l 
?> S=l or V=l 

?>= C=O 

? V=l 
<=> V=O 
?<> Z=O 

?-.- Z=l or V=l 
<> C=l or S=l 

Beyond this, this situation differs on the three microprocessors. The 

BOBO a set of three-byte branch instructions (one-byte opcode followed by 

one-word absolute address) to test each of the condition code bits; the ZBO 

has these instructions plus two-byte branch instructions {one-byte opcode 

followed by a byte offset from the current program counter) to test the C 

and Z bits. On the other hand, the 6502 has only two-byte instructions to test 

the condition code bits; branches beyond the range of the one-byte offset 

must be handled with an unconditional three-byte jump. 



CHAPTER 7 

Accurate Yet Economical Binary-Decimal Conversions 

"The ultimate aim is to persuade all of the civilized world to abandon the de
cimal numeration and to use octonal in its place; to discontinue counting in 
tens end to count in eights instead. However, it seems unlikely that the 
whole civilized world will be persuaded to complete this change during the 
next twelve months, having previously declined similar invitations." 

E. William Phillips ( 1936) 

Introduction 

Because of our "uncivilized" insistence on decimal arithmetic for every

day calculations, today's high-speed computers, most of which perform 

arithmetic in radix two or a power of two, must be supplied with conversion 

routines to expedite input and output of data in decimal form. These utilities 

typically run without the benefit of extra range or precision, in which case 

they are provably inaccurate, and often they use many more floating-point 

operations than do more robust algorithms. Now, proposed IEEE standard 

P754 for binary floating-point arithmetic [1] attempts to impose accuracy 

specifications for binary-decimal conversions. It turns out that the required 

accuracy can be achieved with very economical algorithms. 

This chapter is an extended footnote to proposal P754. It describes 

algorithms that guarantee correctly rounded results for all input values. 

However, these schemes can be costly in time and space. The principal con

tribution of this chapter is an economical alternative, a set of fast algorithms 

that provide results that are just accurate enough. These algorithms have 

been adapted from an earlier implementation guide [3]. Implementors 

interested only in the algorithms may turn immediately to §2 of this chapter. 

7.1 
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For the more leisurely reader, § 1 introduces P754 and discusses the 

important issues in radix conversion. Unfortunately, discovering what is 

accurate enough in lieu of correct rounding, and correlating this with an 

efficient implementation, entail a surprisingly tedious error analysis. This 

analysis constitutes §3. 

1. Radix Conversion Issues 

1.1. Proposed Standard P754 

A brief survey of proposed IEEE standard P754 for binary floating-point 

arithmetic will explain some of the terminology in the rest of the paper. The 

basic goal of the standard is to provide users with a computing environment 

conducive to the production and portability of numerical software. P754 

specifies 32-bit single and 64-bit double formats, as well as optional system

dependent extended formats. The extended formats may be thought of as a 

computer's internal types; when available to programmers, they offer some 

valuable extra range and precision at little added cost in execution tim~ and 

implementation complexity. P754 requires results computed as though with 

unbounded range and precision, and then coerced {by rounding and checks 

for exponent over /underflow) to fit in the destination format. 

Four modes of rounding are specified in P754: the default mode to 

nearest and the three directed modes toward - 00 , toward 0, and toward +oo. 

To express them in terms of radix conversion, let x and X represent binary 

and decimal floating-point numbers, respectively, with preassigned precision. 

Then the conversion x ➔ Xis correctly rounded if when rounding 

to nearest: X is the nearest decimal to x, in case of a tie X has an even least 
significant digit 



toward 0: Xis the nearest decimal to x satisfying !XI~ !xi 

toward + 00 : Xis the nearest decimal to x satisfying x ~ X 

toward - 00 : Xis the nearest decimal to x satisfying X ~ x. 
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Analogous rules apply for decimal to binary conversion X ➔ x. However, for 

huge and tiny values of x and X these rules are so expensive that P754 per

mits them to be relaxed by, roughly speaking, replacing "nearest" with 

"nearest or next to nearest". 

Radix conversions are vulnerable to rounding errors, exponent overflow, 

and exponent underflow. In addition to these exceptions, P754 distinguishes 

two others, division by zero, and invalid operation (like 0/0), but these do not 

matter for our purposes. Associated with each of the exceptions is a status 

flag accessible to programs. A flag must be set whenever its corresponding 

exception arises; it may be cleared only by user software. An implementa

tion may also support traps for each of the exceptions, but these are 

optional. Traps present problems more system-related than numerical, but 

they are mentioned later in the few instances where they affect the algo

rithms. Finally, P754 specifies the symbolic entities ±00 to cope with overflow 

and division by zero, and NAN (not-a-number) to deal with invalid operations. 

Conversion to and from these symbols is left as a special case to be handled 

by the implementor. 

1.2. Floating-Point Number Systems 

A conventional floating-point number system is characterized by its 

radix, precision, and range. For example, the values of the finite numbers in 

the P754 single format are precisely the values 

±bo•b 1b2b3 • • • b23 x ~ , 



... 
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where each b1c is either 0 or 1 and -126 s; e s; + 127. A simple way to view this 

number system is to divide the real number line into intervals of the form 

[2n-l, 2n]. We call these binaries, the binary analog of decimal decades. 

Within each such binade the P754 single numbers have the absolute spacing 

2n-24, so they divide the binade into 223 equal pieces. The size of the pieces 

doubles from binade to binade to the right. The follovring picture illustrates 

the number system near 1 on a logarithmic scale. 

2-25➔ +- 2-24➔ +- ➔ +-2-23 ➔ +-2-22 

II II I II II II I I I II I I I I I 

1 /2 1 2 

Of course this picture does not apply across the entire number line 

because of the constraints on the exponent e. What happens at the limits of 

the representable number range poses no serious problem in radix conver

sions. ln particular, the tiny but notorious denormalized numbers of the 

P754 formats [ 4] require no special treatment. 

Decimal number systems are analogous, using instead of bits b11. decimal 

digits d1c. In a decimal format with values 

±d0°d 1d 2d 3 • • • dp_ 1 x loE' 

the intervals of interest are the decades [1oN-1, loll] wherein the absolute 

spacing is 1oN-P. The spacing jumps by a factor of 10 from decade to decade 

to the right. The case P=9 is shown in the following diagram. 

, o-10➔ +-
• •• I I I I I 10- 9 ➔ +- ➔ +-10- 8 

111111!111111 
➔ +-10- 1 

II I I 

1/10 10 
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Our goal in this paper is to devise mappings between binary and decimal 

number systems that satisfy as nearly as practical the rules for correct 

rounding. What complicates the problem is that the two systems do not 

mesh compatibly; at some places the binary spacing doubles while at others 

the decimal spacing jumps tenfold. 

We can be more precise about the relation between binary and decimal 

spacings. Suppose we have p-bit binary and P-digit decimal floating-point 

approximations to a real number Z: 

bo•b1b2 • • • bp-1 X ~ ~ Z ~ do•d1d2 • • • dp-1 X 10E , 

with bo=l and d 0 >0. Then the binary and decimal spacings near Z are simply 

the units in the last place (ulps) of the respective approximations. They are 

ulp2 = 2° -p+l and ulp10 = 10E-P+J 

from which we get the relation 

= 

between ulps 10 and ulps2. The fixed ratio 10-P / 2-P depends on the preci

sions of the binary and decimal formats. However, the ratio 1oE+1 / 2e + 1 

depends on Z. It varies between a maximum of almost 10, when Z lies in 

intervals of the form [ loN, 2n] where 1oN ~ 2n, and a minimum just above 

1/2, in the corresponding intervals [2m, 1oM]. So we deduce the formula 

< 
ulp10 
ulp2 < 10 x [ 

1
;: l 

which is useful in bounding ulps10 and ulps2 in terms of each other. 

(C) 

From formula C we can find roughly equivalent binary and decimal pre

cisions. If we choose precisions p and P such that the ratio 10-P 12-p is 

about 1, then ulp2 and ulp 10 would be about the same size, up to the factor 
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10E+1 I 2'1 +I. For example, the P754 single format has precision p = 24; since 

2-24 is about 6.0x10-8, the corresponding decimal precision is somewhere 

between P = 7 and P = B. The P754 double format has precision p = 53, with 

2-53 about l. 1x10-16; so the corresponding decimal precision is about 16. 

1.3. A Distinguished Decimal Precision 

Some applications demand that any representable binary floating-point 

value be obtainable by rounding an aptly chosen decimal number. That is, 

the decimals should be so dense as to distinguish the binary numbers. How 

many decimals are required? That is the question we turn to now. 

This separation property has been discussed in the literature before, for 

example in I. B. Goldberg's astute note [5] on the binary precision required 

to distinguish eight-digit decimal numbers. He worked in the opposite direc

tion, distinguishing decimals with internal binary values, but the issues are 

the same. What we need for this paper will be redeveloped here. 

The problem is, given binary precision p, to find the decimal precision P 

required to distinguish the binary numbers. A condition sufficient for dis

tinction is given by the following: 

Separation Requirement. For every binary number x, either x is 

exact in the decimal format, or x's nearest decimal neighbors 

x- < X < x+ are such that x+-x- is less than the distance from X 

to its nearest binary neighbor. 

This requirement implies for every x that there is a decimal number nearer 

to x than to any other number in x's format. Thus it guarantees that some 

decimal number would round to x in a correctly rounded conversion; that is, 

it guarantees distinction. 
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To see how to satisfy the separation requirement, consider the number 

line below on which a power of ten is bracketed thus, 2n-l ~ 10N < 2n, by 

adjacent powers of two. The spacings of p-bit and ?-digit numbers in the 

respective binades and decades are shown, although the representable ticks 

are omitted for clarity. 

10N 

~ ~ 2-n-p•1 I 
➔ +- 10N-P+1 I II I I I 

If the separation requirement is satisfied in the interval [ 10N, 2n ], then it is 

surely satisfied throughout the entire decade [ 10N, loN + 1] in which the 

decimal mesh is uniform while the binary spacing doubles across successive 

binades. 

So it is enough to study the critical intervals [10N, 2n]. lf P is the 

number of decimals carried and p is the number of bits, the separation 

requirement is equivalent to requiring that 

ulp10 = 1oN-P+l < 2n-p = ulpz 

hold over all pairs of corresponding N and n. Rewriting the inequality in the 

form 

shows that 2-P > 10-P+l is a sufficient condition for separation, because 

~ > 1oN. In the P754 single and double formats, with p =24 and p =53, respec

tively, 

2-24 Ri 6. Ox 10-B > 10-B and 
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so P=9 and P=17 satisfy the separation requirement. 

We have derived the chain of inferences 

10-P+l < 2--P ➔ Separation Requirement ➔ Distinction . 

Now, can we complete the chain and show that all three conditions are logi-· 

cally equivalent? The answer in general is NO, but the explanation is 

deferred to the Nit-Picking at the end of the paper. The answer for P754 sin

gle and double is YES. To see that P=9 and P=17 are actually necessary for 

distinction, we need only consider the critical interval [103, 2 10]. There, the 

binary spacing 6. lxl0-:5 for p =24 is coarser than the decimal spacing 10-:5 

for P=9, but is almost twice as fine as the spacing 10-4 for P=B. So by the 

pigeonhole principle P = 8 could not achieve distinction. The situation for 

p =53 and P= 17 is similar. 

In the last section we looked at roughly equivalent binary and decimal 

precisions on the basis that ulp 10 RJ ulp2. Although the P754 single format 

gives about 7 or B significant digits of precision, P=9 is required to ensure 

that ulp10 ~ ulp2 even in the most critical intervals [ lo-N, 2n]. In general,_ the 

decimal precision P necessary and sufficient for separating binary numbers 

of precision p, is the smallest P satisfying 10-P+l < 2--P. This may be 

thought of as a requirement that the widest relative spacing in the decimal 

format be just narrower than the narrowest relative spacing in the binary 

format. 

Now that we have fixed the relation between p and P, we can flip the 

ratios in formula C to bound ulp2 in terms of ulp 10. The ratio 1oP / 2P is about 

59.6 for P754 single and 11.1 for double. Thus the spacings of 9-digit decimal 

numbers and P754 single format numbers satisfy 
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5.96ulp10 < ulp2 < 119ulp10 , 

and the spacings of 17-digit decimal numbers and P754 double satisfy 

l.1lulp10 < ulp2 < 22.2ulp10. 

These bounds are nearly achieved in practice. Consider the two border cases 

~ 3 ~ 1016 and 2103 ~ 1031 illustrated in the figures 

for which the following table applies. 

P754 single 

P754 double 

107 ulp10 

20 ulp 1o 

2102 

6.04 ulp10 

1.13 UlP10 

From these examples and the discussion above we see that the 9-digit 

decimal numbers are always at least six times as dense as P754 single format 

numbers, while in some intervals the 17-digit numbers just barely distinguish 

double format numbers. It is a remarkable coincidence that the P754 single 

and double formats reflect the near extremes of tightness in decimal encod

ings! We will return to the separation property later when we analyze imper

fectly rounded conversions in §3. 

1.4. Less than Perfect Rounding 

Conversions using a computer's built-in floating-point arithmetic typi

cally commit somewhat more than the expected rounding error. Just how 

imperfect may such conversions be, and still be accurate enough? We might 

attempt to preserve as many as possible of the important properties of ideal 
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conversions. Consider the following list, in which binary values are given in 

lower case (x, y), and decimal values in upper case (X, Y}. 

[Sign symmetry.] When rounding to nearest or toward 0, if x ➔ X, then -x ➔ 

-X; and if X ➔ x, then -X ➔ -x. When rounding toward +00, if x ➔ X, 

then when rounding toward - 00 , -x ➔ -X; similar relations hold for the 

conversion X ➔ x and with the rounding directions swapped. 

[Monotonicity.] If x < y, x ➔ X, and y ➔ Y, then X ~ Y. If X < Y, X ➔ x, and 

Y ➔ y, then x ~ y. 

[Direction.] When rounding toward + 00, if x ➔ X then x ~ X, and if X ➔ x 

then X ~ x. Similar inequalities hold when rounding toward O or toward 

-00. 

[Recovery.) If Xis carried to at least 9 (17) decimals then x ➔ X ➔ x when 

rounding to nearest in single {double}. And if X is carried to no more 

than 6 ( 16) decimals then X ➔ x ➔ X. 

[Sensibility.] Applied to numbers of reasonable size, conversions should be 

correctly rounded. For example, results like 3.0 ➔ 2.99999 ... 9 and 0.5 

➔ 0.5000 ... 01 from binary to decimal conversion are unacceptable. 

[Consistency.] X should map to the same internal value x regardless of 

whether X appears in the source text of a program or is put in as data 

at execution time. Similarly, a value x should be displayed as the same 

decimal X (for a given format} regardless of the programming language 

or output medium used. 

The consistency property often falls victim to system or language 

idiosyncracies. Perhaps the most bothersome situation can arise when a 

language compiler uses a different {imperfect) conversion scheme than the 

run-time 1/0 facility. In that case, a user might be unpleasantly surprised to 
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discover that the debugging statement 

X := 3•14159265 

has a different effect than does typing that decimal string in response to the 

prompt "Test value x = ?" at an interactive terminal. 

Recovery of a binary number x from the chained conversion x ➔ X -+ x 

is guaranteed if the conversions are correctly rounded and if X is kept to 

decimal precision P sufficient to distinguish binary numbers with the preci

sion p of x. We discussed the relation between P and p in the last section. 

Now we would like to carry the recovery property over to imperfectly 

rounded conversions. We must ensure that the total error in the two conver

sions is less than one ulp2. Formula C bounds the binary to decimal error, 

measured in ulps 10 , as a fraction of an ulp2. The condition 

[
1Q-P+l l 
~ x b -+ d error in ulp 10 + d-+ b error in ulp2 < 

is sufficient for recovery x -+ X -+ x. Measured in their respective ulps, the 

individual bounds are at least ~ ulp due to rounding. But the factor 

(10-P+1; 2-p ), which is about 1/ 6 for single and 9/ 10 for double, provides a 

cushion in binary to decimal conversions, so it is possible to keep the total 

error less than 1 ulp2. 

The factor (10-P+l / 2-P) is the maximum relative spacing of full preci

sion decimal numbers to representable binary numbers. The value 1/6 for 

the single format suggests that the 9-digit decimal numbers are so dense 

that perhaps a few full ulps10 error could be tolerated in binary to decimal 

conversions without losing the recovery property. On the other hand, the 

factor 9/10 leaves little margin for extra error in binary to decimal conver

sion from the double format. 
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The properties listed at the beginning of this section are reasonable 

requirements for binary-decimal conversions but they are incomplete as a 

set of specifications. It is a simple exercise to invent bizarre conversions 

that satisfy these rules but almost always yield ridiculous results. What is 

needed is a bound on the extra rounding error incurred. The cryptic figure 

0.4 7 ulp was put in proposed standard P754 as a worst-case bound, not to 

guarantee the properties listed above. In fact, it is too high for all conver

sions but binary to decimal from the single format in a directed rounding 

mode, and for that case it is lower than absolutely necessary to preserve the 

other properties. But we suspend further discussion of the error bounds 

until we have analyzed the algorithms below. 

2. Algorithms 

2.1. Correctly Rounded Conversions 

We will look first at algorithms for correctly rounded binary-decimal 

conversions. The error properties of such conversions are already well 

known, thanks especially to an exhaustive series of papers by D. W. Matula[?]. 

But the algorithms themselves have not been discussed, due perhaps to their 

impracticality. 

Consider conversion from the P754 single format to decimal. The input 

values will have the form 

±b 0•b 1b2 • • • b23 x ~ where -126 ~ e ~ + 127 . 

These values are representable exactly in the binary fixed point format 

i121i12si125 • • • i2i1io•f -if -2 • • • f -1.wf -149 

and can be converted exactly to the decimal format 
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I sal 37/ 36 • • • I 2111 o•F -1F -2 • • • F -«F -45 • • • F-148F -14g 

with equally many fraction digits. Of course the decimal value will usually be 

rounded down to some more manageable length, depending on the output 

precision desired. The important point about such conversions is that they 

require arithmetic on a wide bit buff er for the binary input and a wide digit 

buffer for the decimal output. 

There are several ways to perform the integer conversion. One is to 

repeatedly divide the binary integer buffer by a power of ten; then the suc

cessive remainders give the decimal digits from right to left. Another way is 

to scan the integer bits from left to right, accumulating a decimal value that 

must be doubled at each step. In yet another scheme the binary integer 

would be divided by a huge power of ten, perturbed upward a little bit, and 

then converted as a fraction. 

A binary fraction may be converted to decimal by repeated multiplica

tion by a power of ten; the successive integer parts give the decimal digits 

from left to right. For example, since 10 = 8+2, multiplication of a bit buffer 

by 10 can be accomplished by shifts of three and one bits, followed by an add 

of the shifted values. The case 1000 = 1024-16-8 is similar and provides 

three digits at each step. 

Once the integer and fraction parts are converted as necessary, the 

decimal fixed point value, if not exact. must be rounded to the precision of 

the target format. In the worst case this entails propagating a carry across a 

string of nines, possibly causing a carry out of the left end. Correct rounding 

is possible - even in the half-way cases when the least significant digit output 

must be even - because the integer and fraction schemes above produce 

successive digits correctly. For example there is never a question whether a 
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string of digits "4999 ... " should actually be "5000 ... ", as is the case with ele

mentary transcendental functions. Only in the integer conversion requiring 

the small perturbation must care be taken not to confuse the perturbation 

with rounding error. 

Further discussion of integer and fraction conversion algorithms may be 

found in [6, pp. 302-312] and [9, pp. 436-459]. Appendix D contains a sample 

implementation of correctly rounded conversions. The procedures are 

presented as a Pascal unit (in the notation of Apple Ill Pascal [2]) suitable for 

inclusion in a system library. They may be parameterized to support P754 

single, double, or even double-extended format conversions. 

Although the correctly rounded conversions are conceptually simple, all 

of the schemes discussed above suffer time penalties on machines without 

significant support for the wide binary and decimal quantities involved. For 

example, the first two integer schemes require that all integer digits be con

verted. Fraction conversion is somewhat simpler, and it has the advantage of 

producing digits from left to right, so it may be stopped when enough digits 

have been obtained to round to the target precision. The time and space 

penalties incurred are severe for operands of wide range and precision. The 

Pascal routines in the appendix require one 1400-bit packed BCD buffer and 

one 1000-bit binary buffer in order to perform P754 double format conver

sions. Such conversions are unsuitable for implementation, say, on a chip 

supporting the rest of a floating-point engine and presumably subject to time 

and memory tradeoffs. But they are ideal for low-end implementations 

either done entirely in software or lacking extended support for the algo

rithms of the next section. 
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2.2. Imperfect Conversions 

In this section we look at algorithms for converting between decimal 

strings and the P754 binary floating-point formats. All arithmetic is per

formed in a P754 extended format, whose exact requirements are discussed 

at the end of the section. The only decimal operations required are exact 

conversions between decimal integers of modest length and integer values in 

the extended binary floating-point format. 

The basic strategy in binary to decimal conversion is to scale the input 

value by a suitable power of ten so that, when rounded to an integer, the 

scaled value has the desired number of digits in its exact decimal represen

tation. Together, this integer and the scale factor determine the decimal 

significant digits and exponent. Rounding errors can occur during binary to 

decimal conversion; floating-point overflow and underflow in the sense of 

P754 do not arise because because the decimal formal has no range restric

tion. However, a kind of overflow arises if the decimal destination field has 

insufficient width to accommodate the desired number of significant digits 

and the computed exponent. What happens in this situation is highly 

system-dependent; further discussion is deferred to the Nit-Picking section 

at the end of the paper. What makes the following algorithm interesting is its 

near-minimal rounding error. 

Algorithm B {Binary to decimal conversion.) Given a binary floating-point 

number xin, a positive integer N, and implicitly the current direction of 

rounding, this algorithm finds the significant digit and exponent components 

of the floating decimal string ad 1°d2d 3 • • • dNEde:r:p approximating xin. The 

named temporary variables are integers LDGX and SCALE, and extendeds x 

and y. 
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BO. [Special cases.] Dispatch zero, infinite and NAN values of xin. 

BL [Extend xin.] Set x ~ xin. (x will be normalized.) Save y ~ x. (x will be 

normalized.) 

B2. [Log base 10.] Set LOGX ~ llog 1o( Ix I) J , perhaps underestimating by l. 

(See algorithm L below.) 

B3. [Scale factor exponent.] Set SCALE~ N-LOGX-1. (Rounding xx10SCALE to 

an integer should yield the N-digit significand.) 

B4. [Scale x .] Scale x by 10SCALE as in algorithm S below. 

B5. [Round to integer.] Round x to an integer, according to RMODE. 

136. [Check for N digits.] If Ix I~ loN then increase LOGXby 1. restore x ~ 

y, and go back to step B3. Otherwise, if Ix I < 1oN-1 then replace x by 

1oN-1 with the sign of x. (The latter test is not necessary for all imple

mentations. See the analysis of algorithm B for details.) 

B7. [Significant digits.] Convert x to the signed decimal string ad 1d 2 • • • dN. 

BB. [Exponent.] Convert LOGXto the signed decimal string dexp. • 

Algorithm B is designed for FORTRAN E-format conversions, where the 

number of significant digits is specified in advance. With a small 

modification, the algorithm can be applied as well to F-format conversions, 

where only the number of fraction digits is specified. Let a separate flag indi

cate whether E- or F-format output is desired; for the latter N specifies the 

number of fraction digits to be displayed; then SCALE in step B3 is simply N 

{even if N itself is negative), and steps B2 and B6 are unnecessary. F-format 

conversion may suffer "format overflow" in step B7 if lxl is too big to fit into 

the destination to receive it. In this case a helpful system might print the 

number in E-format with a modest number of digits. 
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Input conversion from decimal to binary is computationally simpler, but 

is open to several hazards associated with free-format character strings. For 

instance, if polynomial coefficients are read from a file built by an algebraic 

manipulation system with very high precision and range, what is to be done 

with 35-significant-digit numbers, or numbers with {outrageous) 13-digit 

exponents? Some problems lie outside the domain of the conversion routine. 

Literals in program text may be decomposed into significant digit and 

exponent strings during a compiler's lexical scan, and subjected to the arbi

trary size constraints of the scanner. Will the compiler even recognize spe

cial values like ±00 or NAN? Ideally, recognition of floating-point numbers 

should be the responsibility of a system routine. Figure 1 at the end of the 

paper shows how floating strings might be discovered. In any case, decimal 

strings might be constrained to have fewer than, say, BO characters. 

Algorithm D uses the conversion strategy of algorithm B above, m 

reverse. The significant digits are converted as a wide integer to be scaled 

by a suitable power of ten, whose exponent depends on the exponent field as 

well as the placement of the decimal point in the input string. Figure 2 at 

the end of the paper shows one way to parse floating strings into significant 

digit and exponent fields. Of course algorithm D is vulnerable to rounding 

errors; unlike algorithm B, it may also suffer overflow or underflow. 

Algorithm D {Decimal to binary conversion.} Given the signed decimal 

strings ad 1d 2 • • • dN (with d 1 # 0), and dexp, corresponding to the value 

ad 1d 2 • • • dN,O x lO®ZF , and implicitly the current rounding direction, this 

algorithm computes a corresponding binary floating-point number xout. The 

constant NMAX is the maximum number of significant digits that may be 

input. The named temporaries are integers SCALE and LOST and extended 
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value x. 

DO. [Special cases.] Dispatch zero, infinite, and NAN strings. 

DL [Convert exponent.] Set integer SCALE +- dexp. {This will be exact 

except when ldexp I is outrageously large, in which case SCALE should be 

set to some huge value like 4000. This will produce a scaled value x that, 

while not outside the extended range, will provoke the suitable overflow 

or underflow in step D6.) 

D2. [Excess digits.] Set LOST +- 0. If N ~ NMAX, skip to step D3. Otherwise, 

truncate the excess N-NMAX digits dNMAX+1dNMAX+2 • • • dN, setting LOST 

+- 1 if any of them are nonzero. Add N-NMAX to SCALE. Go to step D4. 

D3. [Canonical form.] Minimize !SCALE! as follows. If SCALE > 0, pad the digit 

string on the right with up to NMAX-N zeros, subtracting from SCALE 

the number of zeros appended. Otherwise, if SCALE < 0 truncate up to 

-SCALE trailing zeros, adding to SCALE the number of zeros dropped. 

D4. [Significant digits.] Convert the digit string: x +- ad 1 d 2 • • • dM. (Steps D2 

and D3 assure that 1 ~ M ~ NMAX, so the conversion is exact.) 

D5. [Scale x .] Set Scale x by 105 CALE as in algorithm S below. 

D6. [Round.] Logically OR LOST into the least significant bit of x. Convert to 

storage format: xout +- x. (This final step may overflow or underflow. If 

there is no trap, the result is as in P754. If there is a trap two cases 

arise. If the overflow or underflow was "reasonable" then a correctly 

wrapped-around result is sent to the trap hanler in lieu of xout. 1f the 

exponent of x cannot be wrapped-around to within the range of xout, 

then the value of x, though it may be available to the trap handler, is 

meaningless since the decimal exponent may have been set arbitrarily in 

step Dl; in this case the most useful information is the original decimal 
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string, but it may not be available.}• 

How much extended arithmetic is actually needed? We have seen that 

discriminating binary-decimal conversions require rather more decimal pre

cision than binary. For example, nine decimals are required for conversion 

from the P754 single format. Since 

109 > 224 ~ l.7X107 , 

and both algorithms B and D require that a nine-digit integer be stored 

exactly, it is clear that conversions cannot be carried out entirely in the sin

gle format with its 24 significant bits. Proposal P754 includes optional 

extended formats for just such calculations. These formats follow the P754 

conventions for, say, rounding and the handling of over /underflow but their 

particular encoding is system-dependent. P754 requires that there be at 

least 8 extra bits of precision and 3 extra exponent bits in single-extended, 

and 11 extra bits of precision and 5 extra exponent bits in double-extended. 

Since 

1Q9 < ~ 4+B RI 4.3 X 109 , 

any nine decimal significant digit string can be held, as an integer, in the 

single-extended format, so the scalings of algorithms B and D can be per

formed with a few extra bits to suppress rounding errors. We will see later 

that the numbers 8 and 11 of extra bits are very tight - there is hardly a bit 

to spare in providing accurate binary-decimal conversions. 

If an extended format is not implemented in hardware, algorithms B and 

D may be less attractive than the correctly rounded conversions of the previ

ous section. But if time, space, or even compatibility constrain one to the 

methods of this section, some provision must be made in software. The only 

arithmetic operations required for the conversions are multiplication, divi-
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sion, comparison, round to integer, and conversion to and from the single or 

double formats being supported. The operations are simplified by the 

absence of special cases involving infinite and NAN operands and by the res

triction to results which usually suffer only rounding errors (the conversiop 

in step DB of algorithm D may over /underflow). So it is feasible to build 

these functions from a reasonable complement of intrinsic integer opera

tions. 

2.3. A Poor Man's Logarithm 

Step B2 of algorithm B calls for the calculation of l log10(z) J, where z is a 

positive normalized number. It turns out that a suitable approximation 

LOGX, perhaps too low by 1, may be found with just a few integer operations. 

If we express z in the form 28 x 1./, we can see that 

log 10(z) = log10(2) x log2{z) = log10{2) x (e + log2(l./ )). 

A look at the graph of log2{ 1./) versus O.f 

1 

log( 1 .f) 

0 0.f 

and a little calculus indicate that 0.f ~ logil./) with a maximum deviation 

of about 0.086. So log2(2" x 1./) is approximated from below by e + 0.f, 

that is "e.f" as a fixed-point number! This suggests the following simple 

procedure for computing LOGX. 

Algorithm L (Log base JO.) Given a positive binary floating-point number z, 

this algorithm computes LOGX as l log1o(z) J or the next integer toward - 00 • 
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The temporary variables LOG2 and L2X hold fixed point values. 

ID. [log 10(2).] Set LOG2 ~ 0.4D104D427 • • • 16, log 10(2) in hexadecimal, trun

cated to a convenient length like 8 or 16 bits. 

LL [log2{ z ). ] Set L 2X ~ e + 0.f, where z = 2° x 1.f. The fraction 0.f may be 

truncated to as few as 6 bits. 

12. [Ensure a lower bound.] Jf L2X < 0, increase LOG2 by one unit in its last 

place. 

I.'3. [log 10(z ).] The result is LOGX ~ l LOG2 x L2X J. • 

The maximum possible error in LOG2 x L 2X is approximately log 10(2) x 

0.0B6 Rj 0.026 , caused by the linear approximation to log2(z ). By com

parison, the errors due to truncating low-order bits of e.f and rounding 

log 10(2) are small. In any case, all errors are toward - 00 • Only rarely will the 

computed LOGX be wrong, and then it will be off by 1. lf we assume that 

log2(l./) is uniformly distributed between O and 1 [6 pp. 23B-247], then the 

average induced error in LOGX is about 

1 
log 10(2) x fo {log2{1 +t) - t )dt i:::! 0.017 . 

Assuming that {log 10(z) mod 1), too, is uniformly distributed between O and 

1, this means that LOGX will fall short less than 2% of the time and then only 

for values z barely greater than powers of ten. 

As usual, the analysis is more complicated than the implementation. To 

illustrate the ideas, we can compute l log 10(Y) J where Y is a positive, normal

ized number in the P754 single format. Y is encoded as a 32-bit string 

F 
0 1 8 9 31 
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representing the value 

y = (-l)S X 2E-127 x 1.F . 

The sign bit S is zero for positive Y. So to approximate log2( Y) we need only 

subtract the bias 127 from E and imagine a binary point between E and F. 

Then the product with an approximate log10(2) is essentially an integer 

operation. The following assembly language sequence will compute l log 10( Y) J 

on a Zilog ZBOOO microprocessor (10]. 

Program L {Log of a single format number.) Given the value Y in register 

RR2, compute l log 1c(Y) J. (On the ZBOOO, RR2 refers to the pair of 16-bit 

registers R2 and R3; RH2 and RL2 refer to the most and least significant 

bytes of R2.) 

LD R3, #%4D10 ! Overwrite the low-order half of Yin R3 with log 10(2), 
chopped, whose implicit binary point is to the left of 
R3. The'%' flags the constant as hexadecimal. ! 

SLA R2, #1 ! Shift the high-order half of Y left 1 bit, leaving the 
exponent in RH2 and the seven leading fraction bits, 
followed by a O bit, in RL2. ! 

SUBB RH2, #%7F ! Unbias the exponent to gel a two's complement ap
proximation to log:,l Y), v.ith an implicit binary point 
between RH2 and RL2. ! 

JR PL, PLUS ! Chopped log!C(2) is fine if unbiased E ~ 0. ! 

INC R3, #1 ! Round log 1o(2) up. ! 

PLUS: MULT RR2, R2 ! RR2 gets R2xR3 ~ log 10( Y) in two's complement 
with the binary point between RH2 and RL2. The ap
proximate l log1c( Y) J is in RH2 since in two's comple
ment arithmetic the floor function is achieved by 
truncation. ! • 

2.4. Scaling in Algorithms Band D 

This section contains a scaling algorithm that lies at the heart of both 

algorithms B and D. 
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Algorithm S {Scaling in bina:ry~ecimal conversions.) Given an extended 

floating-point number x, an integer SCALE, and implicitly the current direc

tion of rounding, this algorithm computes xx1oSC4.LE, rounded toward zero, 

and sets the least significant bit of x to 1 if any nonzero bits have been 

rounded off. Extended variable z holds the value 10SCALE, possibly rounded. 

The pseudo-variable RMODE contains the current rounding direction. The 

integer pseudo-variable IXFLAG corresponds to the P754 inexact flag; it sig

nals rounding errors in floating-point operations. The values RMODE and 

IXFLAG are saved in and restored from the variables RSA VE and IXSA VE. 

SO. [Rounding direction for scale factor.] Set RSAVE '"- RMODE. Jf RSAVE = 

to n2arest, skip to step S1. (These next tests handle the other three, 

directed, roundings.) 1f RSAVE = toward - 00 and x < 0, or RSAVE = 

to'Ward +oo and x > 0, set RMODE '"- toward +00 ; otherwise set RMODE '"

to'WO.rd -oo. Finally, if SCALE< 0, reverse the sense of RMODE. 

Sl. [Scale factor.] Set z '"- 101 SCALE 1. (See algorithms P and Q below. Both 

algorithms B and D are designed so that z will not overflow the extended 

range.) 

S2. [Perform scaling.] Save IXSAVE 4- IXFLAG and set IXFLAG 4- 0. Set 

RM ODE '- toward 0. If SCALE> 0, set x '- x xz. otherwise set x 4- x / z . 

(IXFLAG, assumed to take the values O - clear and 1 - set, records any 

rounding error in the multiplication or division of x by z .) 

SJ. [Collect roundoff.] Logically OR IXFLAG into x's least significant bit. 

Restore RM ODE'- RSA VE. Logically OR IXSA VE into IXFLAG. • 

If the scale factor 10ISCALEI cannot be represented exactly in the 

extended variable z, then it is rounded in a direction that guarantees that 

the ultimate result in algorithm B or D will honor the intended rounding 
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direction. 

Algorithm S is vulnerable to errors in step Sl when 10ISCALEI is com

puted and in S2 when the input x is scaled. However, the latter error may be 

avoided. Since both algorithms B and D will round the scaled value x to a 

precision narrower than extended, any low-order bits chopped off in step S2 

will participate correctly as "guard bits" for the rounding in step B5 or step 

D6, if they are logically OR'ed into the least significant bit of x. And when 

rounding toward 0, the P754 inexact exception flag, IXFLAG, contains pre

cisely the logical OR of all chopped bits. The figure below tells the story. 

2.5. Evaluating Positive Powers of Ten 

Step S1 of algorithm S involves the calculation of a nonnegative power of 

ten in an extended variable z. Since it is this calculation that contributes to 

any error algorithms B and D commit in excess of the expected rounding 

error, it is worthwhile to compute z as accurately as possible. 

X I * I z,. 1 oSCALE 

--+ I x•z chopped r£S logical ill 
or • N X 

ln~x.e1 

I I~ I nag 

--+ X * Z chopped 

'- J 

--+ 

Avoiding an unnecessary error. 
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Expressing nonnegative powers of ten in the form lQk = 2k x 5k , we 

see that lif is exactly representable in a binary floating-point format with p 

significant bits and reasonable exponent range only if 5k < 2P. The P754 

single-extended and double-extended formats, with 32 and 64 significant bits, 

can accommodate powers of ten up to 13 and 27, respectively, since 

513 < 2s2 < 514 and 527 < 264 < 528 . 

Unfortunately, these exact powers of ten are not sufficient for scaling in 

steps B6 and D7. For example, in conversion from the single format to 

decimal, the input values xin to algorithm B satisfy 

-45 ~ l log 1o( I xin I ) j ~ 3B , 

with an asymmetric range because xin may be a tiny denormalized number 

[ 4]. Then, since the digit count N can range from 1 to 9, the value SCALE 

computed in step B3 can range from -38 to 53. Somehow the powers of ten 

up to 1053 must be computed for scaling in single format conversions. Hap

pily, there is a strategy blessed by a stroke of good luck. 

Suppose that the exact values 10°, 101. ... , 1013 are available, either from 

a table or to be computed on the fly. And suppose there is available the table 

of values: 

Pis 0.91B4E72A16 x ~ 

P21 0.CECBBF281a x 290 
i:::l 

Pro = 0.EB194FBE16 x 2133 
i::, 

1013' 

1027 X (1 + 2-36) and 

1040 X (1 - 2-35) 

Given the table values above algorithm P below will compute any nonne

gative power of ten up to 1053 with just one rounding error, regardless of the 

rounding mode. This is possible because of the extraordinary accuracy of 

the rounded values P 27 and P 40 and because of extra care in a few special 
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cases. And it is fortunate since, as we will see in the analysis of the next sec

tions, accuracy to the last bit is required to guarantee monotonicity in algo

rithms B and D for single format conversions. 

Algorithm P {Nonnegative power of 10, single format.) Given N ~ 0 and 

implicitly the current rounding direction, compute extended z ~ 10N with 

the property that z ~ 10N if rounding toward +oo and z ~ 10N if rounding 

toward O or - 00 • The integer pseudo-variable IXFLAG corresponds to the 

P754 inexact result flag. 

PO. [Exact case 0-13.] If N > 13 then set IXFLAG ._ 1 and go to step Pl. Oth

erwise set z ._ 10N, exactly and exit. 

PL [Case 14-26.] If N > 26 then go to step P2. Otherwise set z ._ ? 13 x 10N-i3 

and exit. 

P2. [Case 27-40.] If N > 40 then go to step P3. Otherwise set z +- P 27 x 

10N-27 _ If N is either 27 or 28 and the rounding mode is toward -oo or 

toward O then subtract 1 in the last place of z. Exit. 

P3. [Case 41-53.] Set z ._ Aw x 10N-40_ If N is either 42 or 48 and the r.ound

ing mode is not toward O then add 1 in the last place of z. • 

Conversions to and from the P754 double format are more complicated. 

With 64 significant bits in the double-extended format, powers of ten up to 

1027 can be represented exactly. But the wider exponent range of the double 

format requires powers up to 10340 , in order to convert the tiniest denormal

ized number. The strategy here is similar to algorithm P above except that 

the table of powers of ten depends on tradeoffs among lime, space, and accu

racy. Fortunately, it is not necessary to produce perfectly rounded powers 

of ten as was the case above. 
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Algorithm Q exploits a carefully chosen table of increasing powers of 

ten: pten(l) = 1027, pten{2), • • • , pten(IMAX). These values are kept in the 

extended format, and all but the first are rounded. Let pexp(l) = 27, 

pexp(2), ... pexp(IMAX) be the corresponding decimal exponents. Then the 

following algorithm computes 1oN with a loop that multiplies the necessary 

table values, followed by a final multiply by an exact power of ten. The 

directed rounding modes are honored in the sense that all rounding errors 

have the correct sign. 

Algorithm Q {Nonnegative power of 10, double format.) Given N ~ 0 and 

implicitly the current rounding direction, compute z Rl 1oN with the pro

perty that z ~ 1oN if rounding toward +00 and z ~ 1oN if rounding toward 0 

or - 00 • The temporaries used are integer I and extended z. The integer 

pseudo-variable IXFLAG corresponds to the P754 inexact result flag. 

QO. [Initialize.] Set I c- IMAX and set z c- 1.0. 

Ql. [Check threshold.] lf N <pe:r:p(l), skip to step Q3. 

Q2. [Scale z.] Set z c- z x FIXED(pten(I)), and decrease N by pe:r:p(l). {The 

value pten (1), which is kept rounded to nearest, might require an adjust

ment of 1 in its last place to comply with a directed rounding mode. Jt 

suffices to keep an Brray pfix(l), pfix(2), ... pfi:x(IMAX) of integers with 

value 0, +1, or -1 according to whether the corresponding table entry is 

exact or is rounded up or down. In any case, for the table values sug

gested below, the fix never amounts to more than a change in the low 

order 16 bits of pten (1), that is, a simple integer operation.) If pfix (I) is 

nonzero then set IXFLAG c- 1. 

Q3. [Iterate.] Decrease I by 1. If/ > 0, go back to step Ql. 



Q4. [Last multiply.] Set z c- z x 10N. (N ~pexp(l) so 10N is exact.) • 

If space is to be economized, a good choice for the table pten (} is: 

O.CECBBF27F42OOF3A16 x 290 = 
O.DOCF4B5OCFE2O76616 x 2183 Rl 

O.DAO1EE641A7O8DEA16 x 2359 ~ 

O.9F79A169BD2O3E41 16 x 2685 
R:l 

1055 X ( 1 + 2-76) 

10100 x (1+2-67) and 

1Q206 X (1-2-67) 

7.28 

Given 10° through 1027, exactly, any power of ten through 10340 can be com

puted with at most three multiplications, using at worst two rounded table 

values. The rounded table entries are so accurate that, when rounding to 

nearest, the error bound in any computed power of ten will be dominated by 

the error in the multiplications alone. A conservative error estimate would 

be 

1Dfomp : 1Df.roct X (1 ± 2-64)3 X (1 ± 2-67)2 

1O~t X (1 ± (7/2)x2-64) 

for a worst case bound under four rounding errors even when computing the 

largest required power of ten. In any of the directed rounding modes the 

error estimate is 

10fomp : lOf.roct X ( 1 ± 2-63)3 X ( 1 ± 2-63)2 

= lD~t x (1 ± 5x2--63) 

where the sign of the error depends upon the direction of rounding. 

Two more accurate variants of this scheme are worth considering 

although the accuracy above is sufficient. A table of 10° through 1027 along 

with a table of the powers 

1027+ 28xk' ... 
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permits the evaluation of any power of ten with at most one multiplication, 

reducing loop Q1-Q3 in to just one pass. This scheme suffers at most two 

rounding errors, one inherited from the latter table value and one from the 

multiplication, but it requires about forty extended table entries to reach 

10540_ 

A more extravagant form of the table just mentioned can produce any 

10N with one multiplication, and with a guaranteed error bound of ½uip2 

when rounding to nearest. Rather than using values spaced by the factor 

1028 as above, it uses a denser table carefully chosen to produce correctly 

rounded intervening powers. Experiments indicate that about sixty table 

entries would be required just to achieve results correctly rounded to 

nearest [11]. 

When the value z in algorithm P or Q can be computed exactly, algo

rithms B and D are guaranteed to suffer at most one rounding error - in step 

B5 or DB. Whether z is exact depends on the value SCALE in the algorithms 

B and D. lf I SCALE I does not exceed 13 in single conversions and 27 in dou

ble conversions then 10ISCALEI can be computed exactly in the single 

extended and double extended formats, respectively. This accounts for the 

ranges in Table 3 of the proposed standard P754 [1]. 

2.6. Testing Algorithms B and D 

Of course the best way to test a program is to compare its results with 

the right answers. Fortunately that is possible, if only the algorithm for 

correctly rounded conversions is implemented along with algorithms B and 

D. Over what ranges should the two programs agree? The analysis in §3 

shows that the key to correct conversions in algorithms B and D is a correct 

scale factor 10ISCALE'I_ For single format conversions, algorithm D is correct 
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for all 9-digit values in the range 

100000000. X 10-15 to 999999999. X 1013 , 

and algorithm B is correct if its output lies in this range. Smaller values, 

down to 10-13 itself, may be converted correctly if the number of significant 

digits involved diminishes accordingly. For example, the decimal string 

"1.234e-10" would be cast as the value 000001234. x 10-15 by step D3 of algo

rithm D, lending itself to correct conversion. 

When correctly rounded conversion is not guaranteed, how far off can 

algorithms B and D be? Not more than an ulp in the destination format, as 

we will see. So let us consider binary to decimal conversion from an input x. 

Let Xm, ~. and ~ be the decimal values resulting from algorithm B with 

rounding toward -oo, to nearest, toward + 00 , respectively. Let Cm, Cn, and c; 
be the corresponding correctly rounded values. Finally, suppose x is not 

exactly representable in the decimal format. Then ½n. and c; differ by one 

ulp10 and C'n is one or the other of those values. Ideally, the corresponding 

C's and X's should match. But this may not hold for huge or tiny x. Then, 

~ is in error by less than an ulp so it too must be one of Cm or CP, though 

not necessarily the right one, C'n. And the direction property ensures that 

Xm ~ Cm ~ Xn ~ c; ~ Xp . 

One of the innermost inequalities is equality, so the other is strict. And one 

of the outermost inequalities is equality since the 0.47 ulp10 bound on extra 

error guarantees that Xm and Xp differ by at most 2 ulps10. Note that this 

discussion carries over to algorithm D as well. These facts about the inter

lacing can be used with the correctly rounded conversions to test algorithms 

Band D. 
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A byproduct of the interlacing is the fact that another implementation 

of algorithms B and D must produce corresponding values Ym, Yn, and Yp 

satisfying the same relation to the C's, and so differing from the X's by at 

most an ulp 10 apiece. 

The recovery property leads to a different kind of test for the algo

rithms. It is particularly convenient since no decimal manipulations are 

involved. Simply run the conversion x ➔ X ➔ y to full decimal precision, 

rounding to nearest, and check that x =y. Recall that recovery is most 

difficult in intervals of the form [ 1oE, ~ ], where the decimals are sparsest. 

A set of interesting intervals is given below. The center column is suitable for 

single format conversions. The outer columns span the range of the double 

format. Reciprocating the endpoints produces the intervals [2-11
, 10-E] 

wherein the decimals are relatively dense with respect to the binary values. 

Other pairs E and e can be obtained by noting that the nearer EI e is to 

log10(2), the more nearly equal are 10E RJ 28
• 

A flavor of recovery is available for the directed roundings, too. Convert 

x ➔ X, and then from X ➔ y, rounding first toward + 00 , then toward - 00 • How 

are x and y related? An exhaustive analysis shows that, so long as X is car

ried to full decimal precision, y is either x or the next representable number 

left of x. The key observation, based on bounds from §3, is that even when 

the decimals are sparsest, X may be slightly more than an ulp 10 greater than 

Intervals r 10E 2°1 where decimals are soarse 
E e E e E e 

-308 -1203 -28 -93 59 196 
-292 -970 -16 -53 121 402 
-146 -485 -1 -3 298 990 

3 10 304 1010 
31 103 
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x but is certainly less than the next binary number to the right of x. A simi

lar bound applies if the sense of the rounding modes is reversed. 

3. Analyses 

3.1. Analysis of Algorithm B 

Algorithm B scales the exact input xin by a power of ten and rounds the 

result to an integer. Together that integer and the scale factor determine 

the decimal significant digits and exponent. This process is vulnerable to two 

rounding errors. The scale factor in step S1 of algorithm S will be computed 

as 

10ISCALE I x (1 ± 6) 

where 6 is nonzero precisely when SCALE is so large that 5 I SCALE I cannot be 

represented exactly in the extended format. Then, an error can be commit

ted in step B5 when the scaled value x is rounded to an integer. The 

difference between algorithm B and a correctly rounded conversion is the 

error 6 in the scale factor. 

What about the multiply or divide in step S2? The discussion following 

algorithm S shows how to avoid any extra error there. The key for single for

mat conversions is that the result x of steps B5 and BB is an integer less than 

109. Assuming x is normalized in a format with at least 32 significant bits, at 

least two of its trailing bits must be 0. The situation is similar for double for

mat conversions in 64 significant bits. 

Now let us bound the extra error incurred in step Sl. First, consider 

conversions from the single format with rounding to nearest. The value to be 

rounded in step B5 has the form 
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X X 1a5C4.LE X (1 ± 0) . 

Since the ultimate result of this scaling is an integer value, the extra error, 

in ulps 1o, is just 

X X 10SCALE X (±o) ulp10 . 

We saw in the discussion of algorithm P that the relative error 6 may be as 

high as 2-32. So its absolute contribution the final error is bounded by 

The notorious 0.47ulp10 error bound that has appeared in many drafts of 

P754 was based on an analysis of algorithm Pin which 31 rather than 32 bits 

of precision were kept for intermediates. Now it is known that 32 bits are 

required. The bound 0.47 still applies, however, as the maximum error in sin

gle conversions with a directed rounding mode. 

We can bound the extra error in ulps10 for any binary to decimal conver

sion by choosing appropriate values for 6 and the number of significant digits 

to be delivered. The following table gives values relevant to P754 when out

put is delivered to the maximum decimal precision, namely 9 digits for single 

and 17 for double. If k fewer than the maximum number of digits are 

delivered, the error bound is smaller by a factor of lif. 

to nearest directed 
format 0 bound in uln,n 6 bound in ulnrn 

single 2-s2 0.23 2-31 0.47 

double (7/ 2) X 2-64 0.019 5 X 2-63 0.054 

3.2. Pathologies in Algorithm B 

Steps B3-B6 of algorithm B are a loop whose implicit termination condi

tion is 1(0'-l :-:;:; lxl < 1oN, where N is the number of significant digits to be 
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output. Does the loop actually terminate, and does it impact the rounding 

analysis? From the discussion of the last section, we can assume that the 

scaling operation in S2 is carried out exactly since its error is subsumed in 

step B5. 

First, suppose that the input xin is 1oD x (1 + -y) for some -y less than, 

say, 1/2. Then the scaled value in step S2 is 

X : loN-I X (1 + )') X (1 ± 6) 

if LOGX was computed correctly in step B2. Can (1 + -y) x (1 ± 6) be less than 

1 before :r is rounded to an integer? If so, the result of step B5 could fall 

below 10N-I_ Positive -y is a relative measure of how much the single or dou

ble input value xin exceeds 10D, while o is the relative error of the scale fac

tor when computed to extended precision. So the scenario is possible only 

for very small -y. A careful inspection of the powers of ten expressed in 

binary reveals that the answer to the last question is NO for single and YES 

for double. For example, 10303x(1 + 2-62) is representable in double; it may 

be rounded by a scale factor from algorithm Q with 6 as large as 5x2-63 , 

depending on the rounding mode and the number of digits desired. Thus, the 

test against 1oN-1 may be omitted for single conversions, but it is necessary 

for double conversions, if only for rare circumstances. Note that the correc

tive measure, forcing the magnitude up to 10N-1, shrinks an error which 

already lies within the computed bound. 

If LOGX was miscalculated as llog 1o(x )j-1 in step B2, which may happen 

for)' less than about 0.06, the scaled value above would be 

X = loN X {1 + )') X (1 ± 6) . 

This case is benign if :x rounds down to less than 1oN; if it does not, LOGX is 

corrected and the situation is that of the last paragraph. 



7.35 

Now suppose the input value xin is 1oD x (1 - ,'), for some ,' less than 

1/2. ]n this case LOGX is always correct in step B2. So the scaled value x in 

step S2 is 

X = loll X (1 - ,') X (1 ± 0) . 

The scaled value x falls out of range if (1 - ,') x (1 + o) is at least 1. As 

above, this may only happen for some rare double format conversions in 

which,' is very tiny. 1f this occurs, LOGX is increased to llog 10(x )J+l and the 

scaling is retried. The scaled value is then 

1QN-l X (1 -1) X (1 ± o) 

If the result of step B5 is less than 1oN- 1 it will be forced up to 1oN-1, satisfy

ing the stated error bound. 

We can conclude from all this that the branch back to step B3 will be 

taken at most once, so long as LOGX is in error by no more than 1; when the 

branch is taken, the loop is guaranteed to terminate after the second pass. 

3.3. Analysis of Algorithm D 

Like algorithm B, algorithm D is vulnerable to two rounding errors, one 

in the evaluation of the scale factor in step Sl and another when the scaled 

value is rounded to the destination precision in step D6. And algorithm D 

exploits the same trick with the inexact exception flag and chopped arith

metic to avoid an extraneous error in step S2. 

The conversion of the significant digit string in step D4 is exact, once 

any excess digits are truncated in step D2. Recording the presence of lost 

nonzero digits in the flag LOST assures that the directed rounding modes will 

be honored, but in no way takes the place of a very wide decimal buffer for 

the digit string. For example, a P754 single format number w between one-
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half and one has the value 

w = 2-1 + b 2x2-2 + b3x2-3 + · · · + b 24x2-24 

where the b; are either 0 or l. Since any such number can be closely 

represented by a decimal fraction of 24 digits, it takes just 25 digits to 

represent values half way between a pair of them. Truncating all but the first 

9 digits in algorithm D dooms any prospect of perfect rounding to nearest. 

The error analysis parallels that of algorithm B exactly. It is the error in 

step S1 that contributes to any error beyond what is expected in the round

ing in step D6. Let us use the P754 single format for illustration. Ideally, 

algorithm D computes 

x X 10SCALE = zt X (bob1 • • • b23•b24b25 • • • ) , 

where the binary point is aligned so that, as in algorithm B, it is the fraction 

part that is rounded off to produce the delivered result. When an error is 

committed by algorithm P, what is computed is 

x X loSCALE x(l ± o) = 2n X {bob 1 • • • b23•b24b25 • • • ) X (1 ± o) 

So the error, expressed in ulps2 is 

{bob1. ' • b23•b24b25 • • ' ) X {±o) , 

leading to the bound {~4 x o ulp2). If we assume that, when rounding to 

nearest, the scale factor will suffer at most one rounding error in extended 

precision, then the extra error is bounded by 

(224 X 2-32) ulp2 :::::; 0.0039 ulp2 

The following table gives the error bounds for P754 conversions. 
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to nearest directed 
format 6 bound in u\n,, c5 bound in uln,, 

single 2-32 0.0039 2-31 0.0078 

double (7/ 2) X 2-64 0.0017 5 X 2-e3 0.0049 

These bounds hold for all applications of algorithm D, unlike those of algo

rithm B, which were parameterized according to the number of .decimal 

digits produced. 

Algorithm D is subject to over /underflow problems, since the exponent 

field of the decimal input may contain values far out of the range of the tar

get format. It is only in step D2 that care must be taken to screen out 

unreasonable exponent values. Since the range of the extended intermedi

ates exceeds that of the target variable, it is possible to replace unreason

able exponents with huge but reasonable ones and still achieve the correct 

over /underflow response in steps S2 and D6. 

3.4. Accuracy Revisited 

Now that we have analyzed algorithms B and D we can determine 

whether they actually satisfy the accuracy requirements set forth earlier in 

the paper. Was it all worth it? 

The sign symmetry and rounding direction properties are built right in 

to both algorithms B and D, so they are easily seen to hold. The sensibility 

property holds since, for numbers of reasonable size, algorithms P and Q 

compute 10I SCALE I exactly, so conversions in both directions are correctly 

rounded. The consistency property is a matter of system convention. 

The recovery property is verified using formula C and the absolute error 

bounds of algorithms B and D. Earlier we derived the inequality 
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[~] 
~ x b ➔ d error in ulp 1o + d ➔ b error in ulp2 < 

which gives a sufficient condition for the recovery property. Now we can fill 

in the blanks. The ratio 10-P+t; 2-P is just under 1/6 and 9/10 for the P754 

single and double formats, respectively. Using the values from the tables of 

the last few sections, we can write 

(1/ 6) x 0. 73 ulp10 + 0.5039 ulp2 ~ 0.63 ulp2 < 1 ulp2 

for single, and 

(9/ 10) X 0.519 ulp 10 + 0.5017 ulp2 ~ 0.97 ulp2 < 1 ulp2 

for double. So binary to decimal to binary conversion is the identity map if 

the decimal value is kept to full precision. And this of course guarantees the 

separation of binary numbers by decimals, namely that for each binary x 

there is some decimal X such that X ➔ x. 

The monotonicity property is more subtle. At first sight, monotonicity 

appears to be built into the algorithms, both of which compute 

XX 10SCALE 

in order to convert an input value x. What happens though is that nearby 

values x may be scaled quite differently. In algorithm D, trailing zeros may 

be appended to or stripped from the input significant digit string in order to 

minimize the magnitude of SCALE. Here is an example of single format 

conversions, using adjacent 9-digit numbers: 

1.23499999e-10 ➔ 123499999. / 1018 

1.23500000e-10 ➔ 1235. / 1013 

The latter value is converted with just one rounding error since 1013 is exact; 

but the former suffers an extra error in 1016. lf these decimal values hap

pened to be nearly half-way between two single format numbers and round-
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ing were to nearest, the extra error incurred in the former case might cause 

it to round up while the latter value (correctly) rounds down - violating the 

monotonicity rule. 

To see that algorithm Dis monotonic for directed roundings it suffices to 

consider the following case. Let X, Y be decimal numbers such that 0 < X < 

Y and suppose X ➔ x, Y ➔ y in decimal to binary conversion with rounding 

toward +00 • The direction property assures that X ~ x and Y ~ y. Can y < 

x? In a picture: 

x0 
··•-◄-I ___ ...,..., .... ,----.1-------..1-

o l..___Y ___ J 
Bad news for monotonicity - directed roundings. 

This situation can arise only if the error in the conversion X ➔ x exceeds one 

ulp2 by at least Y-X, which of course is at least one ulp10. From formula C 

we see that, with 9 decimal digits, Y-X is at least 0.0084 ulp2 for single 

numbers; and that with 17 decimal digits, Y-X is at least 0.05 ulp2 for double 

numbers. However, the table in the discussion of algorithm D limits the 

extra error to 0.007Bulp2 for single and 0.0049ulp2 for double, barely pre

cluding the possibility that y < x. 

Why is the bound so tight for single conversions? Recall that the 9-digit 

decimal numbers are up to 120 times as dense as the P754 single numbers in 

some critical intervals [211
, 1oE']. This means that, in the picture above, X 

and Y may be very close to each other and to x. relative to the gap from x to 

y. The extra error required to lose monotonicity is just a tiny fraction of the 

input spacing ulp2. 
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Carrying this analysis over to the case of rounding to nearest is easy; it 

is only the picture that changes. As before let X and Y be decimal numbers 

such that O < X < Y, and let X ➔ x and Y ➔ y. Again, can y < x? No direc

tion property applies here, but the bounds given after algorithm D assure 

that the conversion error must be less than one ulpz. First, if x ~ X then y < 

x implies an error in excess of one ulpz. Similarly for y ~ Y. So monotoni

city is jeopardized only if we have the situation: 

0 

X V 
I I I I 

t ____ l ......... J __ ; 
Bad news for monotonicity - rounding to nearest. 

In the worst case, X and Y are situated about the midpoint between x and y, 

which must be adjacent binary numbers if the error is fall below an ulp2. The 

only difference is that here we ensure that Y-X is less than half of the extra 

error allowed; this way the two errors can never conspire lo cross the mid

point between x and y. But all is well since the value 6 limiting the extra 

error inherited from the scale factor is al least halved when rounding to 

nearest. 

Monotonicity makes sense in algorithm B only for a predetermined out

put precision. For example a binary value just less than 1.5 will print as "1." 

to one significant digit while any number of binary values just less will print 

as "1.5" to two significant decimals. With this in mind, monotonicity is 

indeed built into binary to decimal conversions. The only way for nearby 

binary values to be scaled by different powers of ten is for them to straddle a 

power of ten or to both be just greater than a power of ten. Since LOGX, the 

estimated floor of the log 10 of the input value, is itself monotonic, 
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monotonicity is easily verified in the few cases that neighboring binary input 

values are scaled by different powers of ten. 

We have now succeeded in verifying that algorithms B and D satisfy the 

accuracy properties requested in lieu of correct rounding. 

Out of this flurry of bounds and inequalities come a few interesting rela

tionships. The monotonicity and recovery properties seem to oppose each 

other. When the decimal numbers are dense relative to the binary numbers, 

as is the case with P754 single, the recovery property is trivially satisfied but 

monotonicity is barely guaranteed. And when the decimal numbers are rela

tively sparse, as with P754 double, just the opposite is the case. In some 

sense, the monotonicity and recovery properties have the last word on the 

accuracy of algorithms B and D since the other properties are built right in. 

Are B and D overkill? Look back at the discussion of monotonicity in single 

format conversions. The required bound was barely met there, saying that 

not only are 32 significant bits required for intermediate calculations, but 

that the factor 10\SCALE\ must be computed with just one rounding error. 

Algorithm P showed this was possible. The situation for double format 

conversions is quite different. Algorithm Q is allowed its expected comple

ment of errors in producing 10\SCALEJ, and it can even be shown that only 63 

significant bits are required for sufficiently accurate conversions. 

3.5. Nit-picking 

What follows is a collection of lesser details, included as much for their 

curiosity as for an air of completeness they may lend. They were omitted 

from the body of the text so as not to distract the patient reader. 

We have seen that the 9-digil decimal numbers are up to 120 times as 

dense as the P754 single format numbers. A concrete example shows how 
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the formats' relative spacings can be surprising. Consider the value 

1 3 = 0. 555555555 • • • 16 

which rounds to 0.555555816 in P754 single with its 24 significant bits. The 

absolute rounding error is exactly ; ulpz. Now in the neighborhood of 1/3, 

one ulp 10 is about io ulp2, so the error in rounding 1/3 to 24 bits 

corresponds to over 10 ulps10. The nearest 9-digit decimal to the rounded 

value of 1/3 turns out to be 0.33333334310. And the nearest 9-digit decimal 

to the next smaller single format number happens to be 0.33333331310. Thus 

there is no way to produce 0.33333333310 from a P754 single format value! 

The apparent discrepancy in the second to the last digit is likely to be mis

taken for a bug in the conversion routine, rather than a reflection of the rela

tive density of decimal and binary numbers. 

The number of decimal digits required to distinguish binary numbers of 

a given precision was discussed in the context of correctly rounded results. 

ls the separation requirement, from which the relation was derived, 

compromised by the extra error 6 suffered in computing the scale factor? 

The answer NO is guaranteed by the recovery property as verified in the last 

section. This is the sense in which recovery is the computational analog of 

separation. 

Goldberg's paper [5] about the separation property is of historical 

significance to P754 enthusiasts. Not only is it one of the first technical argu

ments for an implicit leading bit in a binary floating-point format, but it is 

the first known discussion of how to encode denormalized numbers [ 4] and 

zero by reserving the bottommost exponent. 
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It is a simple exercise to reverse the arguments about the Separation 

Requirement and deduce, as Goldberg did, that 2-p+l < 10-P is a sufficient 

condition to guarantee that p-bit binary numbers will distinguish ?-digit 

decimal numbers. The P754 single format numbers, with 24 significant bits, 

distinguish 6-digit decimal numbers, and the P754 double numbers distin

guish 16-digit numbers. 

In the discussion of the separation requirement, we deduced the chain 

of inferences 

10-P+I < 2-p ➔ Separation Requirement ➔ Distinction . 

but noted that the three are not generally equivalent. ln some cases the ine

quality is stronger than absolutely necessary. The Separation Requirement 

is equivalent to the inequality 

= < 1 

Recall that the latter ratio varies between 1/2 and 10. The inequality derived 

before simply assured that 10-P 12-p was less than 1/10. However, it is a 

fact of number theory {the existence of (P-1)/p approximating log10(2) 

arbitrarily closely from above) that there exist pairs P and p such that 

10-P / 2-P is just slightly above 1/10. Then, if we simply restrict the range of 

E and e so that 10E+1; 2(i +I stays far enough below 10, then the Separation 

Requirement will be met by a pair P and p just barely failing the inequality 

10-P+1<2--P. Knuth presents this as an exercise relating the Separation 

Requirement and the Distinction Property [6, p. 312 exercise 18, with solu

tion]. 

For conversions between two floating-point number systems, the Separa

tion Requirement and distinction property are equivalent, although this fact 

is not of great importance for the purposes of this paper. 
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Care was taken in algorithm L to ensure a lower bound on llog 10(x )J. 

Why? The issue is looping in algorithm B. If L were allowed to be too big then 

corrective step BB would have to branch back to step B3 whether the scaled 

value was too big or too small. lt is possible that an input value very near to 

a power of ten could round in such a way as to fail both tests and loop 

indefinitely. Getting the lower bound on LOGX is much easier than defending 

the loop criteria against further pathologies. 

This paper discusses conversions from the P754 single and double for

mats backed up by an extended format. It should be obvious that single for

mat conversions backed up by the double-extended format easily satisfy the 

accuracy requirements. But what about extended conversions? Algorithms 

B and D may be used to convert to and from an extended format, but there 

may be a significant loss of accuracy due to lack of extra precision beyond 

double-extended; and without extra exponent range, numbers at the 

extremes of the double-extended range will be converted incorrectly because 

of intermediate overflows and underflows. In order to cover the full r~ge of 

extended numbers, the table in algorithm Q must be extended. The following 

are reasonable table values: 

o.C6B0A096A95202BD 16 x 21369 Rl 10412 x (1+2-66 ) , 

0.9A35B24641D0595316 x 22738 R1 10824 x (1+2-65) 

0.B9C94B7FABD7651516 x z5475 ~ 101646 x (1 +2--65) , and 

0.86D4BD6626C27EEC16 x 210950 Rl 1D3296 x (1+2--65) 

Alternative values may be computed with the algorithm providing correctly

rounded conversions, supplied in the Appendix. To find the appropriate 

bound on the rounding error simply compute each desired 1ot to a modest 

number of extra significant bits. 
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In the discussion of pathologies in algorithm B, we dismissed the need 

for the second test in step B6 for single format conversions. However, if 

extended values are to be converted using algorithm B the second test in 

step B6 is essential. There are potentially many more representable values 

10Ex(1+1) which will scale to 1oN-1x(l-l:) when N digits are reqwred. 

The rounded table values 1027 and 1040 in algorithm P just barely cover 

the range of P754 single numbers. If in step B2 of algorithm B, LOGX of a 

tiny number were computed as -46 instead of the correct -45, then SCALE 

in step B3 could be 9-(-46)-1 = 54, beyond the range of algorithm P. For

tunately this does not happen; all of the denormalized numbers whose 

correct LOGX is -45 are sufficiently far above 10-45 that algorithm L com

putes their LOGX correctly as -45. 

Although the rounded value 1040 is available to algorithm P directly from 

the table, the value is deliberately computed from P27XP 1s in order to cause 

a rounding error. The rounding error suffered in the multiply causes the 

value 1040 to correctly honor the rounding mode in effect. 

Step B7 of algorithm B calls for the conversion of an integer value in the 

extended format to a decimal string. Here is an efficient way to accomplish 

this for single format conversions. First, express the extended value as a 

true 32-bit binary integer, in this case 

00b29b2ab21 • • • b 1bo• , 

since the value is bounded by 10g. Then divide this by 10g producing the 

chopped binary fraction 

0°b-1b-2b-s • • • b-s1b-s2 . 

Adjust this value upward by one unit in the 32nd bit, producing a value 

slightly greater than the true quotient. In a 9-step loop, repeatedly multiply 
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the binary fraction by ten (two shifts and an add) stripping ofl successive 

BCD digits as they appear left of the binary point. At the end of the loop, dis

card the remaining fraction. The loop operations are exact; the o71ly error 

arises from chopping the quotient and adjusting upward, that is, 

0 < 2-32 x (1 - O•b-33b_34b-35 • • ·) < 2-32 

Its impact on the final digit string is bounded by 2-32x 109 < 1, so the com

puted digits are correct. 

For the purposes of exception handling, binary-decimal conversions are 

treated as atomic operations in P754. Algorithms B and D are presented as 

programs based upon a few P754 arithmetic operations. Algorithms B and D 

always signal the inexact exception when their results are inexact; they pes

simistically signal inexact in the rare circumstances when multiple rounding 

errors cancel and the result is in fact exact. Algorithm D may also suffer 

overflow and underflow. It is set up to encounter any range exception in the 

format conversion in step D5. If values at the limits of the range of extended 

are converted there is no way to represent scale factors guaranteed to gen

erate the appropriate error in step D6. 

Algorithm B can suffer a format overflow error if the destination string 

cannot accommodate the converted value. For example, suppose binary x is 

converted to the B-digit decimal value -1.234567Bx10-250
, but is destined for 

a string of at most 14 characters. The string 

"-l.234567BE-250" 

is one character too long. More severe cases are possible. The problem is 

complicated by the possibility that a massive amount of printed output may 

be ruined if just one field, and hence one line, is allowed to overflow by a 

character. There are several remedies. The value may be converted again, 
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but to fewer significant digits. Or if the value must overflow the field, the 

printer driver program may allow the offending line to spill over, and then 

skip to the next page; in this way the output is intact but for the few pairs of 

partial pages where a line overflowed. Historically, a reproof such as 

"???. ??" has been printed when all else failed. 

It was shown under Accuracy Revisited that conversion from 17-digit 

decimal values to the P754 double format using algorithm D would be mono

tonic. The same argument guarantees monotonicity for conversion from 18-

digit values, but it fails for 19 digits. Some systems may allow 19-digit values 

to be input, since the 64-significant-bit double-extended format will accom

modate any 19-digit value exactly, but these conversions will not in general 

be monotonic. 

P754 requires that the conversion of input values in a certain range be 

perfectly rounded; that is, the power of ten used for scaling must be com

puted exactly. Is this requirement actually met? Step D3 of algorithm D 

preconditions the input to decimal to binary conversion specifically to meet 

P754, so the scale factor is always the correct one. However, the situation 

for binary to decimal conversion is less obvious, since the scale factor 

depends on LOGX. which may be too low by one. For instance, if nine decimal 

digits were desired, a single format input value just larger than 10-s would 

ideally be scaled by the exact value 1013 and rounded to an integer to deter

mine the significant digit string: 

1•00000xxx · · · X 10-s i::; 100000yyy• X 10-is 

However, if LOGX were miscalculated as -6 then the scale factor would be 

1014, known to be wrong by a full half ulp in the single-extended format. If 

the error in the scale factor 1014 caused the significant digit field to be com-
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puled as 

999999zzz• x 10-14 

then algorithm B would produce an imperfectly rounded result - in violation 

of the standard. So the question is, when can a miscalculated LOGX lead to 

an incorrectly rounded output value, rather than a branch back in step B6 of 

algorithm B? As we saw in the discussion of pathologies in algorithm B, the 

answer is NEVER for single format conversions and RARELY for double 

conversions; indeed, the situation can arise in double only for values far out

side the range in which LOGX can make the difference between perfect and 

imperfect conversion. So there is no hazard after all. 

What is the point of all this? On the one hand we have the simple but 

usually uneconomical correctly rounded conversions. On the other we have 

reasonably accurate, yet economical conversions whose economy is bought 

with a tedious verification that they are "accurate enough". These conver

sions are so nearly correctly rounded that, although different implementa

tions may produce results differing in just one ulp, those differences - and 

the deviation from correct rounding - will be almost imperceptible to users. 
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7: Found exponent sign - more exponent digits? 

Figure 2. 
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CHAPTER 8 

Radix-Independent Description of the Proposed Standard 

1. Introduction 

The intent of proposed IEEE standard P754 for binary floating-point 

arithmetic is to regulate the numerical programming environment. Toe 

story really begins with implementations of high-level languages, whose 

semantics must be carefully defined with regard to the overall struc

ture of programs and the control of side-effects. But this chapter 

picks up in the middle, at the level of a single arithmetic operation 

like 

Z := XX y; 

Simple as it may appear, this operation involves many subtleties if x, 

y, and z are allowed to have different number formats, or if an excep

tion like overflow should arise in the computation of the product xxy. 

Since steps are taken in P754 to handle every exception, such as xxy 

overflowing to 00 , further error possibilities are introduced, such as 0X 00 

in a subsequent product. 

The system described here conforms to draft 10.0 of IEEE proposal 

P754 and is intended to be compatible with the forthcoming radix-free 

proposal P854. The first version of this implementation guide, based 

on draft 8.0 of P754, was presented at a tutorial on the proposed stan

dard in May 1981. 

The paradigm for the operation above is: 

B.l 



Compute the product x xy as though with unbounded range 

and precision, and pack the result in z. 

8.2 

But this very natural statement has many ramifications. For example, 

how accurate is the actual implementation of "unbounded precision" 

when the ideal result must be packed into a destination with limited 

range and precision? And what of the error conditions overflow and 

occurrence of invalid operands? In fact, the computation of the result 

z is not so much an atomic operation as it is a process that may be 

viewed as: 

(1) Unpack x. 

(2) Unpack y. 

(3) Compute the ideal result (as though with unbounded ... ). 

(4) Trim the ideal result to within z's format limitations. 

(5) Pack the result into z. 

This process is expressed precisely in the Control Flow section. The 

various steps of the arithmetic operation are written as subroutines. 

The heart of the operation, (3) above, is discussed in terms of 

operands in a so-called canonical format. Thus they are radix and for

mat free, while following the rules laid out in proposal P754. 

The unpack/pack operations are of course format specific. Three 

sections of this document describe these operations for the binary for

mats specified in P754. 

Though this is ostensibly an implementation guide, it is not 

intended to translate directly to an implementation. Efficiency and 

compactness have been sacrificed throughout to obtain the greatest 

modularity. For example, each individual arithmetic operation handles 
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input NANs in the opening switch statement; a more effective imple

mentation filters NANs just once, in a preamble to the operations. 

Also, each step of the trim_result() sequence, checking for underflow, 

rounding, and checking for overflow, is coded independently, necessitat

ing redundant tests for special short circuit cases. This modularity 

permits the reader to study individual sections of the code without 

having to know the state of the system as a whole. The ultimate 

object is twofold: to convey an idea of the data and control flow 

through an arithmetic operation, and to prescribe the result of any 

operation. 

This description is written in a type of pseudo-code based on the 

programming language C. Our pseudo-C has a rich set of data types 

and a high tolerance for abuses of types. For example, a significant 

digit field will in some contexts be viewed as an array of digits while 

in others it will be given its mathematical interpretation as a value 

whose radix point lies after the leading significant digit. Most of the 

syntactic short-cuts for which C is notorious (for example, "x++;" 

means the same as "x = x + 1;"} have been carefully avoided. 

Readers unfamiliar with C should be able to follow the control flow 

without getting lost in the language constructs, since the language is 

quite terse and only the simplest control structures are used here. 

Aficianodos will note several deviations from conventional C. Usu

ally the meaning will be clear from the context rather than from strict 

C semantics. 

(1) Subsets of arrays are used. For example, if fraction[] is defined 

as an array of digits {decimal, binary, or otherwise), the expres-
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sion "fraction[l ... 23]" denotes the first 23 digits taken as a 

group. The expression "fraction" by itself denotes the entire 

array. 

(2) When a set of elements of a structure are to be taken as a unit., 

notation like "operand.{msd, fraction)" is used. 

(3) The passing of parameters 1s quite cavalier. For example, the 

expression "normalize{op)" is used instead of "normalize(&op)" 

when it intended that the caller's operand be modified. Strictly 

speaking, op's address, "&op", should be passed. 

(4) In each use of the C switch/case construct, the cases are mutually 

exclusive, so the break instruction is omitted. 

(5) C indexes arrays from 0, that is the N elements of an array x are 

x[0], x[l] .... , x[N-1]. That notation is clumsy for the present dis

cussion, so the convention x[l], ... , x[N] is used instead. The text 

is very explicit about this when it matters. 

(6) Most of the variables used in the pseudo-code are global, that is 

they are known to all procedures. For definiteness, the globals 

used in any routine are declared extern as in C. 

This chapter makes many detailed references to the P754 docu

ment, in an attempt to illuminate what may be stated very tersely 

there. Each reference is marked by a section number (such as §4, 

which introduces the notion of rounding). 

Once again, this is not a complete "implementation" of P754. 

Aside from lacking any detailed mention of the programming environ

ment, this discussion omits several operations. Binary-decimal conver-

sions are treated extensively in chapter 7. And floating-integer 
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conversions are left out because of their highly system-dependent 

nature; they differ from the floating-point round to integer instruc':.ion 

only in the exceptions that arise from attempting to store huge or 

nonnumeric values in an integer format with no reserved operands 

(§5.4 and §7.1.7 of P754 discuss these issues). 

The proposed standard entails a small number of implementation 

options. The reader's attention will be called to those situations where 

a variety of responses are possible. 

2. Control ::now 

The following procedure effects the operation z = x # y. The 

dyadic operations add, subtract, multiply, divide, and remainder pro

duce a floating-point result. Comparison produces a condition code in 

this presentation. P754 also permits comparisons to be effected by 

high-level language predicates {§5. 7); see chapter 6 for a discussion of 

this style of comparison. The monadic operations round to integer, 

square root, and the various format conversions have an obvious analog 

of the form z = # x . 

For simplicity, the storage operands x, y, and z are declared 

generically, that is without reference to their storage foramts. In fact, 

the types may differ. The only constraint of proposal P754 is that the 

z 's format be no narrower than the wider of the x and y formats, 

except for the format conversion operations (§5.1 - 5.3). 

Statements of the form z = x, z = -x, or z = Ix I in which z 

and x have the same format are non-arithmetic since no conversion is 

required. They may be effected by simple translation of the digits, 

perhaps with a sign change as in absolute value or negation, or they 
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may be implemented arithmetically (§5, Appendix). Actual format 

conversions follow the form of the other monadic operations, except 

that the compute step is trivial - all the work is in the trimming and 

packing. 

arithmetic_operation{z, x, y) arithme tic-1)peration 

/$ 
• The types of z, x, and y may differ, as explained 
• in the text above. 
*/ 

storage_types 

extern canonical 

set_globals{); 

unpack(opl, x); 
unpack(op2, y); 

/$ 

z, x, y; 

opl, op2; /* unpacked inputs 1/ 

/* collect mode information 1/ 

/* opl <-- x, unpacked 1/ 
/* opZ <--y, unpacked 1/ 

• The following routine is generic -- add{), subtract(), 
• multiply{), divide{), ... should be called as appropriate. 
*/ 

compute_result(); /* set result <-- opl # opZ 1/ 

/$ 
• The subtlest phase of any operation is trimming the 
• result according to the limitations of the destination z. 
• This is distinguished from the actual packing, to 
• preserve as much of the format-free nature of the 
• trimming. Note that the comparison operation will 
• bypass the next two steps, trim and pack. 
*/ 

trim_result(); 

pack_result(z); 

side_ effects(); 

/* just a bit-mapping operation 1/ 

/* collect and handle error flags */ 
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3. Globals 

Underlying the basic arithmetic process is a group of global vari

ables, defined as custom C-like structures. They are listed here with a 

brief summary of their purpose. Also included are the initialization 

routine set_£lobals() and the clean-up routine side~ffects() that do 

basic housekeeping operations on the globals. 

Canonical format operands opl and op2 hold the unpacked input 

operand(s), and result holds the computed "infinite precision" value. 

canonical opl, op2, result; 

The mode structure determines the rounding precision and direc

tion. Since this variable has a life-span of just one operation, it must 

be fetched from the user's environment at the start of each operation. 

The definition of "mode" in §2 describes the behavior of the mode as 

part of the user's environment. 

mode_str mode; 

The error structure logs exceptions for each operation separately. 

At the end of the operation, the error structure is used to update the 

user's "status flags" {see §2). The trap structure determines whether 

the user wants a software trap when the corresponding exceptions 
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arise. Like the mode variable, the trap structure is loaded from the 

user's environment at the start of each operation. 

exc_str error, trap; 

The dst structure contains data about the destination format, for 

use by the trim() routines especially. 

dst_str dst; 

The initialization routine collects state information -- from control 

registers of the arithmetic device, from the user's "process data area", 

or possibly from the instruction itself; thus the fetch{) operation is is 

highly implementation-dependent. 

set_globals() seL.globals 
I 

extern mode str 
extern exc str 
extern dst_=-str 

/$ 

mode; 
error, trap; 
dst; 

• Determine rounding precision and direction. 
• If the operation is remainder, ignore any precision 
• control specificalion -- use the range and precision 
• of the destination format {section 5.1). 
*/ 

fetch{mode); 



/" Clear all flags {for this operation} to FALSE. */ 
clear( error); 

/" Determine which exceptions the user 'Will trap on. */ 
fetch(trap); 

/" 
• Set the range and precision of the destination, 
• subject to the precision control mode. 
*/ 

set(dst); 

8.9 

The termination routine stores the error flags back where the user 

can interrogate them. (Note that the flags are never cleared by arith

metic, but only at the user's specific request.) Also, if a software trap 

is to occur the mechanism is initiated here. 

side_ effects() 
l 

ertern exc_str error, trap; 

/" Lo[Jically OR error into the 'USer's flags. 1/ 
save( error); 

/" 
• Check whether any of the errors that arose are 
• to stimulate a user trap. 
*/ 

if (error & trap) 
l 

/" System-dependent trap interface. */ 

side-Effects 



8.10 

4. User state 

User-determined state variables are kept in a defined structure 

called mode. The particular encodings used here are representative, 

not mandatory. 

typedef struct mode_str 
I 

bit 
bit 

l mode_str; 

round[2]; 
preci.sion[2]; 

These are the encoded values of the rounding directions, kept in 

the round[] element of mode3lr. All four rounding modes must be 

implemented (§4). 

fl define 
II define 
II define 
# define 

TO _NEAREST O 
TOWARD O 1 
TOWARD-PLUS 2 
TOWARD=MlNUS 3 

/* def a ult */ 

When available, rounding precision control permits a user lo round 

results to a narrower precision than that of the destination format. 

This is intended to help users of different systems lo overcome archi

tectural differences in producing matching results. For example, sup

pose that a program is to be run on identical single format data sets 

on two different systems. The first system does all calculations in sin

gle, while the other delivers all intermediate results to the double-
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extended format. If the program sets the precision control to single 

on the second system, then, in the absence of overflow or underflow in 

the first system's calculations, both will obtain identical results. 

§4.3 and footnote 4 specify which systems must have precision con

trol. However, it is up to the implementor to decide whether precision 

control implies range control too, that is, whether the exponent is 

coerced to within the bounds corresponding to the precision. 1f both 

precision and range are controlled, then identical results can be 

obtained regardless of the presence of extended intermediates (because 

they are coerced as though they are single). This option is a tradeoff 

in P754. Although it is desirable to achieve identical results (despite 

overflow and underflow) when the same calculation is performed on dif

ferent systems, the cost of range coercion may be very high. 

Note that precision control is intimately tied to the complicated 

issues of expression evaluation in high-level languages. But that is 

beyond the scope of this guide. 

# define 
II define 
II define 

EXTENDED 
SINGLE 
DOUBLE 

0 
1 
2 

/* default */ 

Corresponding to each of the 5 elements of exc_i>tr is a sticky 

error flag and a trap-enable flag. Since support of user traps is 

optional, the trap structure is optional (§B). 



typedef struct exc_str 
I 

I exc_str; 

boolean 
boolean 
boolean 
boolean 
boolean 

5. Canonical format 

inexact; 
invalid; 
div_zero; 
oflow; 
uflow; 
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This canonical format is described in radix-free form following the 

spirit of P754. Only this format is referred to below in the discussion 

of the operations. This description of operands as data structures of 

bits, digits, integers, etc. permits a precise specification of the arith

metic in terms of primitive operations such as shift and increment. 

The canonical numeric data type is defined as: 

typedef struct 
l 

int 
bit 
int 
digit 
digit 
digit 

I canonical; 

tag; 
sign; 
exponent; 
c_out; 
msd; 
fraction[ CANON_FRACTION ]; 

The tag is a small integer used to identify special operands not 

having the usual form 
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(-1)5 X RADJXE X X.XXXXXXX. 

This greatly simplifies the discussion by distinguishing the special 

values from numerical representations. 

II define 
# define 
f define 
II define· 
fl define 

ZERO_TAG 
INF TAG 
S N-AN TAG 
Q=NAN=TAG 
NUM_TAG 

0 
1 
2 
3 
4 

/* 0*/ 
/* infinily 1/ 
/* signaling NAN */ 
/* quiet NAN */ 
/* finite nonzero number 1/ 

The sign is just one bit of information, 0 for + and 1 for -. 

The canonical exponent, is presumed to accommodate all result 

exponents from operations on supported formats. Thus neither over

flow nor underflow will arise in canonical numbers until they are 

trimmed to within the constraints of the destination format. Though 

the exponent is described as type integer above, care must be taken 

to provide sufficient range. For example, 17 (two extra bits) of work

ing range are required of a P754 implementation supporting the 

double-extended format, or else some extra tests are required in the 

overflow and underflow handlers. Chapter 9 deals with this in detail. 

No assumption is made about the radix of the exponent as an integer. 

For example, it may be desirable to implement decimal floating-point 

arithmetic with a binary exponent. 

The discussion of the operations is independent of the radix of the 

underlying implementation. Although this discussion applies lo arith

metic with any positive, integer radix, the interesting cases are 

expected to be 2 and 10. The parameters are set for binary arith-
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metic here. 

II define RADIX 2 ~ or 1 0 or 8 or 16 . .. o/ 
# define HALF RADIX 1 /* for use in rounding */ 
I define RADIX - 1 1 /* radix minus 1 o/ 

typedef digit bit; 

The canonical format has an extra {second) digit, c-9ut, to the left 

of the radix point to catch carries out of the msd {most significant 

digit). C_out is named explicitly only to simplify the description. Typ

ically, an implementor will provide for a carry-out only in those few 

places where one can arise. 

The canonical format carries three extra low-order fraction digits 

so that results can be rounded as in §5 of P754. These digits are 

commonly known as guard, round, and sticky: 

Guard is next digit beyond the least significant digit of the widest 

storage format supported. 

Round is the next digit beyond guard. It is crucial to the operations 

addition, subtraction, and division which may entail a left shift 

before rounding. 

Sticky conveys just one bit of information (though it will normally be 

an entire digit). lt is nonzero precisely when the associated infin

ite precision number has nonzero digits to the right of the round 

digit. 
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The working precision as specified here is suitable for a P754 

implementation supporting the double-extended format. 

I define CANON_FRACTION 66 

The "infinite precision" result is trimmed to the destination format 

according to a set of parameters kept in the special purpose struc

ture: 

typedef struct 
l 

int 
int 
int 

othresh; 
uthresh; 
biasadjust; 

/* overflow threshold */ 
/* underflow threshold 1/ 
/* exponent fix for traps 1/ 

/* index of least significant digit infraction[]*/ 
int lsd; 

I dst_str; 

6. P754 Formats 

The following two structures define data types corresponding to the 

single and double formats specified in §3.2 and 3.3 of P754. Each for

mat may be thought of as a trio of bit strings, denoted as arrays of 

bits below. As bit strings: 

The sign bit is O for +, 1 for -. 

The exponent is an unsigned integer, biased by 127 for single, and 

1023 for double. 
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The fraction lies just to the right of the binary point of the 

unpacked number. 

The ordering of the bits, from most to least significant, is sug

gested by figures 1 and 2 in §3, but P754 does not specify how they 

are to be ordered in byte or word groupings. 

typedef struct 
l 

bit 
bit 
bit 

J single_binary; 

typedef struct 
l 

bit 
bit 
bit 

J double_binary; 

sign; 
exponent[B]; 
fraction[ 23]; 

sign; 
exponent[l l]; 
fraction[52]; 

The extended formats are optional in implementations of P754. A 

typical system will support {only) the extended format corresponding to 

the wider basic {single or double) format supported. 

Unlike the basic formats, the extended types have range and pre

cision subject only to minimum bounds, rather than specifications down 

to the bit. The most significant bit may be implicit or explicit at the 

implementor's option. (This may be inferred from §3.3 and the width 

parameters in table l.) 



# define 
# define 

S_EXT_RANGE 
S_EXT _FRACTION 

typedef struct 
l 

bit sign; 
bit exponent[S _EXT _RANGE]; 
bit msb; 

11 
31 

bit fraction[ S_EXT_FRACTION ]; 
J single_extended_binary; 

# define D_EXT_RANGE 
# define D _EXT _FRACTION 

typedef struct 
l 

bit sign; 
bit exponent[D _EXT _RANGE]; 
bit msb; 

15 
63 

bit fraction[ D _EXT _FRACTION ]; 
J double_extended_binary; 

7. Unpack Binary Formats 

7.1. P754 Single 
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Unpack a P754 single format number s to the canonical format. 

single_unpack(w, s) 

/$ w <-- s, unpacked. */ 
canonical 
sing le _binary 

extern. mode _str 

single-1.lnpack 

w· . 
s; 

mode; 



/$Assumes is a normal number; then check special cases. */ 
w.tag = NUM_TAG; 
w.sign = s.sign; 
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w.exponent = s.exponent - 127; 
w.c_out = O; 
w.msd = 1; 

/• 127 is the exponent bias 1/ 

~ presumed normalized ... 1/ 

/$ Fraction of sis left-justified in w, and zero padded. •/ 
w.fraction[l ... 23] = s.fraction; 
w.fraction[24 ... CANON_FRACTION] = O; 

if (s.exponent == 0) 
l 

/* Zero or denormalized. */ 
if (s.fraction == 0) 

else 
l 

w.tag = ZERO_TAG; 

w.msd = O; ~ Denormalized. 1/ 
w.ex.ponent = w.exponent + 1; 
normalize(w); 

else if (s.exponent == 255) 
l 

~ Infinity or NAN. */ 
if (s.fraction == 0) 

else 
w.tag = INF _TAG; ~ infinity 1/ 

~ 
• Distinction between signaling and 
• quiet NANs is system-dependent. 
• Leading FRACTION bit is used here. 
1/ 

if (s.fraction[l] == 1) 
w.tag = Q_NAN_TAG; 

else 
w.tag = S_NAN_TAG; 

'7.2. P754 Double 

Unpack a P754 double format number to the canonical format. 

Th.is is precisely analogous to the single unpack routine above. 
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double_unpack(w, d) double--11,npack 

/" w <-- d, unpacked. 3/ 
canonical w; 
double_binary d; 

extern mode_str mode; 

/" Assume dis a normal number; then check special cases. "'/ 
w.tag = NUM_TAG; 
w.sign = d.sign; 
w.exponent = d.exponent - 1023; /* 10Z3is the exponent bias 3/ 
w.c_out = O; 
w.msd = 1; /* presumed normalized ... 3/ 

/" Fraction of dis left-justified w and zero padded. 3/ 
w.fraction[l ... 52] = d.fraction; 
w.fraction[53 ... CANON_FRACTION] = O; 

if (d.exponent == 0) 
l 

/* Zero or denormalized. */ 
if (d.fraction == 0) 

else 
l 

w. tag = ZERO _TAG; /*Zero*/ 

w.msd = 0; /" denormalized 3/ 
w.exponent = w.exponent + 1; 
normalize{w); 

else if (d.exponent == 2047) 
l 

/* Infinity or NAN. */ 
if (d.fraction == 0) 

else 
w.tag = INF _TAG; 

if (d.fraction[l] == 1) 
w.tag = Q_NAN_TAG; 

else 
w.tag = S_NAN_TAG; 
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7.3. P754 Single-Extended 

There are many plausible implementations of the extended formats 

that meet the range and precision specifications of P754. For exam

ple, rather than having reserved exponent values as in the single and 

double formats, the extended formats may use a tag field to distin

guish operands like zero, infinity, and NAN (the canonical format of 

this document uses such a field.) Also, there are two possible interpre

tations of the smallest possible exponent, as explained in chapters 2 

and 5. 

The extended formats discussed here use a convenient BO-bit for

mat. The exponent is an unsigned, biased integer as in the single and 

double formats. The exponent value 111...11 is reserved for INF and 

NAN, in which case the msd is irrelevant. The exponent value 000 ... 00 

has only one special case, namely zero, when all significant digits are 

0. For simplicity, all finite extended values are normalized when they 

are unpacked into the canonical format. However, P754 does not 

require this normalization for unnormalized numbers above bottom of 

the extended range, so long as the system does not produce such 

unnormalized results (see §3.3). 

single_extended_unpack(w, se) single-2xtended._jj,npack 

/$ w <-- se, unpricked. */ 
canonical w; 
single_extended_binary se; 

extern mode str mode; 



/4 Assume se is a noT7TUJ.l number. 1/ 
w. tag = se. tag; 
w.sign = se.sign; 
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w.exponent = se.exponent - 1023; /4 bias= 1023. •/ 
w.c_out = 0; 
w.msd = e.msb; /4 Copy exphcit leading digit. 

/4 w's fraction is left-justified and zero padded. 1/ 
w.fraction[l ... 31] = se.fraction; 
w.fraction[32 ... CANON_FRACTION] = O; 

if (se.(exponent, msd, fraction)== 0) 
w.tag = ZERO_TAG; /• Zero. 1/ 

else if {se.exponent == 2047) 
I 

i 
else 

/4 Infinity or NAN -- msd irrelevant. 1/ 
if {se.fraction == 0) 

else 
w.tag = INF _TAG; /• Infinity. •/ 

/4 
• Distinction between signaling and 
• quiet NANs is system-dependent. 
"' Leading FRACTION bit is used here. 
*/ 

if {se.fraction[l] == 1) 
w.tag = Q_NAN_TAG; 

else 
w.tag = S_NAN_TAG; 

/4 All nonzero operands are prenorrnalize d. •/ 
normalize{w); 

7.4. P754 Double-Extended 

This routine is analogous to the single-extended unpack above. 
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double_extended_unpack(w, de) double-Exlended...1lnpack 

/* w <-- se, unpacked. 3/ 
canonical w; 
double_extended_binary de; 

extern mode _str mode; 

/* Assume de is a normal number. 3/ 
w.tag = NUM_TAG; 
w.sign = de.sign; 
w.exponent = de.exponent - 16383; /*bias= 16383 */ 
w.c_out = O; 
w.msd = de.msb; /* Copy lead digit. 3/ 

/* w's fraction is left-justified and zero padded. 3/ 
w.fraction[l ... 63] = de.fraction; 
w.fraction[64 ... CAN0N_FRACTI0N] = 0; 

if {de.{exponent, msd, fraction)== 0) 
w.tag = ZER0_TAG; /* Zero. *I 

else if (de.exponent == 32767) 
l 

else 

/* Infinity or NAN. */ 
if {de.fraction== 0) 

else 
w.tag = INF _TAG; /* Infinity. 3/ 

/* 
• l)istinction between signaling and 
• quiet NANs is system-dependent. 
* Leading FRACTION bit is used here. 
3/ 

if {de.fraction[1] == 1) 
w.tag = Q_NAN_TAG; 

else 
w.tag = S_NAN_TAG; 

/* All nonzero operands are prenormalized. */ 
normalize( w); 
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8. Pack Binary Formats 

After the "infinitely precise" intermediate result is trimmed to the 

precision and range of the destination format (or perhaps somewhat 

narrower, due to precision control), the result is be packed from the 

canonical format into the storage format by biasing the exponent and 

copying the sign and significant bits. 

8.1. Pack P754 Single 

single_pack_result(s) 
single _binary 

extern canonical 

s.sign = result.sign; 

switch (result.tag) 
l 
case NUM_TAG: 

sing le_:p ac k_:re sult 
s· 

' 

result; 

/$ Regardless of special cases. */ 

s.exponent = result.exponent+ 127; 

/* Denormalized numbers have a bias of 128 */ 
if (result.msd == 0) 

s.exponent = s.exponent - 1; 
s.fraction = result.fraction[l ... 23]; 

case ZERO_ TAG: 
s. exponent = 0; 
s.fraction = 0; 

case INF _TAG: 
s.exponent = 255; 
s.fraction = O; 

case S NAN TAG: 
case Q=NAN=TAG: 

s.exponent = 255; 
s.fraction = result.fraction[l ... 23]; 
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8.2. Pack P754 Double 

double _pack_result( d) 
double_binary 

double_pack_:result 
d; 

extern canonical result; 

d.sign = result.sign; 

switch (result.tag) 
l 

case NUM TAG: 
d.;xponent =result.exponent+ 1023; 

/* Denormalized numbers have a bias of 1022. */ 
if (result.msd == 0) 

d.exponent = d.ex;:>0nent - 1; 
d.fraction = result.fractionLl ... 52]; 

case ZERO_TAG: 
d.exponent = 0; 
d.fraction = 0; 

case INF _TAG: 
d.exponent = 2047; 
d.fraction = 0; 

case Q_NAN_TAG: 
case S_NAN_TAG: 

d.exponent = 204 7; 
d.fraction = result.fraction[l ... 52]; 
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8.3. Pack P754 Single-Extended 

single_extended_pack_result{se) single-Exiended...:pack_:result 
single_extended_binary se; 

extern canonical 

se.sign = result.sign; 

result; 

switch {result.tag) 
I 
case NUM_TAG: 

se.exponent =result.exponent+ 1023; 
se.msb = result.msd; 
se.fraction = result.fraction[l ... 31]; 

case ZERO_ TAG: 
Se.exponent= 0; 
se.msb = 0; 
se.fraction = O; 

case lNF _TAG: 
se.exponent = 204 7; 
se.msb = O; 
se.fraction = O; 

case Q_NAN_TAG: 
case S_NAN_TAG: 

se.exponent = 204 7; 
se.msb = result.msd; 
se.fraction = result.fraction[l ... 31]; 
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8.4. Pack P754 Double-Extended 

double_extended_pack_result(de) double-2xtended...pack_:result 
double_extended_binary de; 

extern canonical 

de.sign= result.sign; 

result; 

switch (result.tag) 
l 
case NUM_TAG: 

de.exponent= result.exponent+ 16383; 
de.msb = result.msd; 
de.fraction= result.fraction[l ... 63]; 

case ZERO_ TAG: 
de. exponent = 0; 
de.msb = 0; 
de.fraction = 0; 

case INF _TAG: 
de.exponent= 32767; 
de.msb = O; 
de.fraction = O; 

case Q_NAN_TAG: 
case S_NAN_TAG: 

de.exponent= 32767; 
de.msb = result.msd; 
de.fraction= result.fraction[l ... 63]; 

9. Trimming the Result 

This basic trim sequence applies to all operations that produce 

floating-point results. For simplicity, it is written as though every 

result would be trimmed, though in an actual implementation a trim 

sequence might be set up for each operation, and then applied only to 

finite, nonzero results. 



trim_result() 
I 

under _result(); 
round_result(); 
over _result(); 
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trim._:re sult 

P754 permits three different underflow criteria (§7.4) when there is 

to be no trap on underflow: 

(1) An intermediate result is less than the smallest normalized 

number, when tested before rounding, and does indeed suffer a 

rounding error in round_result(). 

(2) Like ( 1) except that tininess is tested after rounding as though the 

range were unbounded. 

(3) The final result differs from what would have been computed were 

exponent range unbounded. 

This implementation uses ( 1), which is perhaps the most straightfor

ward to implement. In (2), the routine under_result() would follow 

rather than precede round_result() in sequence; a tiny, rounded result 

would be flagged as underflowed, "unrounded", and then sent back 

through round_result(). It can be shown that a result can be 

unrounded if it is knov..TI whether the result was rounded up in magni

tude during the first application of round_result(). The most difficult 

to implement, (3), is similar to (2) in that under_result() would follow 

round_result(); however, the criterion for underflow is not that the 

rounded result be tiny and inexact, but that it be tiny and yet incapa-
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ble of storage in the destination format without further alteration (i.e., 

it must be rerounded). 

under _result() under _:result 
l 

extern canonical result; 
dst; extern dst_str 

extern mode _str 
extern exc_str 

mode; 
error, trap; 

if (result.tag!= NUM_TAG) 
return; 

if {result.exponent>= dst. uthresh) 
return; 

/* 

/* Bypa,ss special results. */ 

• Set tentative signal ba,sed on tininess orily. Flag will 
• be reset later if the result is exact. 
*/ 

error.uflow = TRUE; 

if (trap.uflow == FALSE) 

else 

/* .Denormalize ... */ 
shift_right(result, dst.uthresh - result.exponent); 

/* System-dependent action, including ... o/ 
result.exponent= result.exponent+ dst.biasadjust; 

round_result() round...:re sult 
l 

extern canoncial 
extern dst_str 
extern mode _str 
extern exc str 
digit -
bit 

result; 
dst; 
mode; 
error, trap; 
guard; 
sticky; 
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if (result.tag!= NUM_TAG) /* Bypass special results. 1/ 
l 

if (result.tag== Q_NAN_TAG) 
l 

J 
return; 

* System-dependent action to check that 
* the quiet NAN has some nonzero digils 
• in the leading dst.lsd digits. 
1/ 

/* Gua:rd is the next digit after rounding precision. */ 
guard = result.frac[ (dst.lsd + 1) ]; 

/* 
• Sticky bil is 1 if and only if any digits beyond guard 
• are nonzero. In includes the so-called round bit, which 
* already served ils purpose in+, -, and/. 
*/ 

if (result.frac[ (dst.lsd + 2) ... CANON_FRACTION] != 0) 
sticky= 1; 

else 
sticky= O; 

/* 
• Test for exact result. If so, and underflow is not 
• trapped, then undo any tentalive underflow signal. 
*/ 

if ((guard== 0) && (sticky== 0)) 
l 

J 
else 
l 

if (trap.uflow == FALSE) 
error.uflow = FALSE; 

return; 

error.inexact = TRUE; 

switch (mode.round) 
l 
/* 

• In the unlikely case of an odd radix, the half-way 
* case will never arise, and the fallowing test 
• could be simplified. 
*/ 

case TO NEAREST: 
if (guard > HALF _RADIX) 

inc_result(); 
else if (guard < HALF RADJX) 

chop _result(); 
else 



~ {guard = = HALF _RADIX) */ 
if {(sticky== 1) II 
(result.frac[ dst.lsd] ]S ODD)) 

inc_result(); 
else 

chop _result{); 

case TOWARD 0: 
chop _:-result{); 

case TOW ARD MINUS: 
if (re;ult.sign == 1) 

inc_result(); 
else 

chop_result(); 

case TOWARD PLUS: 
if (re;ult.sign == 0) 

inc_result{); 
else 

chop _result(); 
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over _result() over _:result 
l 

result; 
dst; 

extern canonical 
extern dst_str 
extern mode_str 
ertern exc_str 

mode; 
error, trap; 

if (result.tag!= NUM_TAG) 
return; 

if {result.exponent <= dst.othresh) 
return; 

if (trap.oflow == FALSE) 
l 

error.inexact = TRUE; 
error.oflow = TRUE; 

~ Special operands. */ 

~ Inexact if untrapped. */ 

if ((mode.round== TO_NEAREST) 11 

((mode.round== TOWARD_PLUS) && (result.sign== 0)) II 



J 
else 
l 
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((mode.round== TOWARD_MINUS) && (result.sign== 1)) ) 
result. tag = INF_ TAG; 

else 
huge_result(); 

~ System-dependent action, including ... */ 
result.exponent= result.exponent - dst.biasadjust; 

10. Low-Level Utility Routines 

~ Short-hand/or long mnemonic ... */ 
fl define CF CANON_FRACTION 

When shifting right, 0 is shifted into c_out and fraction digits lost 

off the right are accumulated in the trailing digit. 

shift_right(w, cnt) 
canonical 
int 

while (cnt > 0) 
l 

w; 
cnt; 

shifL:right 

~ Logicall'}J OR the last digit into the second last ... */ 
w.fractionL CF] = w.fraction[ CF] I w.fraction[ CF - 1 ]; 

/* ... before the right shift. 1/ 
w.(c_out, msd, fraction) = w.{c_out, msd, fraction) >> 1; 

w.exponent = w.exponent + 1; 
cnt = cnt - 1; 

/* Adjust exponent. */ 
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The arithmetic is such that left shifts may be made without regard 

to the special "sticky" nature of the lowest fraction digit. The carry

out digit c_put will always be 0. 

shift_left(w, cnt) 
canonical 
int 

while (cnt > 0) 
f 

w; 
cnt; 

shifLleft 

/* Just shift left, with O into fraction[ CF]. */ 
w.{c_out, msd, fraction)= w.(c_out, msd, fraction) << 1; 

w.exponent = w.exponent - 1; 
cnt = cnt - 1; 

/* Adjust exponent. */ 

Normalize by shifting left. c_put and fraction[CF] are always 0. If 

all significant digits are zero, the number is set to Normal 0. 

normalize(w) 
canonical w· I 

if ( w.(msd, fraction) == 0 ) 
w. tag = ZERO_ TAG; 

else 
while (w.msd == 0) 
l 

normalize 

/* Dismiss special case. "Y 

w.(msd, fraction) = w.(msd, fraction) << 1; 
w.exponent = w.exponent - 1; 
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Increment by a unit in the last place of rounding precision. Then 

clean up trailing digits. 

inc_result() inc_result 
l 

extern canonical 
extern dst_str 
canonical 

result; 
• dst; 
tmp; 

/" Set up dummy significa,nt digit field for incrementation. •/ 
tmp.msd = 0; 
tmp.fraction = 0; 
tmp.fraction[dst.lsd] = 1; 

result.(c_out, msd, fraction) = 
result.(msd, fraction) + tmp.(msd, fraction); 

if (c_out != 0) 
shift_right(result, 1 ); 

/$ Catch carry-out. 1/ 

/" Qean up trailing digits. 1/ 
result.fraction[ (dst.lsd + 1) ... CF] = 0; 

Chop at the last place of rounding precision. 

chop _result() c hop_:re sult 
l 

sion. 

extern canonical 
extern dst_str 

result; 
dst; 

result.fraction[ ( dst.lsd + 1) ... CF ] = 0; 

Set result to the largest number of the specified range and preci-
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huge_result() huge__:result 
I 

extern canonical 
extern dst_str 

result; 
dst; 

result.exponent = dst.othresh; /* largest exponent */ 
resull.msd = RADIX 1; 
resull.fraclion[l ... dsl.lsd] = (RADIX_l. RADIX_l, ... , RADIX_l); 
result.fraction[ ( dsl.lsd + 1) ... CF ] = O; 

11. Operations 

Each of the operations is broken into a large switch-case state

ment to handle the cases of zero, infinite, NAN, and normal operands. 

All operations on NANs are dealt with in the NAN-Hanlders section. 

Invalid operands are flagged for later processing during the Trim step. 

In this implementation, all numeric inputs are normalized when 

unpacked, so there is no need for special provision for unnormalized 

operands. However, this is not required by P754. §3.1 and 3.3 expli

citly allow an implementation to interpret unnormalized values in the 

sense of the obsolete Warning mode. This interpretation is discussed 

in chapter 5. 

11.1. Add 

Set result to the sum of opl and op2. 



add() 
l 

extern canonic al 
extern mode_str 
extern exc_str 

op1, op2, result; 
mode; 
error; 

,/'t' 

• Special 
• case table: 
• 
• 
• 
• 
•/ 

0 NUM INF NAN 
----+----------------

0 I ABB F 
NUMI C D B F 
INF I C C E F 
NANI F F F F 

switch ( opl.tag versus op2.tag) 
l 
case A: ,/'t' 0 + 0 */ 

result = op 1; 
if (op1.sign != op2. sign) 

if (mode.round== TOWARD_MlNUS) 
result.sign= 1; 

else 
result.sign= 0; 

case B: /* opl = 0 or op2 =INF*/ 
result = op2; 

case C: ,/'t' op2 = 0 or opl =INF*/ 
result= op1; 

case E: ,/'t' opl and op2 =INF•/ 
if (op1.sign == op2.sign) 

result= op1; 
else 

make_nan(); 

case F: ,/'t' NANs.' */ 
two_nans{); 

case D: ,/'t' Typical case of two nonzero numbers. •/ 
/$ .Arrange to have opl >= op2in magnitude. */ 
if (op2.exponent > op1.exponent) 

swap(op1, op2); 

/$ Align op2's radix point with opl's. */ 
shift_right(op2, op1.exponent - op2.exponent); 

if (op1.sign == op2.sign) 
l 
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add 



I 
else 
l 

/* Add magnitude case. 1/ 

/* Tentative tag, sign, exponent. 1/ 
result = op 1; 
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result.(c_out, msd, fraction)= 
opl.(msd, fraction)+ op2.(msd, fraction); 

/$ Handle possible carry-out. */ 
if (result.c_out != 0) 

shift_right{result, 1); 

/* Subtract magnitude case. */ 

/* 
• The following swap() prevents a borrow, 
* which this notation is unequipped to describe. 
1/ 

if ( op2.(msd, fraction) > opl.(msd, fraction) ) 
swap(opl, op2); 

/$ Tentative tag, sign, exponent. 1/ 
result= opl; 

result.(msd, fraction) = 
opl.(msd, fraction) - op2.{msd, fraction); 

/$ 
* Case of total cancellation --
* determine sign as in case A. 
1/ 

if {result.{msd, fraction) == 0) 
if (mode.round == TOWARD _MINUS) 

result.sign = 1; 
else 

result.sign= 0; 

normalize(result); 



11.2. Subtract 

Set result to the difference of opl and op2, using add(). 

subtract{) 
I 

extern canonical op2; 

/$ Flip the sign of op2wilh exclusive-or. 1/ 
op2.sign = op2.sign - 1; 
add(); 

11.3. Multiply 
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subtract 

Set result to the product of opl and op2. When the product of 

two finite numbers is actually computed, the significant digit fields are 

interpreted as 

<digit> . <fraction digits> 

so that their product has the form 

<carry-out digit> <digit> . <double-length fraction> 

Only CANON_FRACTION fraction digits need be computed here, with the 

last digit reflecting the logical OR of all digits farther to the right of 

the "infinitely precise" result. 



multiply() 
l 
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multiply 

extern canonical op1, op2, result; 

/* 
• Special 
• case table: 

I O NUM INF NAN 
----+----------------

0 I A A C E 
NUMI A B D E 
INF I C D D E 
NANI E E E E 

/* Sign is exclusive-or of operand signs. */ 
result.sign= op1.sign ~ op2.sig~ 

switch ( op1.tag versus op2.tag) 
l 
case A: /* 0 times finite. */ 

result.tag = ZERO_TAG; 

case C: /* 0 times INF. */ 
make_nan(); 

case D: /* INF times nonzero. */ 
result.tag= INF _TAG; 

case E: /* NANs! */ 
two_nans{); 

case B: /* Two finite, nonzero numbers. */ 
result.exponent= op1.exponent + op2.exponent; 

result.{c_out, msd, fraction)= 
opl.{msd, fraction) • op2.{msd, fraction); 

/* 
• Watch for carry-out -- product of numbers 
• between 1 and RADIX may exceed RADIX. 
• requiring a one-digit shift. 
*/ 

if {result.c_out != 0) 
shift_right(result. 1); 
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11.4. Divide 

Set result to the quotient opl / op2. When the actual quotient of 

two numbers must be computed, the significant digit fields are inter

preted as 

<digit> . <fraction digits> 

so that the quotient takes the form 

<digit> . <fraction string, perhaps nonterminating> 

Only CANON_fRACTJON correct fraction digits need be computed, with 

the last of them reflecting the logical OR of all digits farther to the 

right. 

divide() 
l 

extern canonical 
extern exc_str 

op 1, op2, result; 
error; 

/"" 
• Special 
• case table: 

0 NUMJNFNAN 
----+----------------

0 I ABB F 
NUMI C D B F 
INF I E E A F 
NANI F F F F 

/"" Result sign is exclusive-or of operand signs. 'o/ 
result.sign= cpl.sign~ op2.sign; 

switch ( cpl.tag versus op2. tag) 
l 
case A: /"" {YO or INFYINF. */ 

make_nan(); 

case B: /"" rYNONZERO or finite/INF. 'o/ 
result.tag= ZERO_TAG; 

divide 



case C: /"' fi:nil.e/0. */ 
result.tag = INF _TAG; 
error.div _zero = TRUE; 

case E: /"' !NJ/finite. o/ 
result.tag = INF _TAG; 

case F: /"' NANs! o/ 
two _nans(}; 

case D: /* finil.e/finil.e o/ 
result.exponent= op1.exponent - op2.exponent; 
result.(msd, fraction) = 

op1.(msd, fraction)/ op2.(msd, fraction); 

/* 

11.5. Remainder 

• Quotient of two values between 1 and RADIX 
•maybe less than 1, in which case a one-digit 
• shift is required. 
o/ 

if {result.msd == 0) 
shift_left(result, 1); 

Find the value result such that 

opl (op2 x Q) + result 

where Q is an integer and 

!result\ ~ 0.5 x lop2I , 

8.40 

with Q an even integer in the case of equality. Q need not be 

delivered, though its sign and several low-order bits would be useful for 

trigonometric argument reduction. 

In principle, result may be computed by computing all of the 

integer bits of opl/op2 (discarding the high-order l's) and fixing up 
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the remainder to satisfy the above inequality. However, it turns out in 

practice to be easier to compute Q and the first fraction quotient bit 

and then fix the remainder. The fraction bit aids in checking the ine

quality. 

According to §5.1, precision control is not to apply to remainder. 

Thus, the result doesn't require rounding. Even if op2 is tiny and the 

remainder falls below the underflow threshold, the result will be exact 

and so will not underflow. 

remainder{) 
l 

extern canonical 
extern mode str 
extern exc_str 
int 

/-
* Special 
* case table: 

op1, op2, result; 
mode; 
error; 
Q, Qsign; 

I O NUM INF NAN 
----+----------------

0 j ABB D 
NUMI A C B D 
INF I A A A D 
NANI D D D D 

Qsign = opl.sign ~ op2.sign; 

Blfitch ( opl.tag versus op2.tag) 
l 
case A: /- op1 rem O or INF is invalid. 1/ 

error.invalid = TRUE; 

case E: /$ Xrem INF and Orem Yare trivial. */ 

result = op 1; 

case D: /$ NANs.1 */ 

two_nans(); 

remainder 



case C: ~ finite remfinite. 1/ 

~ Set tentative sign and exponent. •/ 
result.sign= cpl.sign; 
result.exponent= op2.exponent; 
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/• Generate all integer and one fraction quotient bits. 1/ 
Q = LOW(opl.exponent - op2.exponent + 2) 

BITS OF QUOTIENT; 
result.(msd, fraction)= REMAlNDER; 

/• Law bit of Q = 1 when REM is at least half op2. 1/ 
if ((Q & 1) == 1) 
l 

if (result.(msd, fraction) == 0) 
l 

else 
l 

normalize(result); 

/$ 
• Half-way case -- result 
• has half magnitude of op2, 
* 1.Uith sign flipped if 
• integer Q is odd. 
•/ 

result.(msd, fraction) = 
op2.{msd, fraction); 

result.exponent= result.exponent - 1; 

if ((Q & 2) == 2) 
l 

/* Test low integer bit of Q. 3/ 
result. sign = result.sign ~ 1; 
Q = Q + 2; 

~ More than half-'1..Vay. •/ 
result. sign = result. sign - 1; 
result.(msd, fraction) = 

op2.(msd, fraction) 
- result.(msd, fraction); 

Q = Q + 2; 



11.6. Compare 

/4 
• Now Q and its sign are available ... 
o/ 
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Compare op1 and op2 and return the condition EQUAL, LESS THAN, 

GREATER THAN, or UNORDERED. To implement the language aspects of 

comparisons, two versions of the comparison instruction are useful, one 

that triggers Invalid on UNORDERED and one that is silent. See 

chapter 6 for further details. 

compare{iftrigger) compare 

;-- Trigger invalid error if operands are UNORDERED? */ 
boolean iftrigger; 

extern canonical 
extern mode _str 
extern exc_str 
int 

;--
• Special 
• case table: 

op1, op2; 
mode; 
error; 
cond; 

I O NUM INF NAN 
----+----------------

0 I ABB F 
NUMI C D B F 
INF I C C E F 
NANI F F F F 

switch ( op1.tag versus op2.tag) 
l 

case A: ;-- 0 vs 0. */ 

cond = EQUAL; 



case B: /* Sign of op2 determines. */ 

if (op2.sign == 0) 
cond = LESS; 

else 
cond = GREATER; 

case C: /* Sign of opl determines. */ 

if (opt.sign== 0) 
cond = GREATER; 

else 
cond = LESS; 

case E: /* INF vs INF.*/ 

if (cpl.sign== op2.sign) 
cond = EQUAL; 

else if (cpl.sign== 0) 
cond = GREATER; 

else 
cond = LESS; 

case F: /* NANs! 1/ 

/* 
* Call NAN-handl,er to deal wiih exceptions 
* like signaling NANs, but ignore the setting 
* of the result.() structure. 
It/ 

two_nans{); 
cond = UNORDERED; 

case D: /* fi:nite vs finite •/ 

if (cpl.sign!= op2.sign) 

else 
I 

/* Trivinl if signs differ. */ 
if (opl.sign == 0) 

cond = GREATER; 
else 

cond = LESS; 

/* 
* Since opera:nds a:re prenormalized, 
• unequal exponents determ.ine order. 
*/ 

if (opl.exponent > op2.exponent) 
if (cpl.sign== 0) 

cond = GREATER; 
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else 
cond = LESS; 

else if (opl.exponent < op2.exponent) 
if (opl.sign == 0) 

cond = LESS: 
else 

cond = GREATER; 
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else if (opl.(msd, fraction)> op2.(msd, fraction)) 
if (opl.sign == 0) 

else 

cond = GREATER; 
else 

cond = LESS; 

if (opl.sign == 0) 
cond = LESS; 

else 
cond = GREATER: 

/" Raise a flag if necessary. o/ 
if ((iftrigger == TRUE) && (cond == UNORDERED)) 

error.invalid= TRUE: 

return(cond); 

11. 7. Round to Integer 

Set result to opl. rounded to an integer. 

rnd_integ er() 
f 

extern canonical 
extern mode_str 
extern exc_slr 

/" 
,. Special 
,. case table: 

op 1, result; 
mode; 
error; 

0 NUM INF NAN 
----+----------------

0 I A B A C 

rnd..integer 



switch ( opl.tag} 
I 
case A: /rt. int{zero or INF) is ilself. */ 

result = op 1; 

case C: /rt. NAN! *I 

one_nan(): 

case B: /* typical case of finite number 1/ 

result = op 1; 

,,. 
* Nothing to be done if exponent is bigger than 
• the index {since it's already an integer). 
• Otherwise right-align the significant digits 
* to round off the fraction part. 
1/ 
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if (result.exponent < dst.lsd} 
shift_right(result, (dst.lsd - result.exponent)); 

round_result(}; 
normalize(result); 

11.8. Square Root 

/rt. May be unnormalized. */ 

Set result to the square root of opl. The core of this operation 

is the computation of the square root of a number between 1 and 

RADIX x RADIX, which root is always of the form d.ddd before rounding. 

After CANON_fRACTION correct fraction digits of the root are found, a 

1 should be logically OR-ed into the last digit of result.fraction to sig

nal the nonzero digits further to the right. 



sqrt() 
l 

extern canonical 
extern mode _str 

~ 
• Special 
• case table: 

switch ( op 1. tag ) 
l 

op1, result; 
mode; 

0 NUMINFNAN 
----+----------------

0 I ABC D 

case A: ~sqrt{+/- 0) is+/- 0 (\{sc5.2). */ 
result = opl; 

case C: /* Only sqrt (+INF) is valid. */ 
if (opl.sign = 0) 

result= opl; 
else 

make_nan(); 

case D: /* NAN.' */ 
one_nan(); 

case B: /* sqrt{Jinite). */ 
/* Negative values a:re invalid. */ 
if (opl.sign == 1) 

else 
l 

make_nan(); 

/* Handle odd exponents with care. */ 
il (opl.exponent & 1) 

shift_left(opl, 1); 

result.sign = 0; 
result.exponent= opl.exponent/ 2; 

result.c out = O; 
result.{;;_sd, fraction)= 

root(opl.(c_out, msd, fraction)); 
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sqrt 
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11.9. NAN-Handler 

The treatment of NANs is quite system-dependent. The intention is 

that quiet NANs should propagate through operations without generating 

exceptions. When two operands are such NANs, a system-dependent 

precedence rule should arbitrate, designating one of the input NANs as 

the result. The choice should be made on the basis of the operands' 

fraction fields only (see §6.2 of P754, especially the last paragraph, and 

the discussion of NANs in chapter 2). 

Signaling NANs generate an exception whenever they are touched, 

presumably because the user has some specific interpretation to be 

effected by special trap handling software. Signaling NANs might also 

be used by a system to provide a menu of alternatives to the default 

exception handling schemes provided by the arithmetic. 

two_nans() 
I 

extern canonical opl, op2, result; 
precedent_nan{); canonical 

/'-
• Special 
• case table: 
• 
• 
• 
*/ 

I Q_NAN S_NAN ELSE 
------+-------------------

Q_NANI A B C 
S_NANI B B B 
ELSEI D B N'A 

switch ( op 1. tag versus op2. tag ) 
I 
case A: /'- Two quiet N ANs. o/ 

result= precedent_nan(opl, op2); 

case B: /* One or two signaling NANs. o/ 
make _nan(); 

two...:nans 



one_nan() 
l 

case C: /* op1 is quiet NAN, op2is ELSE. */ 
result = opl; 

case D: /* op2is quiet, op1 is ELSE. */ 
result = op2; 

extern canonical 

if (cpl.tag== Q_NAN_TAG) 
result = op 1; 

else 
make _nan(); 

op 1, result; 

make_nan() 
l 

extern canonical 
extern exc_str 

error.invalid = true; 

/* 

result; 
error; 
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one_:nan 

make_:nan 

• Set reS'Ult to some quiet NAN, perhaps indicating the 
• nature of the error. 
*/ 





CHAPTER 9 

Intermediate Exponent Calculations 

1. Introduction 

Proposed IEEE standard P754 for binary floating-point arithmetic 

specifies that results be computed as though with unbounded range and pre

cision and then coerced to within the constraints of the destination number 

format. Just how much exponent range is required for the "infinitely precise 

intermediate result" is the subject of this brief chapter. 

Among the unusual features of P754 are the so-called denormalized 

numbers, which alleviate some common problems due to exponent underflow 

(see chapter 5). The denormalized numbers effectively extend the exponent 

range of the host format by a small amount, though this is not their primary 

purpose. But just this small amount can have a serious impact on exponent 

calculations. For example, a typical implementation of the P754 double

extended format will use 15 exponent bits, biased by 3FFF16 . Since multipli

cation and division entail adding and subtracting their operands' exponents, 

one extra exponent bit - for a total of 16 - would seem to suffice for inter

mediate results, pending checks for overflow and underflow. However, the 

extra range afforded by the denormalized numbers is slightly wider than can 

be covered by 16 bits alone. We will see how an implementor can make do 

with 16 bits when the cost of an extra exponent bit is very high. 

Throughout this chapter, all four-digit integer constants are hexade

cimal unless othenvise indicated. 

9.1 
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2. An Implementation 

In P754, extended formats are specified by lower bounds on the range 

and precision to be provided. For definiteness, let us assume a double

extended format with a biased 15-bit exponent ranging from 0000 to 7FFF, 

including an added 3FFF. Suppose that the maximum exponent, 7FFF, is 

reserved to encode ± 00 and NANs, so the unbiased exponent ranges from 

-3FFF to 3FFF for finite numbers. If there are 64 significant bits, all of them 

explicit, then the set of finite representable numbers is 

where -3FFF ~ n ~ 3FFF. The special value zero is encoded with an 

exponent -3FFF and all significant bits zero. Three numbers are of particu

lar interest in what follows: 

B 

s 

D 

23FFF X 1.111 • • • 11 

2-3FFF X 1.000 · • • 00 

2-3FFF X 0.000 · · • 01 
z-40SE X 1.0 

= biggest normalized 

smallest normalized 

smallest denormalized 

3. Extreme Overflows and Underflows 

The extreme cases for intermediate results are these: 

BxB = z?FFF x 1.111 · · · bbbb · · • 
= 28000 x 1.0 rounded to single or double precision 

BIS z?FFE X 1.111 · • · 11 
27FFF x 1.0 rounded to single or double precision 

BID zB03D X 1. 111 · · · 11 
= zeosE x 1.0 rounded to single or double precision 

sxs 2-7FFE X 1.0 

DxD 2-BO?C X 1.0 
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SIB 2-7FFF x 1.000 · · • Obbbb 

DI B = 2-BOSE x 1.000 · • • Obbbb 

The range covered by results involving only normalized numbers is -7FFF to 

8000, a total of 216 values. This may barely be covered with a 16-bit inter

mediate exponent. However, with denormalized inputs the effective range is 

-807C to 803E. Of course, a 17-bit exponent covering the range -1000016 to 

OFFFF16 would more than suffice for intermediate calculations, but the cost 

of the seventeenth bit may be high. The rest of this paper discusses a way to 

get by with just sixteen bits. 

4. Overflow and Underflow Ranges 

Suppose that floating-point arithmetic is performed with a 16-bit inter

mediate exponent biased by 3FFF. And suppose that exponent calculations 

are performed in integer arithmetic, modulo 216, as in two's-complement 

signed arithmetic. Then the exponent ranges of interest in unbiased and 

biased forms are: 

Case Unbiased Ra e Biased Ra e 
(a) unexceptional -3FFF to 3FFF 0000 lo 7FFE 

(b) x underflow -807C to -4000 B783 to FFFF 

(c) / underflow -803E to -4000 BFCl to FFFF 

(d) x overflow 4000 to 8000 7FFF to BFFF 

( e) / overflow 4000 to 803E 7FFF to C03C 

Here they are on a number line: 
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e 
I 

d 
I 

' I 

-------6------
I 

' I 

I I C ' ,, 
I ,I I 
I ,, 

b : : ,, ,, 
' t I 

,, I 

Ii I iii t 
0000 4000 8000 cooo ffff 

The amount of range in excess of sixteen bits is shown by the overlapping 

overflow and underflow ranges of x and /. 

5. Facts about Over /Underflow 

Only double-extended products and quotients are susceptible to ambigu

ous overflow and underflow cases when a 16-bit exponent is used for inter

mediate values. An exponent in the range [BFB3, BFC1] is either overflowed 

or underflowed. 

Let's call big any extended number with a biased exponent larger than, 

say, 7FOO and call small any extended number with a biased exponent 

smaller than 0100 (this includes the denormalized numbers). The extreme 

underflow cases can arise only from 

small x sm.all or small I big 

and the extreme overflow cases can arise only from 

big x big or big I small 

This suggests that the ambiguous cases can be resolved by checking the left 

operand: if it is small the result has underflowed, and if it is big the the 

result has overflowed. 
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6. Tests of Overflow and Underflow 

As explained in §7.4 of P754 and in chapter 8, underflow is signale~ when 

a result is both inexact (that is, rounded) and tiny. Tininess is the conven

tional criterion that a value underflows when it falls below a certain thres

hold. However, the denormalized numbers enable unconventionally tiny 

values to be represented. So underflow is signaled only when a tiny value 

suffers some unusual loss of accuracy due to denormalization. This section 

discusses only the tininess criterion. Chapter 8 treats both underflow cri

teria. 

When testing a result for tininess, three intervals are of particular 

interest: 

0000 4000 8000 

Bf 82 C03C 
t 
I 

I ; 
cooo Ffff 

[0000, BFB2] - result cannot be tiny (though overflow may be detected later). 

[BFB3, C03C] - result is tiny if and only if the left operand is small ( otherwise 

the left operand must be big and overflow will be detected 

later). 

[C03D, FFFF] - result is unambiguously tiny. 

To test whether the left operand is small it suffices to check whether its 

biased exponent is at most 4000, unsigned;. that is, simply ensure that the 

exponent is not big. 

In P754, the test for tininess always precedes the test for overflow. Thus 

the ambiguous cases are eliminated by the time overflow is tested. The test 

for overflow is simply: 
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if exponent < 7FFE then either in range or already underflowed ... 

else overflow ... 

where the 16-bit comparison is unsigned. 

7. Single and Double Results 

Since P754 specifies that products and quotients involving extended 

operands cannot be delivered directly to single or double destinations, the 

ambiguous cases cannot arise there. ln a so-called "extended based" system 

which delivers all arithmetic results to extended destinations, single and 

double destinations only arise in format conversions. On such a system, the 

test for tininess in extended ➔ double conversion is 

if exponent< 3C01 then underflow ... 

else in range or overflowed ... 

where the comparison is signed two's-complement. The signed comparison is 

used to catch denormalized inputs which, when prenormalized, have 

exponents of the form FFxx - modest negative numbers in the two's

complement system. There is no problem with overflowed exponents like 

BOxx because the largest finite extended input has exponent 7FFE. The situa

tion for extended ➔ single format conversion is analogous. 

8. Summary 

The cost of keeping a 16-bit exponent for intermediate results is a 

slightly more complicated test for tininess, using two thresholds, and the 

need to inspect the exponent of one of the input operands. The extra nui

sance may be small compared to the cost of a seventeenth exponent bit for 

all exponent calculations when there is a natural 16-bit boundary, as is the 

case with some bit-slice and software implementations. 



CHAPTER 10 

A Compact Test Suite for P754 Arithmetic - Version 2.0 

The initial version of this test data base for the proposed IEEE 754 binary 
floating point standard (draft 8.0) was developed for Zilog, Inc. and was 
donated to the floating point working group for dissemination. Errors in or 
additions to the distributed data base should be reported to the agency of 
distribution, with copies to Zilog, Inc., 1315 Dell Avenue, Campbell, CA, 95008. 

The above statement, which is to accompany any copy of this test suite. 

indicates the origin of this effort. The author developed the tests while 

employed at Zilog. Since then, with help from James W. Thomas of Apple 

Computer, the tests have been expanded and updated to conform to draft 

10.0 of proposed ]EEE standard P754 for binary floating point arithmetic. 

1. Distribution format 

The data base consists of several files of ASCII data: this description. the 

test vectors [Appendix B], and a sample Pascal program to drive the tests 

[Appendix C]. 

Currently, the tests are available on an unlabeled magnetic tape, 1600 

BPI, composed of physical blocks of 40 "card images" of 80 ASCII characters. 

Files are separated by file marks, with a double file mark at the end of the 

last file. The tape may be obtained by mailing $100 (payable to the Regents 

of the University of California) to Keith Sklower, Computer Science Division. 

Evans Hall, University of California, Berkeley, CA, 94 720. 

2. The design goal 

Our object was to exercise the P754 arithmetic, the special case logic in 

particular, with as terse a test set as possible. By keeping the test fields 

10.1 
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brief we could generate new tests by simply typing the vectors ourselves, 

rather than using a table-driven or random scheme. And it was easy to 

update the data base as new cases occurred to us and errors were detected. 

Most important, the tests were designed to be as format-independent as pos

sible, so that the same vectors would apply to all formats - single, double, 

single-extended, and double-extended without regard to the 

implementation-dependent features of the extended formats. 

No claim is made about the completeness of these tests. Attempting to 

maintain format independence led to two important restrictions. First, we 

could not describe arbitrary bit patterns, so we were limited to a special 

class of numbers, roughly speaking, "simple" numbers modified in their low

order bits and possibly scaled up or down. Second, the tests were written as 

though all operations were of the form 

X Op y ➔ Z 

where x, y, and z all have the same format. However, this is not the archi-

tecture of several known microprocessor implementations. Those implemen

tations are fundamentally two-address, with extended format destinations for 

all operations except conversion from extended to a narrower format. The 

test suite does not explicitly test such mixed-format operations. But with 

care such operations can be used to simulate the type of architecture the 

test vectors apply to - even though this simulation will not be used for ordi

nary calculations. 

P754 is really a specification of a programming environment. This test 

scheme simply exercises an arithmetic engine that. purports to "support" 

the proposed standard. Thus the tests do not address the more global P754 

issues such as which formats are supported, how expression evaluation is 
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carried out {including possible provision for precision control), how com

parisons are handled, how binary-decimal conversion is provided {and how 

accurate it is), and how exceptions are reported. 

3. Test vector format 

The test vectors are contained in several files of ASCII text. Each line of 

a test file is either a comment (beginning with '!' or entirely blank), or a test 

vector such as: 

2"' = lil -li2 x -li3 an inexact product 

The leading '2' is the version number; the first version of the tests, distri

buted through 1982, had no version number. This particular example is a 

product{"') with rounding to nearest(=). The factors are 1.0 incremented (i) 

by a unit in its last place (to the precision of the format under considera

tion), and the negative of 1.0 incremented in magnitude by two units in its 

last place. The result, which is inexact (x), is the negative of 1.0 incremented 

by three units in its last place. 

Each test vector consists of seven fields: version number and operator, 

modes, first operand, second operand, result flags, result, comment. The 

fields are separated by white space - blanks or tabs; thus, no field but the 

last may be blank, and only the last field can itself contain white space. ln 

the case of unary operations like square root, the value "0" is used as a 

placeholder for the second operand. 

The operators supported in version 2.0 of the tests are: +, -, *, /, C 

(compare), V {square root), % (remainder), I (round to integer), N (nex

tafter), A (absolute value), ~ (negate), @ (copysign), S (scalb), L (logb), and F 

(fraction part). The last seven operators are taken from the P754 Appendix 
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(F is a combination of S and L. as shown in the accompanying program). 

They are recommended but not required by P754; they were not included in 

version 1.1. 

The modes are = (round to nearest), 0 (round toward 0), < {round 

toward -infinity), > (round toward +infinity), s {single operands), d (double 

operands), t (single extended operands), e (double extended operands). The 

modes s, d, t, and e are used when the result explicitly depends on a specific 

exponent range or precision; thus, modes t and e must be used with great 

care since those formats are implementation-dependent. Modes for the 

affine and projective interpretations of infinity and for the normalizing and 

warning interpretations of denormalized numbers were included in version 

1.1, but they are omitted here since the projective and warning modes were 

removed from P754 in the passage from draft B.0 to draft 10.0. In the nota

tion of draft B.0, all operations in the version 2.0 tests are run implicitly in 

the affine and normalizing modes. 1f one or more rounding modes appears in 

a vector, then the test is run in those modes only; otherwise, the test is run 

for all rounding modes. Similarly, if any format restrictions are listed then 

they exclude any others. If a test applies to all formats in all rounding 

modes then the key "ALL" is used as a placeholder, since the mode field 

must be non-empty. 

The error flags are o (overflow), x (inexact), i (invalid operation), z (divi

sion by zero), and u/v/w (underflow). There are three flags for underflow 

since P754 now permits an implementor lo use any one of three slightly 

different definitions of underflow for all operations. In the language of sec

tion 7.4 of P754, u indicates underflow due to tininess and "extraordinary" 

error; vindicates underflow due to tininess and inexactness, where tininess is 
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tested after rounding; and w indicates underflow due to tininess and inexact

ness, where tininess is tested before rounding. The three definitions are 

nested in the sense that u-underflow implies v-underflow which in turn 

implies w-underflow. The three definitions differ in subtle ways, and a few 

multiply and divide tests have been devised to distinguish them. Version 1.1 

had two other error flags, d and t, concerning denormalized and signaling 

NAN operands, specific to the original Zilog implementation; these have been 

omitted from version 2.0. Unexceptional tests have the key "OK" in the 

result flag field as a placeholder. 

A numeric operand field is scanned left to right. It consists of an 

optional sign, a mandatory root number, and zero or more modifier suffixes. 

The sign is + or -; as usual, plus is presumed if the sign is omitted. Root 

numbers are of several types: integers, NANs, and tiny and huge numbers. 

The single-digit integers 0, 1, ... , 9 speak for themselves. S and Q signify sig

naling and quiet NANs, respectively (T and N were used in version 1.1 

corresponding to the oblsolete names "trapping" and "nontrapping"). Ex, 

where x is a single digit, is a tiny power of two: EO is the smallest normalized 

number, El is twice ED, E2 is twice El, etc. Similarly, Hx is a huge power of 

two: HO is infinity (a special case), Hl is the largest power of two, H2 is half of 

Hl, etc. Finally, there is a notation for specifying arbitrary root values, 

though it is intended for further expansion of the test vectors and is not used 

in version 2.0. The form is: 

$xxx • • • x~yyy • • • y 

The dollar sign indicates that a literal root value follows. The x-field is a 

string of hex digits with an implicit binary point after the leading bit of the 

leading hex digit. The y-field is the decimal exponent (optionally signed) of 
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two. The value represented is thus 

O.xxx • • • x * (2 - ( Y!fY • • • y + 1 ) ) 

with the binary point moved over to the left of the x-field for notational con-

venience. 

The five suffixes have the form sK, where s is one of i, d, u, p, or m and 

K is a digit 0, 1. ... , 9. The increment (i) and decrement {d) suffixes cause 

the root value to be altered by K units in its last place {ulps). The ulp {u) 

operator replaces the root value by K units in its last place. The plus (p) and 

minus (m) operators cause the root value to be scaled up or down by 2---K. 

Since it is easier to see how the operators apply than to enumerate formal 

rules, further discussion is deferred until several examples have been 

presented. 

4. Sample Numerical Values 

The following list of numerical operands illustrates most of the 

subtleties of the test vector representation. The subsequent text discusses 

the examples. 

Test Operand 
1 

lil 
ldl 
1u1 
1p1 
1ml 

2 
-2i3 
2u1 

2i3u1 
2dlu1 
-2pl 
2ml 

$800000-1 

Mathematical Value 
1 

1 + (2----23) 
1 - (2----24) 

2----23 
1 * 2 

1 * 2----1 

2 
-(2 + 3*(2----22)) 

2----22 
2--22 
2----23 

-2 * 2-1 
2 "'2----1 

2 

Single Format Encoding 
3FBO 0000 
3FBO 0001 
3F7F FFFF 
3400 0000 
4000 0000 
3FOO 0000 

4000 0000 
CODD 0003 
3480 0000 
3480 0000 
3400 0000 
COBO 0000 
3FBO 0000 

4000 0000 



10.7 

$800001 .... 1 2 + (2.-..-22) 4000 0001 

3il 3 + (2.-..-22) 4040 0001 
3ul 2----22 3480 0000 

4 4 4080 0000 
4ml 2 4000 0000 

0 0 0000 0000 
-0 -0 8000 0000 
0i5 5 * (2--149) 0000 0005 

-0i2 -2 * (2 .... -149) B000 0002 

ED 2.-..-126 00B0 0000 
EOil f2.-..-126~ + ~2 .... -149) 00B0 0001 
E0dl 2.-..-126 - 2.-..-149) 007F FFFF 

E0ilul 2--149 0000 0001 
E0dlul 2--149 0000 0001 
E0ml (2--126) * (2~-1) 0040 0000 

HO infinity 7FB0 0000 
H0dl {2 .... 12B) - (2-104) 7F7F FFFF 
H0ml (2-12B) * (2--1) 7F00 0000 

Hl 2-127 7F00 0000 

-Q negative quiet NAN FF81 0000 
s signaling NAN 7FC1 0000 

The increment (i) and decrement (d) operators are defined to yield the 

next represenatable value to the number to which they are applied. When 

the root value is a power of two and is greater than E0, the amounts incre

mented and decremented differ by a factor of two. Compare, for example, 

lil and ldl. However, when the root value is a power of two no bigger than 

E0 (the smallest denormalized number), the magnitude of the increment and 

decrement are the same, namely the value of the tiniest denormalized 

number. This follows from the fact that numbers in the range ED to El have 

the same spacing as the numbers in the range 0 to E0. 

There are two special cases of i and d. Oil is the tiniest denormalized 

number (that is, the next representable number to 0), and in general OiK is 

defined to be K times Oil. When HO, representing infinity, is decremented, as 
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in HOd1 above, HO behaves as though it had the value 2-128, that is the smal

lest power of 2 too large to represent. 

The ulp operator ( u) gives units in lhe last place of the number to which 

it is applied. The operator is motivated by the need to describe the results of 

magnitude subtractions. The ulp operator may best be thought of as satisfy

ing the following formula: for any value X, XuK = XiK - X. Thus only the 

exponent of X, not its significand, determines the magnitude of the ulps. For 

example, 2u1, 2i3u1, and 3u1 all have the same value since the root values 2, 

2i3, and 3 all of the form (2-1)• 1.J. 

The scaling operators p and m typically affect only the exponent of a 

number, as in the cases 1p1 and 4ml, both of which equal 2. However, when 

the root value is no bigger than EO, the scaled value must be denormalized, 

as in the case of E0m1 above. 

The NAN root values Q and S are system-dependent since P754 specifies 

only that they have the maximum exponent and some nonzero bits in the 

significand. In the examples shown, the leading fractwn bit is used to distin

guish the two kinds of NAN. 

A negative sign applies to the number as a whole, as in -2i3 above. 

Regardless of any sign, the increment and decrement operators add and sub

tract in magnitude, respectively. 

5. Sample Driver Program 

Appendix C contains a Pascal program which has been used to run the 

test vectors. The program was developed by James W. Thomas and the 

author and has been run on both an Apple III and an Apple Lisa computer 

(using prototype floating point software just becoming available as products). 
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The program is broken into three parts, the main program FPTEST and two 

"units" (in the notation of UCSD Pascal) FP and FPSOFT. 

FPTEST parses the test vectors, builds the numeric operands in a canon

ical format, invokes FP to run the tests, and checks the results. 

The unit FP is composed of subprograms to pack canonical values into 

the P754 storage types and to perform single, double and extended format 

tests. This unit is highly implementation-dependent. If an extended format 

is implemented, then packing from the canonical format to extended will 

depend on details of the extended format. Even packing into the single and 

double formats depends on the ordering of the bytes in the 32 and 64 bit 

words. FP invokes the actual arithmetic operations to be tested; in some 

cases, such as this sample program, the arithmetic is available only through 

subroutine calls. The unit FPSOFT describes one interface to such routines. 

FP simulates single-only, double-only, and extended-only operations. In this 

sample program the arithmetic is two-address extended-based so extra care 

is taken to avoid the so-called double-rounding that may arise when a result 

is computed in an extended intermediate variable and then stored (and pos

sibly rounded again) to a single or double destination. It can be shown that 

because the extended format has more than twice as many significant bits as 

does the single format, this hazard only arises in double format tests. (We 

note again that this restriction to operations on just one format is an arbi

trary constraint set by the test scheme, NOT by P754.) 

FPSOFT is an hypothetical interface to a floating point package, to sup

ply the operations needed by FP. Of course, this unit would not be required if 

the host system fully supported floating point arithmetic right in Pascal, in 

which case the unit FP could be greatly simplified. 





APPENDIX A 

Excerpts from a Proposed Standard for Binary Floating-Point Arithmetic 

Based on Draft 10.0 of IEEE Task P754 December 2, 1982 

Foreword 

This foreword and the footnotes are not part of IEEE 
Standard 754 for Binary Floating-Point Arithmetic. 

This standard is a product of the Floating-Point Working Group of the 
Microprocessor Standards Subcommittee of the IEEE Computer Society Com
puter Standards Committee. Draft 8.0 of this standard was published to soli
cit public comments. 1 Implementation techniques can be found in "An Imple
mentation Guide to a Proposed Standard for Floating-Point Arithmetic" by 
Jerome T. Coonen, 2 which was based on a still earlier draft of the proposal. 

This standard defines a family of commercially feasible ways for new sys
tems to perform binary floating-point arithmetic. The issues of retrofitting 
were not considered. Among the desiderata that guided the formulation of 
this standard are these: 

(1) Facilitate movement of existing programs from diverse computers to 
those that adhere to this standard. 

(2) Enhance the capabilities and safety available to programmers who, 
though not expert in numerical methods, may well be attempting to pro
duce numerically sophisticated programs. However we recognize that 
utility and safety are sometimes antagonists. 

(3) Encourage experts to develop and distribute robust and efficient numer
ical programs portable, via minor editing and recompilation, onto any 
computer that conforms to this standard and possesses adequate capa
city. When restricted to a declared subset of the standard, these pro
grams should produce identical results on all conforming systems. 

(4) Provide direct support for 

Execution-time diagnosis of anomalies, 

Smoother handling of exceptions, and 

Interval arithmetic at a reasonable cost. 

(5) Provide for development of 

Standard elementary functions like exp and cos, 

Very high precision {multi-word) arithmetic, and 

1Cbmptder, Vol. 14, No. 3, March 1981. 

ilComputer, Vol. 13, No. 1, January 1980. 
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Coupling of numerical and symbolic algebraic computation. 

(6) Enable rather than preclude further refinements and extensions. 

A.2 
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Excerpts from a Proposed Standard for Bi.nary Floating-Point Arithmetic 
Based on Draft 10.0 of IEEE Task P754 December 2, 1982 

1. Scope 

1.1. Implementation objectives. It is intended that an implementation 
of a floating-point system conforming to this standard can be realized 
entirely in software, entirely in hardware, or in any combination of 
software and hardware. It is the environment the programmer or user 
of the system sees that conforms or fails to conform to this standard. 
Hardware components that require software support to conform shall 
not be said to conform apart from such software. 

1.2. Inclusions. This standard specifies 

(1) Basic and extended floating-point number formats; 

(2) Add, subtract, multiply, divide, square root, remainder and compare 
operations; 

(3) Conversions between integer and floating-point formats; 

(4} Conversions between different floating-point formats; 

(5) Conversions between basic format floating-point numbers and decimal 
strings; and 

(6) Floating-point exceptions and their handling, including non-numbers 
(NaNs). 

1.3. Exclusions. This standard does not specify 

(1} Formats of decimal strings and integers, 

(2) Interpretation of the sign and significand fields of NaNs, or 

(3) Binary+4decimal conversions to and from extended formats. 

2. Definitions 

Biased exponent. The sum of the exponent and a constant {bias) chosen to 
make the biased exponent's range nonnegative. 

Binary floating-point number. A bit-string characterized by three com
ponents: a sign, a signed exponent, and a significand. Its numerical value, if 
any, is the signed product of its signiflcand and two raised to the power of its 
exponent. ln this document a bit-string is not always distinguished from a 
number it may represent. 

Denorm.alized number. A nonzero floating-point number whose exponent has 
a reserved value, usually the format's minimum, and whose explicit or impli
cit leading significand bit is zero. 

Destination. Every unary or binary operation delivers its result to a destina
tion, either explicitly designated by the user or implicitly supplied by the 
system (e.g., intermediate results in subexpressions or arguments for pro
cedures). Some languages place the results of intermediate calculations in 
destinations beyond the user's control. Nonetheless, this standard defines 
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the result of an operation in terms of that destination's format as well as the 
operands' values. 

Exponent. The component of a binary floating-point number that normally 
signifies the integer power to which two is raised in determining the value of 
the represented number. Occasionally the exponent is called the signed or 
unbiased exponent. 

Fraction. The field of the significand that lies to the right of its implied 
binary point. 

Mode. A variable that a user may set, sense, save and restore to control the 
execution of subsequent arithmetic operations. The default mode is the 
mode that a program can assume to be in effect unless an explicitly contrary 
statement is included in either the program or its specification. 

The following mode shall be implemented: 

(1) Rounding, to control the direction of rounding errors; 

and, in certain implementations, 

(2) Rounding precision, to shorten the precision of results. 

The implementor may, at his option, implement the following modes: 

(3) Traps disabled/enabled, to handle exceptions. 

NaN. Not a number; a symbolic entity encoded in floating-point format. 
There are two types of NaNs (6.2). Signaling NaNs signal the invalid operation 
exception (7.1} whenever they appear as operands. Quiet NaNs propagate 
through almost every arithmetic operation without signaling exceptions. 

Result. The bit string {usually representing a number} that is delivered to 
the destination. 

Significand. The component of a binary floating-point number that consists 
of an explicit or implicit leading bit to the left of its implied binary point and 
a fraction field to the right. 

Shall and should. In this standard the use of the word "shall" signifies that 
which is obligatory in any conforming implementation; the use of the word 
"should" signifies that which is strongly recommended as being in keeping 
with the intent of the standard, although architectural or other constraints 
beyond the scope of this standard may on occasion render the recommenda
tions impractical. 

Status flag. A variable that may take two states, set and clear. A user may 
clear a flag, copy it, or restore it to a previous state. When set, a status flag 
may contain additional system-dependent information, possibly inaccessible 
to some users. The operations of this standard may as a side effect set some 
of the following flags: inexact result, underflow, overflow, divide by zero and 
invalid operation. 

User. Any person, hardware, or program not itself specified by this standard, 
having access to and controlling those operations of the programming 
environment specified in this standard. 
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3. Formats 

This standard defines four floating-point formats in two groups, basic 
and extended, each having two widths, single and double. The standard levels 
of implementation are distinguished by the combinations of formats sup
ported. 

3.1. Sets of values. This section concerns only the numerical values 
representable within a format, not the encodings which are the subject of the 
following sections. The only values representable in a chosen format are 
those specified via the following three integer parameters: 

p - the number of significand bits {precision), 

E= - the maximum exponent, and 

E min - the minimum exponent. 
Each format's parameters are displayed in Table 1. Within each format just 
the following entities shall be provided: 

Numbers of the form {-l)5 2E(b 0 °b 1b2 • • • bp-1) where 
s is O or 1, 
Eis any integer between Emin and Erru,:x, inclusive, and 
each b1 is O or 1; 

Two infinities, + 00 and -oo; 

At least one signaling NaN; and 

At least one quiet NaN. 
The foregoing description enumerates some values redundantly, e.g., 

2°(1-0) = 21(0·1) = 22 (0·01) = 
However, the encodings of such nonzero values may be redundant only in 
extended formats (3.3). The nonzero values of the form 
±2Emi~O•b 1b 2 • • • b _1) are called denormalized. Reserved exponents may be 
used to encode Na1-Js, ±oo, ±0, and denormalized numbers. For any variable 
that has the value zero, the sign bit s provides an extra bit of information. 
Although all formats have distinct representations for +O and -0, the signs 
are significant in some circumstances, like division by zero, and not in oth
ers. In this standard, 0 and 00 are written without a sign when the sign does 

Table 1. Summary of format parameters. 

Format 
Parameter 

Single Double 
Single Extended Double Extended 

p 24 ~ 32 53 ~ 64 
E= +127 ~ +1023 +1023 ~ +16383 
Emin -126 ~ -1022 -1022 ~ -16382 

exponent bias +127 unspecified +1023 unspecified 
exponent width in bits B ~ 11 11 ~ 15 

format width in bits 32 ?: 43 64 ~ 79 
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not matter. 

3.2. Basic formats. Numbers in the single and double formats are composed 
of three fields: 

A 1-bit signs, 

A biased exponent e = E+bins, and 

A fraction f = •b 1b2 • • • bp-l· 

The range of the unbiased exponent E shall include every integer between 
two values Errun and Emax, inclusive, and also two other reserved values: 
Errun-1 to encode ±0 and denormalized numbers, and E=+ 1 to encode ±00 

and NaNs. The foregoing parameters appear in Table 1. Each nonzero 
numerical value has just one encoding. The fields are interpreted as follows. 

3.2.1. Single. A 32-bit single format number X is divided as shown in 
Figure 1. The value v of X is inferred from its constituent fields thus: 

(1) If e = 255 and f °I' 0, then v is NaN regardless of s. 

(2) ]f e = 255 and f = 0, then v = (-1)8 00 • 

(3) ]f O < e < 255, then v = (-1)8 28
-

127(1•/ ). 

(4) If e = 0 and/ °I' 0, then v = (-1)5 2-126(0•/) (denormalized numbers). 

(5) lf e = 0 and/ = 0, then v = (-1)80 (zero}. 

1 8 

e 

msb 

ngure 1. Single format. 
23 

I 

lsb msb 

"msb" means "most significant bit" 
"lsb" means "least significant bit" 

... widths 

lsb ... order 

3.2.2. Double. A 64-bit double format number X is divided as shown in 
Figure 2. The value v of Xis inferred from its constituent fields thus: 

(1) If e = 2047 and/ °I' 0, then v is NaN regardless of s. 

(2) If e = 2047 and/ = 0, then v = (-1)8
00. 

(3) If O < e < 2047, then v = (-1)8 28
-

1023(1•/ ). 

(4) If e = 0 and/~ 0, thenv = (-1)S2-1022(0•/) (denormalized numbers). 

(5) If e = 0 and/ = 0, then v = (-1)5'0 (zero). 

1 11 

e 

msb 

Figure 2. Double format. 

52 

I 

lsb msb 

... widths 

lsb ... order 

3.3. Extended formats. The single extended and double extended formats 
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encode in an implementation-dependent way the sets of values in 3.1 subject 
to the constraints of Table 1. This standard allows an implementation to 
encode some values redundantly, provided that redundancy be transparent 
to the user in the following sense: an implementation either shall encode 
every nonzero value uniquely or it shall not distinguish redundant encodings 
of nonzero values. An implementation may also reserve some bit strings for 
purposes beyond the scope of this standard; when such a reserved bit string 
occurs as an operand the result is not specified by this standard. 

An implementation of this standard is not required to provide (and the 
user should not assume) that single extended have greater range than dou
ble. 

3.4. Combinations of formats. All implementations conforming to this stan
dard shall support the single format. Implementations should support the 
extended format corresponding to the widest basic format supported, and 
need not support any other extended format. 3 

4. Rounding 
Rounding takes a number regarded as infinitely precise and, if neces

sary, modifies it to fit in the destination's format while si_gnaling the inexact 
exception (7.5). Except for binary.-decimal conversion {whose weaker con
ditions are specified in 5.6), every operation specified in §5 shall be per
formed as if it first produced an intermediate result correct to infinite preci
sion and with unbounded range, and then rounded that result according to 
one of the modes in this section. 

The rounding modes affect all arithmetic operations except comparison 
and remainder. The rounding modes may affect the signs of zero sums {6.3), 
and do affect the thresholds beyond which overflow (7.3) and underflow {7.4) 
may be signaled. 

4.1. Round to nearest. An implementation of this standard shall provide 
round to nearest as the default rounding mode. In this mode the represent
able value nearest to the infinitely precise result shall be delivered; if the two 
nearest representable values are equally near, the one with its least 
significant bit zero shall be delivered. However, an infinitely precise result 
with magnitude at least 2E=(2-2-P) shall round to 00 with no change in sign; 
here Em.ax and p are determined by the destination format (§3) unless over
ridden by a rounding precision mode (4.3). 

4.2. Directed roundings. An implementation shall also provide three user
selectable directed rounding modes: round toward +cc, round toward -00, and 
round toward 0. 

When rounding toward +00 , the result shall be the format's value {possi
bly +cc) closest to and no less than the infinitely precise result. When round
ing toward - 00 , the result shall be the format's value (possibly - 00 ) closest to 
and no greater than the infinitely precise result. When rounding toward 0, the 
result shall be the format's value closest to and no greater in magnitude 

30nly if upward compatibility and speed are important issues should a system 
supporting the double extended format also support single extended. 
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than the infinitely precise result. 

4.3. Rounding precision. Normally a result is rounded to the precision of its 
destination. However, some systems deliver results only to double or extend
ed destinations. On such a system the user, which may be a high-level 
language compiler, shall be able to specify that a result be rounded instead 
to single precision, though it may be stored in the double or extended format 
with its wider exponent range.4 Similarly, a system that delivers results only 
to double extended destinations shall permit the user to specify rounding to 
single or double precision. Note that to meet the specifications in 4.1, the 
result cannot suffer more than one rounding error. 

5. Operations 
All conforming implementations of this standard shall provide opera

tions to add, subtract, multiply, divide, extract the square root, find the 
remainder, round to integer in floating-point format, convert between 
different floating-point formats, convert between floating-point and integer 
formats, convert binary.-decimal, and compare. Whether copying without 
change of format is considered an operation is an implementation option. 
Except for binary.-decimal conversion, each of the operations shall be per
formed as if it first produced an intermediate result correct to infinite preci
sion and with unbounded range, and then coerced this intermediate result to 
fit in the destination's format (§4 and §7). Section 6 augments the following 
specifications to cover ±0, ± 00 , and NaN; section 7 enumerates exceptions 
caused by exceptional operands and exceptional results. 

5.1. Arithmetic. An implementation shall provide the add, subtract, multi
ply, divide and remainder operations for any two operands of the same for
mat, for each supported format; it should also provide the operations for 
operands of differing formats. The destination format (regardless of the 
rounding precision control of 4.3) shall be at least as wide as the wider 
operand's format. All results shall be rounded as specified in §4. 

When y T- 0, the remainder r = x REM y is defined regardless of the 
rounding mode by the mathematical relation r = x - y xn, where n is the in
teger nearest the exact value x I y; whenever In - x I y I = ½, then n is even. 
Thus, the remainder is always exact. If r =O, its sign shall be that of x. Pre
cision control (4.3) shall not apply to the remainder operation. 

5.2. Square root. The square root operation shall be provided in all support
ed formats. The result is defined and has positive sign for all operands ~ 0, 
except that ..._r-:::o shall be -0. The destination format shall be at least as wide 
as the operand's. The result shall be rounded as specified in §4. 

5.3. Floating-point format conversions. It shall be possible to convert 

"'Control of rounding precision is intended to allow systems whose destinations 
are always double or extended lo mimic, in the absence of over /underflow, the preci
sions of systems with single and double destinations. An implementation should not 
provide operations that combine double or extended operands to produce a single 
result, nor operations that combine double extended operands to produce a double 
result, with just one rounding. 
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floating-point numbers between all supported formats. lf the conversion is to 
a narrower precision, the result shall be rounded as specified in §4. Conver
sion to a wider precision is exact. 

5.4. Conversion between floating-point and integer formats. It shall be pos
sible to convert between all supported floating-point formats and all support
ed integer formats. Conversion to integer shall be effected by rounding as 
specified in §4. Conversions between floating-point integers and integer for
mats shall be exact unless an exception arises as specified in 7.1. 

5.5. Round floating-point number to integral value. It shall be possible to 
round a floating-point number to an integral valued floating-point number in 
the same format. The rounding shall be as specified in §4, with the under
standing that when rounding to nearest, if the difference between the un
rounded operand and the rounded result is exactly one half, the rounded 
result is even. 

5.6. Bi.nary-decimal conversion. Conversion between decimal strings in at 
least one format and binary floating-point numbers in all supported basic for
mats shall be provided for numbers throughout the ranges specified in Table 
2. The integers M and N in Tables 2 and 3 are such that the decimal strings 
have values ±Mx 10±N. On input, trailing zeros shall be appended to or 
stripped from M (up to the limits specified in Table 2) in order to minimize 
N. When the destination is a decimal string, its least significant digit should 
be located by format specifications for purposes of rounding. 

When the integer M lies outside the range specified in Tables 2 and 3, 
i.e., when M ~ 109 for single or 1017 for double, the implementor may, at his 
option, alter all significant digits after the ninth for single and seventeenth 
for double to other decimal digits, typically 0. 

Conversions shall be correctly rounded as specified in §4 for operands 
lying within the ranges specified in Table 3. Otherwise, for rounding to 
nearest, the error in the converted result shall not exceed by more that 0.47 
units in the destination's least significant digit the error that would be in
curred by the rounding specifications of §4, provided that exponent 
over /underflow does not occur. In the directed rounding modes the error 
shall have the correct sign and shall not exceed 1.4 7 units in the last place. 

Conversions shall be monotonic. That is, increasing the value of a binary 
floating-point number shall not decrease its value when converted to a de
cimal string; and increasing the value of a decimal string shall not decrease 
its value when converted to a binary floating-point number. 

When rounding to nearest, conversion from binary to decimal and back 
to binary shall be the identity as long as the decimal string is carried to the 
maximum precision specified in Table 2, namely, 9 digits for single and 17 for 
double.5 

5The properties specified for conversions are implied by error bounds that 
depend on the format (single or double) and the number of decimal digits involved; 
the 0.47 mentioned is a worst-case bound only. For a detailed discussion of these er· 
ror bounds and economical conversion algorithms that exploit the extended format, 
see "Accurate Yet Economical Binary+-+Decimal Conversions" by Jerome T. Coonen 
(to appear). 
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If decimal to binary conversion over /underflows, the response is as 
specified in §7. Over /underflow and NaNs and infinities encountered during 
binary to decimal conversion should be indicated to the user by appropriate 
strings. This standard says nothing about dealing with NaNs encoded in de
cimal strings. 

To avoid inconsistencies, the procedures used for binary~decimal 
conversion should give the same results regardless of whether the conversion 
is performed during language translation (interpretation, compilation or as
sembly) or during program execution {run-time and interactive 
input/output). 

Table 2. Decimal conversion ranges. 

Decimal to Binary Binary to Decimal 
Format 

MaxM MaxN MaxM MaxN 
Single 109-1 99 109 -1 53 
Double 1017_1 999 1017 -1 340 

Table 3. Correctly rounded decimal conversion range. 

Decimal to Binary Binary to Decimal 
Format 

MaxM MaxN MaxM MaxN 
Single 109-1 13 109 -1 13 
Double 1017_1 27 1017 -1 27 

5. 7. Comparison. It shall be possible to compare floating-point numbers in 
all supported formats, even if the operands' formats differ. Comparisons are 
exact and never overflow nor underflow. Four mutually exclusive relations 
are possible: "less than", "equal". "greater than", and "unordered". The 
last case arises when at least one operand is NaN. Every NaN shall compare 
"unordered" with everything, including itself. Comparisons shall ignore the 
sign of zero (so +0 = -0). 

The result of a comparison shall be delivered in one of two ways: either 
as a condition code identifying one of the four relations listed above, or as a 
true-false response to a predicate that names the specific comparison 
desired. In addition to the true-false response, an invalid operation excep
tion {7.1) shall be signaled when, as indicated in the last column of Table 4, 
"unordered" operands are compared using one of the predicates involving 
"<"or">" but not"?". (Here the symbol"?" signifies "unordered".) 

Table 4 exhibits the twenty-six functionally distinct useful predicates 
named, in the first column, using three notations: ad hoc, FORTRAN-like, and 
mathematical. It shows how they are obtained from the four condition codes 
and tells which predicates cause an invalid operation exception when the re
lation is "unordered". The entries T and F indicate whether the predicate is 
true or false when the respective relation holds. 
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Table 4. Predicates and relations. 

Predicates Relations Exception 
greater less invalid if 

ad hoc FORTRAN math than than eaual unordered unordered 
= .EQ. - F F T F -

?<> .NE. ~ T T F T 
> .GT. > T F F F Yes 

>= .GE. ~ T F T F Yes 
< .LT. < F T F F Yes 

<= .LE. ~ F T T F Yes 
? unordered F F F T 

<> .LG. T T F F Yes 

<=> .LEG. T T T F Yes 
?> .UG. T F F T 

?>= .UGE. T F T T 
?< .UL. F T F T 

?<= .ULE. F T T T 
?-.- .UE. F F T T 

NOT(>) F T T T Yes 
NOT(>=) F T F T Yes 
NOT(<) T F T T Yes 

NOT{<=) T F F T Yes 
NOT(?) T T T F 

NOT(<>) F F T T Yes 

NOT(<=>) F F F T Yes 
NOT(?>) F T T F 

NOT(?>=) F T F F 
NOT(?<) T F T F 

NOT(?<=) T F F F 
NOT(?=) T T F F 

Note that predicates come in pairs, each a logical negation of the other; 
applying a prefix like "NOT" to negate a predicate in Table 4 reverses the 
true/false sense of its associated entries, but leaves the last column's entry 
unchanged. 6 

Implementations that provide predicates shall provide the first six 
predicates in Table 4 and should provide the seventh, as well as a means of 
logically negating predicates. 

11There may appear to be two ways to write the logical negation of a predicate. 
one using "NOT" explicitly and the other reversing the relational operator. For exam
ple, the logical negation of (X = Y) may be written either NOT(X = Y) or (X ?<> Y); in 
this case both expressions are functionally equjvalent to (X ¥ Y). However, trus coin
cidence does not occur for the other predicates. For instance, the logical negation of 
{X < Y) is just NOT(X < Y); the reversed predicate {X ?>= Y) is different in that it does 
not signal an invalid operation exception when X and Y are "unordered". 

No 
No 

No 

No 
No 
No 
No 
No 

No 

No 
No 
No 
No 
No 
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6. Infinity, NaNs and signed zero 

6.1. Infinity arithmetic. Infinity arithmetic shall be construed as the limit
ing case of real arithmetic with operands of arbitrarily large magnitude, 
when such a limit exists. Infinities shall be interpreted in the affine sense, 
that is, -00 < {every finite number) < + 00• 

Arithmetic on 00 is always exact and therefore shall signal no exceptions, 
except for the invalid operations specified for 00 in 7.1. The exceptions that 
do pertain to 00 are signaled only when 

(1) 00 is created from finite operands by overflow {7.3) or division by zero 
(7.2), with the corresponding trap disabled, or 

(2) 00 is an invalid operand (7.1). 

6.2. Operations with NaNs. Two different kinds of NaN, signaling and quiet, 
shall be supported in all operations. Signaling NaNs afford values for unini
tialized variables and arithmetic-like enhancements {such as complex-affine 
infinities or extremely wide range} that are not the subject of the standard. 

• Quiet NaNs should, by means left to the implementor's discretion, afford re
trospective diagnostic information inherited from invalid or unavailable data 
and results. Propagation of the diagnostic information requires that infor
mation contained in the NaNs be preserved through arithmetic operations 
and floating-point format conversions. 

Signaling NaNs shall be reserved operands that signal the invalid opera
tion exception {7.1) for every operation listed in §5. Whether copying a sig
naling NaN without a change of format signals the invalid operation exception 
is the implementor's option. 

Every operation involving a signaling NaN or invalid operation (7.1) shall, 
if no trap occurs and if a floating-point result is to be delivered, deliver a 
quiet NaN as its result. 

Every operation involving one or two input NaNs, none of them signaling, 
shall signal no exception but, if a floating-point result is to be delivered, shall 
deliver as its result a quiet NaN, which should be one of the input NaNs. Note 
that format conversions might be unable to deliver the same NaN. Quiet 
NaNs do have effects similar to signaling NaNs on operations that do not 
deliver a floating-point result; these operations, namely comparison and 
conversion to a format that has no NaNs, are discussed in 5.4, 5.6, 5.7, and 
7.1. 

6.3. The sign bit. This standard does not interpret the sign of a NaN. Other
wise the sign of a product or quotient is the Exclusive Or of the operands' 
signs; and the sign of a sum, or of a difference x -y regarded as a sum 
x +(-y ), differs from at most one of the addends' signs. These rules shall ap
ply even when operands or results are zero or infinite. 

When the sum of two operands with opposite signs {or the difference of 
two operands with like signs) is exactly zero, the sign of that sum {or 
difference) shall be "+" in all rounding modes except round toward - 00 , in 
which mode that sign shall be "-". However, x+x = x-(-.x) retains the 
same sign as .x even when :x is zero. 

Except that ,v'=o shall be -0, every valid square root shall have positive 
sign. 
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7. Exceptions 
There are five types of exceptions that shall be signaled when detected. 

The signal entails setting a status flag, taking a trap, or possibly doing both. 
With each exception should be associated a trap under user control, as 
specified in §8. The default response to an exception shall be to proceed 
without a trap. This standard specifies results t.o be delivered in both trap
ping and nontrapping situations. In some cases the result is different if a trap 
is enabled. 

For each type of exception the implementation shall provide a status 
flag that shall be set on any occurrence of the corresponding exception when 
no corresponding trap occurs. It shall be reset only at the user's request. 
The user shall be able to test and to alter the status flags individually, and 
should further be able to save and restore all five at one time. 

The only exceptions that can coincide are inexact with overflow and 
inexact with underflow. 

7.1. Invalid operation. The invalid operation exception is signaled if an 
operand is invalid for the operation to be performed. The result, when the 
exception occurs without a trap, shall be a quiet NaN (6.2) provided the desti
nation has a floating-point format. The invalid operations are 

(1} Any operation on a signaling NaN (6.2); 

(2) Addition or subtraction: magnitude subtraction of infinities like { + 00 ) + 
{-oo); 

(3) Multiplication: 0 x oo; 

(4) Division: 0/0 or 00/00; 

(5) Remainder: x REM y, where y is zero or x is infinite; 

(6) Square root if the operand is less than zero; 

(7) Conversion of a binary floating-point number to an integer or decimal 
format when overflow, infinity, or NaN precludes a faithful representa
tion in that format and this cannot otherwise be signaled; and 

(B) Comparison via predicates involving "<" or ">", without"?", when the 
operands are "unordered" (5. 7, Table 4). 

7.2. Division by zero. If the divisor is zero and the dividend is a finite 
nonzero number, then the division by zero exception shall be signaled. The 
result, when no trap occurs, shall be a correctly signed 00 (6.3). 

7.3. Overflow. The overflow exception shall be signaled whenever the destina
tion format's largest finite number is exceeded in magnitude by what would 
have been the rounded floating-point result (§4} were the exponent range un
bounded. The result, when no trap occurs, shall be determined by the round
ing mode and the sign of the intermediate result as follows: 

(1) Round to nearest carries all overflows to 00 with the sign of the inter
mediate result. 

(2) Round toward O carries all overflows to the format's largest finite 
number with the sign of the intermediate result. 

(3) Round toward -oo carries positive overflows to the format's largest finite 
number, and carries negative overflows to - 00 • 
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(4) Round toward +00 carries negative overflows to the format's most nega
tive finite number, and carries positive overflows to + 00 • 

Trapped overflows on all operations except conversions shall deliver to 
the trap handler the result obtained by dividing the infinitely precise result 
by 211 and then rounding. The bias adjust a is 192 in the single, 1536 in the 
double, and 3x2n-2 in the extended format, where n is the number of bits in 
the exponent field. 7 Trapped overflow on conversion from a binary floating
point formal shall deliver to the trap handler a result in that or a wider for
mat, possibly with the exponent bias adjusted, but rounded lo the 
destination's precision. Trapped overflow on decimal lo binary conversion 
shall deliver to the trap handler a result in the widest supported format, pos
sibly with the exponent bias adjusted, but rounded to the destination's preci
sion; when the result lies too far outside the range for the bias lo be adjust
ed, a quiet NaN shall be delivered instead. 

7.4. Underflow. Two correlated events contribute to underflow. One is the 
creation of a tiny nonzero result between ±2Eml.n which, because it is so tiny, 
may cause some other exception later such as overflow upon division. The 
other is extraordinary loss of accuracy during the approximation of such tiny 
numbers by denormalized numbers. The implementor may choose how these 
events are detected, but shall detect these events in the same way for all 
operations. Tininess may be detected either 

(1) "After rounding": when a nonzero result computed as though the ex
ponent range were unbounded would lie strictly between ±2Em1n; 

or 
(2) "Before rounding": when a nonzero result computed as though both the 

exponent range and the precision were unbounded would lie strictly 
between ±~min. 

Loss of accuracy may be detected as either 

(3) A denormalization loss: when the delivered result differs from what 
would have been computed were exponent range unbounded; 

or 
(4) An inexact result: when the delivered result diflers from what would have 

been computed were both exponent range and precision unbounded. 
{This is the condition called inexact in 7.5.) 

When an underflow trap is not implemented or is not enabled (the default 
case) underflow shall be signaled (via the underflow flag) only when both tini
ness and loss of accuracy have been detected. The method for detecting tini
ness and loss of accuracy does not aflecl the delivered result which might be 
zero, denormalized or ±2Em1n_ When an underflow trap has been implemented 
and is enabled, underflow shall be signaled when tininess is detected regard
less of loss of accuracy. Trapped underflows on all operations except conver
sion shall deliver to the trap handler the result obtained by multiplying the 
infinitely precise result by 211 and then rounding. The bias adjust a is 192 in 
the single, 1536 in the double, and 3x2n-2 in the extended formal, where n is 

"The bias adjust is chosen to translate over/underflowed values as nearly as pos
sible to the middle of the exponent range so that, if desired, they can be used in sub
sequent scaled operations with less risk of causing further exceptions. 



DRAIT STANDARD -- SUBJECT TO CHANGE A.17 

the munber of bits in the exponent field. 8 Trapped underflows on conversion 
shall be handled analogously to the handling of overflows on conversion. 

7.5. Inexact. If the rounded result of an operation is not exact or if it 
overflows without an overflow trap, then the inexact exception shall be sig
naled. The rounded or overflowed result shall be delivered to the destination 
or, if an inexact trap occurs, to the trap handler. 

8. Traps 
A user should be able to request a trap on any of the five exceptions by 

specifying a handler for it. He should be able to request that an existing 
handler be disabled, saved or restored. He should also be able to determine 
whether a specific trap handler for a designated exception has been enabled. 
When an exception whose trap is disabled is signaled, it shall be handled in 
the manner specified in §7. When an exception whose trap is enabled is sig
naled, the execution of the program in which the exception occurred shall be 
suspended, the trap handler previously specified by the user shall be activat
ed, and a result, if specified in §7, shall be delivered to it. 

8.1. Trap handler. A trap handler should have the capabilities of a subrou
tine that can return a value to be used in lieu of the exceptional operation's 
result; this result is undefined unless delivered by the trap handler. Similar
ly, the flag(s) corresponding to the exceptions being signaled with their asso
ciated traps enabled may be undefined unless set or reset by the trap 
handler. 

When a system traps, the trap handler should be able to determine 

(1) Which exception(s) occurred on this operation; 

(2) The kind of operation that was being performed; 

(3) The destination's format; 

(4) In overflow, underflow, and inexact exceptions, the correctly rounded 
result, including information that might not fit in the destination's for
mat; and 

(5) ]n invalid operation and divide by zero exceptions, the operand values. 

8.2. Precedence. If enabled, the overflow and underflow traps take pre
cedence over a separate inexact trap. 

8Note that a system whose underlying hardware always traps on underflow, pro
ducing a rounded, bias-adjusted result, must indicate whether such a result is round
ed up in magnitude in order that the correctly denormalized result may be produced 
in system software when the user underflow trap is disabled. 
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Appendix: Recommended functions and predicates 

This appendix is not part of IEEE Standard 754 
for Binary Floating-Point Arithmetic, 
but is included for information only. 

A.18 

The following functions and predicates are recommended as aids to pro
gram portability across different systems, perhaps performing arithmetic 
very differently. They are described generically; that is, the types of the 
operands and results are inherent in the operands. Languages that require 
explicit typing will have corresponding families of functions and predicates. 

Some functions below, like the copy operation y := x without change of 
format, may at the implementor's option be treated as nonarithmetic opera
tions which do not signal the invalid operation exception for signaling NaNs; 
the functions in question are (1), (2), (6), and (7). 

(1) copysign(x ,y) returns x with the sign of y. Hence, abs(x) = 
copysign(x, 1.0), even if x is NaN. 

(2) -x is x copied v.rith its sign reversed, not 0-x; the distinction is ger
mane when x is ±0 or NaN. Consequently, it would be a mistake to use 
the sign bit to distinguish signaling NaNs from quiet NaNs. 

(3) scalb(y,N) returns y x 'zN for integral values N without computing 2N. 

( 4) logb(x) returns the unbiased exponent of x, a signed integer in the for
mat of x, except that logb(NaN) is a NaN, logb(00 ) is +00 , and logb(O) is 
- 00 and signals the division by zero ex~ption. When x is positive and 
finite the expression scalb(x ,-logb(x )) lies strictly between O and 2; it is 
less than 1 only when x is denormalized. 

(5) nextafter(x ,y) returns the next representable neighbor of x in the 
direction toward y. The following special cases arise: if x=y, then the 
result is x without any exception being signaled; otherwise, if either x or 
y is a quiet NaN, then the result is one or the other of the input NaNs. 
Overflow is signaled when x is finite but nextafter(x ,y) is i~ite; 
underflow is signaled when nextafter(x ,y) lies strictly between ±2 mm; in 
both cases, inexact is signaled. 

(6) finite(x) returns the value TRUE if - 00 < x < +00 , and returns FALSE oth
erwise. 

(7) isnan(x ), or equivalently x #x, returns the value TRUE if x is a NaN, and 
returns FAl.SE otherwise. 

(B) x <>y is TRUE only when x <y or x >y, and is distinct from x #y, which 
means NOT(x =y) (Table 4). 

(9) unordered(x ,y ), or x ?y, returns the value TRUE if x is unordered with 
y, and returns FALSE otherwise (Table 4). 

( 10) class(x) tells which of the following ten classes x falls into: signaling 
NaN, quiet NaN, - 00 , negative normalized nonzero, negative denormal
ized, -0, +O, positive denormalized, positive normalized nonzero, + 00 • 

This function is never exceptional, not even for signaling NaNs. 



APPENDIX B 

Test Vectors for P754 Arithmetic - Version 2.0 

The initial version of this test data base for the proposed IEEE 754 binary 
floating-point standard (draft 8.0) was developed for Zilog, Inc. and was 
donated to the floating-point working group for dissemination. Errors in or 
additions to the distributed data base should be reported to the agency of 
distribution, with copies to Zilog, Inc., 1315 Dell Avenue, Campbell, CA, 95008. 

There are sixteen files of test vectors, for the operations add ( + ), sub

tract {-), multiply {*), divide (/), square root (V), compare (C), remainder 

(%), round to integer (1), nextafter {N), absolute value {A), negate {~), copy

sign {@), scalb {S), logb (L), and fraction part {F). 

B.1 



! First. some easy integer cases. 
2+ ALL 1 1 OK 2 
2+ ALL 1 2 OK 3 
2+ ALL 2 1 OK 3 
2+ ALL 2 2 OK 4 
2+ =0> 2 -2 OK O 
2+ < 2 -2 OK -0 
2+ =0> 5 -5 OK O 
2+ < 5 -5 OK -0 
2+ ALL 1 7 OK 8 
2+ ALL 5 -1 OK 4 
2+ ALL 2 -5 OK -3 
2+ ALL 5 -0 OK 5 
2+ ALL 5 +0 OK 5 
I Infinity vs Infinity. 
2+ ALL H H OK H ok - affine sum 
2+ ALL -H -H OK -H 
2+ ALL -H H i Q different signs 
2+ ALL H -H i Q 
I Infinity vs huge. 
2+ ALL H Hml OK H 
2+ ALL H -Hml OK H 
2+ ALL -H Hml OK -H 
2+ ALL -H -Hml OK -H 
2+ ALL Hml H OK H 
2+ ALL Hml -H OK -H 
2+ ALL -Hml H OK H 
2+ ALL -Hml -H OK -H 
! Infinity vs 0. 
2+ ALL H O OK H 
2+ ALL H -0 OK H 
2+ ALL -H O OK -H 
2+ ALL -H -0 OK -H 
2+ ALL O H OK H 
2+ ALL -0 H OK H 
2+ ALL O -H OK -H 
2+ ALL -0 -H OK -H 
! Infinity vs denormalized. 
2+ ALL H Edl OK H 
2+ ALL -H Edl OK -H 
2+ ALL H -Edl OK H 
2+ ALL -H -Edl OK -H 
2+ ALL Oi3 H OK H 
2+ ALL Oi3 -H OK -H 
2+ ALL -Oi3 H OK H 
2+ ALL -Oi3 -H OK -H 
! Zero vs finite - watch that sign of 0 
I is meaningless. 
2+ ALL O Hml OK Hml 
2+ ALL -0 Hml OK Hml 
2+ ALL -Hml O OK -Hml 
2+ ALL -Hml -0 OK -Hml 
2+ ALL 1 -0 OK 1 
2+ ALL -1 -0 OK -1 
2+ ALL O 1 OK 1 
2+ ALL -0 -1 OK -1 
I Zero vs denormalized - underflows. 
2+ ALL O Edl OK Edl 
2+ ALL -0 Edl OK Edl 
2+ ALL O -Edl OK -Ed 1 
2+ ALL -0 -Edl OK -Edl 
2+ ALL Oi3 O OK Oi3 
2+ ALL Oi3 -0 OK Oi3 
2+ ALL -Oi3 O OK -Oi3 

2+ ALL -Oi3 -0 OK -Oi3 
I Zero vs tiny - just in case. 
2+ ALL -0 -E OK -E 
2+ ALL E O OK E 
2+ ALL O -E OK -E 
2+ ALL -E O OK -E 
! Zero vs Zero - watch signs and 
I rounding modes. 
2+ =0> O -0 OK O 
2+ =0> -0 0 OK 0 
2+ < 0 -0 OK -0 
2+ < -0 0 OK -0 
2+ ALL O O OK 0 
2+ ALL -0 -0 OK -0 
I Double a number -- may overflow so 
! watch rounding mode. 
2+ => Hml Hml xo H 
2+ 0< Hml Hml xo Hdl 
2+ =< -Hml -Hml xo -H 
2+ 0> -Hml -Hml xo -Hdl 
2+ ALL Hmld2 Hmld2 OK Hd2 
2+ ALL -Hmld2 -Hmld2 OK -Hd2 
2+ => Hd2 Hd2 XO H 
2+ 0< Hd2 Hd2 XO Hdl 
2+ =< -Hd2 -Hd2 XO -H 
2+ 0> -Hd2 -Hd2 XO -Hdl 
! Double an innocent number. 
2+ ALL 1 1 OK 2 
2+ ALL 3 3 OK 6 
2+ ALL E E OK Ep l 
2+ ALL Hm2 Hm2 OK Hml 
! Double a tiny number - may under.flow. 
2+ ALL Edl Edl OK Epld2 
2+ ALL -Edl -Edl OK -Epld2 
2+ ALL Oi4 Oi4 OK OiB 
2+ ALL -Oi4 -Oi4 OK -OiB 
2+ ALL Oil Oil OK Oi2 
2+ ALL -Oil -Oil OK -Oi2 
! Cancellation to O - to plus 0. 
2+ =0> Hml -Hml OK 0 
2+ =0> -Hmld2 Hmld2 OK 0 
2+ =0> I -1 OK O 
2+ =0> -3 3 OK O 
2+ =0> E -E OK O 
2+ =0> -E E OK O 
2+ =0> Ed4 -Ed4 OK O 
2+ =0> -Edl Edl OK O no underflow 
2+ =0> Oil -Oil OK 0 
2+ =0> -Oil Oil OK 0 
2+ =0> Hdl -Hdl OK 0 
I Cancellation to O - to minus 0. 
2+ < Hml -Hml OK -0 
2+ < -Hmld2 Hmld2 OK -0 
2+ < 1 -1 OK -0 
2+ < -3 3 OK -0 
2+ < E -E OK -0 
2+ < -E E OK -0 
2+ < Ed4 -Ed4 OK -0 
2+ < -Ed 1 Ed l OK -0 no underflow 
2+ < Oil -Oil OK -0 
2+ < -Oil Oil OK -0 
2+ < Hdl -HdlOK -0 
I Cancel forcing normalization of LSB 
I (no rounding errors). Difference is in 
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! last place oi larger number. 
I Medium numbers ... 
2+ ALL lil -1 OK lul 
2+ ALL -lil 1 OK -lul 
2+ ALL lil -li2 OK -lul 
2+ ALL -lil li2 OK lul 
2+ ALL 2 -2il OK -2u1 
2+ ALL -2 2il OK 2ul 
2+ ALL 2i4 -2i3 OK 2ul 
2+ ALL -2i4 2i3 OK -2ul 
2+ ALL 4d 1 -4d2 OK 3ul 
2+ ALL -4dl 4d2 OK -3ul 
2+ ALL 2d4 -2d3 OK -lul 
2+ ALL -2d4 2d3 OK lul 
! Huge numbers ... 
2+ ALL Hmlil -Hml OK Hmlul 
2+ ALL -Hmlil Hml OK -Hmlul 
2+ ALL Hmlil -Hmli2 OK -Hmlul 
2+ ALL -Hmlil Hmli2 OK Hmlul 
2+ ALL Hm2 -Hm2il OK -Hm2ul 
2+ ALL -Hm2 Hm2il OK Hm2ul 
2+ ALL Hm2i4 -Hm2i3 OK Hm2u1 
2+ ALL -Hm2i4 Hm2i3 OK -Hm2u1 
2+ ALL Hm2d 1 -Hm2d2 OK Hm3u1 
2+ ALL -Hm2d1 Hm2d2 OK -Hm3u1 
2+ ALL -Hd2 Hdl OK Hdlul 
2+ ALL Hd2 -Hdl OK -Hdlul 
I Tiny numbers ... 
2+ ALL -Eil E OK -Eul 
2+ ALL Eil -E OK Eul 
2+ ALL -Edl E OK Eul 
2+ ALL Edl -E OK -Eul 
2+ ALL Eil -Ei2 OK -Eul 
2+ ALL -Eil Ei2 OK Eul 
2+ ALL Ed 1 -Ed2 OK Eul 
2+ ALL -Edl Ed2 OK -Eul 
2+ ALL Ed3 -Ed2 OK -Eul 
2+ ALL -Ed3 Ed2 OK Eul 
2+ ALL Oi2 -Oil OK Eul 
2+ ALL -Oi2 Oil OK -Eul 
2+ ALL Oi3 -Oi2 OK Eul 
2+ ALL -Oi3 Oi2 OK -Eul 
! Normalize from round bit - set up 
I tests so that operands have 
! exponents difleriI]8 by 1 unit. 
! Medium numbers ... 
2+ ALL 2 -2dl OK lul 
2+ ALL -2 2dl OK -lul 
2+ ALL -2dl 2 OK lul 
2+ ALL 2dl -2 OK -lul 
2+ ALL 4il -4dl OK 3u3 
2+ ALL -4il 4dl OK -3u3 
2+ ALL 4dl -4i2 OK -3u5 
2+ ALL -4d 1 4i2 OK 3u5 
2+ ALL 2il -lil OK lil 
2+ ALL -2il lil OK -lil 
2+ ALL 2i2 -lil OK li3 
2+ ALL -2i2 lil OK -li3 
2+ ALL 2i2 -1i3 OK lil 
2+ ALL -2i2 li3 OK -lil 
! Huge numbers ... 
2+ ALL Hm2 -Hm2d1 OK Hm3ul 
2+ ALL -Hm2 Hm2dl OK -Hm3u1 
2+ ALL -Hmldl Hml OK Hm2u1 

2+ ALL Hmldl -Hml OK -Hm2ul 
2+ ALL Hm4il -Hm4dl OK Hm5u3 
2+ ALL -Hm4il Hm4dl OK -Hm5u3 
2+ ALL Hm2dl -Hm2i2 OK -Hm3u5 
2+ ALL -Hm2dl Hm2i2 OK Hm3u5 
2+ ALL Hm2il -Hmlil OK -Hm2il 
2+ ALL -Hm2il Hmlil OK Hm2il 
2+ ALL Hmli2 -Hm2il OK Hm2i3 
2+ ALL -Hmli2 Hm2il OK -Hm2i3 
2+ ALL Hm2i2 -Hm3i3 OK Hm3il 
2+ ALL -Hm2i2 Hm3i3 OK -Hm3il 
I Tiny numbers ... 
2+ ALL Epl -Epldl OK Eul 
2+ ALL -Epl Epldl OK -Eul 
2+ ALL -Epldl Epl OK Eul 
2+ ALL Epldl -Epl OK -Eul 
2+ ALL Eplil -Epldl OK Eu3 
2+ ALL -Eplil Epldl OK -Eu3 
2+ ALL Ep2 -Ep2dl OK Eu2 
2+ ALL -Ep2 Ep2dl OK -Eu2 
2+ ALL -Ep2dl Ep2 OK Eu2 
2+ ALL Ep2dl -Ep2 OK -Eu2 
2+ ALL Ep2i 1 -Ep2d 1 OK Eu6 
2+ ALL -Ep2il Ep2dl OK -Eu6 
2+ ALL Epldl -Epli2 OK -Eu5 
2+ ALL -Epldl Epli2 OK Eu5 
2+ ALL Epldl -Epli4 OK -Eu9 
2+ ALL -Epldl Epli4 OK Eu9 
2+ ALL Eplil -Eil OK Eil 
2+ ALL -Eplil Eil OK -Eil 
2+ ALL Epli2 -Eil OK Ei3 
2+ ALL -Epli2 Eil OK -Ei3 
2+ ALL Ep2i2 -Epli3 OK Eplil 
2+ ALL -Ep2i2 Epli3 OK -Eplil 
! Add magnitude: 
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! cases where one operand is off in sticky -
! rounding perhaps to an overflow. 
! Huge vs medium. 
2+ =0< Hml 1 x Hml 
2+ > Hml 1 x Hmlil 
2+ =0> -Hml -1 x -Hml 
2+ < -Hml -1 x -Hmlil 
2+ =0< Hmldl 1 x Hmldl 
2+ > Hmldl 1 x Hml 
2+ =0> -Hmldl -1 x -Hmldl 
2+ < -Hmldl -1 x -Hml 
2+ =0< Hdl 1 x Hdl 
2+ > Hd 1 l xo H signal overflow 
2+ =0> -Hdl -1 x -Hdl 
2+ < -Hdl -1 XO -H 
2+ =0< Hd2 1 x Hd2 
2+ > Hd2 1 x Hd 1 
2+ =0> -Hd2 -1 x -Hd2 
2+ < -Hd2 -1 x -Hdl 
! Huge vs denormal. 
2+ =0< Oi 1 Hml x Hml 
2+ > Oil Hml x Hmlil 
2+ =0> -Oil -Hml x -Hml 
2+ < -Oil -Hml x -Hmlil 
2+ =0< Oil Hmldl :z: Hmldl 
2+ > Oil Hmldl x Hml 
2+ =0> -Oil -Hmld 1 x -Hmldl 
2+ < -Oil -Hmldl x -Hml 
2+ =0< Oil Hdl x Hdl 



2+ > Oil Hdl xo H signal overflow 
2+ =0> -Oil -Hdl x -Hdl 
2+ < -Oil -Hdl XO -H 
2+ =0< Oil Hd2 x Hd2 
2+ > Oil Hd2 x Hdl 
2+ =0> -Oil -Hd2 x -Hd2 
2+ < -Oil -Hd2 x -Hdl 
! Medium vs denorrnal. 
2+ =0< Oil 1 x 1 
2+ > Oil 1 x lil 
2+ =0> -Qi 1 - 1 X -1 
2+ < -Oil -1 x -lil 
2+ =0< Oil ldl x ldl 
2+ > Oil ldl x 1 
2+ =0> -Oil -ldl x -ldl 
2+ < -Oil -ldl x -1 
2+ =0< Oil 2dl x 2dl 
2+ > Oil 2dl X 2 
2+ =0> -Oil -2dl x -2d 1 
2+ < -Oil -2dl x -2 
2+ =0< Oil 2d2 x 2d2 
2+ > Oil 2d2 x 2dl 
2+ =0> -Oil -2d2 x -2d2 
2+ < -Oil -2d2 x -2dl 

l Magnitude subtract when an operand is 
l in the sticky bit. The interesting cases 
I will a.rise when directed rounding 
! forces a nonzero cancellation. 
I Huge and medium. 
2+ => Hml -1 x Hml 
2+ 0< Hml -1 x Hmldl 
2+ =< -Hml l x -Hml 
2+ 0> -Hml 1 x -Hmldl 
2+ => Hmldl -1 x Hmldl 
2+ 0< Hmld l -1 :x Hm1d2 
2+ =< -Hmldl 1 x -Hmldl 
2+ 0> -Hmldl 1 :x -Hmld2 
2+ => Hdl -1 x Hdl 
2+ 0< Hdl -1 x Hd2 
2+ =< -Hdl 1 x -Hdl 
2+ 0> -Hdl 1 x -Hd2 
2+ => Hd2 -1 :x Hd2 
2+ 0< Hd2 -1 :x Hd3 
2+ =< -Hd2 1 :x -Hd2 
2+ 0> -Hd2 1 x -Hd3 
I Huge and tiny. 
2+ :=> Hdl -Oil x Hdl 
2+ 0< Hdl -Oil :x Hd2 
2+ :=< -Hdl Oil x -Hdl 
2+ 0> -Hdl Oil x -Hd2 
2+ => -Oi3 Hml x Hml 
2+ 0< -Oi3 Hml x Hmldl 
2+ =< Oi3 -Hml x -Hml 
2+ 0> Oi3 -Hml x -Hmldl 
I Medium and tiny. 
2+ => ldl -Oil :x ldl 
2+ 0< ldl -Oil :x ld2 
2+ =< -2dl Oil :x -2dl 
2+ 0> -2dl Oil x -2d2 
2+ => -Oi3 3 :x 3 
2+ 0< -Oi3 3 x 3dl 
2+ =< Oi3 -5 :x -5 
2+ 0> Oi3 -5 X -5d 1 

! Add magnitude with difference in LSB 
! so, except for denorms, round bit 
! is crucial. Half-way cases arise. 
l Medium cases. 
2+ =0< lil 1 :x 2 
2+ > lil 1 x 2il 
2+ =0> -lil -1 X -2 
2+ < -lil -1 :x -2il 
2+ =0> -2 -2il :x -4 
2+ < -2 -2il x -4il 
2+ =0< 2 2il :x 4 
2+ > 2 2il x 4il 
2+ => 1 1i3 :x 2i2 
2+ 0< 1 li3 x 2i 1 
2+ =< -1 -li3 x -2i2 
2+ 0> -1 -li3 :x -2il 
2+ =< -2il -2i2 x -4i2 
2+ 0> -2il -2i2 :x -4il 
2+ => 2il 2i2 X 4i2 
2+ 0< 2i1 2i2 X 4il 
! Huge cases. 
2+ => Hd2 Hdl XO H 
2+ 0< Hd2 Hdl XO Hdl 
2+ =< -Hd2 -Hd 1 :XO -H 
2+ 0> -Hd2 -Hdl :xo -Hdl 
2+ => Hmldl Hml :xo H 
2+ 0< Hmldl Hml :x Hdl 
2+ =< -Hmldl -Hml xo -H 
2+ 0> -Hmldl -Hml :x -Hdl 
2+ => Hmlil Hml :xo H 
2+ 0< Hmlil Hml :xo Hdl 
2+ =< -Hmlil -Hml :xo -H 
2+ 0> -Hmlil -Hml xo -Hdl 
2+ =0< Hm2i 1 Hm2 :x Hml 
2+ > Hm2il Hm2 x Hmlil 
2+ =0> -Hm2il -Hm2 :x -Hml 
2+ < -Hm2il -Hm2 x -Hmlil 
2+ =0< Hmld2 Hmldl x Hd2 
2+ > Hmld2 Hmldl x Hdl 
2+ =0> -Hmld2 -Hmldl x -Hd2 
2+ < -Hmld2 -Hmldl x -Hdl 
! Check rounding. 
2+ > 2 lul x 2il 
2+ =0< 2 lul x 2 
2+ => 2i1 lul x 2i2 
2+ 0< 2il lul :x 2il 
2+ => 4dl lul x 4 
2+ 0< 4dl lul x 4d1 
2+ > 4d1 luldl x 4 
2+ 0=< 4d1 luldl :x 4dl 
2+ =< -4dl -lul x -4 
2+ 0> -4dl -lul x -4dl 
2+ < -4dl -luldl x -4 
2+ 0=> -4dl -luldl x -4dl 
!NAN operands. 
2+ ALL Q 0 OK Q 
2+ ALL Q -0 OK Q 
2+ ALL O Q OK Q 
2+ ALL -0 Q OK Q 
2+ ALL Q 1 OK Q 
2+ ALL Q -1 OK Q 
2+ ALL 1 Q OK Q 
2+ ALL -1 Q OK Q 
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2+ ALL Edl Q OK Q 
2+ ALL -Edl Q OK Q 
2+ ALL Q Ed 1 0 K Q 
2+ ALL Q -Edl OK Q 
2+ ALL Q Oil OK Q 
2+ ALL Q -Oil OK Q 
2+ ALL Oil Q OK Q 
2+ ALL -Oil Q OK Q 
2+ ALL Q Hdl OK Q 
2+ ALL Q -Hdl OK Q 
2+ ALL Hdl Q OK Q 
2+ ALL -Hdl Q OK Q 
2+ ALL Q H OK Q 
2+ ALL Q -H OK Q 
2+ ALL H Q OK Q 
2+ ALL -H Q OK Q 
2+ ALL Q Q OK Q 
2+ ALL S O i Q 
2+ ALL S -0 i Q 
2+ ALL O S i Q 
2+ ALL -0 S i Q 
2+ ALL S 1 i Q 
2+ ALL S -1 i Q 
2+ ALL 1 S i Q 
2+ ALL -1 S i Q 
2+ ALL Edl Si Q 
2+ ALL -Edl S i Q 
2+ ALL S Edl i Q 
2+ ALL S -Edl i Q 
2+ ALL S OH i Q 
2+ ALL S -Oil i Q 
2+ ALL Oil S i Q 
2+ ALL -Oil S i Q 
2+ ALL S Hd 1 i Q 
2+ ALL S -Hdl i Q 
2+ ALL Hd 1 S i Q 
2+ ALL -Hdl S i Q 
2+ ALL S H i Q 
2+ ALL S -H i Q 
2+ ALL H S i Q 
2+ ALL -H S i Q 
2+ ALL Q S i Q 
2+ ALL S Q i Q 
2+ ALL S S i Q 
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! First some easy integer cases, 
2- ALL 1 -1 OK 2 
2- ALL 1 -2 OK 3 
2- ALL 2 -1 OK 3 
2- ALL 2 -2 OK 4 
2- =0> 2 2 OK O 
2- < 2 2 OK -o 
2- =0> 5 5 OK 0 
2- < 5 5 OK -0 
2- ALL 1 -7 OK 8 
2- ALL 5 1 OK 4 
2- ALL 2 5 OK -3 
2- ALL 5 0 OK 5 
2- ALL 5 -0 OK 5 
I Infinity vs Infinity. 
2- ALL H -H OK H ok - affine sum 
2- ALL -H H OK -H 
2- ALL -H -H i Q different signs 
2-ALLHHiQ 
I Infinity vs huge. 
2- ALL H -Hml OK H 
2- ALL H Hml OK H 
2- ALL -H -Hml OK -H 
2- ALL -H Hml OK -H 
2- ALL Hml -H OK H 
2- ALL Hml H OK -H 
2- ALL -Hml -H OK H 
2- ALL -Hml H OK -H 
! Infinity vs 0. 
2- ALL H -0 OK H 
2- ALL H O OK H 
2- ALL -H -0 OK -H 
2- ALL -H O OK -H 
2- ALL O -H OK H 
2- ALL -0 -H OK H 
2- ALL O H OK -H 
2- ALL -0 H OK -H 
I Infinity vs denormalized. 
2- ALL H -Edl OK H 
2- ALL -H -Edl OK -H 
2- ALL H Edl OK H 
2- >LL -H Edl OK -H 
2- ALL Oi3 -H OK H 
2- ALL Oi3 H OK -H 
2- ALL -Oi3 -H OK H 
2- ALL -Oi3 H OK -H 
I Zero vs finite - watch that sign of 
I O is meaningless. 
2- ALL O -Hm1 OK Hml 
2- ALL -0 -Hml OK Hml 
2- ALL -Hml -0 OK -Hml 
2- ALL -Hml O OK -Hml 
2- ALL 1 O OK 1 
2- ALL -1 0 OK -1 
2- ALL O -1 OK 1 
2- ALL -0 1 OK -1 
I Zero vs denormalized - under.flows. 
2- ALL O -Edl OK Edl 
2- ALL -0 -Edl OK Edl 
2- ALL O Edl OK -Edl 
2- ALL -0 Edl OK -Edl 
2- ALL Oi3 -0 0 K Oi3 
2- ALL Oi3 O OK Oi3 
2- ALL -Oi3 -0 OK -Oi3 

2- ALL -Oi3 O OK -Oi3 
! Zero vs tiny - just in case. 
2- ALL -0 E OK -E 
2- ALL E -0 OK E 
2- ALL O E OK -E 
2- ALL -E -0 OK -E 
! Zero vs Zero -- watch signs and 
! rounding modes. 
2- =O> O O OK 0 
2- ,::0> -0 -0 OK 0 
2- < 0 0 OK -0 
2- < -0 -0 OK -0 
2- ALL O -0 OK 0 
2- ALL -0 O OK -0 
I Double a number -- may over.flow so 
! watch rounding mode. 
2- ,::> Hml -Hml xo H 
2- 0< Hml -Hml xo Hdl 
2- =< -Hml Hml xo -H 
2- 0> -Hml Hml xo -Hdl 
2- ALL Hmld2 -Hmld2 OK Hd2 
2- ALL -Hmld2 Hmld2 OK -Hd2 
2- => Hd2 -Hd2 XO H 
2- 0< Hd2 -Hd2 XO Hdl 
2- =< -Hd2 Hd2 XO -H 
2- 0> -Hd2 Hd2 XO -Hdl 
! Double an innocent number. 
2- ALL 1 -1 OK 2 
2- ALL 3 -3 OK 6 
2- ALL E -E OK Epl 
2- ALL Hm2 -Hm2 OK Hml 
! Double a tiny number - may under.flow. 
2- ALL Edl -Edl OK Epld2 
2- ALL -Edl Edl OK -Epld2 
2- ALL Oi4 -Oi4 OK Oi8 
2- ALL -Oi4 Oi4 OK -Oi8 
2- ALL Oil -Oil OK Oi2 
2- ALL -Oi 1 Oil OK -Oi2 
! Cancellation to O - to plus 0. 
2- =0> Hml Hml OK 0 
2- =0> -Hmld2 -Hmld2 OK 0 
2- =0> 1 1 OK 0 
2- ,::O> -3 -3 OK O 
2- =0> E E OK o 
2- =0> -E -E OK o 
2- ,::0> Ed4 Ed4 OK O 
2- =0> -Edl -Edl OK O no under.flow 
2- =0> Oil Oil OK 0 
2- =0> -Oil -Oil OK 0 
2- ,::0> Hdl Hdl OK 0 
I Cancellation to O - to minus 0. 
2- < Hml Hml OK -0 
2- < -Hmld2 -Hmld2 OK -0 
2- < 1 1 OK -0 
2- < -3 -3 OK -0 
2- < E E OK -0 
2- < -E -E OK -0 
2- < Ed4 Ed4 OK -o 
2- < -Edl -Edl OK -0 no under.flow 
2- < Oil Oil OK -0 
2- < -Oil --Oil OK -0 
2- < Hdl Hdl OK -0 
I Cancel forcing normalization of LSB 
I (no rounding errors). Difference is in 
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! la.st place of larger number. 
I Medium numbers ... 
2- ALL lil 1 OK lul 
2- ALL -lil -1 OK -lul 
2- ALL lil li2 OK -lul 
2- ALL -lil -li2 OK lul 
2- ALL 2 2il OK -2ul 
2- ALL -2 -2il OK 2ul 
2- ALL 2i4 2i3 OK 2ul 
2- ALL -2i4 -2i3 OK -2ul 
2- ALL 4dl 4d2 OK 3ul 
2- ALL -4dl -4d2 OK -3ul 
2- ALL 2d4 2d3 OK -lul 
2- ALL -2d4 -2d3 OK lul 
I Huge numbers ... 
2- ALL Hmlil Hml OK Hmlul 
2- ALL -Hmlil -Hml OK -Hmlul 
2- ALL Hmlil Hmli2 OK -Hmlul 
2- ALL -Hmlil -Hmli2 OK Hmlul 
2- ALL Hm2 Hm2il OK -Hm2ul 
2- ALL -Hm2 -Hm2il OK Hm2ul 
2- ALL Hm2i4 Hm2i3 OK Hm2ul 
2- ALL -Hm2i4 -Hm2i3 OK -Hm2ul 
2- ALL Hm2d 1 Hm2d2 OK Hm3ul 
2- ALL -Hm2dl -Hm2d2 OK -Hm3ul 
2- ALL -Hd2 -Hdl OK Hdlul 
2- ALL Hd2 Hdl OK -Hdlul 
! Tiny numbers ... 
2- ALL -Eil -E OK -Eul 
2- ALL Eil E OK Eul 
2- ALL -Edl -E OK Eul 
2- ALL Edl E OK -Eul 
2- ALL Eil Ei2 OK -Eul 
2- ALL -Eil -Ei2 OK Eul 
2- ALL Edl Ed2 OK Eul 
2- ALL -Edl -Ed2 OK -Eul 
2- ALL Ed3 Ed2 OK -Eul 
2- ALL -Ed3 -Ed2 OK Eul 
2- ALL Oi2 Oil OK Eul 
2- ALL -Oi2 -Oil OK -Eul 
2- ALL Oi3 Oi.2 OK Eul 
2- ALL -Oi3 -Oi2 OK -Eul 
! Normalize :from round bit - set up tests 
I so that operands ha.ve 
I exponents differing by l unit. 
! Medium numbers ... 
2- ALL 2 2dl OK lul 
2- ALL -2 -2dl OK -lul 
2- ALL -2dl -2 OK lul 
2- ALL 2dl 2 OK -lul 
2- ALL 4i1 4d 1 OK 3u3 
2- ALL -4il -4d 1 OK -3u3 
2- ALL 4dl 4i2 OK -3u5 
2- ALL -4d 1 -4i2 OK 3u5 
2- ALL 2il lil OK lil 
2- ALL -2il -lil OK -lil 
2- ALL 2i2 li 1 OK li3 
2- ALL -2i2 -lil OK -1i3 
2- ALL 2i2 li3 OK lil 
2- ALL -2i2 -li3 OK -lil 
I Huge numbers ... 
2- ALL Hm2 Hm2dl OK Hm3u1 
2- ALL -Hm2 -Hm2d1 OK -Hm3u1 
2- ALL -Hmldl -Hml OK Hm2u1 

2- ALL Hmldl Hml OK -Hm2u1 
2- ALL Hm4il Hm4dl OK Hm5u3 
2- ALL -Hm4il -Hm4dl OK -Hm5u3 
2- ALL Hm2dl Hm2i2 OK -Hm3u5 
2- ALL -Hm2dl -Hm2i2 OK Hm3u5 
2- ALL Hm2il Hmlil OK -Hm2il 
2- ALL -Hm2il -Hmlil OK Hm2il 
2- ALL Hmli2 .Hm2il OK Hm2i3 
2- ALL -Hmli2 -Hm2il OK -Hm2i3 
2- ALL Hm2i2 Hm3i3 OK Hm3il 
2- ALL -Hm2i2 -Hm3i3 OK -Hm3il 
! Tiny numbers ... 
2- ALL Epl Epldl OK Eul 
2- ALL -Epl -Epldl OK -Eul 
2- ALL -Epldl -Epl OK Eul 
2- ALL Epldl Epl OK -Eul 
2- ALL Eplil Epldl OK Eu3 
2- ALL -Eplil -Epldl OK -Eu3 
2- ALL Ep2 Ep2dl OK Eu2 
2- ALL -Ep2 -Ep2dl OK -Eu2 
2- ALL -Ep2dl -Ep2 OK Eu2 
2- ALL Ep2d 1 Ep2 OK -Eu2 
2- ALL Ep2il Ep2dl OK Eu6 
2- ALL -Ep2il -Ep2dl OK -Eu6 
2- ALL Epldl Epli2 OK -Eu5 
2- ALL -Epldl -Epli2 OK Eu5 
2- ALL Epldl Epli4 OK -Eu9 
2- ALL -Epldl -Epli4 OK Eu9 
2- ALL Eplil Eil OK Eil 
2- ALL -Eplil -Eil OK -Eil 
2- ALL Epli2 Eil OK Ei3 
2- ALL -Epli2 -Eil OK -Ei3 
2- ALL Ep2i2 Epli3 OK Eplil 
2- ALL -Ep2i2 -Epli3 OK -Eplil 
! Add magnitude: 
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I cases where one operand is off in sticky -
! rounding perhaps to an overflow. 
! Huge vs medium. 
2- =0< Hml -1 :x Hml 
2- > Hml -1 x Hmlil 
2- =0> -Hml 1 :x -Hml 
2- < -Hml 1 x -Hmlil 
2- =0< Hmldl -1 :x Hmldl 
2- > Hmldl -1 x Hml 
2- =0> -Hmldl 1 x -Hmldl 
2- < -Hmldl l :x -Hml 
2- =0< Hdl -1 :x Hdl 
2- > Hdl -1 :xo H signal overflow 
2- =0> -Hdl 1 :x -Hdl 
2- < -Hdl 1 :XO -H 
2- =0< Hd2 -1 :x Hd2 
2- > Hd2 -1 :x Hdl 
2- =0> -Hd2 1 :x -Hd2 
2- < -Hd2 1 :x -Hdl 
! Huge vs denorm.al. 
2- =0< Oil -Hml :x Hml 
2- > Oil -Hml :x Hmlil 
2- =0> -Oil Hml :x -Hml 
2- < -Oil Hml :x -Hmlil 
2- =0< Oil -Hmldl x Hmldl 
2- > Oil -Hmldl x Hml 
2- =0> -Oil Hmldl x -Hm1d1 
2- < -Oil Hmldl x -Hml 
2- =0< Oil -Hdl x Hdl 



2- > Oil -Hdl xo H signal overftow 
2- =0> -Oil Hdl x -Hdl 
2- < -Oil Hdl XO -H 
2- =0< Oil -Hd2 :x Hd2 
2- > Oil -Hd2 x Hdl 
2- =0> -Oil Hd2 x -Hd2 
2- < -Oil Hd2 x -Hdl 
! Medium vs denormal. 
2- =0< Oi 1 -1 :x 1 
2- > Oi 1 -1 :x lil 
2- =0> -Oil 1 :x -1 
2- < -Oil l x -lil 
2- =0< Oil -ldl x ldl 
2- > Oi 1 -1 d 1 x 1 
2- =0> -Oil ldl x -ldl 
2- < -Oil ldl :x -1 
2- ,:0< Oil -2d1 x 2dl 
2- > Oil -2dl :x 2 
2- =0> -Oil 2dl x -2dl 
2- < -Oil 2dl :x -2 
2- =0< Oil -2d2 x 2d2 
2- > Oil -2d2 x 2d1 
2- =0> -Oil 2d2 :x -2d2 
2- < -Oil 2d2 x -2d1 
! 
! Magnitude subtract when an operand 
! is in the sticky bit. The interesting 
! cases will arise when directed rounding 
! forces a nonzero cance11ation. 
! H1J8e and medium. 
2- => Hml 1 :x Hml 
2- 0< Hml 1 x Hmldl 
2- =< -Hml -1 x -Hml 
2- 0> -Hml -1 :x -Hmldl 
2- => Hmldl 1 x Hmldl 
2- 0< Hmldl 1 x Hmld2 
2- =< -Hmldl -1 x -Hmldl 
2- 0> -Hmldl -1 x -Hmld2 
2- => Hdl 1 :x Hdl 
2- 0< Hdl 1 x Hd2 
2- =< -Hdl -1 x -Hdl 
2- 0> -Hdl -1 x -Hd2 
2- => Hd2 1 x Hd2 
2- 0< Hd2 1 x Hd3 
2- =< -Hd2 -1 x -Hd2 
2- 0> -Hd2 -1 x -Hd3 
I H1J8e and tiny. 
2- => Hdl Oil x Hdl 
2- 0< Hdl Oil x Hd2 
2- =< -Hdl -Oil x -Hdl 
2- 0> -Hdl -Oil :x -Hd2 
2- => -Oi3 -Hml x Hml 
2- 0< -Oi3 -Hml :x Hmldl 
2- =< Oi3 Hml x -Hml 
2- 0> Oi3 Hml x -Hmldl 
I Medium and tiny. 
2- => ldl Oil x ldl 
2- 0< ldl Oil x ld2 
2· =< -2dl -Oil :x -2d1 
2- 0> -2dl -Oil x -2d2 
2- => -Qi3 -3 X 3 
2- 0< -Oi3 -3 X 3dl 
2- =< Oi3 5 X -5 
2- 0> Oi3 5 x -5dl 

! Add magnitude with difference in LSB so, 
! except for denorms, round bit is crucial. 
I Half-way cases arise. 
I Medium cases. 
2- =0< lil -1 x 2 
2- > li 1 -1 X 2i 1 
2- =0> -lil 1 :x -2 
2- < -lil 1 x -2il 
2- =0> -2 2il X -4 
2- < -2 2il x -4il 
2- =0< 2 -2i 1 X 4 
2- > 2 -2il x 4il 
2- => 1 -li3 x 2i2 
2- 0< 1 -li3 x 2il 
2- =< -1 li3 x -2i2 
2- 0> -1 li3 x -2il 
2- =< -2il 2i2 x -4i2 
2- 0> -2il 2i2 x -4il 
2- => 2i 1 -2i2 X 4i2 
2- 0< 2il -2i2 X 4il 
! H1J8e cases. 
2- => Hd2 -Hdl XO H 
2- 0< Hd2 -Hdl XO Hdl 
2- =< -Hd2 Hdl XO -H 
2- 0> -Hd2 Hdl XO -Hdl 
2- => Hmldl -Hml xo H 
2- 0< Hmldl -Hml x Hdl 
2- =< -Hmldl Hml xo -H 
2- 0> -Hmldl Hml x -Hdl 
2- :e:> Hmlil -Hml xo H 
2- 0< Hmlil -Hml xo Hdl 
2- =< -Hmlil Hml xo -H 
2- 0> -Hmlil Hml xo -Hdl 
2- =0< Hm2il -Hm2 x Hml 
2- > Hm2il -Hm2 x Hmlil 
2- =0> -Hm2il Hm2 x -Hml 
2- < -Hm2i1 Hm2 x -Hmlil 
2- =0< Hmld2 -Hmldl x Hd2 
2- > Hmld2 -Hmldl :x Hdl 
2- =0> -Hmld2 Hmldl :x -Hd2 
2- < -Hmld2 Hmldl x -Hdl 
! Check rounding. 
2- > 2 -lul :x 2il 
2- =0< 2 -lul x 2 
2- => 2il -lul x 2i2 
2- 0< 2il -lul x 2il 
2- => 4<l 1 -lul :x 4 
2- 0< 4dl -lul x 4dl 
2- > 4dl -luldl x 4 
2- 0=< 4d1 -luldl x 4dl 
2- =< -4d1 lul x -4 
2- 0> -4dl lul x -4d1 
2- < -4<ll luldl x -4 
2- 0=> -4dl luldl x -4dl 
! NaN operands. 
2- ALL Q 0 OK Q 
2- ALL Q -0 OK Q 
2- ALL 0 Q OK Q 
2- ALL -0 Q OK Q 
2- ALL Q 1 OK Q 
2- ALL Q -1 OK Q 
2- ALL 1 Q OK Q 
2- ALL -1 Q OK Q 
2- ALL Ed 1 Q OK Q 
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2- ALL -Edl Q OK Q 
2- ALL Q Ed 1 0 K Q 
2- ALL Q -Edl OK Q 
2- ALL Q Oil OK Q 
2- ALL Q -Oil OK Q 
2- ALL Oil Q OK Q 
2- ALL -Oil Q OK Q 
2- ALL Q Hdl OK Q 
2- ALL Q -Hdl OK Q 
2-- ALL Hdl Q OK Q 
2- ALL -Hdl Q OK Q 
2- ALL Q H OK Q 
2- ALL Q -H OK Q 
2- ALL H Q OK Q 
2- ALL -H Q OK Q 
2- ALL Q Q OK Q 
2- ALL S O i Q 
2- ALL S -0 i Q 
2- ALL O S i Q 
2- ALL -0 S i Q 
2- ALL S 1 i Q 
2- ALL S -1 i Q 
2- ALL 1 S i Q 
2- ALL -1 S i Q 
2-- ALL Edl S i Q 
2- ALL -Edl S i Q 
2- ALL S Edl i Q 
2- ALL S -Edl i Q 
2- ALL S Oil i Q 
2- ALL S -Di 1 i Q 
2-- ALL Oil S i Q 
2- ALL -Oil S i Q 
2- ALL S Hdl i Q 
2- ALL S -Hdl i Q 
2- ALL Hdl S i Q 
2- ALL -Hdl S i Q 
2- ALL S H i Q 
2- ALL S -H i Q 
2- ALL H S i Q 
2- ALL -H S i Q 
2- ALL Q S i Q 
2- ALL S Q i Q 
2- ALL S S i Q 
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! First some easy tests for consistency. 
2• ALL l 1 OK 1 
2' ALL 1 2 OK 2 
2• ALL 2 l OK 2 
2• ALL 2 3 OK 6 
2• ALL 3 2 OK 6 
2' ALL 3 3 OK 9 
! Check out sign ma.'1.ipulation. 
2' ALL -1 1 OK -1 
2• ALL -1 2 OK -2 
2• ALL 2 -1 OK -2 
2• ALL -2 3 OK -6 
2' ALL 3 -2 OK -6 
2' ALL -3 3 OK -9 
2' ALL -1 -1 OK 1 
2• ALL -1 -2 OK 2 
2• ALL -2 -1 OK 2 
2• ALL -2 -3 OK 6 
2• ALL -3 -2 OK 6 
2' ALL -3 -3 OK 9 
I Some zero tests, round mode is 
! irrelevant. 
2' ALL O O OK O 
2• ALL -0 0 OK -0 
2• ALL O -0 OK -0 
2• ALL -0 -0 OK O 
! Infinity tests, round mode 
! irrelevant. 
2• ALL H H OK H 
2• ALL -H H OK -H 
2' ALL H -H OK -H 
2• ALL -H -H OK H 
! Ini • 0 - always bad news. 
2' ALL H O i Q 
2• ALL -0 H i -Q 
2• ALL H -0 i -Q 
2• ALL -0 -Hi Q 
! Ini • sm.a.l.l..integer -> Inf. 
2• ALL H 1 OK H 
2' ALL -2 H OK -H 
2• ALL H -3 OK -H 
2• ALL -4 -H OK H 
2• ALL 5 H OK H 
2• ALL -H 6 OK -H 
2• ALL 7 -H OK -H 
2' ALL -H -8 OK H 
l In! •huge-> Ini. 
2' ALL Hml H OK H 
2• ALL -Hm2 H OK -H 
2• ALL H -Hml OK -H 
2• ALL -H -Hrn2 OK H 
2' ALL H Hmldl OK H 
2• ALL -Hm2dl H OK -H 
2• ALL H -Hdl OK -H 
2' ALL -Hdl -H OK H 
! In! • tiny-> Inf. 
2• ALL E H OK H 
2' ALL -Epl H OK -H 
2' ALL H -Epl OK -H 
2• ALL -H -E OK H 
2• ALL H Epldl OK H 
2• ALL -Eil H OK -H 
2• ALL H -Eil OK -H 
2• ALL -Epldl -H OK H 

! Ini •denormalized-> Ini. 
2• ALL Oil H OK H 
2• ALL -Oi3 H OK -H 
2• ALL H -Oi2 OK -H 
2• ALL -H -Di4 OK H 
2• ALL H Edl OK H 
2• ALL -Edl H OK -H 
2• ALL H ~Edl OK -H 
2' ALL -Edl -H OK H 
! 0 • smalLinteger -> 0. 
2• ALL 0 1 OK 0 
2• ALL -2 0 OK -0 
2' ALL O -3 OK -0 
2• ALL -4 -0 OK 0 
2' ALL 5 0 OK O 
2• ALL -0 6 OK -0 
2' ALL 7 -0 OK -0 
2• ALL -0 -8 OK 0 
! 0 •huge-> 0. 
2• ALL Hml O OK 0 
2• ALL -Hm2 O OK -0 
2• ALL O -Hml OK -0 
2' ALL -0 -Hm2 OK O 
2• ALL 0 Hmldl OK 0 
2• ALL -Hm2dl O OK -0 
2• ALL 0 -Hm2d 1 OK -0 
2• ALL -Hmldl -0 OK 0 
2• ALL Hdl O OK 0 
2• ALL -Hdl -0 OK 0 
2• ALL 0 -Hdl OK -0 
2• ALL -0 Hdl OK -0 
! 0 •tiny-> 0. 
2' ALL E O OK O 
2• ALL -Epl 0 OK -0 
2• ALL O -Epl OK -0 
2• ALL -0 -E OK 0 
2• ALL O Epldl OK 0 
2• ALL -Eil 0 OK -0 
2• ALL 0 -Eil OK -0 
2• ALL -Epldl -0 OK 0 
l 0 •denormalized-> 0. 
2• ALL Oil 0 OK 0 
2• ALL -Oi3 0 OK -0 
2• ALL 0 -Oi2 OK -0 
2• ALL -0 -Oi4 OK 0 
2' ALL 0 Edl OK 0 
2• ALL -Edl 0 OK -0 
2• ALL O -Edl OK -0 
2' ALL -Edl -0 OK 0 
I Exact cases huge and 2. 
2' ALL 2 Hm2 OK Hml 
2' ALL Hm2 -2 OK -Hml 
2• ALL -2 Hm2d 1 OK -Hmld 1 
2" ALL 2 -Hm2d3 OK -Hmld3 
2• ALL 2 Hm2 OK Hml 
2' ALL Hm2 -2 OK -Hml 
2' ALL -2 Hm2d 1 OK -Hmld 1 
2• ALL 2 -Hm2d3 OK -Hmld3 
2' ALL 2 Hmldl OK Hdl 
2' ALL Hmldl -2 OK -Hdl 
2• ALL -2 Hm2il OK -Hmlil 
2• ALL 2 -Hm2i3 OK -Hmli3 
2• ALL 2 Hmldl OK Hdl 
2• ALL Hmldl -2 OK -Hdl 
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2• ALL -2 Hm2il OK -Hmlil 
2• ALL 2 -Hm2i3 OK -Hmli3 
! Exact cases huge and 4. 
2• ALL 4 Hm2dl OK Hdl 
2• ALL -4 Hm2d1 OK -Hdl 
2• ALL 4 -Hm2dl OK -Hdl 
2• ALL -4 -Hm2dl OK Hdl 
2• ALL 4 Hm2d 1 OK Hdl 
2' ALL -4 Hm2dl OK -Hdl 
2• ALL 4 -Hm2dl OK -Hdl 
2• ALL -4 -Hm2dl OK Hdl 
2• ALL Hm2d3 4 OK Hd3 
2• ALL Hm2d3 -4 OK -Hd3 
2• ALL -Hm2d3 4 OK -Hd3 
2• ALL -Hrn2d3 -4 OK Hd3 
2• ALL Hm2d3 4 OK Hd3 
2• ALL Hm2d3 -4 OK -Hd3 
2• ALL -Hm2d3 4 OK -Hd3 
2• ALL -Hm2d3 -4 OK Hd3 
! Exact cases tiny and 2. 
2• ALL 2 E OK Epl 
2• ALL E -2 OK -Epl 
2• ALL -2 Eil OK -Eplil 
2• ALL 2 -Ei3 OK -Epli3 
2• ALL 2 E OK Epl 
2• ALL E -2 OK -Epl 
2• ALL -2 Ei9 OK -Epli9 
2• ALL 2 -Ei5 OK -Epli5 
2' ALL 2 Eil OK Eplil 
2• ALL Eil -2 OK -Eplil 
2• ALL -2 Ei5 OK -Epli5 
2• ALL 2 -Ei3 OK -Epli3 
2° ALL 2 Eil OK Eplil 
2• ALL Eil -2 OK -Eplil 
2• ALL -2 Ei5 OK -Epli5 
2• ALL 2 -Ei3 OK -Epli3 
! Just below denormalization tlrreshold. 
2' ALL Edl 2 OK Epld2 
2' ALL -2 Ed3 OK -Epld6 
2' ALL -Ed3 -2 OK Epld6 
2• ALL -2 Ed3 OK -Epld6 
2• ALL Ed4 2 OK EpldB 
2• ALL 2 -Ed3 OK -Epld6 
I NormaliziIJ8 tinies. 
2• ALL Oil 2 OK Oi2 
2• ALL 3 Oi2 OK O:i6 
2• ALL -Oi 1 5 OK -Oi5 
2• ALL 1 -O:i9 OK -O:i9 
2• ALL -O:i4 -1 OK Oi4 
2• ALL 4 Oi2 OK OiB 
2• ALL Oil 2 OK Oi2 
2• ALL 3 Oi2 OK Oi6 
2• ALL -Oi 1 5 OK -Oi5 
2• ALL 1 -Oi9 OK -Oi9 
2• ALL -Oi4 -1 OK Oi4 
2• ALL 4 Oi2 OK OiB 
2• ALL Oil 2 OK Oi2 
2• ALL 3 Oi2 OK Oi6 
2• ALL -Di 1 5 OK -Oi5 
2• ALL 1 -Oi.9 OK -Oi9 
2• ALL -Oi4 -1 OK Oi4 
2• ALL 4 Oi2 OK OiB 
2• ALL Oil 2 OK Oi2 
2• ALL 3 Oi2 OK Oi6 

2" ALL -Oil 5 OK -Oi5 
2• ALL 1 -Oi9 OK -Oi9 
2• ALL -Oi4 -1 OK Oi4 
2• ALL 4 Oi2 OK OiB 
I 1.0 • various. 
2• ALL 1 Epli3 OK Epli3 
2" ALL -Epld2 1 OK -Epld2 
2• ALL -1 Ei9 OK -Ei9 
2• ALL -Eil -1 OK Eil 
2• ALL 1 Epli3 OK Epli3 
2" ALL -Epld2 1 OK -Epld2 
2" ALL -1 Ei9 OK -Ei9 
2• ALL -Eil -1 OK Eil 
2• ALL 1 Ed3 OK Ed3 
2• ALL -Oi2 1 OK -Oi2 
2• ALL -1 Oi9 OK -Oi9 
2• ALL -Edl -1 OK Edl 
2• ALL 1 Ed3 OK Ed3 
2• ALL -Oi2 1 OK -Oi2 
2• ALL -1 Oi9 OK -Oi9 
2' ALL -Edl -1 OK Edl 
! Now some tricky roundiIJ8 cases 
! involviIJ8 1.0 with some ulps. 
! result = 1.00000 ... 0101000 ... 0001 
2• =0< lil lil :x li2 
2• > lil lil x li3 
! Try signs ... 
2' =O> ·lil lil :x -li2 
2' < -lil lil x -li3 
2' =0> lil -lil x -li2 
2• < lil -lil :x -li3 
2° =0< -lil -lil :x li2 
2" > -lil -lil :x li3 
! result= 1.0000 .. 01110000100 
2• =0< li2 li l :x li3 
2• > li2 lil :x li4 
! Try signs ... 
2' =0> -li2 lil :x -li3 
2' < -li2 lil :x -li4 
2° =0> lil -li2 :x -li3 
2• < lil -1i2 x -li4 
2• =0< -li2 -lil :x li3 
2• > -lil -li2 x li4 
2' > -li2 -lil :x 1i4 
2' =0< -lil -li2 x 1i3 
I (m + k ulps of m) • (1 + j ulps of 1) 
I = m + (k + m•j/2-floor(log m)) ulps 
I of m + tiny. 
2' => 3i1 lil :x 3i3 
2• 0< 3i1 li l :x 3i2 
2• >= 3il li3 :x 3i6 
2• O< 3il li3 :x 3i5 
2• ==< -3i1 lil x -3i3 
2• 0> -3il lil :x -3i2 
2' <= 3il -li3 :x -3i6 
2" 0> 3il -li3 X ·3i5 
2• > 5i1 lil X 5i3 
2' =0< 5il lil :x 5i2 
2• > -5il -lil x 5i3 
2• =0< -5i1 -lil :x 5i2 
2' >= 7il lil x 7i3 
2• <0 7i1 lil x 7i2 
2• O<= 3dl ldl x 3d2 
2• > 3dl ldl :x 3d1 
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2• 0< 3dl ld3 x 3d4 
2• => 3dl ld3 x 3d3 
2• 0>= -3dl ld 1 x -3d2 
2• < -3dl ldl x -3dl 
2• 0> 3d} -ld3 x -3d4 
2• =< 3dl -ld3 x -3d3 
2• => 3dl ld2 x 3d2 
2• 0< 3dl ld2 x 3d3 
2• 0<= 5dl ldl x 5d2 
2• > 5dl ldl x 5dl 
2• 0<= -5d1 -ldl x 5d2 
2• > -5dl -ldl x 5dl 
2• <=0 7dl ldl x 7d2 
2° > 7dl ldl x 7dl 
2• => 7dl ld4 x 7d4 
2• O< 7dl ld4 x 7d5 
I Some overflow conditions, watching 
! round mode. 
2• => Hml 2 ox H 
2• 0< Hml 2il ox Hdl 
2• =< -3d2 Hml ox -H 
2• 0> Hml -4i5 ox -Hdl 
2• => -5d2 -Hml ox H 
2 ♦ 0< Hml 6il ox Hdl 
2• =< -7d7 Hml ox -H 
2• 0> Hml -8i3 ox -Hdl 
2' => -9il -Hml ox H 
2• 0< Hml 6 ox Hdl 
2• =< -9 Hml ox -H 
2• 0> Hml -2 ox -Hdl 
2• 0< -7 -Hml ox Hdl 
2• => Hml 2 ox H 
2° 0> -5 Hml ox -Hdl 
2• 0> Hml -2 ox -Hdl 
2• => -3 -Hml ox H 
! Heavy overflow conditions, 
! watching round mode. 
2• => Hml Hml xo H 
2• =< -Hd3 Hml xo -H 
2• =< Hml -Hm2i4 xo -H 
2• => -Hmli5 -Hmlil ox H 
2• => Hmli9 Hd6 xo H 
2• =< -Hm2d7 Hml xo -H 
2• =< Hml -Hm2 xo -H 
2• => -Hdl -Hdl XO H 
2• 0< Hml Hm2i6 xo Hdl 
2• =< -Hmld9 Hm2il xo -H 
2• =< Hml -Hml xo -H 
2• 0< -Hm2d7 -Hdl XO Hdl 
2• => Hml Hd2 xo H 
2• 0> -Hm2 Hml xo -Hdl 
2• 0> Hmli9 -Hm2i2 xo -Hdl 
2• => -Hd3 -Hmlil xo H 
! Mixed bag overflow conditions, 
! watching round mode. Tricky cases 
! require careful ]ook at power series 
! expansion. Example - -Hmdl • lil: 
! In single ... 
I -(2-127 (1 - 2--24)) • (1 + 2~23) -> 
! -( 2-12? (1 + 2.-...24 - 2--47) ) -> 
I -2-127 except when rounding<, in which 
I case -( 2-127 (1 + 2--23) ); that is, 
! -Hm or -Hmil, respectively! 
2• =0> -Hmldl lil x -Hml 

2• < -Hmldl lil x -Hmlil 
2' =0< -ldl -Hdl x Hd2 
2• > -ldl -Hdl x Hdl 
2• < -Hm2dl 2il x -Hmlil 
2• =0> -Hm2dl 2il x -Hml 
2• <= Hmld3 -2i8 xo -H 
2• >0 Hmld3 -2i8 xo -Hdl 
2• =0< -Hrn2d7 -4dl x HdB 
2• > -Hm2d7 -4dl x Hd7 
2• => li2 Hd2 XO H 
2• 0< li2 Hd2 XO Hdl 
2' =< Hmli9 -6i2 xo -H 
2' 0> Hmli9 -6i2 xo -Hdl 
2• => -Hd3 -3il XO H 
2' O< -Hd3 -3il XO Hdl 
! Exact and be]ow denomalization 
! threshold - no underflow. 
2• ALL E ld2 OK Edl 
2" ALL Oil 1 OK Oil 
2' ALL 1 -Oil OK -Oil 
2' ALL Epld2 1ml OK Edl 
2• ALL -Epld4 -lml OK Ed2 
2• ALL Epld2 -lml OK -Edl 
2" ALL -Epld4 1ml OK -Ed2 
2• ALL EpldB 1ml OK Ed4 
2" ALL OiB lm3 OK Oil 
2• ALL Oi6 1ml OK Oi3 
2' ALL -OiB lm3 OK -Oil 
2' ALL Oi6 -lml OK -Oi3 
I Inexact, extreme underflows. 
2• =0< EE xu 0 
2• =0< -E -E xu 0 
2' > E Epl XU Oil 
2• > -Epl -Epl xu Oil 
2• =0> -E E xu -0 
2' =0> E -E xu -0 
2' < -E Epl XU -Oil 
2• < E -E xu -Oil 
2• =0< Edl Ed2 xu 0 
2• =0< -Edl -Ed2 xu 0 
2' > Edl Ed2 xu Oil 
2• > -Edl -Ed2 xu Oil 
V =0> -Ed9 Epli3 xu -0 
2' =0> Ed9 -Epli3 xu -0 
2" < -Ed9 Epli3 xu -Gil 
2• < Ed9 -Epli3 xu -Oil 
2• > Oil 1ml xu Oil 
2• =O< Oil 1ml XU 0 
2' < 1ml -Gil xu -Oil 
2' =0> 1ml -Gil XU -0 
2• <0 Oil ldl xu 0 
2• => Oil ldl xu Oil 
V > Oil Oil xu Oil 
2° =0< Oil Oil xu 0 
2• >0 -Gil ldl XU -0 
2• =< Oil -ldl xu -Oil 
2° < Oil -Oil XU -Oil 
2 9 =0> -Oil Oil XU -0 
! Underflow, barely. 
2• 0< Epldl 1ml xu Edl 
2• 0< -Epldl -lml xu Edl 
2• 0> -Epldl 1ml xu -Edl 
2• >= Epldl 1ml xu E 
2' <= Epldl -lml xu -E 
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2• 0< Edl lil xu Edl 
2• 0> Edl -lil xu -Edl 
2" 0< Eil ld6 xu Ed3 
2• > Ed2 1d4 xu Ed3 
2• 0< Ed4 lil xu Ed4 
2• 0< Eil ld2 xu Edl 
! Underflow, unJess detected e.s e.ccure.cy 
! loss due to denorme.lization. 
2" >= Ed2 lil xv Edl 
2• <= Ed2 -lil xv -Edl 
2• >= EdB lil xv Ed7 
2• <= -Ed9 lil xv -EdB 
2• <= EdB -lil xv -Ed7 
2" => Eil ld6 xv Ed2 
2• <=0 Ed2 ld4 xv Ed4 
I Underflow, only if tininess is detected 
I before roundffi8. 
2• >= Edl lil xw E 
2• <= -Edl lil xw -E 
2• >= EdB liB xw E 
2• <= EdB -liB xw -E 
2• >= Eil ld2 xw E 
2• >= Ei2 ld4 xw E 
! NaN operands. 
2• ALL Q O OK Q 
2• ALL Q -0 OK Q 
2• ALL O Q OK Q 
2• ALL -0 Q OK Q 
2• ALL Q 1 OK Q 
2• ALL Q -1 OK Q 
2• ALL 1 Q OK Q 
2• ALL -1 Q OK Q 
2• ALL Edl Q OK Q 
2• ALL -Edl Q OK Q 
2• ALL Q Edl OK Q 
2• ALL Q -Edl OK Q 
2• ALL Q Oil OK Q 
2• ALL Q -Oil OK Q 
2• ALL Oil Q OK Q 
2• ALL -Oil Q OK Q 
2• ALL Q Hdl OK Q 
2• ALL Q -Hdl OK Q 
2" ALL Hd 1 Q OK Q 
2• ALL -Hdl Q OK Q 
2• ALL Q H OK Q 
2• ALL Q -H OK Q 
2• ALL H Q OK Q 
2• ALL -H Q OK Q 
2• ALL Q Q OK Q 
2• ALL S O i Q 
2• ALL S -0 i Q 
2• ALL O S i Q 
2• ALL -0 S i Q 
2• ALL S 1 i Q 
2• ALL S -1 i Q 
2• ALL 1 S i Q 
2• ALL -1 S i Q 
2• ALL Edl Si Q 
2• ALL -Edl S i Q 
2• ALL S Edl i Q 
2• ALL S -Ed 1 i Q 
2• ALL S Oi 1 i Q 
2• ALL S -Oil i Q 
2• ALL Oil S i Q 

2• ALL -Oil S i Q 
2" ALL S Hdl i Q 
2• ALLS -Hdli Q 
2• ALL Hdl S i Q 
2• ALL -Hdl S i Q 
2• ALL S H i Q 
2" ALL S -H i Q 
2• ALL H S i Q 
2• ALL -H S i Q 
2• ALL Q S i Q 
2"ALLSQiQ 
2" ALL S S i Q 
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! First the consistency checks. 
21 ALL 1 1 OK 1 
2/ ALL 2 1 OK 2 
2/ ALL 9 3 OK 3 
2/ ALL 5 5 OK 1 
2/ ALL 6 2 OK 4 
! Check out sign manipuJation. 
2/ ALL -1 1 OK -1 
2/ ALL -2 1 OK -2 
2/ ALL 2 -1 OK -2 
2/ ALL -6 2 OK -4 
2/ ALL 3 -3 OK -1 
2/ ALL -7 7 OK -1 
2/ ALL -1 -1 OK 1 
2/ ALL -2 -1 OK 2 
2/ ALL -6 -3 OK 2 
2/ ALL -9 -3 OK 3 
! Some zero tests, round mode 
! is irrelevant. 
2/ ALL O O i Q 
21 ALL -0 O i -Q 
2/ ALL 0 -0 i -Q 
21 ALL -0 -o i Q 
! Inftn:ity tests, round mode 
! irrelevant. 
2/ALLHHiQ 
2/ ALL -H H i -Q 
2/ ALL H -H i -Q 
2/ ALL -H -H i Q 
I Inf I O -> Inf with no problem. 
2/ ALL H O OK H 
21 ALL -H O OK -H 
21 ALL H --0 OK -H 
2/ ALL -H -0 OK H 
I 0 / Inf-> 0 with no problem. 
2/ ALL OH OK 0 
2/ ALL -o H OK --0 
21 ALL 0 -H OK -0 
21 ALL -0 -H OK 0 
! lni / sm.al.Linteger -> Inf. 
21 ALL H 1 OK H 
21 ALL -H 2 OK -H 
21 ALL H -3 OK -H 
21 ALL -H -4 OK H 
2/ ALL H 5 OK H 
21 ALL -H 6 OK -H 
21 ALL H -7 OK -H 
2/ ALL -H -6 OK H 
! Smal.Lint I Inf-> o. 
2/ ALL l H OK 0 
2/ ALL -2 H OK --0 
21 ALL 3 -H OK -0 
21 ALL -4 -H OK 0 
2/ ALL 5 H OK 0 
2/ ALL -6 H OK -0 
2/ ALL 7 -H OK --0 
21 ALL -6 -H OK o 
! Huge I Jnf -> 0. 
2/ ALL Hml H OK 0 
2/ ALL -Hm2 H OK -0 
21 ALL Hml -H OK --0 
2/ ALL -Hm2 -H OK O 
2/ ALL Hmldl H OK 0 
21 ALL -Hm2dl H OK --0 

21 ALL Hdl -H OK -0 
2/ ALL -Hdl -H OK O 
! Inf/ huge-> Inf. 
2/ ALL H Hml OK H 
2/ ALL -H Hm2 OK -H 
2/ ALL H -Hml OK -H 
2/ ALL -H -Hm2 OK H 
2/ ALL H Hmldl OK H 
2/ ALL H -Hm2dl OK -H 
2/ ALL H -Hdl OK -H 
2/ ALL -H -Hdl OK H 
! Inf /tiny-> Inf. 
21 ALL H E OK H 
2/ ALL -H Epl OK -H 
21 ALL H -Epl OK -H 
21 ALL -H -E OK H 
2/ ALL H Epldl OK H 
2/ ALL -H Eil OK -H 
2/ ALL H -Eil OK -H 
2/ ALL -H -Epldl OK H 
I Tiny I Inf-> 0. 
2/ ALL E H OK 0 
21 ALL -Epl H OK -0 
2/ ALL Epl -H OK -0 
2/ ALL -E -H OK 0 
2/ ALL Epldl H OK 0 
21 ALL -Eil H OK -0 
21 ALL Eil -H OK -0 
2/ ALL -Epldl -H OK 0 
! Inf / denormalized -> Inf. 
2/ ALL H Oil OK H 
2/ ALL -H Oi3 OK -H 
2/ ALL H -Oi2 OK -H 
21 ALL -H -Oi4 OK H 
2/ ALL H Edl OK H 
2/ ALL -H Edl OK -H 
2/ ALL H -Edl OK -H 
2/ ALL -H -Edl OK H 
! Denorm / Inf-> 0. 
21 ALL Oil H OK O 
2/ ALL -Oi3 H OK -0 
2/ ALL Oi2 -H OK -0 
2/ ALL -Oi4 -H OK 0 
2/ ALL Edl H OK O 
2/ ALL -Edl H OK -0 
2/ ALL Edl -H OK -0 
2/ ALL -Edl -H OK 0 
! 0 / smalUnteger -> 0. 
2/ ALL O 1 OK 0 
21 ALL -0 2 OK -0 
21 ALL O -3 OK -0 
2/ ALL --0 -4 OK 0 
2/ ALL O 5 OK O 
2/ ALL -0 6 OK -0 
21 ALL 0 -7 OK --0 
2/ ALL -0 -6 OK 0 
! SmalLint I 0 -> Ini with DivBy0. 
2/ ALL 1 Oz H 
2/ ALL -2 O z -H 
2/ ALL 3 --0 z -H 
21 ALL -4 -0 z H 
21 ALL 5 O z H 
2/ ALL -6 O z -H 
21 ALL 7 -0 z -H 
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21 ALL -8 -0 z H 
! 0 / huge-> 0. 
2/ ALL 0 Hml OK 0 
21 ALL -0 Hm2 OK -0 
21 ALL O -Hml OK -0 
2/ ALL -0 -Hm2 OK O 
21 ALL 0 Hmldl OK 0 
2/ ALL -0 Hm2dl OK -0 
2/ ALL O -Hm2dl OK -0 
2/ ALL -0 -Hmldl OK 0 
I H1J8e I O -> Inf with DivByO. 
21 ALL Hml O z H 
21 ALL -Hm2 0 z -H 
2/ ALL Hml -0 z -H 
2/ ALL -Hm2 -0 z H 
2/ ALL Hmldl O z H 
2/ ALL -Hm2dl Oz -H 
2/ ALL Hm2dl -0 z -H 
2/ ALL -Hmldl -0 z H 
I O / tiny -> 0. 
2/ ALL 0 E OK 0 
2/ ALL -0 Epl OK -0 
2/ ALL O -Epl OK -0 
2/ ALL -0 -E OK 0 
2/ ALL O Epldl OK 0 
2/ ALL -0 Eil OK -0 
2/ ALL 0 -Eil OK -0 
2/ ALL -0 -Epldl OK 0 
! Tiny IO-> Inf with DivByO. 
2/ ALL E oz H 
2/ ALL -Epl 0 z -H 
21 ALL Epl -0 z -H 
2/ ALL -E -0 z H 
2/ ALL Epldl Oz H 
2/ ALL -Eil O z -H 
2/ ALL Eil -0 z -H 
2/ ALL -Epldl -0 z H 
! 0 /denormalized-> 0. 
2/ ALL O Oil OK O 
2/ ALL -0 Oi3 OK -0 
2/ ALL 0 -Oi2 OK -0 
2/ ALL -0 -Oi4 OK 0 
2/ ALL 0 Edl OK 0 
2/ ALL -0 Edl OK -0 
2/ ALL 0 -Edl OK -0 
2/ ALL -0 -Edl OK 0 
I Denormalized • 0 -> Inf, DivByO. 
2/ ALL Oil O z H 
21 ALL -Oi3 0 z -H 
21 ALL Oi2 -0 z -H 
2/ ALL -Oi4 -0 z H 
21 ALL Ed 1 0 z H 
2/ ALL -Edl O z -H 
2/ ALL Edl -0 z -H 
2/ ALL -Edl -0 z H 
! Exact cases h1J8e and 2. 
2/ ALL Hml 2 OK Hm2 
2/ ALL Hml -2 OK -Hm2 
2/ ALL -Hmldl 2 OK -Hm2dl 
2/ ALL Hmld3 -2 OK -Hm2d3 
2/ ALL Hml 2 OK Hm2 
21 ALL Hml -2 OK -Hm2 
2/ ALL -Hmldl 2 OK -Hrn2dl 
21 ALL Hmld3 -2 OK -Hm2d3 

2/ ALL Hdl Hmldl OK 2 
2/ ALL Hdl -2 OK -Hmldl 
21 ALL -Hm1i1 Hm2il OK -2 
2/ ALL Hmli3 -Hm2i3 OK -2 
2/ ALL Hdl Hmldl OK 2 
2/ ALL Hdl -2 OK -Hmldl 
2/ ALL -Hmlil Hm2il OK -2 
21 ALL Hm1i3 -Hm2i3 OK -2 
I Exact cases huge and 4. 
2/ ALL Hdl Hm2dl OK 4 
2/ ALL -Hdl Hm2dl OK -4 
2/ ALL Hdl -Hm2dl OK -4 
2/ ALL -Hdl -Hm2dl OK 4 
2/ ALL Hdl Hm2dl OK 4 
2/ ALL -Hdl Hm2dl OK -4 
2/ ALL Hdl -Hm2dl OK -4 
2/ ALL -Hdl -Hm2dl OK 4 
2/ ALL Hd3 4 OK Hm2d3 
2/ ALL Hd3 -4 OK -Hm2d3 
2/ ALL -Hd3 4 OK -Hm2d3 
2/ ALL -Hd3 -4 OK Hm2d3 
21 ALL Hd3 4 OK Hm2d3 
2/ ALL Hd3 -4 OK -Hm2d3 
2/ ALL -Hd3 4 OK -Hm2d3 
2/ ALL -Hd3 -4 OK Hm2d3 
! Exact cases tiny and 2. 
2/ ALL Epl E OK 2 
21 ALL Epl -2 OK -E 
2/ ALL -Eplil Eil OK -2 
2/ ALL Epli3 -2 OK -Ei3 
2/ ALL Epl E OK 2 
2/ ALL Epl -2 OK -E 
2/ ALL -Eplil Eil OK -2 
2/ ALL Epli3 -2 OK -Ei3 
2/ ALL Eplil Eil OK 2 
2/ ALL Eplil -2 OK -Eil 
2/ ALL -Epli5 Ei5 OK -2 
2/ ALL Epli3 -Ei3 OK -2 
2/ ALL Eplil Eil OK 2 
2/ ALL Eplil -2 OK -Eil 
2/ ALL -Epli5 Ei5 OK -2 
2/ ALL Epli3 -Ei3 OK -2 
2/ ALL Edl 1ml OK Epld2 
2/ ALL Edl 1m9 OK Ep9d2 
! HU8e /tiny-> overflow. 
2/ => Hml 1ml ox H 
2/ 0< Hml 1ml ox Hdl 
2/ => -Hml -lml ox H 
2/ 0< -Hml -lml ox Hdl 
2/ =< Hml -lml ox -H 
2/ =< -Hml 1ml o:z -H 
2/ 0> Hml -lml ox -Hdl 
2/ 0> -Hml 1ml ox -Hdl 
2/ => Hm9 Ep9 ox H 
2/ 0< Hm9 Ep9 o:z Hdl 
2/ e:> Hdl Oil ox H 
2/ 0< Hdl Oil OX Hdl 
2/ => Hml Edl ox H 
2/ 0< Hmt Edl ox Hdl 
21 => Hdl ldl ox H 
21 0< Hdl ldl ox Hdl 
! Will underflow unless loss of accuracy 
! is detected as a denormalization loss. 
2/ e:0< E li1 xv Ed 1 
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21 =0> -E lil xv -Edl 
2/ >= Ed2 ld2 xv Edl 
21 >= Ed9 ld2 xv Ed8 
21 <= -Ed8 ld2 xv -Ed7 
2/ <=0 Eil li2 xv Edl 
21 <=0 Edl li2 xv Ed3 
2/ <=0 Ei2 li6 xv Ed4 
2/ 0< Edl lil xv Ed2 
I Tiny /huge-> underflow. 
2/ =<0 Oil Hdl xu 0 
2/ > Oil Hdl xu Oil 
2/ =<0 -oil -Hdl xu 0 
2/ > -Oil -Hdl xu Oil 
2/ =0> Oil -Hdl XU -0 
2/ < Oil -Hdl xu -Oil 
2/ =0> -Q:i l Hd 1 xu -0 
2/ < -Oil Hdl xu -Oi 1 
I Tiny/ 2. 
2/ > Oil 2 XU Oil 
2/ =0< Oil 2 XU 0 
2/ > -Oil -2 XU Oil 
2/ =0< -oil -2 XU 0 
2/ < Oil -2 :xu -Oil 
2/ =O> Oil -2 xu -0 
2/ < -Oil 2 XU -Oil 
2/ =0> -oil 2 XU -0 
I Barely underflow. 
2/ 0< Epldl 2 XU Edl 
2/ 0> Epldl -2 xu -Edl 
2/ >= Epldl 2 xu E 
2/ > E lil xu E 
2/ < -E li 1 xu -E 
2/ > Eil li2 xu E 
2/ > Edl li2 xu Ed2 
I Denorm result but will not underflow. 
2/ ALL Ep1d2 2 OK Edl 
2/ ALL Edl 1 OK Edl 
2/ ALL Oil 1ml OK Oi2 
2/ ALL Oil 1m3 OK Oi8 
2/ ALL Oi9 9 OK Oil 
21 ALL Oi9 -9 OK -Oil 
2/ ALL Edl -1 OK -Edl 
21 ALL -Oil 1ml OK -Oi2 
I Tricky divides based on power 
! series expansions 
! 1 / (1 + Nu1p+) -> 
I 1 - (2Nu1p-) + tiny. 
2/ = 1 lil x ld2 
21 0 1 lil x ld2 
2/ < 1 lil x ld2 
2/ > l lil x ldl 
2/ = 1 li2 x ld4 
2/ 0 1 li2 x ld4 
2/ < 1 li2 x ld4 
2/ > 1 li2 x ld3 
2/ = 1 li3 x ld6 
2/ 0 1 li3 x ld6 
2/ < 1 1i3 x ld6 
2/ > 1 li3 x ld5 
2/ = 1 1i4 x ldB 
2/ 0 1 1i4 x ld8 
2/ < l 1i4 x ld8 
2/ > 1 li4 x ld7 
I l / ( 1 - Nu-) --> 

! 1 + (Q/2u+) + tiny. 
2/ = 1 ldl x lil 
2/ 0 1 ldl x 1 
2/ < 1 ldl x 1 
2/ > 1 ldl x lil 
2/ = 1 ld2 x lil 
2/ 0 1 ld2 :x lil 
2/ < 1 ld2 x lil 
2/ > 1 ld2 x li2 
2/ = 1 ld3 x li2 
2/ 0 1 ld3 x lil 
21 < 1 1d3 x lil 
21 > 1 ld3 x li2 
2/ = 1 ld4 x li2 
2/ 0 1 ld4 x li2 
2/ < 1 ld4 x li2 
2/ > 1 ld4 x li3 
2/ = 1 ld5 x li3 
2/ 0 1 ld5 x li2 
2/ < 1 ld5 x li2 
21 > 1 ld5 x li3 
2/ = 1 ld8 x li4 
2/ 0 1 ld8 x li4 
2/ < 1 ld8 x li4 
21 > 1 ld8 x li5 
21 = 1 ld9 x li5 
2/ 0 1 ld9 x li4 
2/ < 1 ld9 x li4 
2/ > 1 ld9 x li5 
! (1 +Mu+)/ (1 +Nu+)-> 
! Case M > Q: (1 + Mu+) • 
I (1 - Nu+ + (Nu+ )-2 - tiny)--> 
! 1 + (M-Q)u+ - (MN-NN)(u+)-2 + tiny-> 
I 1 + (M-Q)u+ - tiny. 
! M + Q = 3. 
21 = li2 lil x lil 
21 0 li2 lil x l 
2/ < li2 lil x 1 
2/ > li2 lil x lil 
! M + Q =4. 
21 = li3 lil x li2 
2/ 0 li3 lil x lil 
21 < li3 lil x lil 
2/ > li3 lil x li2 
! M + Q = 5. 
2/ = li4 lil x li3 
2/ 0 li4 lil x li2 
2/ < li4 lil x li2 
21 > li4 lil :x 1i3 
IM+ Q = 9. 
2/ = li7 li2 :x: 1i5 
2/ 0 li7 li2 :x: li4 
2/ < li7 li2 :x: li4 
21 > li7 li2 x li5 
! Q = 17. 
2/ = li9 li8 :x lil 
2/ 0 li9 li8 X 1 
2/ < li9 li8 :x 1 
21 > li9 li8 x lil 
! (1 + Mu1p+) I (1 + NuJp+)--> 
! Case M < Q: (1 + 2Mu1p-) • 
I (1 - 2Nu1p- + (2Nu1p-)-2 - tiny)-> 
I 1 - 2(Q-M)uJp- + 
! 4(NN-MN)(uJp-)-2 + tiny-> 
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! 1 - 2(Q-M)ulp- + tiny. 
1M+Q=3. 
21 = lil li2 x ld2 
21 0 lil li2 x ld2 
2/ < lil li2 x ld2 
21 > lil li2 x ldl 
! M + Q = 4. 
2/ = lil li3 x 1d4 
2/ 0 lil li3 x ld4 
21 < lil li3 x 1d4 
21 > lil li3 x ld3 
!M+Q=5. 
21 = li2 li3 x ld2 
21 0 li2 li3 x ld2 
21 < li2 li3 x ld2 
21 > li2 li3 x ldl 
IM+ Q = 11. 
21 = li4 li? x 1d6 
2/ 0 li4 Ii? x 1d6 
21 < li4 Ii? x ld6 
21 > li4 Ii? x ld5 
! M + Q = 14. 
21 = li6 liB x ld4 
2/ 0 li6 liB x ld4 
2/ < li6 liB x ld4 
21 > li6 liB :x ld3 
I (1- Mulp-) I (1- Nulp-) -> 
I Case M > Q: (1 - Mulp-) • 
! (1 + Nulp- + (Nulp-)-2 +tiny)--> 
I 1 - (M-Q)ulp- -
I (MN-NN)(ulp-)-2 +tiny--> 
I 1 - (M-Q)ulp- - tiny. 
!M+Q=3. 
2/ = ld2 ldl x ldl 
2/ 0 ld2 ldl x ld2 
2/ < ld2 ldl x ld2 
21 > ld2 ldl x ldl 
IM+ Q = 4. 
21 = ld3 ldl x ld2 
2/ 0 ld3 ldl x ld3 
2/ < ld3 ldl x ld3 
21 > ld3 ldl x ld2 
!M+Q=5. 
2/ = ld3 ld2 x ldl 
21 0 ld3 ld2 x ld2 
2/ < ld3 ld2 x ld2 
2/ > ld3 ld2 x ldl 
2/ = ld4 ldl x ld3 
2/ 0 ld4 ldl x 1d4 
2/ < ld4 ldl x ld4 
2/ > ld4 ldl x ld3 
IM+ Q = 6. 
2/ = ld4 ld2 x 1d2 
2/ 0 ld4 ld2 :x ld3 
2/ < ld4 ld2 x ld3 
2/ > ld4 ld2 x 1d2 
IM +Q =7. 
21 = ld4 ld3 x ldl 
2/ 0 ld4 1d3 x ld2 
2/ < ld4 ld3 x ld2 
21 > 1d4 1d3 x ldl 
IM+Q=ll. 
21 = ldB 1d3 x ld5 
21 0 ldB 1d3 x ld6 

2/ < ldB ld3 x ld6 
21 > ldB ld3 x ld5 
21 = ld9 ld2 x ld? 
21 0 ld9 ld2 x ldB 
2/ < ld9 ld2 x ldB 
2/ > ld9 ld2 x ld? 
! M + Q = 12. 
2/ = ldB ld4 x ld4 
2/ 0 ldB ld4 x ld5 
2/ < ldB ld4 x ld5 
2/ > ldB ld4 x ld4 
! M + Q = 14. 
21 = ld9 ld5 x ld4 
2/ 0 ld9 ld5 x ld5 
2/ < ld9 ld5 x ld5 
2/ > ld9 ld5 x ld4 
! (1 - Mulp-) / (1 - Nulp-)--> 
! Case M < Q: (1 - (Mt2)ulp+) • 
! (1 + (Q/2)ulp+ + 
! ((Q/2)ulp+)-2 +tiny)-> 
! 1 + ((Q-M)t2)ulp+ + 
! (NN-MN)14(ulp+)-2 +tiny--> 
! 1 + (Q-M)t2ulp+ + tiny. 
! M + Q = 3. 
2/ = ldl ld2 x lil 
2/ 0 ldl ld2 x 1 
2/ < ldl ld2 x 1 
2/ > ldl ld2 x lil 
! M + Q = 4. 
21 = ldl ld3 x lil 
21 0 ldl ld3 x lil 
21 < ldl ld3 x lil 
2/ > ldl ld3 x li2 
! M + Q = 5. 
21 = ld2 ld3 x lil 
2/ 0 ld2 ld3 x 1 
21 < l d2 l d3 x 1 
2/ > ld2 ld3 x lil 
21 = ldl ld4 x li2 
21 0 ldl ld4 x lil 
2/ < ldl ld4 x lil 
2/ > ldl ld4 x li2 
! M + Q = 6. 
21 = ld2 ld4 x lil 
2/ 0 ld2 ld4 x lil 
21 < ld2 ld4 :x lil 
2/ > ld2 ld4 x li2 
IM+ Q = 7. 
21 = ld3 ld4 x lil 
2/ 0 ld3 ld4 x 1 
21 < ld3 ld4 x 1 
21 > lcl3 ld4 x lil 
IM+ Q = B. 
21 = ldl ld7 x li3 
21 0 ldl ld7 x li3 
21 < ldl ld7 x li3 
21 > ldl ld7 x li4 
! M + Q = 9. 
21 = ld2 ld7 x li3 
2/ 0 ld2 ld? x li2 
2/ < 1d2 ld? x li2 
2/ > ld2 ld7 x li3 
! M + Q = 10. 
21 = ld3 ld? x li2 
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2/ 0 ld3 ld7 x li2 
2/ < ld3 ld7 x li2 
2/ > ld3 ld7 x li3 
! M + Q = 11. 
2/ = ld4 ld7 x li2 
2/ 0 ld4 ld7 x lil 
2/ < ld4 ld7 x lil 
2/ > ld4 Jd7 x 1i2 
! M + Q = 12. 
2/ = ld5 ld7 x lil 
2/ 0 ld5 ld7 x 1i1 
2/ < ld5 ld7 x lil 
2/ > ld5 ld7 x li2 
! M + Q = 13. 
2/ = ld6 ld7 x lil 
2/ 0 ld6 ld7 x 1 
2/ < ld6 ld7 x 1 
2/ > ld6 ld7 x lil 
! (1 + Mulp+) I (1- Nulp-)-> 
! (1 + Mulp+) •(I+ (Ql2)ulp+ + 
I ((Q/2)ulp+ )-2 +tiny)--> 
! 1 + (M + Ql2)ulp+ + tiny. 
!M+Q=2. 
21 = lil ldl x li2 
2/ 0 lil ldl x lil 
2/ < lil ldl x lil 
2/ > 1i1 ldl x li2 
!M+Q=3. 
2/ = lil ld2 x li2 
2/ 0 lil ld2 x li2 
2/ < lil ld2 x li2 
2/ > lil ld2 x li3 
2/ = li2 ldl x li3 
2/ 0 li2 ldl x li2 
2/ < li2 ldl x li2 
2/ > li2 ldl x li3 
IM +Q = 4. 
2/ = lil ld3 x li3 
2/ 0 lil ld3 x li2 
2/ < lil ld3 x li2 
2/ > lil ld3 x li3 
2/ = li3 ldl x li4 
2/ 0 li3 ldl x li3 
2/ < li3 ldl x li3 
2/ > li3 ldl x li4 
2/ = li2 ld2 x li3 
2/ 0 li2 ld2 x li3 
2/ < li2 ld2 x li3 
2/ > 1i2 ld2 x 1i4 
!M+Q=5. 
2/ = li3 ld2 x li4 
2/ 0 li3 ld2 x li4 
2/ < li3 ld2 x li4 
2/ > li3 ld2 x li5 
2/ = li2 ld3 x li4 
2/ 0 li2 1d3 x 1i3 
2/ < li2 ld3 x li3 
2/ > li2 ld3 x 1i4 
! M +Q = 6. 
2/ = 1i3 1d3 x 1i5 
2/ 0 li3 1d3 x li4 
2/ < li3 ld3 x li4 
2/ > li3 ld3 x li5 
21 = lil ld5 x li4 

2/ 0 lil ld5 :x li3 
2/ < lil ld5 x li3 
2/ > lil ld5 x li4 
2/ = li5 ldl x li6 
2/ 0 li5 ldl :x li5 
2/ < li5 ldl x li5 
2/ > li5 ldl x li6 
2/ = li2 ld4 x li4 
2/ 0 li2 ld4 x li4 
2/ < li2 ld4 x li4 
2/ > li2 ld4 :x li5 
2/ = li4 ld2 x li5 
2/ 0 li4 ld2 :x li5 
2/ < li4 ld2 :x li5 
2/ > li4 ld2 x li6 
! (1 - Mu1p-) I (1 + Nulp+)--> 
! (1 - Mu1p-) • (1 - 2Nulp- + 
! (2Nulp-)-2 - tiny)--> 
! 1 - (M + 2N)ulp- + tiny. 
IM+ Q =2. 
2/ = ldl lil x ld3 
2/ 0 ldl lil x ld3 
2/ < ldl lil x ld3 
2/ > ldl lil :x ld2 
! M + Q = 3. 
2/ = ld2 lil :x ld4 
2/ 0 ld2 lil x ld4 
2/ < ld2 lil x ld4 
2/ > ld2 lil x ld3 
2/ = ldl li2 x ld5 
2/ 0 ldl li2 :x ld5 
2/ < ldl li2 x ld5 
2/ > ldl li2 :x ld4 
! M + Q =4. 
21 = ld3 lil x ld5 
2/ 0 ld3 lil :x ld5 
2/ < ld3 lil x ld5 
2/ > ld3 lil x ld4 
2/ = ldl li3 x ld7 
2/ 0 ldl li3 x ld7 
2/ < ldl li3 x ld7 
2/ > ldl li3 x ld6 
2/ = ld2 li2 :x ld6 
2/ 0 Id2 li2 x ld6 
2/ < ld2 li2 x ld6 
2/ > ld2 li2 x ld5 
I M+Q=5. 
2/ = ld4 lil x ld6 
2/ 0 ld4 lil x ld6 
2/ < ld4 lil x ld6 
2/ > ld4 lil x ld5 
2/ = ldl li4 x ld9 
2/ 0 ldl li4 :x Id9 
21 < ldl li4 :x ld9 
2/ > ldl li4 :x ld8 
2/ = ld3 li2 :x ld7 
2/ 0 ld3 li2 x ld7 
2/ < ld3 li2 :x ld7 
2/ > Id3 li2 :x ld6 
2/ = ld2 li3 x 1d8 
2/ 0 1d2 li3 x ld8 
2/ < ld2 li3 x ldB 
2/ > ld2 li3 x ld7 
! Nan operands. 
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2/ ALL Q O OK Q 
2/ ALL Q -0 OK Q 
2/ ALL O Q OK Q 
2/ ALL -0 Q OK Q 
2/ ALL Q 1 OK Q 
2/ ALL Q -1 OK Q 
2/ ALL 1 Q OK Q 
2/ ALL -1 Q OK Q 
2/ ALL Edl Q OK Q 
2/ ALL '-Edl Q OK Q 
2/ ALL Q Edl OK Q 
2/ ALL Q -Edl OK Q 
2/ ALL Q Oil OK Q 
2/ ALL Q -Oil OK Q 
2/ ALL Oil Q OK Q 
2/ ALL -Oil Q OK Q 
2/ ALL Q Hd 1 OK Q 
2/ ALL Q -Hdl OK Q 
2/ ALL Hdl Q OK Q 
2/ ALL -Hdl Q OK Q 
2/ ALL Q H OK Q 
2/ ALL Q -H OK Q 
2/ ALL H Q OK Q 
2/ ALL -H Q OK Q 
2/ ALL Q Q OK Q 
21 ALL S o i Q 
2/ ALL S -0 i Q 
21 ALL O S i Q 
2/ ALL -0 S i Q 
2/ALLSliQ 
2/ ALL S -1 i Q 
2/ALLlSiQ 
2/ ALL -1 S i Q 
2/ ALL Edl Si Q 
2/ ALL -Ed 1 S i Q 
2/ ALL S Edl i Q 
2/ ALLS -Edli Q 
2/ ALL S Oi 1 i Q 
2/ ALL S -Oi 1 i Q 
2/ ALL Oi 1 S i Q 
2/ ALL -Oil S i Q 
2/ ALL S Hdl i Q 
2/ALLS-HdliQ 
2/ ALL Hdl S i Q 
2/ ALL -Hdl S i Q 
2/ALLSHiQ 
2/ ALLS-Hi Q 
2/ALLHSiQ 
21 ALL -H S i Q 
2/ALLQSiQ 
21 ALL S Q i Q 
2/ ALL S S i Q 
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! Middle-range numbers. 
2% ALL 1 2 OK 1 
2% ALL 1 -2 OK 1 
2% ALL -1 2 OK -1 
2% ALL -1 -2 OK -1 
2% ALL 3 2 OK -1 
2% ALL 3 -2 OK -1 
2% ALL -3 2 OK 1 
2% ALL -3 -2 OK 1 
2% ALL 2 2 OK 0 
2% ALL 2 -2 OK O 
2% ALL -2 2 OK -0 
2% ALL -2 -2 OK -0 
2% ALL lil 2 OK -ld2 
2% ALL 3dl 2 OK ld4 
2% ALL 1 4 OK 1 
2% ALL 2 4 OK 2 
2% ALL 3 4 OK -1 
2% ALL 4 4 OK 0 
2% ALL 5 4 OK 1 
2% ALL 6 4 OK -2 
2% ALL 7 4 OK -1 
2% ALL 8 4 OK O 
2% ALL 0 1ml OK 0 
2% ALL lm3 1ml OK lm3 
2% ALL 3m3 1ml OK -lm3 
2% ALL 5m3 1ml OK lm3 
I Step across jump. 
2% ALL 2i 1 4 OK -2d2 
2% ALL 2il -4 OK -2d2 
2% ALL -2i1 4 OK 2d2 
2% ALL -2il -4 OK 2d2 
2% ALL 2iB 4 OK -2d8d8 
2% ALL 6d1 4 OK 2d4 
2% ALL 6dl -4 OK 2d4 
2% ALL -6d 1 4 OK -2d.4 
2% ALL -6dl -4 OK -2d4 
2% ALL 6d8 4 OK 2d8d8d8d8 
2% ALL lm2 1ml OK lm2 
2% ALL 1ilm2 1ml OK -ld2m2 
! (l+x)l(l+y), x,y«l. 
2% ALL lil li5 OK -lu4 
2% ALL lil -li5 OK -lu4 
2% ALL -lil 1i5 OK lu4 
2% ALL -lil -li5 OK lu4 
2% ALL li2 li5 OK -lu3 
2% ALL li3 li5 OK -1u2 
2% ALL li4 li5 OK -lul 
2% ALL 1i6 1i5 OK lul 
2% ALL 3dl 3 OK -3u1 
2% ALL 3dl -3 OK -3ul 
2% ALL -3d 1 3 OK 3u1 
2% ALL -3dl -3 OK 3ul 
2% ALL 2dl 2 OK -lul 
2% ALL lil ld2 OK lu2 
2% ALL 1 ld2 OK lul 
2% ALL ld4 ld2 OK -lul 
2% ALL ldl 2dl OK ldl 
2% ALL 1 2dl OK -ld2 
I Large numbers. 
2% ALL Hmlil Hmld2 OK Hmlu2 
2% ALL Hml Hmld2 OK Hmlu1 
2% ALL Hmld4 Hmld2 OK -Hmlul 
2% ALL Hmldl Hdl OK Hmldl 

2% ALL Hml Hdl OK -Hmld2 
2% ALL Hm2 Hml OK Hm2 
2% ALL Hdl Hd2 OK Hdlul 
2% ALL Hdl -Hd2 OK Hdlul 
2% ALL -Hdl Hd2 OK -Hdlul 
2% ALL -Hdl -Hd2 OK -Hdlul 
2% ALL Hmlul Hmlu4 OK Hmlul 
2% ALL Hdl Hml OK -Hmlul 
2% ALL Hmli3 Hmli5 OK -Hmlu2 
2% ALL Hmli4 Hmli5 OK -Hmlul 
2% ALL Hmli6 Hmli5 OK Hmlul 
I Large and small numbers. 
2% ALL Hdl Oil OK 0 
2% ALL Hdl -Oil OK 0 
2% ALL -Hdl Oil OK -0 
2% ALL -Hdl -Oil OK -0 
2% ALL Hdl Eul OK 0 
2% ALL Hdl Epldl OK 0 
2% ALL Hdl E OK 0 
2% ALL Hmldl Hml OK -Hm2ul 
2% ALL Hmldl -Hml OK -Hm2ul 
2% ALL -Hmldl Hml OK Hm2ul 
2% ALL -Hmldl -Hml OK Hm2ul 
! Small munbers. 
2% ALL Oil Oi4 OK Oil 
2% ALL Oil -Oi4 OK Oil 
2% ALL --Oil Oi4 OK --Oil 
2% ALL -Oil -Oi4 OK -Oil 
2% ALL Oi2 Oi4 OK Oi2 
2% ALL Oi3 Oi4 OK -Oil 
2% ALL Oi3 --Oi4 OK -Oil 
2% ALL -Oi3 Oi4 OK Oil 
2% ALL --Oi3 -Oi4 OK Oil 
2% ALL Oi4 Oi4 OK 0 
2% ALL Oi4 -0i4 OK 0 
2% ALL -Oi4 -Oi4 OK -0 
2% ALL -Oi4 Oi4 OK --0 
2% ALL Ep9dl EpB OK -EpBul 
2% ALL Eil Ed2 OK Eu3 
2% ALL E Ed2 OK Eu2 
2% ALL Ed4 Ed2 OK -Eu2 
2% ALL Ed4 -Ed2 OK -Eu2 
2% ALL -Ed4 Ed2 OK Eu2 
2% ALL -Ed4 -Ed2 OK Eu2 
2% ALL Edl Epldl OK Edl 
2% ALL E Epldl OK -Edl 
2% ALL Ei3 Ei5 OK -Eu2 
2% ALL Ei4 Ei5 OK -Eul 
2% ALL Ei6 Ei5 OK Eul 
2% ALL Ep ld 1 E-p 1 OK -Eul 
! Special case: invalid operations 
! delivernl8 NaNs. 
2% ALL o O i Q 
2% ALL o -0 i Q 
2% ALL --0 0 i Q 
2% ALL --0 -0 i Q 
2% ALL 1 0 i Q 
2% ALL ldl O i Q 
2% ALL Hd 1 O i Q 
2% ALL Hdl -0 i Q 
2% ALL -Hdl 0 i Q 
2% ALL -Hdl -0 i Q 
2% ALL Ed 1 o i Q 
2% ALL Ed 1 -0 i Q 
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2% ALL -Edl O i Q 
2% ALL -Edl -0 i Q 
2% ALL Oil O i Q 
2% ALL H O i Q 
2% ALL H -0 i Q 
2% ALL -H O i Q 
2% ALL -H -0 i Q 
2% ALL H 1 i Q 
2% ALL H Hd l i Q 
2% ALL H -Hdl i Q 
2% ALL -H Hdl i Q 
2% ALL -H -Hdl i Q 
2% ALL H Edl i Q 
2% ALL H Oi 1 i Q 
2% ALL H H i Q 
I Orem y = 0, y e number <> O. 
2% ALL O 1 OK 0 
2% ALL O -1 OK O 
2% ALL -0 1 OK -0 
2% ALL -0 -1 OK -0 
2% ALL O ldl OK 0 
2% ALL O Hdl OK 0 
2% ALL O Edl OK 0 
2% ALL O Oil OK 0 
2% ALL O -Oil OK 0 
2% ALL -0 Oil OK -0 
2% ALL -0 --Oil OK -0 
2% ALL O H OK 0 
2% ALL O -H OK O 
I x rem INF = x, x a number <> 0. 
2% ALL 1 H OK 1 
2% ALL 1 -H OK 1 
2% ALL -1 H OK -1 
2% ALL -1 -H OK -1 
2% ALL ldl HOK ldl 
2% ALL Hdl H OK Hdl 
2% ALL Hdl -H OK Hdl 
2% ALL -Hdl H OK -Hdl 
2% ALL -Hdl -H OK -Hdl 
2% ALL Edl H OK Edl 
2% ALL Oil H OK Oil 
2% ALL Oil -H OK Oil 
2% ALL -Oil H OK -Oil 
2% ALL -Oil -H OK --Oil 
! Vectors based on 
I (x + 1) I (x-n + 1) for n odd -
! for significands with even 
I numbers of bits. 
2% s Hmlil Hmlu3 OK 0 
2% s Hmli2 Hmlu3 OK Hmlul 
2% s Hmli3 Hmlu3 OK -Hmlul 
2% s Hmlil 3 OK 0 
2% s Hmlil Oi3 OK 0 
2% s Hml Hmlu3 OK -Hmlul 
2% s Hmld2 Hmlu3 OK Hmlul 
2% s Eil Eu3 OK 0 
2% s E Eu3 OK -Oil 
2% s Edl Eu3 OK Oil 
2% s Ei 1 Oi3 0 K 0 
2% s Ei2 Eu3 OK Eul 
2% s Ei3 Eu3 OK -Eul 
2% s Hmlil -Hmlu3 OK 0 
2% s Hmli2 -Hmlu3 OK Hmlul 
2% s Hmli3 -Hrnlu3 OK -Hmlul 

2% s Hmlil -3 OK 0 
2% s Hrnlil -Oi3 OK 0 
2% s Hrnl -Hmlu3 OK -Hrnlul 
2% s Hmld2 -Hmlu3 OK Hmlul 
2% s Eil -Oi3 OK 0 
2% s E -Eu3 OK -Eul 
2% s Edl -Eu3 OK Eul 
2% s Eil -Eu3 OK 0 
2% s Ei2 -Eu3 OK Eul 
2% s Ei3 -Eu3 OK -Eul 
2% s -Hmlil Hmlu3 OK -0 
2% s -Hmli2 Hmlu3 OK -Hmlul 
2% s -Hmli3 Hmlu3 OK Hmlul 
2% s -Hmlil 3 OK -0 
2% s -Hmlil Oi3 OK -0 
2% s -Hml Hmlu3 OK Hmlul 
2% s -Hmld2 Hmlu3 OK -Hmlul 
2% s -Eil Oi3 OK -0 
2% s -E Eu3 OK Eul 
2% s -Edl Eu3 OK -Eul 
2% s -Eil Eu3 OK -0 
2% s -Ei2 Eu3 OK -Eul 
2% s -Ei3 Eu3 OK Eul 
2% s -Hmlil -Hmlu3 OK -0 
2% s -Hmli2 -Hmlu3 OK -Hmlul 
2% s -Hmli3 -Hmlu3 OK Hmlul 
2% s -Hmlil -3 OK -0 
2% s -Hmlil -Oi3 OK -0 
2% s -Hml -Hmlu3 OK Hmlul 
2% s -Hmld2 -Hmlu3 OK -Hmlul 
2% s -Eil -Oi3 OK -0 
2% s -E -Eu3 OK Eul 
2% s -Edl -Eu3 OK -Eul 
2% s -Eil -Eu3 OK -0 
2% s -Ei2 -Eu3 OK -Eul 
2% s -Ei3 -Eu3 OK Eul 
I Vectors based on 
! (x + 1) I (x-n + 1) for n odd; 
I for significands with 
! odd numbers of bits. 
2% d Hmld2 Hrnlu3 OK 0 
2% d Hmli3 Hmlu3 OK Hmlul 
2% d Hmli4 Hmlu3 OK -Hmlul 
2% d Hmli2 3 OK 0 
2% d Hmli2 Oi3 OK 0 
2% d Hmld4 Hmlu3 OK -Hmlul 
2% d Hml Hmlu3 OK Hmlul 
2% d Edl Eu3 OK 0 
2% d Eil Eu3 OK -Oil 
2% d E Eu3 OK Oil 
2% d Ei2 Oi3 OK O 
2% d Ei3 Eu3 OK Eul 
2% d Ei4 Eu3 OK -Eul 
2% d Hmld2 -Hmlu3 OK 0 
2% d Hmli3 -Hmlu3 OK Hmlul 
2% d Hmli4 -Hmlu3 OK -Hmlul 
2% d Hrnli2 -3 OK 0 
2% d Hmli2 -Oi3 OK 0 
2% d Hmld4 -Hmlu3 OK -Hmlul 
2% d Hml -Hmlu3 OK Hmlul 
2% d Edl -Oi3 OK 0 
2% d Eil -Eu3 OK -Eu1 
2% d E -Eu3 OK Eul 
2% d Ei2 -Eu3 OK O 
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2% d Ei3 -Eu3 OK Eul 
2% d Ei4 -Eu3 OK -Eul 
2% d -Hmld2 Hmlu3 OK -0 
2% d -Hmli3 Hmlu3 OK -Hmlul 
2% d -Hmli4 Hmlu3 OK Hmlul 
2% d -Hmli2 3 OK -0 
2% d -Hmli2 Oi3 OK -0 
2% d -Hmld4 Hmlu3 OK Hmlul 
2% d -Hml Hmlu3 OK -Hmlul 
2% d -Edl Oi3 OK -0 
2% d -Eil Eu3 OK Eul 
2% d -E Eu3 OK -Eul 
2% d -Ei2 Eu3 OK -0 
2% d -Ei3 Eu3 OK -Eul 
2% d -Ei4 Eu3 OK Eul 
2% d -Hmld2 -Hmlu3 OK -0 
2% d -Hmli3 -Hmlu3 OK -Hmlul 
2% d -Hmli4 -Hmlu3 OK Hmlul 
2% d -Hmli2 -3 OK -0 
2% d -Hmli2 -Oi3 OK -0 
2% d -Hmld4 -Hmlu3 OK Hmlul 
2% d -Hml -Hmlu3 OK -Hmlul 
2% d -Ei2 -Oi3 OK -0 
2% d -Eil -Eu3 OK Eul 
2% d -E -Eu3 OK -Eul 
2% d -Ei2 -Eu3 OK -0 
2% d -Ei3 -Eu3 OK -Eul 
2% d -Ei4 -Eu3 OK Eul 
! NaN operands. 
2% ALL Q O OK Q 
2% ALL Q -0 OK Q 
2% ALL O Q OK Q 
2% ALL -0 Q OK Q 
2% ALL Q 1 OK Q 
2% ALL Q -1 OK Q 
2% ALL 1 Q OK Q 
2% ALL -1 Q OK Q 
2% ALL Edl Q OK Q 
2% ALL -Edl Q OK Q 
2% ALL Q Ed 1 OK Q 
2% ALL Q -Edl OK Q 
2% ALL Q Oil OK Q 
2% ALL Q -Oil OK Q 
2% ALL Oil Q OK Q 
2% ALL -Oil Q OK Q 
2% ALL Q Hdl OK Q 
2% ALL Q -Hdl OK Q 
2% ALL Hdl Q OK Q 
2% ALL -Hdl Q OK Q 
2% ALL Q HOK Q 
2% ALL Q -H OK Q 
2% ALL H Q OK Q 
2% ALL -H Q OK Q 
2% ALL Q Q OK Q 
2% ALL S O i Q 
2% ALL S -0 i Q 
2%ALLOSiQ 
2% ALL -0 S i Q 
2%ALLSliQ 
2% ALL S -1 i Q 
2%ALL1SiQ 
2% ALL -1 S i Q 
2% ALL Edl Si Q 
2% ALL -EdlS i Q 

2% ALL S Edl i Q 
2% ALL S -Edl i Q 
2% ALL S Oil i Q 
2% ALL S -Oi 1 i Q 
2% ALL Oi 1 S i Q 
2% ALL -Oil S i Q 
2% ALL S Hd 1 i Q 
2% ALL S -Hdl i Q 
2% ALL Hdl S i Q 
2% ALL -Hd 1 S i Q 
2% ALL S H i Q 
2% ALL S -H i Q 
2% ALL H S i Q 
2% ALL -H S i Q 
2% ALL Q S i Q 
2% ALL S Q i Q 
2% ALL S S i Q 
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I First some easy integer cases. 
2C ALL 1 l OK = 
2C ALL 1 2 OK < 
2C ALL 2 l OK > 
2C ALL 2 2 OK = 
2C ALL 2 -2 OK > 
2C ALL 5 -5 OK > 
2C ALL l 7 OK < 
2C ALL 5 -1 OK > 
2C ALL 2 -5 OK > 
2C ALL 5 -o OK > 
2C ALL 5 +0 OK > 
! Infinity VS Infinity, 
2C ALL H H OK = always equal 
2C ALL -H -H OK = always equal 
2C ALL H -H OK > 
2C ALL -H H OK < 
! Infinity vs huge. 
2C ALL H Hml OK > 
2C ALL H -Hml OK > 
2C ALL -H Hml OK < 
2C ALL -H -Hml OK < 
2C ALL H Hdl OK > 
2C ALL H -Hdl OK > 
2C ALL -H Hdl OK < 
2C ALL -H -Hdl OK < 
2C ALL Hml H OK < 
2C ALL Hml -H OK > 
2C ALL -Hml H OK < 
2C ALL -Hml -H OK > 
! Infinity VS 0. 
2C ALL H O OK > 
2C ALL H -0 OK > 
2C ALL -H O OK < 
2C ALL -H -0 OK < 
2C ALL O H OK < 
2C ALL -0 H OK < 
2C ALL O -H OK > 
2C ALL -0 -H OK > 
! Infinity vs denormalized. 
2C ALL H Edl OK > 
2C ALL -H Edl OK < 
2C ALL H -Edl OK> 
2C ALL -H -Edl OK < 
2C ALL H Oil OK > 
2C ALL -H Oil OK < 
2C ALL H -Oil OK > 
2C ALL -H -Oil OK < 
2C ALL Edl H OK < 
2C ALL Edl -H OK > 
2C ALL -Edl H OK < 
2C ALL ·Edl -H OK > 
I Zero vs finite - watch that sign 
! of O is mea.TJ.ingless. 
2C ALL 0 Hml OK < 
2C ALL -0 Hml OK < 
2C ALL -Hml O OK < 
2C ALL -Hml -0 OK < 
2C ALL 1 -0 OK > 
2C ALL -1 -0 OK < 
2C ALL O 1 OK < 
2C ALL -0 -1 OK > 
! Zero vs denormalized. 
2C ALL O Edl OK< 

2C ALL -0 Edl OK < 
2C ALL O -Edl OK > 
2C ALL -0 -Edl OK > 
2C ALL O Oil OK < 
2C ALL -0 Oil OK < 
2C ALL O -Oil OK > 
2C ALL -0 -Oil OK > 
2C ALL EGl O OK> 
2C ALL Edl -0 OK > 
2C ALL -Edl O OK < 
2C ALL -Edl -0 OK < 
! Zero vs tiny - just in case. 
2C ALL -0 -E OK > 
2C ALL E O OK > 
2C ALL O -E OK > 
2C ALL -E O OK < 
! Zero vs Zero -- watch signs 
! and rounding modes. 
2C ALL O -0 OK = 
2C ALL -0 0 OK = 
2C ALL O -0 OK = 
2C ALL -0 0 OK = 
! Big cancellations. 
2C ALL Hml Hml OK = 
2C ALL Hml Hml OK = 
2C ALL -Hml -Hml OK = 
2C ALL -Hml -Hml OK = 
2C ALL Hm1d2 Hmld2 OK = 
2C ALL -Hmld2 -Hmld2 OK = 
2C ALL Hdl Hdl OK = 
2C ALL Hdl Hdl OK = 
2C ALL -Hdl -Hdl OK = 
2C ALL -Hdl -Hdl OK = 
! Medium cancellations. 
2C ALL 1 1 OK = 
2C ALL 1ml 1ml OK = 
2C ALL 3 3 OK = 
2C ALL E E OK = 
2C ALL Hm2 Hm2 OK = 
! Tiny cancellations -- might 
I have underflowed. 
2C ALL Edl Edl OK= 
2C ALL -Edl -Edl OK = 
2C ALL Oi4 Oi4 OK = 
2C ALL -Oi4 -Oi4 OK = 
2C ALL Oil Oil OK= 
2C ALL -Oil -Oil OK = 
! Doublings. 
2C ALL Hml -Hml OK > 
2C ALL -Hmld2 Hmld2 OK < 
2C ALL 1 -1 OK > 
2C ALL -3 3 OK < 
2C ALL E -E OK > 
2C ALL -E E OK < 
2C ALL Ed4 -Ed4 OK> 
2C ALL -Edl Edl OK < 
2C ALL Oil -Oil OK > 
2C ALL -Oil Oil OK < 
I Cancellation with difl in LSB 
! Difference is in last place of 
! larger number. 
! Medium numbers ... 
2C ALL lil 1 OK > 
2C ALL -lil -1 OK < 
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2C ALL lil li2 OK < 
2C ALL -lil -li2 OK > 
2C ALL 2 2il OK < 
2C ALL -2 -2il OK > 
2C ALL 2i4 2i3 OK > 
2C ALL -2i4 -2i3 OK < 
2C ALL 4dl 4d2 OK > 
2C ALL -4dl -4d2 OK < 
2C ALL 2d4 2d3 OK < 
2C ALL -2d4 -2d3 OK > 
I HiJBe numbers ... 
2C ALL Hmlil Hml OK > 
2C ALL -Hmlil -Hml OK < 
2C ALL Hmlil Hmli2 OK < 
2C ALL -Hmlil -Hmli2 OK > 
2C ALL Hm2 Hm2il OK < 
2C ALL -Hm2 -Hm2il OK > 
2C ALL Hm2i4 Hm2i3 OK > 
2C ALL -Hm2i4 -Hm2i3 OK < 
2C ALL Hm2dl Hm2d2 OK > 
2C ALL -Hm2dl -Hm2d2 OK < 
2C ALL -Hd2 -Hdl OK > 
2C ALL Hd2 Hdl OK< 
! Tiny numbers ... 
2C ALL -Eil -E OK < 
2C ALL Eil E OK > 
2C ALL -Edl -E OK > 
2C ALL Edl E OK< 
2C ALL Eil Ei2 OK < 
2C ALL -Eil -Ei2 OK > 
2C ALL Edl Ed2 OK> 
2C ALL -Edl -Ed2 OK < 
2C ALL Ed3 Ed2 OK < 
2C ALL -Ed3 -Ed2 OK > 
2C ALL Oi2 Oil OK > 
2C ALL -Oi2 -Oil OK < 
2C ALL Oi3 Oi2 OK > 
2C ALL -Oi3 -Oi2 OK < 
I Normalize from round bit - set up 
! tests so that operands have 
! exponents differing by 1 unit. 
I Medium numbers ... 
2C ALL 2 2dl OK > 
2C ALL -2 -2dl OK < 
2C ALL -2dl -2 OK > 
2C ALL 2dl 2 OK < 
2C ALL 4.il 4dl OK> 
2C ALL -4il -4dl OK < 
2C ALL 4d1 4i2 OK < 
2C ALL -4d 1 -4i2 OK > 
2C ALL 2il lil OK > 
2C ALL -2i1 -lil OK < 
2C ALL 2i2 lil OK > 
2C ALL -2i2 -lil OK < 
2C ALL 2i2 li3 OK > 
2C ALL -2i2 - li3 OK < 
! Huge numbers ... 
2C ALL Hm2 Hm2d1 OK > 
2C ALL -Hm2 -Hm2d1 OK < 
2C ALL -Hmldl -Hml OK > 
2C ALL Hmldl Hml OK < 
2C ALL Hm4il Hm4d1 OK > 
2C ALL -Hm4il -Hm4dl OK < 
2C ALL Hm2dl Hm2i2 OK < 

2C ALL -Hm2dl -Hm2i2 OK > 
2C ALL Hrn2il Hmlil OK < 
2C ALL -Hm2il -Hmlil OK > 
2C ALL Hmli2 Hm2il OK > 
2C ALL -Hmli2 -Hm2il OK < 
2C ALL Hrn2i2 Hm3i3 OK > 
2C ALL -Hm2i2 -Hm3i3 OK < 
! Tiny numbers ... 
2C ALL Epl Epldl OK> 
2C ALL -Epl -Epldl OK < 
2C ALL -Epldl -Epl OK > 
2C ALL Epldl Epl OK< 
2C ALL Eplil Epldl OK > 
2C ALL -Eplil -Epldl OK < 
2C ALL Ep2 Ep2dl OK > 
2C ALL -Ep2 -Ep2dl OK < 
2C ALL -Ep2dl -Ep2 OK > 
2C ALL Ep2dl Ep2 OK< 
2C ALL Ep2i1 Ep2dl OK > 
2C ALL -Ep2il -Ep2dl OK < 
2C ALL Epldl Epli2 OK < 
2C ALL -Epldl -Epli2 OK > 
2C ALL Epldl Epli4 OK < 
2C ALL -Epldl -Epli4 OK > 
2C ALL Eplil Eil OK > 
2C ALL -Eplil -Eil OK < 
2C ALL Epli2 Eil OK > 
2C ALL -Epli2 -Eil OK < 
2C ALL Ep2i2 Epli3 OK > 
2C ALL -Ep2i2 -Epli3 OK < 
I 
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! Add magnitude cases where one operand 
! is off in sticky - rounding 
! perhaps to an overflow. 
I Huge vs medium 
2C ALL Hml 1 OK > 
2C ALL -Hml -1 OK < 
2C ALL Hmldl -1 OK > 
2C ALL Hmldl 1 OK > 
2C ALL -Hmldl 1 OK < 
2C ALL -Hmldl -1 OK < 
2C ALL Hd 1 1 OK > 
2C ALL Hdl -1 OK > 
2C ALL -Hdl 1 OK < 
2C ALL -Hdl -1 OK < 
2C ALL Hd2 -1 OK > 
2C ALL Hd2 1 OK> 
2C ALL -Hd2 1 OK < 
2C ALL -Hd2 -1 OK < 
! Huge vs tiny. 
2C ALL Oil Hml OK < 
2C ALL Oil -Hml OK > 
2C ALL -Oil Hml OK < 
2C ALL -Oil -Hml OK > 
2C ALL Oil Hmld 1 OK < 
2C ALL Oil -Hmldl OK > 
2C ALL -Oil Hmldl OK < 
2C ALL -Oil -Hmldl OK > 
2C ALL Oil Hdl OK < 
2C ALL Oil -Hdl OK > 
2C ALL -Oil Hdl OK < 
2C ALL -Oil -Hdl OK > 
2C ALL Oil Hd2 OK < 
2C ALL Oil -Hd2 OK> 



2C ALL -Oil Hd2 OK < 
2C ALL -Oil -Hd2 OK > 
I Medium vs tiny. 
2C ALL Oil 1 OK < 
2C ALL Oil -1 OK > 
2C ALL -Oil l OK < 
2C ALL -Oil -1 OK > 
2C ALL Oil ldl OK < 
2C ALL Oil -ldl OK > 
2C ALL -Oil ldl OK < 
2C ALL -Oil -ldl OK > 
2C ALL Oil 2dl OK< 
2C ALL Oil -2d1 OK > 
2C ALL -Oil 2dl OK< 
2C ALL -Oil -2d1 OK > 
2C ALL Oil 2d2 OK < 
2C ALL Oil -2d2 OK > 
2C ALL -Oil 2d2 OK < 
2C ALL -Oi 1 -2d2 OK > 
I 
! Magnitude subtract when an operand 
I is in the sticky bit. 
I The interesting cases will arise 
! when directed rounding 
! forces a nonzero cance1lation. 
! Huge and medium. 
2C ALL Hml 1 OK > 
2C ALL Hml -1 OK > 
2C ALL -Hml 1 OK < 
2C ALL -Hml -1 OK < 
2C ALL Hmldl 1 OK > 
2C ALL Hmldl -1 OK > 
2C ALL -Hmldl 1 OK < 
2C ALL -Hmldl -1 OK < 
2C ALL Hdl 1 OK > 
2C ALL Hdl -1 OK > 
2C ALL -Hdl 1 OK < 
2C ALL -Hdl -1 OK < 
2C ALL Hd2 1 OK> 
2C ALL Hd2 -1 OK > 
2C ALL -Hd2 1 OK < 
2C ALL -Hd2 -1 OK < 
! Huge and tiny. 
2C ALL Hdl Oil OK > 
2C ALL Hdl -Oil OK > 
2C ALL -Hdl Oil OK < 
2C ALL -Hdl -Oil OK < 
2C ALL Oi3 Hml OK < 
2C ALL -Oi3 Hml OK < 
2C ALL Oi3 -Hml OK > 
2C ALL -Oi3 -Hml OK > 
! Medium and tiny. 
2C ALL ldl Oil OK > 
2C ALL ldl -Oil OK > 
2C ALL 2dl Oil OK > 
2C ALL -2dl Oil OK < 
2C ALL Oi3 3 OK < 
2C ALL -Oi3 3 OK < 
2C ALL Oi3 5 OK < 
2C ALL Oi3 -5 OK > 
I 
! Add me.gnitude with difference in 
! LSB so, except for denorms, 
I round bit is crucia1. 

! Ha1f-way cases arise. 
I Medium cases. 
2C ALL li 1 l OK > 
2C ALL lil -1 OK > 
2C ALL -lil 1 OK < 
2C ALL -lil -l OK < 
2C ALL -2 2il OK < 
2C ALL -2 -2il. OK > 
2C ALL 2 -2il OK > 
2C ALL 2 2i 1 OK < 
2C ALL 1 li3 OK < 
2C ALL 1 -li3 OK > 
2C ALL -1 li3 OK < 
2C ALL -1 -li3 OK > 
2C ALL -2i1 -2i2 OK > 
2C ALL -2il 2i2 OK < 
2C ALL 2il -2i2 OK > 
2C ALL 2il 2i2 OK < 
! Huge cases. 
2C ALL Hd2 Hdl OK< 
2C ALL Hd2 -Hdl OK > 
2C ALL -Hd2 Hdl OK < 
2C ALL -Hd2 -Hdl OK > 
2C ALL Hmldl Hml OK < 
2C ALL Hmldl -Hml OK > 
2C ALL -Hmldl Hml OK < 
2C ALL -Hmldl -Hml OK > 
2C ALL Hmlil Hml OK > 
2C ALL Hmlil -Hml OK > 
2C ALL -Hmlil Hml OK < 
2C ALL -Hmlil -Hml OK < 
2C ALL Hm2il Hm2 OK > 
2C ALL Hm2il -Hm2 OK > 
2C ALL -Hm2il Hm2 OK < 
2C ALL -Hm2il -Hm2 OK < 
2C ALL Hm1d2 Hmldl OK < 
2C ALL Hmld2 -Hmldl OK > 
2C ALL -Hmld2 Hmldl OK < 
2C ALL -Hmld2 -Hmldl OK > 
! NaN operands. 
2C ALL Q O OK ? 
2C ALL Q -0 OK ? 
2C ALL O Q OK ? 
2C ALL -0 Q OK ? 
2C ALL Q 1 OK ? 
2C ALL Q -1 OK ? 
2C ALL 1 Q OK ? 
2C ALL -1 Q OK ? 
2C ALL Edl Q OK ? 
2C ALL -Edl Q OK ? 
2C ALL Q Ed 1 OK ? 
2C ALL Q -Edl OK ? 
2C ALL Q Oil OK ? 
2C ALL Q -Oil OK ? 
2C ALL Oil Q OK ? 
2C ALL -Oil Q OK ? 
2C ALL Q Hdl OK? 
2C ALL Q -Hdl OK ? 
2C ALL Hdl Q OK ? 
2C ALL -Hdl Q OK ? 
2C ALL Q H OK? 
2C ALL Q -H OK ? 
2C ALL H Q OK ? 
2C ALL -H Q OK ? 
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2C ALL Q Q OK? 
2C ALL S O i ? 
2C ALL S -0 i ? 
2C ALL O S i ? 
2C ALL -0 S i ? 
2C ALL S 1 i ? 
2C ALL S -1 i ? 
2C ALL 1 S i ? 
2C ALL -1 S i ? 
2C ALL Ed 1 S i ? 
2C ALL -Edl S i ? 
2C ALL S Ed 1 i ? 
2C ALLS -Edli? 
2C ALL S Oil i ? 
2C ALL S -Oi 1 i ? 
2C ALL Oi 1 S i ? 
2C ALL -Oi 1 S i ? 
2C ALL S Hd 1 i ? 
2C ALLS -Hdl i? 
2C ALL Hd 1 S i ? 
2C ALL -Hd 1 S i ? 
2C ALL S H i ? 
2C ALL S -H i ? 
2C ALL H S i ? 
2C ALL -H S i ? 
2C ALL Q S i ? 
2C ALL S Q i ? 
2C ALL S S i ? 
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! First a few trivial cases ... 
ZV ALL 1 0 OK 1 
2V ALL 4 0 OK 2 
ZV ALL 9 0 OK 3 
2V ALL lpB O OK lp4 
ZV ALL lmB O OK lm4 
ZV ALL 4p6 o OK 2p3 
2V ALL 4m6 0 OK 2m3 
2V ALL 9pB O OK 3p4 
ZV ALL 9mB O OK 3m4 
ZV ALL 9p9p9 0 OK 3p9 
ZV ALL 9m9m9 0 OK 3m9 
! And the usua1 zero business. 
2V ALL +0 O OK +0 
ZV ALL -o O OK -0 
! And tests for in:finjty. 
2V ALL +H O OK +H 
2V ALL -H 0 i Q 
! Case: 2-EVEN • (1 + NuJp+) -> 
I 2-(EVEN 12) • 
! (1 + (l /2)NuJp+ -
! (l /B)(NuJp+)-2 + tiny) 
I 1 + lulp -> 1 + 0.5u1p - tiny. 
2V =0< lil O x l 
ZV > lil O x li 1 
! 1 + 2u1p -> 1 + lulp - tiny. 
ZV ""> li2 0 x lil 
2V 0< li2 0 x 1 
I 1 + 3u1p -> 1 + l.5u1p - tiny. 
ZV !::Q< li3 0 X lil 
ZV > li3 0 :x li2 
I 1 + 4u1p -> 1 + 2u1p - tiny. 
ZV => li4 0 x li2 
ZV 0< li4 0 :x lil 
I (1 + 5u1p) -> 1 + 2.5u1p - ... 
ZV =0< li5 0 x li2 
ZV > li5 0 :x li3 
I (1 + 6u1p) -> 1 + 3u1p - ... 
2V => li6 0 x li3 
ZV 0< li6 0 x li2 
! (1+7u1p) --> 1 + 3.5u1p - ... 
ZV =0< li7 0 X li3 
ZV > li7 0 x li4 
I sqrt(l - NuJp-) -> 
I 1 - (1 /2)Nu1p- -
I (1 IB)(NuJp-)-2 - tiny 
I 1 - lulp- -> 
I 1 - 0.5uJp- - tiny. 
ZV =0< ldl Ox ldl 
ZV > ldl O :x 1 
I 1 -2uJp- -> 
I 1 - lulp- - tiny. 
ZV => ld2 0 x ldl 
ZV 0< ld2 0 x ld2 
I 1- 3ulp- -> 
I 1 - l.5uJp- - tiny. 
ZV =0< ld3 0 x 1d2 
2V > ld3 0 x ldl 
I l-4uJp- -> 
I 1 - 2uJp- - tiny. 
ZV => ld4 0 x ld2 
ZV 0< ld4 0 x ld3 
I l - 5uJp- -> 
! 1 - 2.5uJp- - tiny. 

ZV =0< ld5 0 x ld3 
2V > ld5 0 x 1d2 
! 1 - 6u1p- -> 
! 1 - 3u1p- - tiny. 
ZV => ld6 0 x ld3 
ZV 0< ld6 0 x ld4 
I 1 - 7u1p- -> 
! 1 - 3.5u1p- - tiny. 
ZV =0< ld7 0 x ld4 
ZV > ld7 0 x ld3 
! 1 - 8u1p- --> 
! l - 4u1p- - tiny. 
ZV => ldB Ox ld4 
ZV 0< ldB O :x ld5 
! 1 - 9ulp- -> 
! l - 4.5u1p- - tiny. 
ZV =0< ld9 0 x ld5 
ZV > ld9 0 x ld4 
! Invalid negative cases. 
2V ALL -1 0 i Q 
2V ALL -2i2 O i Q 
ZV ALL -3i4 0 i Q 
ZV ALL -4d5 0 i Q 
2V ALL -lul O i Q 
2V ALL -lu2 0 i Q 
2V ALL -lu3 0 i Q 
2V ALL -Hmli2 O i Q 
2V ALL -Hm2i2 O i Q 
ZV ALL -Hmldl O i Q 
ZV ALL -Hm2d4 0 i Q 
2V ALL -Eplil O i Q 
2V ALL -Epld3 0 i Q 
ZV ALL -Epl O i Q 
2V ALL -Epl O i Q 
ZV ALL -Ed4 0 i Q 
2V ALL -Ed3 0 i Q 
ZV ALL -Ed2 0 i Q 
2V ALL -Edl 0 i Q 
ZV ALL -Ed4 0 i Q 
2V ALL -Ed3 0 i Q 
2V ALL -Ed7 0 i Q 
ZV ALL -Ed9 0 i Q 
ZV ALL -Oi 1 0 i Q 
2V ALL -Oi 1 0 i Q 
ZV ALL -Oi9 0 i Q 
2V ALL -Oi 7 0 i Q 
ZV ALL -Oi5 0 i Q 
ZV ALL -Oi2 0 i Q 
! NaN operand. 
2V ALL Q 0 OK Q 
ZVALLSOiQ 
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! Exact cases. 
2I ALL 1 O OK l 
2I ALL Hdl O OK Hdl 
2I ALL -1 0 OK -1 
2I ALL -Hdl O OK -Hdl 
2! ALL 9p9 O OK 9p9 
2! ALL -9p9 O OK -9p9 
2! ALL O O OK O 
2! ALL -0 O OK -0 
2! ALL Hm9 0 OK Hm9 
2I ALL Hm9dl O OK Hm9dl 
2I ALL Hm9d9 O OK Hm9d9 
21 ALL Hm9d9d9 0 OK Hm9d9d9 
2! ALL -Hm9 0 OK -Hm9 
2I ALL -Hrn9dl O OK -Hm9dl 
2I ALL -Hrn9d9 0 OK -Hm9d9 
2I ALL -Hrn9d9d9 0 OK -Hm9d9d9 
! hlfinities. 
2I ALL H O OK H 
2I ALL -H O OK -H 
! Inexact cases. 
2I =0< li 1 0 x 1 
2I > lil 0 x 2 
2I => ldl O x l 
2I 0< 1 d l O x 0 
2! =< -ldl O x -1 
2I 0> -ldl O x -0 
21 =0> -lil 0 x -1 
21 < -lil 0 x -2 
2I > E O x 1 
2! =0< E O x 0 
2! < -E O :x -1 
2! =0> -E 0 x -0 
2! > Edl 0 x 1 
2I =0< Ed 1 0 x 0 
21 < -Edl O x -1 
2I =0> -Edl 0 x -0 
2! =0< Oil 0 X 0 
21 > Oi 1 0 :x l 
21 =0> -Oil 0 X -0 
2I < -Oil 0 x -1 
2I > Bil O x 9 
2I 0=< Bil 0 x 8 
21 < -Bil 0 x -9 
2! 0=> -8il 0 x -8 
2I => 8dl O x 8 
21 0< 8dl 0 x 7 
21 =< -8dl O :x -8 
2I 0> -8dl 0 x -7 
21 => lp9d8 0 x lp9 
2I =< -lp9d8 0 x -lp9 
2I => lp9p9d l O :x lp9p9 
2! =< -lp9p9dl O :x -lp9p9 
2! =<O lp9i8 0 x lp9 
2I =>0 -lp9i8 0 x -lp9 
2! =<0 lp9p9il O x lp9p9 
2! =>O -1p9p9il O x -lp9p9 
! Half-way cases. 
2! > 1ml 0 X 1 
2I ==0< 1ml O :x 0 
21 < -lrnl O x -1 
21 =0> -lrnl O :x -0 
2I >= 3ml O :x 2 
2I <0 3ml 0 x l 

2I >0 -3m1 0 x -1 
2! =< -3ml 0 X -2 
2! > 9ml 0 X 5 
21 =0< 9ml O X 4 
2! < -9ml 0 x -5 
21 =0> -9ml O x -4 
21 ::: lmlil 0 x 1 
21 = -lrnlil 0 x -1 
21 = 3rnldl 0 x 1 
21 = -3mldl 0 :x -1 
21 = 9mlil 0 x 5 
2I = -9mlil 0 x -5 
! NAN operand, 
21 ALL Q O OK Q 
21 ALL S o i Q 
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! 
! CopySign test vectors: 
! 
2@ ALL l 1 OK 1 

2@ ALL 1 -1 OK -1 
2@ ALL -1 1 OK 1 
2@ ALL -1 -1 OK -1 
2@ ALL 1 Oil OK l 
2@ ALL 1 -Oil OK -1 
2@ ALL -1 Oil OK 1 
2@ ALL -1 -Oil OK -1 
2@ ALL 1 Hdl OK 1 
2@ ALL 1 -Hdl OK -1 
2@ ALL -1 Hdl OK 1 
2@ ALL -1 -Hdl OK -1 
2@ ALL 1 H OK 1 
2@ ALL 1 -H OK -1 
2@ ALL -1 H OK 1 
2@ ALL -1 -H OK -1 
2@ ALL 1 0 OK 1 
2@ ALL l -0 OK -1 
2@ ALL -1 0 OK l 
2@ ALL -1 -0 OK -1 
2@ ALL Oil l OK Oil 
2@ ALL Oil -1 OK -Oil 
2@ ALL -Oil 1 OK Oil 
2@ ALL -Oil -1 OK -Oil 
2@ ALL Oil H OK Oil 
2@ ALL Oil -H OK -Oil 
2@ ALL -Oil H OK Oil 
2@ ALL -Gil -H OK -Oil 
2@ ALL Oil O OK Oil 
2@ ALL Oil -0 OK -Oil 
2@ ALL -Oil O OK Oil 
2@ ALL -Oi 1 -0 OK -Oi 1 
2@ ALL Hdl E OK Hdl 
20 ALL Hdl -E OK -Hdl 
2@ ALL -Hdl E OK Hdl 
2@ ALL -Hdl -E OK -Hdl 
2@ ALL Hdl H OK Hdl 
2@ ALL Hdl -H OK -Hdl 
2@ ALL -Hdl H OK Hdl 
2@ ALL -Hdl -H OK -Hdl 
2@ ALL Hdl O OK Hdl 
2@ ALL Hdl -0 OK -Hdl 
2@ ALL -Hdl O OK Hdl 
2@ ALL -Hdl -0 OK -Hdl 
2@ ALL H 1 OK H 
2@ ALL H -1 OK -H 
2@ ALL -H 1 OK H 
2@ ALL -H -1 OK -H 
2@ ALL H Edl OK H 
2@ ALL H -Edl OK -H 
2@ ALL -H Edl OK H 
2@ ALL -H -Edl OK -H 
2@ ALL HO OK H 
2@ ALL H -0 OK -H 
2@ ALL -H O OK H 
2@ ALL -H -0 OK -H 
2@ ALL H H OK H 
2@ ALL H -H OK -H 
2@ ALL -H H OK H 
2@ ALL -H -H OK -H 
! NaNs - FPTEST checks that NaNs 

! are returned and with no exceptions. 
2@ ALL Q 1 OK Q 
2@ ALL Q -1 OK -Q 
2@ ALL -Q 1 OK Q 
2@ ALL -Q -1 OK -Q 
2@ ALL Q Oil OK Q 
2@ ALL Q -Oil OK -Q 
2@ ALL -Q Oil OK Q 
2@ ALL -Q -Oil OK -Q 
2@ ALL Q H OK Q 
2@ ALL Q -H OK -Q 
2@ ALL -Q H OK Q 
2@ ALL -Q -H OK -Q 
2@ ALL Q O OK Q 
2@ ALL Q -0 OK -Q 
2@ ALL -Q O OK Q 
2@ ALL -Q -0 OK -Q 
2@ ALL S 1 OKS 
2@ ALL S -1 OK -S 
2@ ALL -S 1 OK S 
2@ ALL -S -1 OK -S 
2@ ALL S Oil OK S 
2@ ALL S ·Oil OK -S 
2@ ALL -S Oil OK S 
2@ ALL -S -Oil OK -S 
2@ ALL S H OK S 
2@ ALL S -H OK -S 
2@ ALL -S H OK S 
2@ ALL -S -H OK -S 
2@ ALL S O OKS 
2@ ALL S -0 OK -S 
2@ ALL -S O OK S 
2@ ALL -S -0 OK -S 
2@ ALL 1 Q OK 1 
2@ ALL l -Q OK -1 
2@ ALL 1 S OK 1 
2@ ALL 1 -S OK -1 
2@ ALL -1 Q OK 1 
2@ ALL -1 -Q OK -1 
2@ ALL -1 S OK 1 
2@ ALL -1 -S OK -1 
2@ ALL H Q OK H 
2@ ALL H -Q OK -H 
2@ ALL H S OK H 
2@ ALL H -S OK -H 
20 ALL -H Q OK H 
2@ ALL -H -Q OK -H 
2@ ALL -H S OK H 
2@ ALL -H -S OK -H 
2@ ALL S Q OKS 
2@ ALL S -Q OK -S 
2@ ALL S S OK S 
2@ ALL S -S OK -S 
2@ ALL -S Q OK S 
2@ ALL -S -Q OK -S 
2@ ALL -S S OK S 
2@ ALL -S -S OK -S 
2@ ALL Q Q OK Q 
2@ ALL Q -Q OK -Q 
2@ ALL Q S OK Q 
2@ ALL Q -S OK -Q 
2@ ALL -Q Q OK Q 
2@ ALL -Q -Q OK -Q 
2@ ALL -Q S OK Q 
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2@ ALL -Q -S OK -Q 



! 
! Negate test vectors: 
I 
2~ ALL 1 0 0 K -1 
2~ ALL -1 O OK 1 
2~ ALL Edl O OK -Edl 
2~ ALL -Edl O OK Edl 
2~ ALL Oil O OK -Oil 
2~ ALL -Oil O OK Oil 
2~ ALL Hml O OK -Hml 
2~ ALL -Hml O OK Hml 
2~ ALL Hdl O OK -Hdl 
2~ ALL -Hdl O OK Hdl 
2~ ALL H O OK -H 
2~ ALL -H O OK H • 
2~ ALL o O OK -0 
2~ ALL -0 O OK O 
I NaNs - FPTEST checks onJy that 
I NaNs are produced and with no exceptions. 
2~ ALL -Q O OK Q 
2~ ALL Q O OK -Q 
2~ ALL -S O OK S 
2~ ALL S O OK -S 
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I 
I Absolute value test vectors: 
I 
2A ALL l O OK l 
2A ALL -1 0 OK l 
2A ALL Edl O OK Edl 
2A ALL -Edl O OK Edl 
2A ALL Oil O OK Oil 
2A ALL -Oil O OK Oil 
2A ALL Hml O OK Hml 
2A ALL -Hml O OK Hml 
2A ALL Hdl O OK Hdl 
2A ALL -Hdl O OK Hdl 
2A ALL H O OK H 
2A ALL -H O OK H 
2A ALL O O OK 0 
2A ALL -0 O OK O 
! NaNs - FPTEST checks that results 
! are NaNs with no exceptions. 
2A ALL Q O OK Q 
2A ALL -Q O OK Q 
2A ALLS O OKS 
2A ALL -S O OK S 
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' I Ne:rtafter Test Vectors: 
! 
I From 1. 
2N ALL 1 2 OK li 1 
2N ALL l O OK ldl 
2N ALL 1 -0 OK ldl 
2N ALL 1 lil OK lil 
2N ALL 1 ldl OK ldl 
2N ALL 1 Hml OK lil 
2N ALL 1 Hdl OK lil 
2N ALL 1 1 OK l 
2N ALL 1 -Hdl OK ldl 
2N ALL 1 E OK ldl 
2N ALL l Edl OK ldl 
2N ALL 1 Oil OK ldl 
2N ALL 1 -1 OK ldl 
2N ALL 1 -H OK ldl 
2N ALL 1 H OK lil 
I From-1. 
2N ALL -1 -2 OK -lil 
2N ALL -1 0 OK -ldl 
2N ALL -1 -0 OK -ldl 
2N ALL -1 -lil OK -lil 
2N ALL -1 -ldl OK -ldl 
2N ALL -1 Hml OK -ldl 
2N ALL -1 Hdl OK -ldl 
2N ALL -1 1 OK -ldl 
2N ALL -1 -Hdl OK -lil 
2N ALL -1 E OK -ldl 
2N ALL -1 Edl OK -ldl 
2N ALL -1 Oil OK -ldl 
2N ALL -1 -1 OK -1 
2N ALL -1 H OK -ldl 
2N ALL -1 -H OK -lil 
! From 1 + lulp of 1. 
2N ALL lil 2 OK li2 
2N ALL lil O OK 1 
2N ALL lil li2 OK li2 
2N ALL lil 1 OK 1 
2N ALL lil Hml OK li2 
2N ALL lil Hdl OK li2 
2N ALL lil -lil OK 1 
2N ALL lil -Hdl OK 1 
2N ALL lil E OK 1 
2N ALL lil Edl OK l 
2N ALL lil Oil OK 1 
2N ALL lil lil OK 1i1 
2N ALL 1il H OK li2 
2N ALL lil -H OK 1 
I From 1 - lulp- of 1. 
2N ALL ldl 2 OK 1 
2N ALL ldl O OK ld2 
2N ALL ldl 1 OK 1 
2N ALL ldl ld2 OK ld2 
2N ALL ldl Hml OK l 
2N ALL ldl Hdl OK 1 
2N ALL ldl -ldl OK ld2 
2N ALL ldl -Hdl OK ld2 
2N ALL ldl E OK ld2 
2N ALL ldl Edl OK ld2 
2N ALL ldl Oil OK ld2 
2N ALL ldl ldl OK ldl 
2N ALL ldl H OK 1 

2N ALL ldl -H OK ld2 
! From largest power of 2. 
2N ALL Hml Hm2 OK Hrnldl 
2N ALL Hml O OK Hmld 1 
2N ALL Hml Hmldl OK Hmldl 
2N ALL Hml Hml OK Hml 
2N ALL Hml Hdl OK Hmlil 
2N ALL Hml -Hml OK Hmldl 
2N ALL Hml -Hdl OK Hrnldl 
2N ALL Hml E OK Hmldl 
2N ALL Hml Edl OK Hmldl 
2N ALL Hml Oil OK Hmldl 
2N ALL Hml H OK Hmlil 
2N ALL Hml -H OK Hmldl 
! From largest number. 
2N ALL Hdl Hrnl OK Hd2 
2N ALL Hdl O OK Hd2 
2N ALL Hdl -0 OK Hd2 
2N ALL Hdl Hd2 OK Hd2 
2N ALL Hdl Hdl OK Hdl 
2N ALL Hdl -Hdl OK Hd2 
2N ALL Hdl E OK Hd2 
2N ALL Hdl Edl OK Hd2 
2N ALL Hdl Oil OK Hd2 
2N ALL Hdl H ox H 
2N ALL Hdl -H OK Hd2 
2N ALL -Hd l -H ox -H 
2N ALL -Hd 1 H OK -Hd2 
! From smallest normalized number. 
2N ALL E 2 OK Eil 
2N ALL E O xu Edl 
2N ALL E -0 xu Edl 
2N ALL E Eil OK Eil 
2N ALL E Edl xu Edl 
2N ALL E Hml OK Eil 
2N ALL E Hdl OK Eil 
2N ALL E -E xu Edl 
2N ALL E -Hdl xu Edl 
2N ALL E E OK E 
2N ALL E Oil xu Edl 
2N ALL E H OK Eil 
2N ALL E -H xu Edl 
! From largest denormalized number. 
2N ALL Edl 2 OK E 
2N ALL Edl O xu Ed2 
2N ALL Edl E OK E 
2N ALL Edl Ed2 xu Ed2 
2N ALL Edl Hml OK E 
2N ALL Edl Hdl OK E 
2N ALL Ed 1 -Ed 1 xu Ed2 
2N ALL Edl -Hdl xu Ed2 
2N ALL Edl Edl OK Edl 
2N ALL Edl Oil xu Ed2 
2N ALL Edl H OK E 
2N ALL Edl -H xu Ed2 
2N ALL -Edl -2 OK -E 
2N ALL -Edl -0 xu -Ed2 
2N ALL -Edl -E OK -E 
2N ALL -Edl -Ed2 xu -Ed2 
2N ALL -Edl -Hml OK -E 
2N ALL -Ed1 -Hdl OK -E 
2N ALL -Edl Edl :ru -Ed2 
2N ALL -Edl Hdl xu -Ed2 
2N ALL -Edl -Edl OK -Edl 
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2N ALL -Edl -Oil xu -Ed2 
2N ALL -Edl -H OK -E 
2N ALL -Edl H xu -Ed2 
! From smallest denormalized number. 
2N ALL Oil 2 xu Oi2 
2N ALL Oi 1 0 xu 0 
2N ALL Oil Oi2 xu Oi2 
2N ALL Oil Hml xu Oi2 
2N ALL --Oil -0 xu -0 
2N ALL -Oi 1 -Di2 xu -Oi2 
2N ALL --Oil -Hml xu -Oi2 
2N ALL Oil Hdl xu Oi2 
2N ALL Oil O xu 0 
2N ALL Oil -0 XU 0 
2N ALL -Oi 1 -0 xu -0 
2N ALL -Oil O xu -0 
2N ALL Oil -Hdl xu 0 
2N ALL Oi 1 E xu Oi2 
2N ALL Oi 1 Ed 1 xu Oi2 
2N ALL Oil Oil OK Oil 
2N ALL Oil H XU Oi2 
2N ALL Oil -H xu 0 
I From 0. 
2N ALL O 2 xu Oi 1 
2N ALL O O OK 0 
2N ALL O -0 OK O 
2N ALL O Oil xu Oi 1 
2N ALL O -Oil xu -Oil 
2N ALL O Hml xu Oil 
2N ALL O Hdl xu Oil 
2N ALL O -Hdl xu -Oil 
2N ALL O E xu Oil 
2N ALL O Edl XU Oil 
2N ALL O H xu Oil 
2N ALL O -H xu -Oil 
! From-0. 
2N ALL -0 2 xu Oil 
2N ALL -0 -0 OK -o 
2N ALL -0 0 OK -0 
2N ALL -0 Oil xu Oil 
2N ALL -0 -Oil xu -Oil 
2N ALL -0 Hml xu Oil 
2N ALL -0 Hdl xu Qi l 
2N ALL -0 -Hdl xu -Oil 
2N ALL -0 E xu Oil 
2N ALL -0 Edl xu Oi 1 
2N ALL -0 H xu Oil 
2N ALL -0 -H ::ru -Oil 
! From infinity. 
2N ALL H 2 OK Hdl 
2N ALL HO OK Hdl 
2N ALL H -0 OK Hdl 
2N ALL H Hml OK Hdl 
2N ALL H Hdl OK Hdl 
2N ALL H -Hdl OK Hdl 
2N ALL HE OK Hdl 
2N ALL H Edl OK Hdl 
2N ALL H Oil OK Hdl 
2N ALL H HOK H 
2N ALL H -H OK Hdl 
2N ALL -H 2 OK -Hdl 
2N ALL -H O OK -Hd1 
2N ALL -H -0 OK -Hdl 
2N ALL -H -Hml OK -Hdl 

2N ALL -H -Hdl OK -Hdl 
2N ALL -H Hdl OK -Hdl 
2N ALL -H -E OK -Hdl 
2N ALL -H -Edl OK -Hdl 
2N ALL -H -Oil OK -Hdl 
2N ALL -H H OK -Hdl 
2N ALL -H -H OK -H 
! Next-afters 
2N ALL Q O OK Q 
2N ALL Q -0 OK Q 
2N ALL O Q OK Q 
2N ALL -0 Q OK Q 
2N ALL Q 1 OK Q 
2N ALL Q -1 OK Q 
2N ALL 1 Q OK Q 
2N ALL -1 Q OK Q 
2N ALL Edl Q OK Q 
2N ALL -Edl Q OK Q 
2N AL.:., Q Edl OK Q 
2N ALL Q -Edl OK Q 
2N ALL Q Oil OK Q 
2N ALL Q -Oil OK Q 
2N ALL Oil Q OK Q 
2N ALL -Oil Q OK Q 
2N ALL Q Hdl OK Q 
2N ALL Q -Hdl OK Q 
2N ALL Hdl Q OK Q 
2N ALL -Hdl Q OK Q 
2N ALL Q H OK Q 
2N ALL Q -H OK Q 
2N ALL H Q OK Q 
2N ALL -H Q OK Q 
2N ALL Q Q OK Q 
2N ALL S O i Q 
2N ALL S -0 i Q 
2N ALL O S i Q 
2N ALL -0 S i Q 
2N ALL S 1 i Q 
2N ALL S -1 i Q 
2N ALL 1 S i Q 
2N ALL -1 S i Q 
2N ALL Edl Si Q 
2N ALL -Ed 1 S i Q 
2N ALL S Edl i Q 
2N ALL S -Ed 1 i Q 
2N ALL S Oil i Q 
2N ALL S -Oi 1 i Q 
2N ALL Oil S i Q 
2N ALL -Oil S i Q 
2N ALL S Hd 1 i Q 
2N ALL S -Hd 1 i Q 
2N ALL Hdl S i Q 
2N ALL -Hd 1 S i Q 
2N ALL S H i Q 
2N ALL S -H i Q 
2NALLHSiQ 
2N ALL -H S i Q 
2N ALL Q S i Q 
2N ALL S Q i Q 
2N ALL S S i Q 
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! ScaJb test vectors. Those with 
! 2nd arguments that overflow 
! the integer format are commented 
I out, since the response to 
I :float.ing->integer conversion on 
I overflow is system-dependent 
I 
! Warm ups. 
2S ALL 1 1 OK 2 
2S ALL -1 l OK -2 
2S ALL l -1 OK 1ml 
2S ALL -1 -1 OK -lml 
2S ALL 1 3 OK 8 
2S ALL 1 -3 OK lm3 
2S ALL 9 9 OK 9p9 
2S ALL 9 -9 OK 9m9 
2S ALL 7 8 OK 7p8 
2S ALL -7 -8 OK -7m8 
2S ALL 5 O OK 5 
2S ALL 5 -0 OK 5 
2S ALL -5 -0 OK -5 
! Big numbers. 
2S ALL Hml -8 OK Hm9 
2S ALL Hm9 8 OK Hml 
2S ALL Hdl -9 OK Hdlm9 
2S ALL Hdlm9 9 OK Hdl 
2S ALL -Hdl -9 OK -Hdlm9 
2S ALL -Hdlm9 9 OK -Hdl 
2S ALL Hdl O OK Hdl 
2S ALL Hdl -0 OK Hdl 
I Overflows. 
2S >= Hml 1 xo H 
2S <= -Hml 1 xo -H 
2S s>= 1 lp7 xo H 
2S s<= -1 lp7 xo -H 
I 2S >= 1 Hm9 :xo H 
2S ds>= 1 lp9p5 xo H 
I 2S >= 1 Hd 1 XO H 
2S ds<= -1 lp9p5 xo -H 
! 2S <= -1 Hdl XO -H 
I 2S >= lm9 Hm9 :xo H 
2S >= Hd l l :XO H 
2S >= Hm9 9 xo H 
2S ds>= E lp9p5 xo H 
2S ds>= Edl lp9p5 xo H 
2S ds>= Oil lp9p5 xo H 
2S ds<= -Oil lp9p5 xo -H 
! 2S >= E Hml xo H 
! 2S >= Edl Hml xo H 
I 2S >= Oil Hml :xo H 
I 2S <= --Oil Hml xo -H 
2S <0 Hml 1 xo Hdl 
2S >0 -Hml 1 xo -Hdl 
2S s<O 1 lp7 xo Hdl 
2S s>O -1 lp7 xo -Hdl 
I 2S <0 1 Hm9 xo Hd 1 
2S ds<O l lp9p5 xo Hdl 
12S <0 l Hdl XO Hdl 
2S ds>O -1 lp9p5 xo -Hdl 
! 2S >0 -1 Hdl :XO -Hdl 
I 2S <0 lm9 Hm9 xo Hdl 
2S <0 Hdl 1 XO Hdl 
2S <0 Hm9 9 xo Hdl 
2S ds<O E lp9p5 xo Hdl 

2S ds<O Edl lp9p5 xo Hdl 
2S ds<O Oil lp9p5 xo Hdl 
2S ds>O -Oil lp9p5 xo -Hdl 
! 2S <0 E Hml xo Hdl 
! 2S <0 Edl Hml xo Hdl 
! 2S <0 Oil Hml :xo Hdl 
! 2S >O --Oil Hml :xo -Hdl 
I Tiny operand. 
2S s E lp7 OK 4 
2S s Edl lp7 OK ld2p2 
2S s -Edl lp7 OK -ld2p2 
2S d E lp7p3 OK 4 
2S d Edl lp7p3 OK ld2p2 
2S d -Edl lp7p3 OK -ld2p2 
2S ALL Oil 1 OK Oi2 
2S ALL -Oil 1 OK -Oi2 
2S ALL Oi2 -1 OK Oil 
2S ALL Oil 3 OK Oi8 
2S ALL Oi8 -3 OK Oil 
2S ALL Edl 1 OK Epld2 
2S ALL Epld2 -1 OK Edl 
2S ALL Edl O OK Edl 
2S ALL Edl -0 OK Ed 1 
! Underflows. 
2S <=0 Oil -1 XU 0 
2S > Oil -1 xu Oil 
2S >=0 -Oil -1 XU -0 
2S < -Oil -1 xu -Oil 
2S <0 Oi3 -2 xu 0 
2S => Oi3 -2 xu Oil 
2S <=0 Oi9 -3 XU Oil 
2S > O:i9 -3 xu Oi2 
2S => Oi3 -1 xu Oi2 
2S 0< Oi3 -1 xu Oil 
2S >= Epldl -1 xu E 
2S 0< Ep ldl -1 xu Edl 
2S >= Ep9dl -9 xu E 
2S 0< Ep9dl -9 xu Edl 
2S <=Ods 1 -lp9p5 :xu 0 
2S >ds 1 -lp9p5 xu Oil 
I 2S <=0 1 -Hml :xu 0 
! 2S > 1 -Hml xu Oil 
2S <= -Ep9dl -9 xu -E 
2S 0> -Ep9dl -9 xu -Ed 1 
2S >=Ods -1 -lp9p5 xu -0 
2S <ds -1 -lp9p5 xu --Oil 
2S <=Ods E -lp9p5 xu 0 
2S >ds E -lp9p5 xu Oil 
2S <=Ods Oil -lp9p5 xu 0 
2S >ds Oil -lp9p5 xu Oil 
2S >=Ods -Oil -lp9p5 xu -0 
2S <ds -Oil -lp9p5 xu --Oil 
I 2S >=0 -1 -Hml xu -0 
! 2S < -1 -Hml xu -Oil 
! 2S <=0 E -Hml xu 0 
! 2S > E -Hml xu Oil 
! 2S <=0 Oil -Hdl xu 0 
! 2S > Oil -Hdl xu Oil 
! 2S >=0 -Oil -Hdl xu -0 
! 2S < -Oil -Hdl xu -Oil 
I Infinity operands. 
2S ALL H o OK H 
2S ALL H -0 OK H 
2S ALL -H O OK -H 
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2S ALL -H -0 OK -H 
2S ALL H 1 OK H 
28 ALL H lp9p5 OK H 
2S ALL H -lp9p5 OK H 
2S ALL -H lp9p5 OK -H 
28 ALL -H -lp9p5 OK -H 

28 ALL H Hd 1 OK H 
2S ALL H -Hdl OK H 
28 ALL -H Hdl OK -H 
2S ALL -H -Hdl OK -H 
28 ALL 1 H OK H 
2S ALL Hd 1 H OK H 
2S ALL Oil H OK H 
2S ALL H H OK H 
2S ALL -H H OK -H 
28 ALL H -H i Q 
28 ALL O H i Q 

! Zeros. 
2S ALL O 1 OK 0 
28 ALL O lp9p5 OK 0 
2S ALL O -lp9p5 OK 0 
! 2S ALL O Hdl OK 0 
!2S ALL O -Hdl OK 0 
2S ALL O O OK 0 
28 ALL O -0 OK O 
28 ALL -0 1 OK -0 
I 2S ALL -0 Hdl OK -0 
I 2S ALL -0 -Hdl OK -0 
2S ALL -0 -0 OK -0 
28 ALL -0 O OK -0 
! NaNs. 
28 ALL Q 1 OK Q 
28 ALL Q lp9p5 OK Q 
2S ALL Q -lp9p5 OK Q 
I 2S ALL Q H OK Q 
! 2S ALL Q -Hdl OK Q 
! 2S ALL Q H OK Q 
I 28 ALL Q -Hdl OK Q 
I 28 ALL Q -H OK Q 
! 28 ALL Q Hdl OK Q 
28 ALL Q O OK Q 
I 28 ALL Q Q OK Q 
! 2S ALL 1 Q OK Q 
I 2S ALL H Q OK Q 
! 2S ALL -H Q OK Q 
I 28 ALL O Q OK Q 
28ALLSliQ 
2S ALL S lp9p5 i Q 
28 ALL S -lp9p5 i Q 
28 ALL S lp9p5 i Q 
2S ALL S -1p9p5 i Q 
! 28 ALL S H i Q 
! 28 ALL S -Hdl i Q 
! 2S ALL S -H i Q 
I 2S ALL S Hdl i Q 
2SALLSOiQ 
! 2S ALL S S i Q 
! 28 ALL Q S i Q 
128 ALL S Q i Q 
128 ALL 1 S i Q 
12S ALLHSiQ 
! 2S ALL -H S i Q 
12S ALL O S i Q 
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! 
! Test vectors for the fraction part 
! or number as if with in..firrite range. 
! 
! Mid-range. 
2F ALL 1 0 OK 1 
2F ALL -1 0 OK -1 
2F ALL 2 0 OK 1 
2F ALL 3 0 OK 3ml 
2F ALL 4 0 OK 1 
2F ALL 5 O OK 5m2 
2F ALL 6 O OK 6m2 
2F ALL 7 0 OK 7m2 
2F ALL -7 0 OK -7m2 
2F ALL 8 0 OK 1 
2F ALL 9 O OK 9m3 
2F ALL lil O OK lil 
2F ALL 2il O OK lil 
2F ALL 3il O OK 3mlil 
2F ALL 4il O OK 1i1 
2F ALL 5il O OK 5m2il 
2F ALL 6il O OK 6m2il 
2F ALL 7il O OK 7m2il 
2F ALL Bil O OK lil 
2F ALL 9il O OK 9m3il 
2F ALL -9i 1 O OK -9rn3i 1 
2F ALL ldl O OK 2dl 
2F ALL 2dl O OK 2dl 
2F ALL 3dl O OK 3dlml 
2F ALL 4dl O OK 2dl 
2F ALL 5dl O OK 5dlm2 
2F ALL 6d1 0 OK 6dlm2 
2F ALL 7dl O OK 7dlm2 
2F ALL Bdl O OK 2dl 
2F ALL -Bdl O OK -2dl 
2F ALL 9dl O OK 9dlm3 
! Small. 
2F ALL E O OK 1 
2F ALL -E O OK -1 
2F ALL Eil O OK lil 
2F ALL Edl O OK 2d2 
2F ALL Ei8 0 OK liB 
2F ALL Ed4 O OK 2d8 
2F ALL Oil O OK 1 
2F ALL -Oil O OK -1 
2F ALL Oi8 0 OK 1 
2F ALL Oi9 O OK 9m3 
2F ALL Epldl O OK 2dl 
2F ALL Epld9 0 OK 2d9 
2F ALL Eplil O OK lil 
I Large. 
2F ALL Hml O OK 1 
2F ALL Hdl O OK 2dl 
2F ALL -Hml O OK -1 
2F ALL -Hdl O OK -2dl 
2F ALL Hd9 O OK 2d9 
2F ALL Hmlil O OK lil 
2F ALL Hmli8 0 OK li8 
2F ALL Hmldl O OK 2dl 
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! LogB test vectors 
2L ALL l O OK 0 
2L ALL 2 O OK 1 
2L ALL -2 0 OK l 
2L ALL 3 0 OK 1 
2L ALL 4 O OK 2 
2L ALL 5 0 OK 2 
21 ALL 6 O OK 2 
2L ALL 7 0 OK 2 
21 ALL 8 O OK 3 
21 ALL 9 0 OK 3 
2L ALL lp9 0 OK 9 
2L ALL 2pB O OK 9 
21 ALL 3pB O OK 9 
21 ALL -3pB O OK 9 
21 ALL 4p7 O OK 9 
21 ALL 5p7 0 OK 9 
21 ALL 6p7 O OK 9 
21 ALL 7p7 O OK 9 
21 ALL Bp6 0 OK 9 
21 ALL 9p6 O OK 9 
21 ALL lp9dl O OK 8 
2L ALL 2pBdl O OK 8 
21 ALL 3pBdl O OK 9 
21 ALL 4p7dl O OK B 
21 ALL -4p7dl O OK 8 
21 ALL 5p7dl O OK 9 
21 ALL 6p7dl O OK 9 
21 ALL 7p7dl O OK 9 
21 ALL Bp6dl O OK 8 
21 ALL 9p6dl O OK 9 
21 ALL 1ml O OK -1 
21 ALL 3ml O OK 0 
2L ALL 3m2 O OK -1 
21 ALL 9ml O OK 2 
21 ALL 9m2 O OK 1 
21 ALL 9rn3 0 OK 0 
21 ALL 9m4 O OK -1 
21 ALL 9m5 0 OK -2 
21 ALL 9m6 O OK -3 
21 ALL -9m6 0 OK -3 
21 ALL 9m7 0 OK -4 
21 ALL 9mB O OK -5 
21 ALL ldl O OK -1 
21 ALL 2d1 0 OK 0 
21 ALL 3d1 O OK 1 
21 ALL 4dl O OK 1 
21 ALL 5dl O OK 2 
21 ALL 6d1 0 OK 2 
21 ALL 7d1 O OK 2 
21 ALL Bdl O OK 2 
21 ALL -6d1 O OK 2 
21 ALL 9dl O OK 3 
21 ALL lmldl O OK -2 
21 ALL 3mldl O OK 0 
21 ALL 3rn2dl O OK -1 
21 ALL 9mldl O OK 2 
21 ALL 9rn2d 1 0 OK l 
21 ALL 9m3dl O OK 0 
21 ALL 9m4dl O OK -1 
2L ALL 9m5d 1 O OK -2 
21 ALL 9m6d 1 0 OK -3 
21 ALL 9m7d 1 O OK -4 
21 ALL 9mBd 1 O OK -5 

2L ALL -9m7dl O OK -4 
21 ALL lpBpB O OK lp4 
21 ALL lpBp8pBp8 0 OK lp5 
21 ALL lp8p8p8pBpBpBpBp8 0 OK 1p6 
21 ALL lp8p8p8pBpBp8pBp8i9 0 OK lp6 
21 ALL -lp8pBpBpBp8p8p8p8i9 0 OK lp6 
21 ALL 1m8mB O OK -lp4 
21 ALL lm8m8m8m8 0 OK -lp5 
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21 ALL lm8m8m8mBm8m8mBmB O OK -lp6 . 
21 ALL lmBm8m8m8mBm8mBmBi9 0 OK -lp6 
21 ALL -lmBmBm8m8mBm8mBmBi9 0 OK -lp6 
! Exceptional cases. 
21 ALL Q O OK Q 
21 ALL S O i Q 
21 ALL H o OK H 
21 ALL -H O OK H 
21 ALL O O z -H 
21 r:.~. -0 O z -H 



APPENDIX C 

Test Program for P754 Arithmetic - Version 2.0 

f• 
•• FPTEST: Program to test IEEE jloating-poi:nt units. 
•• Written by Jim Thomas and Jerome Goonen, 5 Jan 83 . 
•• 
•• Overview: FPTEST is a general Pascal program suitable for testi:ng 
•• different floating-poi:nt units. FPTEST calls certain procedures and 
•• functions from a unit FP; these are specific to the system being 
•• tested . 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 

On.lJ input file contains a list of filenames of test files . 
These files contain test vectors, one per li:ne . 
Each test vector specifies environment, operands, arithmetic 
operation, correct result, and correct exception flags for a 
given test. FPTEST sets the environment, 
performs the operation on the operands, checks the 
result and flags obtained with those speciJied i:n the test vector, 
and reports discrepancies to a specified output file . 

•• Use: FPTEST begins with a series of questions for the user: 
•• Verbose? -- printing all is slow but aids debugging. 
•• Check flags? -- check flags as well as numeric results? 
•• Stop on errs? -- or conti:nue, listing all to the output file. 
•• Single? Double? Extended? -- which formats are to be tested? 
• • File with list of test files? 
• • Ou.tput file? 
•• 
•• Test Vectors: An example: 
•• 

Version 
& Op Modes Oprndl Oprnd2 Flags Result Comment 

•• 
•• 
•• 
•• 
•• 

2+ = 4d1 Ju3 X 4 check roundi:ng 

•• Each test vector consists of seven fields: version number 
•• and operator; rounding mode and precisions; 1st operand; 2n,d operand; 
•• flags; result; and comment. The fields are separated by white 
•• space {blanks and/or tabs); th-us, no field but the last may be blank, 
•• and only the last field can itself contain white space. Each line 
•• in a file of test vectors must be blank, a test vector, or a comment 
•• Line beginnig with an excla:m.ationpoint {!) . 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 

In the example, 
version = 2 
operator = addition (+) 
rounding = round to nearest (=) 
precision = single (s) 
Jst operand= 4 decremented by 1 in its least significant bit, 

to single precision (4d1) 
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•• 
•• 
•• 
•• 
•• 
•• 
•• 

2nd operand= 3units in the last place of 1, to smgle 
precision ( 1u3) 
= inexact (x) flag 

resu.lt 
comment 

=4 
= check rounding. 

•• Operators: 
•• The operators available with this version of FPTES Tare +, - , •, 
•• /, V (square root), % (remainder), I (round to integer), N (next-
•• after),~ (negate),@ (copy sign), A {absolute value), S (scalb), 
•• L {logb), F {fraction part). and C (compare) . 
•• 
•• Modes: 
•• The rou:nd:ing modes are = (to nearest), > (toward +INF), 
•• < (toward -INF), and O (toward zero). The precisions are 
•• s {s-i:ngle), d {double), and e (extended). Both operands and the 
•• "correct" result will be constructed in the specified precision. 
•• The test vector is processed only if its precision is one of those 
•• initially requested by the user. If no rounding mode is specified 
•• then all are tested, and similarly for the precisions. The 
.. placekeeper ALL is used when there are no mode or precision 
•• restrictions . 
•• 
•• Flags: 
•• The flags are i {invalid), o (overflow), x {inexact), 
•• z {divide by zero), and u, v, and w {underflow). A 'w' flag 
•• indicates that underflow must be signaled O'nly if the 
•• floati:ng-point implementation tests for tininess before rounding. 
•• A 'v' flag indicates that underflow mu.st be signaled 
•• unless the floating-point detects underflow as a loss of 
•• accuracy due to denormalization. A 'u.' indicates that 
•• all implementations must signal underflow. OK indicates 
•• no exceptions signaled . 
•• 
•• Numeric Value Specifiers: 
•• These specifiers a,re scanned left to right. They consist 
•• of an optional sign, a root number, and one or more optional 
•• modifiers for the root number. The sign is specified by + or -
•• as usual, though the + may be omitted. The root number is 
•• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, H {infinity), E {the smallest 
•• normalized power of 2, Q (a qu,iet NaN), and S (a signaling NaN). 
•• Each modifier is a letter, i (increment in the last place), 
•• d {decrement in the last place), u (units in the last place), 
•• p {plus exponent bias), or m (minus exponent bias), followed by 
•• a. smgle digit. "[m,its in the last place" refers to bina:ry units. 
•• The following examples illustrate the notation: 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 

3i2 = 3 incremented by 2 units in its last place, i.e. the 
2nd representable number aJter 3 . 

1u3 = 3units in the last place of 1, e.g. 3 • 2----23in s-i:ngle . 
Hdl = the largest finite number . 
Hml = the largest power of 2 . 
Edl = the largest denormal number . 
Oil = the smallest positive denormal number . 
3ml = 3 • 2----1 = 1 V2 . 
9p3= 9• 2-3= 72 . 
-ldl = the 1st number greater than -1 (note that the minus is 
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•• 
•• 
•j 

C.3 

applied la..st) . 

program FPTEST; FPTEST 
uses 

FPSoft, ! • 'i:nterface to software jloating-po'i:nt arithmetic •I 
FP; f • interface to test routines •j 

f• 
•• Type StrB, string[B]. is defined 'i:n Jp. The XXXStr values 
•• are parsed from LinBuj. The XXXLim values limit tests 
•• to certain rounding modes and precisions. PossErrs is 
•• the list of possible error flags. 
•j 
PossErrs, RndLim, PrcLim, PrcStr, FlgStr, CF!gStr: Str8; 

f• 
•• Type Str90, string[90], is defined infp. LinBuf is the input 
•• buffer for test vectors, TmpBuf is for VO utilities, and the 
•• Str XXX variables are the string values in L'i:nBuf represent'i:ng 
•• numerical a:rguments. 
•j 
LinBuI, TmpBuI, StrArgl, StrArg2, StrRes: Str90; 

f• 
•• Type [mp Form is defined 'i:n Jp. The [mpXXX variables contain 
•• values from the corresponding StrXXX variables. The folloVJi:ng 
•• integer variables refer to the r.mpXXX record, for a given 
•• precision. 
•j 
UnpArgl, UnpArg2, UnpRes: UnpForm; 
MaxExp, MinExp, SigBits, LowBit, LowByte : integer; 

f• 
•• Type PckForm is defined in Jp. The PckXXXva:riables contain 
•• values packed from the corresponding UnpXXX variables. 
•j 
PckArgl,PckArg2,PckRes,PckFnd.Res:PckForm; 

1· 
•• UJlowType is defined in Jp. It tells which of the th:ree 
•• P754 definitions of underflow is in effect. 
•j 
UflowOpt: UflowType; 

Whitespace: set of char; !• contains <space> and <tab> •I 

f• 
•• FlgErr and NumErr record errors; OtkF1.gErr determines whether 
•• flags are to be checked; StopOnErr determines whether to stop 
•• onfu.rther errors. Verbose requests same. The L'i:nOu.t flag 
•• records whether 'i:nput line and unpacked values mask has been 
•• printed yet. 
•1 
FlgErr, NumErr, ChkFlgErr, StopOnErr, 



1• 

Verbose, LinBufOut : boolean; 

1• 
•• The Xpt-r a:re indexes into argument and line buffer strings. 
•• Dots, errors and successful tests are counted by XXXC'nt. 
•1 
aptr, lptr, DotCnt, FlgErrCnt, NumErrCnt, OKCnt : integer; 

1· 
•• pc and re a:re the current precision and rounding characters. 
•• rev and operator are the revision number and arithmetic 
•• operator parsed from LinBuf. The XXXRes are the results 
•• of comparisons. 
•! 
pc, re, rev, operator, CmpRes, CCmpRes: char; 

1· 
•• List Pile contains a list of potential InFile's containing 
•• test vectors. Error reports are written to OutFile. 
•j 
ListFile, lnFile, OutFile : text; 
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• • CaJ,led by Add Ulps and AddExp to normalize an UnpForm. 
•j 
procedure Normalize(var r: UnpForm); Normalize 

Tar 

begin 

end; 

i, c, t : integer; 

while (r.man[ 1] < 128) and {r.exp > MinExp) do 
begin 

end 

c:= O; 
for i := MANLEN d01JI1to 1 do 
begin 

t := r.man[i] • 2 + c; 
if t > 255 then 
begin 

end 
else 
begin 

end 
end; 
r.exp:=r.exp-1 

r.man[i] := t - 256; 
C := 1 

r.man[i] := t; 
C := 0 



1• 
• • Called by Bu:ildNum. 
•• Add n ulps to the number in UnpForm rand normalize the result 
•• as much as possible. This routine is complicated by the need 
•• to do bit operations using Pascal types. 
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•J 
procedure AddUJps(var r : UnpForm; n : integer); AddUlps 

Yar 

begin 

c, i, j, t : integer; 

if n >= 0 then 

1· 
.. Add one ulp at a time up to n. This is much easier 
•• than t7-ying to add all a:t once. Integer c propagates 
•• the carry-out from byte to byte. 
•1 
for i := 1 ton do 
begin 

end 

c := LowBit; 
for j := LowByte down.to 1 do 
begin 

end; 

t := r.man[j] + c; 
if t > 255 then 
begin 

end 
else 
begin 

end 

r.manLl] := t - 256; 
C := 1 

r.man[j] := t; 
C := 0 

if C = 1 then 
begin 

f • Carry out of left end? •I 

end 

r.man[ 1] := 128; 
r.exp := r.exp + 1 

for i := 1 to -n do 
begin 

C := LowBit; 
for j := LowByte down.to 1 do 
begin 

t := r.man[j] - c; 
if t < 0 then 
begin 

end 
else 

r.man[jJ := t + 256; 
C := 1 



begin 

end 
end; 

r.man[j] := t; 
C := 0 
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if (r.man[ 1] < 128) and (r.exp > MinExp) then 
begin 

end; 

1• 

end 
end; 

Normalize(r) 

r.man[l] := r.man[l] + 128; 
r.exp := r.exp - 1 

• • Called by Bu:ildNum. 
•• Add n to the exponent of UnpForm r, taking account of 
•• the bottom of the exponent range. If the number mu.st 
•• be denormalized, shift right by a given number of bytes and 
•• then normalize to the extent possible. 
•1 
procedure AddExp(,rar r: UnpForm; n: integer); 

YB.r 

begin 

end; 

f• 

i, j : integer; 

r.exp := r.exp + n; 

if r.exp < MinExp then 
begin 

i := ((MinExp - r.exp) div 8) + 1; 
for j := MANLEN down.to (i + 1) do 

r.rnan[j] := r.man[j - i]; 
for j := 1 to i do 

r.man[j] := O; 
r.exp := r.exp + (i • 8) 

end; 

Normalize(r) 

•• Called by BuildNum. 
•j 
procedure HexFloating(s: Str90; YBr r: UnpForm); 

Tar 

i, val : integer; 
HiNib, more : boolean; 

begin 

AddExp 

HexFloating 



aptr := aptr + 1; f • skip over S •j 

HiNib := true; f • place first nibble in high half of byte •j 
i := 1; J• index of first man[] •j 
more := true; 
while more and (aptr <= length(s)) do 
begin 

end; 

case s[ aptr] of 

'O' '1' '2' '3' '4' '5' '6' '7' '8' '9'· 
' ' ~al:~ ord(s(°apt;]) ...'.. ord('O;); 

"A", "B"'J .,C.._ 'D". "E", "F": 
val:= ord(s[aptr]) - ord('A') + 10; 

"'a', "b.,, 'c". "d"', ""e", "f": 
val:= ord{s[aptr]) - ord('a') + 10; 

otherwise more := false 

end; 

if more then 
begin 

end 

if HiNib then 
val := val • 16 ! • Left-align nibble in byte •j 

else 
i := i - 1; f • recover from last i := i + 1 •j 

r.man[i] := r.man[i] + val; 
i := i + 1; 
HiNib := not HiNib; 
aptr := aptr + 1 

r.exp := O; 
i := 1; f • exponent sign carrier •j 
if aptr <= length(s) then 
begin 

if s[aptr] = ,_, then 
begin 

aptr := aptr + 1; 

if aptr <= length(s) then 
if s[aptr] ='+'then 

aptr := aptr + 1 
else if s[aptr] =,_,then 
begin 

end; 

more:= true; 

aptr := aptr + 1; 
i := -1 

while more and (aptr <= length(s)) do 
if (ord('O') <= ord(s[aptr])) 
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DD.d (ord('9') >= ord(s[aptr])) then 

r.exp := (r.exp • 10) 



C.B 

+ (ord(s(aptr]) - ord('O')); 
aptr := aptr + 1 

end; 

1• 

end 
end; 

r.exp := r.exp • i; 

end 
else 

more := false 

aptr := aptr - 1 I• because will increment upon return •l 

•• Called by Bu:ildUnpOps. 
•l 
procedure BuildNum{s: Str90; Tarr: UnpForrn); 

begin 

i: integer; 

aptr := 1; f • index into argument string•! 

r.sgn := O; 
ifs[aptr] ='+'then 

aptr := aptr + 1 
else if s(aptr] =,_,then 
begin 

r.sgn := 1; 
aplr := aplr + 1 

end; 

for i : = 1 lo MANLEN do 
r.man[i] := O; 

case s[aptr] of 
'O': r.exp := MinExp; 
'1': begin r.exp := O; r.man[l] := 128 end; 
'2': begin r.exp := 1; r.man[l] := 128 end; 
'3': begin r.exp := 1; r.man[l] := 192 end; 
'4': begin r.exp := 2; r.man[l] := 128 end; 
'5': begin r.exp := 2; r.man[l] := 160 end; 
'6': begin r.exp := 2; r.man[l] := 192 end; 
'7'; begin r.exp := 2; r.man[l] := 224 end; 
'8': begin r.exp := 3; r.man[l] := 128 end; 
'Q': begin r.exp := 3; r.man[l] := 144 end; 
'e', 'E': begin r.exp := MinExp; r.man[ 1] := 128 end; 
'h', 'H': begin r.exp := MaxExp; r.rnan[l] := 128 end; 
'q', 'Q': begin r.exp := MaxExp; r.man[l] := 1 end; 
's', 'S': begin r.exp := MaxExp; r.man[l] := 65 end; 
'S': HexFloating(s, r) 
end; 

aplr := aptr + 1; 

while aptr < length(s) do 

BuildNurn 



begin 
case s[aptr] of 
'i': AddUlps(r, ord(s[aptr+l]) - ord('O')); 
'd': AddUlps(r, ord('O') - ord(s[aptr+l])); 
"u": 

begin 
for i := 1 to MANI.EN do 

r.man[i] := O; 

C.9 

AddUlps(r, ord(s[aptr+l]) - ord('O')) 

end 
end; 

1· 

end; 
'p': AddExp(r, ord(s[aptr+ 1]) - ord('O')); 
'm': AddExp(r, ord('O') - ord(s[aptr+l])) 
end; 

aptr := aptr + 2 

• • Called by Err Report and Bu:ild Unp Ops. 
•1 
procedure DispMask; 
begin 

end; 

1· 

writeln(OutFile); 
writeln(OutFile, 'rev:', rev,' op:', operator); 
writeln(OutFile, 'Modes: ', RndLim, , Precs: ', PrcLim); 
writeln(OutFile, 'FlgStr: ', FlgStr, ' '); 
FpShow(PckArgl, TmpBuf, pc); 
write(OutFile, 'PckArgl :', TmpBuf); 
FpShow(PckArg2, TmpBuf, pc); 
writeln(OutFile,' PckArg2 :', TmpBuf) 

•• Called by Err Report. 
•1 
procedure DispRes; 
begin 

writeln(OutFile); 

DispMask 

DispRes 

writeln(OutFile, 'Rnd:', re,' CFlags:', CF!gStr,' Flags:', FlgStr); 

end; 

if operator = 'C' then 

else 
begin 

end 

writeln(OutFile,'Computed: ',CCmpRes, ' Should be:', CmpRes) 

FpShow{PckFndRes, TmpBuf, pc); 
write(OutFile, 'Computed: ', TmpBuf); 
FpShow{PckRes, TmpBuf, pc); 
writeln(OutFile, ' Should be: ', TmpBuf) 



1• 
•• Called by TestLoop. 
•• Pirst, the string operands a:re bu:ilt in the generic unpacked 
•• format UnpForm, then they are packed into the va:riant record 
•• PckForm according to the precision pc. 
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•1 
procedure BuildUnpOps; Build Unp Ops 

Tar 

begin 

i: integer; 

case pc of 

's': 
begin 

end; 

'd': 
begin 

end; 

begin 

end 

end; 

MaxExp := 128; 
MinExp := -126; 
SigBits := 24; 
LowBit := 1; 
LowByte := 3 

Max.Exp := 1024; 
MinExp := -1022; 
SigBits := 53; 
LowBit := 8; 
LowByte := 7 

MaxExp := EXTMAXEXP; 
MinExp := EXTMINEXP; 
SigBits := EXTSIGBITS; 

LowBit := 1; 
i := {EXTSIGBITS mod 8); 
while (i 1nod 8) <> 0 do 
begin 

end; 

LowBit := LowBit + LowBit; 
i := i + 1 

LowByte := (EXTSIGBITS + 7) div 8 

BuildNum(StrArgl, UnpArgl); 
FpPack(UnpArgl, PckArgl, pc); 

BuildNum(StrArg2, UnpArg2); 
FpPack(UnpArg2, PckArg2, pc); 

if operator<> 'C' then 



end; 

f• 

begin 

end; 

BuildNum{StrRes, UnpRes); 
FpPack{UnpRes, PckRes, pc) 

if Verbose then 
DispMask 

• • Called by Test Loop to 
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•• set rou.nding mode, clear error flags, a:nd compu.te. 
•j 
procedure ComputeResult; 
begin 

Co-mputeResult 

end; 

f• 

FpSetRound(rc); 
FpClearFlags; 

case operator of 

end 

'+': FpAdd {PckArg1, PckArg2, PckFndRes, pc); 
'-': FpSub {PckArgl, PckArg2, PckFndRes, pc); 
,.,: FpMul {PckArgl, PckArg2, PckFndRes, pc); 
'l': FpDiv {PckArgl, PckArg2, PckFndRes, pc); 
'V': FpSqrt {PckArgl, PckFndRes, pc); 
'%': FpRem {PckArgl, PckArg2, PckFndRes, pc); 
'C': FpCmp (PckArgl, PckArg2, CCmpRes, pc); 
'I': Fplnt (PckArgl, PckFndRes, pc); 
'N': FpNxt (PckArgl, PckArg2, PckFndRes, pc); 
'~': FpNeg (PckArgl, PckFndRes, pc); 
'@': FpCpySgn(PckArg 1, PckArg2, PckFndRes, pc); 
'S': FpScl (PckArgl, PckArg2, PckFndRes, pc); 
'L': FpLog {PckArgl, PckFndRes, pc); 
'A': FpAbs (PckArgl, PckFndRes, pc); 
'F': FpFrc (PckArgl, PckFndRes, pc) 

•• Called by TestLoop to check the error flags. 
•1 
procedure FlgChk; 

..ar 

begin 

i: integer; 
ChrStr : string[ 1]; 

CF!gStr := "; 
FlgErr := false; 

for i := 1 to length(PossErrs) do 
if FplfX(PossErrs[i]) then 
begin 

ChrStr := copy(PossErrs, i, 1); 

FlgChk 
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CFlgStr := concat(CFlgStr, ChrStr); 
FlgErr := FlgErr or (pos(ChrStr, FlgStr) = 0) 

end; 

FlgErr := ChkFlgErr and (FlgErr or {length(FlgStr) <> length(CFlgStr))) 
end; 

f• 
•• Called by TestLoop to check the numerical result. 
•• If both operands are NANs, they needn't be equal. 
•• Comparisons have a one-character result. 
·! 
procedure NurnChk; 
begin 

if operator<> 'C' then 
begin 

NurnErr := not FpEqual(PckFndRes, PckRes, pc); 

NumChk 

if FplsNAN(PckFndRes, pc) and FpisNAN(PckRes, pc) then 
NurnErr := false 

end; 

f• 

end 
else 

NurnErr := CCmpRes <> CmpRes 

•• Called by Err Report and main program. 
•• Asks u.ser Ye:;/No question, rkfau.lting to yes. 
•! 
function 1nYesNo(Query: Str90) : boolean; 
begin 

writeln; 
write(Query,' [default Y]? '); 
readln(TmpBuf); 
1nYesNo := true; 
if (length(TmpBuf) > 0) then 

lnYesNo := not (TmpBuf[l] in ['n', 'N']) 
end; 

1• 
•• Called by TestLoop. 
•• If OK, print a dot (no more than 50per line). 
•• Otherwise display bad news and stop if requested. 
•1 
procedure ErrReport; 
begin 

if not (FlgErr or NumErr) then 
begin 

OKCnt := OKCnt + 1; 
DotCnt := DolCnt + 1; 
if DotCnt > 50 then 
begin 

DotCnt := O; 

InYesNo 

Err Report 



end; 

t· 

end; 

writeln(OutFile) 
end; 
write(OutFile, '.') 

if (FlgErr or NumErr) and (not LinBufOut) then 
begin 

end; 

LinBufOut := true; 
writeln(OutFile); 
writeln(OutFile, LinBuf); 
DispMask 

if Verbose or FlgErr or NumErr then 
DispRes; 

if NumErr then 
begin 

end; 

NurnErrCnt := NumErrCnt + 1; 
writeln(OutFile, 'NUM ERROR') 

if FlgErr then 
begin 

end; 

FlgErrCnt := FlgErrCnt + 1; 
writeln(OutFile, 'FLAG ERROR') 

if (FlgErr or NumErr) and StopOnErr then 
StopOnErr := InYesNo('Keep stopping on errors') 

•• Called by Readl.Dop. 
••Fora given parsed input line, coordinate the tests for 
•• each desired precision and rounding mode, and check results. 
•1 
procedure TestLoop; 

begin 

i, ir, ip: integer; 

t• 
•• For each precision, run the tests Jor this lme. 
•j 
for ip := 1 to length(PrcLim) do 
begin 

pc:= PrcLim[ip]; 

BuildUnpOps; 

for ir := 1 to length{RndLim) do 
begin 

re := RndLim[ir ]; 
ComputeResult; 
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TestLoop 



end 
end; 

f• 

end 

FlgChk; 
NumChk; 
ErrReport 

•• Called by Parse Line to get revsion number a:nd operator. 
•• If revision number is invalid, then force an illegal 
• • operator code. 
•j 
procedure GetOperator; 
begin 

end; 

f• 

rev := LinBuf[lptr ]; 
lptr := lptr + 1; 
operator := LinBuf[lptr ]; 
lptr := lptr + 1; 

if rev <> '2' then 
operator := '!' 

•• Called by Pa:rseLine to set rounding mode and precisions. 
•• If no rounding modes are specified, test all four. 
•• If no precisions are specified, test all of PrcStr; 
•• otherwise test only tlwse specified that are in PrcStr. 
•• WARNING: if none of the specified precisions a:re in 
•• PrcStr, then test no precisions at all. 
•j 
procedure GetModes; 

var 

begin 

PrcLost : boolean; 
ChrStr : string[ 1]; 

while LinBuf[lptr] in White Space do 
lptr := lptr + 1; 

RndLim := "; 
PrcLim := "; 
PrcLost := false; 

while not {LinBuf[lptr] in WhiteSpace) do 
begin 

ChrStr := copy(LinBuf, lptr, 1); 

ca:se ChrStr[ 1] of 

'=' 'O .. "'< .... >.,· 
' ' llildLi.rn := concat(RndLim, ChrStr); 
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Get Operator 

GetModes 
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,ills', 'd ... , 'e': 
if pos{ChrStr, PrcStr) <> 0 then 

PrcLirn := concal(PrcLim, ChrStr) 

end; 

1• 

else 

end; 

lptr := lptr + 1 
end; 

if length(RndLim) = 0 then 
RndLim := '=<>0'; 

PrcLost := true 

if {not PrcLost) and (length(PrcLim) = 0) then 
PrcLim := PrcStr 

•• Called by Pa:rseLine to get operand strings verbatim. 
•• This routine simple retrieves the next non-white su.btring 
• • of LinBu,f. 
•1 
procedure GetVerbatim(-war s: Str90); 

,rar 

begin 

end; 

1· 

oldptr : integer; 

while LinBuJ[lptr Jin WhlteSpace do 
lptr := lptr + 1; 

oldptr := lptr; I• Start of numeric string. •j 

while not (LinBuf[lptr] in WhiteSpace) do 
lptr := lptr + 1; 

s := copy(LinBuJ, oldptr, (lptr - oldptr)) 

•• Called by Pa:rseLine to place flags in a string. 
•1 
procedure GetFlags; 

begin 

c: char; 
ChrStr : string[ 1]; 

while LinBuf[lptr] in White Space do 
lptr := lptr + 1; 

FlgStr := "; 

Get Verbatim 

GetFlags 



end; 

f• 

ChrStr := '1'; f • I>u.mmy one-character string. •I 

while not (LinBuI[lptr] in Whitespace) do 
begin 

end 

c := LinBuI[lptr]; 

f• 
•• OJ the 3 underflow flags, u --> v --> w. 
•• Set the character in FlgStr to 'u' if 
•• underflow should occur for the system tested. 
•j 
if ( c = 'w') and (UflowOpt = UFLBEF0RE) then 

C := 'u' 
else if (c = 'v') and (Uflow0pt <> UFLIDEAL) then 

C := 'u"; 

ChrStr[l] := c; 
if c in. [ .. x", "'i', 'o", 'u'. 'z'] then 

FlgStr := concat(FlgStr, ChrStr); 

lptr := lptr + 1 I• Slcip over fla.g character. •I 

•• Called by Readlllop to pa:rse the tine of input. 
•1 
procedure ParseLine; 
begin 

lptr := 1; f • Index into LinBu.f. •I 

GetOperator; 
GetModes; 
GetVerbatim{StrArgl); 
GetVerbatim{StrArg2); 
GetF!ags; 
GetVerbatim{StrRes); 
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Parse Line 

if operator= 'C' then f• Compare has character result. •j 
CmpRes := StrRes[ 1]; 

end; 

t· 

if Verbose then f • FJnd line started by parse routines. •j 
writeln(0utFile) 

•• Called by main program to process test vectors. 
•1 
procedure ReadLoop; 

begin 
repeal 

readln(LlstFile, TmpBuf); 
writeln( Out File); 

ReadLoop 



end; 

writeln(OutFile, 'Input file: ', TmpBuf); 
reset(InFile, TmpBuf); 

repeat 
readln(InFile, LinBuf); 
LinBuf := concat(LinBuf, ' '); 

f • end with white space •l 

if Verbose then 
begin 

end; 

wrileln(OutFile); 
writeln(OutFile, LinBuf); 

LinBufOut := Verbose; 

f • Skip lines too short {blank) or starting with'!' •l 
if (length(LinBuI) > 8) and (LlnBuf[ 1] <> '!') then 
begin 

Parse Line; 
TestLoop 

end 
until eof(InFile); 

close(InFile) 
until eof(ListFile); 

begin!• main program •j 

f• 
•• Initialize constants and counters. 
•j 
WhiteSpace := [ chr(32), chr(9) ]; f • space and tab chars•! 
PossErrs := 'iouxz'; 
UflowOpt := UFLBEFORE; 
DotCnt := O; 
FlgErrCnt := O; 
NumErrCnt := O; 
OKCnt := O; 

Verbose := lnYesNo('Verbose'); 
ChkFlgErr := lnYesNo('Check flags'); 
StopOnErr := lnYesNo('Stop on errors'); 

PrcStr := "; 
if lnYesNo('Test Single') then 

PrcStr := 's'; 
if InYesNo('Test Double') then 

PrcStr := concat(PrcStr, 'd'); 
if InYesNo('Test Extended') then 

PrcStr := concat(PrcStr, 'e'); 

writeln; 
write('File with list of test files [default TLIST.TEXT]: '); 
readln(TmpBuf); 
if length(TmpBuf) = 0 then 
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end. 

TmpBuf := 'TLIST.TEXT'; 
reset(LislFile, TmpBuf); 

wrileln; 
wrile('Oulpul file [default CONSOLE:]:'); 
readln(TmpBuf); 
if lenglh(TmpBuf) = 0 then 

TmpBuf := 'CONSOLE:'; 
rewrite{OutFile, TmpBuf); 

ReadLoop; 

writeln(OutFile); 
writeln(OutFile); 
writeln(OutFile, 'Successful tests: ', OKCnt); 
wrileln(OutFile, 'Numerical Errors:', NumErrCnt); 
writeln(OutFile, 'Flag Errors: ', FlgErrCnt); 

close(OutFile); 
close(ListFile) 
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f• 
•• FP: Unit to be used by the program FPTEST for testing the 
•• SANE floating-point unit for Apple computers. 
•• Written by Jim Thomas and Jerome Coonen, 5 Ja:n 83. 

•• 
•.• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•1 

FP uses the SANE Interface and should not requ:ire modification 
unless the SANE Inter/ace or the parameters (in INTERFACE below) 
change . 

The ordering of the bytes in a floating-point number dilfers 
/or different comJYU,ters. On the III, the bytes, from Low address 
to high, run from least to most significant. The order is just 
the opposite for Lisa. This matters in FpPack, which 
converts from type UnpForm to PckForm and in FpShow, which displays 
a number as a string of hex digits (most to Least significa:nt) . 
For the arithmetic routines that logically OR a 1 into 
a double number's least significa:nt bit, the constant LSW 
indicates which is the least significant word 
of a double format number . 

unit FP; 

INTERFACE 

uses FPSoft; 

c:orurt 

type 

f• 
•• SYSTEM-DEPENDENT: index of least significant word of a double 
•• format number. 0 for III, 3 for Lisa. 
•1 
LSW = O; 

EXTMAXEXP = 16384; 
EXTMINEXP = -16383; 
EXTSIGBITS = 64; 
M.AI-.."'LEN = 9; f • MAN LEN= (EXTSIGBITS + 7) div 8 + 1 •! 

UflowType = (UFLIDEAL, UFLAFTER, UFLBEFDRE); 
Str90 = string[90]; 
StrB = string[ 8]; 

UnpForrn = 
record 

sgn: 0 .. 1; f• Ofor + and 1 for- •j 
exp: integer; f • unbiased •j 
man: packed array [1..MM"'LEN] of 0 .. 255 

f • explicit 1-bit to Left of binary point •! 
end; 

PckForm = 
record 

case char of 
's': (s : Single); 
'd': (d : Double); 
'e': (e: Extended); 
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'b': (b : packed array [0 .. 9] of 0 .. 255) 
end; 

procedure FpPack (var x: UnpForrn; -.ara: PckForrn; pc: char); FpPack 

FpShow 

FpaearFlags 

Fp!JX 

procedure FpShow (var a: PckFonn; ,rar v: Str90; pc : char); 

procedure FpClearFlags; 

function FpifX ( err : char) : boolean; 

procedure FpSetRound (rndc : char); 

function FpEqual (var a,b: PckForrn; pc : char): boolean; 

function FpisNAN (var a: PckForrn; pc: char): boolean; 

procedure FpAdd (Yar a,b,c: PckForm; pc: char); 

procedure FpSub (var a,b,c: PckForrn; pc: char); 

procedure FpMul (YBr a,b,c : PckForrn; pc : char); 

procedure FpDiv (var a,b,c: PckForm; pc: char); 

procedure FpRern (YBr a,b,c: PckForrn; pc: char); 

procedure FpNxt (YBr a,b,c : PckForm; pc : char); 

procedure FpScl (Yill" a,b,c: PckForm; pc: char); 

procedure FpLog (YBr a,c : PckForrn; pc : char); 

procedure FpSqrt (YBr a,c : PckForm; pc : char); 

procedure Fpint (YBr a,c : PckForrn; pc : char); 

procedure FpCpySgn (var a,b,c: PckForm; pc: char); 

procedure FpNeg (var a,c : PckForrn; pc : char); 

procedure FpAbs (YBr a,c : PckForrn; pc : char); 

procedure FpFrc (YBr a,c : PckForm; pc : char); 

procedure FpCrnp {var a,b : PckForrn; var c : char; pc : char); 

IMPLEMENTATION 

i • 
.., The following variables a:re used as local temporaries in the 

FpSetRound 

FpEqual 

FpfsNAN 

FpAdd 

FpSub 

Fplv!ul 

FpDiv 

FpRem 

FpNxt 

FpScl 

FpLog 

FpSqrt 

Fpfnt 

FpCpySgn 

FpNeg 

FpAbs 

FpFrc 

FpCmp 

•• routines that follow. They are declared globally for convenience. 
•1 



var 

(• 

t, to : Extended; 
EnvSav : Environ; 
RndSav : RoundDir; 

•• Pack number in UnpForm x into PckForm a with precision pc. 
•• SYSTEM DEPENDENCY: The ordering of bytes in a floating-point 
•• "word" is the vital issu.e here. 

C.21 

•j 
procedure FpPack f • (va:r x : UnpForm; var a : PckForm; pc : char) •I; Fp Pack 

Yar 
i, bexp : integer; 

begin 
case pc of 
"'s' : 

begin 
bexp := x.exp+127; 
a.b[3] := bexp div 2 + 128•x.sgn; 
a.b[2] := (bexp mod.2)•128 + x.man[l] mod 128; 
a.b[l] := x.man[2]; 
a.b[O] := x.man[3]; 
if (x.man[1]<128) and (bexp=l) then a.b[2] := a.b[2]-128 

end; 

'd': 
begin 

bexp := x.exp+1023; 
a. b[7] := bexp div 16 + 128•x.sgn; 
a.b[6] := {bexp mod 16)•16 + (x.man[l] div 8) mod 16; 
for i := 5 downto O do 

a.b[i] := (x.man[6-i] mod 8)•32 
+ x.man[?-i] div 8; 

if (:x.man[1]<128) and (bexp=l) then a.b[6] := a.b[6]-16 
end; 

.-e ... : 
begin 

bexp := x.exp-'-16383; 
a.b[9) := bexp div 256 + 128•x.sgn; 
a.b[B] := bexp mod 256; 
for i := 7 downto Odo a.b[i] := x.man[B-i]; 
if (x.exp = EXTMAXEXP) and (x.man[ 1] > 127) then 

a.b[?] := a.b[?]-128 
end 

end 
end; 

, . 
.. Called by FpShow; returns the hex digit for the nibble n. 
•j 
function Nib2Hex(n: integer): char; Nib2Hex 



begin 

end; 

f• 

if n < 10 then 
Nib2Hex .- chr(ord('O') + n) 

else 
Nib2Hex .- chr(ord('A') + n - 10); 

• • Return with v equal the hexa.deci:mal representation of a. 
•• SYSTEM DEPENDENCY: order of bytes presumed here. 
•j 
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procedure FpShow f • (var a : PckForm; var v : Str 90; pc : char) • I; FpShow 

begin 

end; 

f• 

i, last : integer; 
s : string[3]; 

case pc of 

end; 

V -= ,,. 
• ' 

's': last := 3; 
'd': last := 7; 
'e': last := 9 

for i := last downto Odo 
begin 

end 

S ·=, ,. . ' 
s[2] := Nib2Hex(a.b[i] div 16); 
s[3] := Nib2Hex(a.b[i] mod 16); 
v := concat(v, s) 

•• aear flags. 
•j 
procedure FpC!earFlags; 

YBr 

begin 

end; 

f• 

xcp : Exception; 

for xcp := INVAUD to INEXACT do 
SetXcp(xcp,false) 

• • Return true if! err flag is set. 
•j 

FpaearFlags 



function FplfX f • (err : char) : boolean •l; 

begin 

end; 

f• 

case err of 
'u': FplfX := Test.Xcp(UNDERFLOW); 
'o': FplfX := TestXcp(OVERFLOW); 
'x': FplfX := TestXcp(INEXACT); 
'i': FpifX := TestXcp(INVALlD); 
'z': FplfX := TestXcp(DfVBYZERO) 
end 

•• Set rou:nding modes. 
•j 
procedure FpSetRound f• (rndc : char) •j; 

begin 

end; 

f• 

case rndc of 
'=': SetRnd(TONEAREST); 
'>': SetRnd(UPWARD); 
'<': SetRnd(DOWNWARD); 
'O': SetRnd(TOWARDZERO) 
end 

0 Return true iff a aru:1 b are bit-for-bit equal. 
•! 
function FpEqual f • {a,b : PckFbrm; pc : char) : boolean •j; 

"YB.r 

begin 

end; 

f• 

i, last : integer; 

case pc of 

end; 

's': last:= 1; 
'd' : last:= 3; 
'e' : last := 4 

FpEqual := true; 
for i := 0 to last do 

if a.e[i] <> b.e[i] then 
FpEqual := false 

•• Return true if f a is a NaN. 
·! 
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function FplsNAN I• (var a: PckForm; pc: char): boolean •l; FplsNAN 

sign : integer; 

begin 
case pc of 
's': FplsNAN := (ClassS(a.s,sign)=QNAN) or (ClassS(a.s,sign)=SNAN); 
'd': FpisNAN := (ClassD(a.d,sign)=QNAN) or (ClassD(a.d,sign)=SNAN); 
'e': FpisNAN := (ClassX(a.e,sign)=QNAN) or (ClassX(a.e,sign)=SNAN) 
end 

end; 

(• 
•• FPoperations : 
•• 
•• Perform c <--- a operation b where a, b, and c have precision pc. 
•• The actual procedure is move b to extended, operate on the extended 
•• value with a, and move the result to c. Care is taken to avoid double 
•• roundings in double precision by simulating atomic operations. 
•l 

(• 
•• c := a+ b 
•1 
procedure FpAdd !• (var a,b,c: PckForm; pc: char) •j; 
begin 

case pc of 
... s"': 

begin 
S2X(a.s,t); 
AddS(b.s, t); 
X2S(t,c.s) 

end; 

'd': 
begin 

D2X(a.d,t); 
AddD(b.d,t); 
if TestXcp(INEXACT) then 
begin 

RndSav := GetRnd; 
SetRnd(TOWARDZERO); 
D2X(a.d,t); 
AddD(b.d,t); 
if not odd(t[LSW]) then 

t[LSW) := t[LSW) + 1; 
SetRnd(RndSav) 

end; 
X2D(t,c.d) 

end; 

'e ... : 
begin 

c.e := a.e; 
AddX{b.e,c.e) 

FpAdd 



end 
end; 

,. 
•• c := a - b 
•! 

end 

procedure FpSub !• (var a,b,c: PckForm; pc: char) •j; 
begin 

case pc of 
's.,.: 

'd': 

'e": 

end 
end; 

f• 
•• c := a• b 
•! 

begin 

end; 

begin 

end; 

begin 

end 

S2X(a.s,l); 
SubS{b.s,l); 
X2S(l,c.s) 

D2X(a.d,t); 
SubD{b.d,l); 
if TeslXcp(INEXACT) then 
begin 

RndSav := GetRnd; 
SetRnd (TOW ARD ZERO); 
D2X{a.d,t); 
SubD(b.d,l); 
if not odd(l[LSW]) then 

t[LSW] := l[LSW] + 1; 
SetRnd(RndSav) 

end; 
X2D(l,c.d) 

c.e := a.e; 
SubX(b.e,c.e) 

procedure FpMul !• (var a,b,c; PckForm; pc : char)•!; 
begin 

case pc of 
"'s': 

begin 

end; 

S2X(a.s,l); 
MulS{b.s, l); 
X2S(t,c.s) 
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'd': 
begin 

end; 

begin 

end 
end 

end; 

f• 

RndSav := GetRnd; 
SetRnd(TOWARDZERO); 
D2X{a.d,t); 
Mu!D{b.d,t); 
if TestXcp(INEXACT) and (not odd(t(LSW]))then 

t[LSW] := t[LSW] + 1; 
SetRnd(RndSav); 
X2D(t,c.d) 

c.e := a.e; 
MuIX(b.e,c.e) 

C.26 

•• c := a/ b 
•! 
procedure FpDiv f • (var a, b,c : PckForm; pc : char) •!; 
begin 

FpDiv 
case pc of 
"'s ... : 

begin 

end; 

'd': 
begin 

end; 

'e': 
begin 

end 
end 

end; 

S2X(a.s,t); 
DivS(b.s,t); 
X2S(t,c.s) 

RndSav := GetRnd; 
SetRnd(TOWARDZERO); 
D2X(a.d, t); 
DivD(b.d,t); 
if TestXcp(INEXACT) and (not odd(t[LSW])) then 

l[LSW] := t[LSW] + 1; 
SetRnd(RndSav); 
X2D(t,c.d) 

c.e := e..e; 
DivX(b.e,c.e) 



1• 
•• c := a rem b 
•j 
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procedure FpRem I• (var a,b,c : PckForm; pc : char) •j; FpRem 
YBr 

quo: integer; 

begin 
case pc of 
's': 

'd': 

'e': 

end 
en¢ 

1· 
•• c := sqrt(a) 
•j 

begin 

encl 

begin 

end; 

begin 

end 

S2X(a.s,t); 
S2X(b.s, tO); 
RemX(tO,t,quo); 
X2S{t,c.s) 

f • double rounding ignored •! 
D2X(a.d, t); 
D2X(b.d,t0); 
RemX(t0,t,quo); 
X2D(t,c.d) 

c.e := a.e; 
RemX(b.e,c.e,quo) 

procedure FpSqrt j • (var a, c : PckForm; pc : char) •!; FpSqrt 
begin 

casepcof 

begin 

end; 

'd': 
begin 

S2X{a.s,t); 
SqrtX(t); 
X2S{t,c.s) 

RndSav := GelRnd; 
SelRnd (TOW ARD ZERO); 
D2X(a.d,t); 
SqrtX{t); 
if TestXcp(INEXACT) and (not odd(t[LSW])) then 

t[LSW] := t[LSW] + 1; 



'e': 

end 
end; 

f• 

end; 

begin 

end 

SetRnd(RndSav); 
X2D(t,c.d) 

c.e := e.e; 
SqrtX(c.e) 

•• c := a rounded to an integer 
·! 
procedure Fplnt f • (va:r a,c : PckForm; pc : char) •l; 

begin 
case pc of 
"s": 

begin 
S2X(a.s, t); 
RintX(t); 
X2S(t,c.s) 

end; 

'd': 
begin 

D2X(a.d,t); 
RintX(t); 
X2D(t,c.d) 

end; 

"'e": 
begin 

c.e := a.e; 
RintX(c.e) 

end 
end 

end; 

t· 
•• c := next representable value from a to b. 
•j 
procedure FpNxt ! • (va:r a,b,c : PckForm; pc : char)•!; 

begin 
C := a; 
case pc of 

end 
end; 

's': NextS(c.s,b.s); 
'd': NextD(c.d,b.d); 
'e': NextX(c.e,b.e) 
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f• 
•• c := a• 2--c 
•1 
procedure FpScl I• (vcn- a,b,c : PckForm; pc: char}•!; 

'YBr 

n: integer; 

begin 
case pc of 
's .. : 

begin 
S2X(b.s, l); 
X2I(t,n); 
S2X(a.s,l); 
ScalbX(n,l); 
X2S(t,c.s) 

end; 

'd': 
begin 

D2X(b.d,t); 
X2I(l,n); 
D2X(a.d,t); 
ScalbX(n,l); 
X2D(l,c.d) 

end; 

;e": 
begin 

X2I(b.e,n); 
c.e := a.e; 
ScalbX(n,c.e) 

end 
end 

end; 

1• 
•• c := binary exponent of a 
•1 
procedure FpLog !• (var a,c : PckForm; pc : char)•!; 

begin 
case pc of 
"'s': 

begin 

end; 

'd': 
begin 

S2X(a.s,l); 
LogbX(l); 
X2S(l,c.s) 

D2X(a.d, t); 
LogbX(t); 
X2D(t,c.d) 
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end; 

begin 

end 
end 

end; 

1· 
•• n := logb{a) 
•• C := scalb{-n. a) 
•j 
procedure FpFrc I• (va:r a,c 

Tar 

n: integer; 

begin 
case pc of 
... s"": 

begin 

end; 

'd': 
begin 

end; 

... e": 
begin 

end 
end 

end; 

c.e := a.e; 
LogbX(c.e) 

: PckForm; pc : char) •j; 

S2X(a.s,l); 
to:= l; 
LogbX(lO); 
X2I(t0,n); 
ScalbX(-n,l); 
X2S(t,c.s) 

D2X(a.d, t); 
tO := l; 
LogbX(lO); 
X2I(t0,n); 
ScalbX(-n. t); 
X2D(l,c.d) 

t := a.e; 
to:= t; 
LogbX(tO); 
X2I(t0,n); 
ScalbX(-n,l); 
c.e := t 
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f• 
•• The next three procedures, FpCpySgn, FpNeg, and FpAbs a:re 
••setup to unexceptional, even/or signaling NANs. The 
•• arithmetic environment is save and restored across the calls. 
•• If the source operand is a signaling NAN, a. quiet NAN is 
•• returned, but its sign is appropriately tweaked. 
•j 

f• 
• • c := a. with the sign of b 
•j 
procedure FpCpySgn f• (var a,b,c: PckForm; pc : char) •j; 

YBr 

sgn : integer; 

begin 
case pc of 
's"': 

begin 
GetEnv{EnvSav); 
S2X(a.s,t0); 
S2X(b.s,t); 
SetEnv(EnvSav); 
CpySgnX(tO,t); 
X2S(t0,c.s) 

end; 

'd': 
begin 

GetEnv(EnvSav); 
D2X(a.d,t0); 
D2X(b.d,t); 
SetEnv(EnvSav); 
CpySgnX(tO,t); 
X2D(t0,c.d) 

end; 

'e': 
begin 

c.e := a.e; 
CpySgnX(c.e,b.e) 

end 
end 

end; 

f• 
.. c := a, but with opposite sign 
•j 
procedure FpNeg I• (var a,c : PckForm; pc : char) •!; 

YBr 

sgn : integer; 

begin 
case pc of 
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"s": 
begin 

end; 

'd': 
begin 

end; 

'e .. : 
begin 

end 
end 

end; 

1• 
•• c := absolute value of a 
•! 
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GetEnv(EnvSav); 
S2X(a.s,t); 
SetEnv(EnvSav); 
NegX(t); 
X2S(t,c.s) 

GetEnv{EnvSav); 
D2X(a.d,t); 
SetEnv(EnvSav); 
NegX(t); 
X2D(t,c.d) 

c.e := a.e; 
NegX(c.e) 

procedure FpAbs l • (var a,c : PckForm; pc : char)•!; FpAbs 
Tar 

sgn : integer; 

begin 
CB!'lle pc of 
"s"": 

begin 

end; 

begin 

end; 

GetEnv(EnvSav); 
S2X(a.s,t); 
SetEnv(EnvSav); 
AbsX(t); 
X2S(t,c.s) 

GetEnv{EnvSav); 
l • to avoid invalid on signaling NaNs -- a quiet • I 
D2X{a.d,t); 
(• NaN is returned but FPTESTdoes not notice •! 
SetEnv(EnvSa v); 
AbsX{t); 
X2D(t,c.d) 



end 
end; 

1• 
••Comparisons: 

begin 

end 

c.e := a.e; 
AbsX(c.e) 

•• This rather elaborate set of procedures tests two kinds of comparison: 
•• (1) Condition code -- as in the test vectors. 
•• (2) Predicates. 
•• P754 specifies which of the predicates should signal invalid on 
•• unordered (one operand is NAN). The predicates available throt.L{lh 
•• the type RelOp are: 
•• GT-- >, LT-- <, GL -- <>, EQ-- =. GE -- >=, LE -- <=. 
•• GEL -- <=>, UNORD -- unordered. 
•• If all tests are satisfied, the appropriate condition=, <, >, ? 
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•• is returned to CCrnpRes (via parameter c}; otherwise! is returned. 
•1 
procedure FpCmp I• (var a,b: PckForm;var c: char; pc: char) •j; FpCrnp 
con.st 

UNORDFLAGS = 'iiiOiiiO'; 
INVFLAGS = 'iiiiiiii'; 
OKFLAGS = '00000000'; 

rslts,t : integer; 
rel : RelOp; 
flgsO,flgsl,flgs : Str90; 
ee,be : Extended; 

1• 
•• Save flags as a string of i, o, u, x, and z. 
•1 
procedure SavFlgs(var flgs : Str90); 

Yar 

begin 

end; 

xcp: Slr8; 
i : integer; 

xcp := 'iouxz'; 
figs:="; 
for i := 1 to 5 do 

if FplfX{xcp[i]) then 
figs:= concal(flgs, copy(xcp, i, 1)); 

if flgs=" then 
flgs := 'O' 

SavFlgs 
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f• 
•• Restore flags according to the string: figs. 
•1 
procedure RstFlgs(flgs : Str90); RstFZgs 
YBr i : integer; 

begin 
fpclearflags; 
if flgs<>'O' then 

for i := 1 to length(flgs) do 
case flgs[i] of 

T: SetXcp(INVALID,true); 
'o': SetXcp(OVERFLOW, true); 
'u': SetXcp(UNDERFLOW, true); 
'x': SetXcp(INEXACT, true); 
'z': SetXcp(DfVBYZERO, true) 

end 
end; 

,. 
•• Qear all flags and signal inexact. 
•1 
procedure Markinx; 
begin 

end; 

begin I• FpCrnp •j 

FpC!earFlags; 
SetXcp(INEXACT, true) 

case pc of 

end; 

's': begin S2X(a.s,ae); S2X(b.s,be) end; 
'd': begin D2X(a.d,ae); D2X(b.d,be) end; 
'e': begin ae := a.e; be:= b.e end 

rslts := O; 
flgs := "; 
SavFlgs(flgsO); 

I• SYSTEM DEPENDENCY: Linear ordering of relationals •j 
t := l; 
for rel := GT to UNO RD do 
begin 

end; 

C := ')('; 

RstFlgs(flgsO); 
if CmpX(ae,rel,be) then 

rslts := rslts + t; 
t := t•2; 
SavFlgs(flgsl); 
flgs := concat(flgs. flgsl) 

case rslts of 

Mark!nx 



end; 

end; 

128: if RelX(ae,be) = UNORD lb.enc:='?'; 
B5: if RelX(ae,be) = GT then c := '>'; 
102: if RelX(ae,be) = LT then c := '<'; 
120: if RelX(ae,be) = EQ then c := '=' 

case rslts of 
128: 

if FplsNAN(a,pc) or FpisNAN(b,pc) then 
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if (flgs <> INVFLAGS) and {flgs <> UNORDFLAGS) then 
Marklnx 

else 
else if flgs <> UNORDFLAGS lb.en 

Marklnx; 

85,102,120: 

end 

if (flgs <> OKFLAGS) and (flgs <> INVFLAGS) then 
Marklnx; 

end!• ofu.nitfp •j. 



C.36 

UNIT FPS oft; 
I• Interface to floating-point software library. •l 

INTERFACE 

CONST 

1YPE 

SIGDIGLEN = 20; I Maximum Length of Sig.Dig. I 
DECSTRLEN = 80; l Marimu.m length of DecStr. I 

1------------------------------------------------
•• Numeric types. 
------------------------------------------------1 
Single = array [ 0 .. 1] of integer; 
Double = array [0 .. 3] of integer; 
Extended= array [0 . .4] of integer; 

1------------------------------------------------
•• Decimal string type and intermediate decimal 
•• type, representing the value: 
•• (-1)-sgn • 10--erp • dig 

------------------------------------------------1 
SigDig = string [SIGDIGLEN]; 
DecStr = string [DECSTRLEN]; 
Decimal = 

record 

end; 

sgn: 0 .. 1; ! Sign (O for pos, 1 for neg). I 
exp : integer; I Erponent. l 
sig: Sig Dig I String of significant digits. I 

1----------------------------------------------· -
•• Modes, flags, and selections. 
------------------------------------------------! 
Environ = integer; 
RoundDir = (TONEAREST, UPWARD, DOWNWARD, TOWARDZERO); 
RelOp = (GT, LT, GL, EQ, GE, LE, GEL, UNORD); 

I > < <> = >= <= <=> ! 
Exception = (INVALID, UNDERFLOW, OVERFLOW, DIVByzERO, INEXACT); 
NumClass = (SNAN, QNAN, INFINITE, ZERO, NORMAL, DENORMAL); 
DecForm = 

record 
style : (FLOAT, FIXED); 
digits : integer 

(------------------------------------------------
•• Two address, extended-based arithmetic. 
------------------------------------------------1 
procedure AddS (x : Single; vary : Extended); 

procedure AddD (x: Double; vary: Extended); 

AddS 

AddD 



procedure AddX (x: Extended; vary: Extended); 
I y := y + X l 

procedure SubS (x : Single; vary : Extended); 

procedure SubD (x : Double; vary : Extended); 

procedure SubX (x : Extended; vary : Extended); 
I y := y -x l 

procedure MulS (x : Single; Tar y : Extended); 

procedure MulD (x: Double; vary : Extended); 

procedure MulX (x : Extended; vary : Extended); 
I y := y. X l 

procedure DivS (x: Single; vary: Extended); 

procedure DivD (x : Double; vary : Extended); 

procedure DivX (x : Extended; vary : Extended); 
I y := y/x l 

function CmpX (x : Extended; r : Re!Op; y : Extended) : boolean; 
fxry! 

function RelX (x, y : Extended) : Re!Op; 
Ix RelXy, whEre RelXin [GT, LT, EQ. UNORD] l 

1------------------------------------------------
.. Conversions between Extended and 
•• the othEr numeric types. 
------------------------------------------------! 
procedure S2X (x : Single; vary : Extended); 

procedure D2X (x: Double; vary: Extended); 

procedure X2X (x : Extended; vary : Extended); 
I y := x (arithmetic assignment) I 

procedure X2S (x: Extended; Tar y: Single); 

procedure X2D (x : Extended; vary: Double); 
( y := x (arithmetic assignment) l 

1------------------------------------------------
•• Numerical 'library' procedures andfunctions. 
------------------------------------------------! 
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AddX 

SubS 
SubD 
SubX 

MulS 
MulD 
MulX 

Divs 
DivD 
DivX 

CmpX 

RelX 

S2X 
D2X 
X2X 

X2S 
X2D 

procedure RemX (x : Extended; vary: Extended; var quo : integer); RemX 
I newy := remainder of ({oldy)/ x), such that lnew YI<= lxl/ 2; 

quo := low order seven bits of integer quotient y / x, 
so that-127<= quo<= 12?. I 

procedure SqrtX (var x: Extended); SqrlX 



I x := sqrt (x) I 
procedure RintX: (..-ar x: Extended); 

I x := rounded value of x I 
procedure NegX (..-ar x: Extended); 

IX:= -x l 
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AbsX procedure AbsX (..-ar x : Extended); 
Ix:= lxl ! 

procedure CpySgnX (var x : Extended; y : Extended); 
( x := x with the sign of y I 

CpySgnX 

procedure NextS (var x: Single; y : Single); 

procedure NextD (var x: Double; y: Double); 

procedure NextX (var x : Extended; y : Extended); 
I x := next representable value from x toward y I 

function ClassS (x: Single; ..-ar sgn: integer): NurnClass; 

function ClassD (x: Double; ..-ar sgn: integer) : NumClass; 

function ClassX (x: Extended; var sgn: integer): NumClass; 
( sgn := sign of x (0 for pos, 1 for neg) I 

procedure ScalbX (n : integer; ..-ar y : Extended); 
I y := y • 2--n ! 

procedure LogbX {var x: Extended); 
I returns unbiased exponent of x ! 

(------------------------------------------------
•• Manipulations of the static numeric state. 
------------------------------------------------1 
procedure SetRnd {r: RoundDir); 

procedure SetEnv (var e : Environ); 

function GetRnd : RoundDir; 

procedure GetEnv (Ya.re : Environ); 

function TestXcp (x : Exception) : boolean; 

procedure SetXcp (x: Exception; OnOff: boolean); 

function TestHlt (x : Exception) : boolean; 

procedure SetHlt (x: Exception; OnOff : boolean); 

IMPLEMENTATION 

I ... I 

END. 

NextS 

NextD 

NextX 
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APPENDIX D 

Pascal Unit for Correctly Rounded Binary-Decimal Conversions 

UNIT CorrBD; 

f• 
•• Correctly rounded conversions between unpacked bi:nary and 
•• decimal floating-point formats. Numbers ha:ve the form: 
•• (-1)-sign •radix-exp• significand 
•• with an implicit radix point after the first digit (decimal) 
•• or bit (binary). Numbers need not be normalized in this 
•• unpacked format. Results are normalized unless underflow 
•• causes denormalization. Translations between the unpacked 
•• formats are not part of this unit . 
•• 
• • Each conversion is governed by an environment record with 
•• rounding and underflow information. These are dealt with 
•• according to proposed IEEE floating-point standards P754 
•• (binary) and P854 (radix-independent). That is, underflowed 
•• values are denormalized and overflowed values are set to 
•• either the format's largest value or to the next bigger value 
•• (the latter is intended to represent IEEE infinity) . 
•• 
•• Version 1. 0 17 Januo:ry 82 Jerome T. Coonen 
•l 

INTERFACE 

f• 

CONST 

•• The constants specify properties of the binary and decimal 
•• formats. A decimal value is a packed array of BCD digits. 
•• A binary value is a packed array of bytes, with 8 bits per 
•• byte in this implementation . 
•• 
•• The constants DEXPJJAXand BEXPJJAX are not tight bounds. 
•• Rather, they limit the width of the decimal and binary buffers 
•• that must be used to Jwldinput values. The bounds should 
•• at least cover the range of exponents of all representable 
•• numbers in a NORMALIZED form. 
•j 

DDIGLEN = 9; ! ma.x decimal precision ! 
DEXPMAX = 99; l m.a.x magnitude of decimal exponent I 

BBITLEN = 24; I max binary precision in bits ! 
BEXPMAX = 150; f max magnitude of binary exponent I 
BITSDIG = 8; f bits per machine 'digit' {byte)! 
BDIGLEN = 2; l max bytes = BBITLEN / BITSDIG, less 1 ! 
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TYPE 

1• 

MAXB = 255; I byte ranges from Oto 255 j 

1· 
•• If space is an issue, these may be redefined as 'packed' records. 
•! 

_ UnpDec = f unpacked decimal format ! 
record 

sgn:0 .. 1; 
exp: -DEXPMAX..DEXPMAX; 
dig : array [O .. DDIGLEN] of 0 .. 9 

end; 

UnpBin = l unpacked binary format l 
record 

sgn:0 .. 1; 
exp : -BEXPMAX .. BEXPMAX; 
dig : array [O .. BDIGLEN] of 0 .. MAXB 

end; 

RDir = (Rl\1EAR, RUP, RDOWN, RZERO); l rounding directions! 

1· 
.. If style is Float Style. pre is the number of significant digits 
•• output; if style is FixedStyle pre is the number, posmly negative . 
.. of fraction digits output. Because it is presumed that decimal 
•• to binary conversion will only be used to convert to machine types, 
•• type Float Style is presumed in the D2BEnv. In both environment 
•• records, the error flags inexact, uflow, oflow are NOT sticky; 
•• they are set according to the result of the latest conversion. 
·! 
B2DEnv = 

record 

end; 

D2BEnv = 
record 

end; 

pre : integer; 
style : (FixedStyle, FloatStyle); 
rnd : RDir; 
MinExp : integer; 
MaxExp : integer; 
inexact: boolean; 
uflow : boolean; 
oflow : boolean 

pre : integer; 
rnd : RDir; 
MinExp : integer; 
MaxExp : integer; 
inexact: boolean; 
uflow : boolean; 
oflow : boolean 

•• Conversions bet'lJ.)een UnpDec a:nd UnpBin records. For convenience in 
•• packing the results of Dec2Bin, if e.pre is not a multiple of 
•• BITSD!Gthen thee.pre output bits are right-aligned in the leading 
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•• ((e.pre div BITSDIG} + 1) bytes of b.dig[]. Of cou.rse the implicit 
•• binary point is still to the ri.ght of the first bit of b. dig[ O]. 

D.3 

•1 
procedure Dec2Bin(var e : D2BEnv; d: UnpDec; var b : UnpBin); 

procedure Bin2Dec(var e: B2DEnv; b: UnpBin; var d: UnpDec); 

Dec2Bin 
Bin2Dec 

IMPLEMENTATION 

f• 

CONST 

TYPE 

f• 

•• Constants determining the bu.ffer widths are based on the 
•• interfa.ce valu.es. Ea.ch bu.ff er mu.st a.ccommodate exactly 
•• any valu.e representable in the respective UnpXXX format, 
•• with several extra digits for rounding. 
•j 

DBUFLEN = 60; 
BBU FLEN = 30; 
MAXB2 = 128; 

(• 

I DMAXEXP + DD/GLEN+ several I 
f (BMAXEXP/ BITSBYT) + BBYTLEN + several l 

f MAXBdiv2 I 

•• Binary and decimal valu.es are manipu.lated in wide byte and 
•• digit bu.ffers. For efficiency, the valu.es head and tail 
•• refer to the most and least significant ends of the 'relevant' 
•• part of the string. An exponent is maintained separately. 
•• Depending on time and space constraints, a DBu.f dig may either 
•• be a packed hex nibble (0.. 4) or a full byte. Thou.gh consu.ming 
•• twice as much spa.ce, and u.nable to take advantage of a compu.ter's 
•• BCD operations in assembly-language su.pport rou.tines, the latter 
•• are mu.ch more easily indexed. 
•1 

DBuf = 

BBuf = 

packed record 

end; 

head : integer; 
tail : integer; 
dig: packed array [O .. DBUFLEN] of 0 .. 255 I or 0 .. 15 ! 

packed record 

end; 

head : integer; 
tail : integer; 
dig : packed array [O .. BBUFLEN] of O .. MAXB 

•• Bin2Dec and Dec2Bi:n. employ exactly the same conversion strategies, 
.. so together they are serviced by corresponding sets of utilities for 
•• handling DBu.fs and BBu.fs. Here is a list of the u.tilities: 

•• BDZero -- clear two Bu.fs to zero. 



•• BRighi, DRight -- shift a Buf ri{Jhi n digs. 
•• BTimes2, DTimes2 -- Bu/• 2. 
•• Blnc -- add 0-9 in the last dig of a BBuf . 
.. BTimesJ0 -- BBuf • 10. 
•• BWidth --find width of a BBufin bits. 
•• B Uflow, D Uflow -- denormalize a Buf, if necessary, before rounding. 
•• BRound, DRound -- round a Bu/. 
•• BOflow, DOflow -- check and handl,e Buf overflow, after rounding . 
•• 
•• Both Bin2Dec and Dec2Bin require two BBufs a:nd DBu.fs, a working Buf 
•• and a temporary for intermediate calculatwns. For efficiency, a 
•• temporary is passed as a var parameter to any utility itself 
•• requiring a temporary Bu/. 
•1 

f• 
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•• Called by Dec2Bin and Bin2Dec to initialize. 
•1 
procedure BDZero(var bx: BBuf; var dx: DBuf); 
var 

BDZero 

begin 

end; 

f• 

i: integer; 

for i := 0 to BBUFLEN do 
bx.dig[i] := O; 

bx.head := BBUFLEN; 
bx.tail := BBUFLEN; 

for i := 0 to DBUFLEN do 
dx.dig[i] := O; 

dx.head := DBUFLEN; 
dx. tail := DBUFLEN 

I set all digs to 0 I 
l set head and tail to last dig I 

.. Called by BRound to remove Guard and Sticky bit positions, by BUflow 
•• to denormalize, and by Dec2Bin to remove excess integer digits. 
•• bx. head is not updated rightward if all bits are shifted from the 
•• leading word. Since bit shifts are only done for the last 
•• (n mod BITSDIG) bits, this is not aparticula:rly time-consuming 
••routine. 
•1 
procedure BRight( var bx : BBuf; n : integer); B Rig ht 
YBr 

begin 

i, j, k : integer; 
S: boolean; 

S := false; 

k := n div BITSDIG; f number of .full bytes to be shifted l 
for i := (BBUFLEN - k + 1) to BBUFLEN do 

S := S or (bx.dig[i] <> O); f OR doomed bits to SI 
for i := (BBUFLEN - k) do11D.lo bx.head do 



end; 

(• 

bx.dig[i + k] := bx.dig[i]; ( shift right k bytes l 
for i := bx.head to (bx.head+ k - 1) do 

bx.dig[i] := O; f clear lead k bytes I 

for i := 1 to (n mod BITSDIG) do 
begin 

end; 

S := S or odd(bx.dig[bx. tail]); ( record lowest bit I 

for j := BBUFLEN downto (bx.head+ k) do 
if odd(bx.dig[j - 1]) then ( bx.head> 1 he.re I 

bx.dig[j] := MAXB2 + (bx.dig[j] div 2) 
ebe 

bx.dig[j] := bx.dig[j] div 2 

( force sticky bit I 
if Sand (not odd(bx.dig[BBUFLENJ)) then 

bx.dig[BBUFLEN] := bx.dig[BBUFLEN] + 1 

•• Called by Bin2Dec to convert integer, Dec2Bin to convert fraction. 
•• Replace by external assembly-language routine for high speed. 
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•j 
procedure BTimes2(var bx: BBuf); I external; I BTimes2 
Yar 

begin 

end; 

i, sum, iC : integer; 

iC := O; I integer Carry flag I 
for i := bx.tail dmirnlo bx.head do 
begin 

end; 

sum:= bx.dig[i] + bx.dig[i] + iC; 
if sum > MAXB then 
begin 

end 
ebe 
begin 

end 

iC := 1; 
bx.dig[i] := sum - (MAXB + 1) 

iC := O; 
bx.dig[i] := sum 

if iC <> 0 then I check for carry out of bx.dig[bx.head] I 
begin 

end 

bx.head := bx.head - 1; 
bx.dig[bx.head] := 1 



t· 
•• Called by BRound to add 1 ulp, and by Dec2Bin to add a di,git. 
•• Add O <= m <= 9into BBuf bx by adding m into low byte and 
•• propagating carry. Return true if and only if there is a 
••carryout of tlw bx.di,g[bx.head]. 
•l 
function Binc(m : integer; var bx : BBuf) : boolean; 
Tar 

begin 

end; 

t· 

i, sum : integer; 
C: boolean; 

Binc := false; I assume no carry out I 
sum := bx.dig[BBUFLEN] + m; 
if sum <= MAXB then 

else 
begin 

end 

bx.dig[BBUFLEN] := sum I easy case, no carry out l 

bx.dig[BBUFLEN] := sum - (MAXB + 1); 
C := true; 
i := BBUFLEN; 
while C do 
begin 

i := i - 1; 
sum := bx.dig[i] + 1; 
C :=sum> MAXB; 
if C lb.en 

bx.dig[i] := 0 
else 

bx.dig[i] := sum 
end; 

if i < bx.head then 
begin 

Blnc := true; 
bx.head:= i f in this case i = bx.head-1 l 

end 

•• Called by Bin2Dec to convert fraction digits and by Dec2Bin 
•• to convert integer digits. Replace by external assembly-
•• language routine for hi,gh speed. 
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Blnc 

•l 
procedure BTimeslO(Tarbx: BBuf); I external; l 
Tar 

BTimesJO 

begin 
i, sum, iC : integer; 

iC := O; 
for i := bx. tail down.lo bx.head do 
begin 

end; 

sum:= (10 • bx.dig[i]) + iC; 
bx.dig[i] := sum mod (MAXB + 1); 
iC := sum div (MAXB + 1) 

if iC <> 0 then 



end; 

f• 

begin 

end 

bx.head:= bx.head - 1; 
bx.dig[bx.head] := iC 

•• Called by Dec2Bin to determine how many fraction bits to find . 
.. Lead dig <> 0, since BRigh:t () has not been called yet. 
•j 
function BWidth(var bx : BBuf) : integer; 
-.ar 

begin 

end; 

f• 

i, j : integer; 

I overshoot, as though lead bit of lead dig is 1 I 
i := (BBUFLEN - bx.head + 1) • BITSDIG; 

f correct by decrementing ifor leading Os of leading dig! 
j := bx.dig[bx.head]; 
while j < MAXB2 do 
begin 

i := i - 1; 
j := j + j 

end; 

BWidth := i 

•• Called by Dec2Bin. 
•j 
procedure BUflow(var bx : BBuf; var b : UnpBin; var e : D2BEnv); 
YBr 

begin 
i: integer; 

i := b.exp - e.MinExp; 
if i < 0 then 
begin 

BRight(bx, -i); I denormalize! 
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BWidth 

BU/low 

e.uflow := true; f m,a,rk tiny; BRound determines true Ujlow I 
b.exp := e.MinExp 

end; 

1• 

end 
else 

e.uflow := false 

.. Called by Dec2Bin. 
•1 
procedure BRound(var bx: BBuf; Yar b : UnpBin; Yar e : D2BEnv); 
-.ar 

i, LowDig : integer; 

BRound 



begin 

end; 

f • 

L, G, S, A: boolean; 

I bx has Z extra trailing bits, Guard and Sticky I 
LowDig := bx.dig[BBUFLEN]; 
S := odd(LowDig); 
if S then 

LowDig := LowDig - 1; 
G := odd(LowDig div 2); 
if G then 

LowDig := LowDig - 2; 

L := odd(LowDig div 4); I least significant bit I 
bx.dig[BBUFLEN] := LowDig; I replace stri:pped low byte l 
BRighl(bx, 2); I right-align significand l 

( set inexact flag, and suppress u.flow if exact l 
e.inexacl := G or S; 
e. uflow := e.uflow and e.inexact; 

f A := whether to add 1 in L's bit position I 
case e.rnd of 
RZERO: A:= false; 
RUP: A:= (b.sgn = 0) and (G or S); 
RDOWN: A:= (b.sgn = 1) and (G or S); 
RNEAR: A := G and (S or L) 
end; 

if A then I add an ULP and check for carry-out l 
if Binc( 1, bx) then 
begin 

end 

BRighl(bx, 1); 
b.exp := b.exp + 1 

•• Called by DecZBin. 
•• Set to HUGE or IN FIN !TY according to P754" P854 criteria. 
•• HUGE has maximum exponent and all 1 bits; INFINITY has just 
•• larger exponent and bits 1000 ... 00 
•! 
procedure BOflow(va.r bx: BBuf; var b: UnpBin; var e: D2BEnv); 
Tar 

begin 
i, fix : integer; 

e.oflow := b.exp > e.MaxExp; 
if e.oflow then 
begin 

e.inexact := true; I force inexact on any overflow l 

f decide between HUGE and INFINITY I 
if (e.rnd = RNEAR) or ((e.rnd = RUP) and (b.sgn = 0)) 

or ((e.rnd = RDOWN) and (b.sgn = 1)) then 
fix:= 1 

else 
fix:= O; 
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end 
end; 

1• 

b.exp := e.MaxExp + fix; f force excessive exponent I 
BRighl(bx, (e.pre - 1)); ( clear all but leading 1 l 
for i := 1 lo (e.pre - 1) do ( renormalize l 
begin 

BTimes2(bx); 
bx.dig[EBUFLEN] := bx.dig[EBUFLEN] + (1 - fix) 

end 

•• Called by DUflow to denormalize, by DRou.nd to rem.ave Ouard and Sticky 
•• digit positions, and by Bin2Dec to remove excess integer digits. 
•• dx.head is not incremented. 
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•1 
procedure DRight(Yar dx: DBuf; n: integer); DRight 
Tar 

begin 

end; 

(• 

i : integer; 
S: boolean; 

S := false; 
for i := (DEUFLEN - n + 1) to DBUFLEN do 

S := S or (dx.dig[i] <> O); l OR doomed digits to S l 
for i := (DBUFLEN - n) downto dx.head do 

dx.dig[i + n] := dx.dig[i]; ( move right n digits l 
for i := dx.head to (dx.head + n - 1) do 

dx.dig[i] := O; I clear lead n digits l 

if S then 
dx.dig[DBUFLEN] := dx.dig[DBUFLEN] + 1 ( OK if> 9 ! 

.. Called by Bin2Dec to convert integer, by Dec2Bin to convert fraction. 
•• Replace by external assembly-language routine for high speed. 
•1 
procedure DTimes2(Yardx: DBuf); l external; I DTimes2 
Tar 

begin 
i, sum, iC : integer; 

iC := O; ( integer Ca:rry flag I 
for i := dx.tail down.to dx.head do 
begin 

sum:= dx.dig[i] + dx.dig[i] + iC; 
if sum > 9 then 
begin 

end 
else 
begin 

iC := 1; 
dx.dig[i] := sum - 10 

iC := O; 



end; 

f• 

dx.dig[i] := sum 
end 

end; 

if iC <> 0 then f check for carry out of dx.dig[dx.head] ! 
begin 

end 

dx.head := dx.head - 1; 
dx.dig[dx.head] := 1 

•• Called by Bin2Dec. 
•j 
procedure DUflow(Yar dx: DBuf; Yard: UnpDec; Yar e : B2DEnv); 
"YBr 

begin 
i: integer; 

i := d.exp - e.MinExp; 
if i < 0 then 
begin 

DRight{dx, -i); I denormalize ! 
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DU/low 

e.uflow := true; I mark tiny; DRound determines true Uflow ! 
d.exp := e.MinExp 

end; 

1• 

end 
else 

e.uflow := false 

•• Called by Bin2Dec. 
•j 
procedure DRound(var dx : DBuf; Yard : UnpDec; Yar e : B2DEnv); 
Yar 

begin 

i, iG, sum : integer; 
L, S, A : boolean; 

DRound 

I dx has 2 extra trailing digits, Guard and Stick:y, to be ignored I 
S := dx.dig[DBUFLEN] <> O; 
iG := dx.dig[DBUFLEN - 1]; 
L := odd(dx.dig[DBUFLEN - 2]); l Low bit of LSD I 

I set inexact flag, and su.ppress uflow if exact l 
e.inexact := {iG <> 0) or S; 
e.uflow := e.uflow and e.inexact; 

I A := whether to add 1 in L's bit position l 
case e. rnd of 
RZERO: A:= false; 
RUP: A:= {d.sgn = 0) and ((iG <> O) or S); 
RDOWN: A:= {d.sgn = 1) and {(iG <> O) or S); 
RNEAR: A:= (iG > 5) or ((iG = 5) and (Lor S)) 



end; 

if A then ( add an ULP and check for carry-ov.t ! 
begin 

S : = true; l use to propagate carry I 
i := DBUFLEN - 1; ! will discard low 2 digits l 
while S do 
begin 

end; 

i := i - 1; 
sum:= dx.dig[i] + 1; 
S :=sum> 9; 
if S then 

dx.dig[i] := 0 
else 

dx.dig[i] := sum 

if (i < dx.head) then 
if (e.style = FloatStyle) then 
begin 
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dx.dig[dx.head] := 1; 
d.exp := d.exp + 1 

l carry out at left ! 

end 
end; 

f• 

end 
else 

dx.head := i 

• • Called by Bin2Dec. 
•• Set to HUGE or INFINITY accordi:ng to P754/P854 criteria. 
•• HUGE has maximum exponent and all nines; INFINITY has jv.st 
• • larger exponent a:nd decimal digits 1000 ... 00. 
•1 
procedure DOflow(-.-ar dx: DBuI; TIU" d : UnpDec; var e : B2DEnv); 
Yer 

begin 
i, fix : integer; 

e.oflow := d.exp > e.MaxExp; 
if e.oflow then 
begin 

e.inexact := true; l force inexact on any overflow I 

I decide between HUGE and INFINITY l 
if (e.rnd = RNEAR) or ((e.rnd = RUP) and (d.sgn = 0)) 

or ((e.rnd = RDOWN) and (d.sgn = 1)) then 
fix := 0 

else 
fix := 1; 

d.exp := e MaxExp + 1 - fix; f force big exponent ! 
dx.dig[dx.head] := (8 •fix)+ 1; I either 9or 1 I 
for i := (dx.head + 1) lo (DBUFLEN - 2) do 

DOflow 



dx.dig[i] := 9 • fix I either 9 or O l 
end 

end; 

(• 
•• Both conversions Bin2Dec and Dec2Binfollow the same strategy: 
•• 
0 (0) lf inptd has all zero digits, then the resu.J:ut is O; else ... 
•• 
•• ( 1) Align input in Huf as O.XXXXXXX • RADIX-exp, with dig[ O] = 0 
•• and the significand shifted far enough right that exp >= 0 . 
•• 
•• (2) Convert integer part, that is until exp = 0 . 
•• 
•• (3) If no nonzero output digit has been found, then convert 
•• the fraction u.p to the first nonzero digit . 
•• 
•• (4) The object is to have exactly p+2 significant digit~bits, 
•• the last one stick:y in the sense of P754 rounding. If there 
•• are too ma.ny already, then right shift a.nd gather lost digits 
•• in stick:y; otherwise, convert until there are ju.st p+2. 
•• Gather unconverted digit~bits into sticky . 
•• 
•• (5) If result is tiny in the sense of P754, then right shift 
•• (denormalize) it until the exponent is the minimum allowed . 
•• 
•• (6) Round the result top digiWbits . 
•• 
•• (7) Deal with overflow according to P754, that is, replacing a.n 
•• overflowed result with either INFINITY or HUGE . 
•• 
•• Both conversions align their input to the Left of a. Bu./, up to 
•• dig[ O], a.nd form their output aligned to the right in its Huf. 
•• 
•• The conversions set flags inexact, oflow, a:nd uflow in the 
•• environment record according to P754, except that the flags are 
•• NOT STICKY A full P754 system would 'logically OR' these flags 
•• into the system's true exception flags after each conversion . 
•• 
•• A P754 trapping mechanism is not supported here. 
•l 
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procedure Bin2Dec f (va.r e : B2DEnv; b : Un.pBin; var d: UnpIJec) l ; Bin2De C 
TIU" 

begin 

i, j, BExp : integer; 
S: boolean; 
bx: BBuf; 
dx: DBuf; 

d.sgn := b.sgn; ( copy sign l 
for i := 0 lo DDIGLEN do I place a.ll zero digits l 

d.dig[i) := O; 



f Step 0: check for all zeros. ! 
S := true; I assume the significa:nd is zero ! 
for i := 0 to BDIGLEN do 

S := S and (b.dig[i) = O); 

if S then I process zero ! 

else 
begin 

d.exp := e.MinExp 

BExp := b.exp + 1; 
if BExp >= 0 then 

j := 1 
else 

I align binary point left of lead bit ! 
I significand in dig[{0+J). .. ] l 

j := 2 - (BExp div BITSDIG); 

I Step 1: set bx to input b, aligned. 
BDZero(bx, dx); 
bx.head := 1; 
bx. tail := BDIGLEN + j; 
for i := 0 to BDIGLEN do 

bx.dig[i+j) := b.dig[i]; 
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I Adjust BExp < 0, si:nce bx shifted right to the nearest byte. ! 
BExp := (BITSDIG • {j - 1)) + BExp; I j=J when BExp >= 0 l 

d.exp := e.pre + 1; I dee point after lead dig, then Gand S ! 

I Step 2: convert mteger part of bx. l 
while BExp > 0 do 
begin 

end; 

DTimes2(dx); I make way for the next bit I 
BTimes2(bx); f get next bit in bx. dig[ 0] l 
BExp := BExp - 1; 
if bx.dig[OJ <> 0 then 
begin 

end 

dx.dig[DBUFLEN) := dx.dig[DBUFLEN] + 1; 
bxdig[OJ := 0 

I Step 3: gU,a,rantee some nonzero digit in dx. 
while dx.dig[dx.head] = 0 do 
begin 

BTimes 1 O(bx); 
dx.dig[DBUFLEN] := bx.dig[O); 
d.exp := d.exp - 1 

end· 
bx.d,ig[O] := O; 

I Step 4: check for too ma:ny or too few digits. 
if e.style = FloatStyle then 

j := (DBUFLEN - dx.head + 1) - (e.pre + 2) 
else 

j := -e.pre; I number of 'fraction' digits ! 



end 
end; 

if j < 0 then f j too Jew digits I 
begin 

end 

for i := dx.head to DBUFLEN do 
begin f make TO om for -j more digits I 

dx.dig[i + j] := dx.dig[i]; 
dx.dig[i] := 0 

end; 
dx.head := dx.head + j; 

for i := (DBUFLEN + 1 + j) to DBUFLEN do 
begin I get -j fraction digits ! 

end 

BTimes lO(bx); 
dx.dig[i] := bx.dig[O]; 
bx.dig[ O] := 0 

else f j too many digits already l 
begin 

DRight(dx, j); 
dx.head := dx.head + j 

end; 

f Pix e:r:p for j-char shift. ! 
d.exp := d.exp + j; 

S := false; 
for i := bx.head to bx.tail do 
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S := Sor (bx.dig[i] <> O); I unconverted bits --> sticky l 
if S then 

dx.dig[DBUFLEN] := dx.dig[DBUFLEN] + 1; 

DUflow(dx, d, e); 
DRound(dx, d, e); 
DOflow(dx, d, e); 

for i := dx.head to (DBUFLEN - 2) do 
d.dig[i - dx.head] := dx.dig[i] 

procedure Dec2Bin ! (var e : D2BEnv; d : UnpDec; var b : UnpBin) l ; De C 2Bin 
var 

begin 

i, j, k, DExp : integer; 
S: boolean; 
bx: BBuf; 
dx: DBuf; 

b.sgn := d.sgn; I copy sign I 
for i := 0 to BDIGLEN do I place a,J,l zero bits l 

b.dig[i] := O; 
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I Step 0: check for all zeros. l 
S := true; I assume the significa:nd is zero I 
for i := 0 lo DDIGIEN do 

S :=Sand (d.dig[i] = O); 

if S then I process zero I 

else 
begin 

b.exp := e.MinExp 

I Steps 1 and 2: convert integer part and align fraction in dx. I 
BDZero(bx, dx); I initialize bx and dx I 
b.exp := e.pre + 1; I dee point after lead dig, then G and S l 
DExp := d.exp + 1; I align binary point before dig[O] l 

if DExp >= 0 then 
begin 

end 
else 

for i := 0 lo (DExp - 1) do I compute integer part l 
begin 

BTimeslO(bx); 
if i <= DDIGIEN then 

S := Binc(d.dig[i), bx) 
I but ignore carry-out S l 

end; 

j := DExp I i:ndex of first fraction digit! 

j :=O; I index of first fraction digit I 

for i := j to DDIGLEN do I align fraction digits l 
dx.dig[i + 1 - DExp) := d.dig[i); 

dx.head := 1; 
dx.tail := DDIGLEN + 1 - DExp; 
if dx.tail < dx.head then 

dx.tail := dx.head; 

I Step 3: guarantee some nonzero digit in bx. 
while bx.dig[bx.head] = 0 do 
begin 

DTimes2( dx); 
bx.dig[bx.head] := dx.dig[O]; 
b.exp := b.exp - 1 

end· 
dx.dig[O] := 0; 

I Step 4: check for too many or too few bits. I 
j := BWidth(bx) - (e.pre + 2); 

if j < 0 then I -;j too few bits I 
begin 

fori := 1 lo-j do 
begin 

BTimes2(bx); ! malce room for fraction bit l 



end 
end; 
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DTimes2(dx); l next fraction bit in dig[O] ! 
bx.dig[BBUFLEN] := bx.dig[BBUFLEN] + dx.dig[O]; 
dx.dig[O] := 0 

end 
end 

else l j too many bits already ! 
BRight(bx, j); 

l Fi:n.al adjustments according to shift above. l 
b.exp := b.exp + j; 

S := false; 
for i := dx.head to dx.tail do 

S :=Sor (dx.dig[i] <> O); 
l unconverted digits --> sticky ! 

if S and (not odd(bx.dig[BBUFLEN])) then 
bx.dig[BBUFLEN] := bx.dig[BBUFLEN] + 1; 

BUflow(bx, b, e); 
BRound(bx, b, e); 
BOflow(bx, b, e); 

l Fi:n.ally, store trailing e.pre bits, right adjusted. l 
l Fix exponent for possible lea.ding Os in first byte. I 
j := e.pre mod BITSDIG; 
if j <> 0 then 

b.exp := b.exp + (BITSDIG - j); 
j := bx.tail - ((e.pre - 1) div BITSDIG); 
for i := j to bx.tail do 

b.dig[i - j] := bx.dig[i] 

END. l of unit CorrBD I 



l• 
•• Convert betu;een Corr ED Bin and P754 types S, D, E assuming a byte 
•• ordering in which less significant t,ytes are at lou;er addresses. 
•! 
UNIT FormBD; 

INTERFACE 

uses FPSoft, CorrBD; 

procedure S2Bin(s: Single; ..-ar b: UnpBin); 

procedure D2Bin(d: Double; ..-ar b: UnpBin); 

procedure E2Bin( e : Extended; var b : UnpBin); 

procedure Bin2S(b : UnpBin; vars : Single ); 

procedure Bin2D(b : UnpBin; ..-ar d : Double ); 

procedure Bin2E(b : UnpBin; var e : Extended); 

IMPLEMENTATION 

type 

1• 

SByte = 
record 

end; 

DByte = 
record 

end; 

EByte = 
record 

end; 

case char of 
's' : (s : Single); 
'b' : (b : packed array [0 .. 3] of 0 .. 255) 

case char of 
'd' : (d : Double); 
'b' : (b : packed array [0 .. 7] of 0 .. 255) 

case char of 
'e' : (e : Extended); 
'b' : (b : packed array [D .. 9] of 0 .. 255) 

•• Unit Corr ED leaves the bits in UnpBin right aligned so that no shifting 
•• is required when they are moved to the P754 packed types. Hou;ever, 
•• the exponent field must be modified to account for any leading zeros. 
·! 
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procedure Bin2S I (b : UnpBin; va:r s : Single ) I; 

begin 

k: integer; 
t: SByte; 

k := b.exp + 127; l bias the e2:ponent J 
t.b[3] := (128 • b.sgn) + (k di.., 2); ( sign and 7e:cp bits J 
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I get low e:cponent bit and 7 significant bits, masking the highest I 
t.b[2] := ((k mod2) • 128) + {b.dig[O] mod 128); 

end; 

t.b[l] := b.dig[l]; 
t.b[O] := b.dig[2]; 
I i/ denormalized. value, adjust ezponent bias l 
if (b.dig[O] < 128) and {k = 1) then 

t.b[2] := t.b[2] - 128; 
s := l.s 

prac~ure S2Bin I (s : Single,· var b : Unp.Bin) J; 

t: SByte; 

begin 

end; 

i: integer; 

t.s := s; 
b.sgn := t.b[3] di• 128; I sign I 
b.exp := ((t.b[3] mod 128) • 2) + (t.b[2] div 128) - 127; 

for i := 0 ta BDIGLEN do 
b.dig[i] := 0; 

b.dig[O] := t.b[2] mad 128; f first 7 e:,;plicit bits J 
b.dig[ 1] := t.b[l]; 
b.dig[2] := t.b[O]; 

if b.exp = -127 lhen 
b.exp := b.exp + 1 I correct bia.s of minimum. e:r;p I 

ebe 
b.dig[O] := b.dig[O] + 128 (force e:r:plicit Lea.ding 1 J 

procedure Bin2D I (b : Unp.8in; var d : Double ) j; 

t: DByte; 

begin 

end; 

i, k : integer; 

k := b.exp + 1023 - 3; ( biased. e:r;ponent, with fix/or Lead Os I 
t.b[?] := (128 • b.sgn) + (k di• 16); 
t.b[6] := ((k mod 16) • 16) + b.dig[O]; 
for i := 5 downlo O do 

t.b[i] := b.dig[6-i]; 

if (b.dig[O] < 16) and (k = 1) then 
t.b[6] := l.b[6] - 16; 

d := t.d 

S2Bin 

Bin2D 

( 

( 



procedure D2Bin f (d: Double; var b: UnpBin) j; 
TIU' 

begin 

end; 

t: DByte; 
i: integer; 

t.d := d; 
b.sgn := t. b[7] div 128; I sign ! 
b.exp := ((t.b[?] mod 128) • 16) + (t.b[6] div 16) - 1023; 

for i := 0 to BDIGLEN do 
b.dig[i] := 0; 

b.dig[O] := t.b[6) mod 16; 
for i := 1 to 6 do 

b.dig[i] := t.b[6-i]; 

if b.exp = -1023 lhen 
b.exp := b.exp + 1 I correct bias of minimum exp ! 

ebse 
b.dig[O] := b.dig[O] + 16 I.force explicit leading 1 I 

procedure Bin2E I (b : UnpBin; var e : Extended) I; 
Tar 

begin 

end; 

t: EByte; 
i, k : integer; 

k := b.exp + 16383; I biased exponent I 
t.b[9] := (128 • b.sgn) + (k div 256); 
t.b[8] := k mod 256; 
for i : = 7 down to O do 

t. b[i] := b.dig[7-i]; 
e := t.e 

procedure E2Bin I (e: Extended; var b: UnpBin) j; 
Tar 

begin 

end; 

t: EByte; 
i: integer; 

t.e := e; 
b.sgn := t. b[ 9) div 128; 
b.exp := ((t.b[9] mod 128) • 256) + t.b[8] - 16383; 
for i := 0 to BDIGLEN do 

b.dig[i) := O; 
for i := 0 to 7 do 

b.dig[i] := t.b[7-i] 

END. I of unit FormBD l 
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