
Contributions to a Proposed Standard
for Binary Floating~Point Arithmetic

By

Jerome Toby Coenen

B.S. (University of Illinois) 1975
M.S. (University of Illinois) 1975

DISSERTATION

Submitted in partial satisfaction of .the requirements for the degree of

Approved:

DOCTOR OF PHILOSOPHY

in

Mathematics

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

r
v~ ,r f,P,Pc/,

• I • • • • • • • • • • • e R e e • R Re• • e • e e • e e e • • • e • t e e e e • • • e

Chairman Date

.. A4 ~!. J. ~:--."':--:-: : . -!.-:: .. (~,~ t

.. ~.~.~ ~.~~.\-~~~

i • • • • • o D' • • o • • • • • o o • o e ., • o o o o ., • • • • e • e o " e • • • • e • • •

Contributions to a Proposed Standard

for Binary F1oating-Point Arithmetic

Jerome T. Coonen

ABSTRACT

In the fall of 1977 the Institute of Electrical and Electronics Engineers

commissioned working group 754 to draft a standard for binary floating-point

arithmetic. It was intended to prevent the proliferation of disparate arith­

metics in the new microprocessor industry. Al that time there were so many

different flavors of arithmetic available on mainframes and minicomputers

that the cost of reconciling their differences in numerical software had

become, and remains, staggering. Now, more than five years later, draft 10.0

of the proposed standard has been voted out of the working group for IEEE

approval.

This thesis consists of a set of "footnotes" to the proposed standard.

The first of them, an implementation guide published in January 19B0, served

as a working draft of the standard for over a year. The remaining chapters

unfolded as the proposed standard did. They include an analysis of gradual

underflow, the most controversial feature of the standard; an exhaustive dis­

cussion of radix conversion, which has been specified in the proposed stan­

dard only up to a worst-case error bound; and a revised version of the arith­

metic test suite which has been available in machine-readable form from the

working group.

Approved:

to m-y pm-ents

Table of Contents

CHAPTER

1. Introduction

2. The Original Implementation Guide

3. Numerical Programming Environments

4. Envrironmental Inquiries in FORTRAN

5. A Guide to Underflow and the Denormalized Numbers

6. Comparisons and Branching

7. Accurate Yet Economical Binary-Decimal Conversions

B. Radix-Free Description of the Proposed Standard

9. Intermediate Exponent Calculations

10. A Compact P754 Test Suite -- Version 2.0

APPENDIX

A Excerpts from a Proposed Standard for Binary Floating

Point Arithmetic

B. Test Vectors for P754 Arithmetic - Version 2.0

C. Test Program for P754 Arithmetic - Version 2.0

D. Pascal Unit for Correctly Rounded Binary-Decimal Conversions

CHAPTER 1

Introduction

"Most numerical analysts have no interest in arithmetic."
B. N. Parlett (1979)

'.{be lack of interest abounds. Professor Parlett's claim applies to com­

puter designers as well as users. And it is usually the speed of arithmetic

that incites what interest there is. Yet a proposed IEEE standard for binary

floating point arithmetic is in the last stage of approval before that body's

Standards Board, and, despite that the proposal is bard to implement, it has

become already a de facto standard among several of the largest micropro­

cessor manufacturers. Why'?

Calculator and computer users are familiar with the fact that the quo­

tient 1/3 must be rounded in order to be representable on a binary or

decimal machine. But rounding is not to blame when 1/3 differs from 9/27.

Such a capricious discrepancy can cause a perfectly reasonable program to

fail mysteriously, arousing dismay, not interest. Also daunting is the pros­

pect of developing software to run across the dozens of diverse arithmetics

in use today, a number that will increase with the rise of the microprocessor

industry.

This thesis is about the proposed IEEE standard 754 for binary floating

point arithmetic. The thesis developed alongside the standard itself, as a set

of clarifications and elaborations of the terse 754 document; it is an aid to

implementors, and a demonstration that the implementation is feasible.

Because of the care taken in the specification of proposed standard 754, and

1.1

1.2

because of its rising support within the industry, there is hope for an end to

the dismay caused by bad arithmetic. ln a sense, it is the best arithmetic

that arouses the least interest among users.

1. A Brief History of IEEE Working Group 754

In the fall of 1977, working group 754 of the IEEE Computer Society

Microprocessor Standards Committee was convened lo draft an industry

standard for floating point arithmetic on microprocessors. It was known that

Intel Corporation was pursuing high-quality arithmetic for its family of pro­

ducts. The orginal intent of the working group was simply to fix a set of com­

mon data formals so that binary data could be transferred between different

microprocessors. The first meetings of the working group were attended by

microprocessor enthusiasts, including Bob Stewart and Tom Pittman, as well

as John Palmer of Intel and W. Kahan of the University of California at Berke­

ley, then consulting to Intel. Richard Delp chaired the meetings.

Due chiefly to the leadership of Kahan, the scope of the working group

quickly expanded from data formats to a thorough specification of arith­

metic. In early 1978 Kahan enlisted the support of Harold S. Stone, then

visiting Berkeley, and the author to draft a proposal whose key ideas were

drawn from Kahan's years of experience on machines ranging from main­

frames to pocket calculators. Kahan estimated that the project would

require "one hard man-month of effort". He underestimated. Over the next

three months, drafts of the so-called Kahan-Coonen-Stone proposal were

presented to the monthly meetings of the working group. Throughout this

period of refinement, Palmer and others al Intel were developing a major

VLSI implementation of the proposal.

1.3

By late 1978 the working group included members from National Sem­

iconductor, Motorola, Zilog, Monolithic Memories, Apple Computer, Tektronix,

and Digital Equipment Corporation. There was a certain irony about the

standardization process - on the one hand the working group was chartered

to develop an industry standard, while on the other hand its work was sup­

posed to be uninhibited by the kind of partisan politicking that arises natur­

ally among competing manufacturers. At that time, the proposal was embo­

died in an implementation guide prepared by the author; this paper, finally

published in January 1980, appears as Chapter 2.

Over the subsequent year several competing proposals were presented

to the working group. Mary H. Payne and William Strecker of DEC proposed

what could be thought of as enhanced VAX-11 arithmetic. Steve Walther and

Robert Fraley of Hewlett-Packard Laboratories proposed what they thought

of as a "safer" scheme, with special symbols for underflowed and overflowed

values. Robert Reid, working independently, developed an idea that arises

occasionally in the literature, varying the width of a number's exponent field

dynamically, widening it {while narrowing the significand) in order to accom­

modate extremely large or tiny magnitudes. A subcommittee of Pittman,

Palmer, Kahan. and the author was commissioned to cast the prevailing pro­

posal in a form suitable for an IEEE standard. David K. Stevenson later joined

the group; and subsequently be was voted chairman of the entire working

group.

Draft 5.11 of the proposed standard stood v1ithout change for over a

year. It was revised up to draft 8.0 in preparation for the March 1981 issue of

IEEE Computer magazine, of which an entire section was devoted to floating

point standardization. Discussions in the working group continually bogged

1.4

down on the issue of underflow - by far the most controversial aspect of the

proposed standard. In an attempt to present the issues on paper, for surely

resolution seemed beyond hope, the author prepared the paper which, as

published in that issue of Computer, appears as Chapter 5.

Shortly after publication of draft 8.0, the working group voted to develop

that proposal, to the exclusion of the others. One last round of changes was

due. Over mid-1981 two features were removed from the proposal, the pro­

jective mode interpretation of infinity and the warning mode interpretation

of the denormalized numbers. In lively debate within the working group it

was decided that the modicum of safety bought by these modes was not

worth the known complexity of implementing them and explaining them to

users. Today, almost seven years since the working group first met, draft

10.0 of proposed standard 754 has reached the last level of approval, the

IEEE Standards Board. A slightly abbreviated version of the draft appears as

Appendix A.

2. Design Goals - User Friendly Floating Point Arithmetic?

Although common data formats were the goal when the 754 working

group was chartered, three simple design principles evolved: ensure that

most existing programs would run at least as well on standard systems as

they bad on earlier machines with comparable range and precision; provide

the most robust arithmetic possible with 19BO's technology; and include

features to enhance software development by experts.

In order to preserve the substantial investment in existing software, the

proposal has to be as least as good as any other arithmetic available. This

turns out not to be a significant constraint, and is really subsumed by the

desire to build the best possible arithmetic. But old software could be

1.5

undermined by excellent arithmetic with features unknown to the original

programmer. Since most of the innovations in 754 apply when exceptions

arise, they aflect old programs only when some exception, for example

overflow or division by zero, occurs. ln such cases an earlier machine would

probably stop execution anyway. The situation with the comparison operator

is diflerent; here a mechanism was included specifically to defend old pro­

grams and programmers. This is the subject of Chapter 6.

Who could determine just how much arithmetic could be implemented

on a chip in the current technology? ln order to bound its eflorts, the work­

ing group required some measure of feasibility. This came from two arenas.

As mentioned before, Intel was well into the design of the i8087 coprocessor

to the 8086/B0BB CPUs. They stretched the limits in die size and yield. At

the same time, George Taylor, a Berkeley graduate student, was designing a

set of circuit boards implementing 754 which could replace the VAX-11/7B0

floating point accelerator boards. Taylor [9] showed that, with care, the cost

and complexity of 754 could be reduced to that of the more ordinary VAX,

whose arithmetic is in fact very good already.

In the next section we will survey what the standard does include. It is

appropriate to discuss here what was deliberately excluded. From the start,

754 was a binary standard. Although decimal arithmetic has obvious advan­

tages for most end users (in contrast to computational advantages of

binary), it was deferred to a later standard [2]. The elementary functions,

although implemented on chip by Jntel and others, were deemed beyond the

scope of a standard intended for simple control devices as well as general

purpose computers. Also, just the standardization of transcendental func­

tions is complicated by the discussion of allowable errors. (Chapter 7, on

1.6

binary-decimal conversions, typifies the kind of analysis involved.) Finally,

interval arithmetic was omitted despite its potential for computing and

reporting error bounds. However, the standard requires the implementation

of modes of rounding that support the economical implementation of interval

arithmetic in software.

Adding features to a system is always easy. In the case of 754, to its

credit, the experts' features arose naturally from the base design, which is

surveyed below. The availability of special rounding modes, such as just

mentioned, error flags to check for the occurrence of an exception that

would otherwise be dispatched in a specified fashion, or special functions,

such as recommended in the appendix to 754, all support the development of

high-quality codes.

The point of the 754 design is to provide the most robust arithmetic pos­

sible while limiting "error messages" to those limes when the bounds of its

capability have been surpassed. This is a delicate line to walk. Cry "Wolf!"

too often, such as on every occurrence of underflow, and the message will be

ignored. Let a computation run amok with no indication, all the while substi­

tuting, say, 0 for overflowed values, and inevitably some user of another's

software will be misled. In the parlance of human engineering, 754 is user

friendly since anyone doing ordinary calculations benefits without knowledge

of the sometimes arcane underpinnings. Only when necessary, must a user

be faced with the more elaborate aspects of the system.

3. An Overview of Proposed Standard 754

The brew is surprisingly straightforward. Start with single and double

data formats of 32 and 64 bits, respectively. Suggest somewhat wider single­

extended and double-extended formals for use in expression evaluation to

1.7

alleviate intermediate overflow and underflow. Specify a complement of

rational arithmetic operations, and include square root, remainder, and

binary-decimal conversion. Finally, specify the machine arithmetic to be

closed under all operations on all operands. These ideas are expanded in the

rest of this section. Chapter 8 gives a top-down specification of the arith­

metic from the implementor's point of view.

The data formats are quite ordinary. Single has the range and precision

of the PDP-11 float format; double has the range of CDC 6000 class single for­

mat {a 60-bit word), which is widely used for scientific computing. The

extended formats have roots in the lBM 709x and Univac 1108 extended accu­

mulators; their widths in range and precision have been chosen to aid in

binary-decimal conversion and the computation of the exponential xY.

Square root is required by the standard because of its utility in certain

calculations, such as least squares, and because it is known to be just a

minor variation of division. Remainder is harder to implement, because so

many steps of division may be required before the dividend is reduced to half

the magnitude of the divisor. But remainder is vital to the argument reduc­

tion required for the elementary functions. Binary-decimal conversion, his­

torically in the province of the systems programmers or language implemen­

tors, is included so that tight error bounds can be specified, in lieu of correct

rounding which may be infeasible due to cost. Chapter 7 is an extensive

analysis of the bounds stated in 754. Appendix D shows a correctly-rounded

conversion implemented in Pascal. Other operations required by 754 are

means to access and modify the state of the arithmetic engine, for example,

the rounding modes and error flags.

1.8

It is arithmetic closure that gives 754 its true flavor. To cope with

overflow and computations like 1/0, signed 00 symbols were added to the

number system. And the sign of 00 was made to interact with the sign of zero

in the ordinary way, so that 1/ - 00 = -0. The cost of this is a sign on zero

(unlike the real number system) which is sometimes misinformation when it

must be assigned arbitrarily, as with the result of 3.14 - 3.14. To cope with

underflow, the controversial denormalized numbers were added at the bot­

tom of the number range. Simply put, these values ensure that a difference

:z: -y is nonzero just when x =y; on most current machines, the difference of

two tiny values will be flushed to zero if it falls below a certain threshold.

Chapter 5 discusses this issue in detail. Contention notwithstanding, arith­

metics with infinities and denormalized numbers had been implemented

before, for example on the CDC 6000 class machines and the Dutch Electrolo­

gica XB, respectively.

Closure of invalid operations like 0/ 0 and -v'=s required a new kind of

symbol, for Not-a-Number. The so-called NaNs are a true innovation within

the standard. Although they are numerically trivial, since they propagate

unchanged through arithmetic, the NaNs have a considerable impact on the

overall architecture of a system, as mentioned with language issues below

and in Chapter 6. NaNs have already found use not only as diagnostic aids

but as placeholders for missing or unavailable data in spreadsheets and sta­

tistical applications. The key to the NaNs' utility is their propagation

through arithmetic operations; the "indefinite" operands in the CDC 6000

class computers and the "reserved" operand in the DEC PDP-11 and VAX-11

computers trigger a (typically fatal} exception each time they are encoun­

tered, rendering them useless for carrying information.

1.9

4. Yet Another Standard- 854

When the 754 standard effort was nearing completion, a second standard

was launched under the chairmanship of William J. Cody [2]. What started as

a radix- and word.length-independent standard developed into a binary-and­

decimal standard, with suggestions about the balance between the range and

precision to be provided in a given wordlength. The 854 standard was con­

strained to be upward compatible from 754. ln fact, the drafts were

developed by simply modifying 754 in a text editor. The principal difference

is in the area of binary-decimal conversion, which is even more obscure when

the binary range and precision are not given specifically. Tables of inequali­

ties specify bounds for the allowable errors.

5. Axiomatic Attempts

"Of course, if [the axiomatization of rounded floating-point arithmetic] is to
be useful, the axioms should be simple enough for each comprehension (sic).
I am afraid this goal has not yet been achieved."

R Mansfield (1984)

While standards 754 and 854 maintain essential backward compatibility

with arithmetics of the past, their main thrust is toward a future of greater

commonality among machines. A coincident development has attempted to

make numerical sense of the machines we must program for tod.a.y. W. Stan

Brown characterizes a machine's arithmetic according to a set of parame­

ters [1]. The parameters describe the range and precision of the machine's

values that satisfy the criteria for Brown model numbers. On many machines

only a subset of the representable values, such as those not too huge or tiny,

or those with one or more trailing zero digits, are model numbers satisfying

constraints like commutativity of multiplication. Brown can confirm a

machine's parameters by running a crafty test program in portable FORTRAN

1.10

developed by Norm Schryer [8].

Brown's attempt to unify current arithmetics sheds further light on the

current state of affairs, but falls short of real utility for numerical program­

mers. First, since Brown stated as a design goal the development of axioms

pertinent to every major computer in use in the Free World, his axioms in a

sense inherited the worst properties of all the machines. They are subtle

indeed. It has been shown, for example, that because of a certain class of

division algorithms, one cannot infer from the model that the inequality

0 < x ~ y implies that x I y ~ 1. Problems like this will be nightmares for

programmers who would guarantee robustness [4]. Chapter 4 suggests FOR­

TRAN procedures for interrogating a system about parameters relative to

both Brown's model and the proposed standards.

By itself Brown's model is no more than further research into the

behavior of computer arithmetics, but when taken as the standa.rd charac­

terization of arithmetic from which programmers must work, it can actually

hinder advances like the 754 and 854 proposals from taking effect by strip­

ping their advanced features which. of course, don't fit into the "least com­

mon denominator" model. A step in this direction has been taken by the Ada

standards group, which has incoporated the ideas of the Brown model in the

Ada specification of arithmetic. Fortunately, the use of Ada packages per­

mits the incorporation of other arithmetics such as 754 and 854, albeit

inconveniently [5].

Brown's is just the most computationally oriented of several attempts at

axiomatization. In 1966 A. van Wijngaarden uttered 32 rules for arithmetic,

introducing a folera.nce operator to describe the deviation of machine arith­

metic from real arithemtic [10]. More recently, R Mansfield has listed 45

1.11

axioms for computer arithmetic in order to prove that a qualifying arith­

metic is in fact rounded from an ordered field [7]. As he testifies in the

quote that opens this section, such a blizzard of axioms is incomprehensible.

6. An Algebraic Approach

Another recent development in arithmetic is worth brief mention in con­

trast with the 754 and B54 efforts. The latter have been dauntlessly prag­

matic. Most of what has been written, and this thesis is a prime example, has

centered on implementation details and the use of the arithmetic to solve

well-known problems. A much more formal approach has been taken by

Ulrich Kulisch and Willard Miranker as described in their book Cbmputer

Arithmetic in Theory and Practice [6]. Their ultimate goal is a machine ana­

log to the algebra of vectors and matrices over the complex domain. The key

is the ordinary inner product calculation Z: ~ b,. which they specify to be

correctly rounded for all machine °'i and bi: except when overflow or

underflow intrude. That is, they implement the inner product as an atomic

operation through special hardware or software.

What detracts from the Kulisch-Miranker scheme for general use is the

cost of implementing the inner product algorithm. It requires what amounts

to a fixed-point buffer to bold the intermediate results of an inner product

lest there be massive cancellation, promoting tiny addends to the final

result. This buffer is as wide in radix digits as the extent of the exponent

range; applied to a format like the 754 double, it would be over 2000 bits

wide, virtually infeasible for VLSI implementation today. Moreover, their

scheme is sufficient to perform reliable computation, aided by devious algo­

rithms; there is no evidence that their scheme is necessary, nor that the

deviousness of their algorithms is unavoidable.

1.12

7. The Less Mathematical Alternative

Despite their appearance of mathematical rigor, the schemes described

in the last two sections miss the true goal of computer arithmetic - robust

calculations at a price users can afford. The important mathematical idea is

closure of the arithmetic system, for it is closure that leads to predictability

when the inevitable exceptional cases arise. Alas, it is here that the

mathematical purity fades and engineering appears, for deciding feasible

responses to exceptions involves design tradeoffs. This thesis demonstrates

that robust computer arithmetic is feasible in the current technology. The

underlying mathematical principle, closure, is clear from the start. The

difficulty lies in the careful analysis of all the boundary cases encountered

enroute.

8. Arithmetic and Languages - Future Directions

The substance of this thesis, implementation aspects of proposed stan­

dard 754, is just part of the story. What has really been specified in 754 is a

programming environment. Even after all these years, incorporation of the

full standard into programming languages has barely started. Chapter 3

touches on some of the issues, but there are many more.

The extended formats are strongly suggested by the standard, and are

known to be quite useful, but should they be made available in all languages?

Pascal, for example, specifies only one type, real, though enthusiasts would

extend the language by adding further ones. Arithmetic in C is based on the

PDP-11 float and double types. ln C, it is natural to have the 754 extended

format play the role double did for the PDP-11, yet one wants both single and

double 754 types for data storage and exchange. The prospects for FORTRAN

have been discussed by R J. Fateman [3].

1.13

Sometimes language extension to incorporate 754 features causes

conflict between two standards; for example, the BASIC standard specifies

that underflows should be flushed to zero, prohibiting the more useful gra­

dual underflow of 754. Cases like this led to the plea in Chapter 3 that

numerical issues be lifted from language standards and left to the domain of

numerical enthusiasts. However, some cases are not so clear. The details of

comparisons involving NaNs lie totally in neither camp, so some cooperation

will be required.

There is work in progress now to bring the full features of 754 and 854 to

people not only in high-speed numerical engines but in commodity calcula­

tors and computers as well. Attempts to expand the scope of the working

groups to include those responsible for languages have not been too success­

ful, partly because the number of people involved is much greater than the

few interested in arithmetic itself. When the 754 effort was begun, the stan­

dard was to have stood for twenty years. Now, seven years later, through the

cooperation of design, language, and systems people, the ideas spawned in

the working group are finally on the verge of dissemination among millions of

users.

9. References

[1] W. S. Brown, "A Simple But Realistic Model of Floating-Point Computa­

tion," Computer Science Technical Report no. 83, May 19B0, revised Nov.

1980; Bell Labs, Murray Hill, N.J., 07974.

[2] W. J. Cody, J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R.

Karpinski., J. Palmer, F. N. Ris, and D. Stevenson, "A Proposed Radix- and

Wordlength-lndependent Standard for Floating Point Arithmetic," lo

appear in MICRO, August 1984.

1.14

[3] R J. Fateman, "High-Level Language Implications of the Proposed IEEE

Floating-Point Standard," ACM Transactions on Programming

Languages and Systems, 4, No. 2, April 1982, pp. 239-257.

[4] W. Kahan, "Why do we need a floating point arithmetic standard?" in

preparation.

[5] H. Katzan, Jr., Jnvilation to ADA & ADA Reference Manual, Petrocelli,

New York, 1982.

[6] U. Kulisch and W. Miranker, Computer Arithmetic in Theory and Prac­

tice, Academic Press, New York, 1981.

[7] R Mansfield, "A Complete Axiomatization of Computer Arithmetic,"

Mathematics of Computation, 42, April 1984, pp. 623-635.

[8] N. L. Schryer, "A test of a computer's floating-point arithmetic unit,"

Computer Science Technical Report No. 89, Bell Laboratories, Murray

Hill, N.J., February 1981.

[9] G. S. Taylor, "Compatible Hardware for Division and Square Root,"

Proceedings of the 5th IEEE Symposium on Computer Arithmetic, Ann

Arbor, Michigan, May 1981, pp. 127-134.

[10] A. van Wijngaarden, "Numerical Analysis as an Independent Science,"

BIT. 6, pp. 66-81. 1966.

CHAPfER 2

The Original P754 Implementation Guide

The following paper, reprinted from Computer magazine with the

publisher's permission, served as a P754 subcommittee working document

until its publication in January 1980. Although nominally a monograph, this

implementation guide reflected the many hours of debate about the form of

the ultimate proposed IEEE binary floating point arithmetic standard. As

published, the implementation guide was compatible with draft 5.11 of the

subcommittee's formal proposal; an errala. sheet at the end brings the guide

up to date with draft 8.0, as published in Computer in March 1981.

This implementation guide grew out of an earlier document prepared in

collaboration with Harold S. Stone and W. Kahan. This author was primarily

responsible for an appendix consisting of tables specifying the details of the

operations. When it became clear that one inch square table entries would

not suffice to describe the arithmetic, the current paper was launched.

Although every attempt was made to represent subcommittee decisions

in this implementation guide, it was inadequate for the subcommittee's pur­

poses. Most important, it did not satisfy the stylistic requirements for pro­

posed standards, set forth in the IEEE "blue book". So work was begun on an

official version of the proposed standard. W. Kahan, John F. Palmer, Tom

Pittman, this author and, later, David K. Stevenson worked on this draft. This

implementation guide was published after the proposal had stabilized at

draft 5.11.

2.1

2.2

Draft 10.0 of proposal P754, as voted out of the floating point subcom­

mittee, is fundamentally simpler than draft 8.0 as published in Computer

magazine and described here. The two principal changes to draft 8.0 were

the removal of the projective mode interpretation of 00 and the warning mode

interpretation of denormalized numbers. Draft 10.0 specifies only what were

known as the affine and normalizing modes for interpreting 00 and denormal­

ized numbers, respectively. Among the smaller changes to draft 8.0 were a

minor modification to the definition of underflow, a decoupling of the overflow

and underflow error flags from their respective traps, and a response to

overflow when rounding toward 0 that parallels the response when rounding

toward +00 or - 00 , according to the sign of the overflowed result.

The specifications of draft 10.0 are reflected in the pseudo-code descrip­

tion of the the standard in chapter B. This chapter presents the

specifications of draft B.0; it is one of the few articles describing the pro­

posed standard as it stood for nearly two years (drafts 5.11 to B.0 were essen­

tially identical), and as it was built in early implementations.

2.3

This guide to an IEEE draft standard provides practical
algorithms for floating-point arithmetic operations and suggests

the hardware/software mix for handling exceptions.

SPECIAL FEATURE

An Implementation Guide to a
Proposed Standard

for Floating-Point Arithmetic
Jerome T. Coonen

University of California at Berkeley

This is an implementation guide• to a draft stan­
dard before an IEEE subcommittee whose goal is to
standardize binary floating-point arithmetic for
mini- and microcomputers. The purpose of the stan­
dard is to assure a uniform floating-point software en­
vironment for programmers. It may be implemented
entirely in hardware or software or, as is most likely,
in a combination of the two. This document provides
reasonable algorithms for the arithmetic operations
and suggestions for the hardware/software mix in
handling exceptions.

Except for its additional discussion of quad, this
guide is in concordance with Draft 5.11 of the pro­
posal titled, "A Proposed Standard for Floating
Point Arithmetic," IEEECS Task P754/D2, by John
Palmer, Tom Pittman, William Kahan, David
Stevenson, and J. T. Coonen.*'" W. Kahan made
substantial contributions throughout the develop­
ment of this document, and Harold Stone prepared a
first draft in April 1978. J. Palmer discussed several
features of this standard in late 1977.••• Comments
may be sent to

Jerome T. Coonen
Department of Mathematics

University of California
Berkeley, CA 94720

'"This is a much ~ venion of --specifications for a Proposed
Standard for Floating Point Arithmetic." Memorandum No.
UCB/ERL M78l72. This work was partiaUy funded by Office of
Naval Reaee.rch Contract NOOOH-76-C0013.

.. J. Coonen, W. Kahan. J. Palmer. T. Pittman, D. St.evenson, "A
Proposed Standard for Floating Point Arithmetic."' SIGNUM
N,w,ktter, Special Issue, Oct. 19i9, pp. 4-12. Available from
SIGNUM, c/o ACM, 1133 Avenue of the Americas, N~w York, NY
10036.

... J. Palmer, .. The INTEL Standard for Floating-Point
Arithmetic," Proc. COMPSAC n, pp. 107-112.

The standard precisely describes its data formats
and the results of arithmetic operations; it must do so
to be of use to the producers of microprocessor hard­
ware and software, who cannot afford to provide the
Bupport software and personnel to perform conver­
sions between systems conforming to a less rigid
standard. It allows for future developments such as
interval arithmetic, which provides a certifiable re­
sult despite roundoff, Over/Underflow, and other ex­
ceptions. And it allows the use of reserved operands
to extend the numerical data structure, with complex
infinities, say, or with pointers into heaps of numbers
with extended range and precision.

Programs which now run in higher-level languages
like Fortran should be portable to a system with the
new standard arithmetic at the cost of a modest
amount of editing and a recompilation, and then
should execute with results almost certainly no worse
than before, though programs which used to give in­
correct results might now give diagnostic messages
instead.

1.0 Narrative description of the standard
arithmetic

1.1 Sketch of the standard floating-point system.

Combinations of floating-point formats: one of
(Al single
(B) single and single-extended
(C) single and double
(D) single, double, and double-extended
(E) single, double, and quad.

Arithmetic operations:

Add, Subtract, Multiply, Divide, Remainder,
Square Root, Compare, Round to Integer, Con·
version between various floating-point and in-

teger formats, Binary-Decimal conversion.

Rounding modes:

(A) Round to Nearest, or optionally
(B) Round-to Nearest, toward 0, toward +00,

toward -00.

Rounding precision control:

(A) Allow rounding of an extended result to the
precision of any other implemented format,
while retaining the extended exponent.

(Bl When all operands have the same precision,
allow rounding of the result to that precision.

Infinity arithmetic:

(A) Affine mode: -co< +00.

(B) Projective mode: -m= +co.

Denormalized arithmetic:

(A) Warning mode
(B) Normalizing mode (optional).

Floating-point exceptions, with sticky flags and
specified results. The default response is to proceed; a
trap to user software is optional.

(A) Invalid-Operation
(B) Overflow
(Cl Underflow
(Dl Division-by-Zero
(El Inexact-Result.

1.2 Basic floating-point formats. Any nonzero real
number may be expressed in "normalized floating­
point" form as ± 2••!, where e is the signed integer ex­
ponent and the significant digit field f satisfies l .;; f <
2. The standard describes a machine representation
of a finite subset of the real numbers based on this
floating-point decomposition, and prescribes rules
for arithmetic on them.

There are three basic formats, single, double and
quad (See Table 1). to be implemented in one of the
combinations shown in Section 1.1. Single is required
since it is useful as a debugging precision and is effi­
cient over a wide range of applications where storage
economy matters.

A normalized nonzero number X in the single for­
mat (see Section 2 for double and quad) has the form

X = (-l)s•2E·127*(1.F)where

S = sign bit
E = 8-bit exponent biased by 127
F =X's 23-bit fraction which, together with an im •

plicit leading 1, yields the significant digit field
"l.-".

The values 0 and 255 of E are reserved to designate
special operands discussed in later sections; one of
them, signed zero, is represented by E = F = 0. Nor·
malized nonzero single numbers can range in
magnitude between 2- 126•1.ooo .. 00 and
2127• 1.111 ... 11. inclusive.

The number X above is represented in storage by
the bit string

s E

2.4
This encoding has the special property that the order
of floating-point numbers coincides with the lex·
icographic order of their machine counterparts when
interpreted as sign-magnitude binary integers.
facilitating comparisons of numbers in the same for­
mat.

1.3 Extended formats. To perform the arithmetic
operations on numbers stored in the single and dou­
ble formats, e system will generally unpack the bit
strings into their component fields S, E, and F.
Moreover, the leading significant bit will be made ex·
plicit, and perhaps the bias will be removed from the
exponent.

The standard provides a way to exploit this un·
packed format by admitting the optional single­
extended and double-extended formats (See Table 2).
If implemented at all, only one extended format
should be provided, single-extended in systems with
single only, and double-extended in systems with
single and double only.

Table 1.
Basic floating-point formats.

SINGLE DOUBLE

Fields and Widths In bits:
S - Sign
E - Exponent
L - Leading bit
F - Fraction
Total Width

Sign:

Exponent:
Max E
Min E
Bias of E

Normalized numbers:
Ra~ge of E
Represented

number

Signed zeros:
E
L
F

Reserved operands

1
8

(1)
23

(1)+ 32

1
11
(1)
52

(1)+64

+ I - represented by 0/1 respectively

biased integer
255 2047
0 0

127 1023

(quad may be unnormalized)
(MmE+ 1)to(MaxE-1)

(-1)'. 2E·8"1S "(LF)

Min E Min E
(0) (0)
0 0

Denormalized numbers:
E Min E Mm E
L (0) (0)

QUAD

1
15
1

111
128

32767
0

16383

Min E
0
0

Min E
0

F nonzero nonzero nonzero
Represented

(-1)S•2E-B~s• (L.F)
number

Signed 00 's:
E Max E Max E Max E
L (0) (0) 0 or 1
F 0 0 0

NaNs
E MaxE Max E Max E
L (0) (0) O or 1
F nonzero nonzero nonzero
F - system-dependent. possibly diagnostic, informat1oc

Page 2.5 unintentionally left blank.

(That is, the thesis page numbers are incorrect.)

Double-extended format !see Section 2 for single-­
extended) consists of the following fields:

S=sign bit
E+ B=biased exponent: Eis a signed integer

spanning at least therange-16383 to 16384; the
bias B mav be zero

L.F=a leading integer bit L followed by a free·
tion F of at least 63 bits.

A number Xis then given by X=(-l)S•2E-B•(L.F).
The case E = maximal-value is discussed in later sec·
tions. TwopossibleimplementationsofE = minimal·
value are described below (Section 1.12, Denormal·
ized and unnormalized numbers); signed zero is repre­
sented by E = minimal-value and L.F = 0.0. Zero is
sometimes referred to as "normal zero" to distin·
guish it from the' 'unnormal zeros•' with E > minimal·
value and L.F = 0.0. The latter behave much as
nonzero numbers in the arithmetic operations.

To match the exponent range of quad the unbiased
double extended exponent must range between
-16383 and 16384 as indicated above. This suggests
that the exponent be represented in 15 bits by its
negative in two's complement, biased by 16383 as in
the basic formats, or biased by -1. The choice of the
exponent representation impacts the use of the
nonzero numbers at the bottom of the exponent
range.

Table 2.
Extanded formats.

SINGLE-EXTENDED DOUBLE·EXTENOED

Fields and widths in bits:
S - Sign
E - Exponent
L - Lead mg bit
F - Fraction ;;,
Total width ..

Sign:

Unbiased exponent:
Max E;;.
Min E<

Numbers:
Range of E
Represented number

1
11
1

31
44

+ I - represented by 0/1 respectively

(may be stored with a bias)

1
15
1

63
80

1024 163S4
-1023 -16383

(MinE + 1)to(MaxE - 1)
(-1)S•2E•(LF)

Bottom o1 the exponent range:
E
R
Represented number

Signed zeros
E
L.F

Reserved operands:
Signed "'·s:
E
L
F

Min E
0 01 1

(-1)5•2E+R•(LF)

Min E
O or 1

use special indicator bits, 01 else
Min E Min E
0.0 0.0

use special indicator bits, or else
Max E Max E
0 or 1 0 or 1

0 0

NaNs. use special indicator bits, or else
E Max E Max E
L 0 or 1 0 or 1
F nonzero nonzero
F .. system-dependent, possibly diagnostic, Information.

2.6
Extendeds are assumed to be few in number. The

first implementations of this standard will probably
allow access to extended entities only in assembly
language. High-level languages will use extended (in·
visibly) to evaluate intermediate subexpressions,
and later may provide extended as a declarable data
type.

The presence of at least as many extra bits of preci­
sion in extended as in the exponent field of the basic
format it· supports greatly simplifies the accurate
computation of the transcendental functions, inner
products, and the power function yx. In fact, to meet
the accuracy specifications for binary-decimal con­
versions, some extended capability must be
simulated by system software if an extended format
is not implemented; this is discussed in Section 2.

Another way to obtain most of the computational
benefits of an e::ctended format is to use the next
wider basic format. Indeed, quad is included in this
document as an alternative for those not wishing to
implement double-extended. In most implementa­
tions extended will be as fast as the basic format it
supports, as compared to a factor 2 or 4 loss in speed
suffered by the next wider basic format, if im·
plemented.

1.4 Arithmetic operations. The standard provides a
notably complete set of arithmetic operations (see
Section 1.1) in an attempt to facilitate program por­
tability by guaranteeing that results obtained using
standard arithmetic may be reproduced on different
computer system~. down to the last bit if no extended
format is used. SQUARE ROOT and REMAINDER
are included as primitive operations because they ap·
pear so often, for example in matrix calculations and
range reduction. REMAINDER is preferable to the
MODULO function because REMAINDER is com­
puted without rounding error. Consider, for example

0.01 MOD (-95) vs0.01 REM (-95)

on a 2-digit machine. MODULO yields the result
round (-94.99) = -95 for a complete loss of ac·
curacy, while REM A I NDE R yields the correct result
0.01. The standard·s specification of minimal re­
quirements for binary-decimal conversions is an at­
tempt to allow comparison of data from different
systems at the decimal output level rather than via
hexadecimal dumps.

All operations except conversions between dif­
ferent data formats are presumed to deliver their
results to destinations having no less exponent range
than their input operands. This constraint avoids un­
necessary complexity in the implementation and
simplifies the responses to Over/Underflow. The rare
operation

double • double - single

is required to function exactly as

double • double - double
MOVE (round) double - single,

to assure identical results in all sequences of opera­
tions performed in the basic formats only.

Rather than prohibit mixed-format operations, the
standard is designed to encourage the provision of
some such operations. The sequence

(single • single - double) + double - double

ought to be available without the overhead of pad­
ding the single operands to double.

1.5 Accuracy and rounding. If the infinite precision
result of an arithmetic operation is exactly represen­
table within the exponent range and precision
specified for the destination, then it must be given ex­
actly. Otherwise the result must be rounded as
follows. Let Z be the infinitely precise result of an
arithmetic operation, bracketed most closely by Zl
and Z2, numbers representable exactly in the preci-
11ion of the destination, but whose exponents may be
out of range. That is, Zl < Z < Z2, barely.

Round to Nearest(Z) = Unbiased Round (Z)
= the nearer of Zl and Z2 to Z; in case of a tie
choose the one of Zl and Z2 whose least signifi­
cant bit is 0.

Round toward Zero(Z) = Chop(Z) = smaller of
Zl and Z2 in magnitude.

Round toward +00(Z) = Z2.
Round toward -00(Z) = Zl.

The latter two modes, the "directed roundings," are
intended to support interval arithmetic. Round
toward Zero is useful in controlling conversions to in­
tegers in accordance with conventions embedded in
programming languages like Fortran.

An implementation of the standard may support
either Round to Nearest only, with Round toward
Zero available for Round to Integer, or all four round·
ing modes. Round to Nearest shall be the default
mode for all operations. Calculation of Round to
Nearest requires the so-called sticky bit, as shown in
Section 2. Once the sticky· bit is implemented, the
directed roundings may be supplied at very little ex­
tra cost, the bulk of which lies in the mechanism, say
mode bits or extra opcodes for exercising the choice of
rounding mode. While the standard leaves this
mechanism up to the implementor, the mode bits are
usually preferable. For example, an interval
arithmetic computation of upper and lower bounds,
performed by executing the same instructions round·
ing up during one pass ar.d down the next, is greatly
expedited if flipping a pair of bits changes rounding
modes.

In a system which delivers all floating-point results
except format conversions in the widest format sup­
ported, the user needs control over the precision to
which a result is rounded. Such a system would en·
courage the evaluation of long expressions in the
widest available format, with just one serious round­
ing error at the end when the expression's value is
stored in a narrower destination. But the standard's
specifications for roundoff control are burdened by
the current programming languages which prohibit
mixed-precision calculation. and by the need to mimic
systems not providing an extended format. Round·
ing precision control is specified at the end of Section
2.14.

2.7
1.6 Exceptions. Once the data formats and opera­
tions are determined, there remains the specification
of responses to exceptional conditions. The standard
classifies the exceptions as Invalid-Operation,
Underflow, Overflow, Division-by-Zero and Inexact·
Result. They are discussed in the following sections.

The default response to any exception is to deliver a
specified result and proceed. However, an implemen­
tation may provide optional traps to user software on
any of the exceptions. If available, the choice to trap
should be exercised at execution time via a trap­
enable bit.

Associated with each of the exceptions is a
"sticky" flag which is guaranteed to be set on e.ach oc­
currence of the corresponding exception when there
is no trap. The flags may be tested by a program and
may be cleared only by the user's program. When the
end of a job is obviously at hand, a humane operating
system may draw the user's attention to flags still
set.

Since the sticky flags need not be set when a trap is
to be ta.ken, an implementation may use them to in­
dicate which exceptions have just occurred. A trap
handler could determine which exception(s) arose on
the aborted operation by checking which have both
their sticky and trap-enable flags set, and would then
clear those flags at the end of the operation.

To deal effectively with traps, programmers need
certain vital information, such as what exceptions oc­
curred, where in the program, and what the operation

• and operands were. In response, the programmer will
normally either depart from the offending block of
code, fix up the aberrant result and resume execution.
or reinterpret the aberrant operands and recompute
the result. The trap handler might be passed informa­
tion by value, with the option to "return" a result to
be inserted to the offending operation's destination.
One might dispense with some of the above informa­
tion, for example when the correct result is available
in encoded form as in Over/Underflow.

1.7 Invalid-Operation. The Invalid-Operation excep­
tion arises in a variety of arithmetic operations on er­
rors not frequent or important enough to merit their
own fault condition. Some samples of Invalid­
Operations are:

(A) v'=5
(B) (+ 00) - (+00) (See Section 1.8.)
(C) 0•00•

One class of reserved operands, the Not-a-Number
symbols, or NaNs, are specified as the default results
of Invalid-Operations. In single, double, and quad
formats, with the format

I s I E

NaN s are characterized by
S = sign bit (which may be irrelevant)
E =111 ... 11
F ¢0.

In extended format NaNs have the most positive ex­
ponent. The leading significant bit in extended and

quad may be O or 1. The sign bit S participates in the
obvious way in the execution of statements like
X=-Y and Z=X-Y=X +(-YI without loss of infor­
mation in the event that Y is a NaN with a numerical
connotation.

The nonzero fraction field F of a NaN will contain
system-dependent information. For example:

(A) A distinguished class of NaNs may be used by
an operating system to initialize storage. The
fraction of such a NaN may be a name or a
pointer to the region where the NaN is stored.

(B) A NaN generated by an invalid arithmetic
operation on numeric data. for example O • 00 ,

may be a pointer to the offending line or block of
code.

(C) When complex arithmetic is implemented, it is
often useful to think of co as a line rather than a
point in the projective plane. A distinguished
class of NaNs may be used in pairs to provide
the relative sizes and signs of the real and im­
aginary parts of numbers tending to co along a
fixed ray emanating from the origin.

(D) Sometimes an operation could generate a result
acceptable but for its inability to pack that
result correctly into the intended destination
<see the discussion of OverfUnderflowsl. In
such a case, a NaN could be supplied, with a
fraction pointing to an extended field or a heap
where the correct result may be found.

(El Sometimes a subroutine may encounter data
for which only a partial result can be delivered
in the time available. The rest of the result can
be replaced by NaNs pointing to a piece of the
program which will resume execution of that
subroutine only if that undelivered portion of
the result is really needed.

(F) List-oriented systems like LISP may use single
format NaNs to point to double numerical data.

As the list above shows, there are two distinct
types of NaNs. The Nontrapping NaNs, as in (A) and
1B), propagate through arithmetic operations
without precipitating exceptions. If two such NaNs
are picked up as operands, the result is one of the
operands, according to a system-dependent
precedence rule. On the other hand, the Trapping
NaNs would be useful in situations (Cl through (Fl,
where an Invalid-Operation trap to user software is
required to perform arithmetic on the special
operands; when the trap is disabled, a Nontrapping
NaN results. The two types of NaNs might be
distinguished by the leading bits of their fractions.

1.8 Underflow. Because of the care taken in the treat­
ment of Underflows, the range of normaliz.ed
numbers in single, double, and quad formats has been
chosen to diminish slightly the risk of Overflow com­
pared with the risk of Underflow. This was done by
picking the exponent bias and alignment of the
binary point in the significant digit field in such a way
that the product of the largest and smallest positive

2.8
normalized numbers is roughly 4 in each of the basic
formats.

Underflow occurs if the exponent of a result, tested
before or after rounding at the implementor's option,
lies below the exponent range of the destination field,
or if the rounded extended or quad result of a
MULTIPLY or DIVIDE with nonzero. finite
operands is normal zero. Note that a product or quo­
tient of grcssly unnorma..lized numbers may have a
zero significant digit field; the test above prohibits
such a result from masquerading as a normal zero
when the operand exponents fortuitously add. to the
format's minimum.

Because of the restrictions on arithmetic opera­
tions presumed in Section 1.4, the exponent can be
out of range by at most a factor of 2, except for the
MOVE instruction which is discussed in Section 2. If
the Underflow trap is enabled, the exponent is
wrapped around into the desired range with a bias ad­
just specified m Section 2. and the resulting value is
delivered to the trap handler. The exponent wrap­
around is chosen so that the result, while related in a
simple way to the Underflowed value, lies somewhere
in the middle of the numerical range of representable
numbers. This diminish~s the risk that a computa­
tional response (like scaling) to Underflow will en­
counter almost immediately a rash of consequent
Overflows. The analogous statement holds for
Overflows.

If the Underflow trap is disabled. the result is
denonna..lized by right-shifting its significant digit
field while the exponent is incremented until it
reaches that of the smallest normalized number
representable in the destination. Then the result is
rounded to fit into the destination.

Note that denorma..lization is performed before
rounding, to avoid double-rounding problems. If the
Underflow test is made on a rounded result, that
result must be "unrounded'' before undergoing
denonna..lization. The difference betw.een testing
Underflow before and after rounding is that the
Underflow threshold (i.e. the largest infinite preci­
sion number that Underflows I is the higher in the lat­
ter case by one quarter of a unit in the last place of the
smallest normalized number; however, both im·
plernentations yield exactly the same numerical
values.

In terms of the format

s I E

a nonzero denorma..lized single number X (see Section
2 for the other formats) is encoded as

S = sign bit
E =0
F = X's 23 significant bits (at least one of which

must be nonzero I to the right of the binary point.

X is reconstructed via the formula

X = (-1is•2- 126•(0.F),

observing that E is not the true biased exponent in
single format. Comparing this formula with its

analog for normalized numbers, one sees that, when
unpacking a denormalu.ed number, the 1-bit that
would have gone to the leading bit of the significant
digit field for a normalized number is instead added
into the unbiased exponent E-127 + 1.

The denormalized numbers and signed zeros are
the reserved operands corresponding t<> a biased ex·
ponent of zero. The values± 0 are obtained just when
F=0 above. Zero may result from an Underflow.
depending on the rounding mode, when the
Undrrflow is so severe that all nonzero bits are
shifted out of the significant digit field.

1.9 Overflow. If the expc,nent of a rounded result of
an arithmetic operation overflows the range of the
destination. then the Overflow exception arises. ex·
cept when Im·alid-Oper;,tion in,.,rvene, becau,-e a
single or double result is not normalized. If a trap isto
be taken, then the exponent is wrapped around as
discussed in Underflow (Section 1.81. except that the
bias adjust is subtracted rather than added.

If no trap is to be taken, then the result depends on
the rounding mode and the sign of the result, as
discussed in Sectior, 2. One possible result is cc, which
in single, double, and quad formats with the bit pat
tern

I s I E

is encoded as

S = sign bit
E = 111 11
F = 0.

In the extended formats E = maximal-value and F =
0. The explicit leading bit Lin extended and quad
may be O or 1.

The cc>'s are given two interpretations. In Affine
mode

-oo <{real numbers)< +oo,

which is appropriate for most engineering calcula­
tions involving exponentials or disparate time con·
stants or cc ·s generated by Overflows. The sign of 00 is
ignored in Projective mode, which is useful for real
and complex rational arithmetic. for continued frac·
tions, and for 00 's generated by division by zeros not
generated by Underflows. Systems shall provide an
Affine/Projective mode bit so that the choice can be
made under program control. Projective mode is the
default because it is less likely to be abused unwit·
tingly.

1.10 Division-by-Zero. The Division-by-Zero excep·
tion arises in a division operation when the divisor is
normal zero and the dividend is a finite nonzero
number. The default result is 00 with sign according
to convention.

1.11 Inexact-Result. The Inexact-Result exception
arises when a roundoff error is committed in an
arithmetic operation. It is intended for essentially in­
teger calculation as in Cobol and to facilitate

2.9
multiple-precision calculation. Thi: def&ult result is
the correctly rounded number.

1.12 Denormalized and unnormalized number!> ln
this document an unnormalized number is om• whusc:
Jeading significant bit, whether implicit or explicit. is
zero. Denormalized numbers, nonzero unnormahzed
numbers in a given format whose exponents arc· the
format's minimum, were introduced as the dc-1:.ult
results of Underflows. They are designed not so much
to extend the exponent range, but rather tu allow fur­
ther computation with some sacrifo" of prl'tision in
order to dtfer as long ds pus!:>1ble Ln, r,E't'd Lu d.-..:10,
whether the Underflow will have significant conse­
quences.

While in extended and quad format, wllh theirt·,­
phcit leading bits, unnormalized nu1,,u,•b r.i..iy ;·:.11,~,

over the entire exponent range, tht- ouly unnurn,dl·
iz.ed numbers that may be represented in 1,ing/f and
double formats are denormalized.

Section 2 specifies the results of anth.nLLiL opl'l..i
tions on unnormalized operand!:>; ir, each case- tht
algorithms are essentially the samt- a~ lo1 n0! ;;,:.l.JLd
operands. The only unnormalized result poss1bh ~ it 1,

normalized operands is a denormaliz.-d numbe-1 01,

Underflow
The usual mode of arithmetil on unnorm..iLz<2d

numbers. which may be called W.:irmng mud,
recognizes operands· unnorn.alued rn.u·.,uer. Bu:
the standard allows an optional Norma.hzrng 11,odl JIJ

which all results are computt-d as though aU dPnu1
malized operands had first been norm;,L..:td ln .,
system that offers both, Warning modt sh.ill b~ th,­
default, and selection of modes shall b~ exercised Yia
a single-mode bit accessible to prc,grammers.

Normalizing mode preclude,- both Lhl• creatwr; c,f
any unnormalized numbers other tha:i denormaliz.-d
numbers. and Invalid-Operations duE to thtc ina.b,L t_,

to store an unnormalized result in a single or doubl.­
destination. It might be used by a programmer whc,
has given some thought to Underflow. since. in most
cases. the error due to denormalization on Underfluw
is no worse than that due to roundoff. N orrnalizing
mode sacrifices the diagnostic capability of the un
normalized numbers for the predictabilit-y of nor
malized arithmetic. But if unexpected unnonnaliwd
(but not denormalized) operands ar.- somehow picked
up in that mode, they are operated on as in Warning
mode.

Because it is so often desired. Normalizing mode is
recommended for all system~. especlally those
without an extended format to hold unnormalized in­
termediates. In fact, the Normalizing mode is op­
tional primarily to free the high-performance pipe­
lined array processors from the extra normalizing
step at the start of each operation; such systems will
probably compute their intermediates in extended.

Another way to perform unnormalized arithmetic
in extended format is according to the rules of
significance arithmetic. This would be regarded as an
(expensivel enhancement of the standard. If quad is
implemented, then unnormalized arithmetic should

be performed as significance arithmetic to take ad·
vantage of the extravagant word size.

As mentioned in the discussion of the extended for·
mats, the standard does not exactly specify the inter·
pretation of the nonzero numbers whose exponents
are the format's minimum. One natural implementa·
tion simply extends the exponent range one·unit, in·
terpreting a number with the format's smallest expo­
nent as it would any other nonzero number. A prob­
lem arises since normal 0 can be the unexceptional
product or quotient of grossly unnormalized or denor·
malized numbers. To protect agsinst this anomalous
situation, the standard specifies that such a product
or quotient be marked as an Underflow. The extra
test for normal zero is required after a product or quo­
tient of nonzero numbers.

An alternative encoding of denormalized numbers
in extended and quad formats uses a redundant expo­
nent to permit numbers denormalized by Underflow
to be distinguished from unnormalized numbers at
the bottom of the exponent range which are the
results of operations on unnormalized operands. In a
scheme with biased exponent, with the notation in­
troduced earlier,

(Al The nonzero normalized numbers with E=0
have exactly the same numeric connotation as
their counterparts with E=l.

(B) The nonzero nonnormalized numbers with
E=0 and F'l'0 have the same numeric connota·
tion as the corresponding numbers with E = 1.
Those with E=0 are denormalized while those
with E = I are unnormalized.

(C) The numbers with E=L=F=0 are the signed
normal zeros. The numbers with E~l and
L=F=0 are unnormal zeros.

In this representation normal zero can never be the
product or quotient of nonzero operands unless expo­
nent Underflow occurs (i.e., biased exponent less than
1), simplifying the test for Underflow. Also, in
systems which implement Normalizing mode, there
is a distinction between denormalized numbers and
unnormalized numbers at the bottom of the exponent
range. Another advantage, for those who implement
the standard in hardware that traps to system soft­
ware in all exceptional C"ircumstances, is that
E=maximal-value and E=minimal-value are the
conditions for a hardware trap on "exceptional
operand."

1.13 Hardware vs user traps. The standard specifies
the trap options for exceptions independently of
whether the implementation is in hardware, soft­
ware, or a combination of the two. These are system
traps to software that the user has either written or
invoked from a system library. They are to be dis·
tingui.shed from hardware traps in the arithmetic
unit.

One possible hardware/software implementation
would provide a hardware trap to system soft ware on
every Over/Underflow. The system software would
then test the trap option flag and either deliver the

2.10
9pecified result and proceed, or trap to user software.
In this case the exceptions' sticky flags and trap­
enable bits could be in software. It is important to
note that if the hardware trap provided the correctly
rounded result with an extended exponent, then the
system software would require sufficient informa·
tion to "unround" the number in case a denormalized
result is to be delivered on Underflow; otherwise a
second rounding could occur during denormaliza tion,
in violation of the standard.

The Invalid-Operation and Division-by-Zero excep­
tions could be handled by similar hardware/software
combinations.

Inexact-Result requires more care. Because this ex·
ception will arise (and be ignored) so frequently in
floating-point computations, it is impractical to have
a hardware trap executed on every occurrence. If the
Inexact-Result exception is to be handled by a hard­
ware trap and system software, then that trap should
be maskable. In one possible implementation:

(1) The trap would be masked off until ..

(2) enabled by the library routine invoked by the
user to clear the Inexact-Result sticky flag or to
enable the user trap, and ...

(3) on the first occurrence of a rounding error, the
hardware trap would set the sticky flag. The
user trap would be invoked if enabled; other­
wise the syst.em software would disable the
hardware trap and resume execution. leaving
the sticky flag as an indication of a rounding er­
ror.

A possible hardware trap on denormalized operand
was mentioned at the end of the last section. A
system implementing the Normalizing mode of com·
putation would have software test the Warning/Nor•
malizing mode bit and normalize the denormalized
operand if necessary, handling the details of extend­
ed exponent range required to represent the operand
as normaliz.ed.

2.0 Specifications for a conforming
Implementation of standard arithmetic

2.1 Floating-point formats.Single, double, and quad
are the basic floating-point formats. A standard
system shall provide single only, both single and dou·
ble, or all three basic formats. In addition, either of
the first two systems above may provide the extend·
ed format corresponding to the wider basic format
supported. The formats are described in Tables I and
2.

2.2 Data types. This standard defines the following
floating-point data types: normalized numbers.
denormalized numbers, unnormalized numbers
(available only in extended and quad), the normal
zeros (±0), ± 00 , and the NaNs. They are described in
detail in Tables 1 and 2.

A standard system must produce denormalized
numbers as the default response to Underflow; un·

normalized numbers are their descendants in extend­
ed or quad. A system may optionally allow users to
normalize all denormalized numbers when they ap­
pear as input operands in arithmetic operations. This
shall be called Normalizing mode in contrast to the
default, Warning mode. The choice of Normaliz­
ing,Warning modes shall be made via a single bit ac·
cessible to users.

Signed 00 's are produced as the default response to
Division-by-Zero and certain Overflows. Systems
shall provide 00 arithmetic as specified. Users must
be able to choose, via a single-mode bit, whether ± 00

will be interpreted in the Affine or Projective closures
of the real numbers. The sign of 00 is respected in Af­
fine mode and ignored in Projective, the default.

NaNs are symbols which may or may not have a
numeric connotation. Nontrapping NaNs are intend­
ed to propagate diagnostic information through
subsequent arithmetic operations without triggering
further exceptions. Trapping NaNs, on the other
hand, shall precipitate the Invalid-Operation excep·
tion when picked up as operands for an arithmetic
operation. Systems shall support both types of
NaNs. In the event that two Nontrapping NaNs oc­
cur as operands in an arithmetic operation, the result
is one of the operands, determined by a system­
dependent precedence rule.

2.3 Arithmetic operations. An implementation of
this standard must at least provide:

(Al ADD. SUBTRACT, MULTIPLY, DIVIDE.
and RE MA I ND ER for any two operands of the
same format, for each supported format, with
the destination having no less exponent range
than the operands.

(Bl COMPARE and MOVE for operands of any,
perhaps different, supported formats.

(Cl ROUND-TO-INTEGER and SQUARE ROOT
for operands of all supported formats, with the
result having no less exponent range than the
input operands. In the former operation, round­
ing shall be to the nearest integer or by trunca·
lion toward zero, at the user's option.

(DI Conversions between floating-point integers in
all supported formats and binary integers in
the host processor.

(El Binary-decimal conversions to and from all
supported basic formats. Section 2.21
describes one possible implementation.

2.4 Exceptions. One or more of five exceptional con­
ditions may arise during an arithmetic operation:
Overflow, Underflow, Division-by-Zero, Invalid­
Operation, and Inexact-Result.

The default response to an exception is to deliver a
specified result and proceed, though a system may of­
fer traps to user software for any of the exceptions.
These traps shall be enabled via bits accessible to pro­
grammers.

A system providing a trap on an exceptional condi­
tion should give sufficient information to allow cor-

2 .11
rection of the fault and allow processing to continue
at the point of the error or elsewhere, at the option of
the trap handler. The correct result may be encoded in
the destination's format (or even in the destination}
or in a heap pointed to by a NaN. On the other hand. if
no numeric result can be gi,·en, the opcode and aber­
rant operands must be provided; the trap handler
should be able to return a result to be delivered to the
destination.

Associated with each of the exceptions is a sticky
flag which shall be set on the occurrence of the cor­
responding exception when no trap is to be taken. The
flags may be sensed and changed by user programs,
and remain set until cleared by the user.

2.5 Specifications for the arithmetic operations. For
definiteness the algorithms below specify one con­
forming implementation. Single, double, and double­
extended formats are implemented; the exception
flags are set on every occurrence of the corresponding
exception; the extended exponent is biased by 16383.
There are many alternative conforming implementa­
tions. Those arithmetic operations. exc~pt Decimal
to Binary conversion, which deliver floating-point
results rather than strings or binary integers are
broken into three steps:

IOI If either operand is a Trapping NaN, then
signal Invalid-Operation and proceed to Step 2.
Otherwise, if the Normalize bit is set, then nor·
malize any denormalli.ed operands.

(11 Compute preliminary result Zand, if numeric,
round it to the required precision and check for
Invalid/Over/Underflow violations. This step
is peculiar to the specific operation.

(21 Set exception flags, invoke the trap handler if
required, and deliver the result Z to its destina­
tion. The second step is the same for all opera­
tions except REMAINDER and MOVE; the
minor differences are noted.

The following table is used in the specification of
Step 1 of the operations with two input operands. It
singles out the cases involving special operands.

y

X op Y :tO w :!;;00 NaN

:t 0 a b C y
X w d e 1 y

:t 00 g h i y
NaN X X X M

W is any finite number, possibly unnormalized but
not normal zero. While X and Y refer to the input
operands, the entry M indicates that the system's
precedence rule is to be applied to the two Nontrap­
ping N~Ns.

Preliminary numeric results may be viewed as:

sgn j exp I V I N. j

where V is the overflow bit for the significant digit
field, N and Lare the most and least significant bits,

G and Rare the two bits beyond L, and S, the sticky
bit, is the logical OR of all bits thereafter.

2.6 ADD/SUBTRACT. For subtraction, X-Y is
defined as X +(-Y).

a: Z is +0 in rounding modes RN, RZ, RP, or if
both operands are +O; Z is -0 in mode RM or
if both operands are -0.

c.f: Z=Y.

g,h: Z=X.

b,d,e: (Note that in cases band d, a narrow rounding
precision may cause the result to differ from
the nonzero input operand.) Compute:

(1) Align the binary points of X and Y by un·
normalizing the operand v.'ith the smaller
exponent until the exponents are equal.
Note whether either of the resulting
significands is normalized for (3) below.
Add the operands.

(2) Addition of magnitudes: If V=l, then
right-shift one bit and increment exponent.
During the shift R is ORed into S.

(3) Subtraction of magnitudes:
(a) If all bits of the unrounded significant

digit field are zero: Set the sign to"+"
in rounding modes RN, RZ, RP, and set
the sign to"-" in mode RM. Then, if
either operand was normalized after
binary point alignment in (1), the expo­
nent is set to its minimum value, i.e.,
the result is true zero.

(b) Otherwise: If, after binary point align·
ment in (1), neither operand was nor­
malized, then skip to (4). Otherwise,
normalize the result, i.e., left-shift the
significand while decrementing the ex­
ponent until N=l. S need not par­
ticipate in the left shifts; zero or Smay
be shifted into R from the right.

(4) Check Underflow, round, and check Invalid
and Overflow.

i: In Affine mode (+00) + (+00)- (+00)and (-00) +
(-00)- (-00). In Affine mode on (+00) + (- 00)
and (-00) + (+oo), and in all cases in the Projec­
tive mode, signal Invalid-Operation, and if a
result must be delivered, set Z to NaN.

2.7 MULTIPLY.

a,b,d: Z=0 with sign.

c,g: Signal Invalid-Operation. If a result must be
delivered, set Z to NaN.

e: If either operand is an unnormal zero, proceed as
in c; otherwise, compute:

(1) Generate sign and exponent according to
convention. Multiply the significands.

(2) If V = 1 then right-shift the significand one
bit and increment the exponent.

2.12
(3) Check Underflow, round, and check Invalid

and Overflow.

f,h,i: Z=00 with sign equal to the Exclusive-Or of
the operands' signs.

2.8 DIVIDE.

a,i: Signe] Invalid-Operation and if a result must be
delivered, then set Z to NaN.

b,c.f: Z=0 with sign. Exception: if X is an unnor­
mal zero, proceed as in a.

d: Z=00 with sign. Signal Division-by-Zero.
Exception: if Xis an unnormal zero, proceed as
ina.

e: If Y is unnormalized, proceed as in a; other­
wise, compute:

(1) Generate sign and exponent according to
convention. Divide the significands.

(2) If N=0, then left-shift significand one bit
and decrement exponent. S need not par­
ticipate in the left shift; a zero or S may be
shifted into R from the right.

(3) Check Underflow, round, and check Invalid
and Overflow.

g,h: Z=oo with sign.

2.9 REMAINDER. Form the preliminary result Z =
remainder when Xis divided by Y, with integer quo­
tient Q. Q does not participate in Step 2 of the opera­
tion unless an exception is raised there, in which case
if Z is set to NaN, then Q is assigned the same value.
The sign of Q is the Exclusive-Or of the input
operands' signs. The standard does not require the
quotient Q.

a,d,g.~i: Signal Invalid-Operation. If results must
be delivered, then set Zand Q to NaN.

b,c: If Y is unnormal zero, proceed as in a; other·
wise Z=X and Q = 0.

e: If Y is unnormalized, proceed as in a. Otherwise,
normalize X and compute:

(1) Set Q to the integer nearest X/Y computed
to as many bits as necessary to round cor·
rectly: if X/Y lies halfway between two in­
tegers. set Q to the even one. If Q contains
more significant bits than its intended
destination (the number may be great if
X>>Y), then discard the excessive high·
order bits.

(2) Set Z to the remainder, X-(Q*Y). Nor­
malize Z, check Underflow, round, and
check Invalid and Overflow. There is no
rounding error if the destination precision
is no narrower than X's and Y's.

f: Q=0andZ=X.

2.10 ROUND-TO-INTEGER. Set Z to X if Xis ±0,
±00,or NaN; otherwise, compute Z: IfX ·se:xponentis
so large that it has no (zero or nonzero) significant

fraction bits, then set Z to X; else:

(1) Right-shift X's significand while incrementing
the exponent until no bits of the fractional part
of X lie within the rounding precision in effect.

(2) Round Z. The user must hsve the option of
rounding by truncation as well as to the nearest
integer.

(3) If all of the significant bits of Z are O, then set Z
to.normal zero with the sign of Z; otherwise,
normalize Z. S, which was set to zero after round­
ing in (2), need not participate in the left shifts
of normalization; zero or Sis shifted into R from
the right.

2.11 SQUARE ROOT. Z=vx- If Xis ±0 or NaN,
then set Z to X. If Xi" unnormalized or -00, then
signal Invalid-Operation and if a result must be
delivered, set Z to NaN. If X is +00, then in Affine
mode set Z to X and in Projective mode proceed as for

If X is positive, finite, and normalized, compute
Z=vx to the number of bits required to get a correct­
ly rounded result, and round Z. Only two bits of Z
beyond its rounding precision are required, if that
precision is no narrower than the precision of X.

If X is negative, finite, and normalized, signal
Invalid-Operation. If a result must be delivered, set Z
to NaN.

2.12 MOVE. MOVE X - Z (convert between dif­
ferent floating-point formats) is an operation whose
destination may hsve shorter range and precision
than its source operand, in which case it performs an
arithmetic operation. If Xis ±0, ±00,or NaN,setZto
X. Otherwise, check X for Underflow, round to the
precision of the destination, and check for Invalid
and Overflow.

On Over/Underflow with the corresponding trap
enabled, the exponent may be more than a factor of 2
(i.e., one bit) beyond the range of the destination, so
the exponent wrap-around scheme will not work. One
way to cope is to deliver to the trap handler the result
in the format of the source, or in the widest format
supported, but rounded to the precision of the
destination. Another way involves a heap onto which
is put the rounded value whose exponent lies beyond
the range of the intended destination; into the
destination would go a NaN pointing to thst value in
the heap.

2.13 Detection of Underflow. If the exponent of the
nonzero preliminary result underflows the intended
destination, then signal Underflow and, if the
Underflow trap is disabled, denormalize it as follows.
Shift the significant digit field right while increment·
ing the exponent until it reaches its most negative
allowable value. During each right-shift the R bit is
ORed in to the S bit, itself not shifted. If the trap is
enabled then, except for the MOVE operation, the ex­
ponent is wrapped around as described under Bias
Adjust (Section 2.16).

2 .13
Another instance of Underflow, tested after round­

u_ig, is a normal zero extended or quad product or quo­
tient of operands neither of which is normal zero. This
special case is precluded by the redundant exponent
scheme discussed in Section 1.12.

2.14 Rounding. Four rounding modes are described
by the standard:

RN Round to Nearest
RZ Round toward Zero
RM Round toward -00

RP Round toward +co.

An implementation of the standard may support
either RN only, with RZ for Round to Integer, or all
four rounding modes. RN shall be the default mode
for all arithmetic operations. The rounding mode may
be specified by, say, preset mode bits. rounding mode
options in each instruction, or rounding instructions
which can follow the operation whose result is re­
rounded, but not double-rounded.

The preliminary result Z, to be rounded, may be
viewed as in Section 2.5. S, the sticky bit, assures a
result rounded as though first computed to infinite
precision. From Z determine Zl and Z2, the numbers
representable in the desired rounding precision that

most closely bracket Z. Since Overflow is not checked
until after rounding, the exponent of Zl or Z2 or both
may be overflowed.

If Zl=Z=Z2, there is no rounding error and
RN(Z)=RZ(Z)=RP(Z}=RM(Z)=Z. Otherwise, signal
Inexact-Result, and

RN(Z)=the nearer of Zl and Z2 to Z; in case of a tie
choose the one of Zl and Z2 whose least signifi­
cant bit is 0.

RZ(Z) = the smaller of Zl and Z2 in magnitude.
RM(Z)= Zl.
RP(Z}= Z2.

When a system supports an extended format, it
must provide users with the option of rounding to a
shorter basic precision a result intended for a v.;der
extended destination. Also, when all operands in an
operation are of the same format, it shall be possible
to round the result to the precision of that format.
The specification of that option will require at most
two bits of information: one enables precision control;
one specifies whether rounding to single or double
precision, effective only when precision control is
enabled.

2.15 Detection of Invalid and Overflow. If an unnor­
malized, but not denormalized, number is destined
for a single or double destination, the Invalid­
Operation exception arises. Otherwise ...

If z· s exponent overflows the intended destination,
then signal Overflow and, if the corresponding trap is
enabled, adjust the exponent bias as specified under
Bias Adjust (Section 2.16}.

On Overflow with the trap disabled, signal Inexact­
Result. Then set Ztooo with the sign of Zif the round­
ing mode is RN, RZ, RP and Z is positive, or RM and Z
is negative. Otherwise, if Z is norm.e.lized, set Z to the
largest norm.e.lized number representable in the
destination field, with the sign of Z; and if Z is not nor­
malized. simply set Z's exponent to that of the for­
mat's largest norm.e.lized number.

2.16 Bias Adjust. On Over/Underflow, with the cor·
responding trap enabled, the exponent of a rounded
result Z is wrapped around into the required range of
the destination. Compute A= 192 in single, 1536 in
double, 24576 in quad, and 3•2n·2 in extended, where
n is the number of bits in the exponent. On Overflow
subtract A from Z's exponent; on Underflow add A to
Z's exponent.

This scheme works only when the Over/Under­
flowed exponent exceeds its destination's range by a
factor no larger than 2. The only exception in this im­
plementation is discussed under MOVE (Section
2.12}.

2.17 Step 2 of arithmetic operations. Preliminary
result Z was developed in Step 1.

(l} In modes RP and RM. "undo" any Over/
Underflow signals whose traps were enabled.

(2) If the Invalid-Operation exception was sig­
naled, produce a diagnostic Nontrapping NaN
as the preliminary result Z.

2. 14

(3) Set the sticky exception flags conesponding to
the exceptions signaled. Trap if any exception
has been signaled whose corresponding trap is
enabled, allowing Z to be modified before
delivery to the destination.

(4} Deliver Z to its destination.

2.18 FLOATING-TO-INTEGER. This instruction
converts a floating-point number X into a binary in­
teger of the host processor. If Xis a NaN or oo, then
leave the destination unchanged and set the Invalid·
Operation bit, trapping if the corresponding trap is
enabled.

For finite X, replace X by ROUND-TO-INTE·
GER(X). Convert X to an integer in the desired for­
mat and write the result into the destination. If X
overflows the destination field, then truncate ex·
cessive high-order bits and signal Integer-Overflow
in the host processor, if it recognizes such an excep­
tion; otherwise, set the Invalid-Operation sticky flag
and trap if enabled.

2.19 INTEGER-TO-FLOATING. Map the binary in­
teger X in the host processor into a floating-point in­
teger. If X cannot be represented exactly, then round
as described in Rounding and set the Inexact-Result
bit, trapping if the conesponding trap is enabled.

2.20 COMPARE. A floating-point comparison can
have precisely one of four possible results (condition
codes}:<, =.>,and unordered. When the result is
reported as the affirmation or negation of a predicate,
the following implications determine that response:

=affirms"• =. and ~. and denies <,>.and un­
ordered.

< affirms < and -.; and denies =. ~. >, and un­
ordered.

> affirms ;i, and > and denies <, ..;, =. and un­
ordered.

unordered affirms unordered and denies<,-.. =,
;i.,and>.

When two values that are unordered are compared
via the predicates<,..:,;,?;,>, or their negations, then,
in addition to the response specified, the Invalid­
Operation flag is set and the trap invoked if enabled.

The following table specifies the compare opera­
tion. Unnorm.e.lized (and denormalized} operands are
treated as though first normalized.

)(VS Y
-00

Finite +00 00
NaN

Attine Attine Pro1ect1ve

-00

Att1ne
.. < < NIA a

Finite > b < a a

+oo > > .. NIA a Attine

00
NIA

Pro1ective a NIA ~ a

NaN a a a a a

a: unordered.
b: The result is based on the result of X-Y. The

subtraction may not have to be carried out com·
pletely, and the possible Underflow and
Inexact-Result exceptions are suppressed.

2.21 Radix conversion. A system must provide stan·
dard conversion to and from its basic formats. The
specifications are a compromise designed to ensure
that conversions are uniform and in error by less than
one unit in the last place delivered, at a nearly
minimal cost. The scheme below meets the re­
quiremen ts for single and double.

The particular decimal character code and format
are unspecified. The decimal field widths are:

single: up to 2-digit exponent and up to 9
significant digits.

double: up to 3-digit exponent and up to 17
significant digits, with the option of using up to 19
digits in decimal-to-binary conversion.

Two functions perform conversions between
binary floating-point integers and character strings
consisting of a sign followed by one or more decimal
digits. BINSTR converts a binary floating-point in­
teger X, rounded to the nearest integer, to a signed
decimal string. STRBIN converts a signed decimal
string with at most 9 digits in single, and 19 in double,
to a binary floating-point number X whose value is
that of the decimal integer the string represents.

The function log10 is required and msy be com­
puted from the formula

log10(X) = log2 (X) • Iog10(2).

It need be computed only to the nearest integer for
this calculation. Log2(X) may be approximated by
X's unbiased exponent. Within the conversion pro­
cess. arithmetic must be done with at least 32 signifi­
cant bits for single and 64 bits for double.

Powers of 10 not exactly calculable in the stated
precision shall be procured from tables. The following
tables require minimal storage:

(A) Systems with single precision only: 1013 can be
represented exactly with 32 significant bits. To
cover the range up to 1038, a table with the
single entry 1026 suffices.

(B) Systems with both single and double precisions
only: 1027 can be represented exactly with 64
significant bits. To cover the range up to 10308,

a table of 105 ◄, 10108, and 10216 suffices.

Binary-floating-to-Decimal-floating. Given binary
floating-point number X and integer k with 1-.; k ~ 9
for single precision and 1~ k~ 17 fordoubleprecision.
compute signed decimal strings I and E such that I
has k significant digits and, interpreting I and E as
the integers they represent,

X=l • 10E+I-k = sd.ddddddd • IOE

wheres is the sign of X and the d's are the k decimal
digits of I.

(1) Special cases: If Xis +oo, - 00,orNaN,delivera
nondecimal string. for ex.ample, + +, - - , .. ,

2.15
respectively. If X is zero, then return +O or -0
as appropriate. Otherwise.

(2) Set X to its absolute value, saving its sign.
(3) If Xis normalized, compute U=log

10
(X): other­

wise let U =log 10(smallest normalized number).
(4) Compute V = U + 1-k, rounded to an integer

inmodeRZ.
(5) Compute W=X/lov. rounded to an integer in

mode RN.
(6) Adjust W:

lfW~lOk+l. then increment V and go to (5).
If W=IO•, then increment V, divide W by 10
(exactly), and go to (7).
If w..;1ok- 1-1 and X was normalized in (3),
then decrement V and go to (5).

17) Return I =BINSTR(W with sign of X) and
E=BINSTR(V).

Decimal-floating-to-Binary-floating: The decimal
floating-point number X has the form X=sddddd.
DDDDDDD • l0E, where leading zeros are not
counted as significant digits. The following are given:

(A) signed decimal string E
(Bl signed decimal string I= sdddddDDDDDDD
(Cl integer P indicating how many digits of I are to

the right of the decimal point so that X can be
written

X=I•10·P•10E.

(1) Compute U=STRBIN(I).
(2) ComputeW=STRBIN(El.
(3) Compute result X =U•10w-P. ■

i
t
i

.
" t·
~·
I r
(

t
t

t
!

i
I

~
t;

'·

~
L

Errata-
"'An Implementation Gulde to a Proposed
Standard for Floating-Point Arithmetic"

The changes to Jerome T. Coenen', article in the January
1980 is~ue of Computer (pp. 68-79) arc of two types. Those
marked (E) correct errors. while the otheri, marked CU), bring
the 1uide up to date with the most rcet"nt draft of the proposal.

(U) Introduction, para. 2, line 2: Replace Draft 5.// with
Draft 8.0. Also update the footnote •• to refer to the
March 1981 issue of Computer.

(U) II.I, under Rounding Modes: Ddcte line (A) and the
label "(B)'' since all rounding modes an required now.

(E) Table I: ln the formula for represented denormalized
aumben the exponent of 2 is incorrect. The correct for­
mula is

(U)

(U)

(E)

(E)

(E)

(\))

(E)

(-1)5 X 2£-S...+ I X (L.F).

fl .S, paragraph beginning An imple-ntalion of.
. That fint sentence should be sboncned to An implemen­
tation of thl! standard shall support all four rounding
modes.
I 1.12: Readers should note that the implementation
guide uses unnormalized in its traditional sense, that is,
describing any number who,e leading significant digit is
0; thus denormalized numbers arc simply those unnor­
malized numbers whose exponent is the format's
minimum. On the other hand, Draft 8.0rcstricts the word
11nnormali:..ed to apply only to oumberi whose leading
significan1 bit is zero but which arc not denormalized.
§2. 7: The special case test

If either operand is 0111m11ormal :.~o then procttd as in
c; otherwise.

should be removed from te and inscrtrd at the be&inning
of §f,h.i. Thus te begins simply Compute..
12.8: The Exception clause of §b,c,fshould be changed to
Exception: If in b, Y is 111111ormal uro, proceed as in a.
§2.9: lo ~b.c replace unnormalzero by unnormalized. To
§f append Normali::.e Zand check for underflow.
§2. J.4, para. I: The i;entencc beginning A.11 implementa­
tion of . .should be shoncncd to An im~me11101ion of
the standard shall support all four rounding modes.
§2.17: The last word of clause (I)should be changed from
oabled to disabled.

2 .16

CHAPI'ER 3

Numerical Programming Environments

The body of this chapter is an article by W. Kahan and this author as

published in the book "The Relationship between Numerical Computation and

Programming Languages", edited by J. K Reid. It is reprinted here with the

permission of the publisher, North-Holland Publishing Company.

Although the proposed arithmetic standards are intended to specify the

total numerical programming environment, they address only indirectly

many of the language issues that arise in actual implementations. This

chapter is an attempt to defuse some of the conflict between numerical

requirements and existing language standards with an argument for the

"near" independence of numerical (semantic) and language (syntactic)

domains. It is believed that proper partitioning of responsibility for the

design of a programming system will lead to the best implementations.

3.1

The Near Orthogonality of Syntax, Semantics, and
Diagnostics in Numerical Programming Environments

Jf. Kahan a.nd Jerome T. Coonen

Mathematics Department
University of California

Berkeley, California 94720
U.S.A.

lre can improve numerical programming by recognizing that three aspects of the
computing environment belong lo intellectually separate compartments. One is the
syntax of the language, be it Ada, C, Fortran or Pascal. which gives legitimacy to
various expressions without completely specifying their meaning. Another might be
called "arithmetic semantics". It concerns the diverse values produced by
different computers for the same expression in a given langue.ge, including the
values delivered e.fler exceptions like over /underfiow. The third compartment in­
cludes diagnostic aids, like error fl..a&s and messages; these too can be specified in
language-independent ways. However imperfect. this decoupling should spell out
for all concerned the nature of arithmetic responsibilities to be borne by hardware
designers, by compiler writers and by operating system programmers.

"Another of the great advantages or using the axiomatic
approach is that axioms o!'J'er a simple and fiexible technique for
leaving certain aspects of a language undefined. for
example ... eccuracy of !'!eating point... This is absolutely e!nen­
tial for standardization purposes ... "

- C. A. R. Hoare (1969)

Professor Hoare's attitude toward floating point semantics ref\ects the anarchy
that befell commercial floating point hardware early in the 1960's [1]. and wor­
sened in the ?O's. That anarchy confounded attempts to characterize all floating
point arithmetics in one intellectually manageable way. Now there is hope for the
19BO's. A new standard for binary floating point arithmetic has been proposed
before the IEEE Computer Society, and a radix-independent sequel is in the works
Since the binary standard has been adopted by a broad range of computer
manufacturers, including much of the microprocessor industry, we expect numeri­
cal programs to behave more nearly uniformly across different computers, end
perhaps across different languages as we 11 A draft of the binary standard, along
with several supporting papers, may be found in the March 19B 1 issue of Computer
[2-5].

Starting in the 1960's programming language designers came to be the
arbiters of most aspects of the programming environment. With control of the pro­
grammers' vocabulary, language designers could control fundamental features
such as the number of numeric data types available and the extent of run time
exception handling. The language even limited the numeric values available by
constraining the literals in the source text. This is not to say that language
designers acted capriciously. They were disinclined to mention any capability not
available on all computers. In this respect computer architects have laid a heavy
hand on the computing environment. Languages must reflect the least common
denominator of available features, end so they tend to vague oversimplifications
where floating point is concerned An extreme case is the new language Ada which,
by incorporating W. Stan Brown's very general model for floating point computation
(5]. pretends that the difference between one computer's arithmetic and another·s
is merely a matter of a few environmental parameters. But sometimes the

3.2

programmer must know his me.chine's arithmetic to the le.st detail, especially when
trying to circumvent limitations in range or precision. These details, dangling
between language designers e.nd computer architects. too often receive short shrift
from both. Tying up these loose ends would improve the computing environment.

Of course the computing environment invites numerous improvements. to
graphics, file handling, de.le.base management e.nd others, e.s well e.s floating point
e.nd languages. But enhancements to which high-level languages deny access are
enhancements destined to die. Those of us working on the proposed IEEE floating
point standards have had to face this problem. We believe the solution is a proper
division of labor, rather than grand attempts to improve loo many aspects of the
computing environment simultaneously; the latter way would require impractical
coordination. For example, to encourage independent development of program­
ming languages and floating point hardware, we propose that language (syntactic)
issues be decoupled from arithmetic (semantic) issues to the extent possible. We
present our view of the interplay between syntax, semantics, and diagnostics as
parts of the computing environment, and discuss how they interface with each
other. Given an adequate interface discipline, we hope that responsibility for these
parts can be divided among language designers, numerical analysts, systems pro­
grammers, and others In the past this division has been unclear. Unfortunately,
when everybody is responsible, or when nobody is responsible, then everybody can
be irresponsible.

Portability
We regard the programming language as just one layer of the computing

environment, dissenting from a more traditional view that the language is the
environment. What does this mean for program portability? Until very recently,
portability of numerical programs was considered to be a quality of source code
that could be compiled and run successfully without change on a variety of com­
puters. The issues appeared largely syntactic. For example, programs like the
PFORT verifier [7] were developed to check Fortran codes for adherence to a stan­
dard for "portable Fortran", their principal task being to weed out various quirks
of dialect. Nowadays, we acknowledge that the portability issues go deeper than
differences among Fortran dialects. They entail the (semantic) subtleties of
over/underflow and rounding that, if ignored, can cause ostensibly portable pro­
grams that function beautifully on one machine to fail on another. Programming
languages that lack the vocabulary required to address these issues aren't very
helpful here. lfwe cannot "mention" these issues how can we resolve them?

Ideally, the variation of floating point arithmetic from one machine to another
should be describable with a few parameters [BJ which portable programs could
determine through system-dependent environmental inquiries [9]. This scheme
works satisfactorily for many programs that do not depend critically upon the finer
points of the arithmetic However, any such parameterization must be based upon
an .abstract model encompassing simultaneously all current arithmetic engines,
some of them disconcertingly anomalous [1, 10]. To insist that this model underlie
portable programming is to dump upon programmers the onus to discover and
defend against all mishaps the model permits, some of them mere artifacts of gen­
erality. This in turn would burden programs with copious tests against subtle (and
certainly machine-dependent) thresholds to avoid problems with idiosyncratic
rounding and over/underflow phenomena. A programmer who shirks his responsi­
bility to produce robust code obliges the user of his program, possibly another pro­
grammer, to unravel a more tangled web Ultimately, the buck may be passed to
users who find either their programs or their computers to be inexplicably unreli­
able. We doubt that any semantic analog of the PFORT verifier will ever be able lo
test for robust independence of the underlying arithmetic. Computer arithmetics
are too diverse to allow every potentially useful numerical algorithm to be pro­
grammed straightforwardly in a fashion formally independent of the underlying

3.3

machine.
Portability at the source code level is nice when inexpensive. When not, we are

content with "transportability", whereby algorithms can be moved from one
environment to another by routine text conversion, possibly with some aid from
automation. An algorithm may depend critically upon the underlying arithmetic
semantics and upon e system's ability to communicate error reports between sub­
programs. It is transportable to the extent that the dependencies can be commun­
icated in natural language using mathematical terms, if not in Fortran. We are not
advocating yet another programming leni;uage. We prefer that programmers
accompany their codes with some documentation that explains, and can even be
used to verify, how the program handles its interactions with the underlying sys­
tem. Because computing environments ere so diverse, we expect some algorithms
to be transportable to only a few systems. not all; this does not undermine the
notion of transportability. Essential to transportability is a manageable corpus of
information about
• syntax - the programming language to be used,

•

semantics - the arithmetic of the underlying computer, including the run-time
libraries of functions like cos(), and
diagnostics - the system's facilities for error reporting and handling,

preferably no more than can flt on e short bookshelf, and yet enough to cover e
wide range of manufacturers' equipments.

Synt.u:
In this paper. synta.:r: refers to the expressions in e language - which ones are

legitimate and how they are parsed Issues relevant to numerical calculations
include the number of date formats available, how they combine to form arrays and
structures, and the order of evaluation in unperenthesized expressions. Languages
very greatly in their provision of numeric data formals, usually called "types".
Both Basic and APL have just one numeric type, which is to be used for both integer
and floating point calculations; Pascal and Algol 60 have just one real type. Fortran
and C have single end double types, although in C all floating expressions are of
type double. PL/I programmers may specify the precision of their floating point
variables, though they typically map into the single and double types supported by
the underlying system. The new language Ade provides syntactic "packages" in
which floating types may be defined to correspond to the host system's facilities,
but its strong typing prohibits mixing of different user-defined types in expressions
without explicit coercions, even if the underlying hardware types are the same.

Expression evaluation is just es varied. For example, in

1.0 + 3/2

most compilers would recognize the 3 and 2 as integers. Their ratio would be
evaluated as the real 1.5 or truncated integer l depending upon the strength of the
1.0 to coerce their types. Different Fortran compilers have disagreed in this situa­
tion. In Ada such an expression would be illegal unless the 3 and 2 were written
with decimal points to indicate that they were real literals. What about the
unparenthesized expression

A • B + C ?

Most languages, like Fortran, evaluate it as if it were written (A •B) + C, but APL
evaluates A x B + C as if it were written A x (B + C). The situation gets more com­
plicated when relational and boolean operators are involved. In Pascal, the attempt
to simplify the language by keeping the number of levels of operator precedence
smell led to some surprises for programmers For exemple, because the conjunc­
t10n n has greater precedence than <, the expression

3.4

:r<yny<z,

used for checking bounds on the variable y, has the bizarre interpretation

(:r < (y ny)) < z

which is illegal because of the appearance of the real y as an operand to n.
Perhaps the widest syntactic liberties are ta.ken by standard C compilers.

Expressions of the form

a+ b + c

where a, b. and c may be subexpressions, are evaluated m an order determined at
compile time according to the complexity of a, b, and c. This is so regardJ.ess of
parentheses such as

(a + b) + c

Such a convention is disastrous in floating point where, say, (a+ b) cancels to a
small residual to be added into the accumulation c. In such cases all accuracy may
be lost if (b +c) is evaluated first at the compiler's whim. The cautious program­
mer who writes

(:r - 0.5) - 0.5

to defend against a machine's lack of a guard digit during subtraction will always
be vulnerable, if not to a C compiler then to an optimizer that collapses the expres­
sion into the algebraically, though not numerically, equivalent form (:r - 1.0).

To jump the gun a bit, it is clear from the examples above that syntax con­
strains semantics. Syntax also constrains programmers who, C compilers notwith­
standing, are well advised to preclude any ambiguity in expression evaluation by
inserting parentheses liberally.

Semantics
We concentrate here on arithmetic semantics. Thal is, after an expression has

been parsed - so the computer knows which operations to perform - what does its
evaluation yield? Floating point semantics depends vitally on the underlying arith­
metic engine. The initiated reader realizes that this is where the real headaches
set in. For example, on machines such as programmable calculators where the
fundamental constants 11 and e are available in a few strokes, we might expect

(11 x e) - (e x 11)

to evaluate to 0.0 since, semantically, we expect multiplication to be commutative
despite roundoff. Unfortunately, even this simple statement is not universally true.
Different Texas Instruments calculators yield different tiny values for the expres­
sion above; and it's not just a matter of machine size and economy. for early edi­
tions of the Cray-I supercomputer exhibited similar noncommutativity.

Another well-known example of murky semantics is the expression

X - (1.0xX)

which is exactly X rather than 0.0 for sufficiently tiny nonzero values X on Cray
and CDC computers On these machines (1.0xX) flushes to 0.0 for those tiny X. On
some other machines that lacked a guard digit for multiplication, the expression
above was nonzero whenever X's last significant digit was odd 1

Hardware-related anomalies like these seem to predominate in any serious
treatment of arithmetic semantics. Such distractions are what led Professor Hoare
to despair about floating point in high-level languages. We will not dig further into
the lore of arithmetic anomalies Interested readers can find an introduction in
[1]. The technical report [1 O] studies the overall impact of anomahes and com­
pares two approaches lo improvement.

3.5

Arithmetic semantics is not restricted to simple operations In languages like
Basic that include matrix operations, assignments like

JJATX = JNV(A) •B

are allowed. As users might expect, most implementations evaluate (A- 1) •B
(approximately), following the strict mathematical interpretation of the formula.
However, more robust systems by Tektronix and Hewlett-Packard use Gaussian
elimination to solve the linear system AX = B for X, thereby obtaining a usually
more accurate X that is guaranteed to have a residual B - AX small compared
with I BI + I A I· IX I. If A is close enough to singular, the subexpression JNV(A)
may be valid or not depending upon good or bad luck with rounding errors - on all
machines except the Hewlett-Packard HP 85 All machines solve (A + ti.A)X = B
with llA comparable lo roundoff in A though possibly differing from column to
column of X. The HP 85 further constrains AA to guarantee that (A + AA)- 1 exists.
Thus it has no "SJ;-;GULAR MATRIX" diagnostic. Consequently, a program using
inverse iteration to compute eigenvectors always succeeds on the HP B5 but on
other machines is certain to fail for some innocuous data. ls such a program, using
a standard technique, portable or not? Who is to blame if it is not?

Arithmetic exceptions such as over /underflow and division by zero flt into our
informal notion of semantics v.·hen they are given "values", We take this view in
spite of a current trend among authors to consider exceptions under a separate
heading pragmatics. This trend is understandable, given the variety of exception
handling schemes across different hardware. Consider for example the expression
0.0/ 0.0 , When they are to continue calculation (i.e. without a trap) CDC, DEC
PDP /VA.X-11, and proposed IEEE standard machines stuff a non-numeric error sym­
bol in the destination field. This symbol is then propagated through further opera­
tions. Most other machines just stop, forcing program termination. At least one
will store the "answer" 1.0.

Dividing zero by itself is usually bad news within a program, so the diversity of
disasters that arise on various machines is not too surprising. A quite different
situation arises with the exponentiation operator in yx, Since this is part of the
syntax of several languages, for example Fortran, Basic, and Ada, responsibility for
its semantics hes been taken by language implementors. Of the many problems
that arise we will consider just one: what is the domain of yx when both X and Y
are real variables? Consider the simple case (-3.0)30

, which is:

-:no
-26.999 ... 9

TERMINATION
undefined

+27.0

... on very good machines,

... on good machines,

... on bad machines,

... on cop-outs,

... on very bad machines.

Why this bizarre diversity of semantics? Although for arbitrary X the expression yx
may have no real value when Y is negative, the particular case above is benign
because X has an integer value 3.0. Thus restricting the domain of Y to nonnega­
tive numbers is unnecessarily punitive, We recommend that, should X be a :floalmg
point Fortran variable with a nonzero integer value,

Y .. X = Y .,. INT(X) .

This cannot hurt Fortran users, but will help the Basic programmer (and the
conversion of programs from Basic) because most implementations of Basic, wilh
just one numeric data type, cannot distinguish the real 3.0 from the integer 3 in
the exponent. This recommendation costs extra only when Y is negative. On the
other hand, if Y is 0.0 we distinguish Yo 0 , which is an error, from Yo= 1.0 which
mathematics makes obligatory. Note that none of these issues are language issues,
though until now they have been setlled by language implementors. Ideally, the~e
responsibilities should be lilted from language designers and implementors, and

3.6

borne by people like the members of IFIP Working Group 2.5.

The point of this digression into the murk of pragmatics was to indicate that
the current situation in exception handling is the result of a host of design flaws
rather than inherent difficulties. We object to the connotation "pragmatics" car­
ries with it of acquiescence to inevitable hazards We prefer to capture all seman­
tics, including the anomalies, under one heading even if this entails a different
semantics for each different implementation of arithmetic. This exposes rather
than compounds a bad situation.

A notably clean and complete arithmetic semantics is provided by the pro­
posed binary floating point standard. The IEEE subcommittee responsible for the
proposal set out to specify the result of every operation, balancing safety against
utility when execution must continue after an exception. Even a cursory glance at
the proposal indicates the extent to which exception handling motivated the
design:

•
•

•
•

Signed DO for overflow and division by O 0.
Signed O.Otointeractwith ±DO, e.g. +1.0/-0.0 = -DO.

Na~ - not a number - symbols for invalid results like 0.0/0.0 and --'=3 .
Denormalized numbers - unnormalized and with the format's minimum
exponent - to better approximate underflowed values.
Sticky flags for all exceptions .
Optional user traps for alternative exception handling .

These features promote comprehensible semantics for "standard" programming
systems.

Diagnostics
Afler syntax and semantics, the third aspect of the numerical programming

environment is the set of execution time diagnohic aids. They may be roughly
divided into anticipatory and retrospective aids, and according to whether they find
use during debugging or during (robust) production use.

The principal anticipatory de bugging aid is the breakpoint for control flow and,
when the hardware permits, for cl ala too. Some systems can monitor control or
data flow according to compiler directives inserted in a program. Retrospective
debugging aids include the familiar warnings and termination eulogies, as well as
the more voluminous memory dumps and control tracebacks. Systems with sticky
error flags can list those still standing when execution stops - in a sense they sig­
nal unrequited events

For the production program that would be robust, and perhaps even portable,
the situation is not so clear. Because most current systems provide neither excep­
tion flags (such side effects are anathema to some language designers) nor error
recovery. a program - if it is not to stop ignominiously on unusual data - must
include precautionary tests to avoid zero denominators and negative radicands,
and tests against tiny, but carefully chosen, thresholds to ward off the effects of
underflow to zero. The lack of flags can force the use of explicit error indicators in
subprogram argument lists to communicate exception conditions. The languages
Basic, PL/I, and Ada allow for anticipatory exception handlers (e.g. ON <condition>
... in PL/I) but do not allow the exception handler to discover anything a bout the
exception beyond a rough category into which it has been lumped, thereby making
an automatic response by the program very cumbersome.

Another variety of anticipatory diagnostic aid is available through an option in
the proposed floating point standard. It is essentially an extension of the PL/I
"on-condition" except that it is outside any current language syntax. This feature,
which might be called trap-with-menu, allows the programmer to preselect from a
small list of responses an alternative to the default response. By devising the menu

3.7

carefully, we should be able to give the user sufficient flexibility without having to
cope with a voluminous floating point "state" at the time of the exception.

The Syntactic-Semantic Interface
From the point of view of the numerical analyst, the semantic content of pro·

gramming languages is given by the following list.

•
•

•

•

•

•

What are the numeric types, and what is their range and precision?

Which numeric types are assigned to anonymous variables like intermediate
expressions, converted literals, arguments passed by value, ... ?

Which numeric literals are allowed, and are they interpreted differently in the
source code than the IO stream?
Which basic arithmetic operations are available, and what is in the library of
scientific functions?

Is there a well-understood vocabulary reserved for the concepts and functions
we need, and defended against collision with user-defined names?
What happens when exceptions arise? How can error reports be communicated
between subprograms?
Is there a way to alter the default options (for, say, rounding or handling of
underflow) by means of global flags?

These are among the knottiest issues in numerical computation. But, to a large
extent. they can be freed from the more conventional language issues and thus
resolved within the numerical community Only questions about data types and the
change of control flow on exceptions are necessarily tied to language syntax.

Consider a hypothetical language with only skeletal numerical features.
Assume that integer types and arithmetic and character strings are "fully" sup­
ported The language supports single and double real variables, pointers to them,
and allows real variables to be embedded in arrays and structures There is also
provision for functions returning real values, and for real parameters passed either
by value or reference. But the only operation on real types is assignment of a sin·
gle value io a single variable. and of a double value to a double variable.

To be useful numerically, this hypothetical language would require a support
library providing the basic arithmetic operations as well as the usual complement
of elementary functions. But because each operation more complicated than a
straight copying of bits would result only from an explicit function call, the pro·
grammer would in principle have complete control of the arithmetic semantics (by
choosing a suitable library). As an example, consider the evaluation of the inner
product of the single arrays .:r[] and y[] using a double variable for the intermedi·
ate accumulation to minimize roundoff:

double....precision temp_sum;
temp_sum := DOUBLE.l..JTERAL("0.0");
for i in l .. n do

temp_sum := DOUBLE...5UM(temp_sum,
SlNGLEJO...DOUBLL.PRODUCT(.:r[i), y[i))); od

inner_product := DOUBLE.JO...SINGLE(temp_su.m);

Even this simple example exposes many of the questions that arise in numerical
programs. Would the constant 0.0 require a special notation (such as 0.0D0) to be
assigned to a double variable? In a more conventional rendition of the program the
inner loop would involve a statement of the form

temp_sum := temp_sum + .:r[i]~[i);
Would the product be rounded to single precision before the accumulation into
temp_sum, destroying the advantage of double precision?

3.8

Semantic Packages
The skeleton language above may be unambiguous, but it is clearly much too

cumbersome for calculations involving complicated expressions. What we must do
is bridge the gap between the handy syntactic expression :r [i; '"y [i) and the
semantically well-defined

SlNGLEJO-DOUBLLPRODUCT(:r[iJ, y[i]).
We propose to do this through so-called semantic packages.

It may be a sign of progress that the new language Ada comes very close to
suiting our needs. Although Ada incorporates the Brown model for arithmetic by
providing a set of predefined attributes for each real type available to the program­
mer, this is in general insufficient for programs that would be robust. More impor­
tant for us, Ada allows the overloading and redefinition of the infix operators+,-.
etc. and in so doing provides the e:rplicit connection between the operators and the
real hardware functions they represent. The semantic packages. corresponding
directly to the (syntactic) packages construct in Ada, could contain exact
specifications of the arithmetic functions (which are actually implemented m
hardware). Thus there would be a semantic package for each basic architecture.
for example IBM 370, DEC PDP /VAX-! 1, and the proposed IEEE binary standard.
Some semantic packages could be more general. encompassing several machines
whose arithmetic is similar enough that a few environmental inquiries supply all
the distinction that is necessary for a wide range of applications. For example. one
such package might include IBM 370, Amdahl, Data General MV /8000, HP 3000, DEC
PDP /VAX-11 and PDP-! 0, relegating Tl, CDC 6000. Cray l to another.

Our attempt to force the gritty details of arithmetic semantics upon program­
mers may dismay readers who embrace the modern trend to elevate the program­
ming environment above machine details. Such an attempt is made within Ada. by
means of a small set of predefined attributes associated with each real type We
have already explained that this is not enough; sometimes the program that would
be robust must respond to machine peculiarities that defy simple parameteriza·
lion The report [10] on why we need a standard contains several examples.

An effort to "package" arithmetic semantics within various programming
languages may seem impossible. For example, the details of floating point. espe­
cially in the proposed IEEE standards. involve global flags to indicate errors, and
modes to determine how arithmetic be done. In Fortran, such state variables may
be defined as local data within the standard library functions whose job is to test
and alter the flags, although the actual implementation involves collusion with the
hardware flags. This is not a complete formalization, since Fortran provides no way
to describe the connection between the flags and the arithmetic operations
Current trends in language design eschew error flags as side effects of the arith·
me tic operations (functions) Modes and flags seem to violate the principle that all
causes and effects of expression evaluation should be visible within that expression
Perhaps surprisingly, Ada again provides us with the desJTed facility - but without
excessive or expensive generality. In accordance with the Steelman requirements
of the United States Department of Defense, Ada permits side effects .. limited to
own variables of encapsulations". This is exactly our intention in using semantic
packages to describe arithmetic.

Optimization
Any treatment of floating point semantics must deal with that favorite whip·

ping boy, the code optimizer. We considered a most extreme example above, in
which C compilers would calculate floating sums like

(a + b) + c ,

without regard to the parentheses, in whatever order makes best use of the regis·
ter file. This is simply a mistake in the language design

3.9

Not all anomalies are so clear-cut. Some questions arise when, as in architec­
tures suggested by the proposed IEEE standard, extended registers with extra pre­
cision and range beyond both single and double types are used as intermediate
accumulators. Consider the typical code sequence

:r := a. • b;
y:=x/c;

in which all variables are assumed to be of type single. If (a.• b) were computed in
an extended register, should that value or the single value :r be used in the evalua­
tion of y" EtT!ciency dictates the former, saving one register load and lessening
the risk of spurious over /underflow. But common sense dictates the latter, so that
what the programmer sees is what the programmer gets.

A similar situation arises in inner product calculations of the type discussed
above. Consider the loop

dou ble._,precision temp_sum;
temp_sum := 0.0;
for i in l .. n do

temp_sum := temp_sum. + :r[i]•y[i]; od
inner_prociuct := temp_sum;

in which, like the earlier example, all variables are single except for the double
temp_sum The fully "optimized" compiler might run this loop with just two
extended registers, one to compute the products :r[i]•y[i] and one to accumulate
temp_sum, thereby avoiding (n-1) register loads and stores by simply keeping
temp_sum in a register. Alas, the programmer asked for a double precision inter­
mediate, not extended, so such optimization is precluded.

The moral of these examples is that declared types must be honored. Also, the
type assigned by the compiler to anonymous variables must be deducible syntacti­
cally, or, better, it should be under the programmer's control. The alleged optimi­
zations above were disparaged because named variables were replaced surrepti­
tiously by extended counterparts that happened to be in registers. This is not to
say that extended evaluation is unhealthy; on the contrary, extended temporaries
can reduce the risk of spurious over /underflow or serious rounding errors, and
therefore should be used for anonymous variables. But the advantage of extended
is Jost if languages prevent programmers from requesting it for declared tern;
poraries. The expression

temp_sum + :r[i]"y[i]

in the loop above would best be computed entirely in extended before the store
into temp_sum. These facilities for extended expression evaluation are not unique
to the proposed IEEE standard; the benefits of wide accumulation were realized in
the earliest days of computing. The Fortran 77 standard includes some intention­
ally vague language about expression evaluation in order not to prohibit extended
intermediates, and the Ada standard, which seems to avoid some problems by
strict typing and requirements for explicit type conversions in programs, uses a
so-called universaLrea.l type (at least as wide as all supported real types) for the
evaluation of literal expressions at compile time.

The use of an extended type for anonymous variables is prone to one class of
problems. When real values or expressions may be passed by value to subprograms
there may be a conflict between the implicit type of the expression and the
declared type of the target formal parameter. This problem arises in current
implementations of the language C, which supporls bolh single and double types
but specifies that all reel expressions are of type double. Suppose that a C pro­
gram contains the statement

3. 10

y :=J(a"b/c);

where all variables are of type float (single) and the function J() is defined by

floalf(x)
float x;

! I
How can the type of the expression (a "b I c) be double while the type of the formal
parameter x is float" C resolves the discrepancy by silently countermanding the
declaration of x and replacing float by double. Once again, what you see is not
what you get This use of wider intermediates, exploiting the PDP-11 floating point
architecture, is exactly analogous to one use of extended registers. Though it is
efficient and straightforward to implement: it is not acceptable.

Conclusion
We have cited examples to show that progress in numerical computing has

been slowed by questionable decisions in the design of computing languages and
systems. We have suggested a rough division into three categories, syntax, seman­
tics and diagnostics, so that the difficult issues could be resolved by those most
qualified - and most profoundly impacted. IFIP Working Group 2.5 might well take
responsibility for the interfaces with semantics. Ideally their efforts will lead to
fully specified environments for which reliable numerical software can be derived,
possibly automatically, from algorithms expressed in a mathematical form if not
already in a programming language. Programming then becomes a three phase
translation involving the language (syntax) to be used, the underlying arithmetic
engine (semantics), and the host system (diagnostics). We acknowledge that these
categories are not completely independent, and that the boundaries between them
cannot be drawn precisely, at least not yet. Jl;onetheless, we remain convinced that
those boundaries must be drawn i1 we are to bring the required expertise to bear
on the current morass.

Acknowledgement
This report was developed and originally typeset on a computer system funded

by the U S. Department of Energy, Contract DE-AM03-76SF00034, Project Agree­
ment DE-AS03-79ER 10358. The authors also acknowledge the financial support of
the Office of Naval Research, Contract N00014-76-C·OO 13.

References
(1) Kahan, W, "A Survey of Error Analysis," in: Information Processing 71,

(North-Holland. Amsterdam, 1972) 1214-1239.

[2] "A Proposed Sta:.dard for Binary Floating-Point Arithmetic," Draft 8.0 of IEEE
Task P754, with an introduction by D. Stevenson, Computer, 14, no. 3, March
(19B1) 51-62

(3) Cody, W. J., "Analysis of Proposals for the Floating-Point Standard," Compu.ter,
14. no. 3, March (19B1) 63-68.

[4] Hough, David, "Applications of the Proposed IEEE 754 Standard to Floating­
Point Arithmetic," Compu.ter, 14, no. 3, March (1981) 70-74.

(5) Coenen, Jerome T., "Underflow and the Denormalized Numbers," Computer, 14.
no 3, March (19B1) 75-87.

[6] Brown, W. S., "A Simple But Realistic Model of Floating-Point Computation," to
appear in ACM Transactions on Ma.th.emaii:::al So/two.re, 19B1.

[7] Ryder, B G., "The PFORT Verifier", Software - Practice a.nd Experi.ence, 4
(1974) 359-377.

[8] Sterbenz, P. H., Floating-Point Computation (Prentice-Hall. Englewood Cliffs,
N.J, 1974).

3.11

[9] Brown, W. S and S. I. Feldman, "Environment Parameters and Basic Functions
for Floating-Point Computation," ACM Transactions on Mathematical
Software, 6 (19B0) 510-523.

[1 OJ Kahan, W ., "Why do we need a standard for floating point arithmetic"". Techni·
cal Report, University of California. Berkeley, CA, 94720, February (19B1).

3.12

CHAPTER 4

Proposed Floating Point Environmental Inquiries in FORI'RAN

This is a proposal for floating point environmental inquiries in Fortran.

It was drafted by W. Kahan, J. Demmel, and J. T. Coonen. In February 1982,

the authors presented it to the ANS] X3J3 Fortran Standards Committee on

behalf of IEEE Working Groups 754 and B54, which are developing binary and

decimal standards for floating point arithmetic. Although it is intended for

inclusion in the next Fortran standard, known for the moment as Fortran BX,

the scheme is designed to be compatible with Fortran 77 implementations.

1. Portability

Fortran is usually associated with high speed computation on main­

frames and minicomputers. And numerical Fortran codes are considered

portable when they behave reasonably across this class of machines. Porta­

bility has been achieved by defining parameters that demarcate the boun­

daries of the various machines' arithmetics. The Bell Labs PORT Library [4]

is just one significant effort. More recently, W. S. Brown has devised a model

of arithmetic [2] encompassing nearly all existing arithmetic engines. He

captures their diversity in an abstract, parameterized machine which is in

some sense the least common denominator of all existing machines. J. L.

Blue's program [1] to compute the Euclidean norm of a vector exemplifies

the programming style that goes with Brown's model -- and the difficulty of

writing such universally portable codes.

4.1

4.2

But the software situation is changing somewhat. Proposed IEEE stan­

dard P754 for binary floating point arithmetic [5] is gaining acceptance in

the computing industry. For example, significant hardware support for the

standard is already available from one microprocessor manufacturer (Intel)

and is expected soon from several others. What is important is that these

new processors will not be restricted to a few in-house systems. Rather, they

will be embedded in computer systems marketed by diverse companies, and

they will perform at the levels of today's minicomputers. The P754 proposal,

and its decimal sequel PB54, provide features lacking in most previous

machines, features such as sticky exception flags for errors, a choice of

responses to exceptions like over /underflow, and a choice of direction of

rounding. To exploit these features programmers need access to them in

high-level languages. And the means of access must be standardized for

each language so that codes can, with minimal extra effort, be made port­

able across the entire family of "standard" systems.

2. Design Constraints

This proposal serves two rather different needs. Following the lead of

others who have worked in this area, notably W. S. Brown, W. J. Cody, S. l.

Feldman, B. Ford, and B. T. Smith, it provides access to machine parameters

which permit programming in a style that defends against the peculiar ways

machines handle roundoff and exceptions like over /underflow. This facili­

tates the first kind of portability above. On the other hand, the 754/B54 pro­

posals are recognized as important enough to warrant functions to access

lheir features, even though those features are not universal.

4.3

The capabilities in this proposal are needed in Fortran 77 now. There­

fore the proposal has been devised, particularly in its syntax, to be compati­

ble with existing Fortran 77 systems. And, in order that the proposal be

implementable at low cost on a broad range of Fortran engines, it has been

designed to have negligible impact on compilers. For example, no new

reserved words like ,HUGE. are used. Instead, all inquiries are made through

intrinsic functions in the same domain as mathematical functions like COS

and TAN. This concentrates both the effort and the responsibility where they

belong.

Ideally, an inquiry mechanism should be invisible to programmers not

interested in it, and readily available to those who are. Since there is no sim­

ple "include" mechanism in Fortran 77, no convenient way exists to reserve

a named COMMON area with numerous PARAMETERs and variables related to

the environment. The prospect that programmers might enter the relevant

definitions without error (or complaint) is clearly hopeless. So the inquiries

cannot depend on predefined variables or values.

With function names restricted to six characters, and no protection for

the programmer whose names may collide v.ith system routines, parsimony

is an issue. This proposal consists of a minimal yet useful set of functions

from which programmers may easily deduce all the commonly used parame­

ters.

Except for scaling by a power of the machine radix, which is deliberately

specified to be fast, environmental inquiries tend to appear not in critical

loops but at milestones before and after units of computation. Thus their

speed is not important, although in many cases "smart" compilers could

replace calls to environmental intrinsics with simple in-line code. Coupled

4.4

with the speed issue is exception handling, since there is a price for checking

special cases. The inquiries specified here are intended to follow a system's

overall conventions for exception handling. This is consistent with the

754/854 philosophy, though it is more restrictive than, say, the proposal of

Brmvn and Feldman [3] which leaves some boundary cases undefined.

What makes this proposal more complicated than previous schemes 1s

its conscientious attempt to deal with boundary cases that jeopardize the

robustness and portability of programs. Three classes of funny numbers lie

beyond the frontier of Brown's model:

Many computers support a variety of tiny numbers that correspond roughly

to underflowed values. These might be denormalized numbers as in the

754/854 arithmetics, signed UN symbols that stand for the positive and nega­

tive intervals of numbers too small to represent, or even a whole range of

"partial underflows" that behave like O in some operations but not in others,

as on the Cray-1 and the CDC 7600. Some systems can signal underflow,

some cannot. Underflow is discussed at length in [5 pp. 75-87].

Some computers support huge numbers that correspond roughly to

overflowed values. The numbers might be ±00 symbols or, as on the Cray-1, a

family of numbers that behave very much like ±00 in some but not all opera­

tions. Systems differ as to when and how overflow ,vill be signaled.

Many computers reserve a set of non-numbers to accommodate various

invalid operations and, sometimes, overflows and divisions by zero. Depend­

ing on the system, the non-numbers (or "NaNs" as they are called in

754/854) may either propagate through or trigger an exception in subse­

quent operations.

4.5

3. Outline of the Approach

Nine intrinsic functions are put forward in the following sections. Those

that return floating point values are listed as generics: that is, their return

type is determined by their operands in the same way as for intrinsics like

COS and TAN. This intrudes very little into the compiler.

Several of the functions accept an argument that selects from among a

list of options. The ideal mechanism for this selection would be a compiler­

supported enumerated type. However, there is no such thing in Fortran 77,

and an artificial version using INTEGER variables is either too cumbersome

(for lack of predefinition) or too cryptic. So the functions use six-character

strings to specify choices in a reasonably mnemonic fashion.

Only two of the functions are specific to the 754/854 proposals. They

concern modes (like the direction of rounding) and flags {to signal errors like

over /underflow), features of the 754/B54 proposals that, while available in

some form or other on various older machines, have never been considered

part of the environment available to portable programs. The mode and flag

functions are designed to be extensible to other systems, which are accom­

modated by augmenting the list of arguments recognized by the intrinsics,

rather than by adding new names to the system library. On any given sys­

tem, meaningless intrinsics would be omitted from the library, so that an

attempt to use them would cause a fatal error during compilation. However,

meaningless arguments to legitmate intrinsics must be caught at execution

time. In any case, programmers will not be fooled about what the environ­

ment really is.

4.6

4. Huge and Tiny Numbers

Functions HUGE and TINY return floating point values near the limits of

a machine's range, according to a string parameter FLAVOR

FUNCTION HUGE(X, FLAVOR)
real type X
CHARACTER*6 FLAVOR

X is a dummy parameter whose value is ignored but whose format deter­

mines the format of the return value.

FLAVOR return value
'MACH' biggest ordered value, possibly +OV symbol or +oo (even

though the machine may not permit the value to be used in
subsequent comparisons)

'THRESH' biggest finite value that can be used in or result from some
arithmetic operations without triggering overflow, though it
may behave anomalously in some other operations

'MODEL' biggest number that can be used safely in Brown's model

Typically, the 'MACH' and 'THRESH' values would differ only on systems

that support symbols for values outside the range of finite representable

numbers. Some machines support signed CXl, or something very like it.

Another possibility is an overflow symbol OV that stands for the interval

strictly between oo and the largest finite representable number. 'THRESH'

and 'MODEL' values would differ only when the Brown model penalizes the sys­

tem some units of exponent range due to unseemly behavior. Three kinds of

HUGE may seem extravagant at first sight, but the fact is that the

corresponding return values from HUGE really do vary on some machines.

The following table gives the parameter values for the double formats of

three sample architectures.

4.7

return value from HUGE(X, FLAVOR}
FLAVOR P754 double VAX-11 D-format Cray-1 double
'MACH' +oo 1. 7x1038 +co

'IBRESH' 1.8x103CB l. 7x 1038 zB191x(l _ z-96) Ri 5.4X102485

'MODEL' 1.BxlOsoe 1. 7x1038 2s19ox(l _ 2-94) ~ 2. 7x102465

FUNCTION TJ:NY(X, FLAVOR)
real type X
CHARACTER*6 FLAVOR

As above, X is a dummy parameter whose value is ignored but whose format

determines the format of the return value.

FLAVOR return value
'MACH' smallest positive value, possibly a + UN symbol or a den or-

malized number
'THRESH' smallest positive value that can be used in or result from

some arithmetic operations without triggering underflow,
though it may behave anomalously in some other operations

'MODEL' smallest positive number that can be used safely in Brown's
model

This function is similar to HUGE. TJNY(X, 'MACH') is the smallest

representable positive value in the format of X. It could be a symbol, UN,

that behaves arithmetically like the interval between O and the tiniest

representable magnitude. On some systems, notably 754/B54, TINY(X,

'MACH') is the smallest of a family of tiny numbers, beneath the stated

underflow threshold, designed to make underflow gradual rather than abrupt.

As above, the difference between the 'THRESH' and 'MODEL' values depends

on the quality of arithmetic near the bottom of the exponent range. The fol­

lowing table gives the parameter values for the double formats of three sam­

ple architectures.

4.8

return value from TINY'X, FLAVOR)
FLAVOR P754 double VAX-11 D-format Cray-1 double
'MACH' 4.9x10-s24 2.9X 10-39 2-8193 Rj 3 .oxrn-2465

'THRESH' 2.2x10-308 2.9x10-39 2-B193 i:::i 3 .oxrn-2465
'MODEL' 2.2X10-30B 2.9x10-39 2-8100 ~ 4.7x10-2439

5. Successor Functions

The NEXT and NEXTM functions accept two floating point arguments and

return, respectively, the next machine or Brown model number after the

first argument toward the second.

FUNCTION NEXT(SOURCE, TARGET) ... next machine number
FUNCTION NEXTM(SOURCE, TARGET) ... next model number

real type SOURCE, TARGET

The semantics of NEXT were introduced in the appendix to Draft 8.0 of propo­

sal P754. The result is well defined so long as SOURCE and TARGET are

ordered as <, =, or > (they aren't numerically ordered if either is a NaN).

When they are equal, NEXT returns that value, and NEXTM returns the

nearest model number, rounded according to machine convention. When the

values SOURCE and TARGET are unordered, the operations NEXT and NEXTM

are invalid, and a NaN is returned. Interestingly, NEXTM is the only function

strictly related to Brown's model that had to be introduced into this system

in order to support his model fully.

6. Radix Logarithm

The function LOGE, when passed an argument of the form ±b11 d.ddd ... d

where b is the machine radix and the d's are radix-b digits, returns the

integer value of the exponent e in the floating point format of the argument.

FUNCTION LOGB(X)
real type X

There are several special cases:

X LOGB(X)
±0 -HUGE(X, 'MACH')
±lXI +oo

NaN X

4.9

... on machines with an 00 symbol

... on machines with nonnumber symbols

When X is not normalized, 10GB returns the exponent of X if it would be

treated as unnormalized in subsequent arithmetic, or the exponent of X as

though prenormalized if X would be prenormalized in subsequent arithmetic.

Because of the extreme and exceptional cases, and for convenience in some

approximations, the return value, although typically an integer value, is in

the floating format of X. In many contexts a programmer ·will use

INT(LOGB(X))

but this is not expected to appear in critical looping code, so the extra call to

INT is a negligible added cost. This also has the advantage of keeping the

messy exception handling of INT (at least, a conscientious rendition thereof)

from being duplicated in 10GB.

7. Scaling

The function SCALE is the companion to LOGE.

FUNCTJON SCALE(X, FACTOR)
real type X
INTEGER FACTOR

It returns the value X x b FACTOR, where b is the machine radix. The parame­

ter FACTOR is specified as an integer so that SCALE can be fast, since it is

often used in inner loops. Even so, SCALE is expected to conform to system

conventions for dealing with exponent over /underflow, which must not occur

4.10

unless the final value lies out of range. Underflows are denormalized [5] on

systems that underflow gradually; some systems underflow to zero or TINY(X,

'MACH'); some systems also set an error flag. Overflows may be set to

HUGE(X, 'MACH') or, as is more usual, may stop computation altogether;

there may also be an error flag. Note that because the INTEGER type may be

much wider than the exponent field of X, severe over /underflow is possible.

8. Classification

The function CLASS returns an integer indicating the "character" of the

floating point argument. This is helpful in filtering special operands.

INTEGER FUNCTION CLASS(X)
real type X

The sign of the returned integer indicates the sign of X, even if the sign has

no relevance {such as the sign of 0, usually taken to be+, on systems with no

-0, or the sign of NaNs). The magnitude of the returned value is defined

from the table:

maE:nitude X
1 zero
2 finite, nonzero, normalized number
3 00

4 denormalized number, a la 754/854 proposals
5 unnormalized number, possibly with zero significand
6 quiet NaN -- propagates without exceptions
7 signaling NaN -- triggers exception on attempted use
8 UN symbol, or numbers between TINY{X, 'MODEL') and

TINY (X,' MACH')
HUGE{X, 9 ov symbol, or numbers between 'MODEL') and

HUGE(X,'MACH')
... . ..

The arbitrary breakdown above is intended to facilitate branching with a

case statement {computed GOTO in Fortran), or the IF-THEN alternative. The

4.11

commonest cases appear at the top of the list. Although specified for a wide

class of numeric entities, a particular implementation of CLASS will return

only the values pertinent for the given machine.

9. Exception Flags

Some arithmetics, in particular .754/854, provide flags which are set

when the corresponding floating point exception arises, and which are

cleared only at the program's request. The function FLAG gives a program­

mer access to such flags. It returns the current setting of the flag, and

allows the programmer the option of altering the flag. Thus, the exception

flags appear to the programmer as implicitly defined global variables,

although they can be accessed only through the function FLAG.

INTEGER FUNCTJON FLAG(TYPE, VALUE)
CHARACTER*6 TYPE
INTEGER VALUE

where TYPE is one of

TYPE exception flag: affected
'UNFLOW' underflow
'OVFLOW' overflow
'INVALD' invalid operation
'DIVZER' (nonzero) / zero
'INEXCT' inexact result

...

The return value of O indicates that the flag is off; and any nonzero value

indicates that the flag is on. A nonzero flag will typically contain some

system-dependent reference to what happened and where. Thus there are

only two portable uses of a value returned from FLAG: test whether or not it

is zero, and save the value for subsequent restoration. FLAG sets the

selected flag to VALUE unless the VALUE argument is omitted from the func-

4.12

tion call, in which case the flag is not altered.

A program that deals with an exception such as underflow will use FLAG

with a VALUE of O to clear the 'UNFLOW' flag so as not to distract any follow­

ing code. It may use FLAG without the VALUE argument to simply test the

flag during its calculation. A subprogram that deals with its own exceptions

may use FLAG to save the setting of pertinent flags on entry and restore

them on exit.

10. Modes

Modes are provided by some systems as a way for a program to control

details, for example exception handling, in subsequent operations. The char­

acter function MODES allows the programmer to test and possibly alter arith­

metic modes in the host machine, in much the same way that FLAG handles

flags. All settings are given as six-character strings.

CHARACTER*6 FUNCTION MODES(TYPE, VALUE)
CHARACTER*6 TYPE.VALUE

where TYPE and VALUE are given in the following table, which has been

tailored for 754/854 systems.

TYPE VALUE
'ROUND' 'NEARST' 'ZERO' 'PINF' 'MJNF' 'KEEP'

...

The VALUE 'KEEP' allows the programmer to test a mode without alter­

ing it. The modes listed here pertain to the 754/854 standards. The four

options for rounding are to nearest, toward zero (chopping), toward + 00 , and

toward - 00 • Many existing systems offer both chopping and rounding to

nearest (after a fashion) but usually they are controlled not by processor

modes but by extra "rounding" instructions; the use of MODES in such

4.13

systems would amount to a compiler directive, if the use were allowed at all.

If user traps are to be provided they might be implemented as mode

settings, though the handler address and its input/output parameters

require further discussion. Since general traps are not expected to be port­

able constructs, even across 754/854 systems, this is not discussed further

here.

11. Relation to Brown's Model

This section relates the environmental inquiries presented here with

those Brown and Feldman proposed [3] in connection with Brown's model. On

a machine of radix b, Brown considers a system of model numbers consisting

of zero and all numbers of the form

X = fb"

where

/1 = 1. • • ·, b-1,

/ 2 • • • / = D .. • b -1 t I p ' t t

and

The following table gives the model parameters and the computational pro­

cedures of Brown and Feldman in terms of the present proposal.

4.14

RADIX = INT { SCALE { 1.0, 1)) ... b
MODELEPSILON = NEXTM (1.0, 2.0) - 1.0 ... maximum relative spacing

in model
PRECISlON = 1 - INT (LOGE { NEXT (1.0, 2.0) - 1.0)) ... minimum

number of radix-b digits
MODELPRECISlON = 1 - INT (LOGE (MODELEPSILON)) ... minimum

number of radix-b digits, including a possible penally
if rounding is strange

MODELHUGE = HUGE { X, 'MODEL') ... biggest number in Brown's
model, including a possible penalty if overflow is
strange

EMAX = INT (LOGE { MODELHUGE)) + 1 ... biggest exponent
MODELTINY = TINY { X, 'MODEL') ... smallest number in Brown's

model. including a possible penalty if underflow is
strange

EMIN = INT { LOGE (MODELTINY)) + 1 ... smallest exponent
exponent(X) = INT (LOGE { X)) + 1

scale(X, E) = SCALE { X, E)
fraction(X) = SCALE (X, -exponent(X))

synthesize(X, E) = SCALE { fraction(X). E)
o:{X) = synthesize(1.0, max (EMIN, 1 - MODELPRECISlON +

exponent(X))) .. .if X is nonzero
= MODELTINY ... if Xis 0

X = thesize ABS X , MODELPRECISION

12. References

[1] Blue, J.L.. "A Portable Fortran Program to Find the Euclidean Norm of a

Vector," ACM Trans. Math. Soft., 4, 1. March 1978, 15-23.

[2] Brown, W.S., "A Simple but Realistic Model of Floating-Point Computa­

tion," ACM Trans. Math. Soft., 7, 4, December 19B1, 445-480.

[3] Brown, W.S. and S.I. Feldman, "Environment Parameters and Basic Func­

tions for Floating-Point Computation," ACM Trans. Maih Soft., 6, 4,

December 1980, 510-523.

[4] Fox, P.A., A.D. Hall, and N.L. Schryer, "The PORT Mathematical Subrou­

tine Library," ACM Trans. Math. Soft., 4, 2, June 1978, 104-126.

[5] "A Proposed Standard for Binary Floating Point Arithmetic," (Draft 8.0)

and supporting articles, Computer, 13, 3, March 1981, 51-87.

CHAPrER 5

A Guide to Underflow and the Denormalized Numbers

"Good intelligence work, Control had always preached, was gra­
dual and rested on a kind of gentleness.''

John Le Carre, 'Pinker, Tailor, Soldier, Spy

Perhaps it is appropriate to open this chapter with a quote from a spy.

Over the five years of the IEEE subcommittee meetings the gradual (some­

times called gentle) treatment of floating point underflow has been the

center of controversial arguments and its own share of intrigue. In fact, over

the first years of its activity, the subcommittee was not mentioned in the

computing press ·without some reference to the heated controversy. The

paper presented in this chapter was an attempt to explain and defuse the

arguments. It is reprinted here, with permission of the publisher, from the

March 1981 issue of Computer in which draft 8.0 of the proposed standard

appeared. This paper remains an accurate microscopic view of the issues

surrounding floating point underflow, despite that the proposed standard

changed significantly from drafts 8.0 to 10.0. On a somewhat higher level,

James Demmel's treatment of the implications of gradual underflow for solv­

ing linear systems, reference [B] in the attached paper, has been substan­

tially updated and accepted for publication as of this writing.

This paper explains the now-defunct warning mode for handling denor­

malized numbers. However, the fact that there was a plausible mathematical

explanation for warning mode, along with a belief among some early imple­

mentors that the mode was at least feasible, did not stop the IEEE subcom­

mittee from voting the warning mode out of the proposed standard. Even

though warning mode could be made to fit into an arithmetic system with

5.1

5.2

denormalized numbers, there was no simple, non-algorithmic explanation of

how warning mode worked. Expositions like the original implementation

guide in chapter 2 had the flavor of "do as l do, not as I say." Attempts to

specify warning mode without algorithms in draft 8.0 of the proposed stan­

dard led to almost incomprehensible subtleties. This defect ultimately killed

warning mode, by a nearly unanimous vote of the subcommittee. The pur­

pose of warning mode, as discussed in this chapter, was to provide some

defense for old programs written with the presumption that underflowed

values would be set to zero; however, the value of this warning was very hard

to quantify, unlike the complexity of exposition, which was apparent to any­

one who read or attempted to improve upon the prose of draft B.0. (This

same discussion applies to the disappearance of the projective mode for

interpretation of 00 • Although the projective mode was easy to describe and

only a minor nuisance to implement, its value as a protection for program­

mers trained on machines like the CDC 6000/7000 class was small relative to

its impact on a proposed standard expected to be in use for many years to

come.)

Another change to the proposed standard since the publication of this

paper is in the definition of underflow. This paper describes underflow as

arising when a result, computed as though with unbounded exponent range

and checked either before or after rounding to the target precision, falls

below a specified threshold. This is a very conventional specification, in view

of the computers built up to the 19B0's. However, the so-called threshold

test is pessimistic in an arithmetic with denormalized numbers. For exam­

ple, whenever a difference x -y falls below the underflow threshold, the

result is given exactly by some denormalized number. So why signal

underflow? And in some systems the assignment z "-W between variables of

5.3

the same format is performed arithmetically, as opposed to a simple bit

copy. In this case the "result" stored into z v.ill fall below the underflow

threshold whenever the source value w is a denormalized number. Should

underflow be signaled? The answer, according to section 7.4 of draft 10.0 of

the proposed standard, is NO. That section, using notation explained in

detail in this paper, ties the underflow signal to both threshold and rounding

phenomena.

5.4

Although there have been misconceptions about it,
gradual underflow fits naturally into the proposed standard
and leads to simple, general statements about the arithmetic.

Underflow and
the Denormalized Numbers

1111(11 '1 ll 1111 '1111111 '! 111111'111111
1 ~111 Ir!~ 1Jl~ll~ ~

Ill I tll, I 11,111, I Ii 1111,i 11111.1111111, f llii~i,lltimlll
Jerome T. Coonen

l'niwrsit~ of California. Berkell'~
Zilog. Inc.

In the spring of 1980, after meeting regularly for over
two years, a subcommittee of the IEEE Computer Soci­
ety Microprocessor Stanaards Committee voted to en­
dorse a proposed standard for binary floating-point
arithmetic (see the proposed standard in this issue). The
ballot ended just the first phase of a continuing contro­
versy. Although diverse objections were raised within the
subcommittee, discussions usually drifted back to
gradual underflow, the proposed response to exponent
underflow. The arguments even found their way into the
computing press, where most articles about the subcom­
mittee's work focused on the "underflow issue"-as if
that were all that divid<!d the subcommittee.

This article explains gradual underflow, ranging from
its interaction with floating-point number systems to its
advantages for numerical software. The discussion is not
deep, but it is very detailed and would normally interest
only specialists in computer arithmetic. However, the
controversy surrounding the proposed standard has be­
come so entangled with misconceptions about underflow
that a study of underflow is now of interest to a broader
community.

In fact, underflow should not be an important issue.
The fundamental issues are the choice of numbers and
symbob to be included in the arithmetic, their encoding
in storage, and the specification of operations upon
them. To this foundation may be added features that
cope with exceptions such as over/underflow. The pro­
posed standard was developed this way. designed to be a
complete scheme for arithmetic, balanced between utility
and implementation cost. Ironically, gradual underflow
was expected to go unnoticed by most users. coming into
view only when potentially dangerous underflow errors
were flagged.

The interconnectedness of the proposed standard's
basic features complicated attempts to oppose it. Earl)
challenges within the subcommittee were not easily
focused on single aspects of the proposed number system
and its encoding, since so many of the design choices
were interconnected. These challenges ultimately ad­
dressed the proposal as a whole and, quite naturaliy,
tended to drift to its points of least resistance. Thus was it
possible for gradual underflow-one of the system's less
compelling features-to become its most contentious.

I hope to show that gradual underflow fits naturally
into the proposal, leading to simple, general statements
about the arithmetic. What remain disproportionately
complicated are the arguments about why these state­
ments are more valuable than some others. The proposed
standard does not solve all underflow problems, but it
does provide many benefits for a small added cost to new
implementations. Unfortunately, the prospect of retro­
fitting existing systems with features such as gradual
underflow can be daunting, so manufacturers with prior
commitments are faced with a tough choice. For them,
gradual underflow is compelling only for systems all of
whose formats-like the proposed single format-suffer
from a narrow exponent range. These problems of
retrofitting added to the controversy regarding
underflow within the subcommittee.

Floating-point number systems

Conventional implementations of normalized binar)
floating-point arithmetic use a fixed number of bits to
represent numbers in each data format, with a prede1cr­
mined "boundary" between the exponent and signifi-

cant digit fields. For example, single format numbers in
the proposed standard are 32-bit strings of the form
shown in Figure l. The fields S, E, and Fare I, 8, and 23
bits long, respectively. Interpreting£ as an unsigned in­
teger in the range Oto 255, bit strings with l ,;;; £,;;; 254
represent what are called normalized numbers whose
values are decoded

(-l)5 x2c-mx1.F

Since the leading significant bit is known to be l , it is not
explicitly stored.

The representable numbers group naturally into inter­
vals of the form [2", 2•• 1). We call these intervals
binades, the binary analog of decade. Within the
binades, numbers are spaced uniformly at a distance
equal to one unit in their last place. As the numbers ap­
proach zero, this absolute spacing decreases by a factor
of two across each binade. For example, consider an
analog of the proposed single format, restricted to six
bits of precision. The representable numbers would ap­
pear as ticks on a line, as shown in Figure 2. Approaching
zero from the right, each successive binade is half the
width of its right-hand neighbor, reaching ha! f the re­
maining distance to zero. This is a property of all binary
floating-point systems.

Normalized arithmetic

Given the system of normalized numbers established
above, the nicest model for arithmetic is:

Compute a result as if with infinite precision and
range and then, if necessary, round it to the nearest
representable number in the destination formal.

The proposed standard, as we will see later, conforms to
this model whenever the infinitely precise result is
mathematically defined and does not overflow. But, for
the moment, consider arithmetic suffering at worst only
rounding errors, in which case most current implementa­
tions correspond roughly to the model. (Some chop
numbers to the next smaller representable value; others
round correctly to the nearest value "almost always";
some are indescribable.)

In arithmetic conforming 10 the model above, the
roundoff error incurred by results is expressed by the for­
mula

(computed results) = (true result)± (roundoff)

r 1 sl_E~--F --

Figure 1. Form of 32-blt string for single format number.

I I

Figure 2. Analog of proposed single format, rastrlcted lo six bits of
precision.

2'

5.5
where roundoff,;;; ½ ulp (unit in the last place) of the
computed result. This error model parallels the earlier
discussion of the binades since the absolute uncertainty
of computed results decreases by a factor of two across
each binade, as did the absolute spacing between adja­
cent normalized numbers.

The roundoff error can also be expressed by the for­
mula

(computed result) = (true result) x (I± l)

Here c indicates the relative uncertainty of the calcula­
tion. In rounded binary arithmetic carrying r bits of
precision c=2·'. An analogous formula with 2 re­
placed by 5 x 10- 1 applies to rounded t-digit decimal
arithmetic.

For a numerical example of the relative error formula,
consider the product

l.23456·J0- 12 x6.5432l·I0· 3 ... 8.07799 J0- 9

in a six-digit decimal system. Written in the form of the
second formula above,

8.07799· 10· 9 =
(8.0779853376 • J0 • 9) X (I + 0.00000057717 ...)

which is well within the range

(8.0779853376 10· 9) X (I± 0.000005)

since the relative error is

0.00000057717 ... < 0.000005 = ½ ulp of 1.00000

The relative error formula implies what Figure 2 shows
clearly-that the gaps between neighboring represent­
able numbers never widen toward the origin. This has an
important consequence: in any calculation suffering only
one roundoff, the gap between a computed result and the
exact result need never exceed any of the gaps bet"een
the computed result's several representable neighbors.
For an illustration, consider the highly magnified picture
of our sample product shown in Figure 3.

This seemingly obvious statement about gaps underlies
many important properties of a robust floating-point
system. Consider the following three properties, valid for
calculations suffering nothing worse than roundoff:

(I) X'l'yimpliesx-y'l'O

(2) (x- y) + y == x to within a rounding error in the
larger of x and y

(3) 1/x"' 0 when xis a normalized number, and then
1/(1 /X) =: X

Failure to satisfy statements like ())-(3) can lead to in­
teresting and elusive anomalies in numerical programs.
Because it is our object to investigate the proposed stan­
dard, rather than review the past abuses that led to it, "e
will not pursue here the consequences of violating (I)-(3).

Interested readers will find W. Kahan's survey' enter­
taining; refer to D. Hough 2 and Kahan 3 for more details.
Suffice it to say that the desirability of an arithmetic
system depends greatly upon its users' ability to form a
simple yet accurate mental model of its capabilities.
Statements(])-(3) are typical of the high-level propeni~s
that permit a reasonable analysis of program beha, 1or.
thus expediting the production of robust numerical code.

What Is exponent underflow?

Until now, the presentation has been covered by a
disclaimer excluding all but normalized arithmetic suf­
fering only rounding errors. The discussion applied to
most current implementations of arithmetic. However,
there are other sources of error. Because a fixed number
of bits are allotted to each number's exponent, the
number system's range is bounded. Some normalized
binade must be. the "smallest," beyond which there are
no more normalized numbers. In the hypothetical ~ix-bit
normalized number system illustrated in Figure 2, the
bottom of the exponent range would look like the
representation in Figure 4. We will call the smallest nor­
malized number land say that a result whose magnitude
is less than l has underflowed. The question is how to
represent underflowed results when computation is to
continue v.ithout a "trap" to a user's exception handler.

The proposed standard spans the gap from 0 to A v.ith
a family of numbers whose absolute spacing is that of the
numbers in the last normalized binade, as shown in
Figure 5. These are the so-called denormalized numbers.
They may be thought of as elements of an extra binade
beyond l, but spread apart by a factor of two over their
expected spacing in order to reach 0 uniformly. The
response to underflow which uses the denormalized
numbers to represent underflowed values is called
gradual underflow.

Gradual underflow has several historical precedents.
Most often mentioned in the floating-point subcommit­
tee's meetings has been the Electrologica XS, a Dutch

5.6
the expense of bits of precision. The dynamic position of
the boundary would be built into the encoding of the
numbers. R. Reid proposed this to the subcommittee, 7

though the idea has been attributed by D. Knuth' to J.
Cocke. Although these schemes benefit from the ex­
panded exponent, their fluctuating precision incurs a
noticeable implementation cost and complicates error
analysis. I will not discuss them further; however, the
careful reader can adapt the arguments of this article to
determine that the expanded numbers do not enjoy the
simple properties to be attributed to gradual underflow.

Denormalized numbers and gradual underflow

The way denormalized numbers fit into a normalized
number system can also be seen by listing the numbers
from the smallest binades, with their implicit binary
points aligned. Figure 6, from a six-bit analog of the pro­
posed single format, shows representative "numbers"
beside their unbiased exponents. X may be 0 or I. This
figure suggests a very natural representation of the de-

TRUE7 I
I I I

10-"

COMPUTED_J 8.07800 1Q-9

Figure 3. Highly magnified picture of sample product.

machine. Using gradual underflow without even an un- • I EMPTY I I I I
I
I

derflow error flag, it was, according to T. J. Dekker, 1'-----t..,11"'1 !'-'-I! ,.,..i l1+/.+tl++1l++1i-+-! +-! +1-'-! -!I-!!-+-+-! +-++i1c-i1-;-.,.+.......;-...__..,.....+~

"never confusing to naive (and other) users." This is not O 1 = 2- 126 2-125

too surprising, however, since the XS had a 12-bit expo­
nent providing a range of about l0'6(XJ; it's unlikely that
too many naive ("and other") users ever even en­
countered underflow. The Burroughs B5500, DEC-JO,
IBM 7094," and IBM 370 also support gradual under­
flow, although the user must provide brief software
routines to denormalize numbers since the hardware
delivers underflowed values normalized with their ex­
ponents "wrapped around" to within range.

The only other underflow handling scheme that re­
ceived broad support within the subcommiuee is the one
provided in most current implemen.ations of arithmetic.
Simplest of all the proposals, Store O would set all
underflowed values to zero, so that there be no represent­
able numbers in the gap between l and 0.

Another scheme dates back to work by K. Zuse in Ger­
many during the 1930's5 and work done independently
by Kahan in 1966.' It would replace underflowed values
by a symbol "UN," representing not any particular
number but rather the interval between 0 and)., which in
our example would be (0, 2- 126

). R. Fraley and J. S.
Walther proposed such an UN Symbol scheme to the
floating-point subcommittee,6 though none has ever
been implemented.

Yet another possibility would essentially change the
"boundary" between the exponent and significant digit
fields of a number which has underflowed {or over­
flowed) in order to obtain some exponent expansion at

Figure 4. The bottom of the exponent range In the hypothetical system Il­
lustrated in Figure 2.

DENORMALIZED
- NUMBERS-

\111:: :111111 :·,,: i·: i: I

0 1=2- 126 2 125

. I I
I! ii

I

2 12•

Figura 5. The denormalized number& augment the number system shown
in Figure 4.

EXPONENT SIGNIFICANT BITS

- 120 1XXXXX
- 121 1XXXXX
- 122 1XXXXX
- 123 1XXXXX - NORMALIZED NUMBERS
- 124 1XXXXX
-125 1XXXXX
-126 1XXXXX

- UNDERFLOW THRESHOLD=!.= 2 126

-126 01XXXX
- 126 001 XXX
-126 0001 xx - DENORMALIZED NUMBERS
- 126 00001 X
- 126 000001

(- 126) 000000 - ZERO

Figure 6. A six-bit analog of the proposed single format. showing
represenUltlve "numbers" beside their unbiased exponents.

normalized numbers in a floating-point system, since the
denormalized numben are precisely the values taken by
all unnormalized numbers, of the given precision, whose
exponent is that of .l.. The single and double formats of
the proposed standard exploit this fact by means appar­
ently unknown before I 976. In the single format, for ex­
ample, numbers in the interval (A, 2.1.) are encoded with
the next-to-lowest biased exponent, I. The lowest expo­
nent, 0, is reserved for the denormalized numbers and,
when all significant bits are 0, for floating-point zero.
Thus, the biased exponent 0 encodes two bits of informa­
tion about the denormalized numbers:

• They have the same effective exponent as the nor­
malized numbers, such as .I., with the next higher en­
coded exponent, I.

• Their implicit leading bit is 0 instead of I.

This encoding fits the denormalized numbers into the
bottom of the exponent range inexpensively, using bit
patterns that on many current implementations are sim­
ply redundant representations of zero. The name denor­
malized distinguishes the underflowed values from the
usual unnormalized numbers that run across a number
system's entire exponent range. The single and double
formats of the proposed standard have no unnormalized
numbers in this sense. Instead, the) obtain an extra bit of
precision over the normalized number range by assuming
an implicit leading I bit for all number, greater than or
equal to .I..

Gradual underflow satisfies the arithmetic model pre­
sented earlier since an infinitely precise result. whether or
not it is smaller than .I., is simply rounded to the nearest
representable number. Although analogous statements
can be made about the other underflow handling
schemes, the striking difference is the extent to which the
schemes admit high-level statements like (I)-(3) pre­
sented above.

Examples of denormallzatlon

Figure 7 shows three examples of gradual underflow in
a six-digit decimal system in which A, the smallest nor­
malized number, is 10- 99 _ In (i), the otherwise exact
product underflows and must be denormalized by four
digits. The number then requires rounding which, in this
halfway case, is to the nearest representable number
who,e least significant digit is even. Intermediate results
far below the underflow threshold will be denormalized
all the way to 0, as in (ii). This occurs quite naturally in
the proposed single and double formats, since signed 0 is
represented as the • 'denormalized number'' all of whose
significant bits are zero.

Example (iii) illustrates how underflowed sums and
differences of numbers in the same format are always

2 50rco 10-so x3 50000 10-0 = 8 75000-10- 103- 0.00088 10-!l'l (i)
2 50800 1 0- &O X 3 50000 1 0- &O = 8 75000 1 0- 1?0 - 0 0 (11)

5 67834 10·97 -5 67812 10-97 =2.20000 10 101 -002200 10-9'l(111)

Figure 7. Thrff examples of gradual underilow In a alx-dlglt decimal
system.

5.7

free from rounding error. This is simpler than the situa­
tion for underflowed products and quotients which must
be denormalized before rounding to ensure that their er­
ror bound is one-half unit in the result's last place.

These examples suggest the follo'l'ing straightforward
implementation of gradual underflow. When a com­
puted result would have an unbiased exponent too
small-that is, too negative-to be represented, the
number is accommodated by right-shifting (denormaliz­
ing) the significant digit field while incrementing the ex-

• ponent until the exponent is that of the smallest nor­
malized number. The number can then be rounded and
stored.

Example (iii) suggests a possible economy in addition
and subtraction, when the time required to denormalize
is most likely to be noticed. After a magnitude subtract,
the result need only be normalized until its exponent is
that of .I., since further shifting would only be undone by
subsequent denormalization. Such a simple trick is possi­
ble only because the denormalized numbers fit so nat­
urally into the number system as a whole. It is typical of
the ways in which a careful implementor of gradual un­
derflow can achieve speeds comparable to the "simpler"
arithmetic systems, with little additional hardware or
microcode.

Error properties of gradual underflow

The error formula describing model normalized arith­
metic expressed only the relative uncertainty £ due to

roundoff in a result free of other errors such as over/
underflow. When underflow occurs, the formula be­
comes

(computed result) = (true result)± {

The uncertainty { of the result depends on the underflow
handling scheme.

For purposes of discussion, we consider a hypothetical
floating-point system with underflo" threshold l,
augmented in turn by three underflow handling schemes.
The bit patterns used for denormalized numbers could
provide an extra normalized binade in the Store 0 and
UN Symbol systems, thereby reducing .I. by a factor of
two. However, we will see that the analysis depends not
upon the size of .I., but upon whether { is negligible when
compared with A.

• Gradual Underflow: When underflow is gradual,
the error can be no bigger than half an ulp of A, so
{=u..

• Store 0: When all underflows are set to 0, the error
can be almost as large as the smallest normalized
number, so ~ = .I..

• UN Symbol: When underflows are replaced by UN,
the error is the same as for Store 0, sot=)._ The dif­
ference is that UN is less prone to subsequent misin­
terpretation.

Comparison of { for the various schemes indicates that
only the denormalized numbers permit underflowed
values to be represented with no more absolute error than
is tolerable among numbers in the smallest normalized

binade. In other words,

only with gradual underflow do the gaps between
represeniable numbers not \\iden near zero; instead
the gaps between computed and exact results are no
wider than the gaps between any pairs of neighbor­
ing representable numbers.

For an example in six-digit decimal arithmetic \\ith
). : JO· 99, consider the underflowed product shown in
Figure 8. The Store 0 and UN Symbol schemes suffer an
error equal to the product itself, about 8/10 of .I., while
gradual underflow cuts the error to less than 2/10 ufp of
.I., a reduction by several orders of magnitude. Figure 9, a
highly magnified graph of the bottom of the exponent
range, shows the gaps between true and computed
results.

Mindful of the way that gaps around .I. and 0 depend
on the scheme for handling underflow, let us review the
three properties we considered earlier:

(I) x,;.yimpliesx-y.;.o
(2) (x- y) + y :::: x to within a rounding error in the

larger of x or y
(3) J /x,;. 0 when xis a normalized number, and then

)/(1/x):::: X

This time we will permit the calculations to suffer
underflow as well as roundoff errors. Aided by gradual
underflow, the proposed standard satisfies (I)-(3) with­
out a hitch for the same reason as applied to rounded
normalized arithmetic-that is, the gaps between repre­
sentable numbers never widen toward zero. This is the
sense in which

gradual underflow tends to make the errors due to
underflow commensurate with roundoff errors.

However, (1)-(3) may not apply to the other systems since
the gap between 0 and A is huge when compared to the
gaps between J.'s neighbors, the tiny normalized
numbers. For example, a Store 0 system violates (I) and
(2) whenever x- y underflows, and violates (3) whenever
1 Ix underflows. Whether the reciprocal of any number x
can underflow depends on the balance between the
largest and least exponents.

The UN Symbol scheme is more robust despite the fact
that its error bounds are the same as those of Store 0.
However, it entails several special cases. (I) is guaranteed
because UN retains the sign of underflowed x- y and has
nonzero magnitude. In the same way, when 1/x
underflows in (3) the quotient is nonzero, but then
1/(1/x) is OV, the overflow symbol, which is not:::: x. As
in Store 0, (2) fails once x- y underflows, in which case
(x- y) + y ... UN+ y ... y. To avoid this type of problem,
a system bent on safety might deliver an invalid opera­
tion warning when UN (known only to lie somewhere be­
tween 0 and J.) is added to a tiny y; but, fooled or not, the
user still gets the wrong answer.

The statements made here about the gaps are fun­
damental to floating-point error analysis. However,
obsession with tiny errors is not the point. Rather, we
would like our system to give reasonable results whenever
possible, and a warning otherwise. In this way, we could
worry about errors only when necessary and could have
confidence in our results.

5.8
The trade-off between safety and utility is reflected in

the specification of gradual underflow. We observed that
if x- y underflowed in (2), gradual underflow would
always be accurate, Store 0 could give a wrong answer,
and UN S}mbol would give either a wrong answer or a
warning. All schemes would raise an underflow flag
upon computing x- y. However, experience with float­
ing-point computation shows that the underflow flag by
itself is not a reliable indication of serious error since
most underflows can be safely ignored. To be used effec- •
tively, the flag must be interrogated after the delicate
phases of a calculation. As we will see below, figuring out
what should be tested represents a significant cost which
is often avoidable when underflow is gradual. This un­
dermines the perceived simplicity of the Store 0 scheme.

Proponents of the UN Symbol scheme emphasize its
unwillingness to deliver wrong answers due to underflow
when implemented conservatively. Alas, often when it
signals an error associated with its symbols, an accurate
answer could have been obtained using gradual under­
flow. And, as conservative as it may be, the UN Symbol
scheme only catches errors due to underflow; since
rounding errors are the source of most difficulties in sen­
sitive calculations, this conservatism is only nominal.

Normalizing mode

The simplest implementation of denormalized
numbers and gradual underflow, which has been as­
sumed so far, specifies that each operation be performed
without distinguishing denormalized numbers from
other numbers-that is, as though all denormalized
operands were first normalized. The proposed standard
calls this the "normalizing" mode of computation. Such
a uniform interpretation of nonzero numbers, regardless
of possible loss of relative precision due to underfl9w, is
appropriate when analysis shows that errors no bigger in
absolute value than a half ulp of the smallest normalized

1 .23456 • 10- 6D x 6 54321 • 10- •o = 8.0779853376 10- 100 (EXACT J

- 0.80780 • 1 0- 99 (GRADUAL UNDERFLOW)
- 0 0 (STORE 0)
- UN (UN SYMBOL I

Figure 8. Comparison of the various schemes in six-digit decimal arith­
metic with 1.-10-".

EXACT PRODUCT ----r
----STORt 0 ERROR---:

I
0 0. 10000 10 99 0 80000 1 O- 9'l O 90000 10 - !ls ;_ =

1 . 00000 1 O - 91

Figure 9. Highly magnified graph oi the bottom of the exponent range.

+

number are no more significant than other comparable
or larger errors due to roundoff. Most computations are
this way.

Since the normalizing mode deals in principle only
with normalized numbers, it follows essentially the same
rules for denormalized numbers as for normalized. The
only significant implementation cost is the prenormaliza­
tion step required when denormalized operands par­
ticipate in multiplication, division, and mixed-format
calculations. In addition and subtraction of numbers of
the same format, the prenormalization need not be car­
ried out; since denormalized numbers already have the
smallest exponent, they will be shifted right, if at all, for
binary point alignment. As in the implementation discus­
sion above, accompanying Figure 7, we see that the
careful implementor of gradual underflow can trim the
execution time cost of the denormalized numbers in addi­
tion and subtraction.

To see how gradual underflow works in a program, let
us consider an inner product expression common in
matrix calculation, .

(b+a·y) 1 c (b + :l a,y,) I c
,. I

and the program loop to evaluate it:

sum:= b
FOR i := I TO n DO sum:= sum+a,xy,
result : = sum I c

Suppose nothing worse happens than roundoff and
underflow. If underflow is gradual, then as long as bis a
normalized nonzero number, sum must be accurate to
within the uncertainty of an unexceptional vector inner
product with normalized numbers, namely a few ulps of
llall x llyll + lbl, wherellxll denotes the norm of the
vector x. Consequently, result will be about as accurate
as roundoff allows.

However, in a Store O system, a small but nonzero sum
could be plausible but wrong in nearly every digit because
of underflow. Figure 10 indicates how the two schemes
affect small sums in one step of the computational loop

I I THESE DIGITS COULD BE
I WRONG IF UNDERFLOWS
I WERE SET TO O

I
I
I

OLD SUM

a, x y,

NEW SUM I .,
I THESE DIGITS WOULD BE ~

UNDERFLOW /I LOST 1F uNDERFLows l> t =u=SMALLEST
THRESHOLD=• I WERE SET TOO . OENORMALIZED NUMBER

I --· ·' . ._, __ ,______ ..

Figure 10. The effect of gradual underflow and Store O on small sums In
one step of the cited program loop.

5.9

above. The accumulation sum and product a,y, are
represented as bit strings with their binary points aligned.
When all underflows are set to zero, the information to
the right of the vertical broken line marked "l" (the
underflow threshold) is lost-small sums can be seriously
contaminated. On the other hand, gradual underflov. re­
tains enough information beyond A to ensure that any
sum greater than .l. will be about as accurate as if all
operands and products had been normalized to full preci­
sion.

Although this example is typical of those in which a
simple statement describes the behavior of gradual
underflow, it is not by itself a compelling argument for
gradual underflow, since a robust program would re­
quire scaling to guard against a variety of potential
nuisances-ranging from the special case b = 0, 10

overflow in sum when c is so large that the exact resulr
would be well within range.

A more interesting, yet complicated, example is the
calculation of the complex quotient

a+ixb:=
p + ixq
r + ixs

Assuming Isl..; lrl, the procedure attributed to R. Smith
by Knuth 8 is to calculate

p+qx(f) q-px(f)
a+ixb := ----- +ix-----

r+sx(f) r+sx(f)

An analysis can be found in a subcommittee working
paper by Hough. 9 The claim is that, despite roundoff,
the computed complex result differs from the correct
result by no more than if p +ix q and r + i x s had each
been perturbed by a few ulps of its modulus. This conclu­
sion is unchanged by underflow, if it is gradual, except
when both a and b underflow, in which case the error is
bounded by a few ulps of la+ ix bl. No comparably sim­
ple statement holds when all underflows are set to 0.

The complex quotient is fundamentally different from
the inner product above since Smith's algorithm pro­
duces a correct quotient unless intermediate overflow oc­
curs. Furthermore, the formula avoids intermediate
overflows when a+ i x b is in range, unless Ip I + I q I or
Ir!+ Isl would overflow. Since gradual underflow copes
with all problems at the bottom of the exponent range,
Smith's algorithm is so robust that there is little tempta­
tion to introduce scaling and its associated complexity.

Much ado about nothing?

Some opponents of the proposed standard have
argued that programs which encounter gradual under­
flow in the normalizing mode would perform "about as
well" if all underflows were set to zero instead. We can
formalize the claim and a response as follows.

Figure 11 summarizes the notation developed through­
out the discussion of the single format. We observed that
). is the absolute uncertainty of an underflowed result in
the Store O and UN Symbol schemes, and that a nor-

malized computed result x' is related to an exact result x
by

x'= xx(l±c) = X:tE.X

so that E.X is a bound on the absolute error due to round­
off.

We consider programs which do not use special con­
tingency code to handle underflow. Of particular interest
is the class A of programs that succeed when underflow is
gradual but fail when underflows are set abruptly to
zero. These programs tolerate underflow errors bounded
by t = u. because they arc no more significant than
roundoff errors "r.x" of comparable or larger magni­
tude, but cannot tolerate underflow errors as large as .l.
How many programs are in class A?

The size of class A is a measure of how many programs
benefit significantly from gradual underflow. If Store 0
were good enough for most calculations, as might be ex­
pected, the class A would be small, and then the extra
capability afforded by gradual underflow would be in­
consequential. However, the surprising fact is that many
of the standard techniques of numerical analysis are
known to fall into class A. This has been shown for linear
equa,ion solving by J. Demmel 10; for polynomial equa­
tion solving by S. Linnainmaa 11 ; for numerical integra­
tion and convergence acceleration by Kahan 12 ; and for
complex division, as indicated in the previous section.

Once the extent of A is established, one may argue that,
with only slight amendments, programs in A can be made
sufficiently robust that they tolerate abrupt underflow to
O. The reasoning is analogous to the motivation for
gradual underflow in the first place: since the absolute er­
ror due to underflow can be as large as A when all under­
flows are set to zero, underflow error can seriously con­
taminate numbers of which A represents more than half
an ulp. This was illustrated by Figure 6. If in that six-bit
system all numbers below the indicated underflow
threshold were set to zero, the bound on the incurred er­
ror would exceed half an ulp of all the normalized
numbers less than 2 • 120

. Thus, numbers in the interval
(2 - 126, 2 - 120) would be suspect in a calculation incurring
underflow. In general, the number of contaminated
binades equals the number of bits of precision carried.
Thus, the threshold of suspicion for the proposed single
format would be

v = Alt = 2-102 :: 2.0· 10-31

if underflow were not gradual.
For a concrete application of v, consider the calcula­

tion

"
sum : = b + L a, Y,

, • I

in the inner product example presented earlier. We noted
that setting all underflows to zero can ruin small sums.
More precisely, if underflow occurs in the summation
above and lb!< v then sum is not trustworthy.

Testing critical intermediate results against vis really
just a poor man's substitute for gradual underflow. In
the latter, the threshold of suspicion is the more natural
boundary, the underflow threshold, since the denor-

5. 10
malized numbers tend to preserve the granularity of the
number system down to the least significant bit of .l.
When this threshold is crossed, the system raises the
underflow flag. The difference between thresholds v and
;I. illustrates the completeness that gradual underflow af­
fords. In contrast, programs run with Store 0-cven if
they are augmented with tests to guard against con­
tamination by underflow-won't achieve good results
over so wide a range as simpler programs run with
gradual underflow. Rather, as in the inner product exam­
ple, their authors will be obliged either to explain the
thresholds like v to their users, or to insert contingency
code, such as scaling, in order to eliminate artificial
boundaries.

Another argument against gradual underflow focuses
on numbers rather than programs. The claim is that the
class A is irrelevant since computations rarely encounter
underflows, and that when they do, the errors are nearly
always inconsequential. This reasoning forces a dilemma
upon purveyors of robust software for Store O systems,
since the cost of the code to handle the rare cases when
underflow does matter is out of all proportion to the
benefit in the typical case. On the other hand, gradual
underflow repays its slightly increased implementation
cost with accurate results over a wider range of problems
and data. And, as we will soon see, gradual underflow
has a built-in warning system to lessen the chance that
consequential underflows overlooked by programmers
will be overlooked by users.

Old programs and the normalizing mode

Unfortunately, it is not reasonable for the proposed
standard to specify the normalizing mode of computa­
tion as the default way to compute with denormalized
numbers. Although the error! due to underflow is often
negligible, the cases where it is not must be handled with
great care-especially in would-be robust portable pro­
grams. Currently, most machines set all underflows to
zero and most high-level languages lack a flag or name
for the underflow condition. Consequently. whenever
existing robust programs test for underflow in sensitive
calculations, they have no choice but to check for zero
results. These programs might be fooled by nonzero
values (and hence presumed not underflowed) which
have lost significance due to dcnormalization-cspecially
if these values are later scaled up away from the under­
flow threshold. To protect the robustness of such pro­
grams, the proposed standard must be specified on the
side of safety.

To see how a robust program could go wrong, consider
the following code fragment intended to avoid errors due

l = SMALLEST NORMALIZED NUMBER
, = RELATIVE UNCERTAINTY OF A NORMALIZED RESULT
(= cl= ABSOLUTE UNCERTAINTY Or A OEtvORMALIZED

RESULT

= 2 - 116 =: 1 2 1 0 - JE

= 2 - ,, =: 6 0 10 - 6

2- 11C=c 7 0 :0 ''

Figure 11. Nota1ion for discussion of propo,ed single format.

to underflow:

q := (xxy)xz
IF q = 0.0 THEN q := xx(yx::)

In a system setting all underflows to zero, the test guaran­
tees a reasonable value for q unless overflow occurs.
However, if (x xy) underflows instead to a denormalized
nonzero number of only a few significant digits, and if
lzl >> 1.0, then q may be well within range, though very
inaccurate. For a numerical example in a six-digit deci­
mal system with ,l = 10- 99 let

X = 4.78295 • 10-'l
y = 1.22805 • 10- 60

z= S.76623·10- 90

Since (xxy) underflows gradually, the program pro­
duces

q:= (xxy)xz - (0.00059·J0- 99)xz
.... 3.4-0208 · 10- 12

whereas the intended result, correct to fully six signifi­
cant digits, is

Q: = XX (y X Z)-+ XX (7.08]22· 1030)

- 3.38691. 10- 12

The fragment above should ideally be translated to the
following more robust code in a standard environment,
in which over/underflow can be tested explicitly:

underflow-flag : = overflow-flag : = FALSE
q := (XX)')XZ

IF (underflow-flag OR overflow-flag) THEN
BEGIN

END

underflow-flag : = overflow-flag : = FALSE
q := xx(yxz)

This fragment is typical of those designed to cope
automatically with what would otherwise be serious er­
rors caused by over/underflow. Although the actual er­
ror t suffered when underflow is gradual, is several
orders of magnitude smaller than the possible error).
when all underflows are set to zero, the tiny error can
nonetheless be catastrophic. Running such programs un­
changed in the normalizing mode without funher
analysis is reckless.

Warning mode

Reckless or not, users will run programs like the first
code fragment above, believing-perhaps wrongly-that
they will compensate for underflow errors as well in a
new environment as they did in the old. Thus, the pro­
posed standard has an obligation to defend such pro­
grams against misinterpretation of denormalized num­
bers. It prescribes the so-called "warning mode" as its
default mode of arithmetic on denormalized operands,
to be in effect unless a program contains an explicit re­
quest for the normalizing mode. For example, the
calculation above of q failed to produce an accurate
result when the underflowed product (xxy) was nor-

5.11

malized wholesale during its multiplication by z; in the
warning mode, the second multiplication Y.Luld be de­
clared invalid and a Not-a-Number symbol, NaN, would
be delivered in lieu of the dubious product. By inhibiting
indiscriminate normalization of results-thus limiting
the growth of relative error in results whose antecedents
underflowed-the warning mode protects programs
written with another scheme in mind as well as some pro­
grams written without any thought at all about under­
flow.

The warning mode differs from the normalizing mode
in that it incorporates a boundary between valid and in­
valid operations on denormalized numbers. Although
the boundary is arbitrary (a paranoid scheme might pro­
hibit any funher arithmetic on underflowed results), the
boundary arises naturally in the proposed system, as we
will see below.

A calculation run in the warning mode can be expected
to achieve results at least as good as those gotten in the
past; but sometimes NaNs will appear. signaling a poten­
tial underflow problem. If indeed the invalid results
would have been junk, the user is better off with NaNs
until the program is repaired. However, analysis often
shows that underflow errors, when gradual, will not con­
taminate final results, as indicated earlier in the discus­
sion of class a. In this case, accurate results can be ob­
tained by a recalculation in the normalizing mode. The
point is that a user can run programs initially without do­
ing anything special about underflow. The warning mode
is intended to defer as long as possible the judgment of
whether an error t figures significantly in a computation.

For an example of the safety provided by the warning
mode, consider the construction of a unit vector, u: =
x I I Ix! I. by normalization of a given vector x. This is a
very common calculation. If xis of modest dimension, n,
and its elements are in no special order. then u ma} be
calculated in the obvious way with two loops:

sum := 0.0
FOR i := l TO n
norm := I/sum
FORi := I TOn

DO sum:= sum+x,2

DO u, : = x, I norm

If underflow is gradual, then as long as sum is a nor­
malized nonzero number, norm is accurate to within
about n 12 ulps, regardless of underflows in the x,2; hence
u is about as accurate as roundoff allows.

However, if all the x,2 underflow, the computed sum
might be denormalized. Then in the normalizing mode,
norm would be a normalized number well above >., but
with relative uncenainty much larger than attributable to
roundoff alone. This could seriously degrade the com­
puted u. The warning mode prevents this kind of error
grov,,1h by declaring the square root of a denormalized
number, like sum, to be invalid. In the e>.treme case that
all the x,2 underflow to zero, norm and sum would be
zero in both modes, and the second loop would be
marked by division-by-zero errors.

The simple code above has the propeny that, when run
in the default warning mode, it produces a result about as
accurate as roundoff allows, so long as no exception
besides underflow arises. Only in the rare case that
overflow, division-by-zero, or invalid-operation is

flagged will ii contain only zeros, ex>s and NaNs, and then
the programmer will reject ii and revise the program.
This case is typical of the relative safety afforded naive
programs by the warning mode. Of course, a truly robust
program to compute ii given any valid x. however unlike­
ly, would require scaling and some provision to suppress
roundoff when n is huge.

This example neatly illustrates how the warning and
normalizing modes are distinguished by their different
interpretations of the absolute uncertainty t of denor­
malized numbers. The normalizing mode's presump­
tion-that the error t is negligible regardless of the asso­
ciated relative uncertainty-is replaced in the warning
mode by rules intended to restrict the relative uncertainty
of normalized numbers to what is expected because of
roundoff.

The warning mode accounts fort by preserving the un­
normalized character of denormalized operands. Instead
of assuming an implicit prenormalization step at the start
of each operation, the warning mode is specified in the
proposed standard to be, as much as possible, a
byproduct of the implementation of the normalized
arithmetic, but allowing for a leading significant bit 0. In
fact, the sum or difference of operands of the same for­
mat has the same numerical value in both warning and
normalizing modes. This follows from the observation
made earlier that prenormalization could be avoided dur­
ing addition and subtraction in the normalizing mode. It
is a reflection of how naturally the denormalized
numbers augment normalized sums.

However, products and quotients imolving denor­
malized numbers differ in the two modes. The distinction
is a matter of acceptable error bounds, and may be char­
acterized as follows. In the warning mode, a denormal­
ized number is considered marked with an uncertainty of
at least half a unit in its last place. Thus, it is thought of
as an interval-like UN, though much narrower. The fol­
lowing fact, stated for products ax b, applies to quo­
tients alb as well. It will be discussed in detail in the sec­
tions that follow. We use the subscripts Wand N to in­
dicate the warning and normalizing modes, respectively.

Of a product ax b, suppose that b is known to be
normalized and presumed exact, and that a is finite,
perhaps denormalized, and uncertain by 1/2 ulp.
Then either:
(I) (ax b)" is not invalid, in which case it equals
(ax b)1o1 and its error bound, 3/2 ulps, is the same
regardless of whether a was denormalized; or
(2) (ax b)" is invalid, in which case (ax b), is
uncertain by at least 5/2 ulps, and possibly much
more.

That is, in the warning mode, the only tolerated errors
due to underflow are those attributable to the rounding
phenomena of arithmetic on normalized numbers.

Consider these statements applied to a recalculation of
q : = (x xy) x z above, this time in the warning mode.
The second multiplication

(0.00059· 10- 99) X 5.76623· 10• 90 = 0.0034020757 • 10- 9

would not be normalized and rounded to 3.40208 • 10- 12 ,

but would instead be flagged as an invalid result and

5.12

replaced by a NaN. This would prevent the gross uncer­
tainty inherited from

((0.00059 ± 0.000005)· 10- 99 X 5.76623· }0• 90

= (3.40208±0.03)·10· 12

from being overlooked as though the same result
3.40208 • 10- 12 had been produced from relatively ac­
curate normalized operands:

((5.90000 ± 0.000005)· 10-IOl) x 5.76623 • I0· 90

= (3.40208 ± 0.000008) • 10- 12

In this example, normalization of the result would
have magnified the inherited uncertainty of half a unit in
the sixth digit of the denormalized operand to a third of a
unit in the second digit of the normalized result-a ten.
thousand-fold increase. The warning mode permits no
magnification bigger than by a factor of two. It is in this
sense that the valid/invalid boundary is arbitrary, since
in some computations a growth as large as what occurred
above might be perfectly acceptable. The warning
mode's magnification limit two was chosen because that
is as much as roundoff errors can suffer in one operation,
regardless of whether denormalized numbers were in­
volved. Furthermore, that limit is straightforward to im­
plement.

Valid results and the storage formats

A very important aspect of the error statements above
is that they correspond to a straightforward implementa­
tion of the warning mode. One consequence of cases (I)
and (2) is:

In the warning mode, valid products and quotients
are precisely those that can be stored in the destina­
tion format.

This connection between the floating-point formats and
the inherited uncertainty of computed results is tied into
the implicit leading bit of numbers above the underflow
threshold .l, the subject of the next sections.

A binary floating-point product is computed internally
as

A. oaa ... ooa
xB.bbb ... bbb

CC. CCC ... CCCCCC ... CCC X 2P

If either of the Cs is a I, then the result can be rounded
and stored, and will be normalized unless over/under­
flow intervenes. However, when both Cs are 0, then the
result can be stored only if P=N+ Mis no greater than
the destination format's minimum exponent; otherwise,
it is invalid because it violates the error statement in the
last section.

Every product of a denormalized number and a factor
bigger than two will have an exponent above the format's
minimum. But not every such product is invalid. In some
cases, the product of a number barely denormalized, say
0. loo ... aoa, and a normalized factor l.bbb ... bbb will
carry out toa product of the form 01.ccc ... cccccc ... ccc.
Despite the appearance that the absolute error of a

relatively inaccurate factor is being magnified, such a
normalized result satisfies the error statement in the
previous section. This particular phenomenon of prod­
ucts involving denormalized numbers will be considered
in fun her detail later, in a different context.

From this discussion we see that the warning mode's
principal impact upon implementations is the test to
detect the unnormalized character of the results pro­
duced from denormalized operands. The valid/invalid
boundary is maintained by a simple test to catch denor­
malized numbers that have been promoted to unnor­
malized numbers bigger than A.

Analysis of a product

This section and the next explore the fine details that
underlie the earlier statements about the error bounds of
products and quotients in the warning mode. (The trust­
ing reader may skip to the section entitled "Funher Im­
pact.")

First we consider a product of operands in the same
floating-point format. Consider the calculation of

where A, B, and C have the form X.xxx ... xxx with
X = 0 or I. Allow (Ax 2M) to be normalized or denor­
malized, so that O .;;; A < 2; but assume that (Bx 2") is
normalized, so that I .;; B < 2.

First, the exceptional cases: If the product underflows,
then the denormalized result is the same in both warning
and normalizing modes. This result does not satisfy the
relative error bound given below, but instead suffers an
absolute error bounded by ~, as described earlier. The
warning and normalizing mode results also agree when
the product overflows, in which case both operands must
have been normalized.

The interesting cases are those whose results are within
range and whose only errors are rounding phenomena.
Since A is uncenain by half an ulp, the normalized prod­
uct takes the form

C :t y = 21 x (A :t £) x B :t c

with exponent P = M + N-1. Soning this formula out
from left to right,

y is the error bound of the product, to be expressed in
ulps of C;

I is the number of left shifts required in the normal­
izing mode and, when / = - I, the one right shift re­
quired when the product of the significant digit fields
is greater than or equal to 2;

£ is half an ulp of 1.0-the leftmost c expresses the in­
herited uncenainty in A, and the trailing c bounds
the rounding error in the product.

We examine three cases to interpret the error bound
y = (21B+ l)xc.

I= - I: The product of the significant digit fields is at
least 2, so one right shift is required, producing a nor­
malized result. This is possible only if both operands

5. 13

were normalized. Consequently, the warning and nor­
malizing results agree and

y = (B/2 + I) x c < I ulp of C

I= 0: The product of the significant digit fields is be­
tween I and 2, so the result is normalized and requires
no shifting. Hence the warning and normalizing mode
results agree. Whether A was normalized or not,

y=(B+l)xc < 3/2ulpsofC

I> 0: The product of the significant digit fields is less
than I, so A must have been denormalized. The warn­
ing mode result is invalid and is replaced by a Na~.
The normalizing mode result requires at least one left
shift 10 produce a normalized result which satisfies

r=(21B+l)xc < (2 1 + ½)ulpsofC

As noted, the first two cases, I= 0 and - I, cover all
valid warning mode arithmetic, regardless of the oper­
ands. Even if the first operand were denormalized (0,.; A
< I), since the product carried out to a normalized result
falling into case I= 0, the error bound of the result would
be no worse than for normalized operands. However, the
case I> 0 points out an imponant fact alluded to earlier:

The gap between valid and invalid results in the
warning mode is noticeably bigger than a rounding
error, since the error bound of an invalid result ex­
ceeds by at least an ulp what it would have been for
normalized operands.

In the previous section, we saw the close link between the
valid/invalid boundary and the single and double storage
formats. Now, it is clear that the boundary is not simply
an accident of the implementation nor an arbitrary
threshold drawn from a continuum. Instead, it is dicta­
ted by a jump in the error bound.

The case analysis above can be viewed in a different
way. Although B was introduced as a normalized num­
ber, presumed exact, the computed error bounds were
based on the worst case B == 2. When the analysis is re­
traced for any particular value I .;;; B < 2 the conclusion is
the same-namely that y jumps from case / = O to case
I> 0, even though the panicular values of r are dif­
ferent, depending on B.

The case / = 0 when A is denormalized was mentioned
in the last section, and will turn up again later. It received
considerable attention within the floating-point sub­
committee because of the apparent breach in the warning
mode's defense, permitting the absolute uncertainty of
denormalized numbers to be magnified. However, we
saw in the analysis above that the associated error bound
3/2 ulps of C applies to some normalized products as
well. In fact, this word "some" can be strengthened,
since there are normalized numbers with A' == A and
B' == B such that

C:ty=(A':tc)xB':ti

Thus, the perceived grmvth of the uncertainty of denor­
malized A is unexceptional, since nearby normalized
operands suffer the same error bound.

Does a quotient really differ?

The last three sections have discussed floating-point
products in considerable detail. All the statements about
error bounds apply as well to quotients. Given all the
assumptions about A, B, and C above, consider the
calculation of

The normalized quotient takes the form

C±y = 21x(A±c)/B ±c

with exponent P=M-N-1. As with the product, three
cases determine the error bound y = (I + 21 / B) x c,
namely / = 0, I, > I. These correspond directly to the
cases J = - I, 0, > 0 for products.

The offset of I in the cases of I reflects an important
difference between the two operations. Because B, which
is normalized between I and 2, is in the denominator. one
left-shift of the quotient might be required to normalize
C, even if A is normalized. (Divide 3 into I in binary, for
example.) So this one left shift is permitted of any quo­
tient. Though it may appear to be an extra shift, in the
sense that no such shift is allowed a product in the warn­
ing mode, quotients in cases I= 0, 1 do satisfy the same
3/2 ulps error bound deduced for products. Quotients
satisfy the analogous bound (21- 1 + ½) ulps of C when
I> 1 and shifts beyond the first "free" one are required
in the normalizing mode.

A more complicated analysis is required for the calcu­
lation of

Although the computed error bounds are similar, divi­
sion by a denormalized number is invalid in the warning
mode. This is another instance of the somewhat arbitrary
boundary between valid and invalid results-here, the
expense of building divide units capable of handling un­
normalized divisors was not considered worth the
dubious utility of dividing by tiny numbers in the warn­
ing mode.

The extra shift that quotients are permitted gives rise
to a curious difference between the product and quo­
tient:

(0. Jaa .. . aaa x 2M) x (1.000 ... 00 x 2")

and

(0. laa ... aaa x 2M) / (I .000 ... OOx 2-N)

in the warning mode. Suppose that N > 0 and that Mis
the exponent of .l., the smallest normalized number.
Thus, the left operand is a number denormalized by just
one bit, and the right operand is a power of two. Since
the product would be unnormalized, albeit exact, the
result is invalid. However, the quotient (Cx2P) is the
normalized number 1.aaa . .. aaO x 2M+ N- 1.

This distinction between certain products and quo­
tients is an artifact of the measurement of error in ulps, a
phenomenon that will be discussed below. Were the
product above allowed one left shift then, as noted in the
last section, it would be possible to perturb the operands

5.14

just slightly to get a result suffering an error of up to 5/2
ulps-an ulp more than could be gotten from normalized
operands.

Further Impact

Now that the rationale behind gradual underflow has
been presented, it is appropriate to tie the scheme into the
proposed standard as a whole. This will provide some in­
sight into the nature of the arguments that occupied the
floating-point subcommittee for so long.

Until now, we have dealt with operations whose
operands and results were all single or all double. How­
ever. the proposed standard recommends wider extended
formats for intermediate calculations, thus encouraging
mixed-format operations. As in any scheme of arith­
metic, these mixed-format operations somewhat compli­
cate the analysis. Also, since the optional extended for.
mats have an explicit leading bit, they permit unnor­
malized numbers over their entire exponent range. Thus,
the rules for normalized arithmetic with gradual
underflow must be expanded to accommodate extended
formats. This also complicates the analysis, but it is
beyond the scope of this article.

The specification of the single and double storage for.
mats is based on several good ideas. It is desirable that
the numbers retain their natural ordering when interpre­
ted as signed integers. This implies that when a floating.
point number is viewed as a bit string, its most significant
bit is its sign, followed by its exponent, and then by the
significant digit field. The leading bit of the latter field is
stored implicitly for the sake of added precision. This
ordering property implies that the exponent be biased so
that the value O of the biased exponent pertains to the
most negative true exponent. As suggested when the
denormalized numbers were introduced, the exponent O
is used in the representation of floating-point zero and
the denom1alized numbers.

Unlike underflow, which is gradual, overflowed re­
sults arc set abruptly to signed 00. No effective and eco­
nomical analog of gradual underflow is known for
handling overflow. However, abrupt overflow is
reasonable since calculations can be scaled or otherwise
transformed so that quantities that must transgress a sys­
tem's limits will underflow gradually. For example, most
iterative procedures are designed to drive a residual value
to negligibility. When a residual underflows to zero
gradually, it is known to be negligible compared with
every normalized number.

The largest value of the biased exponent is reserved for
± co (when all significant digits are 0) and the NaNs
(otherwi5e). In this way. the finite numbers lie between
and the NaNs lie beyond ± 00 • The specified signed oo

allows an affine closure of the number set, although a
projective mode which effectively ignores oo's sign is
specified, too. So that + 00 and - 00 have distinct recip­
rocals, floating-point zero is signed, though the sign can­
not be discovered except by taking zero's reciprocal. The
specification of signed zero led to the important decision
to use the sign-magnitude ordering of floating-point
numbers as integers.

The choice of exponent bias exploits the gradual treat•
mem of underflows. To diminish slightly the risk of over•
flow, which is abrupt-though possibly at the cost of
greater risk of underflow, which is gradual-it favors
large numbers in the sense that

.\xA==4

where .l. and A are the smallest and biggest normalized
numbers. This means that if xis normalized, then com­
monplace expressions like llx, 2/x, 3/x, and nix cannot
overflow to oo; and if any underflows, it will lose two bits
of precision at worst.

The jaggies

Another argument against gradual underflow arises
from a graph of the so-called "jaggies." As represented
in Figure 12, the graph is essentially a bit-by-bit account
of the case/= 0 as discussed earlier under "Analysis of a
product" and alluded to in "Valid results and the storage
formats." Using the notation from the former section,
the normalized factor (Bx 2") ranges across the
logarithmic horizontal scale, while the value of A,
a.,suming (Ax 2...,) has the exponent of .l., ranges across
the vertical scale.

The purpose of the graph is to show the jagged edge
between \'alid and invalid products in the warning mode.
The edge is the set of pairs A and B such that A x B = I,
with O <s A < I and I ,.; B < 2. The product of (Ax 2M)

and (B x 2') is valid unless M + N exceeds the exponent
of .l. and Ax B < I, in which case the result cannot be en•
coded in a format whose leading significant bit is impli•
citly I. The claim is that, despite this simple description,
users will not tolerate such "jagged" behavior in their
arithmetic-that changing an operand slightly should
not make the difference between valid and invalid
results.

This argument falls short for several reasons. First, the
gist of the detailed analysis presented earlier is that,
despite the result of one or another particular product,
there is a powerful general statement describing the in­
herited error in products and quotients in warning mode.
And the jagged edge is not peculiar to gradual under•
flow; indeed. products and quotients were shown to in•
herit uncertainty v. ith an equally jagged graph. Jagged
edges abound whenever calculations depend strongly
upon small differences that amount to rounding errors.

______ A2-----------------
t

NORMALIZED A

t
DENORMALIZED A 'h

WARtl INGS ARE GIVEN FDR THESE PRODUCTS
_ ____;l_ _ _j__...J:,==,j,==~==!e:,:,:=:=:c= ...

2' 2' 2'

Figure 12. The jaggles.

5. 15

Independent of the discussion of gradual underflow or
particular operations, the graph of the jaggies should be
nothing new to users of floating-point arithmetic. If the
horizontal scale is simply the real number line and the
vertical scale measures the relative uncertainty of real
numbers rounded to the form (Bx 2'), a graph with ex•
actly the same shape results. And not a single arithmetic
operation is involved! Thus, the jaggies are simply
another rounding phenomenon-which is what gradual
underflow is intended to be.

Conclusion

Floating-point computation is intrinsically com-
• plicated. Traditionally, implementors have simplified
their task at the expense of more complicated-or less re•
liable-software. However, the proposed standard takes
the opposite tack. Consequently, the details of im•
plementation of the proposal are many, as shown in an
earlier article. 13 But, as proven here for underflow, a
close look reveals an underlying coherence that leads to
simple statements about the arithmetic. The implementa•
tion complexity will be justified if high-quality software
developed for standard environments proves to be
simpler, more portable, and thus cheaper than it has been
in the past.

New software will tend to employ the normalizing
mode, by request in the prologue of the program, since
so many computations lend themselves to an analysis
proving that denormalized numbers can be normalized
with impunity. Nonetheless, the constraints of current
and past software practice dictate that the warning mode
be specified as the default mode of operation in the pro­
posed standard. Periodically, the simplicity of both ex­
plaining and implementing the normalizing mode with its
effective lack of unnormalized operands will be redis•
covered, and it will be suggested as the default (and
perhaps only) mode of operation. This may be fine for
the future, but for now, existing programs have to per­
form at least as well as they have in the past-or stimulate
a warning. For this, the warning mode is vital.

Acknowledgments

I wish to acknowledge W. Kahan 's invaluable advice
throughout the development of this article. This article
was developed on a computer system funded by the US
Department of Energy, Contract DE-AM03-76SF00034,
Project Agreement DE-AS03-79ERJ0358. An earlier
draft was published as report PAM-21 of the Center for
Pure and Applied Mathematics at UC, Berkeley.

References

]. \l,'. Kahan, "A Survey of Error Analysis." in lnforma11on
Processing 71, Nonh-HoUand, Amsterdam, 1977.

2. D. Hough, ed., "Implementation of Algorithms: Pans I
and 2," Document DOC AD-769 124, National Technical
Information Service, 1973.

3. W. Kahan, "Why Do We Need a Floating-Point Arithme­
tic Standard1" (to appear).

4. W. Kahan, "7094-11 System Suppon for Nummcal
Analysis," SHARE Secretarial Distribution SSD-159, Item
C-4537, 1966.

5. H. Ruthishauser, A. Speiser, and E. Stiefel, "Programm­
gcsteuene digitale Rcchengerate (elektronische Rcchen­
maschinen)," Zeitschrift fur Angewandte Mathematik und
Physik, Vol. I, 1950, p. 348.

6. R. A. Fraley and J. S. Walther, "A Proposed Standard for
Binary Floating-Point Arithmetic: Alternate 3," IEEE
Floating-Point Subcommittee Working Document
P7S4/80-l.24, 1980. •

7. R. Reid, "The Reid Format," IEEE Floating-Point Sub­
committee Working Document #22 in August 7, 1979 mail­
ing .•

8. D. E. Knuth. The Art of Computer Programming, Vol. 2:
Semi-Numerical Algonrhms, Addison-Wesley, Reading,
Mass., 1969, p. 195.

9. D. Hough, "Errors and Error Bounds." IEEE Floating­
Point Subcommittee Working Document P7S4/80-3.2,
1980.•

JO. J. Demmel, "Solving Linear Systems Using Gradual Un­
dernow," IEEE Floating-Point Subcommittee Working
Document P754/80-4.21. 1980. •

11. S. Linnainmaa, "Combatting the Effects of Underflow
and Ovcrnov. in Determining Real Roots of Polynomi­
als," IEEE Floating-Point Subcommittee Working Docu­
ment P7S4/80-2.23, 1980.•

12. W. Kahan, "Aitken's E'lttrapolation and Gaussian Quad­
rature," IEEE Floating-Point Subcommittee Working
Document P7S4/80-1.19. 1980.•

13. J. T. Coonen, "An Implementation Guide to a Proposed
Standard for Floating-Point Arithmetic," Computer,
Vol. 13, No. I, Jan. 1980, pp. 68-79; see also "Errata,"
this issue.

•Sut,::ommJttc-t: workin~ docurm-nts \liU in pnnt may be- obtained frofTl
Da,1d Hough, PO Bm 561, Cupcnino. CA 95011.

5.16

CHAPTER 6

Comparisons and Branching

1. Introduction

A basic fact of real arithmetic is that two numbers x and y compare as

exactly one of less, equal, or greater. However, this so-called trichotomy

property does not hold when the real number system is expanded to include

not-a-number symbols (NANs) because these symbols have no natural order­

ing with the real numbers. This chapter deals with the issues raised by NA.Ns

in the number system.

Loss of the trichotomy property complicates comparisons. Consider the

simple code sequence:

if x > 3.1416 then ...

else ...

If x is a NAN then the inequality ls surely false, so the else clause must be

executed. But might the else clause have been written with the presumption

"x ~ 1r" in mind? If so, a NAN value of x may be disastrous. The problem is

more historical than technical. Since most computer systems to date have

simply stopped when a non-numeric reserved operand appeared, this prob­

lem has been avoided, though at considerable cost in the utility of the

reserved operands. Nowadays, when arithmetic operators are overloaded to

apply to complex numbers, arrays, or intervals, which though "numeric"

may have no linear ordering, the very same issues arise.

Here are the subjects to be dealt with in the coming sections:

6.1

6.2

(1) In a system supporting partially ordered entities, what rules for com­

parisons hold in lieu of the trichotomy property of the real number sys­

tem?

(2) What do the expanded rules for comparisons have to say about the rela­

tional operators of current languages? For example, Pascal's relational

operators

= <> < <= > >=

themselves reflect the presumption that if two values are not equal, <>,

then they are related as less or greater.

(3) What protection is there for existing programs and programmers who

labor under the assumption that floating point entities enjoy the tricho­

tomy relation?

(4) How can the relational operators of current languages be expanded in a

reasonable way? What expansion, if any, is required by the proposed

binary floating point standard P754?

(5) What underlying implementations of floating point comparisons best

serve the needs of language systems and programmers?

(6) How can the expanded set of relational operators be made compatible

with existing computers?

2. Relations

In the P754 number system with its NANs, the trichotomy is expanded to

the four-way relation less, equal, greater, or unordered. Determining the

relation between two floating point values :x and y is actually quite easy.

Working backward from the special cases:

6.3

if x is NAN or y is NAN then x and y are unordered ...

else x and y are less, egual, or greater according to the ordering of real

numbers with the understanding that

+0 = -0 = real 0

and

- 00 < I all real numbers J < +00 •

Some computers, notably the CDC 6000 class, have been built without a

floating point comparison instruction, requiring compilers and assembly

language programmers to issue code sequences like

temp +- x-y

test temp for positive, negative, or zero

to effect comparisons. However, the proposed standards make this type of

implementation inconvenient, if not infeasible, by explicitly prohibiting the

possible side effects of the subtraction - overflow, underflow, inexact result,

invalid operation {see §5. 7 of draft 10.0). Even with all due care in suppress­

ing the extraneous exception flags in the subtraction, the scheme above V.'ill

require special tests for cases like +00 = +00 , since {+ 00)-(+ 00) is invalid, not

zero.

Of course, if a signaling NAN appears as an operand in a comparison it

stimulates the invalid operation exception, just as it would in any other arith­

metic operation. Like a quiet NAN, it would compare unordered with the

other operand, though an invalid operation trap handler might modify the

relation based on an interpretation of the NAN outside the scope of P754.

6.4

3. Current Language Predicates

In a P754 system, current language predicates like =, <, and >= keep

their literal interpretation despite the new relation unordered. For example,

consider the Pascal code fragment:

if x < y th.en begin . . . end

else begin . . . en<t

If and only if x is less than y is the then clause executed. If x is equal to,

greater than, or unordered with y then the else clause is executed. Thus the

meaning of the relational < has not changed, only the inference drawn from

its negation; execution of the else clause no longer implies that x ~ y.

Similar rules apply to the relationals =, <=, >, and >=. Their literal

interpretation is honored in deciding the fate of an if-then-else clause. How­

ever, the situation is more interesting for the relational "not equal" because

of the way it is written. In Pascal, the literal interpretation of"<>" is "less

or greater". On the other hand, the literal interpretation of the FORTRAN

".NE." is more reasonably "less, greater, or unordered". Current user's of

both languages probably refer to both relationals as "not equal" and might

be surprised at any semantic difference. Is it better to follow the literal

interpretation of the syntactic form or to be consistent with the probable

intent across different languages? One could argue the former case on taste

and the latter on the basis of portability of algorithms between different

language systems. Since the computer cannot read the programmer's mind,

it has to take what is said literally just in case what is said is what is meant

literally.

6.5

4. Old Habits

The fourth relation, unordered, can undermine old programs, old pro­

grammers, and even old programming languages. Proposal P754 provides a

measure of security against mistaken inferences in else clauses such as

if x < y then begin . . . end

else begin . . . end;

by stipulating that in such instances, if x and y are indeed unordered, the

invalid operation exception should be stimulated. This is the best that can

be done since there is no floating point "result" from the comparison, with

which to propagate the NAN operand's diagnostic information.

According to §5. 7 of P754, the invalid operation exception is to be sig­

naled when unordered operands are compared with a predicate "involving"

the relations less or greater but not unordered. Thus, two families of rela­

tionals are deliberately exempted from the protection mechanism for unor­

dered operands. First, the FORTRAN ".EQ." and ".NE." are always unexcep­

tional since the are used in floating point calculations primarily to weed out

special, anomalous, values. This is quite different from using ".LT." to distin­

guish the condition less from "greater or equal"; this comparison involves a

presumption that may not be valid. The second exemption from the invalid

exception is for any predicate that explicitly mentions (i.e., "involves") the

unordered relation. As of this writing, there are few implementations of

languages with such relationals. But one could imagine an expanded FOR­

TRAN with ". ULE." for "unordered, less, or equal". P754 exempts a state­

ment like

IF (X .ULE. Y) GOTO 2050

6.6

from the invalid operation exception when X and Y are unordered since, by

writing ".ULE.", the programmer has shown a modicum of regard for the

unordered contingency; no protection is required.

These special relationals exempt from exceptions on unordered raise·

some additional issues. Consider the two FORTRAN tests

IF(.NOT. X .GT. Y) GOT02001

IF (X .ULE. Y) GOTO 2001

Although the logical negation of "grea.ter" is indeed "unordered, less, or

equal", the two tests differ in the invalid operation side effect. The latter

test is exempt from the exception because of its mentipn of unordered in the

relational; the former test is not. On the other hand all of the tests

IF (X .NE. Y) GOTO 19B4

IF (.NOT. X .EQ. Y) GOTO 1984

IF (X . ULG. Y) GOTO 1984

cause a branch precisely when x and y are related as "unordered, less, or

greater", and all are exempt from the invalid operation on unordered.

5. P754 Predicates

The following table, adapted from proposal P754, describes the complete

set of 26 relational predicates. Since there are four possible relations, less,

equal, greater, or unordered, each of which may be tested for true or false,

there are in principle z4 or 16 possible combinations. The unconditional true

and false are omitted, leaving 14. Including the logical negations, that is

(x <y) and NOT(x <y), yields 28. But two pairs of these

(x = y) and NOT(x ? <> y)

and

6.7

NOT(x = y) and (x ? <> y)

are functionally identical; deleting one of each pair leaves 26 functionally dis-

tinct relational predicates. {Note that the 12 other such pairs are function­

ally distinct because one member triggers the invalid operation exception if

the operands are unordered, and the other is unexceptional.)

6. Extending Existing Languages

P754 specifies what to do with each of the possible relational predicates

that can be formed given the four relations equal, less, greater, and

Predicates Relations Exception
greater less invalid if

ad hoc FORTRAN math than than eaual unordered unordered
= .EQ. = F F T F No

?<> .NE. -,t. T T F T No
> .GT. > T F F F Yes

>= .GE. ~ T F T F Yes
< .LT. < F T F F Yes

<= .LE. ~ F T T F Yes
? unordered F F F T No

<> .LG. T T F F Yes

<=> .LEG. T T T F Yes
?> .UG. T F F T No

?>= .UGE. T F T T No
?< .UL. F T F T No

?<= .ULE. F T T T No
?-.- .UE. F F T T No

NOT(>) F T T T Yes
NOT(>=) F T F T Yes
NOT(<) T F T T Yes

NOT(<=} T F F T Yes
NOT(?) T T T F No

NOT(<>) F F T T Yes

NOT(<=>) F F F T Yes
NOT(?>) F T T F No

NOT{?>=) F T F F No
NOT(?<) T F T F No

NOT(?<=) T F F F No
NOT(?=) T T F F No

6.8

unordered. However, the proposed standards do not force a language imple­

mentor to provide any given set of relationals. Virtually every programming

language provides the set shown here for Pascal, BASIC, C, and FORTRAN.

Pascal and Basic C FORTRAN
= .EQ.
<> != .NE.
< < .LT.

<= <= .LE.
> > .GT.

>= >= .GE.

How should this set be expanded, if at all?

First consider an easy case. Suppose that the C programming environ­

ment is expanded to include the predicate function

integer unordered{x, y)

fioat X, y;

which returns the value one if and only if x and y are unordered, without

raising the invalid operation exception, and returns zero otherwise. Then the

whole gamt_it of predicates is avaliable through constructions like

if (unordered{:r, y) II (x < y)) ! ... ~

The logical OR operator "II" is such that if the left expression is true (i.e.,

nonzero), then the comparison on the right is bypassed. This short-circuit

evaluation allows the programmer to bypass the invalid operation exception

the standards would mandate in case unordered values of x and y were com­

pared with "<". C's logical operators were designed with just such uses in

mind.

Now consider a Pascal system augmented by

6.9

function unordered(x, y: real): boolean;

which returns true if and only if x and y are unordered. The Pascal version

of the C test above is

if unordered(x, y) or (x < y) then begin .. . end;

Unlike C, Pascal does not specify the order of evaluation of the two tests.

And Pascal says nothing about short-circuit evaluation, in case the first of

the two expressions is true. So, although the flow of control is unambiguous,

the invalid operation exception side-effect is left to the whims of the Pascal

system. The programmer who would avoid unwanted side-effects caused by

unpredicatable order of evaluation must force the order by nesting the tests:

if unordered(x, y)

then begin ... end

else /* vacuous case * /

else

if X < y

then begin ... end

else; /* vacuous case * /

Unhappily for the Pascal programmer, it may be necessary to use goto's to

avoid duplication of code within the nested cases.

The Pascal programmer would be aided by an expanded set of relation­

als. Consider the set above augmented by the following set (written for FOR­

TRAN and C as well):

6.10

Math Pascal and BASIC C FORTRAN
unordered ? ? .UO.

unordered or equal ?= ?-. - .UEQ .
unordered or less ?< ?< .ULT.

unordered or greater ?> ?> .UGT.
unordered, less or equal ?<= ?<= .ULE.

unordered, greater or equal ?>= ?>= .UGE.
unordered, greater or less ?<> I- .NE. .-

(not equal)

The "not equal" operator is now written precisely for all of the languages.

The "less or greater" operator "<>" of Pascal is not shared by C and FOR­

TRAN, but it is not so useful anyway. The symbol "?" in the Pascal and C

relationals and the letter "U" in the FORTRAN relationals is deliberately

placed at the head of the relational to suggest its short-circuit effect, that is,

that no invalid operation exception will arise if the operands are unordered.

These relationals have two unfortunate properties. The FORTRAN ver­

sions are coincidental with the typical assembly-language names for the

unsigned integer comparisons, which could cause confusion. Also, the ques­

tion mark may be inscrutable when used in a context like

if x ? y then begin . . . end;

An alternative is to use either the function unordered{), or the complemen­

tary relationals with logical negation, like

if not (x <=> y) then begin ... end;

In the latter case, P754 calls for the invalid operation side effect when x and

y are unordered since there is no explicit reference to the unordered rela­

tion.

6.11

7. Hardware Support for Language Constructs

Now that we have explored the language issues in comparisons we can

look at the required hardware support. A conditional branch construct like

the Pascal

il x < y then begin <block A> end

else begin <block B> end;

might be compiled into assembly code of the form:

LABEL-B:

F1NI:

COMPARE
BRANCH
<block A>
BRANCH

<block B>

x,y
UGE, LABEL-B ; skip to block B if?, >, or=

F1Nl ; unconditionally skip block B

What is important is that the compiler has "flipped" the sense of the predi­

cate being tested, in order to branch around the then clause. In this case

the relational "<", which triggers invalid if x and y are unordered, is impli­

citly replace by "?>=", which is never invalid. And an optimizer may

attempt later to move code blocks A and B by flipping the relational once

more. This is bad news if the arithmetic associates the invalid exception with

the assembly language branch condition.

The compiler has three fundatmental responsibilities:

{ 1) Ensure that unordered operands trigger the invalid operation exception

just when appropriate.

(2) Ensure that flipping the sense of the relational takes into account the

four possible relations.

(3) Ensure that subsequent optimizations are safe.

6.12

Perhaps the simplest way to a robust implementation is to have two

comparison instructions: one just a straight arithmetic comparison, and one

that will also trigger the invalid operation exception on unordered. Then the

compiler can issue the required flavor of comparison on the basis of the rela­

tional that appears in the source program, and the conditional branches can

be flipped with impunity later.

8. Implementation Examples

The following sections illustrate ways of implementing the P754 predi­

cates using the conditional branch schemes on existing CPUs. These proces­

sors were designed with the trichotomy in mind so some special care has

been required.

8.1. 16-bit Microporcessors

The families of 16-bit microprocessors available today from Intel (8086),

Motorola (68000), National (16000), and Zilog (ZB000) are two's-complement

integer-only machines. These CPUs implement trichotomy comparisons

using a set of condition code bits like:

C - carry-out of result

Z - zero result

S - sign of result

V - integer overflow

S is sometimes called N, for "negative bit". These bits are typically set

according to the result of each integer arithmetic operation They are

tested using the conditional branch instructions. All the CPUs above either

already have or are intended to have hardware support for floating point in

the form of co-processor or slave chips. Will their existing branching

6.13

schemes suffice, even though the trichotomy property does not apply to

P754 comparisons?

The conditional branch instructions come in two flavors depending on

whether they interpret integer results as unsigned or two's-complement

signed. The unsigned branches use the C and Z bits, and the signed branches

use the Z, S, and V bits. By an appropriate mapping of floating point com­

parisons into the condition code bits, the two flavors of branches can be rein­

terpreted so as to incorporate the unordered relation.

For definiteness the following discussion is based specifically on the

Zilog ZBOOO microprocessor. Execpt for notational differences, the situation

is the same for the other three microprocessors. One possible mapping of

the condition code bits for floating point comparisons is:

C - set if! less

Z - set if! egual

S - set iff less

V - set if! unordered

A useful interpretation of the ZBOOO branches is given for the expanded list of

Pascal relationals. A question mark signifies unordered in the ad hoc rela­

tional predicates that mention that relation. Note that of the fourteen possi­

ble combinations of the four relations (ignoring the trivial true and false)

only one complementary pair cannot be tested with a single ZBOOO condi­

tional branch.

Pascal
Predicate

=
<

<=
>

Integer
Predicate

=
unsigned<

unsigned<=
>

ZBOOO Condition
Code Setting

Z=l
C = 1

C or Z = 1
Z or (S xor V) = 0

6.14

>= >= S xor V = 0

? < S xor V = 1
?<= <= Z or (S xor V) = 1
?> unsigned> C or Z = 0

?>= unsigned>= C=O

? overflow V=l
<=> no overflow V=O
?<> not equal Z=O

?-.- NONE Z or V = 1
<> NONE Z or V = 0

With this mapping of the condition codes, full support is given the assembly

language programmer (and the compiler) if the assembler merely recognizes

the set of "floating relationals" and maps them into the appropriate condi­

tion code test. For example, the assembly instruction

JR FLE, LABEL3

requesting a Jump (Relative to the current program counter) to LABEL3 if

the floating relation <= is true, would be interpreted as the actual ZBOOO

instruction

JR ULE, LABEL3

using the integer relation unsigned <=.

Although this mapping between integer and floating relationals may

seem nonintuitive at first, it is an exercise to show that this is the best that

can be done. The only nontrivial flexibility is in choosing which two "double"

relationals will require two branch intructions. In this case, the relationals

?= and <> were chosen as the least likely to arise in practice.

8.2. &bit Microprocessors

The Intel BOBO, Rockwell 6502, and the Zilog ZBO are three common B-bit

integer-only microprocessors. Each has 4 condition code bits

C - carry-out of result

Z - zero result

S - sign of result

V - integer overflow

6.15

like the 16-bit processors above. But the 8-bit processors lack the full com­

plement of signed and unsigned branches. Instead, each of the condition

code bits must be tested individually with instructions like "branch on carry

set", "branch on carry clear", etc.

So there is no clever mapping between the floating point relational

predicates and the signed and unsigned integer predicates. The best that

can be done is simply to map each of the the four floating relations onto one

of the condition code bits:

C - set ifl less

Z - set iff equal

S - set ifl greater

V - set ifl unordered

A useful interpretation of the ZBO branches is given for the expanded list of

Pascal relationals. A question mark signifies unordered in the ad hoc rela­

tional predicates that mention that relation. Note that of the fourteen possi­

ble combinations of the four relations (ignoring the trivial trne and false)

only the combinations involving one or three relations can be tested with just

one conditional branch.

Pascal
Predicate

=
<

<=
>

Condition
Code Setting

Z=l
C = 1

C = 1 or Z = 1
S = 1

6.16

>= S=l or Z=l

? V=l
?<= C=l or V=l
?> S=l or V=l

?>= C=O

? V=l
<=> V=O
?<> Z=O

?-.- Z=l or V=l
<> C=l or S=l

Beyond this, this situation differs on the three microprocessors. The

BOBO a set of three-byte branch instructions (one-byte opcode followed by

one-word absolute address) to test each of the condition code bits; the ZBO

has these instructions plus two-byte branch instructions {one-byte opcode

followed by a byte offset from the current program counter) to test the C

and Z bits. On the other hand, the 6502 has only two-byte instructions to test

the condition code bits; branches beyond the range of the one-byte offset

must be handled with an unconditional three-byte jump.

CHAPTER 7

Accurate Yet Economical Binary-Decimal Conversions

"The ultimate aim is to persuade all of the civilized world to abandon the de­
cimal numeration and to use octonal in its place; to discontinue counting in
tens end to count in eights instead. However, it seems unlikely that the
whole civilized world will be persuaded to complete this change during the
next twelve months, having previously declined similar invitations."

E. William Phillips (1936)

Introduction

Because of our "uncivilized" insistence on decimal arithmetic for every­

day calculations, today's high-speed computers, most of which perform

arithmetic in radix two or a power of two, must be supplied with conversion

routines to expedite input and output of data in decimal form. These utilities

typically run without the benefit of extra range or precision, in which case

they are provably inaccurate, and often they use many more floating-point

operations than do more robust algorithms. Now, proposed IEEE standard

P754 for binary floating-point arithmetic [1] attempts to impose accuracy

specifications for binary-decimal conversions. It turns out that the required

accuracy can be achieved with very economical algorithms.

This chapter is an extended footnote to proposal P754. It describes

algorithms that guarantee correctly rounded results for all input values.

However, these schemes can be costly in time and space. The principal con­

tribution of this chapter is an economical alternative, a set of fast algorithms

that provide results that are just accurate enough. These algorithms have

been adapted from an earlier implementation guide [3]. Implementors

interested only in the algorithms may turn immediately to §2 of this chapter.

7.1

7.2

For the more leisurely reader, § 1 introduces P754 and discusses the

important issues in radix conversion. Unfortunately, discovering what is

accurate enough in lieu of correct rounding, and correlating this with an

efficient implementation, entail a surprisingly tedious error analysis. This

analysis constitutes §3.

1. Radix Conversion Issues

1.1. Proposed Standard P754

A brief survey of proposed IEEE standard P754 for binary floating-point

arithmetic will explain some of the terminology in the rest of the paper. The

basic goal of the standard is to provide users with a computing environment

conducive to the production and portability of numerical software. P754

specifies 32-bit single and 64-bit double formats, as well as optional system­

dependent extended formats. The extended formats may be thought of as a

computer's internal types; when available to programmers, they offer some

valuable extra range and precision at little added cost in execution tim~ and

implementation complexity. P754 requires results computed as though with

unbounded range and precision, and then coerced {by rounding and checks

for exponent over /underflow) to fit in the destination format.

Four modes of rounding are specified in P754: the default mode to

nearest and the three directed modes toward - 00 , toward 0, and toward +oo.

To express them in terms of radix conversion, let x and X represent binary

and decimal floating-point numbers, respectively, with preassigned precision.

Then the conversion x ➔ Xis correctly rounded if when rounding

to nearest: X is the nearest decimal to x, in case of a tie X has an even least
significant digit

toward 0: Xis the nearest decimal to x satisfying !XI~ !xi

toward + 00 : Xis the nearest decimal to x satisfying x ~ X

toward - 00 : Xis the nearest decimal to x satisfying X ~ x.

7.3

Analogous rules apply for decimal to binary conversion X ➔ x. However, for

huge and tiny values of x and X these rules are so expensive that P754 per­

mits them to be relaxed by, roughly speaking, replacing "nearest" with

"nearest or next to nearest".

Radix conversions are vulnerable to rounding errors, exponent overflow,

and exponent underflow. In addition to these exceptions, P754 distinguishes

two others, division by zero, and invalid operation (like 0/0), but these do not

matter for our purposes. Associated with each of the exceptions is a status

flag accessible to programs. A flag must be set whenever its corresponding

exception arises; it may be cleared only by user software. An implementa­

tion may also support traps for each of the exceptions, but these are

optional. Traps present problems more system-related than numerical, but

they are mentioned later in the few instances where they affect the algo­

rithms. Finally, P754 specifies the symbolic entities ±00 to cope with overflow

and division by zero, and NAN (not-a-number) to deal with invalid operations.

Conversion to and from these symbols is left as a special case to be handled

by the implementor.

1.2. Floating-Point Number Systems

A conventional floating-point number system is characterized by its

radix, precision, and range. For example, the values of the finite numbers in

the P754 single format are precisely the values

±bo•b 1b2b3 • • • b23 x ~ ,

...

7.4

where each b1c is either 0 or 1 and -126 s; e s; + 127. A simple way to view this

number system is to divide the real number line into intervals of the form

[2n-l, 2n]. We call these binaries, the binary analog of decimal decades.

Within each such binade the P754 single numbers have the absolute spacing

2n-24, so they divide the binade into 223 equal pieces. The size of the pieces

doubles from binade to binade to the right. The follovring picture illustrates

the number system near 1 on a logarithmic scale.

2-25➔ +- 2-24➔ +- ➔ +-2-23 ➔ +-2-22

II II I II II II I I I II I I I I I

1 /2 1 2

Of course this picture does not apply across the entire number line

because of the constraints on the exponent e. What happens at the limits of

the representable number range poses no serious problem in radix conver­

sions. ln particular, the tiny but notorious denormalized numbers of the

P754 formats [4] require no special treatment.

Decimal number systems are analogous, using instead of bits b11. decimal

digits d1c. In a decimal format with values

±d0°d 1d 2d 3 • • • dp_ 1 x loE'

the intervals of interest are the decades [1oN-1, loll] wherein the absolute

spacing is 1oN-P. The spacing jumps by a factor of 10 from decade to decade

to the right. The case P=9 is shown in the following diagram.

, o-10➔ +-
• •• I I I I I 10- 9 ➔ +- ➔ +-10- 8

111111!111111
➔ +-10- 1

II I I

1/10 10

7.5

Our goal in this paper is to devise mappings between binary and decimal

number systems that satisfy as nearly as practical the rules for correct

rounding. What complicates the problem is that the two systems do not

mesh compatibly; at some places the binary spacing doubles while at others

the decimal spacing jumps tenfold.

We can be more precise about the relation between binary and decimal

spacings. Suppose we have p-bit binary and P-digit decimal floating-point

approximations to a real number Z:

bo•b1b2 • • • bp-1 X ~ ~ Z ~ do•d1d2 • • • dp-1 X 10E ,

with bo=l and d 0 >0. Then the binary and decimal spacings near Z are simply

the units in the last place (ulps) of the respective approximations. They are

ulp2 = 2° -p+l and ulp10 = 10E-P+J

from which we get the relation

=

between ulps 10 and ulps2. The fixed ratio 10-P / 2-P depends on the preci­

sions of the binary and decimal formats. However, the ratio 1oE+1 / 2e + 1

depends on Z. It varies between a maximum of almost 10, when Z lies in

intervals of the form [loN, 2n] where 1oN ~ 2n, and a minimum just above

1/2, in the corresponding intervals [2m, 1oM]. So we deduce the formula

<
ulp10
ulp2 < 10 x [

1
;: l

which is useful in bounding ulps10 and ulps2 in terms of each other.

(C)

From formula C we can find roughly equivalent binary and decimal pre­

cisions. If we choose precisions p and P such that the ratio 10-P 12-p is

about 1, then ulp2 and ulp 10 would be about the same size, up to the factor

7.6

10E+1 I 2'1 +I. For example, the P754 single format has precision p = 24; since

2-24 is about 6.0x10-8, the corresponding decimal precision is somewhere

between P = 7 and P = B. The P754 double format has precision p = 53, with

2-53 about l. 1x10-16; so the corresponding decimal precision is about 16.

1.3. A Distinguished Decimal Precision

Some applications demand that any representable binary floating-point

value be obtainable by rounding an aptly chosen decimal number. That is,

the decimals should be so dense as to distinguish the binary numbers. How

many decimals are required? That is the question we turn to now.

This separation property has been discussed in the literature before, for

example in I. B. Goldberg's astute note [5] on the binary precision required

to distinguish eight-digit decimal numbers. He worked in the opposite direc­

tion, distinguishing decimals with internal binary values, but the issues are

the same. What we need for this paper will be redeveloped here.

The problem is, given binary precision p, to find the decimal precision P

required to distinguish the binary numbers. A condition sufficient for dis­

tinction is given by the following:

Separation Requirement. For every binary number x, either x is

exact in the decimal format, or x's nearest decimal neighbors

x- < X < x+ are such that x+-x- is less than the distance from X

to its nearest binary neighbor.

This requirement implies for every x that there is a decimal number nearer

to x than to any other number in x's format. Thus it guarantees that some

decimal number would round to x in a correctly rounded conversion; that is,

it guarantees distinction.

7.7

To see how to satisfy the separation requirement, consider the number

line below on which a power of ten is bracketed thus, 2n-l ~ 10N < 2n, by

adjacent powers of two. The spacings of p-bit and ?-digit numbers in the

respective binades and decades are shown, although the representable ticks

are omitted for clarity.

10N

~ ~ 2-n-p•1 I
➔ +- 10N-P+1 I II I I I

If the separation requirement is satisfied in the interval [10N, 2n], then it is

surely satisfied throughout the entire decade [10N, loN + 1] in which the

decimal mesh is uniform while the binary spacing doubles across successive

binades.

So it is enough to study the critical intervals [10N, 2n]. lf P is the

number of decimals carried and p is the number of bits, the separation

requirement is equivalent to requiring that

ulp10 = 1oN-P+l < 2n-p = ulpz

hold over all pairs of corresponding N and n. Rewriting the inequality in the

form

shows that 2-P > 10-P+l is a sufficient condition for separation, because

~ > 1oN. In the P754 single and double formats, with p =24 and p =53, respec­

tively,

2-24 Ri 6. Ox 10-B > 10-B and

7.8

so P=9 and P=17 satisfy the separation requirement.

We have derived the chain of inferences

10-P+l < 2--P ➔ Separation Requirement ➔ Distinction .

Now, can we complete the chain and show that all three conditions are logi-·

cally equivalent? The answer in general is NO, but the explanation is

deferred to the Nit-Picking at the end of the paper. The answer for P754 sin­

gle and double is YES. To see that P=9 and P=17 are actually necessary for

distinction, we need only consider the critical interval [103, 2 10]. There, the

binary spacing 6. lxl0-:5 for p =24 is coarser than the decimal spacing 10-:5

for P=9, but is almost twice as fine as the spacing 10-4 for P=B. So by the

pigeonhole principle P = 8 could not achieve distinction. The situation for

p =53 and P= 17 is similar.

In the last section we looked at roughly equivalent binary and decimal

precisions on the basis that ulp 10 RJ ulp2. Although the P754 single format

gives about 7 or B significant digits of precision, P=9 is required to ensure

that ulp10 ~ ulp2 even in the most critical intervals [lo-N, 2n]. In general,_ the

decimal precision P necessary and sufficient for separating binary numbers

of precision p, is the smallest P satisfying 10-P+l < 2--P. This may be

thought of as a requirement that the widest relative spacing in the decimal

format be just narrower than the narrowest relative spacing in the binary

format.

Now that we have fixed the relation between p and P, we can flip the

ratios in formula C to bound ulp2 in terms of ulp 10. The ratio 1oP / 2P is about

59.6 for P754 single and 11.1 for double. Thus the spacings of 9-digit decimal

numbers and P754 single format numbers satisfy

7.9

5.96ulp10 < ulp2 < 119ulp10 ,

and the spacings of 17-digit decimal numbers and P754 double satisfy

l.1lulp10 < ulp2 < 22.2ulp10.

These bounds are nearly achieved in practice. Consider the two border cases

~ 3 ~ 1016 and 2103 ~ 1031 illustrated in the figures

for which the following table applies.

P754 single

P754 double

107 ulp10

20 ulp 1o

2102

6.04 ulp10

1.13 UlP10

From these examples and the discussion above we see that the 9-digit

decimal numbers are always at least six times as dense as P754 single format

numbers, while in some intervals the 17-digit numbers just barely distinguish

double format numbers. It is a remarkable coincidence that the P754 single

and double formats reflect the near extremes of tightness in decimal encod­

ings! We will return to the separation property later when we analyze imper­

fectly rounded conversions in §3.

1.4. Less than Perfect Rounding

Conversions using a computer's built-in floating-point arithmetic typi­

cally commit somewhat more than the expected rounding error. Just how

imperfect may such conversions be, and still be accurate enough? We might

attempt to preserve as many as possible of the important properties of ideal

7.10

conversions. Consider the following list, in which binary values are given in

lower case (x, y), and decimal values in upper case (X, Y}.

[Sign symmetry.] When rounding to nearest or toward 0, if x ➔ X, then -x ➔

-X; and if X ➔ x, then -X ➔ -x. When rounding toward +00, if x ➔ X,

then when rounding toward - 00 , -x ➔ -X; similar relations hold for the

conversion X ➔ x and with the rounding directions swapped.

[Monotonicity.] If x < y, x ➔ X, and y ➔ Y, then X ~ Y. If X < Y, X ➔ x, and

Y ➔ y, then x ~ y.

[Direction.] When rounding toward + 00, if x ➔ X then x ~ X, and if X ➔ x

then X ~ x. Similar inequalities hold when rounding toward O or toward

-00.

[Recovery.) If Xis carried to at least 9 (17) decimals then x ➔ X ➔ x when

rounding to nearest in single {double}. And if X is carried to no more

than 6 (16) decimals then X ➔ x ➔ X.

[Sensibility.] Applied to numbers of reasonable size, conversions should be

correctly rounded. For example, results like 3.0 ➔ 2.99999 ... 9 and 0.5

➔ 0.5000 ... 01 from binary to decimal conversion are unacceptable.

[Consistency.] X should map to the same internal value x regardless of

whether X appears in the source text of a program or is put in as data

at execution time. Similarly, a value x should be displayed as the same

decimal X (for a given format} regardless of the programming language

or output medium used.

The consistency property often falls victim to system or language

idiosyncracies. Perhaps the most bothersome situation can arise when a

language compiler uses a different {imperfect) conversion scheme than the

run-time 1/0 facility. In that case, a user might be unpleasantly surprised to

7.11

discover that the debugging statement

X := 3•14159265

has a different effect than does typing that decimal string in response to the

prompt "Test value x = ?" at an interactive terminal.

Recovery of a binary number x from the chained conversion x ➔ X -+ x

is guaranteed if the conversions are correctly rounded and if X is kept to

decimal precision P sufficient to distinguish binary numbers with the preci­

sion p of x. We discussed the relation between P and p in the last section.

Now we would like to carry the recovery property over to imperfectly

rounded conversions. We must ensure that the total error in the two conver­

sions is less than one ulp2. Formula C bounds the binary to decimal error,

measured in ulps 10 , as a fraction of an ulp2. The condition

[
1Q-P+l l
~ x b -+ d error in ulp 10 + d-+ b error in ulp2 <

is sufficient for recovery x -+ X -+ x. Measured in their respective ulps, the

individual bounds are at least ~ ulp due to rounding. But the factor

(10-P+1; 2-p), which is about 1/ 6 for single and 9/ 10 for double, provides a

cushion in binary to decimal conversions, so it is possible to keep the total

error less than 1 ulp2.

The factor (10-P+l / 2-P) is the maximum relative spacing of full preci­

sion decimal numbers to representable binary numbers. The value 1/6 for

the single format suggests that the 9-digit decimal numbers are so dense

that perhaps a few full ulps10 error could be tolerated in binary to decimal

conversions without losing the recovery property. On the other hand, the

factor 9/10 leaves little margin for extra error in binary to decimal conver­

sion from the double format.

7.12

The properties listed at the beginning of this section are reasonable

requirements for binary-decimal conversions but they are incomplete as a

set of specifications. It is a simple exercise to invent bizarre conversions

that satisfy these rules but almost always yield ridiculous results. What is

needed is a bound on the extra rounding error incurred. The cryptic figure

0.4 7 ulp was put in proposed standard P754 as a worst-case bound, not to

guarantee the properties listed above. In fact, it is too high for all conver­

sions but binary to decimal from the single format in a directed rounding

mode, and for that case it is lower than absolutely necessary to preserve the

other properties. But we suspend further discussion of the error bounds

until we have analyzed the algorithms below.

2. Algorithms

2.1. Correctly Rounded Conversions

We will look first at algorithms for correctly rounded binary-decimal

conversions. The error properties of such conversions are already well

known, thanks especially to an exhaustive series of papers by D. W. Matula[?].

But the algorithms themselves have not been discussed, due perhaps to their

impracticality.

Consider conversion from the P754 single format to decimal. The input

values will have the form

±b 0•b 1b2 • • • b23 x ~ where -126 ~ e ~ + 127 .

These values are representable exactly in the binary fixed point format

i121i12si125 • • • i2i1io•f -if -2 • • • f -1.wf -149

and can be converted exactly to the decimal format

7.13

I sal 37/ 36 • • • I 2111 o•F -1F -2 • • • F -«F -45 • • • F-148F -14g

with equally many fraction digits. Of course the decimal value will usually be

rounded down to some more manageable length, depending on the output

precision desired. The important point about such conversions is that they

require arithmetic on a wide bit buff er for the binary input and a wide digit

buffer for the decimal output.

There are several ways to perform the integer conversion. One is to

repeatedly divide the binary integer buffer by a power of ten; then the suc­

cessive remainders give the decimal digits from right to left. Another way is

to scan the integer bits from left to right, accumulating a decimal value that

must be doubled at each step. In yet another scheme the binary integer

would be divided by a huge power of ten, perturbed upward a little bit, and

then converted as a fraction.

A binary fraction may be converted to decimal by repeated multiplica­

tion by a power of ten; the successive integer parts give the decimal digits

from left to right. For example, since 10 = 8+2, multiplication of a bit buffer

by 10 can be accomplished by shifts of three and one bits, followed by an add

of the shifted values. The case 1000 = 1024-16-8 is similar and provides

three digits at each step.

Once the integer and fraction parts are converted as necessary, the

decimal fixed point value, if not exact. must be rounded to the precision of

the target format. In the worst case this entails propagating a carry across a

string of nines, possibly causing a carry out of the left end. Correct rounding

is possible - even in the half-way cases when the least significant digit output

must be even - because the integer and fraction schemes above produce

successive digits correctly. For example there is never a question whether a

7.14

string of digits "4999 ... " should actually be "5000 ... ", as is the case with ele­

mentary transcendental functions. Only in the integer conversion requiring

the small perturbation must care be taken not to confuse the perturbation

with rounding error.

Further discussion of integer and fraction conversion algorithms may be

found in [6, pp. 302-312] and [9, pp. 436-459]. Appendix D contains a sample

implementation of correctly rounded conversions. The procedures are

presented as a Pascal unit (in the notation of Apple Ill Pascal [2]) suitable for

inclusion in a system library. They may be parameterized to support P754

single, double, or even double-extended format conversions.

Although the correctly rounded conversions are conceptually simple, all

of the schemes discussed above suffer time penalties on machines without

significant support for the wide binary and decimal quantities involved. For

example, the first two integer schemes require that all integer digits be con­

verted. Fraction conversion is somewhat simpler, and it has the advantage of

producing digits from left to right, so it may be stopped when enough digits

have been obtained to round to the target precision. The time and space

penalties incurred are severe for operands of wide range and precision. The

Pascal routines in the appendix require one 1400-bit packed BCD buffer and

one 1000-bit binary buffer in order to perform P754 double format conver­

sions. Such conversions are unsuitable for implementation, say, on a chip

supporting the rest of a floating-point engine and presumably subject to time

and memory tradeoffs. But they are ideal for low-end implementations

either done entirely in software or lacking extended support for the algo­

rithms of the next section.

7.15

2.2. Imperfect Conversions

In this section we look at algorithms for converting between decimal

strings and the P754 binary floating-point formats. All arithmetic is per­

formed in a P754 extended format, whose exact requirements are discussed

at the end of the section. The only decimal operations required are exact

conversions between decimal integers of modest length and integer values in

the extended binary floating-point format.

The basic strategy in binary to decimal conversion is to scale the input

value by a suitable power of ten so that, when rounded to an integer, the

scaled value has the desired number of digits in its exact decimal represen­

tation. Together, this integer and the scale factor determine the decimal

significant digits and exponent. Rounding errors can occur during binary to

decimal conversion; floating-point overflow and underflow in the sense of

P754 do not arise because because the decimal formal has no range restric­

tion. However, a kind of overflow arises if the decimal destination field has

insufficient width to accommodate the desired number of significant digits

and the computed exponent. What happens in this situation is highly

system-dependent; further discussion is deferred to the Nit-Picking section

at the end of the paper. What makes the following algorithm interesting is its

near-minimal rounding error.

Algorithm B {Binary to decimal conversion.) Given a binary floating-point

number xin, a positive integer N, and implicitly the current direction of

rounding, this algorithm finds the significant digit and exponent components

of the floating decimal string ad 1°d2d 3 • • • dNEde:r:p approximating xin. The

named temporary variables are integers LDGX and SCALE, and extendeds x

and y.

7.16

BO. [Special cases.] Dispatch zero, infinite and NAN values of xin.

BL [Extend xin.] Set x ~ xin. (x will be normalized.) Save y ~ x. (x will be

normalized.)

B2. [Log base 10.] Set LOGX ~ llog 1o(Ix I) J , perhaps underestimating by l.

(See algorithm L below.)

B3. [Scale factor exponent.] Set SCALE~ N-LOGX-1. (Rounding xx10SCALE to

an integer should yield the N-digit significand.)

B4. [Scale x .] Scale x by 10SCALE as in algorithm S below.

B5. [Round to integer.] Round x to an integer, according to RMODE.

136. [Check for N digits.] If Ix I~ loN then increase LOGXby 1. restore x ~

y, and go back to step B3. Otherwise, if Ix I < 1oN-1 then replace x by

1oN-1 with the sign of x. (The latter test is not necessary for all imple­

mentations. See the analysis of algorithm B for details.)

B7. [Significant digits.] Convert x to the signed decimal string ad 1d 2 • • • dN.

BB. [Exponent.] Convert LOGXto the signed decimal string dexp. •

Algorithm B is designed for FORTRAN E-format conversions, where the

number of significant digits is specified in advance. With a small

modification, the algorithm can be applied as well to F-format conversions,

where only the number of fraction digits is specified. Let a separate flag indi­

cate whether E- or F-format output is desired; for the latter N specifies the

number of fraction digits to be displayed; then SCALE in step B3 is simply N

{even if N itself is negative), and steps B2 and B6 are unnecessary. F-format

conversion may suffer "format overflow" in step B7 if lxl is too big to fit into

the destination to receive it. In this case a helpful system might print the

number in E-format with a modest number of digits.

7.17

Input conversion from decimal to binary is computationally simpler, but

is open to several hazards associated with free-format character strings. For

instance, if polynomial coefficients are read from a file built by an algebraic

manipulation system with very high precision and range, what is to be done

with 35-significant-digit numbers, or numbers with {outrageous) 13-digit

exponents? Some problems lie outside the domain of the conversion routine.

Literals in program text may be decomposed into significant digit and

exponent strings during a compiler's lexical scan, and subjected to the arbi­

trary size constraints of the scanner. Will the compiler even recognize spe­

cial values like ±00 or NAN? Ideally, recognition of floating-point numbers

should be the responsibility of a system routine. Figure 1 at the end of the

paper shows how floating strings might be discovered. In any case, decimal

strings might be constrained to have fewer than, say, BO characters.

Algorithm D uses the conversion strategy of algorithm B above, m

reverse. The significant digits are converted as a wide integer to be scaled

by a suitable power of ten, whose exponent depends on the exponent field as

well as the placement of the decimal point in the input string. Figure 2 at

the end of the paper shows one way to parse floating strings into significant

digit and exponent fields. Of course algorithm D is vulnerable to rounding

errors; unlike algorithm B, it may also suffer overflow or underflow.

Algorithm D {Decimal to binary conversion.} Given the signed decimal

strings ad 1d 2 • • • dN (with d 1 # 0), and dexp, corresponding to the value

ad 1d 2 • • • dN,O x lO®ZF , and implicitly the current rounding direction, this

algorithm computes a corresponding binary floating-point number xout. The

constant NMAX is the maximum number of significant digits that may be

input. The named temporaries are integers SCALE and LOST and extended

7.18

value x.

DO. [Special cases.] Dispatch zero, infinite, and NAN strings.

DL [Convert exponent.] Set integer SCALE +- dexp. {This will be exact

except when ldexp I is outrageously large, in which case SCALE should be

set to some huge value like 4000. This will produce a scaled value x that,

while not outside the extended range, will provoke the suitable overflow

or underflow in step D6.)

D2. [Excess digits.] Set LOST +- 0. If N ~ NMAX, skip to step D3. Otherwise,

truncate the excess N-NMAX digits dNMAX+1dNMAX+2 • • • dN, setting LOST

+- 1 if any of them are nonzero. Add N-NMAX to SCALE. Go to step D4.

D3. [Canonical form.] Minimize !SCALE! as follows. If SCALE > 0, pad the digit

string on the right with up to NMAX-N zeros, subtracting from SCALE

the number of zeros appended. Otherwise, if SCALE < 0 truncate up to

-SCALE trailing zeros, adding to SCALE the number of zeros dropped.

D4. [Significant digits.] Convert the digit string: x +- ad 1 d 2 • • • dM. (Steps D2

and D3 assure that 1 ~ M ~ NMAX, so the conversion is exact.)

D5. [Scale x .] Set Scale x by 105 CALE as in algorithm S below.

D6. [Round.] Logically OR LOST into the least significant bit of x. Convert to

storage format: xout +- x. (This final step may overflow or underflow. If

there is no trap, the result is as in P754. If there is a trap two cases

arise. If the overflow or underflow was "reasonable" then a correctly

wrapped-around result is sent to the trap hanler in lieu of xout. 1f the

exponent of x cannot be wrapped-around to within the range of xout,

then the value of x, though it may be available to the trap handler, is

meaningless since the decimal exponent may have been set arbitrarily in

step Dl; in this case the most useful information is the original decimal

7.19

string, but it may not be available.}•

How much extended arithmetic is actually needed? We have seen that

discriminating binary-decimal conversions require rather more decimal pre­

cision than binary. For example, nine decimals are required for conversion

from the P754 single format. Since

109 > 224 ~ l.7X107 ,

and both algorithms B and D require that a nine-digit integer be stored

exactly, it is clear that conversions cannot be carried out entirely in the sin­

gle format with its 24 significant bits. Proposal P754 includes optional

extended formats for just such calculations. These formats follow the P754

conventions for, say, rounding and the handling of over /underflow but their

particular encoding is system-dependent. P754 requires that there be at

least 8 extra bits of precision and 3 extra exponent bits in single-extended,

and 11 extra bits of precision and 5 extra exponent bits in double-extended.

Since

1Q9 < ~ 4+B RI 4.3 X 109 ,

any nine decimal significant digit string can be held, as an integer, in the

single-extended format, so the scalings of algorithms B and D can be per­

formed with a few extra bits to suppress rounding errors. We will see later

that the numbers 8 and 11 of extra bits are very tight - there is hardly a bit

to spare in providing accurate binary-decimal conversions.

If an extended format is not implemented in hardware, algorithms B and

D may be less attractive than the correctly rounded conversions of the previ­

ous section. But if time, space, or even compatibility constrain one to the

methods of this section, some provision must be made in software. The only

arithmetic operations required for the conversions are multiplication, divi-

7.20

sion, comparison, round to integer, and conversion to and from the single or

double formats being supported. The operations are simplified by the

absence of special cases involving infinite and NAN operands and by the res­

triction to results which usually suffer only rounding errors (the conversiop

in step DB of algorithm D may over /underflow). So it is feasible to build

these functions from a reasonable complement of intrinsic integer opera­

tions.

2.3. A Poor Man's Logarithm

Step B2 of algorithm B calls for the calculation of l log10(z) J, where z is a

positive normalized number. It turns out that a suitable approximation

LOGX, perhaps too low by 1, may be found with just a few integer operations.

If we express z in the form 28 x 1./, we can see that

log 10(z) = log10(2) x log2{z) = log10{2) x (e + log2(l./)).

A look at the graph of log2{ 1./) versus O.f

1

log(1 .f)

0 0.f

and a little calculus indicate that 0.f ~ logil./) with a maximum deviation

of about 0.086. So log2(2" x 1./) is approximated from below by e + 0.f,

that is "e.f" as a fixed-point number! This suggests the following simple

procedure for computing LOGX.

Algorithm L (Log base JO.) Given a positive binary floating-point number z,

this algorithm computes LOGX as l log1o(z) J or the next integer toward - 00 •

7.21

The temporary variables LOG2 and L2X hold fixed point values.

ID. [log 10(2).] Set LOG2 ~ 0.4D104D427 • • • 16, log 10(2) in hexadecimal, trun­

cated to a convenient length like 8 or 16 bits.

LL [log2{ z).] Set L 2X ~ e + 0.f, where z = 2° x 1.f. The fraction 0.f may be

truncated to as few as 6 bits.

12. [Ensure a lower bound.] Jf L2X < 0, increase LOG2 by one unit in its last

place.

I.'3. [log 10(z).] The result is LOGX ~ l LOG2 x L2X J. •

The maximum possible error in LOG2 x L 2X is approximately log 10(2) x

0.0B6 Rj 0.026 , caused by the linear approximation to log2(z). By com­

parison, the errors due to truncating low-order bits of e.f and rounding

log 10(2) are small. In any case, all errors are toward - 00 • Only rarely will the

computed LOGX be wrong, and then it will be off by 1. lf we assume that

log2(l./) is uniformly distributed between O and 1 [6 pp. 23B-247], then the

average induced error in LOGX is about

1
log 10(2) x fo {log2{1 +t) - t)dt i:::! 0.017 .

Assuming that {log 10(z) mod 1), too, is uniformly distributed between O and

1, this means that LOGX will fall short less than 2% of the time and then only

for values z barely greater than powers of ten.

As usual, the analysis is more complicated than the implementation. To

illustrate the ideas, we can compute l log 10(Y) J where Y is a positive, normal­

ized number in the P754 single format. Y is encoded as a 32-bit string

F
0 1 8 9 31

7.22

representing the value

y = (-l)S X 2E-127 x 1.F .

The sign bit S is zero for positive Y. So to approximate log2(Y) we need only

subtract the bias 127 from E and imagine a binary point between E and F.

Then the product with an approximate log10(2) is essentially an integer

operation. The following assembly language sequence will compute l log 10(Y) J

on a Zilog ZBOOO microprocessor (10].

Program L {Log of a single format number.) Given the value Y in register

RR2, compute l log 1c(Y) J. (On the ZBOOO, RR2 refers to the pair of 16-bit

registers R2 and R3; RH2 and RL2 refer to the most and least significant

bytes of R2.)

LD R3, #%4D10 ! Overwrite the low-order half of Yin R3 with log 10(2),
chopped, whose implicit binary point is to the left of
R3. The'%' flags the constant as hexadecimal. !

SLA R2, #1 ! Shift the high-order half of Y left 1 bit, leaving the
exponent in RH2 and the seven leading fraction bits,
followed by a O bit, in RL2. !

SUBB RH2, #%7F ! Unbias the exponent to gel a two's complement ap­
proximation to log:,l Y), v.ith an implicit binary point
between RH2 and RL2. !

JR PL, PLUS ! Chopped log!C(2) is fine if unbiased E ~ 0. !

INC R3, #1 ! Round log 1o(2) up. !

PLUS: MULT RR2, R2 ! RR2 gets R2xR3 ~ log 10(Y) in two's complement
with the binary point between RH2 and RL2. The ap­
proximate l log1c(Y) J is in RH2 since in two's comple­
ment arithmetic the floor function is achieved by
truncation. ! •

2.4. Scaling in Algorithms Band D

This section contains a scaling algorithm that lies at the heart of both

algorithms B and D.

7.23

Algorithm S {Scaling in bina:ry~ecimal conversions.) Given an extended

floating-point number x, an integer SCALE, and implicitly the current direc­

tion of rounding, this algorithm computes xx1oSC4.LE, rounded toward zero,

and sets the least significant bit of x to 1 if any nonzero bits have been

rounded off. Extended variable z holds the value 10SCALE, possibly rounded.

The pseudo-variable RMODE contains the current rounding direction. The

integer pseudo-variable IXFLAG corresponds to the P754 inexact flag; it sig­

nals rounding errors in floating-point operations. The values RMODE and

IXFLAG are saved in and restored from the variables RSA VE and IXSA VE.

SO. [Rounding direction for scale factor.] Set RSAVE '"- RMODE. Jf RSAVE =

to n2arest, skip to step S1. (These next tests handle the other three,

directed, roundings.) 1f RSAVE = toward - 00 and x < 0, or RSAVE =

to'Ward +oo and x > 0, set RMODE '"- toward +00 ; otherwise set RMODE '"­

to'WO.rd -oo. Finally, if SCALE< 0, reverse the sense of RMODE.

Sl. [Scale factor.] Set z '"- 101 SCALE 1. (See algorithms P and Q below. Both

algorithms B and D are designed so that z will not overflow the extended

range.)

S2. [Perform scaling.] Save IXSAVE 4- IXFLAG and set IXFLAG 4- 0. Set

RM ODE '- toward 0. If SCALE> 0, set x '- x xz. otherwise set x 4- x / z .

(IXFLAG, assumed to take the values O - clear and 1 - set, records any

rounding error in the multiplication or division of x by z .)

SJ. [Collect roundoff.] Logically OR IXFLAG into x's least significant bit.

Restore RM ODE'- RSA VE. Logically OR IXSA VE into IXFLAG. •

If the scale factor 10ISCALEI cannot be represented exactly in the

extended variable z, then it is rounded in a direction that guarantees that

the ultimate result in algorithm B or D will honor the intended rounding

7.24

direction.

Algorithm S is vulnerable to errors in step Sl when 10ISCALEI is com­

puted and in S2 when the input x is scaled. However, the latter error may be

avoided. Since both algorithms B and D will round the scaled value x to a

precision narrower than extended, any low-order bits chopped off in step S2

will participate correctly as "guard bits" for the rounding in step B5 or step

D6, if they are logically OR'ed into the least significant bit of x. And when

rounding toward 0, the P754 inexact exception flag, IXFLAG, contains pre­

cisely the logical OR of all chopped bits. The figure below tells the story.

2.5. Evaluating Positive Powers of Ten

Step S1 of algorithm S involves the calculation of a nonnegative power of

ten in an extended variable z. Since it is this calculation that contributes to

any error algorithms B and D commit in excess of the expected rounding

error, it is worthwhile to compute z as accurately as possible.

X I * I z,. 1 oSCALE

--+ I x•z chopped r£S logical ill
or • N X

ln~x.e1

I I~ I nag

--+ X * Z chopped

'- J

--+

Avoiding an unnecessary error.

7.25

Expressing nonnegative powers of ten in the form lQk = 2k x 5k , we

see that lif is exactly representable in a binary floating-point format with p

significant bits and reasonable exponent range only if 5k < 2P. The P754

single-extended and double-extended formats, with 32 and 64 significant bits,

can accommodate powers of ten up to 13 and 27, respectively, since

513 < 2s2 < 514 and 527 < 264 < 528 .

Unfortunately, these exact powers of ten are not sufficient for scaling in

steps B6 and D7. For example, in conversion from the single format to

decimal, the input values xin to algorithm B satisfy

-45 ~ l log 1o(I xin I) j ~ 3B ,

with an asymmetric range because xin may be a tiny denormalized number

[4]. Then, since the digit count N can range from 1 to 9, the value SCALE

computed in step B3 can range from -38 to 53. Somehow the powers of ten

up to 1053 must be computed for scaling in single format conversions. Hap­

pily, there is a strategy blessed by a stroke of good luck.

Suppose that the exact values 10°, 101. ... , 1013 are available, either from

a table or to be computed on the fly. And suppose there is available the table

of values:

Pis 0.91B4E72A16 x ~

P21 0.CECBBF281a x 290
i:::l

Pro = 0.EB194FBE16 x 2133
i::,

1013'

1027 X (1 + 2-36) and

1040 X (1 - 2-35)

Given the table values above algorithm P below will compute any nonne­

gative power of ten up to 1053 with just one rounding error, regardless of the

rounding mode. This is possible because of the extraordinary accuracy of

the rounded values P 27 and P 40 and because of extra care in a few special

7.26

cases. And it is fortunate since, as we will see in the analysis of the next sec­

tions, accuracy to the last bit is required to guarantee monotonicity in algo­

rithms B and D for single format conversions.

Algorithm P {Nonnegative power of 10, single format.) Given N ~ 0 and

implicitly the current rounding direction, compute extended z ~ 10N with

the property that z ~ 10N if rounding toward +oo and z ~ 10N if rounding

toward O or - 00 • The integer pseudo-variable IXFLAG corresponds to the

P754 inexact result flag.

PO. [Exact case 0-13.] If N > 13 then set IXFLAG ._ 1 and go to step Pl. Oth­

erwise set z ._ 10N, exactly and exit.

PL [Case 14-26.] If N > 26 then go to step P2. Otherwise set z ._ ? 13 x 10N-i3

and exit.

P2. [Case 27-40.] If N > 40 then go to step P3. Otherwise set z +- P 27 x

10N-27 _ If N is either 27 or 28 and the rounding mode is toward -oo or

toward O then subtract 1 in the last place of z. Exit.

P3. [Case 41-53.] Set z ._ Aw x 10N-40_ If N is either 42 or 48 and the r.ound­

ing mode is not toward O then add 1 in the last place of z. •

Conversions to and from the P754 double format are more complicated.

With 64 significant bits in the double-extended format, powers of ten up to

1027 can be represented exactly. But the wider exponent range of the double

format requires powers up to 10340 , in order to convert the tiniest denormal­

ized number. The strategy here is similar to algorithm P above except that

the table of powers of ten depends on tradeoffs among lime, space, and accu­

racy. Fortunately, it is not necessary to produce perfectly rounded powers

of ten as was the case above.

7.27

Algorithm Q exploits a carefully chosen table of increasing powers of

ten: pten(l) = 1027, pten{2), • • • , pten(IMAX). These values are kept in the

extended format, and all but the first are rounded. Let pexp(l) = 27,

pexp(2), ... pexp(IMAX) be the corresponding decimal exponents. Then the

following algorithm computes 1oN with a loop that multiplies the necessary

table values, followed by a final multiply by an exact power of ten. The

directed rounding modes are honored in the sense that all rounding errors

have the correct sign.

Algorithm Q {Nonnegative power of 10, double format.) Given N ~ 0 and

implicitly the current rounding direction, compute z Rl 1oN with the pro­

perty that z ~ 1oN if rounding toward +00 and z ~ 1oN if rounding toward 0

or - 00 • The temporaries used are integer I and extended z. The integer

pseudo-variable IXFLAG corresponds to the P754 inexact result flag.

QO. [Initialize.] Set I c- IMAX and set z c- 1.0.

Ql. [Check threshold.] lf N <pe:r:p(l), skip to step Q3.

Q2. [Scale z.] Set z c- z x FIXED(pten(I)), and decrease N by pe:r:p(l). {The

value pten (1), which is kept rounded to nearest, might require an adjust­

ment of 1 in its last place to comply with a directed rounding mode. Jt

suffices to keep an Brray pfix(l), pfix(2), ... pfi:x(IMAX) of integers with

value 0, +1, or -1 according to whether the corresponding table entry is

exact or is rounded up or down. In any case, for the table values sug­

gested below, the fix never amounts to more than a change in the low

order 16 bits of pten (1), that is, a simple integer operation.) If pfix (I) is

nonzero then set IXFLAG c- 1.

Q3. [Iterate.] Decrease I by 1. If/ > 0, go back to step Ql.

Q4. [Last multiply.] Set z c- z x 10N. (N ~pexp(l) so 10N is exact.) •

If space is to be economized, a good choice for the table pten (} is:

O.CECBBF27F42OOF3A16 x 290 =
O.DOCF4B5OCFE2O76616 x 2183 Rl

O.DAO1EE641A7O8DEA16 x 2359 ~

O.9F79A169BD2O3E41 16 x 2685
R:l

1055 X (1 + 2-76)

10100 x (1+2-67) and

1Q206 X (1-2-67)

7.28

Given 10° through 1027, exactly, any power of ten through 10340 can be com­

puted with at most three multiplications, using at worst two rounded table

values. The rounded table entries are so accurate that, when rounding to

nearest, the error bound in any computed power of ten will be dominated by

the error in the multiplications alone. A conservative error estimate would

be

1Dfomp : 1Df.roct X (1 ± 2-64)3 X (1 ± 2-67)2

1O~t X (1 ± (7/2)x2-64)

for a worst case bound under four rounding errors even when computing the

largest required power of ten. In any of the directed rounding modes the

error estimate is

10fomp : lOf.roct X (1 ± 2-63)3 X (1 ± 2-63)2

= lD~t x (1 ± 5x2--63)

where the sign of the error depends upon the direction of rounding.

Two more accurate variants of this scheme are worth considering

although the accuracy above is sufficient. A table of 10° through 1027 along

with a table of the powers

1027+ 28xk' ...

7.29

permits the evaluation of any power of ten with at most one multiplication,

reducing loop Q1-Q3 in to just one pass. This scheme suffers at most two

rounding errors, one inherited from the latter table value and one from the

multiplication, but it requires about forty extended table entries to reach

10540_

A more extravagant form of the table just mentioned can produce any

10N with one multiplication, and with a guaranteed error bound of ½uip2

when rounding to nearest. Rather than using values spaced by the factor

1028 as above, it uses a denser table carefully chosen to produce correctly

rounded intervening powers. Experiments indicate that about sixty table

entries would be required just to achieve results correctly rounded to

nearest [11].

When the value z in algorithm P or Q can be computed exactly, algo­

rithms B and D are guaranteed to suffer at most one rounding error - in step

B5 or DB. Whether z is exact depends on the value SCALE in the algorithms

B and D. lf I SCALE I does not exceed 13 in single conversions and 27 in dou­

ble conversions then 10ISCALEI can be computed exactly in the single

extended and double extended formats, respectively. This accounts for the

ranges in Table 3 of the proposed standard P754 [1].

2.6. Testing Algorithms B and D

Of course the best way to test a program is to compare its results with

the right answers. Fortunately that is possible, if only the algorithm for

correctly rounded conversions is implemented along with algorithms B and

D. Over what ranges should the two programs agree? The analysis in §3

shows that the key to correct conversions in algorithms B and D is a correct

scale factor 10ISCALE'I_ For single format conversions, algorithm D is correct

7.30

for all 9-digit values in the range

100000000. X 10-15 to 999999999. X 1013 ,

and algorithm B is correct if its output lies in this range. Smaller values,

down to 10-13 itself, may be converted correctly if the number of significant

digits involved diminishes accordingly. For example, the decimal string

"1.234e-10" would be cast as the value 000001234. x 10-15 by step D3 of algo­

rithm D, lending itself to correct conversion.

When correctly rounded conversion is not guaranteed, how far off can

algorithms B and D be? Not more than an ulp in the destination format, as

we will see. So let us consider binary to decimal conversion from an input x.

Let Xm, ~. and ~ be the decimal values resulting from algorithm B with

rounding toward -oo, to nearest, toward + 00 , respectively. Let Cm, Cn, and c;
be the corresponding correctly rounded values. Finally, suppose x is not

exactly representable in the decimal format. Then ½n. and c; differ by one

ulp10 and C'n is one or the other of those values. Ideally, the corresponding

C's and X's should match. But this may not hold for huge or tiny x. Then,

~ is in error by less than an ulp so it too must be one of Cm or CP, though

not necessarily the right one, C'n. And the direction property ensures that

Xm ~ Cm ~ Xn ~ c; ~ Xp .

One of the innermost inequalities is equality, so the other is strict. And one

of the outermost inequalities is equality since the 0.47 ulp10 bound on extra

error guarantees that Xm and Xp differ by at most 2 ulps10. Note that this

discussion carries over to algorithm D as well. These facts about the inter­

lacing can be used with the correctly rounded conversions to test algorithms

Band D.

7.31

A byproduct of the interlacing is the fact that another implementation

of algorithms B and D must produce corresponding values Ym, Yn, and Yp

satisfying the same relation to the C's, and so differing from the X's by at

most an ulp 10 apiece.

The recovery property leads to a different kind of test for the algo­

rithms. It is particularly convenient since no decimal manipulations are

involved. Simply run the conversion x ➔ X ➔ y to full decimal precision,

rounding to nearest, and check that x =y. Recall that recovery is most

difficult in intervals of the form [1oE, ~], where the decimals are sparsest.

A set of interesting intervals is given below. The center column is suitable for

single format conversions. The outer columns span the range of the double

format. Reciprocating the endpoints produces the intervals [2-11
, 10-E]

wherein the decimals are relatively dense with respect to the binary values.

Other pairs E and e can be obtained by noting that the nearer EI e is to

log10(2), the more nearly equal are 10E RJ 28
•

A flavor of recovery is available for the directed roundings, too. Convert

x ➔ X, and then from X ➔ y, rounding first toward + 00 , then toward - 00 • How

are x and y related? An exhaustive analysis shows that, so long as X is car­

ried to full decimal precision, y is either x or the next representable number

left of x. The key observation, based on bounds from §3, is that even when

the decimals are sparsest, X may be slightly more than an ulp 10 greater than

Intervals r 10E 2°1 where decimals are soarse
E e E e E e

-308 -1203 -28 -93 59 196
-292 -970 -16 -53 121 402
-146 -485 -1 -3 298 990

3 10 304 1010
31 103

7.32

x but is certainly less than the next binary number to the right of x. A simi­

lar bound applies if the sense of the rounding modes is reversed.

3. Analyses

3.1. Analysis of Algorithm B

Algorithm B scales the exact input xin by a power of ten and rounds the

result to an integer. Together that integer and the scale factor determine

the decimal significant digits and exponent. This process is vulnerable to two

rounding errors. The scale factor in step S1 of algorithm S will be computed

as

10ISCALE I x (1 ± 6)

where 6 is nonzero precisely when SCALE is so large that 5 I SCALE I cannot be

represented exactly in the extended format. Then, an error can be commit­

ted in step B5 when the scaled value x is rounded to an integer. The

difference between algorithm B and a correctly rounded conversion is the

error 6 in the scale factor.

What about the multiply or divide in step S2? The discussion following

algorithm S shows how to avoid any extra error there. The key for single for­

mat conversions is that the result x of steps B5 and BB is an integer less than

109. Assuming x is normalized in a format with at least 32 significant bits, at

least two of its trailing bits must be 0. The situation is similar for double for­

mat conversions in 64 significant bits.

Now let us bound the extra error incurred in step Sl. First, consider

conversions from the single format with rounding to nearest. The value to be

rounded in step B5 has the form

7.33

X X 1a5C4.LE X (1 ± 0) .

Since the ultimate result of this scaling is an integer value, the extra error,

in ulps 1o, is just

X X 10SCALE X (±o) ulp10 .

We saw in the discussion of algorithm P that the relative error 6 may be as

high as 2-32. So its absolute contribution the final error is bounded by

The notorious 0.47ulp10 error bound that has appeared in many drafts of

P754 was based on an analysis of algorithm Pin which 31 rather than 32 bits

of precision were kept for intermediates. Now it is known that 32 bits are

required. The bound 0.47 still applies, however, as the maximum error in sin­

gle conversions with a directed rounding mode.

We can bound the extra error in ulps10 for any binary to decimal conver­

sion by choosing appropriate values for 6 and the number of significant digits

to be delivered. The following table gives values relevant to P754 when out­

put is delivered to the maximum decimal precision, namely 9 digits for single

and 17 for double. If k fewer than the maximum number of digits are

delivered, the error bound is smaller by a factor of lif.

to nearest directed
format 0 bound in uln,n 6 bound in ulnrn

single 2-s2 0.23 2-31 0.47

double (7/ 2) X 2-64 0.019 5 X 2-63 0.054

3.2. Pathologies in Algorithm B

Steps B3-B6 of algorithm B are a loop whose implicit termination condi­

tion is 1(0'-l :-:;:; lxl < 1oN, where N is the number of significant digits to be

7.34

output. Does the loop actually terminate, and does it impact the rounding

analysis? From the discussion of the last section, we can assume that the

scaling operation in S2 is carried out exactly since its error is subsumed in

step B5.

First, suppose that the input xin is 1oD x (1 + -y) for some -y less than,

say, 1/2. Then the scaled value in step S2 is

X : loN-I X (1 +)') X (1 ± 6)

if LOGX was computed correctly in step B2. Can (1 + -y) x (1 ± 6) be less than

1 before :r is rounded to an integer? If so, the result of step B5 could fall

below 10N-I_ Positive -y is a relative measure of how much the single or dou­

ble input value xin exceeds 10D, while o is the relative error of the scale fac­

tor when computed to extended precision. So the scenario is possible only

for very small -y. A careful inspection of the powers of ten expressed in

binary reveals that the answer to the last question is NO for single and YES

for double. For example, 10303x(1 + 2-62) is representable in double; it may

be rounded by a scale factor from algorithm Q with 6 as large as 5x2-63 ,

depending on the rounding mode and the number of digits desired. Thus, the

test against 1oN-1 may be omitted for single conversions, but it is necessary

for double conversions, if only for rare circumstances. Note that the correc­

tive measure, forcing the magnitude up to 10N-1, shrinks an error which

already lies within the computed bound.

If LOGX was miscalculated as llog 1o(x)j-1 in step B2, which may happen

for)' less than about 0.06, the scaled value above would be

X = loN X {1 +)') X (1 ± 6) .

This case is benign if :x rounds down to less than 1oN; if it does not, LOGX is

corrected and the situation is that of the last paragraph.

7.35

Now suppose the input value xin is 1oD x (1 - ,'), for some ,' less than

1/2.]n this case LOGX is always correct in step B2. So the scaled value x in

step S2 is

X = loll X (1 - ,') X (1 ± 0) .

The scaled value x falls out of range if (1 - ,') x (1 + o) is at least 1. As

above, this may only happen for some rare double format conversions in

which,' is very tiny. 1f this occurs, LOGX is increased to llog 10(x)J+l and the

scaling is retried. The scaled value is then

1QN-l X (1 -1) X (1 ± o)

If the result of step B5 is less than 1oN- 1 it will be forced up to 1oN-1, satisfy­

ing the stated error bound.

We can conclude from all this that the branch back to step B3 will be

taken at most once, so long as LOGX is in error by no more than 1; when the

branch is taken, the loop is guaranteed to terminate after the second pass.

3.3. Analysis of Algorithm D

Like algorithm B, algorithm D is vulnerable to two rounding errors, one

in the evaluation of the scale factor in step Sl and another when the scaled

value is rounded to the destination precision in step D6. And algorithm D

exploits the same trick with the inexact exception flag and chopped arith­

metic to avoid an extraneous error in step S2.

The conversion of the significant digit string in step D4 is exact, once

any excess digits are truncated in step D2. Recording the presence of lost

nonzero digits in the flag LOST assures that the directed rounding modes will

be honored, but in no way takes the place of a very wide decimal buffer for

the digit string. For example, a P754 single format number w between one-

7.36

half and one has the value

w = 2-1 + b 2x2-2 + b3x2-3 + · · · + b 24x2-24

where the b; are either 0 or l. Since any such number can be closely

represented by a decimal fraction of 24 digits, it takes just 25 digits to

represent values half way between a pair of them. Truncating all but the first

9 digits in algorithm D dooms any prospect of perfect rounding to nearest.

The error analysis parallels that of algorithm B exactly. It is the error in

step S1 that contributes to any error beyond what is expected in the round­

ing in step D6. Let us use the P754 single format for illustration. Ideally,

algorithm D computes

x X 10SCALE = zt X (bob1 • • • b23•b24b25 • • •) ,

where the binary point is aligned so that, as in algorithm B, it is the fraction

part that is rounded off to produce the delivered result. When an error is

committed by algorithm P, what is computed is

x X loSCALE x(l ± o) = 2n X {bob 1 • • • b23•b24b25 • • •) X (1 ± o)

So the error, expressed in ulps2 is

{bob1. ' • b23•b24b25 • • ') X {±o) ,

leading to the bound {~4 x o ulp2). If we assume that, when rounding to

nearest, the scale factor will suffer at most one rounding error in extended

precision, then the extra error is bounded by

(224 X 2-32) ulp2 :::::; 0.0039 ulp2

The following table gives the error bounds for P754 conversions.

7.37

to nearest directed
format 6 bound in u\n,, c5 bound in uln,,

single 2-32 0.0039 2-31 0.0078

double (7/ 2) X 2-64 0.0017 5 X 2-e3 0.0049

These bounds hold for all applications of algorithm D, unlike those of algo­

rithm B, which were parameterized according to the number of .decimal

digits produced.

Algorithm D is subject to over /underflow problems, since the exponent

field of the decimal input may contain values far out of the range of the tar­

get format. It is only in step D2 that care must be taken to screen out

unreasonable exponent values. Since the range of the extended intermedi­

ates exceeds that of the target variable, it is possible to replace unreason­

able exponents with huge but reasonable ones and still achieve the correct

over /underflow response in steps S2 and D6.

3.4. Accuracy Revisited

Now that we have analyzed algorithms B and D we can determine

whether they actually satisfy the accuracy requirements set forth earlier in

the paper. Was it all worth it?

The sign symmetry and rounding direction properties are built right in

to both algorithms B and D, so they are easily seen to hold. The sensibility

property holds since, for numbers of reasonable size, algorithms P and Q

compute 10I SCALE I exactly, so conversions in both directions are correctly

rounded. The consistency property is a matter of system convention.

The recovery property is verified using formula C and the absolute error

bounds of algorithms B and D. Earlier we derived the inequality

7.38

[~]
~ x b ➔ d error in ulp 1o + d ➔ b error in ulp2 <

which gives a sufficient condition for the recovery property. Now we can fill

in the blanks. The ratio 10-P+t; 2-P is just under 1/6 and 9/10 for the P754

single and double formats, respectively. Using the values from the tables of

the last few sections, we can write

(1/ 6) x 0. 73 ulp10 + 0.5039 ulp2 ~ 0.63 ulp2 < 1 ulp2

for single, and

(9/ 10) X 0.519 ulp 10 + 0.5017 ulp2 ~ 0.97 ulp2 < 1 ulp2

for double. So binary to decimal to binary conversion is the identity map if

the decimal value is kept to full precision. And this of course guarantees the

separation of binary numbers by decimals, namely that for each binary x

there is some decimal X such that X ➔ x.

The monotonicity property is more subtle. At first sight, monotonicity

appears to be built into the algorithms, both of which compute

XX 10SCALE

in order to convert an input value x. What happens though is that nearby

values x may be scaled quite differently. In algorithm D, trailing zeros may

be appended to or stripped from the input significant digit string in order to

minimize the magnitude of SCALE. Here is an example of single format

conversions, using adjacent 9-digit numbers:

1.23499999e-10 ➔ 123499999. / 1018

1.23500000e-10 ➔ 1235. / 1013

The latter value is converted with just one rounding error since 1013 is exact;

but the former suffers an extra error in 1016. lf these decimal values hap­

pened to be nearly half-way between two single format numbers and round-

7.39

ing were to nearest, the extra error incurred in the former case might cause

it to round up while the latter value (correctly) rounds down - violating the

monotonicity rule.

To see that algorithm Dis monotonic for directed roundings it suffices to

consider the following case. Let X, Y be decimal numbers such that 0 < X <

Y and suppose X ➔ x, Y ➔ y in decimal to binary conversion with rounding

toward +00 • The direction property assures that X ~ x and Y ~ y. Can y <

x? In a picture:

x0
··•-◄-I ___ ...,..., ,----.1-------..1-

o l..___Y ___ J
Bad news for monotonicity - directed roundings.

This situation can arise only if the error in the conversion X ➔ x exceeds one

ulp2 by at least Y-X, which of course is at least one ulp10. From formula C

we see that, with 9 decimal digits, Y-X is at least 0.0084 ulp2 for single

numbers; and that with 17 decimal digits, Y-X is at least 0.05 ulp2 for double

numbers. However, the table in the discussion of algorithm D limits the

extra error to 0.007Bulp2 for single and 0.0049ulp2 for double, barely pre­

cluding the possibility that y < x.

Why is the bound so tight for single conversions? Recall that the 9-digit

decimal numbers are up to 120 times as dense as the P754 single numbers in

some critical intervals [211
, 1oE']. This means that, in the picture above, X

and Y may be very close to each other and to x. relative to the gap from x to

y. The extra error required to lose monotonicity is just a tiny fraction of the

input spacing ulp2.

7.40

Carrying this analysis over to the case of rounding to nearest is easy; it

is only the picture that changes. As before let X and Y be decimal numbers

such that O < X < Y, and let X ➔ x and Y ➔ y. Again, can y < x? No direc­

tion property applies here, but the bounds given after algorithm D assure

that the conversion error must be less than one ulpz. First, if x ~ X then y <

x implies an error in excess of one ulpz. Similarly for y ~ Y. So monotoni­

city is jeopardized only if we have the situation:

0

X V
I I I I

t ____ l J __ ;
Bad news for monotonicity - rounding to nearest.

In the worst case, X and Y are situated about the midpoint between x and y,

which must be adjacent binary numbers if the error is fall below an ulp2. The

only difference is that here we ensure that Y-X is less than half of the extra

error allowed; this way the two errors can never conspire lo cross the mid­

point between x and y. But all is well since the value 6 limiting the extra

error inherited from the scale factor is al least halved when rounding to

nearest.

Monotonicity makes sense in algorithm B only for a predetermined out­

put precision. For example a binary value just less than 1.5 will print as "1."

to one significant digit while any number of binary values just less will print

as "1.5" to two significant decimals. With this in mind, monotonicity is

indeed built into binary to decimal conversions. The only way for nearby

binary values to be scaled by different powers of ten is for them to straddle a

power of ten or to both be just greater than a power of ten. Since LOGX, the

estimated floor of the log 10 of the input value, is itself monotonic,

7.41

monotonicity is easily verified in the few cases that neighboring binary input

values are scaled by different powers of ten.

We have now succeeded in verifying that algorithms B and D satisfy the

accuracy properties requested in lieu of correct rounding.

Out of this flurry of bounds and inequalities come a few interesting rela­

tionships. The monotonicity and recovery properties seem to oppose each

other. When the decimal numbers are dense relative to the binary numbers,

as is the case with P754 single, the recovery property is trivially satisfied but

monotonicity is barely guaranteed. And when the decimal numbers are rela­

tively sparse, as with P754 double, just the opposite is the case. In some

sense, the monotonicity and recovery properties have the last word on the

accuracy of algorithms B and D since the other properties are built right in.

Are B and D overkill? Look back at the discussion of monotonicity in single

format conversions. The required bound was barely met there, saying that

not only are 32 significant bits required for intermediate calculations, but

that the factor 10\SCALE\ must be computed with just one rounding error.

Algorithm P showed this was possible. The situation for double format

conversions is quite different. Algorithm Q is allowed its expected comple­

ment of errors in producing 10\SCALEJ, and it can even be shown that only 63

significant bits are required for sufficiently accurate conversions.

3.5. Nit-picking

What follows is a collection of lesser details, included as much for their

curiosity as for an air of completeness they may lend. They were omitted

from the body of the text so as not to distract the patient reader.

We have seen that the 9-digil decimal numbers are up to 120 times as

dense as the P754 single format numbers. A concrete example shows how

7.42

the formats' relative spacings can be surprising. Consider the value

1 3 = 0. 555555555 • • • 16

which rounds to 0.555555816 in P754 single with its 24 significant bits. The

absolute rounding error is exactly ; ulpz. Now in the neighborhood of 1/3,

one ulp 10 is about io ulp2, so the error in rounding 1/3 to 24 bits

corresponds to over 10 ulps10. The nearest 9-digit decimal to the rounded

value of 1/3 turns out to be 0.33333334310. And the nearest 9-digit decimal

to the next smaller single format number happens to be 0.33333331310. Thus

there is no way to produce 0.33333333310 from a P754 single format value!

The apparent discrepancy in the second to the last digit is likely to be mis­

taken for a bug in the conversion routine, rather than a reflection of the rela­

tive density of decimal and binary numbers.

The number of decimal digits required to distinguish binary numbers of

a given precision was discussed in the context of correctly rounded results.

ls the separation requirement, from which the relation was derived,

compromised by the extra error 6 suffered in computing the scale factor?

The answer NO is guaranteed by the recovery property as verified in the last

section. This is the sense in which recovery is the computational analog of

separation.

Goldberg's paper [5] about the separation property is of historical

significance to P754 enthusiasts. Not only is it one of the first technical argu­

ments for an implicit leading bit in a binary floating-point format, but it is

the first known discussion of how to encode denormalized numbers [4] and

zero by reserving the bottommost exponent.

7.43

It is a simple exercise to reverse the arguments about the Separation

Requirement and deduce, as Goldberg did, that 2-p+l < 10-P is a sufficient

condition to guarantee that p-bit binary numbers will distinguish ?-digit

decimal numbers. The P754 single format numbers, with 24 significant bits,

distinguish 6-digit decimal numbers, and the P754 double numbers distin­

guish 16-digit numbers.

In the discussion of the separation requirement, we deduced the chain

of inferences

10-P+I < 2-p ➔ Separation Requirement ➔ Distinction .

but noted that the three are not generally equivalent. ln some cases the ine­

quality is stronger than absolutely necessary. The Separation Requirement

is equivalent to the inequality

= < 1

Recall that the latter ratio varies between 1/2 and 10. The inequality derived

before simply assured that 10-P 12-p was less than 1/10. However, it is a

fact of number theory {the existence of (P-1)/p approximating log10(2)

arbitrarily closely from above) that there exist pairs P and p such that

10-P / 2-P is just slightly above 1/10. Then, if we simply restrict the range of

E and e so that 10E+1; 2(i +I stays far enough below 10, then the Separation

Requirement will be met by a pair P and p just barely failing the inequality

10-P+1<2--P. Knuth presents this as an exercise relating the Separation

Requirement and the Distinction Property [6, p. 312 exercise 18, with solu­

tion].

For conversions between two floating-point number systems, the Separa­

tion Requirement and distinction property are equivalent, although this fact

is not of great importance for the purposes of this paper.

7.44

Care was taken in algorithm L to ensure a lower bound on llog 10(x)J.

Why? The issue is looping in algorithm B. If L were allowed to be too big then

corrective step BB would have to branch back to step B3 whether the scaled

value was too big or too small. lt is possible that an input value very near to

a power of ten could round in such a way as to fail both tests and loop

indefinitely. Getting the lower bound on LOGX is much easier than defending

the loop criteria against further pathologies.

This paper discusses conversions from the P754 single and double for­

mats backed up by an extended format. It should be obvious that single for­

mat conversions backed up by the double-extended format easily satisfy the

accuracy requirements. But what about extended conversions? Algorithms

B and D may be used to convert to and from an extended format, but there

may be a significant loss of accuracy due to lack of extra precision beyond

double-extended; and without extra exponent range, numbers at the

extremes of the double-extended range will be converted incorrectly because

of intermediate overflows and underflows. In order to cover the full r~ge of

extended numbers, the table in algorithm Q must be extended. The following

are reasonable table values:

o.C6B0A096A95202BD 16 x 21369 Rl 10412 x (1+2-66) ,

0.9A35B24641D0595316 x 22738 R1 10824 x (1+2-65)

0.B9C94B7FABD7651516 x z5475 ~ 101646 x (1 +2--65) , and

0.86D4BD6626C27EEC16 x 210950 Rl 1D3296 x (1+2--65)

Alternative values may be computed with the algorithm providing correctly­

rounded conversions, supplied in the Appendix. To find the appropriate

bound on the rounding error simply compute each desired 1ot to a modest

number of extra significant bits.

7.45

In the discussion of pathologies in algorithm B, we dismissed the need

for the second test in step B6 for single format conversions. However, if

extended values are to be converted using algorithm B the second test in

step B6 is essential. There are potentially many more representable values

10Ex(1+1) which will scale to 1oN-1x(l-l:) when N digits are reqwred.

The rounded table values 1027 and 1040 in algorithm P just barely cover

the range of P754 single numbers. If in step B2 of algorithm B, LOGX of a

tiny number were computed as -46 instead of the correct -45, then SCALE

in step B3 could be 9-(-46)-1 = 54, beyond the range of algorithm P. For­

tunately this does not happen; all of the denormalized numbers whose

correct LOGX is -45 are sufficiently far above 10-45 that algorithm L com­

putes their LOGX correctly as -45.

Although the rounded value 1040 is available to algorithm P directly from

the table, the value is deliberately computed from P27XP 1s in order to cause

a rounding error. The rounding error suffered in the multiply causes the

value 1040 to correctly honor the rounding mode in effect.

Step B7 of algorithm B calls for the conversion of an integer value in the

extended format to a decimal string. Here is an efficient way to accomplish

this for single format conversions. First, express the extended value as a

true 32-bit binary integer, in this case

00b29b2ab21 • • • b 1bo• ,

since the value is bounded by 10g. Then divide this by 10g producing the

chopped binary fraction

0°b-1b-2b-s • • • b-s1b-s2 .

Adjust this value upward by one unit in the 32nd bit, producing a value

slightly greater than the true quotient. In a 9-step loop, repeatedly multiply

7.45

the binary fraction by ten (two shifts and an add) stripping ofl successive

BCD digits as they appear left of the binary point. At the end of the loop, dis­

card the remaining fraction. The loop operations are exact; the o71ly error

arises from chopping the quotient and adjusting upward, that is,

0 < 2-32 x (1 - O•b-33b_34b-35 • • ·) < 2-32

Its impact on the final digit string is bounded by 2-32x 109 < 1, so the com­

puted digits are correct.

For the purposes of exception handling, binary-decimal conversions are

treated as atomic operations in P754. Algorithms B and D are presented as

programs based upon a few P754 arithmetic operations. Algorithms B and D

always signal the inexact exception when their results are inexact; they pes­

simistically signal inexact in the rare circumstances when multiple rounding

errors cancel and the result is in fact exact. Algorithm D may also suffer

overflow and underflow. It is set up to encounter any range exception in the

format conversion in step D5. If values at the limits of the range of extended

are converted there is no way to represent scale factors guaranteed to gen­

erate the appropriate error in step D6.

Algorithm B can suffer a format overflow error if the destination string

cannot accommodate the converted value. For example, suppose binary x is

converted to the B-digit decimal value -1.234567Bx10-250
, but is destined for

a string of at most 14 characters. The string

"-l.234567BE-250"

is one character too long. More severe cases are possible. The problem is

complicated by the possibility that a massive amount of printed output may

be ruined if just one field, and hence one line, is allowed to overflow by a

character. There are several remedies. The value may be converted again,

7.47

but to fewer significant digits. Or if the value must overflow the field, the

printer driver program may allow the offending line to spill over, and then

skip to the next page; in this way the output is intact but for the few pairs of

partial pages where a line overflowed. Historically, a reproof such as

"???. ??" has been printed when all else failed.

It was shown under Accuracy Revisited that conversion from 17-digit

decimal values to the P754 double format using algorithm D would be mono­

tonic. The same argument guarantees monotonicity for conversion from 18-

digit values, but it fails for 19 digits. Some systems may allow 19-digit values

to be input, since the 64-significant-bit double-extended format will accom­

modate any 19-digit value exactly, but these conversions will not in general

be monotonic.

P754 requires that the conversion of input values in a certain range be

perfectly rounded; that is, the power of ten used for scaling must be com­

puted exactly. Is this requirement actually met? Step D3 of algorithm D

preconditions the input to decimal to binary conversion specifically to meet

P754, so the scale factor is always the correct one. However, the situation

for binary to decimal conversion is less obvious, since the scale factor

depends on LOGX. which may be too low by one. For instance, if nine decimal

digits were desired, a single format input value just larger than 10-s would

ideally be scaled by the exact value 1013 and rounded to an integer to deter­

mine the significant digit string:

1•00000xxx · · · X 10-s i::; 100000yyy• X 10-is

However, if LOGX were miscalculated as -6 then the scale factor would be

1014, known to be wrong by a full half ulp in the single-extended format. If

the error in the scale factor 1014 caused the significant digit field to be com-

7.4B

puled as

999999zzz• x 10-14

then algorithm B would produce an imperfectly rounded result - in violation

of the standard. So the question is, when can a miscalculated LOGX lead to

an incorrectly rounded output value, rather than a branch back in step B6 of

algorithm B? As we saw in the discussion of pathologies in algorithm B, the

answer is NEVER for single format conversions and RARELY for double

conversions; indeed, the situation can arise in double only for values far out­

side the range in which LOGX can make the difference between perfect and

imperfect conversion. So there is no hazard after all.

What is the point of all this? On the one hand we have the simple but

usually uneconomical correctly rounded conversions. On the other we have

reasonably accurate, yet economical conversions whose economy is bought

with a tedious verification that they are "accurate enough". These conver­

sions are so nearly correctly rounded that, although different implementa­

tions may produce results differing in just one ulp, those differences - and

the deviation from correct rounding - will be almost imperceptible to users.

Acknowledgments

The author gratefully acknowledges the various sources and means of

support throughout the protracted development of this chapter. W. Kahan

has made substantial contributions to its content and form. Several col­

leagues at Apple Computer, Hewlett-Packard, and Motorola patiently worked

through earlier drafts. Much of the work on the algorithms was undertaken

while the author worked part-time at Zilog, Inc., and later at Apple Com­

puter. Occasional financial support was received from an 1BM Fellowship and

the U. S. Department of Energy.

7.49

References

[1] IEEE Subcommittee 754, "A Proposed Standard for Binary Floating­

Point Arithmetic", Draft 10.0, IEEE Subcommittee 754 working document

82-8.6.

[2] Apple Computer, Apple III Pascal Programmer's Manual, Product

#A3L0003, 1981, chapter 14.

[3] J. T. Coonen, "An Implementation Guide to a Proposed Standard for

:F1oating-Point Arithmetic," Computer, 13, 1, January 1980, pp. 6B-79.

[4] J. T. Coonen, "Underflow and the Denormalized Numbers," Com­

puter, 14, 3, March 1981, pp. 75-87.

[5] I. B. Goldberg, "27 Bits are Not Enough for 8-Digit Accuracy," CACM,

10, 2, February 1967, pp. 105-106.

[6] D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison­

Wesley, 1981.

[7] D. W. Matula, "In-and-Out Conversions," CACM, 11, 1, January 1968,

pp. 47-50.

[BJ E.W. Phillips, "Binary Calculation," excerpted in The Origins of Digi­

tal Computers, 2nd Edition, B. Randell ed., Springer-Verlag, 1975, p. 293.

[9] R. K. Richards, Digital Design, Addison-Wesley, 1981.

[10] Zilog, Inc., ZBOOO CPU Technical Manual, Document 00-2010-C,

1981.

[11] D. Zuras, Hewlett-Packard Corporation, private communication.

7.50

Suggested number Grammar

E or l' 1-..------' int•~r

+ or -

fixed number

() integer)>--_...--cg~------•

infinity ~

nen

Figure 1.

Eight State Decoder

+ or -

®

0: Skip leeding white spece: blenks, tebs, etc.
1: First non-white cherecter - is it e sign?

2: Sign found - number/NAN/oo must follow.
3: F1rst stgn1f1cent d1g1t found before dectmel po1nt.

4: Decimal point found before first signHicent digit.

5: Seeking more sigificent fraction digits.

6: Found E or e - stert of exponent.

7: Found exponent sign - more exponent digits?

Figure 2.

7.51

CHAPTER 8

Radix-Independent Description of the Proposed Standard

1. Introduction

The intent of proposed IEEE standard P754 for binary floating-point

arithmetic is to regulate the numerical programming environment. Toe

story really begins with implementations of high-level languages, whose

semantics must be carefully defined with regard to the overall struc­

ture of programs and the control of side-effects. But this chapter

picks up in the middle, at the level of a single arithmetic operation

like

Z := XX y;

Simple as it may appear, this operation involves many subtleties if x,

y, and z are allowed to have different number formats, or if an excep­

tion like overflow should arise in the computation of the product xxy.

Since steps are taken in P754 to handle every exception, such as xxy

overflowing to 00 , further error possibilities are introduced, such as 0X 00

in a subsequent product.

The system described here conforms to draft 10.0 of IEEE proposal

P754 and is intended to be compatible with the forthcoming radix-free

proposal P854. The first version of this implementation guide, based

on draft 8.0 of P754, was presented at a tutorial on the proposed stan­

dard in May 1981.

The paradigm for the operation above is:

B.l

Compute the product x xy as though with unbounded range

and precision, and pack the result in z.

8.2

But this very natural statement has many ramifications. For example,

how accurate is the actual implementation of "unbounded precision"

when the ideal result must be packed into a destination with limited

range and precision? And what of the error conditions overflow and

occurrence of invalid operands? In fact, the computation of the result

z is not so much an atomic operation as it is a process that may be

viewed as:

(1) Unpack x.

(2) Unpack y.

(3) Compute the ideal result (as though with unbounded ...).

(4) Trim the ideal result to within z's format limitations.

(5) Pack the result into z.

This process is expressed precisely in the Control Flow section. The

various steps of the arithmetic operation are written as subroutines.

The heart of the operation, (3) above, is discussed in terms of

operands in a so-called canonical format. Thus they are radix and for­

mat free, while following the rules laid out in proposal P754.

The unpack/pack operations are of course format specific. Three

sections of this document describe these operations for the binary for­

mats specified in P754.

Though this is ostensibly an implementation guide, it is not

intended to translate directly to an implementation. Efficiency and

compactness have been sacrificed throughout to obtain the greatest

modularity. For example, each individual arithmetic operation handles

8.3

input NANs in the opening switch statement; a more effective imple­

mentation filters NANs just once, in a preamble to the operations.

Also, each step of the trim_result() sequence, checking for underflow,

rounding, and checking for overflow, is coded independently, necessitat­

ing redundant tests for special short circuit cases. This modularity

permits the reader to study individual sections of the code without

having to know the state of the system as a whole. The ultimate

object is twofold: to convey an idea of the data and control flow

through an arithmetic operation, and to prescribe the result of any

operation.

This description is written in a type of pseudo-code based on the

programming language C. Our pseudo-C has a rich set of data types

and a high tolerance for abuses of types. For example, a significant

digit field will in some contexts be viewed as an array of digits while

in others it will be given its mathematical interpretation as a value

whose radix point lies after the leading significant digit. Most of the

syntactic short-cuts for which C is notorious (for example, "x++;"

means the same as "x = x + 1;"} have been carefully avoided.

Readers unfamiliar with C should be able to follow the control flow

without getting lost in the language constructs, since the language is

quite terse and only the simplest control structures are used here.

Aficianodos will note several deviations from conventional C. Usu­

ally the meaning will be clear from the context rather than from strict

C semantics.

(1) Subsets of arrays are used. For example, if fraction[] is defined

as an array of digits {decimal, binary, or otherwise), the expres-

8.4

sion "fraction[l ... 23]" denotes the first 23 digits taken as a

group. The expression "fraction" by itself denotes the entire

array.

(2) When a set of elements of a structure are to be taken as a unit.,

notation like "operand.{msd, fraction)" is used.

(3) The passing of parameters 1s quite cavalier. For example, the

expression "normalize{op)" is used instead of "normalize(&op)"

when it intended that the caller's operand be modified. Strictly

speaking, op's address, "&op", should be passed.

(4) In each use of the C switch/case construct, the cases are mutually

exclusive, so the break instruction is omitted.

(5) C indexes arrays from 0, that is the N elements of an array x are

x[0], x[l] , x[N-1]. That notation is clumsy for the present dis­

cussion, so the convention x[l], ... , x[N] is used instead. The text

is very explicit about this when it matters.

(6) Most of the variables used in the pseudo-code are global, that is

they are known to all procedures. For definiteness, the globals

used in any routine are declared extern as in C.

This chapter makes many detailed references to the P754 docu­

ment, in an attempt to illuminate what may be stated very tersely

there. Each reference is marked by a section number (such as §4,

which introduces the notion of rounding).

Once again, this is not a complete "implementation" of P754.

Aside from lacking any detailed mention of the programming environ­

ment, this discussion omits several operations. Binary-decimal conver-

sions are treated extensively in chapter 7. And floating-integer

8.5

conversions are left out because of their highly system-dependent

nature; they differ from the floating-point round to integer instruc':.ion

only in the exceptions that arise from attempting to store huge or

nonnumeric values in an integer format with no reserved operands

(§5.4 and §7.1.7 of P754 discuss these issues).

The proposed standard entails a small number of implementation

options. The reader's attention will be called to those situations where

a variety of responses are possible.

2. Control ::now

The following procedure effects the operation z = x # y. The

dyadic operations add, subtract, multiply, divide, and remainder pro­

duce a floating-point result. Comparison produces a condition code in

this presentation. P754 also permits comparisons to be effected by

high-level language predicates {§5. 7); see chapter 6 for a discussion of

this style of comparison. The monadic operations round to integer,

square root, and the various format conversions have an obvious analog

of the form z = # x .

For simplicity, the storage operands x, y, and z are declared

generically, that is without reference to their storage foramts. In fact,

the types may differ. The only constraint of proposal P754 is that the

z 's format be no narrower than the wider of the x and y formats,

except for the format conversion operations (§5.1 - 5.3).

Statements of the form z = x, z = -x, or z = Ix I in which z

and x have the same format are non-arithmetic since no conversion is

required. They may be effected by simple translation of the digits,

perhaps with a sign change as in absolute value or negation, or they

8.6

may be implemented arithmetically (§5, Appendix). Actual format

conversions follow the form of the other monadic operations, except

that the compute step is trivial - all the work is in the trimming and

packing.

arithmetic_operation{z, x, y) arithme tic-1)peration

/$
• The types of z, x, and y may differ, as explained
• in the text above.
*/

storage_types

extern canonical

set_globals{);

unpack(opl, x);
unpack(op2, y);

/$

z, x, y;

opl, op2; /* unpacked inputs 1/

/* collect mode information 1/

/* opl <-- x, unpacked 1/
/* opZ <--y, unpacked 1/

• The following routine is generic -- add{), subtract(),
• multiply{), divide{), ... should be called as appropriate.
*/

compute_result(); /* set result <-- opl # opZ 1/

/$
• The subtlest phase of any operation is trimming the
• result according to the limitations of the destination z.
• This is distinguished from the actual packing, to
• preserve as much of the format-free nature of the
• trimming. Note that the comparison operation will
• bypass the next two steps, trim and pack.
*/

trim_result();

pack_result(z);

side_ effects();

/* just a bit-mapping operation 1/

/* collect and handle error flags */

8.7

3. Globals

Underlying the basic arithmetic process is a group of global vari­

ables, defined as custom C-like structures. They are listed here with a

brief summary of their purpose. Also included are the initialization

routine set_£lobals() and the clean-up routine side~ffects() that do

basic housekeeping operations on the globals.

Canonical format operands opl and op2 hold the unpacked input

operand(s), and result holds the computed "infinite precision" value.

canonical opl, op2, result;

The mode structure determines the rounding precision and direc­

tion. Since this variable has a life-span of just one operation, it must

be fetched from the user's environment at the start of each operation.

The definition of "mode" in §2 describes the behavior of the mode as

part of the user's environment.

mode_str mode;

The error structure logs exceptions for each operation separately.

At the end of the operation, the error structure is used to update the

user's "status flags" {see §2). The trap structure determines whether

the user wants a software trap when the corresponding exceptions

8.8

arise. Like the mode variable, the trap structure is loaded from the

user's environment at the start of each operation.

exc_str error, trap;

The dst structure contains data about the destination format, for

use by the trim() routines especially.

dst_str dst;

The initialization routine collects state information -- from control

registers of the arithmetic device, from the user's "process data area",

or possibly from the instruction itself; thus the fetch{) operation is is

highly implementation-dependent.

set_globals() seL.globals
I

extern mode str
extern exc str
extern dst_=-str

/$

mode;
error, trap;
dst;

• Determine rounding precision and direction.
• If the operation is remainder, ignore any precision
• control specificalion -- use the range and precision
• of the destination format {section 5.1).
*/

fetch{mode);

/" Clear all flags {for this operation} to FALSE. */
clear(error);

/" Determine which exceptions the user 'Will trap on. */
fetch(trap);

/"
• Set the range and precision of the destination,
• subject to the precision control mode.
*/

set(dst);

8.9

The termination routine stores the error flags back where the user

can interrogate them. (Note that the flags are never cleared by arith­

metic, but only at the user's specific request.) Also, if a software trap

is to occur the mechanism is initiated here.

side_ effects()
l

ertern exc_str error, trap;

/" Lo[Jically OR error into the 'USer's flags. 1/
save(error);

/"
• Check whether any of the errors that arose are
• to stimulate a user trap.
*/

if (error & trap)
l

/" System-dependent trap interface. */

side-Effects

8.10

4. User state

User-determined state variables are kept in a defined structure

called mode. The particular encodings used here are representative,

not mandatory.

typedef struct mode_str
I

bit
bit

l mode_str;

round[2];
preci.sion[2];

These are the encoded values of the rounding directions, kept in

the round[] element of mode3lr. All four rounding modes must be

implemented (§4).

fl define
II define
II define
define

TO _NEAREST O
TOWARD O 1
TOWARD-PLUS 2
TOWARD=MlNUS 3

/* def a ult */

When available, rounding precision control permits a user lo round

results to a narrower precision than that of the destination format.

This is intended to help users of different systems lo overcome archi­

tectural differences in producing matching results. For example, sup­

pose that a program is to be run on identical single format data sets

on two different systems. The first system does all calculations in sin­

gle, while the other delivers all intermediate results to the double-

8.11

extended format. If the program sets the precision control to single

on the second system, then, in the absence of overflow or underflow in

the first system's calculations, both will obtain identical results.

§4.3 and footnote 4 specify which systems must have precision con­

trol. However, it is up to the implementor to decide whether precision

control implies range control too, that is, whether the exponent is

coerced to within the bounds corresponding to the precision. 1f both

precision and range are controlled, then identical results can be

obtained regardless of the presence of extended intermediates (because

they are coerced as though they are single). This option is a tradeoff

in P754. Although it is desirable to achieve identical results (despite

overflow and underflow) when the same calculation is performed on dif­

ferent systems, the cost of range coercion may be very high.

Note that precision control is intimately tied to the complicated

issues of expression evaluation in high-level languages. But that is

beyond the scope of this guide.

define
II define
II define

EXTENDED
SINGLE
DOUBLE

0
1
2

/* default */

Corresponding to each of the 5 elements of exc_i>tr is a sticky

error flag and a trap-enable flag. Since support of user traps is

optional, the trap structure is optional (§B).

typedef struct exc_str
I

I exc_str;

boolean
boolean
boolean
boolean
boolean

5. Canonical format

inexact;
invalid;
div_zero;
oflow;
uflow;

8.12

This canonical format is described in radix-free form following the

spirit of P754. Only this format is referred to below in the discussion

of the operations. This description of operands as data structures of

bits, digits, integers, etc. permits a precise specification of the arith­

metic in terms of primitive operations such as shift and increment.

The canonical numeric data type is defined as:

typedef struct
l

int
bit
int
digit
digit
digit

I canonical;

tag;
sign;
exponent;
c_out;
msd;
fraction[CANON_FRACTION];

The tag is a small integer used to identify special operands not

having the usual form

8.13

(-1)5 X RADJXE X X.XXXXXXX.

This greatly simplifies the discussion by distinguishing the special

values from numerical representations.

II define
define
f define
II define·
fl define

ZERO_TAG
INF TAG
S N-AN TAG
Q=NAN=TAG
NUM_TAG

0
1
2
3
4

/* 0*/
/* infinily 1/
/* signaling NAN */
/* quiet NAN */
/* finite nonzero number 1/

The sign is just one bit of information, 0 for + and 1 for -.

The canonical exponent, is presumed to accommodate all result

exponents from operations on supported formats. Thus neither over­

flow nor underflow will arise in canonical numbers until they are

trimmed to within the constraints of the destination format. Though

the exponent is described as type integer above, care must be taken

to provide sufficient range. For example, 17 (two extra bits) of work­

ing range are required of a P754 implementation supporting the

double-extended format, or else some extra tests are required in the

overflow and underflow handlers. Chapter 9 deals with this in detail.

No assumption is made about the radix of the exponent as an integer.

For example, it may be desirable to implement decimal floating-point

arithmetic with a binary exponent.

The discussion of the operations is independent of the radix of the

underlying implementation. Although this discussion applies lo arith­

metic with any positive, integer radix, the interesting cases are

expected to be 2 and 10. The parameters are set for binary arith-

8.14

metic here.

II define RADIX 2 ~ or 1 0 or 8 or 16 . .. o/
define HALF RADIX 1 /* for use in rounding */
I define RADIX - 1 1 /* radix minus 1 o/

typedef digit bit;

The canonical format has an extra {second) digit, c-9ut, to the left

of the radix point to catch carries out of the msd {most significant

digit). C_out is named explicitly only to simplify the description. Typ­

ically, an implementor will provide for a carry-out only in those few

places where one can arise.

The canonical format carries three extra low-order fraction digits

so that results can be rounded as in §5 of P754. These digits are

commonly known as guard, round, and sticky:

Guard is next digit beyond the least significant digit of the widest

storage format supported.

Round is the next digit beyond guard. It is crucial to the operations

addition, subtraction, and division which may entail a left shift

before rounding.

Sticky conveys just one bit of information (though it will normally be

an entire digit). lt is nonzero precisely when the associated infin­

ite precision number has nonzero digits to the right of the round

digit.

8.15

The working precision as specified here is suitable for a P754

implementation supporting the double-extended format.

I define CANON_FRACTION 66

The "infinite precision" result is trimmed to the destination format

according to a set of parameters kept in the special purpose struc­

ture:

typedef struct
l

int
int
int

othresh;
uthresh;
biasadjust;

/* overflow threshold */
/* underflow threshold 1/
/* exponent fix for traps 1/

/* index of least significant digit infraction[]*/
int lsd;

I dst_str;

6. P754 Formats

The following two structures define data types corresponding to the

single and double formats specified in §3.2 and 3.3 of P754. Each for­

mat may be thought of as a trio of bit strings, denoted as arrays of

bits below. As bit strings:

The sign bit is O for +, 1 for -.

The exponent is an unsigned integer, biased by 127 for single, and

1023 for double.

8.16

The fraction lies just to the right of the binary point of the

unpacked number.

The ordering of the bits, from most to least significant, is sug­

gested by figures 1 and 2 in §3, but P754 does not specify how they

are to be ordered in byte or word groupings.

typedef struct
l

bit
bit
bit

J single_binary;

typedef struct
l

bit
bit
bit

J double_binary;

sign;
exponent[B];
fraction[23];

sign;
exponent[l l];
fraction[52];

The extended formats are optional in implementations of P754. A

typical system will support {only) the extended format corresponding to

the wider basic {single or double) format supported.

Unlike the basic formats, the extended types have range and pre­

cision subject only to minimum bounds, rather than specifications down

to the bit. The most significant bit may be implicit or explicit at the

implementor's option. (This may be inferred from §3.3 and the width

parameters in table l.)

define
define

S_EXT_RANGE
S_EXT _FRACTION

typedef struct
l

bit sign;
bit exponent[S _EXT _RANGE];
bit msb;

11
31

bit fraction[S_EXT_FRACTION];
J single_extended_binary;

define D_EXT_RANGE
define D _EXT _FRACTION

typedef struct
l

bit sign;
bit exponent[D _EXT _RANGE];
bit msb;

15
63

bit fraction[D _EXT _FRACTION];
J double_extended_binary;

7. Unpack Binary Formats

7.1. P754 Single

B.17

Unpack a P754 single format number s to the canonical format.

single_unpack(w, s)

/$ w <-- s, unpacked. */
canonical
sing le _binary

extern. mode _str

single-1.lnpack

w· .
s;

mode;

/$Assumes is a normal number; then check special cases. */
w.tag = NUM_TAG;
w.sign = s.sign;

8.18

w.exponent = s.exponent - 127;
w.c_out = O;
w.msd = 1;

/• 127 is the exponent bias 1/

~ presumed normalized ... 1/

/$ Fraction of sis left-justified in w, and zero padded. •/
w.fraction[l ... 23] = s.fraction;
w.fraction[24 ... CANON_FRACTION] = O;

if (s.exponent == 0)
l

/* Zero or denormalized. */
if (s.fraction == 0)

else
l

w.tag = ZERO_TAG;

w.msd = O; ~ Denormalized. 1/
w.ex.ponent = w.exponent + 1;
normalize(w);

else if (s.exponent == 255)
l

~ Infinity or NAN. */
if (s.fraction == 0)

else
w.tag = INF _TAG; ~ infinity 1/

~
• Distinction between signaling and
• quiet NANs is system-dependent.
• Leading FRACTION bit is used here.
1/

if (s.fraction[l] == 1)
w.tag = Q_NAN_TAG;

else
w.tag = S_NAN_TAG;

'7.2. P754 Double

Unpack a P754 double format number to the canonical format.

Th.is is precisely analogous to the single unpack routine above.

B.19

double_unpack(w, d) double--11,npack

/" w <-- d, unpacked. 3/
canonical w;
double_binary d;

extern mode_str mode;

/" Assume dis a normal number; then check special cases. "'/
w.tag = NUM_TAG;
w.sign = d.sign;
w.exponent = d.exponent - 1023; /* 10Z3is the exponent bias 3/
w.c_out = O;
w.msd = 1; /* presumed normalized ... 3/

/" Fraction of dis left-justified w and zero padded. 3/
w.fraction[l ... 52] = d.fraction;
w.fraction[53 ... CANON_FRACTION] = O;

if (d.exponent == 0)
l

/* Zero or denormalized. */
if (d.fraction == 0)

else
l

w. tag = ZERO _TAG; /*Zero*/

w.msd = 0; /" denormalized 3/
w.exponent = w.exponent + 1;
normalize{w);

else if (d.exponent == 2047)
l

/* Infinity or NAN. */
if (d.fraction == 0)

else
w.tag = INF _TAG;

if (d.fraction[l] == 1)
w.tag = Q_NAN_TAG;

else
w.tag = S_NAN_TAG;

8.20

7.3. P754 Single-Extended

There are many plausible implementations of the extended formats

that meet the range and precision specifications of P754. For exam­

ple, rather than having reserved exponent values as in the single and

double formats, the extended formats may use a tag field to distin­

guish operands like zero, infinity, and NAN (the canonical format of

this document uses such a field.) Also, there are two possible interpre­

tations of the smallest possible exponent, as explained in chapters 2

and 5.

The extended formats discussed here use a convenient BO-bit for­

mat. The exponent is an unsigned, biased integer as in the single and

double formats. The exponent value 111...11 is reserved for INF and

NAN, in which case the msd is irrelevant. The exponent value 000 ... 00

has only one special case, namely zero, when all significant digits are

0. For simplicity, all finite extended values are normalized when they

are unpacked into the canonical format. However, P754 does not

require this normalization for unnormalized numbers above bottom of

the extended range, so long as the system does not produce such

unnormalized results (see §3.3).

single_extended_unpack(w, se) single-2xtended._jj,npack

/$ w <-- se, unpricked. */
canonical w;
single_extended_binary se;

extern mode str mode;

/4 Assume se is a noT7TUJ.l number. 1/
w. tag = se. tag;
w.sign = se.sign;

8.21

w.exponent = se.exponent - 1023; /4 bias= 1023. •/
w.c_out = 0;
w.msd = e.msb; /4 Copy exphcit leading digit.

/4 w's fraction is left-justified and zero padded. 1/
w.fraction[l ... 31] = se.fraction;
w.fraction[32 ... CANON_FRACTION] = O;

if (se.(exponent, msd, fraction)== 0)
w.tag = ZERO_TAG; /• Zero. 1/

else if {se.exponent == 2047)
I

i
else

/4 Infinity or NAN -- msd irrelevant. 1/
if {se.fraction == 0)

else
w.tag = INF _TAG; /• Infinity. •/

/4
• Distinction between signaling and
• quiet NANs is system-dependent.
"' Leading FRACTION bit is used here.
*/

if {se.fraction[l] == 1)
w.tag = Q_NAN_TAG;

else
w.tag = S_NAN_TAG;

/4 All nonzero operands are prenorrnalize d. •/
normalize{w);

7.4. P754 Double-Extended

This routine is analogous to the single-extended unpack above.

8.22

double_extended_unpack(w, de) double-Exlended...1lnpack

/* w <-- se, unpacked. 3/
canonical w;
double_extended_binary de;

extern mode _str mode;

/* Assume de is a normal number. 3/
w.tag = NUM_TAG;
w.sign = de.sign;
w.exponent = de.exponent - 16383; /*bias= 16383 */
w.c_out = O;
w.msd = de.msb; /* Copy lead digit. 3/

/* w's fraction is left-justified and zero padded. 3/
w.fraction[l ... 63] = de.fraction;
w.fraction[64 ... CAN0N_FRACTI0N] = 0;

if {de.{exponent, msd, fraction)== 0)
w.tag = ZER0_TAG; /* Zero. *I

else if (de.exponent == 32767)
l

else

/* Infinity or NAN. */
if {de.fraction== 0)

else
w.tag = INF _TAG; /* Infinity. 3/

/*
• l)istinction between signaling and
• quiet NANs is system-dependent.
* Leading FRACTION bit is used here.
3/

if {de.fraction[1] == 1)
w.tag = Q_NAN_TAG;

else
w.tag = S_NAN_TAG;

/* All nonzero operands are prenormalized. */
normalize(w);

8.23

8. Pack Binary Formats

After the "infinitely precise" intermediate result is trimmed to the

precision and range of the destination format (or perhaps somewhat

narrower, due to precision control), the result is be packed from the

canonical format into the storage format by biasing the exponent and

copying the sign and significant bits.

8.1. Pack P754 Single

single_pack_result(s)
single _binary

extern canonical

s.sign = result.sign;

switch (result.tag)
l
case NUM_TAG:

sing le_:p ac k_:re sult
s·

'

result;

/$ Regardless of special cases. */

s.exponent = result.exponent+ 127;

/* Denormalized numbers have a bias of 128 */
if (result.msd == 0)

s.exponent = s.exponent - 1;
s.fraction = result.fraction[l ... 23];

case ZERO_ TAG:
s. exponent = 0;
s.fraction = 0;

case INF _TAG:
s.exponent = 255;
s.fraction = O;

case S NAN TAG:
case Q=NAN=TAG:

s.exponent = 255;
s.fraction = result.fraction[l ... 23];

8.24

8.2. Pack P754 Double

double _pack_result(d)
double_binary

double_pack_:result
d;

extern canonical result;

d.sign = result.sign;

switch (result.tag)
l

case NUM TAG:
d.;xponent =result.exponent+ 1023;

/* Denormalized numbers have a bias of 1022. */
if (result.msd == 0)

d.exponent = d.ex;:>0nent - 1;
d.fraction = result.fractionLl ... 52];

case ZERO_TAG:
d.exponent = 0;
d.fraction = 0;

case INF _TAG:
d.exponent = 2047;
d.fraction = 0;

case Q_NAN_TAG:
case S_NAN_TAG:

d.exponent = 204 7;
d.fraction = result.fraction[l ... 52];

8.25

8.3. Pack P754 Single-Extended

single_extended_pack_result{se) single-Exiended...:pack_:result
single_extended_binary se;

extern canonical

se.sign = result.sign;

result;

switch {result.tag)
I
case NUM_TAG:

se.exponent =result.exponent+ 1023;
se.msb = result.msd;
se.fraction = result.fraction[l ... 31];

case ZERO_ TAG:
Se.exponent= 0;
se.msb = 0;
se.fraction = O;

case lNF _TAG:
se.exponent = 204 7;
se.msb = O;
se.fraction = O;

case Q_NAN_TAG:
case S_NAN_TAG:

se.exponent = 204 7;
se.msb = result.msd;
se.fraction = result.fraction[l ... 31];

8.26

8.4. Pack P754 Double-Extended

double_extended_pack_result(de) double-2xtended...pack_:result
double_extended_binary de;

extern canonical

de.sign= result.sign;

result;

switch (result.tag)
l
case NUM_TAG:

de.exponent= result.exponent+ 16383;
de.msb = result.msd;
de.fraction= result.fraction[l ... 63];

case ZERO_ TAG:
de. exponent = 0;
de.msb = 0;
de.fraction = 0;

case INF _TAG:
de.exponent= 32767;
de.msb = O;
de.fraction = O;

case Q_NAN_TAG:
case S_NAN_TAG:

de.exponent= 32767;
de.msb = result.msd;
de.fraction= result.fraction[l ... 63];

9. Trimming the Result

This basic trim sequence applies to all operations that produce

floating-point results. For simplicity, it is written as though every

result would be trimmed, though in an actual implementation a trim

sequence might be set up for each operation, and then applied only to

finite, nonzero results.

trim_result()
I

under _result();
round_result();
over _result();

8.27

trim._:re sult

P754 permits three different underflow criteria (§7.4) when there is

to be no trap on underflow:

(1) An intermediate result is less than the smallest normalized

number, when tested before rounding, and does indeed suffer a

rounding error in round_result().

(2) Like (1) except that tininess is tested after rounding as though the

range were unbounded.

(3) The final result differs from what would have been computed were

exponent range unbounded.

This implementation uses (1), which is perhaps the most straightfor­

ward to implement. In (2), the routine under_result() would follow

rather than precede round_result() in sequence; a tiny, rounded result

would be flagged as underflowed, "unrounded", and then sent back

through round_result(). It can be shown that a result can be

unrounded if it is knov..TI whether the result was rounded up in magni­

tude during the first application of round_result(). The most difficult

to implement, (3), is similar to (2) in that under_result() would follow

round_result(); however, the criterion for underflow is not that the

rounded result be tiny and inexact, but that it be tiny and yet incapa-

8.28

ble of storage in the destination format without further alteration (i.e.,

it must be rerounded).

under _result() under _:result
l

extern canonical result;
dst; extern dst_str

extern mode _str
extern exc_str

mode;
error, trap;

if (result.tag!= NUM_TAG)
return;

if {result.exponent>= dst. uthresh)
return;

/*

/* Bypa,ss special results. */

• Set tentative signal ba,sed on tininess orily. Flag will
• be reset later if the result is exact.
*/

error.uflow = TRUE;

if (trap.uflow == FALSE)

else

/* .Denormalize ... */
shift_right(result, dst.uthresh - result.exponent);

/* System-dependent action, including ... o/
result.exponent= result.exponent+ dst.biasadjust;

round_result() round...:re sult
l

extern canoncial
extern dst_str
extern mode _str
extern exc str
digit -
bit

result;
dst;
mode;
error, trap;
guard;
sticky;

8.29

if (result.tag!= NUM_TAG) /* Bypass special results. 1/
l

if (result.tag== Q_NAN_TAG)
l

J
return;

* System-dependent action to check that
* the quiet NAN has some nonzero digils
• in the leading dst.lsd digits.
1/

/* Gua:rd is the next digit after rounding precision. */
guard = result.frac[(dst.lsd + 1)];

/*
• Sticky bil is 1 if and only if any digits beyond guard
• are nonzero. In includes the so-called round bit, which
* already served ils purpose in+, -, and/.
*/

if (result.frac[(dst.lsd + 2) ... CANON_FRACTION] != 0)
sticky= 1;

else
sticky= O;

/*
• Test for exact result. If so, and underflow is not
• trapped, then undo any tentalive underflow signal.
*/

if ((guard== 0) && (sticky== 0))
l

J
else
l

if (trap.uflow == FALSE)
error.uflow = FALSE;

return;

error.inexact = TRUE;

switch (mode.round)
l
/*

• In the unlikely case of an odd radix, the half-way
* case will never arise, and the fallowing test
• could be simplified.
*/

case TO NEAREST:
if (guard > HALF _RADIX)

inc_result();
else if (guard < HALF RADJX)

chop _result();
else

~ {guard = = HALF _RADIX) */
if {(sticky== 1) II
(result.frac[dst.lsd]]S ODD))

inc_result();
else

chop _result{);

case TOWARD 0:
chop _:-result{);

case TOW ARD MINUS:
if (re;ult.sign == 1)

inc_result();
else

chop_result();

case TOWARD PLUS:
if (re;ult.sign == 0)

inc_result{);
else

chop _result();

8.30

over _result() over _:result
l

result;
dst;

extern canonical
extern dst_str
extern mode_str
ertern exc_str

mode;
error, trap;

if (result.tag!= NUM_TAG)
return;

if {result.exponent <= dst.othresh)
return;

if (trap.oflow == FALSE)
l

error.inexact = TRUE;
error.oflow = TRUE;

~ Special operands. */

~ Inexact if untrapped. */

if ((mode.round== TO_NEAREST) 11

((mode.round== TOWARD_PLUS) && (result.sign== 0)) II

J
else
l

8.31

((mode.round== TOWARD_MINUS) && (result.sign== 1)))
result. tag = INF_ TAG;

else
huge_result();

~ System-dependent action, including ... */
result.exponent= result.exponent - dst.biasadjust;

10. Low-Level Utility Routines

~ Short-hand/or long mnemonic ... */
fl define CF CANON_FRACTION

When shifting right, 0 is shifted into c_out and fraction digits lost

off the right are accumulated in the trailing digit.

shift_right(w, cnt)
canonical
int

while (cnt > 0)
l

w;
cnt;

shifL:right

~ Logicall'}J OR the last digit into the second last ... */
w.fractionL CF] = w.fraction[CF] I w.fraction[CF - 1];

/* ... before the right shift. 1/
w.(c_out, msd, fraction) = w.{c_out, msd, fraction) >> 1;

w.exponent = w.exponent + 1;
cnt = cnt - 1;

/* Adjust exponent. */

8.32

The arithmetic is such that left shifts may be made without regard

to the special "sticky" nature of the lowest fraction digit. The carry­

out digit c_put will always be 0.

shift_left(w, cnt)
canonical
int

while (cnt > 0)
f

w;
cnt;

shifLleft

/* Just shift left, with O into fraction[CF]. */
w.{c_out, msd, fraction)= w.(c_out, msd, fraction) << 1;

w.exponent = w.exponent - 1;
cnt = cnt - 1;

/* Adjust exponent. */

Normalize by shifting left. c_put and fraction[CF] are always 0. If

all significant digits are zero, the number is set to Normal 0.

normalize(w)
canonical w· I

if (w.(msd, fraction) == 0)
w. tag = ZERO_ TAG;

else
while (w.msd == 0)
l

normalize

/* Dismiss special case. "Y

w.(msd, fraction) = w.(msd, fraction) << 1;
w.exponent = w.exponent - 1;

8.33

Increment by a unit in the last place of rounding precision. Then

clean up trailing digits.

inc_result() inc_result
l

extern canonical
extern dst_str
canonical

result;
• dst;
tmp;

/" Set up dummy significa,nt digit field for incrementation. •/
tmp.msd = 0;
tmp.fraction = 0;
tmp.fraction[dst.lsd] = 1;

result.(c_out, msd, fraction) =
result.(msd, fraction) + tmp.(msd, fraction);

if (c_out != 0)
shift_right(result, 1);

/$ Catch carry-out. 1/

/" Qean up trailing digits. 1/
result.fraction[(dst.lsd + 1) ... CF] = 0;

Chop at the last place of rounding precision.

chop _result() c hop_:re sult
l

sion.

extern canonical
extern dst_str

result;
dst;

result.fraction[(dst.lsd + 1) ... CF] = 0;

Set result to the largest number of the specified range and preci-

8.34

huge_result() huge__:result
I

extern canonical
extern dst_str

result;
dst;

result.exponent = dst.othresh; /* largest exponent */
resull.msd = RADIX 1;
resull.fraclion[l ... dsl.lsd] = (RADIX_l. RADIX_l, ... , RADIX_l);
result.fraction[(dsl.lsd + 1) ... CF] = O;

11. Operations

Each of the operations is broken into a large switch-case state­

ment to handle the cases of zero, infinite, NAN, and normal operands.

All operations on NANs are dealt with in the NAN-Hanlders section.

Invalid operands are flagged for later processing during the Trim step.

In this implementation, all numeric inputs are normalized when

unpacked, so there is no need for special provision for unnormalized

operands. However, this is not required by P754. §3.1 and 3.3 expli­

citly allow an implementation to interpret unnormalized values in the

sense of the obsolete Warning mode. This interpretation is discussed

in chapter 5.

11.1. Add

Set result to the sum of opl and op2.

add()
l

extern canonic al
extern mode_str
extern exc_str

op1, op2, result;
mode;
error;

,/'t'

• Special
• case table:
•
•
•
•
•/

0 NUM INF NAN
----+----------------

0 I ABB F
NUMI C D B F
INF I C C E F
NANI F F F F

switch (opl.tag versus op2.tag)
l
case A: ,/'t' 0 + 0 */

result = op 1;
if (op1.sign != op2. sign)

if (mode.round== TOWARD_MlNUS)
result.sign= 1;

else
result.sign= 0;

case B: /* opl = 0 or op2 =INF*/
result = op2;

case C: ,/'t' op2 = 0 or opl =INF*/
result= op1;

case E: ,/'t' opl and op2 =INF•/
if (op1.sign == op2.sign)

result= op1;
else

make_nan();

case F: ,/'t' NANs.' */
two_nans{);

case D: ,/'t' Typical case of two nonzero numbers. •/
/$.Arrange to have opl >= op2in magnitude. */
if (op2.exponent > op1.exponent)

swap(op1, op2);

/$ Align op2's radix point with opl's. */
shift_right(op2, op1.exponent - op2.exponent);

if (op1.sign == op2.sign)
l

8.35

add

I
else
l

/* Add magnitude case. 1/

/* Tentative tag, sign, exponent. 1/
result = op 1;

B.36

result.(c_out, msd, fraction)=
opl.(msd, fraction)+ op2.(msd, fraction);

/$ Handle possible carry-out. */
if (result.c_out != 0)

shift_right{result, 1);

/* Subtract magnitude case. */

/*
• The following swap() prevents a borrow,
* which this notation is unequipped to describe.
1/

if (op2.(msd, fraction) > opl.(msd, fraction))
swap(opl, op2);

/$ Tentative tag, sign, exponent. 1/
result= opl;

result.(msd, fraction) =
opl.(msd, fraction) - op2.{msd, fraction);

/$
* Case of total cancellation --
* determine sign as in case A.
1/

if {result.{msd, fraction) == 0)
if (mode.round == TOWARD _MINUS)

result.sign = 1;
else

result.sign= 0;

normalize(result);

11.2. Subtract

Set result to the difference of opl and op2, using add().

subtract{)
I

extern canonical op2;

/$ Flip the sign of op2wilh exclusive-or. 1/
op2.sign = op2.sign - 1;
add();

11.3. Multiply

8.37

subtract

Set result to the product of opl and op2. When the product of

two finite numbers is actually computed, the significant digit fields are

interpreted as

<digit> . <fraction digits>

so that their product has the form

<carry-out digit> <digit> . <double-length fraction>

Only CANON_FRACTION fraction digits need be computed here, with the

last digit reflecting the logical OR of all digits farther to the right of

the "infinitely precise" result.

multiply()
l

8.38

multiply

extern canonical op1, op2, result;

/*
• Special
• case table:

I O NUM INF NAN
----+----------------

0 I A A C E
NUMI A B D E
INF I C D D E
NANI E E E E

/* Sign is exclusive-or of operand signs. */
result.sign= op1.sign ~ op2.sig~

switch (op1.tag versus op2.tag)
l
case A: /* 0 times finite. */

result.tag = ZERO_TAG;

case C: /* 0 times INF. */
make_nan();

case D: /* INF times nonzero. */
result.tag= INF _TAG;

case E: /* NANs! */
two_nans{);

case B: /* Two finite, nonzero numbers. */
result.exponent= op1.exponent + op2.exponent;

result.{c_out, msd, fraction)=
opl.{msd, fraction) • op2.{msd, fraction);

/*
• Watch for carry-out -- product of numbers
• between 1 and RADIX may exceed RADIX.
• requiring a one-digit shift.
*/

if {result.c_out != 0)
shift_right(result. 1);

8.39

11.4. Divide

Set result to the quotient opl / op2. When the actual quotient of

two numbers must be computed, the significant digit fields are inter­

preted as

<digit> . <fraction digits>

so that the quotient takes the form

<digit> . <fraction string, perhaps nonterminating>

Only CANON_fRACTJON correct fraction digits need be computed, with

the last of them reflecting the logical OR of all digits farther to the

right.

divide()
l

extern canonical
extern exc_str

op 1, op2, result;
error;

/""
• Special
• case table:

0 NUMJNFNAN
----+----------------

0 I ABB F
NUMI C D B F
INF I E E A F
NANI F F F F

/"" Result sign is exclusive-or of operand signs. 'o/
result.sign= cpl.sign~ op2.sign;

switch (cpl.tag versus op2. tag)
l
case A: /"" {YO or INFYINF. */

make_nan();

case B: /"" rYNONZERO or finite/INF. 'o/
result.tag= ZERO_TAG;

divide

case C: /"' fi:nil.e/0. */
result.tag = INF _TAG;
error.div _zero = TRUE;

case E: /"' !NJ/finite. o/
result.tag = INF _TAG;

case F: /"' NANs! o/
two _nans(};

case D: /* finil.e/finil.e o/
result.exponent= op1.exponent - op2.exponent;
result.(msd, fraction) =

op1.(msd, fraction)/ op2.(msd, fraction);

/*

11.5. Remainder

• Quotient of two values between 1 and RADIX
•maybe less than 1, in which case a one-digit
• shift is required.
o/

if {result.msd == 0)
shift_left(result, 1);

Find the value result such that

opl (op2 x Q) + result

where Q is an integer and

!result\ ~ 0.5 x lop2I ,

8.40

with Q an even integer in the case of equality. Q need not be

delivered, though its sign and several low-order bits would be useful for

trigonometric argument reduction.

In principle, result may be computed by computing all of the

integer bits of opl/op2 (discarding the high-order l's) and fixing up

8.41

the remainder to satisfy the above inequality. However, it turns out in

practice to be easier to compute Q and the first fraction quotient bit

and then fix the remainder. The fraction bit aids in checking the ine­

quality.

According to §5.1, precision control is not to apply to remainder.

Thus, the result doesn't require rounding. Even if op2 is tiny and the

remainder falls below the underflow threshold, the result will be exact

and so will not underflow.

remainder{)
l

extern canonical
extern mode str
extern exc_str
int

/-
* Special
* case table:

op1, op2, result;
mode;
error;
Q, Qsign;

I O NUM INF NAN
----+----------------

0 j ABB D
NUMI A C B D
INF I A A A D
NANI D D D D

Qsign = opl.sign ~ op2.sign;

Blfitch (opl.tag versus op2.tag)
l
case A: /- op1 rem O or INF is invalid. 1/

error.invalid = TRUE;

case E: /$ Xrem INF and Orem Yare trivial. */

result = op 1;

case D: /$ NANs.1 */

two_nans();

remainder

case C: ~ finite remfinite. 1/

~ Set tentative sign and exponent. •/
result.sign= cpl.sign;
result.exponent= op2.exponent;

8.42

/• Generate all integer and one fraction quotient bits. 1/
Q = LOW(opl.exponent - op2.exponent + 2)

BITS OF QUOTIENT;
result.(msd, fraction)= REMAlNDER;

/• Law bit of Q = 1 when REM is at least half op2. 1/
if ((Q & 1) == 1)
l

if (result.(msd, fraction) == 0)
l

else
l

normalize(result);

/$
• Half-way case -- result
• has half magnitude of op2,
* 1.Uith sign flipped if
• integer Q is odd.
•/

result.(msd, fraction) =
op2.{msd, fraction);

result.exponent= result.exponent - 1;

if ((Q & 2) == 2)
l

/* Test low integer bit of Q. 3/
result. sign = result.sign ~ 1;
Q = Q + 2;

~ More than half-'1..Vay. •/
result. sign = result. sign - 1;
result.(msd, fraction) =

op2.(msd, fraction)
- result.(msd, fraction);

Q = Q + 2;

11.6. Compare

/4
• Now Q and its sign are available ...
o/

8.43

Compare op1 and op2 and return the condition EQUAL, LESS THAN,

GREATER THAN, or UNORDERED. To implement the language aspects of

comparisons, two versions of the comparison instruction are useful, one

that triggers Invalid on UNORDERED and one that is silent. See

chapter 6 for further details.

compare{iftrigger) compare

;-- Trigger invalid error if operands are UNORDERED? */
boolean iftrigger;

extern canonical
extern mode _str
extern exc_str
int

;--
• Special
• case table:

op1, op2;
mode;
error;
cond;

I O NUM INF NAN
----+----------------

0 I ABB F
NUMI C D B F
INF I C C E F
NANI F F F F

switch (op1.tag versus op2.tag)
l

case A: ;-- 0 vs 0. */

cond = EQUAL;

case B: /* Sign of op2 determines. */

if (op2.sign == 0)
cond = LESS;

else
cond = GREATER;

case C: /* Sign of opl determines. */

if (opt.sign== 0)
cond = GREATER;

else
cond = LESS;

case E: /* INF vs INF.*/

if (cpl.sign== op2.sign)
cond = EQUAL;

else if (cpl.sign== 0)
cond = GREATER;

else
cond = LESS;

case F: /* NANs! 1/

/*
* Call NAN-handl,er to deal wiih exceptions
* like signaling NANs, but ignore the setting
* of the result.() structure.
It/

two_nans{);
cond = UNORDERED;

case D: /* fi:nite vs finite •/

if (cpl.sign!= op2.sign)

else
I

/* Trivinl if signs differ. */
if (opl.sign == 0)

cond = GREATER;
else

cond = LESS;

/*
* Since opera:nds a:re prenormalized,
• unequal exponents determ.ine order.
*/

if (opl.exponent > op2.exponent)
if (cpl.sign== 0)

cond = GREATER;

8.44

else
cond = LESS;

else if (opl.exponent < op2.exponent)
if (opl.sign == 0)

cond = LESS:
else

cond = GREATER;

8.45

else if (opl.(msd, fraction)> op2.(msd, fraction))
if (opl.sign == 0)

else

cond = GREATER;
else

cond = LESS;

if (opl.sign == 0)
cond = LESS;

else
cond = GREATER:

/" Raise a flag if necessary. o/
if ((iftrigger == TRUE) && (cond == UNORDERED))

error.invalid= TRUE:

return(cond);

11. 7. Round to Integer

Set result to opl. rounded to an integer.

rnd_integ er()
f

extern canonical
extern mode_str
extern exc_slr

/"
,. Special
,. case table:

op 1, result;
mode;
error;

0 NUM INF NAN
----+----------------

0 I A B A C

rnd..integer

switch (opl.tag}
I
case A: /rt. int{zero or INF) is ilself. */

result = op 1;

case C: /rt. NAN! *I

one_nan():

case B: /* typical case of finite number 1/

result = op 1;

,,.
* Nothing to be done if exponent is bigger than
• the index {since it's already an integer).
• Otherwise right-align the significant digits
* to round off the fraction part.
1/

8.46

if (result.exponent < dst.lsd}
shift_right(result, (dst.lsd - result.exponent));

round_result(};
normalize(result);

11.8. Square Root

/rt. May be unnormalized. */

Set result to the square root of opl. The core of this operation

is the computation of the square root of a number between 1 and

RADIX x RADIX, which root is always of the form d.ddd before rounding.

After CANON_fRACTION correct fraction digits of the root are found, a

1 should be logically OR-ed into the last digit of result.fraction to sig­

nal the nonzero digits further to the right.

sqrt()
l

extern canonical
extern mode _str

~
• Special
• case table:

switch (op 1. tag)
l

op1, result;
mode;

0 NUMINFNAN
----+----------------

0 I ABC D

case A: ~sqrt{+/- 0) is+/- 0 (\{sc5.2). */
result = opl;

case C: /* Only sqrt (+INF) is valid. */
if (opl.sign = 0)

result= opl;
else

make_nan();

case D: /* NAN.' */
one_nan();

case B: /* sqrt{Jinite). */
/* Negative values a:re invalid. */
if (opl.sign == 1)

else
l

make_nan();

/* Handle odd exponents with care. */
il (opl.exponent & 1)

shift_left(opl, 1);

result.sign = 0;
result.exponent= opl.exponent/ 2;

result.c out = O;
result.{;;_sd, fraction)=

root(opl.(c_out, msd, fraction));

8.47

sqrt

8.48

11.9. NAN-Handler

The treatment of NANs is quite system-dependent. The intention is

that quiet NANs should propagate through operations without generating

exceptions. When two operands are such NANs, a system-dependent

precedence rule should arbitrate, designating one of the input NANs as

the result. The choice should be made on the basis of the operands'

fraction fields only (see §6.2 of P754, especially the last paragraph, and

the discussion of NANs in chapter 2).

Signaling NANs generate an exception whenever they are touched,

presumably because the user has some specific interpretation to be

effected by special trap handling software. Signaling NANs might also

be used by a system to provide a menu of alternatives to the default

exception handling schemes provided by the arithmetic.

two_nans()
I

extern canonical opl, op2, result;
precedent_nan{); canonical

/'-
• Special
• case table:
•
•
•
*/

I Q_NAN S_NAN ELSE
------+-------------------

Q_NANI A B C
S_NANI B B B
ELSEI D B N'A

switch (op 1. tag versus op2. tag)
I
case A: /'- Two quiet N ANs. o/

result= precedent_nan(opl, op2);

case B: /* One or two signaling NANs. o/
make _nan();

two...:nans

one_nan()
l

case C: /* op1 is quiet NAN, op2is ELSE. */
result = opl;

case D: /* op2is quiet, op1 is ELSE. */
result = op2;

extern canonical

if (cpl.tag== Q_NAN_TAG)
result = op 1;

else
make _nan();

op 1, result;

make_nan()
l

extern canonical
extern exc_str

error.invalid = true;

/*

result;
error;

8.49

one_:nan

make_:nan

• Set reS'Ult to some quiet NAN, perhaps indicating the
• nature of the error.
*/

CHAPTER 9

Intermediate Exponent Calculations

1. Introduction

Proposed IEEE standard P754 for binary floating-point arithmetic

specifies that results be computed as though with unbounded range and pre­

cision and then coerced to within the constraints of the destination number

format. Just how much exponent range is required for the "infinitely precise

intermediate result" is the subject of this brief chapter.

Among the unusual features of P754 are the so-called denormalized

numbers, which alleviate some common problems due to exponent underflow

(see chapter 5). The denormalized numbers effectively extend the exponent

range of the host format by a small amount, though this is not their primary

purpose. But just this small amount can have a serious impact on exponent

calculations. For example, a typical implementation of the P754 double­

extended format will use 15 exponent bits, biased by 3FFF16 . Since multipli­

cation and division entail adding and subtracting their operands' exponents,

one extra exponent bit - for a total of 16 - would seem to suffice for inter­

mediate results, pending checks for overflow and underflow. However, the

extra range afforded by the denormalized numbers is slightly wider than can

be covered by 16 bits alone. We will see how an implementor can make do

with 16 bits when the cost of an extra exponent bit is very high.

Throughout this chapter, all four-digit integer constants are hexade­

cimal unless othenvise indicated.

9.1

9.2

2. An Implementation

In P754, extended formats are specified by lower bounds on the range

and precision to be provided. For definiteness, let us assume a double­

extended format with a biased 15-bit exponent ranging from 0000 to 7FFF,

including an added 3FFF. Suppose that the maximum exponent, 7FFF, is

reserved to encode ± 00 and NANs, so the unbiased exponent ranges from

-3FFF to 3FFF for finite numbers. If there are 64 significant bits, all of them

explicit, then the set of finite representable numbers is

where -3FFF ~ n ~ 3FFF. The special value zero is encoded with an

exponent -3FFF and all significant bits zero. Three numbers are of particu­

lar interest in what follows:

B

s

D

23FFF X 1.111 • • • 11

2-3FFF X 1.000 · • • 00

2-3FFF X 0.000 · · • 01
z-40SE X 1.0

= biggest normalized

smallest normalized

smallest denormalized

3. Extreme Overflows and Underflows

The extreme cases for intermediate results are these:

BxB = z?FFF x 1.111 · · · bbbb · · •
= 28000 x 1.0 rounded to single or double precision

BIS z?FFE X 1.111 · • · 11
27FFF x 1.0 rounded to single or double precision

BID zB03D X 1. 111 · · · 11
= zeosE x 1.0 rounded to single or double precision

sxs 2-7FFE X 1.0

DxD 2-BO?C X 1.0

9.3

SIB 2-7FFF x 1.000 · · • Obbbb

DI B = 2-BOSE x 1.000 · • • Obbbb

The range covered by results involving only normalized numbers is -7FFF to

8000, a total of 216 values. This may barely be covered with a 16-bit inter­

mediate exponent. However, with denormalized inputs the effective range is

-807C to 803E. Of course, a 17-bit exponent covering the range -1000016 to

OFFFF16 would more than suffice for intermediate calculations, but the cost

of the seventeenth bit may be high. The rest of this paper discusses a way to

get by with just sixteen bits.

4. Overflow and Underflow Ranges

Suppose that floating-point arithmetic is performed with a 16-bit inter­

mediate exponent biased by 3FFF. And suppose that exponent calculations

are performed in integer arithmetic, modulo 216, as in two's-complement

signed arithmetic. Then the exponent ranges of interest in unbiased and

biased forms are:

Case Unbiased Ra e Biased Ra e
(a) unexceptional -3FFF to 3FFF 0000 lo 7FFE

(b) x underflow -807C to -4000 B783 to FFFF

(c) / underflow -803E to -4000 BFCl to FFFF

(d) x overflow 4000 to 8000 7FFF to BFFF

(e) / overflow 4000 to 803E 7FFF to C03C

Here they are on a number line:

9.4

e
I

d
I

' I

-------6------
I

' I

I I C ' ,,
I ,I I
I ,,

b : : ,, ,,
' t I

,, I

Ii I iii t
0000 4000 8000 cooo ffff

The amount of range in excess of sixteen bits is shown by the overlapping

overflow and underflow ranges of x and /.

5. Facts about Over /Underflow

Only double-extended products and quotients are susceptible to ambigu­

ous overflow and underflow cases when a 16-bit exponent is used for inter­

mediate values. An exponent in the range [BFB3, BFC1] is either overflowed

or underflowed.

Let's call big any extended number with a biased exponent larger than,

say, 7FOO and call small any extended number with a biased exponent

smaller than 0100 (this includes the denormalized numbers). The extreme

underflow cases can arise only from

small x sm.all or small I big

and the extreme overflow cases can arise only from

big x big or big I small

This suggests that the ambiguous cases can be resolved by checking the left

operand: if it is small the result has underflowed, and if it is big the the

result has overflowed.

9.5

6. Tests of Overflow and Underflow

As explained in §7.4 of P754 and in chapter 8, underflow is signale~ when

a result is both inexact (that is, rounded) and tiny. Tininess is the conven­

tional criterion that a value underflows when it falls below a certain thres­

hold. However, the denormalized numbers enable unconventionally tiny

values to be represented. So underflow is signaled only when a tiny value

suffers some unusual loss of accuracy due to denormalization. This section

discusses only the tininess criterion. Chapter 8 treats both underflow cri­

teria.

When testing a result for tininess, three intervals are of particular

interest:

0000 4000 8000

Bf 82 C03C
t
I

I ;
cooo Ffff

[0000, BFB2] - result cannot be tiny (though overflow may be detected later).

[BFB3, C03C] - result is tiny if and only if the left operand is small (otherwise

the left operand must be big and overflow will be detected

later).

[C03D, FFFF] - result is unambiguously tiny.

To test whether the left operand is small it suffices to check whether its

biased exponent is at most 4000, unsigned;. that is, simply ensure that the

exponent is not big.

In P754, the test for tininess always precedes the test for overflow. Thus

the ambiguous cases are eliminated by the time overflow is tested. The test

for overflow is simply:

9.6

if exponent < 7FFE then either in range or already underflowed ...

else overflow ...

where the 16-bit comparison is unsigned.

7. Single and Double Results

Since P754 specifies that products and quotients involving extended

operands cannot be delivered directly to single or double destinations, the

ambiguous cases cannot arise there. ln a so-called "extended based" system

which delivers all arithmetic results to extended destinations, single and

double destinations only arise in format conversions. On such a system, the

test for tininess in extended ➔ double conversion is

if exponent< 3C01 then underflow ...

else in range or overflowed ...

where the comparison is signed two's-complement. The signed comparison is

used to catch denormalized inputs which, when prenormalized, have

exponents of the form FFxx - modest negative numbers in the two's­

complement system. There is no problem with overflowed exponents like

BOxx because the largest finite extended input has exponent 7FFE. The situa­

tion for extended ➔ single format conversion is analogous.

8. Summary

The cost of keeping a 16-bit exponent for intermediate results is a

slightly more complicated test for tininess, using two thresholds, and the

need to inspect the exponent of one of the input operands. The extra nui­

sance may be small compared to the cost of a seventeenth exponent bit for

all exponent calculations when there is a natural 16-bit boundary, as is the

case with some bit-slice and software implementations.

CHAPTER 10

A Compact Test Suite for P754 Arithmetic - Version 2.0

The initial version of this test data base for the proposed IEEE 754 binary
floating point standard (draft 8.0) was developed for Zilog, Inc. and was
donated to the floating point working group for dissemination. Errors in or
additions to the distributed data base should be reported to the agency of
distribution, with copies to Zilog, Inc., 1315 Dell Avenue, Campbell, CA, 95008.

The above statement, which is to accompany any copy of this test suite.

indicates the origin of this effort. The author developed the tests while

employed at Zilog. Since then, with help from James W. Thomas of Apple

Computer, the tests have been expanded and updated to conform to draft

10.0 of proposed]EEE standard P754 for binary floating point arithmetic.

1. Distribution format

The data base consists of several files of ASCII data: this description. the

test vectors [Appendix B], and a sample Pascal program to drive the tests

[Appendix C].

Currently, the tests are available on an unlabeled magnetic tape, 1600

BPI, composed of physical blocks of 40 "card images" of 80 ASCII characters.

Files are separated by file marks, with a double file mark at the end of the

last file. The tape may be obtained by mailing $100 (payable to the Regents

of the University of California) to Keith Sklower, Computer Science Division.

Evans Hall, University of California, Berkeley, CA, 94 720.

2. The design goal

Our object was to exercise the P754 arithmetic, the special case logic in

particular, with as terse a test set as possible. By keeping the test fields

10.1

10.2

brief we could generate new tests by simply typing the vectors ourselves,

rather than using a table-driven or random scheme. And it was easy to

update the data base as new cases occurred to us and errors were detected.

Most important, the tests were designed to be as format-independent as pos­

sible, so that the same vectors would apply to all formats - single, double,

single-extended, and double-extended without regard to the

implementation-dependent features of the extended formats.

No claim is made about the completeness of these tests. Attempting to

maintain format independence led to two important restrictions. First, we

could not describe arbitrary bit patterns, so we were limited to a special

class of numbers, roughly speaking, "simple" numbers modified in their low­

order bits and possibly scaled up or down. Second, the tests were written as

though all operations were of the form

X Op y ➔ Z

where x, y, and z all have the same format. However, this is not the archi-

tecture of several known microprocessor implementations. Those implemen­

tations are fundamentally two-address, with extended format destinations for

all operations except conversion from extended to a narrower format. The

test suite does not explicitly test such mixed-format operations. But with

care such operations can be used to simulate the type of architecture the

test vectors apply to - even though this simulation will not be used for ordi­

nary calculations.

P754 is really a specification of a programming environment. This test

scheme simply exercises an arithmetic engine that. purports to "support"

the proposed standard. Thus the tests do not address the more global P754

issues such as which formats are supported, how expression evaluation is

10.3

carried out {including possible provision for precision control), how com­

parisons are handled, how binary-decimal conversion is provided {and how

accurate it is), and how exceptions are reported.

3. Test vector format

The test vectors are contained in several files of ASCII text. Each line of

a test file is either a comment (beginning with '!' or entirely blank), or a test

vector such as:

2"' = lil -li2 x -li3 an inexact product

The leading '2' is the version number; the first version of the tests, distri­

buted through 1982, had no version number. This particular example is a

product{"') with rounding to nearest(=). The factors are 1.0 incremented (i)

by a unit in its last place (to the precision of the format under considera­

tion), and the negative of 1.0 incremented in magnitude by two units in its

last place. The result, which is inexact (x), is the negative of 1.0 incremented

by three units in its last place.

Each test vector consists of seven fields: version number and operator,

modes, first operand, second operand, result flags, result, comment. The

fields are separated by white space - blanks or tabs; thus, no field but the

last may be blank, and only the last field can itself contain white space. ln

the case of unary operations like square root, the value "0" is used as a

placeholder for the second operand.

The operators supported in version 2.0 of the tests are: +, -, *, /, C

(compare), V {square root), % (remainder), I (round to integer), N (nex­

tafter), A (absolute value), ~ (negate), @ (copysign), S (scalb), L (logb), and F

(fraction part). The last seven operators are taken from the P754 Appendix

10.4

(F is a combination of S and L. as shown in the accompanying program).

They are recommended but not required by P754; they were not included in

version 1.1.

The modes are = (round to nearest), 0 (round toward 0), < {round

toward -infinity), > (round toward +infinity), s {single operands), d (double

operands), t (single extended operands), e (double extended operands). The

modes s, d, t, and e are used when the result explicitly depends on a specific

exponent range or precision; thus, modes t and e must be used with great

care since those formats are implementation-dependent. Modes for the

affine and projective interpretations of infinity and for the normalizing and

warning interpretations of denormalized numbers were included in version

1.1, but they are omitted here since the projective and warning modes were

removed from P754 in the passage from draft B.0 to draft 10.0. In the nota­

tion of draft B.0, all operations in the version 2.0 tests are run implicitly in

the affine and normalizing modes. 1f one or more rounding modes appears in

a vector, then the test is run in those modes only; otherwise, the test is run

for all rounding modes. Similarly, if any format restrictions are listed then

they exclude any others. If a test applies to all formats in all rounding

modes then the key "ALL" is used as a placeholder, since the mode field

must be non-empty.

The error flags are o (overflow), x (inexact), i (invalid operation), z (divi­

sion by zero), and u/v/w (underflow). There are three flags for underflow

since P754 now permits an implementor lo use any one of three slightly

different definitions of underflow for all operations. In the language of sec­

tion 7.4 of P754, u indicates underflow due to tininess and "extraordinary"

error; vindicates underflow due to tininess and inexactness, where tininess is

10.5

tested after rounding; and w indicates underflow due to tininess and inexact­

ness, where tininess is tested before rounding. The three definitions are

nested in the sense that u-underflow implies v-underflow which in turn

implies w-underflow. The three definitions differ in subtle ways, and a few

multiply and divide tests have been devised to distinguish them. Version 1.1

had two other error flags, d and t, concerning denormalized and signaling

NAN operands, specific to the original Zilog implementation; these have been

omitted from version 2.0. Unexceptional tests have the key "OK" in the

result flag field as a placeholder.

A numeric operand field is scanned left to right. It consists of an

optional sign, a mandatory root number, and zero or more modifier suffixes.

The sign is + or -; as usual, plus is presumed if the sign is omitted. Root

numbers are of several types: integers, NANs, and tiny and huge numbers.

The single-digit integers 0, 1, ... , 9 speak for themselves. S and Q signify sig­

naling and quiet NANs, respectively (T and N were used in version 1.1

corresponding to the oblsolete names "trapping" and "nontrapping"). Ex,

where x is a single digit, is a tiny power of two: EO is the smallest normalized

number, El is twice ED, E2 is twice El, etc. Similarly, Hx is a huge power of

two: HO is infinity (a special case), Hl is the largest power of two, H2 is half of

Hl, etc. Finally, there is a notation for specifying arbitrary root values,

though it is intended for further expansion of the test vectors and is not used

in version 2.0. The form is:

$xxx • • • x~yyy • • • y

The dollar sign indicates that a literal root value follows. The x-field is a

string of hex digits with an implicit binary point after the leading bit of the

leading hex digit. The y-field is the decimal exponent (optionally signed) of

10.6

two. The value represented is thus

O.xxx • • • x * (2 - (Y!fY • • • y + 1))

with the binary point moved over to the left of the x-field for notational con-

venience.

The five suffixes have the form sK, where s is one of i, d, u, p, or m and

K is a digit 0, 1. ... , 9. The increment (i) and decrement {d) suffixes cause

the root value to be altered by K units in its last place {ulps). The ulp {u)

operator replaces the root value by K units in its last place. The plus (p) and

minus (m) operators cause the root value to be scaled up or down by 2---K.

Since it is easier to see how the operators apply than to enumerate formal

rules, further discussion is deferred until several examples have been

presented.

4. Sample Numerical Values

The following list of numerical operands illustrates most of the

subtleties of the test vector representation. The subsequent text discusses

the examples.

Test Operand
1

lil
ldl
1u1
1p1
1ml

2
-2i3
2u1

2i3u1
2dlu1
-2pl
2ml

$800000-1

Mathematical Value
1

1 + (2----23)
1 - (2----24)

2----23
1 * 2

1 * 2----1

2
-(2 + 3*(2----22))

2----22
2--22
2----23

-2 * 2-1
2 "'2----1

2

Single Format Encoding
3FBO 0000
3FBO 0001
3F7F FFFF
3400 0000
4000 0000
3FOO 0000

4000 0000
CODD 0003
3480 0000
3480 0000
3400 0000
COBO 0000
3FBO 0000

4000 0000

10.7

$800001 1 2 + (2.-..-22) 4000 0001

3il 3 + (2.-..-22) 4040 0001
3ul 2----22 3480 0000

4 4 4080 0000
4ml 2 4000 0000

0 0 0000 0000
-0 -0 8000 0000
0i5 5 * (2--149) 0000 0005

-0i2 -2 * (2 -149) B000 0002

ED 2.-..-126 00B0 0000
EOil f2.-..-126~ + ~2 -149) 00B0 0001
E0dl 2.-..-126 - 2.-..-149) 007F FFFF

E0ilul 2--149 0000 0001
E0dlul 2--149 0000 0001
E0ml (2--126) * (2~-1) 0040 0000

HO infinity 7FB0 0000
H0dl {2 12B) - (2-104) 7F7F FFFF
H0ml (2-12B) * (2--1) 7F00 0000

Hl 2-127 7F00 0000

-Q negative quiet NAN FF81 0000
s signaling NAN 7FC1 0000

The increment (i) and decrement (d) operators are defined to yield the

next represenatable value to the number to which they are applied. When

the root value is a power of two and is greater than E0, the amounts incre­

mented and decremented differ by a factor of two. Compare, for example,

lil and ldl. However, when the root value is a power of two no bigger than

E0 (the smallest denormalized number), the magnitude of the increment and

decrement are the same, namely the value of the tiniest denormalized

number. This follows from the fact that numbers in the range ED to El have

the same spacing as the numbers in the range 0 to E0.

There are two special cases of i and d. Oil is the tiniest denormalized

number (that is, the next representable number to 0), and in general OiK is

defined to be K times Oil. When HO, representing infinity, is decremented, as

10.B

in HOd1 above, HO behaves as though it had the value 2-128, that is the smal­

lest power of 2 too large to represent.

The ulp operator (u) gives units in lhe last place of the number to which

it is applied. The operator is motivated by the need to describe the results of

magnitude subtractions. The ulp operator may best be thought of as satisfy­

ing the following formula: for any value X, XuK = XiK - X. Thus only the

exponent of X, not its significand, determines the magnitude of the ulps. For

example, 2u1, 2i3u1, and 3u1 all have the same value since the root values 2,

2i3, and 3 all of the form (2-1)• 1.J.

The scaling operators p and m typically affect only the exponent of a

number, as in the cases 1p1 and 4ml, both of which equal 2. However, when

the root value is no bigger than EO, the scaled value must be denormalized,

as in the case of E0m1 above.

The NAN root values Q and S are system-dependent since P754 specifies

only that they have the maximum exponent and some nonzero bits in the

significand. In the examples shown, the leading fractwn bit is used to distin­

guish the two kinds of NAN.

A negative sign applies to the number as a whole, as in -2i3 above.

Regardless of any sign, the increment and decrement operators add and sub­

tract in magnitude, respectively.

5. Sample Driver Program

Appendix C contains a Pascal program which has been used to run the

test vectors. The program was developed by James W. Thomas and the

author and has been run on both an Apple III and an Apple Lisa computer

(using prototype floating point software just becoming available as products).

10.9

The program is broken into three parts, the main program FPTEST and two

"units" (in the notation of UCSD Pascal) FP and FPSOFT.

FPTEST parses the test vectors, builds the numeric operands in a canon­

ical format, invokes FP to run the tests, and checks the results.

The unit FP is composed of subprograms to pack canonical values into

the P754 storage types and to perform single, double and extended format

tests. This unit is highly implementation-dependent. If an extended format

is implemented, then packing from the canonical format to extended will

depend on details of the extended format. Even packing into the single and

double formats depends on the ordering of the bytes in the 32 and 64 bit

words. FP invokes the actual arithmetic operations to be tested; in some

cases, such as this sample program, the arithmetic is available only through

subroutine calls. The unit FPSOFT describes one interface to such routines.

FP simulates single-only, double-only, and extended-only operations. In this

sample program the arithmetic is two-address extended-based so extra care

is taken to avoid the so-called double-rounding that may arise when a result

is computed in an extended intermediate variable and then stored (and pos­

sibly rounded again) to a single or double destination. It can be shown that

because the extended format has more than twice as many significant bits as

does the single format, this hazard only arises in double format tests. (We

note again that this restriction to operations on just one format is an arbi­

trary constraint set by the test scheme, NOT by P754.)

FPSOFT is an hypothetical interface to a floating point package, to sup­

ply the operations needed by FP. Of course, this unit would not be required if

the host system fully supported floating point arithmetic right in Pascal, in

which case the unit FP could be greatly simplified.

APPENDIX A

Excerpts from a Proposed Standard for Binary Floating-Point Arithmetic

Based on Draft 10.0 of IEEE Task P754 December 2, 1982

Foreword

This foreword and the footnotes are not part of IEEE
Standard 754 for Binary Floating-Point Arithmetic.

This standard is a product of the Floating-Point Working Group of the
Microprocessor Standards Subcommittee of the IEEE Computer Society Com­
puter Standards Committee. Draft 8.0 of this standard was published to soli­
cit public comments. 1 Implementation techniques can be found in "An Imple­
mentation Guide to a Proposed Standard for Floating-Point Arithmetic" by
Jerome T. Coonen, 2 which was based on a still earlier draft of the proposal.

This standard defines a family of commercially feasible ways for new sys­
tems to perform binary floating-point arithmetic. The issues of retrofitting
were not considered. Among the desiderata that guided the formulation of
this standard are these:

(1) Facilitate movement of existing programs from diverse computers to
those that adhere to this standard.

(2) Enhance the capabilities and safety available to programmers who,
though not expert in numerical methods, may well be attempting to pro­
duce numerically sophisticated programs. However we recognize that
utility and safety are sometimes antagonists.

(3) Encourage experts to develop and distribute robust and efficient numer­
ical programs portable, via minor editing and recompilation, onto any
computer that conforms to this standard and possesses adequate capa­
city. When restricted to a declared subset of the standard, these pro­
grams should produce identical results on all conforming systems.

(4) Provide direct support for

Execution-time diagnosis of anomalies,

Smoother handling of exceptions, and

Interval arithmetic at a reasonable cost.

(5) Provide for development of

Standard elementary functions like exp and cos,

Very high precision {multi-word) arithmetic, and

1Cbmptder, Vol. 14, No. 3, March 1981.

ilComputer, Vol. 13, No. 1, January 1980.

DRAFT STANDARD - SUBJECT TO CHANGE Al

DRAFT STANDARD - SUBJECT TO CHANGE

Coupling of numerical and symbolic algebraic computation.

(6) Enable rather than preclude further refinements and extensions.

A.2

DRAFT STANDARD -- SUBJECT TO CHANGE

Contents

SECTION

1. Scope
1.1 Implementation objectives
1.2 Inclusions
1.3 Exclusions

2. Definitions

3. Formats
3.1 Sets of values
3.2 Basic formats
3.3 Extended formats
3.4 Combinations of formats

4. Rounding
4.1 Round to nearest
4.2 Directed roundings
4.3 Rounding precision

5. Operations
5.1 Arithmetic
5.2 Square root
5.3 Floating-point format conversions
5.4 Conversions between floating-point and integer formats
5.5 Round floating-point number to integer value
5.6 Binary-decimal conversion
5. 7 Comparison

6. Infinity, NaNs and signed zero
6.1 Infinity arithmetic
6.2 Operations with NaNs
6.3 The sign bit

7. Exceptions
7.1 Invalid operation
7.2 Division by zero
7. 3 Overflow
7.4 Underflow
7.5 Inexact

B. Traps
8.1 Trap handler
8.2 Precedence

TABLES

1. Summary of format parameters (in 3.1)
2. Decimal conversion ranges (in 5. 6)
3. Correctly rounded decimal conversion range (in 5.6)
4. Predicates and relations (in 5. 7)

A.3

DRAIT STANDARD - SUBJECT TO CHANGE A4

FIGURES

1. Single format (in 3.2.1)
2. Double format (in 3.2.2)

APPENDIX: Recommended functions and predicates

DRAFT STANDARD -- SUBJECT TO CHANGE A5

Excerpts from a Proposed Standard for Bi.nary Floating-Point Arithmetic
Based on Draft 10.0 of IEEE Task P754 December 2, 1982

1. Scope

1.1. Implementation objectives. It is intended that an implementation
of a floating-point system conforming to this standard can be realized
entirely in software, entirely in hardware, or in any combination of
software and hardware. It is the environment the programmer or user
of the system sees that conforms or fails to conform to this standard.
Hardware components that require software support to conform shall
not be said to conform apart from such software.

1.2. Inclusions. This standard specifies

(1) Basic and extended floating-point number formats;

(2) Add, subtract, multiply, divide, square root, remainder and compare
operations;

(3) Conversions between integer and floating-point formats;

(4} Conversions between different floating-point formats;

(5) Conversions between basic format floating-point numbers and decimal
strings; and

(6) Floating-point exceptions and their handling, including non-numbers
(NaNs).

1.3. Exclusions. This standard does not specify

(1} Formats of decimal strings and integers,

(2) Interpretation of the sign and significand fields of NaNs, or

(3) Binary+4decimal conversions to and from extended formats.

2. Definitions

Biased exponent. The sum of the exponent and a constant {bias) chosen to
make the biased exponent's range nonnegative.

Binary floating-point number. A bit-string characterized by three com­
ponents: a sign, a signed exponent, and a significand. Its numerical value, if
any, is the signed product of its signiflcand and two raised to the power of its
exponent. ln this document a bit-string is not always distinguished from a
number it may represent.

Denorm.alized number. A nonzero floating-point number whose exponent has
a reserved value, usually the format's minimum, and whose explicit or impli­
cit leading significand bit is zero.

Destination. Every unary or binary operation delivers its result to a destina­
tion, either explicitly designated by the user or implicitly supplied by the
system (e.g., intermediate results in subexpressions or arguments for pro­
cedures). Some languages place the results of intermediate calculations in
destinations beyond the user's control. Nonetheless, this standard defines

DRAIT STANDARD -- SUBJECT TO CHANGE A.6

the result of an operation in terms of that destination's format as well as the
operands' values.

Exponent. The component of a binary floating-point number that normally
signifies the integer power to which two is raised in determining the value of
the represented number. Occasionally the exponent is called the signed or
unbiased exponent.

Fraction. The field of the significand that lies to the right of its implied
binary point.

Mode. A variable that a user may set, sense, save and restore to control the
execution of subsequent arithmetic operations. The default mode is the
mode that a program can assume to be in effect unless an explicitly contrary
statement is included in either the program or its specification.

The following mode shall be implemented:

(1) Rounding, to control the direction of rounding errors;

and, in certain implementations,

(2) Rounding precision, to shorten the precision of results.

The implementor may, at his option, implement the following modes:

(3) Traps disabled/enabled, to handle exceptions.

NaN. Not a number; a symbolic entity encoded in floating-point format.
There are two types of NaNs (6.2). Signaling NaNs signal the invalid operation
exception (7.1} whenever they appear as operands. Quiet NaNs propagate
through almost every arithmetic operation without signaling exceptions.

Result. The bit string {usually representing a number} that is delivered to
the destination.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary point and
a fraction field to the right.

Shall and should. In this standard the use of the word "shall" signifies that
which is obligatory in any conforming implementation; the use of the word
"should" signifies that which is strongly recommended as being in keeping
with the intent of the standard, although architectural or other constraints
beyond the scope of this standard may on occasion render the recommenda­
tions impractical.

Status flag. A variable that may take two states, set and clear. A user may
clear a flag, copy it, or restore it to a previous state. When set, a status flag
may contain additional system-dependent information, possibly inaccessible
to some users. The operations of this standard may as a side effect set some
of the following flags: inexact result, underflow, overflow, divide by zero and
invalid operation.

User. Any person, hardware, or program not itself specified by this standard,
having access to and controlling those operations of the programming
environment specified in this standard.

DRAIT STANDARD -- SUBJECT TO CHANGE A?

3. Formats

This standard defines four floating-point formats in two groups, basic
and extended, each having two widths, single and double. The standard levels
of implementation are distinguished by the combinations of formats sup­
ported.

3.1. Sets of values. This section concerns only the numerical values
representable within a format, not the encodings which are the subject of the
following sections. The only values representable in a chosen format are
those specified via the following three integer parameters:

p - the number of significand bits {precision),

E= - the maximum exponent, and

E min - the minimum exponent.
Each format's parameters are displayed in Table 1. Within each format just
the following entities shall be provided:

Numbers of the form {-l)5 2E(b 0 °b 1b2 • • • bp-1) where
s is O or 1,
Eis any integer between Emin and Erru,:x, inclusive, and
each b1 is O or 1;

Two infinities, + 00 and -oo;

At least one signaling NaN; and

At least one quiet NaN.
The foregoing description enumerates some values redundantly, e.g.,

2°(1-0) = 21(0·1) = 22 (0·01) =
However, the encodings of such nonzero values may be redundant only in
extended formats (3.3). The nonzero values of the form
±2Emi~O•b 1b 2 • • • b _1) are called denormalized. Reserved exponents may be
used to encode Na1-Js, ±oo, ±0, and denormalized numbers. For any variable
that has the value zero, the sign bit s provides an extra bit of information.
Although all formats have distinct representations for +O and -0, the signs
are significant in some circumstances, like division by zero, and not in oth­
ers. In this standard, 0 and 00 are written without a sign when the sign does

Table 1. Summary of format parameters.

Format
Parameter

Single Double
Single Extended Double Extended

p 24 ~ 32 53 ~ 64
E= +127 ~ +1023 +1023 ~ +16383
Emin -126 ~ -1022 -1022 ~ -16382

exponent bias +127 unspecified +1023 unspecified
exponent width in bits B ~ 11 11 ~ 15

format width in bits 32 ?: 43 64 ~ 79

DRAIT STANDARD -- SUBJECT TO CHANGE AB

not matter.

3.2. Basic formats. Numbers in the single and double formats are composed
of three fields:

A 1-bit signs,

A biased exponent e = E+bins, and

A fraction f = •b 1b2 • • • bp-l·

The range of the unbiased exponent E shall include every integer between
two values Errun and Emax, inclusive, and also two other reserved values:
Errun-1 to encode ±0 and denormalized numbers, and E=+ 1 to encode ±00

and NaNs. The foregoing parameters appear in Table 1. Each nonzero
numerical value has just one encoding. The fields are interpreted as follows.

3.2.1. Single. A 32-bit single format number X is divided as shown in
Figure 1. The value v of X is inferred from its constituent fields thus:

(1) If e = 255 and f °I' 0, then v is NaN regardless of s.

(2)]f e = 255 and f = 0, then v = (-1)8 00 •

(3)]f O < e < 255, then v = (-1)8 28
-

127(1•/).

(4) If e = 0 and/ °I' 0, then v = (-1)5 2-126(0•/) (denormalized numbers).

(5) lf e = 0 and/ = 0, then v = (-1)80 (zero}.

1 8

e

msb

ngure 1. Single format.
23

I

lsb msb

"msb" means "most significant bit"
"lsb" means "least significant bit"

... widths

lsb ... order

3.2.2. Double. A 64-bit double format number X is divided as shown in
Figure 2. The value v of Xis inferred from its constituent fields thus:

(1) If e = 2047 and/ °I' 0, then v is NaN regardless of s.

(2) If e = 2047 and/ = 0, then v = (-1)8
00.

(3) If O < e < 2047, then v = (-1)8 28
-

1023(1•/).

(4) If e = 0 and/~ 0, thenv = (-1)S2-1022(0•/) (denormalized numbers).

(5) If e = 0 and/ = 0, then v = (-1)5'0 (zero).

1 11

e

msb

Figure 2. Double format.

52

I

lsb msb

... widths

lsb ... order

3.3. Extended formats. The single extended and double extended formats

DRAFT STANDARD - SUBJECT TO CHANGE A9

encode in an implementation-dependent way the sets of values in 3.1 subject
to the constraints of Table 1. This standard allows an implementation to
encode some values redundantly, provided that redundancy be transparent
to the user in the following sense: an implementation either shall encode
every nonzero value uniquely or it shall not distinguish redundant encodings
of nonzero values. An implementation may also reserve some bit strings for
purposes beyond the scope of this standard; when such a reserved bit string
occurs as an operand the result is not specified by this standard.

An implementation of this standard is not required to provide (and the
user should not assume) that single extended have greater range than dou­
ble.

3.4. Combinations of formats. All implementations conforming to this stan­
dard shall support the single format. Implementations should support the
extended format corresponding to the widest basic format supported, and
need not support any other extended format. 3

4. Rounding
Rounding takes a number regarded as infinitely precise and, if neces­

sary, modifies it to fit in the destination's format while si_gnaling the inexact
exception (7.5). Except for binary.-decimal conversion {whose weaker con­
ditions are specified in 5.6), every operation specified in §5 shall be per­
formed as if it first produced an intermediate result correct to infinite preci­
sion and with unbounded range, and then rounded that result according to
one of the modes in this section.

The rounding modes affect all arithmetic operations except comparison
and remainder. The rounding modes may affect the signs of zero sums {6.3),
and do affect the thresholds beyond which overflow (7.3) and underflow {7.4)
may be signaled.

4.1. Round to nearest. An implementation of this standard shall provide
round to nearest as the default rounding mode. In this mode the represent­
able value nearest to the infinitely precise result shall be delivered; if the two
nearest representable values are equally near, the one with its least
significant bit zero shall be delivered. However, an infinitely precise result
with magnitude at least 2E=(2-2-P) shall round to 00 with no change in sign;
here Em.ax and p are determined by the destination format (§3) unless over­
ridden by a rounding precision mode (4.3).

4.2. Directed roundings. An implementation shall also provide three user­
selectable directed rounding modes: round toward +cc, round toward -00, and
round toward 0.

When rounding toward +00 , the result shall be the format's value {possi­
bly +cc) closest to and no less than the infinitely precise result. When round­
ing toward - 00 , the result shall be the format's value (possibly - 00) closest to
and no greater than the infinitely precise result. When rounding toward 0, the
result shall be the format's value closest to and no greater in magnitude

30nly if upward compatibility and speed are important issues should a system
supporting the double extended format also support single extended.

DRAFT STANDARD -- SUBJECT TO CHANGE A.10

than the infinitely precise result.

4.3. Rounding precision. Normally a result is rounded to the precision of its
destination. However, some systems deliver results only to double or extend­
ed destinations. On such a system the user, which may be a high-level
language compiler, shall be able to specify that a result be rounded instead
to single precision, though it may be stored in the double or extended format
with its wider exponent range.4 Similarly, a system that delivers results only
to double extended destinations shall permit the user to specify rounding to
single or double precision. Note that to meet the specifications in 4.1, the
result cannot suffer more than one rounding error.

5. Operations
All conforming implementations of this standard shall provide opera­

tions to add, subtract, multiply, divide, extract the square root, find the
remainder, round to integer in floating-point format, convert between
different floating-point formats, convert between floating-point and integer
formats, convert binary.-decimal, and compare. Whether copying without
change of format is considered an operation is an implementation option.
Except for binary.-decimal conversion, each of the operations shall be per­
formed as if it first produced an intermediate result correct to infinite preci­
sion and with unbounded range, and then coerced this intermediate result to
fit in the destination's format (§4 and §7). Section 6 augments the following
specifications to cover ±0, ± 00 , and NaN; section 7 enumerates exceptions
caused by exceptional operands and exceptional results.

5.1. Arithmetic. An implementation shall provide the add, subtract, multi­
ply, divide and remainder operations for any two operands of the same for­
mat, for each supported format; it should also provide the operations for
operands of differing formats. The destination format (regardless of the
rounding precision control of 4.3) shall be at least as wide as the wider
operand's format. All results shall be rounded as specified in §4.

When y T- 0, the remainder r = x REM y is defined regardless of the
rounding mode by the mathematical relation r = x - y xn, where n is the in­
teger nearest the exact value x I y; whenever In - x I y I = ½, then n is even.
Thus, the remainder is always exact. If r =O, its sign shall be that of x. Pre­
cision control (4.3) shall not apply to the remainder operation.

5.2. Square root. The square root operation shall be provided in all support­
ed formats. The result is defined and has positive sign for all operands ~ 0,
except that ..._r-:::o shall be -0. The destination format shall be at least as wide
as the operand's. The result shall be rounded as specified in §4.

5.3. Floating-point format conversions. It shall be possible to convert

"'Control of rounding precision is intended to allow systems whose destinations
are always double or extended lo mimic, in the absence of over /underflow, the preci­
sions of systems with single and double destinations. An implementation should not
provide operations that combine double or extended operands to produce a single
result, nor operations that combine double extended operands to produce a double
result, with just one rounding.

DRAFT STAJ-JDARD -- SUBJECT TO CHANGE A.11

floating-point numbers between all supported formats. lf the conversion is to
a narrower precision, the result shall be rounded as specified in §4. Conver­
sion to a wider precision is exact.

5.4. Conversion between floating-point and integer formats. It shall be pos­
sible to convert between all supported floating-point formats and all support­
ed integer formats. Conversion to integer shall be effected by rounding as
specified in §4. Conversions between floating-point integers and integer for­
mats shall be exact unless an exception arises as specified in 7.1.

5.5. Round floating-point number to integral value. It shall be possible to
round a floating-point number to an integral valued floating-point number in
the same format. The rounding shall be as specified in §4, with the under­
standing that when rounding to nearest, if the difference between the un­
rounded operand and the rounded result is exactly one half, the rounded
result is even.

5.6. Bi.nary-decimal conversion. Conversion between decimal strings in at
least one format and binary floating-point numbers in all supported basic for­
mats shall be provided for numbers throughout the ranges specified in Table
2. The integers M and N in Tables 2 and 3 are such that the decimal strings
have values ±Mx 10±N. On input, trailing zeros shall be appended to or
stripped from M (up to the limits specified in Table 2) in order to minimize
N. When the destination is a decimal string, its least significant digit should
be located by format specifications for purposes of rounding.

When the integer M lies outside the range specified in Tables 2 and 3,
i.e., when M ~ 109 for single or 1017 for double, the implementor may, at his
option, alter all significant digits after the ninth for single and seventeenth
for double to other decimal digits, typically 0.

Conversions shall be correctly rounded as specified in §4 for operands
lying within the ranges specified in Table 3. Otherwise, for rounding to
nearest, the error in the converted result shall not exceed by more that 0.47
units in the destination's least significant digit the error that would be in­
curred by the rounding specifications of §4, provided that exponent
over /underflow does not occur. In the directed rounding modes the error
shall have the correct sign and shall not exceed 1.4 7 units in the last place.

Conversions shall be monotonic. That is, increasing the value of a binary
floating-point number shall not decrease its value when converted to a de­
cimal string; and increasing the value of a decimal string shall not decrease
its value when converted to a binary floating-point number.

When rounding to nearest, conversion from binary to decimal and back
to binary shall be the identity as long as the decimal string is carried to the
maximum precision specified in Table 2, namely, 9 digits for single and 17 for
double.5

5The properties specified for conversions are implied by error bounds that
depend on the format (single or double) and the number of decimal digits involved;
the 0.47 mentioned is a worst-case bound only. For a detailed discussion of these er·
ror bounds and economical conversion algorithms that exploit the extended format,
see "Accurate Yet Economical Binary+-+Decimal Conversions" by Jerome T. Coonen
(to appear).

DRAFT STANDARD -- SUBJECT TO CHANGE A.12

If decimal to binary conversion over /underflows, the response is as
specified in §7. Over /underflow and NaNs and infinities encountered during
binary to decimal conversion should be indicated to the user by appropriate
strings. This standard says nothing about dealing with NaNs encoded in de­
cimal strings.

To avoid inconsistencies, the procedures used for binary~decimal
conversion should give the same results regardless of whether the conversion
is performed during language translation (interpretation, compilation or as­
sembly) or during program execution {run-time and interactive
input/output).

Table 2. Decimal conversion ranges.

Decimal to Binary Binary to Decimal
Format

MaxM MaxN MaxM MaxN
Single 109-1 99 109 -1 53
Double 1017_1 999 1017 -1 340

Table 3. Correctly rounded decimal conversion range.

Decimal to Binary Binary to Decimal
Format

MaxM MaxN MaxM MaxN
Single 109-1 13 109 -1 13
Double 1017_1 27 1017 -1 27

5. 7. Comparison. It shall be possible to compare floating-point numbers in
all supported formats, even if the operands' formats differ. Comparisons are
exact and never overflow nor underflow. Four mutually exclusive relations
are possible: "less than", "equal". "greater than", and "unordered". The
last case arises when at least one operand is NaN. Every NaN shall compare
"unordered" with everything, including itself. Comparisons shall ignore the
sign of zero (so +0 = -0).

The result of a comparison shall be delivered in one of two ways: either
as a condition code identifying one of the four relations listed above, or as a
true-false response to a predicate that names the specific comparison
desired. In addition to the true-false response, an invalid operation excep­
tion {7.1) shall be signaled when, as indicated in the last column of Table 4,
"unordered" operands are compared using one of the predicates involving
"<"or">" but not"?". (Here the symbol"?" signifies "unordered".)

Table 4 exhibits the twenty-six functionally distinct useful predicates
named, in the first column, using three notations: ad hoc, FORTRAN-like, and
mathematical. It shows how they are obtained from the four condition codes
and tells which predicates cause an invalid operation exception when the re­
lation is "unordered". The entries T and F indicate whether the predicate is
true or false when the respective relation holds.

DRAFI' STANDARD -- SUBJECT TO CHANGE A.13

Table 4. Predicates and relations.

Predicates Relations Exception
greater less invalid if

ad hoc FORTRAN math than than eaual unordered unordered
= .EQ. - F F T F -

?<> .NE. ~ T T F T
> .GT. > T F F F Yes

>= .GE. ~ T F T F Yes
< .LT. < F T F F Yes

<= .LE. ~ F T T F Yes
? unordered F F F T

<> .LG. T T F F Yes

<=> .LEG. T T T F Yes
?> .UG. T F F T

?>= .UGE. T F T T
?< .UL. F T F T

?<= .ULE. F T T T
?-.- .UE. F F T T

NOT(>) F T T T Yes
NOT(>=) F T F T Yes
NOT(<) T F T T Yes

NOT{<=) T F F T Yes
NOT(?) T T T F

NOT(<>) F F T T Yes

NOT(<=>) F F F T Yes
NOT(?>) F T T F

NOT(?>=) F T F F
NOT(?<) T F T F

NOT(?<=) T F F F
NOT(?=) T T F F

Note that predicates come in pairs, each a logical negation of the other;
applying a prefix like "NOT" to negate a predicate in Table 4 reverses the
true/false sense of its associated entries, but leaves the last column's entry
unchanged. 6

Implementations that provide predicates shall provide the first six
predicates in Table 4 and should provide the seventh, as well as a means of
logically negating predicates.

11There may appear to be two ways to write the logical negation of a predicate.
one using "NOT" explicitly and the other reversing the relational operator. For exam­
ple, the logical negation of (X = Y) may be written either NOT(X = Y) or (X ?<> Y); in
this case both expressions are functionally equjvalent to (X ¥ Y). However, trus coin­
cidence does not occur for the other predicates. For instance, the logical negation of
{X < Y) is just NOT(X < Y); the reversed predicate {X ?>= Y) is different in that it does
not signal an invalid operation exception when X and Y are "unordered".

No
No

No

No
No
No
No
No

No

No
No
No
No
No

DRAFT STANDARD -- SUBJECT TO CHANGE A.14

6. Infinity, NaNs and signed zero

6.1. Infinity arithmetic. Infinity arithmetic shall be construed as the limit­
ing case of real arithmetic with operands of arbitrarily large magnitude,
when such a limit exists. Infinities shall be interpreted in the affine sense,
that is, -00 < {every finite number) < + 00•

Arithmetic on 00 is always exact and therefore shall signal no exceptions,
except for the invalid operations specified for 00 in 7.1. The exceptions that
do pertain to 00 are signaled only when

(1) 00 is created from finite operands by overflow {7.3) or division by zero
(7.2), with the corresponding trap disabled, or

(2) 00 is an invalid operand (7.1).

6.2. Operations with NaNs. Two different kinds of NaN, signaling and quiet,
shall be supported in all operations. Signaling NaNs afford values for unini­
tialized variables and arithmetic-like enhancements {such as complex-affine
infinities or extremely wide range} that are not the subject of the standard.

• Quiet NaNs should, by means left to the implementor's discretion, afford re­
trospective diagnostic information inherited from invalid or unavailable data
and results. Propagation of the diagnostic information requires that infor­
mation contained in the NaNs be preserved through arithmetic operations
and floating-point format conversions.

Signaling NaNs shall be reserved operands that signal the invalid opera­
tion exception {7.1) for every operation listed in §5. Whether copying a sig­
naling NaN without a change of format signals the invalid operation exception
is the implementor's option.

Every operation involving a signaling NaN or invalid operation (7.1) shall,
if no trap occurs and if a floating-point result is to be delivered, deliver a
quiet NaN as its result.

Every operation involving one or two input NaNs, none of them signaling,
shall signal no exception but, if a floating-point result is to be delivered, shall
deliver as its result a quiet NaN, which should be one of the input NaNs. Note
that format conversions might be unable to deliver the same NaN. Quiet
NaNs do have effects similar to signaling NaNs on operations that do not
deliver a floating-point result; these operations, namely comparison and
conversion to a format that has no NaNs, are discussed in 5.4, 5.6, 5.7, and
7.1.

6.3. The sign bit. This standard does not interpret the sign of a NaN. Other­
wise the sign of a product or quotient is the Exclusive Or of the operands'
signs; and the sign of a sum, or of a difference x -y regarded as a sum
x +(-y), differs from at most one of the addends' signs. These rules shall ap­
ply even when operands or results are zero or infinite.

When the sum of two operands with opposite signs {or the difference of
two operands with like signs) is exactly zero, the sign of that sum {or
difference) shall be "+" in all rounding modes except round toward - 00 , in
which mode that sign shall be "-". However, x+x = x-(-.x) retains the
same sign as .x even when :x is zero.

Except that ,v'=o shall be -0, every valid square root shall have positive
sign.

DRAFT STANDARD - SUBJECT TO CHANGE A.15

7. Exceptions
There are five types of exceptions that shall be signaled when detected.

The signal entails setting a status flag, taking a trap, or possibly doing both.
With each exception should be associated a trap under user control, as
specified in §8. The default response to an exception shall be to proceed
without a trap. This standard specifies results t.o be delivered in both trap­
ping and nontrapping situations. In some cases the result is different if a trap
is enabled.

For each type of exception the implementation shall provide a status
flag that shall be set on any occurrence of the corresponding exception when
no corresponding trap occurs. It shall be reset only at the user's request.
The user shall be able to test and to alter the status flags individually, and
should further be able to save and restore all five at one time.

The only exceptions that can coincide are inexact with overflow and
inexact with underflow.

7.1. Invalid operation. The invalid operation exception is signaled if an
operand is invalid for the operation to be performed. The result, when the
exception occurs without a trap, shall be a quiet NaN (6.2) provided the desti­
nation has a floating-point format. The invalid operations are

(1} Any operation on a signaling NaN (6.2);

(2) Addition or subtraction: magnitude subtraction of infinities like { + 00) +
{-oo);

(3) Multiplication: 0 x oo;

(4) Division: 0/0 or 00/00;

(5) Remainder: x REM y, where y is zero or x is infinite;

(6) Square root if the operand is less than zero;

(7) Conversion of a binary floating-point number to an integer or decimal
format when overflow, infinity, or NaN precludes a faithful representa­
tion in that format and this cannot otherwise be signaled; and

(B) Comparison via predicates involving "<" or ">", without"?", when the
operands are "unordered" (5. 7, Table 4).

7.2. Division by zero. If the divisor is zero and the dividend is a finite
nonzero number, then the division by zero exception shall be signaled. The
result, when no trap occurs, shall be a correctly signed 00 (6.3).

7.3. Overflow. The overflow exception shall be signaled whenever the destina­
tion format's largest finite number is exceeded in magnitude by what would
have been the rounded floating-point result (§4} were the exponent range un­
bounded. The result, when no trap occurs, shall be determined by the round­
ing mode and the sign of the intermediate result as follows:

(1) Round to nearest carries all overflows to 00 with the sign of the inter­
mediate result.

(2) Round toward O carries all overflows to the format's largest finite
number with the sign of the intermediate result.

(3) Round toward -oo carries positive overflows to the format's largest finite
number, and carries negative overflows to - 00 •

DRAIT STANDARD -- SUBJECT TO CHA.'IIJGE A.16

(4) Round toward +00 carries negative overflows to the format's most nega­
tive finite number, and carries positive overflows to + 00 •

Trapped overflows on all operations except conversions shall deliver to
the trap handler the result obtained by dividing the infinitely precise result
by 211 and then rounding. The bias adjust a is 192 in the single, 1536 in the
double, and 3x2n-2 in the extended format, where n is the number of bits in
the exponent field. 7 Trapped overflow on conversion from a binary floating­
point formal shall deliver to the trap handler a result in that or a wider for­
mat, possibly with the exponent bias adjusted, but rounded lo the
destination's precision. Trapped overflow on decimal lo binary conversion
shall deliver to the trap handler a result in the widest supported format, pos­
sibly with the exponent bias adjusted, but rounded to the destination's preci­
sion; when the result lies too far outside the range for the bias lo be adjust­
ed, a quiet NaN shall be delivered instead.

7.4. Underflow. Two correlated events contribute to underflow. One is the
creation of a tiny nonzero result between ±2Eml.n which, because it is so tiny,
may cause some other exception later such as overflow upon division. The
other is extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers. The implementor may choose how these
events are detected, but shall detect these events in the same way for all
operations. Tininess may be detected either

(1) "After rounding": when a nonzero result computed as though the ex­
ponent range were unbounded would lie strictly between ±2Em1n;

or
(2) "Before rounding": when a nonzero result computed as though both the

exponent range and the precision were unbounded would lie strictly
between ±~min.

Loss of accuracy may be detected as either

(3) A denormalization loss: when the delivered result differs from what
would have been computed were exponent range unbounded;

or
(4) An inexact result: when the delivered result diflers from what would have

been computed were both exponent range and precision unbounded.
{This is the condition called inexact in 7.5.)

When an underflow trap is not implemented or is not enabled (the default
case) underflow shall be signaled (via the underflow flag) only when both tini­
ness and loss of accuracy have been detected. The method for detecting tini­
ness and loss of accuracy does not aflecl the delivered result which might be
zero, denormalized or ±2Em1n_ When an underflow trap has been implemented
and is enabled, underflow shall be signaled when tininess is detected regard­
less of loss of accuracy. Trapped underflows on all operations except conver­
sion shall deliver to the trap handler the result obtained by multiplying the
infinitely precise result by 211 and then rounding. The bias adjust a is 192 in
the single, 1536 in the double, and 3x2n-2 in the extended formal, where n is

"The bias adjust is chosen to translate over/underflowed values as nearly as pos­
sible to the middle of the exponent range so that, if desired, they can be used in sub­
sequent scaled operations with less risk of causing further exceptions.

DRAIT STANDARD -- SUBJECT TO CHANGE A.17

the munber of bits in the exponent field. 8 Trapped underflows on conversion
shall be handled analogously to the handling of overflows on conversion.

7.5. Inexact. If the rounded result of an operation is not exact or if it
overflows without an overflow trap, then the inexact exception shall be sig­
naled. The rounded or overflowed result shall be delivered to the destination
or, if an inexact trap occurs, to the trap handler.

8. Traps
A user should be able to request a trap on any of the five exceptions by

specifying a handler for it. He should be able to request that an existing
handler be disabled, saved or restored. He should also be able to determine
whether a specific trap handler for a designated exception has been enabled.
When an exception whose trap is disabled is signaled, it shall be handled in
the manner specified in §7. When an exception whose trap is enabled is sig­
naled, the execution of the program in which the exception occurred shall be
suspended, the trap handler previously specified by the user shall be activat­
ed, and a result, if specified in §7, shall be delivered to it.

8.1. Trap handler. A trap handler should have the capabilities of a subrou­
tine that can return a value to be used in lieu of the exceptional operation's
result; this result is undefined unless delivered by the trap handler. Similar­
ly, the flag(s) corresponding to the exceptions being signaled with their asso­
ciated traps enabled may be undefined unless set or reset by the trap
handler.

When a system traps, the trap handler should be able to determine

(1) Which exception(s) occurred on this operation;

(2) The kind of operation that was being performed;

(3) The destination's format;

(4) In overflow, underflow, and inexact exceptions, the correctly rounded
result, including information that might not fit in the destination's for­
mat; and

(5)]n invalid operation and divide by zero exceptions, the operand values.

8.2. Precedence. If enabled, the overflow and underflow traps take pre­
cedence over a separate inexact trap.

8Note that a system whose underlying hardware always traps on underflow, pro­
ducing a rounded, bias-adjusted result, must indicate whether such a result is round­
ed up in magnitude in order that the correctly denormalized result may be produced
in system software when the user underflow trap is disabled.

DRAFT STANDARD -- SUBJECT TO CHANGE

Appendix: Recommended functions and predicates

This appendix is not part of IEEE Standard 754
for Binary Floating-Point Arithmetic,
but is included for information only.

A.18

The following functions and predicates are recommended as aids to pro­
gram portability across different systems, perhaps performing arithmetic
very differently. They are described generically; that is, the types of the
operands and results are inherent in the operands. Languages that require
explicit typing will have corresponding families of functions and predicates.

Some functions below, like the copy operation y := x without change of
format, may at the implementor's option be treated as nonarithmetic opera­
tions which do not signal the invalid operation exception for signaling NaNs;
the functions in question are (1), (2), (6), and (7).

(1) copysign(x ,y) returns x with the sign of y. Hence, abs(x) =
copysign(x, 1.0), even if x is NaN.

(2) -x is x copied v.rith its sign reversed, not 0-x; the distinction is ger­
mane when x is ±0 or NaN. Consequently, it would be a mistake to use
the sign bit to distinguish signaling NaNs from quiet NaNs.

(3) scalb(y,N) returns y x 'zN for integral values N without computing 2N.

(4) logb(x) returns the unbiased exponent of x, a signed integer in the for­
mat of x, except that logb(NaN) is a NaN, logb(00) is +00 , and logb(O) is
- 00 and signals the division by zero ex~ption. When x is positive and
finite the expression scalb(x ,-logb(x)) lies strictly between O and 2; it is
less than 1 only when x is denormalized.

(5) nextafter(x ,y) returns the next representable neighbor of x in the
direction toward y. The following special cases arise: if x=y, then the
result is x without any exception being signaled; otherwise, if either x or
y is a quiet NaN, then the result is one or the other of the input NaNs.
Overflow is signaled when x is finite but nextafter(x ,y) is i~ite;
underflow is signaled when nextafter(x ,y) lies strictly between ±2 mm; in
both cases, inexact is signaled.

(6) finite(x) returns the value TRUE if - 00 < x < +00 , and returns FALSE oth­
erwise.

(7) isnan(x), or equivalently x #x, returns the value TRUE if x is a NaN, and
returns FAl.SE otherwise.

(B) x <>y is TRUE only when x <y or x >y, and is distinct from x #y, which
means NOT(x =y) (Table 4).

(9) unordered(x ,y), or x ?y, returns the value TRUE if x is unordered with
y, and returns FALSE otherwise (Table 4).

(10) class(x) tells which of the following ten classes x falls into: signaling
NaN, quiet NaN, - 00 , negative normalized nonzero, negative denormal­
ized, -0, +O, positive denormalized, positive normalized nonzero, + 00 •

This function is never exceptional, not even for signaling NaNs.

APPENDIX B

Test Vectors for P754 Arithmetic - Version 2.0

The initial version of this test data base for the proposed IEEE 754 binary
floating-point standard (draft 8.0) was developed for Zilog, Inc. and was
donated to the floating-point working group for dissemination. Errors in or
additions to the distributed data base should be reported to the agency of
distribution, with copies to Zilog, Inc., 1315 Dell Avenue, Campbell, CA, 95008.

There are sixteen files of test vectors, for the operations add (+), sub­

tract {-), multiply {*), divide (/), square root (V), compare (C), remainder

(%), round to integer (1), nextafter {N), absolute value {A), negate {~), copy­

sign {@), scalb {S), logb (L), and fraction part {F).

B.1

! First. some easy integer cases.
2+ ALL 1 1 OK 2
2+ ALL 1 2 OK 3
2+ ALL 2 1 OK 3
2+ ALL 2 2 OK 4
2+ =0> 2 -2 OK O
2+ < 2 -2 OK -0
2+ =0> 5 -5 OK O
2+ < 5 -5 OK -0
2+ ALL 1 7 OK 8
2+ ALL 5 -1 OK 4
2+ ALL 2 -5 OK -3
2+ ALL 5 -0 OK 5
2+ ALL 5 +0 OK 5
I Infinity vs Infinity.
2+ ALL H H OK H ok - affine sum
2+ ALL -H -H OK -H
2+ ALL -H H i Q different signs
2+ ALL H -H i Q
I Infinity vs huge.
2+ ALL H Hml OK H
2+ ALL H -Hml OK H
2+ ALL -H Hml OK -H
2+ ALL -H -Hml OK -H
2+ ALL Hml H OK H
2+ ALL Hml -H OK -H
2+ ALL -Hml H OK H
2+ ALL -Hml -H OK -H
! Infinity vs 0.
2+ ALL H O OK H
2+ ALL H -0 OK H
2+ ALL -H O OK -H
2+ ALL -H -0 OK -H
2+ ALL O H OK H
2+ ALL -0 H OK H
2+ ALL O -H OK -H
2+ ALL -0 -H OK -H
! Infinity vs denormalized.
2+ ALL H Edl OK H
2+ ALL -H Edl OK -H
2+ ALL H -Edl OK H
2+ ALL -H -Edl OK -H
2+ ALL Oi3 H OK H
2+ ALL Oi3 -H OK -H
2+ ALL -Oi3 H OK H
2+ ALL -Oi3 -H OK -H
! Zero vs finite - watch that sign of 0
I is meaningless.
2+ ALL O Hml OK Hml
2+ ALL -0 Hml OK Hml
2+ ALL -Hml O OK -Hml
2+ ALL -Hml -0 OK -Hml
2+ ALL 1 -0 OK 1
2+ ALL -1 -0 OK -1
2+ ALL O 1 OK 1
2+ ALL -0 -1 OK -1
I Zero vs denormalized - underflows.
2+ ALL O Edl OK Edl
2+ ALL -0 Edl OK Edl
2+ ALL O -Edl OK -Ed 1
2+ ALL -0 -Edl OK -Edl
2+ ALL Oi3 O OK Oi3
2+ ALL Oi3 -0 OK Oi3
2+ ALL -Oi3 O OK -Oi3

2+ ALL -Oi3 -0 OK -Oi3
I Zero vs tiny - just in case.
2+ ALL -0 -E OK -E
2+ ALL E O OK E
2+ ALL O -E OK -E
2+ ALL -E O OK -E
! Zero vs Zero - watch signs and
I rounding modes.
2+ =0> O -0 OK O
2+ =0> -0 0 OK 0
2+ < 0 -0 OK -0
2+ < -0 0 OK -0
2+ ALL O O OK 0
2+ ALL -0 -0 OK -0
I Double a number -- may overflow so
! watch rounding mode.
2+ => Hml Hml xo H
2+ 0< Hml Hml xo Hdl
2+ =< -Hml -Hml xo -H
2+ 0> -Hml -Hml xo -Hdl
2+ ALL Hmld2 Hmld2 OK Hd2
2+ ALL -Hmld2 -Hmld2 OK -Hd2
2+ => Hd2 Hd2 XO H
2+ 0< Hd2 Hd2 XO Hdl
2+ =< -Hd2 -Hd2 XO -H
2+ 0> -Hd2 -Hd2 XO -Hdl
! Double an innocent number.
2+ ALL 1 1 OK 2
2+ ALL 3 3 OK 6
2+ ALL E E OK Ep l
2+ ALL Hm2 Hm2 OK Hml
! Double a tiny number - may under.flow.
2+ ALL Edl Edl OK Epld2
2+ ALL -Edl -Edl OK -Epld2
2+ ALL Oi4 Oi4 OK OiB
2+ ALL -Oi4 -Oi4 OK -OiB
2+ ALL Oil Oil OK Oi2
2+ ALL -Oil -Oil OK -Oi2
! Cancellation to O - to plus 0.
2+ =0> Hml -Hml OK 0
2+ =0> -Hmld2 Hmld2 OK 0
2+ =0> I -1 OK O
2+ =0> -3 3 OK O
2+ =0> E -E OK O
2+ =0> -E E OK O
2+ =0> Ed4 -Ed4 OK O
2+ =0> -Edl Edl OK O no underflow
2+ =0> Oil -Oil OK 0
2+ =0> -Oil Oil OK 0
2+ =0> Hdl -Hdl OK 0
I Cancellation to O - to minus 0.
2+ < Hml -Hml OK -0
2+ < -Hmld2 Hmld2 OK -0
2+ < 1 -1 OK -0
2+ < -3 3 OK -0
2+ < E -E OK -0
2+ < -E E OK -0
2+ < Ed4 -Ed4 OK -0
2+ < -Ed 1 Ed l OK -0 no underflow
2+ < Oil -Oil OK -0
2+ < -Oil Oil OK -0
2+ < Hdl -HdlOK -0
I Cancel forcing normalization of LSB
I (no rounding errors). Difference is in

B.2

! last place oi larger number.
I Medium numbers ...
2+ ALL lil -1 OK lul
2+ ALL -lil 1 OK -lul
2+ ALL lil -li2 OK -lul
2+ ALL -lil li2 OK lul
2+ ALL 2 -2il OK -2u1
2+ ALL -2 2il OK 2ul
2+ ALL 2i4 -2i3 OK 2ul
2+ ALL -2i4 2i3 OK -2ul
2+ ALL 4d 1 -4d2 OK 3ul
2+ ALL -4dl 4d2 OK -3ul
2+ ALL 2d4 -2d3 OK -lul
2+ ALL -2d4 2d3 OK lul
! Huge numbers ...
2+ ALL Hmlil -Hml OK Hmlul
2+ ALL -Hmlil Hml OK -Hmlul
2+ ALL Hmlil -Hmli2 OK -Hmlul
2+ ALL -Hmlil Hmli2 OK Hmlul
2+ ALL Hm2 -Hm2il OK -Hm2ul
2+ ALL -Hm2 Hm2il OK Hm2ul
2+ ALL Hm2i4 -Hm2i3 OK Hm2u1
2+ ALL -Hm2i4 Hm2i3 OK -Hm2u1
2+ ALL Hm2d 1 -Hm2d2 OK Hm3u1
2+ ALL -Hm2d1 Hm2d2 OK -Hm3u1
2+ ALL -Hd2 Hdl OK Hdlul
2+ ALL Hd2 -Hdl OK -Hdlul
I Tiny numbers ...
2+ ALL -Eil E OK -Eul
2+ ALL Eil -E OK Eul
2+ ALL -Edl E OK Eul
2+ ALL Edl -E OK -Eul
2+ ALL Eil -Ei2 OK -Eul
2+ ALL -Eil Ei2 OK Eul
2+ ALL Ed 1 -Ed2 OK Eul
2+ ALL -Edl Ed2 OK -Eul
2+ ALL Ed3 -Ed2 OK -Eul
2+ ALL -Ed3 Ed2 OK Eul
2+ ALL Oi2 -Oil OK Eul
2+ ALL -Oi2 Oil OK -Eul
2+ ALL Oi3 -Oi2 OK Eul
2+ ALL -Oi3 Oi2 OK -Eul
! Normalize from round bit - set up
I tests so that operands have
! exponents difleriI]8 by 1 unit.
! Medium numbers ...
2+ ALL 2 -2dl OK lul
2+ ALL -2 2dl OK -lul
2+ ALL -2dl 2 OK lul
2+ ALL 2dl -2 OK -lul
2+ ALL 4il -4dl OK 3u3
2+ ALL -4il 4dl OK -3u3
2+ ALL 4dl -4i2 OK -3u5
2+ ALL -4d 1 4i2 OK 3u5
2+ ALL 2il -lil OK lil
2+ ALL -2il lil OK -lil
2+ ALL 2i2 -lil OK li3
2+ ALL -2i2 lil OK -li3
2+ ALL 2i2 -1i3 OK lil
2+ ALL -2i2 li3 OK -lil
! Huge numbers ...
2+ ALL Hm2 -Hm2d1 OK Hm3ul
2+ ALL -Hm2 Hm2dl OK -Hm3u1
2+ ALL -Hmldl Hml OK Hm2u1

2+ ALL Hmldl -Hml OK -Hm2ul
2+ ALL Hm4il -Hm4dl OK Hm5u3
2+ ALL -Hm4il Hm4dl OK -Hm5u3
2+ ALL Hm2dl -Hm2i2 OK -Hm3u5
2+ ALL -Hm2dl Hm2i2 OK Hm3u5
2+ ALL Hm2il -Hmlil OK -Hm2il
2+ ALL -Hm2il Hmlil OK Hm2il
2+ ALL Hmli2 -Hm2il OK Hm2i3
2+ ALL -Hmli2 Hm2il OK -Hm2i3
2+ ALL Hm2i2 -Hm3i3 OK Hm3il
2+ ALL -Hm2i2 Hm3i3 OK -Hm3il
I Tiny numbers ...
2+ ALL Epl -Epldl OK Eul
2+ ALL -Epl Epldl OK -Eul
2+ ALL -Epldl Epl OK Eul
2+ ALL Epldl -Epl OK -Eul
2+ ALL Eplil -Epldl OK Eu3
2+ ALL -Eplil Epldl OK -Eu3
2+ ALL Ep2 -Ep2dl OK Eu2
2+ ALL -Ep2 Ep2dl OK -Eu2
2+ ALL -Ep2dl Ep2 OK Eu2
2+ ALL Ep2dl -Ep2 OK -Eu2
2+ ALL Ep2i 1 -Ep2d 1 OK Eu6
2+ ALL -Ep2il Ep2dl OK -Eu6
2+ ALL Epldl -Epli2 OK -Eu5
2+ ALL -Epldl Epli2 OK Eu5
2+ ALL Epldl -Epli4 OK -Eu9
2+ ALL -Epldl Epli4 OK Eu9
2+ ALL Eplil -Eil OK Eil
2+ ALL -Eplil Eil OK -Eil
2+ ALL Epli2 -Eil OK Ei3
2+ ALL -Epli2 Eil OK -Ei3
2+ ALL Ep2i2 -Epli3 OK Eplil
2+ ALL -Ep2i2 Epli3 OK -Eplil
! Add magnitude:

B.3

! cases where one operand is off in sticky -­
! rounding perhaps to an overflow.
! Huge vs medium.
2+ =0< Hml 1 x Hml
2+ > Hml 1 x Hmlil
2+ =0> -Hml -1 x -Hml
2+ < -Hml -1 x -Hmlil
2+ =0< Hmldl 1 x Hmldl
2+ > Hmldl 1 x Hml
2+ =0> -Hmldl -1 x -Hmldl
2+ < -Hmldl -1 x -Hml
2+ =0< Hdl 1 x Hdl
2+ > Hd 1 l xo H signal overflow
2+ =0> -Hdl -1 x -Hdl
2+ < -Hdl -1 XO -H
2+ =0< Hd2 1 x Hd2
2+ > Hd2 1 x Hd 1
2+ =0> -Hd2 -1 x -Hd2
2+ < -Hd2 -1 x -Hdl
! Huge vs denormal.
2+ =0< Oi 1 Hml x Hml
2+ > Oil Hml x Hmlil
2+ =0> -Oil -Hml x -Hml
2+ < -Oil -Hml x -Hmlil
2+ =0< Oil Hmldl :z: Hmldl
2+ > Oil Hmldl x Hml
2+ =0> -Oil -Hmld 1 x -Hmldl
2+ < -Oil -Hmldl x -Hml
2+ =0< Oil Hdl x Hdl

2+ > Oil Hdl xo H signal overflow
2+ =0> -Oil -Hdl x -Hdl
2+ < -Oil -Hdl XO -H
2+ =0< Oil Hd2 x Hd2
2+ > Oil Hd2 x Hdl
2+ =0> -Oil -Hd2 x -Hd2
2+ < -Oil -Hd2 x -Hdl
! Medium vs denorrnal.
2+ =0< Oil 1 x 1
2+ > Oil 1 x lil
2+ =0> -Qi 1 - 1 X -1
2+ < -Oil -1 x -lil
2+ =0< Oil ldl x ldl
2+ > Oil ldl x 1
2+ =0> -Oil -ldl x -ldl
2+ < -Oil -ldl x -1
2+ =0< Oil 2dl x 2dl
2+ > Oil 2dl X 2
2+ =0> -Oil -2dl x -2d 1
2+ < -Oil -2dl x -2
2+ =0< Oil 2d2 x 2d2
2+ > Oil 2d2 x 2dl
2+ =0> -Oil -2d2 x -2d2
2+ < -Oil -2d2 x -2dl

l Magnitude subtract when an operand is
l in the sticky bit. The interesting cases
I will a.rise when directed rounding
! forces a nonzero cancellation.
I Huge and medium.
2+ => Hml -1 x Hml
2+ 0< Hml -1 x Hmldl
2+ =< -Hml l x -Hml
2+ 0> -Hml 1 x -Hmldl
2+ => Hmldl -1 x Hmldl
2+ 0< Hmld l -1 :x Hm1d2
2+ =< -Hmldl 1 x -Hmldl
2+ 0> -Hmldl 1 :x -Hmld2
2+ => Hdl -1 x Hdl
2+ 0< Hdl -1 x Hd2
2+ =< -Hdl 1 x -Hdl
2+ 0> -Hdl 1 x -Hd2
2+ => Hd2 -1 :x Hd2
2+ 0< Hd2 -1 :x Hd3
2+ =< -Hd2 1 :x -Hd2
2+ 0> -Hd2 1 x -Hd3
I Huge and tiny.
2+ :=> Hdl -Oil x Hdl
2+ 0< Hdl -Oil :x Hd2
2+ :=< -Hdl Oil x -Hdl
2+ 0> -Hdl Oil x -Hd2
2+ => -Oi3 Hml x Hml
2+ 0< -Oi3 Hml x Hmldl
2+ =< Oi3 -Hml x -Hml
2+ 0> Oi3 -Hml x -Hmldl
I Medium and tiny.
2+ => ldl -Oil :x ldl
2+ 0< ldl -Oil :x ld2
2+ =< -2dl Oil :x -2dl
2+ 0> -2dl Oil x -2d2
2+ => -Oi3 3 :x 3
2+ 0< -Oi3 3 x 3dl
2+ =< Oi3 -5 :x -5
2+ 0> Oi3 -5 X -5d 1

! Add magnitude with difference in LSB
! so, except for denorms, round bit
! is crucial. Half-way cases arise.
l Medium cases.
2+ =0< lil 1 :x 2
2+ > lil 1 x 2il
2+ =0> -lil -1 X -2
2+ < -lil -1 :x -2il
2+ =0> -2 -2il :x -4
2+ < -2 -2il x -4il
2+ =0< 2 2il :x 4
2+ > 2 2il x 4il
2+ => 1 1i3 :x 2i2
2+ 0< 1 li3 x 2i 1
2+ =< -1 -li3 x -2i2
2+ 0> -1 -li3 :x -2il
2+ =< -2il -2i2 x -4i2
2+ 0> -2il -2i2 :x -4il
2+ => 2il 2i2 X 4i2
2+ 0< 2i1 2i2 X 4il
! Huge cases.
2+ => Hd2 Hdl XO H
2+ 0< Hd2 Hdl XO Hdl
2+ =< -Hd2 -Hd 1 :XO -H
2+ 0> -Hd2 -Hdl :xo -Hdl
2+ => Hmldl Hml :xo H
2+ 0< Hmldl Hml :x Hdl
2+ =< -Hmldl -Hml xo -H
2+ 0> -Hmldl -Hml :x -Hdl
2+ => Hmlil Hml :xo H
2+ 0< Hmlil Hml :xo Hdl
2+ =< -Hmlil -Hml :xo -H
2+ 0> -Hmlil -Hml xo -Hdl
2+ =0< Hm2i 1 Hm2 :x Hml
2+ > Hm2il Hm2 x Hmlil
2+ =0> -Hm2il -Hm2 :x -Hml
2+ < -Hm2il -Hm2 x -Hmlil
2+ =0< Hmld2 Hmldl x Hd2
2+ > Hmld2 Hmldl x Hdl
2+ =0> -Hmld2 -Hmldl x -Hd2
2+ < -Hmld2 -Hmldl x -Hdl
! Check rounding.
2+ > 2 lul x 2il
2+ =0< 2 lul x 2
2+ => 2i1 lul x 2i2
2+ 0< 2il lul :x 2il
2+ => 4dl lul x 4
2+ 0< 4dl lul x 4d1
2+ > 4d1 luldl x 4
2+ 0=< 4d1 luldl :x 4dl
2+ =< -4dl -lul x -4
2+ 0> -4dl -lul x -4dl
2+ < -4dl -luldl x -4
2+ 0=> -4dl -luldl x -4dl
!NAN operands.
2+ ALL Q 0 OK Q
2+ ALL Q -0 OK Q
2+ ALL O Q OK Q
2+ ALL -0 Q OK Q
2+ ALL Q 1 OK Q
2+ ALL Q -1 OK Q
2+ ALL 1 Q OK Q
2+ ALL -1 Q OK Q

B.4

2+ ALL Edl Q OK Q
2+ ALL -Edl Q OK Q
2+ ALL Q Ed 1 0 K Q
2+ ALL Q -Edl OK Q
2+ ALL Q Oil OK Q
2+ ALL Q -Oil OK Q
2+ ALL Oil Q OK Q
2+ ALL -Oil Q OK Q
2+ ALL Q Hdl OK Q
2+ ALL Q -Hdl OK Q
2+ ALL Hdl Q OK Q
2+ ALL -Hdl Q OK Q
2+ ALL Q H OK Q
2+ ALL Q -H OK Q
2+ ALL H Q OK Q
2+ ALL -H Q OK Q
2+ ALL Q Q OK Q
2+ ALL S O i Q
2+ ALL S -0 i Q
2+ ALL O S i Q
2+ ALL -0 S i Q
2+ ALL S 1 i Q
2+ ALL S -1 i Q
2+ ALL 1 S i Q
2+ ALL -1 S i Q
2+ ALL Edl Si Q
2+ ALL -Edl S i Q
2+ ALL S Edl i Q
2+ ALL S -Edl i Q
2+ ALL S OH i Q
2+ ALL S -Oil i Q
2+ ALL Oil S i Q
2+ ALL -Oil S i Q
2+ ALL S Hd 1 i Q
2+ ALL S -Hdl i Q
2+ ALL Hd 1 S i Q
2+ ALL -Hdl S i Q
2+ ALL S H i Q
2+ ALL S -H i Q
2+ ALL H S i Q
2+ ALL -H S i Q
2+ ALL Q S i Q
2+ ALL S Q i Q
2+ ALL S S i Q

B.5

! First some easy integer cases,
2- ALL 1 -1 OK 2
2- ALL 1 -2 OK 3
2- ALL 2 -1 OK 3
2- ALL 2 -2 OK 4
2- =0> 2 2 OK O
2- < 2 2 OK -o
2- =0> 5 5 OK 0
2- < 5 5 OK -0
2- ALL 1 -7 OK 8
2- ALL 5 1 OK 4
2- ALL 2 5 OK -3
2- ALL 5 0 OK 5
2- ALL 5 -0 OK 5
I Infinity vs Infinity.
2- ALL H -H OK H ok - affine sum
2- ALL -H H OK -H
2- ALL -H -H i Q different signs
2-ALLHHiQ
I Infinity vs huge.
2- ALL H -Hml OK H
2- ALL H Hml OK H
2- ALL -H -Hml OK -H
2- ALL -H Hml OK -H
2- ALL Hml -H OK H
2- ALL Hml H OK -H
2- ALL -Hml -H OK H
2- ALL -Hml H OK -H
! Infinity vs 0.
2- ALL H -0 OK H
2- ALL H O OK H
2- ALL -H -0 OK -H
2- ALL -H O OK -H
2- ALL O -H OK H
2- ALL -0 -H OK H
2- ALL O H OK -H
2- ALL -0 H OK -H
I Infinity vs denormalized.
2- ALL H -Edl OK H
2- ALL -H -Edl OK -H
2- ALL H Edl OK H
2- >LL -H Edl OK -H
2- ALL Oi3 -H OK H
2- ALL Oi3 H OK -H
2- ALL -Oi3 -H OK H
2- ALL -Oi3 H OK -H
I Zero vs finite - watch that sign of
I O is meaningless.
2- ALL O -Hm1 OK Hml
2- ALL -0 -Hml OK Hml
2- ALL -Hml -0 OK -Hml
2- ALL -Hml O OK -Hml
2- ALL 1 O OK 1
2- ALL -1 0 OK -1
2- ALL O -1 OK 1
2- ALL -0 1 OK -1
I Zero vs denormalized - under.flows.
2- ALL O -Edl OK Edl
2- ALL -0 -Edl OK Edl
2- ALL O Edl OK -Edl
2- ALL -0 Edl OK -Edl
2- ALL Oi3 -0 0 K Oi3
2- ALL Oi3 O OK Oi3
2- ALL -Oi3 -0 OK -Oi3

2- ALL -Oi3 O OK -Oi3
! Zero vs tiny - just in case.
2- ALL -0 E OK -E
2- ALL E -0 OK E
2- ALL O E OK -E
2- ALL -E -0 OK -E
! Zero vs Zero -- watch signs and
! rounding modes.
2- =O> O O OK 0
2- ,::0> -0 -0 OK 0
2- < 0 0 OK -0
2- < -0 -0 OK -0
2- ALL O -0 OK 0
2- ALL -0 O OK -0
I Double a number -- may over.flow so
! watch rounding mode.
2- ,::> Hml -Hml xo H
2- 0< Hml -Hml xo Hdl
2- =< -Hml Hml xo -H
2- 0> -Hml Hml xo -Hdl
2- ALL Hmld2 -Hmld2 OK Hd2
2- ALL -Hmld2 Hmld2 OK -Hd2
2- => Hd2 -Hd2 XO H
2- 0< Hd2 -Hd2 XO Hdl
2- =< -Hd2 Hd2 XO -H
2- 0> -Hd2 Hd2 XO -Hdl
! Double an innocent number.
2- ALL 1 -1 OK 2
2- ALL 3 -3 OK 6
2- ALL E -E OK Epl
2- ALL Hm2 -Hm2 OK Hml
! Double a tiny number - may under.flow.
2- ALL Edl -Edl OK Epld2
2- ALL -Edl Edl OK -Epld2
2- ALL Oi4 -Oi4 OK Oi8
2- ALL -Oi4 Oi4 OK -Oi8
2- ALL Oil -Oil OK Oi2
2- ALL -Oi 1 Oil OK -Oi2
! Cancellation to O - to plus 0.
2- =0> Hml Hml OK 0
2- =0> -Hmld2 -Hmld2 OK 0
2- =0> 1 1 OK 0
2- ,::O> -3 -3 OK O
2- =0> E E OK o
2- =0> -E -E OK o
2- ,::0> Ed4 Ed4 OK O
2- =0> -Edl -Edl OK O no under.flow
2- =0> Oil Oil OK 0
2- =0> -Oil -Oil OK 0
2- ,::0> Hdl Hdl OK 0
I Cancellation to O - to minus 0.
2- < Hml Hml OK -0
2- < -Hmld2 -Hmld2 OK -0
2- < 1 1 OK -0
2- < -3 -3 OK -0
2- < E E OK -0
2- < -E -E OK -0
2- < Ed4 Ed4 OK -o
2- < -Edl -Edl OK -0 no under.flow
2- < Oil Oil OK -0
2- < -Oil --Oil OK -0
2- < Hdl Hdl OK -0
I Cancel forcing normalization of LSB
I (no rounding errors). Difference is in

B.6

! la.st place of larger number.
I Medium numbers ...
2- ALL lil 1 OK lul
2- ALL -lil -1 OK -lul
2- ALL lil li2 OK -lul
2- ALL -lil -li2 OK lul
2- ALL 2 2il OK -2ul
2- ALL -2 -2il OK 2ul
2- ALL 2i4 2i3 OK 2ul
2- ALL -2i4 -2i3 OK -2ul
2- ALL 4dl 4d2 OK 3ul
2- ALL -4dl -4d2 OK -3ul
2- ALL 2d4 2d3 OK -lul
2- ALL -2d4 -2d3 OK lul
I Huge numbers ...
2- ALL Hmlil Hml OK Hmlul
2- ALL -Hmlil -Hml OK -Hmlul
2- ALL Hmlil Hmli2 OK -Hmlul
2- ALL -Hmlil -Hmli2 OK Hmlul
2- ALL Hm2 Hm2il OK -Hm2ul
2- ALL -Hm2 -Hm2il OK Hm2ul
2- ALL Hm2i4 Hm2i3 OK Hm2ul
2- ALL -Hm2i4 -Hm2i3 OK -Hm2ul
2- ALL Hm2d 1 Hm2d2 OK Hm3ul
2- ALL -Hm2dl -Hm2d2 OK -Hm3ul
2- ALL -Hd2 -Hdl OK Hdlul
2- ALL Hd2 Hdl OK -Hdlul
! Tiny numbers ...
2- ALL -Eil -E OK -Eul
2- ALL Eil E OK Eul
2- ALL -Edl -E OK Eul
2- ALL Edl E OK -Eul
2- ALL Eil Ei2 OK -Eul
2- ALL -Eil -Ei2 OK Eul
2- ALL Edl Ed2 OK Eul
2- ALL -Edl -Ed2 OK -Eul
2- ALL Ed3 Ed2 OK -Eul
2- ALL -Ed3 -Ed2 OK Eul
2- ALL Oi2 Oil OK Eul
2- ALL -Oi2 -Oil OK -Eul
2- ALL Oi3 Oi.2 OK Eul
2- ALL -Oi3 -Oi2 OK -Eul
! Normalize :from round bit - set up tests
I so that operands ha.ve
I exponents differing by l unit.
! Medium numbers ...
2- ALL 2 2dl OK lul
2- ALL -2 -2dl OK -lul
2- ALL -2dl -2 OK lul
2- ALL 2dl 2 OK -lul
2- ALL 4i1 4d 1 OK 3u3
2- ALL -4il -4d 1 OK -3u3
2- ALL 4dl 4i2 OK -3u5
2- ALL -4d 1 -4i2 OK 3u5
2- ALL 2il lil OK lil
2- ALL -2il -lil OK -lil
2- ALL 2i2 li 1 OK li3
2- ALL -2i2 -lil OK -1i3
2- ALL 2i2 li3 OK lil
2- ALL -2i2 -li3 OK -lil
I Huge numbers ...
2- ALL Hm2 Hm2dl OK Hm3u1
2- ALL -Hm2 -Hm2d1 OK -Hm3u1
2- ALL -Hmldl -Hml OK Hm2u1

2- ALL Hmldl Hml OK -Hm2u1
2- ALL Hm4il Hm4dl OK Hm5u3
2- ALL -Hm4il -Hm4dl OK -Hm5u3
2- ALL Hm2dl Hm2i2 OK -Hm3u5
2- ALL -Hm2dl -Hm2i2 OK Hm3u5
2- ALL Hm2il Hmlil OK -Hm2il
2- ALL -Hm2il -Hmlil OK Hm2il
2- ALL Hmli2 .Hm2il OK Hm2i3
2- ALL -Hmli2 -Hm2il OK -Hm2i3
2- ALL Hm2i2 Hm3i3 OK Hm3il
2- ALL -Hm2i2 -Hm3i3 OK -Hm3il
! Tiny numbers ...
2- ALL Epl Epldl OK Eul
2- ALL -Epl -Epldl OK -Eul
2- ALL -Epldl -Epl OK Eul
2- ALL Epldl Epl OK -Eul
2- ALL Eplil Epldl OK Eu3
2- ALL -Eplil -Epldl OK -Eu3
2- ALL Ep2 Ep2dl OK Eu2
2- ALL -Ep2 -Ep2dl OK -Eu2
2- ALL -Ep2dl -Ep2 OK Eu2
2- ALL Ep2d 1 Ep2 OK -Eu2
2- ALL Ep2il Ep2dl OK Eu6
2- ALL -Ep2il -Ep2dl OK -Eu6
2- ALL Epldl Epli2 OK -Eu5
2- ALL -Epldl -Epli2 OK Eu5
2- ALL Epldl Epli4 OK -Eu9
2- ALL -Epldl -Epli4 OK Eu9
2- ALL Eplil Eil OK Eil
2- ALL -Eplil -Eil OK -Eil
2- ALL Epli2 Eil OK Ei3
2- ALL -Epli2 -Eil OK -Ei3
2- ALL Ep2i2 Epli3 OK Eplil
2- ALL -Ep2i2 -Epli3 OK -Eplil
! Add magnitude:

B.7

I cases where one operand is off in sticky -­
! rounding perhaps to an overflow.
! Huge vs medium.
2- =0< Hml -1 :x Hml
2- > Hml -1 x Hmlil
2- =0> -Hml 1 :x -Hml
2- < -Hml 1 x -Hmlil
2- =0< Hmldl -1 :x Hmldl
2- > Hmldl -1 x Hml
2- =0> -Hmldl 1 x -Hmldl
2- < -Hmldl l :x -Hml
2- =0< Hdl -1 :x Hdl
2- > Hdl -1 :xo H signal overflow
2- =0> -Hdl 1 :x -Hdl
2- < -Hdl 1 :XO -H
2- =0< Hd2 -1 :x Hd2
2- > Hd2 -1 :x Hdl
2- =0> -Hd2 1 :x -Hd2
2- < -Hd2 1 :x -Hdl
! Huge vs denorm.al.
2- =0< Oil -Hml :x Hml
2- > Oil -Hml :x Hmlil
2- =0> -Oil Hml :x -Hml
2- < -Oil Hml :x -Hmlil
2- =0< Oil -Hmldl x Hmldl
2- > Oil -Hmldl x Hml
2- =0> -Oil Hmldl x -Hm1d1
2- < -Oil Hmldl x -Hml
2- =0< Oil -Hdl x Hdl

2- > Oil -Hdl xo H signal overftow
2- =0> -Oil Hdl x -Hdl
2- < -Oil Hdl XO -H
2- =0< Oil -Hd2 :x Hd2
2- > Oil -Hd2 x Hdl
2- =0> -Oil Hd2 x -Hd2
2- < -Oil Hd2 x -Hdl
! Medium vs denormal.
2- =0< Oi 1 -1 :x 1
2- > Oi 1 -1 :x lil
2- =0> -Oil 1 :x -1
2- < -Oil l x -lil
2- =0< Oil -ldl x ldl
2- > Oi 1 -1 d 1 x 1
2- =0> -Oil ldl x -ldl
2- < -Oil ldl :x -1
2- ,:0< Oil -2d1 x 2dl
2- > Oil -2dl :x 2
2- =0> -Oil 2dl x -2dl
2- < -Oil 2dl :x -2
2- =0< Oil -2d2 x 2d2
2- > Oil -2d2 x 2d1
2- =0> -Oil 2d2 :x -2d2
2- < -Oil 2d2 x -2d1
!
! Magnitude subtract when an operand
! is in the sticky bit. The interesting
! cases will arise when directed rounding
! forces a nonzero cance11ation.
! H1J8e and medium.
2- => Hml 1 :x Hml
2- 0< Hml 1 x Hmldl
2- =< -Hml -1 x -Hml
2- 0> -Hml -1 :x -Hmldl
2- => Hmldl 1 x Hmldl
2- 0< Hmldl 1 x Hmld2
2- =< -Hmldl -1 x -Hmldl
2- 0> -Hmldl -1 x -Hmld2
2- => Hdl 1 :x Hdl
2- 0< Hdl 1 x Hd2
2- =< -Hdl -1 x -Hdl
2- 0> -Hdl -1 x -Hd2
2- => Hd2 1 x Hd2
2- 0< Hd2 1 x Hd3
2- =< -Hd2 -1 x -Hd2
2- 0> -Hd2 -1 x -Hd3
I H1J8e and tiny.
2- => Hdl Oil x Hdl
2- 0< Hdl Oil x Hd2
2- =< -Hdl -Oil x -Hdl
2- 0> -Hdl -Oil :x -Hd2
2- => -Oi3 -Hml x Hml
2- 0< -Oi3 -Hml :x Hmldl
2- =< Oi3 Hml x -Hml
2- 0> Oi3 Hml x -Hmldl
I Medium and tiny.
2- => ldl Oil x ldl
2- 0< ldl Oil x ld2
2· =< -2dl -Oil :x -2d1
2- 0> -2dl -Oil x -2d2
2- => -Qi3 -3 X 3
2- 0< -Oi3 -3 X 3dl
2- =< Oi3 5 X -5
2- 0> Oi3 5 x -5dl

! Add magnitude with difference in LSB so,
! except for denorms, round bit is crucial.
I Half-way cases arise.
I Medium cases.
2- =0< lil -1 x 2
2- > li 1 -1 X 2i 1
2- =0> -lil 1 :x -2
2- < -lil 1 x -2il
2- =0> -2 2il X -4
2- < -2 2il x -4il
2- =0< 2 -2i 1 X 4
2- > 2 -2il x 4il
2- => 1 -li3 x 2i2
2- 0< 1 -li3 x 2il
2- =< -1 li3 x -2i2
2- 0> -1 li3 x -2il
2- =< -2il 2i2 x -4i2
2- 0> -2il 2i2 x -4il
2- => 2i 1 -2i2 X 4i2
2- 0< 2il -2i2 X 4il
! H1J8e cases.
2- => Hd2 -Hdl XO H
2- 0< Hd2 -Hdl XO Hdl
2- =< -Hd2 Hdl XO -H
2- 0> -Hd2 Hdl XO -Hdl
2- => Hmldl -Hml xo H
2- 0< Hmldl -Hml x Hdl
2- =< -Hmldl Hml xo -H
2- 0> -Hmldl Hml x -Hdl
2- :e:> Hmlil -Hml xo H
2- 0< Hmlil -Hml xo Hdl
2- =< -Hmlil Hml xo -H
2- 0> -Hmlil Hml xo -Hdl
2- =0< Hm2il -Hm2 x Hml
2- > Hm2il -Hm2 x Hmlil
2- =0> -Hm2il Hm2 x -Hml
2- < -Hm2i1 Hm2 x -Hmlil
2- =0< Hmld2 -Hmldl x Hd2
2- > Hmld2 -Hmldl :x Hdl
2- =0> -Hmld2 Hmldl :x -Hd2
2- < -Hmld2 Hmldl x -Hdl
! Check rounding.
2- > 2 -lul :x 2il
2- =0< 2 -lul x 2
2- => 2il -lul x 2i2
2- 0< 2il -lul x 2il
2- => 4<l 1 -lul :x 4
2- 0< 4dl -lul x 4dl
2- > 4dl -luldl x 4
2- 0=< 4d1 -luldl x 4dl
2- =< -4d1 lul x -4
2- 0> -4dl lul x -4d1
2- < -4<ll luldl x -4
2- 0=> -4dl luldl x -4dl
! NaN operands.
2- ALL Q 0 OK Q
2- ALL Q -0 OK Q
2- ALL 0 Q OK Q
2- ALL -0 Q OK Q
2- ALL Q 1 OK Q
2- ALL Q -1 OK Q
2- ALL 1 Q OK Q
2- ALL -1 Q OK Q
2- ALL Ed 1 Q OK Q

B.B

2- ALL -Edl Q OK Q
2- ALL Q Ed 1 0 K Q
2- ALL Q -Edl OK Q
2- ALL Q Oil OK Q
2- ALL Q -Oil OK Q
2- ALL Oil Q OK Q
2- ALL -Oil Q OK Q
2- ALL Q Hdl OK Q
2- ALL Q -Hdl OK Q
2-- ALL Hdl Q OK Q
2- ALL -Hdl Q OK Q
2- ALL Q H OK Q
2- ALL Q -H OK Q
2- ALL H Q OK Q
2- ALL -H Q OK Q
2- ALL Q Q OK Q
2- ALL S O i Q
2- ALL S -0 i Q
2- ALL O S i Q
2- ALL -0 S i Q
2- ALL S 1 i Q
2- ALL S -1 i Q
2- ALL 1 S i Q
2- ALL -1 S i Q
2-- ALL Edl S i Q
2- ALL -Edl S i Q
2- ALL S Edl i Q
2- ALL S -Edl i Q
2- ALL S Oil i Q
2- ALL S -Di 1 i Q
2-- ALL Oil S i Q
2- ALL -Oil S i Q
2- ALL S Hdl i Q
2- ALL S -Hdl i Q
2- ALL Hdl S i Q
2- ALL -Hdl S i Q
2- ALL S H i Q
2- ALL S -H i Q
2- ALL H S i Q
2- ALL -H S i Q
2- ALL Q S i Q
2- ALL S Q i Q
2- ALL S S i Q

B.9

! First some easy tests for consistency.
2• ALL l 1 OK 1
2' ALL 1 2 OK 2
2• ALL 2 l OK 2
2• ALL 2 3 OK 6
2• ALL 3 2 OK 6
2' ALL 3 3 OK 9
! Check out sign ma.'1.ipulation.
2' ALL -1 1 OK -1
2• ALL -1 2 OK -2
2• ALL 2 -1 OK -2
2• ALL -2 3 OK -6
2' ALL 3 -2 OK -6
2' ALL -3 3 OK -9
2' ALL -1 -1 OK 1
2• ALL -1 -2 OK 2
2• ALL -2 -1 OK 2
2• ALL -2 -3 OK 6
2• ALL -3 -2 OK 6
2' ALL -3 -3 OK 9
I Some zero tests, round mode is
! irrelevant.
2' ALL O O OK O
2• ALL -0 0 OK -0
2• ALL O -0 OK -0
2• ALL -0 -0 OK O
! Infinity tests, round mode
! irrelevant.
2• ALL H H OK H
2• ALL -H H OK -H
2' ALL H -H OK -H
2• ALL -H -H OK H
! Ini • 0 - always bad news.
2' ALL H O i Q
2• ALL -0 H i -Q
2• ALL H -0 i -Q
2• ALL -0 -Hi Q
! Ini • sm.a.l.l..integer -> Inf.
2• ALL H 1 OK H
2' ALL -2 H OK -H
2• ALL H -3 OK -H
2• ALL -4 -H OK H
2• ALL 5 H OK H
2• ALL -H 6 OK -H
2• ALL 7 -H OK -H
2' ALL -H -8 OK H
l In! •huge-> Ini.
2' ALL Hml H OK H
2• ALL -Hm2 H OK -H
2• ALL H -Hml OK -H
2• ALL -H -Hrn2 OK H
2' ALL H Hmldl OK H
2• ALL -Hm2dl H OK -H
2• ALL H -Hdl OK -H
2' ALL -Hdl -H OK H
! In! • tiny-> Inf.
2• ALL E H OK H
2' ALL -Epl H OK -H
2' ALL H -Epl OK -H
2• ALL -H -E OK H
2• ALL H Epldl OK H
2• ALL -Eil H OK -H
2• ALL H -Eil OK -H
2• ALL -Epldl -H OK H

! Ini •denormalized-> Ini.
2• ALL Oil H OK H
2• ALL -Oi3 H OK -H
2• ALL H -Oi2 OK -H
2• ALL -H -Di4 OK H
2• ALL H Edl OK H
2• ALL -Edl H OK -H
2• ALL H ~Edl OK -H
2' ALL -Edl -H OK H
! 0 • smalLinteger -> 0.
2• ALL 0 1 OK 0
2• ALL -2 0 OK -0
2' ALL O -3 OK -0
2• ALL -4 -0 OK 0
2' ALL 5 0 OK O
2• ALL -0 6 OK -0
2' ALL 7 -0 OK -0
2• ALL -0 -8 OK 0
! 0 •huge-> 0.
2• ALL Hml O OK 0
2• ALL -Hm2 O OK -0
2• ALL O -Hml OK -0
2' ALL -0 -Hm2 OK O
2• ALL 0 Hmldl OK 0
2• ALL -Hm2dl O OK -0
2• ALL 0 -Hm2d 1 OK -0
2• ALL -Hmldl -0 OK 0
2• ALL Hdl O OK 0
2• ALL -Hdl -0 OK 0
2• ALL 0 -Hdl OK -0
2• ALL -0 Hdl OK -0
! 0 •tiny-> 0.
2' ALL E O OK O
2• ALL -Epl 0 OK -0
2• ALL O -Epl OK -0
2• ALL -0 -E OK 0
2• ALL O Epldl OK 0
2• ALL -Eil 0 OK -0
2• ALL 0 -Eil OK -0
2• ALL -Epldl -0 OK 0
l 0 •denormalized-> 0.
2• ALL Oil 0 OK 0
2• ALL -Oi3 0 OK -0
2• ALL 0 -Oi2 OK -0
2• ALL -0 -Oi4 OK 0
2' ALL 0 Edl OK 0
2• ALL -Edl 0 OK -0
2• ALL O -Edl OK -0
2' ALL -Edl -0 OK 0
I Exact cases huge and 2.
2' ALL 2 Hm2 OK Hml
2' ALL Hm2 -2 OK -Hml
2• ALL -2 Hm2d 1 OK -Hmld 1
2" ALL 2 -Hm2d3 OK -Hmld3
2• ALL 2 Hm2 OK Hml
2' ALL Hm2 -2 OK -Hml
2' ALL -2 Hm2d 1 OK -Hmld 1
2• ALL 2 -Hm2d3 OK -Hmld3
2' ALL 2 Hmldl OK Hdl
2' ALL Hmldl -2 OK -Hdl
2• ALL -2 Hm2il OK -Hmlil
2• ALL 2 -Hm2i3 OK -Hmli3
2• ALL 2 Hmldl OK Hdl
2• ALL Hmldl -2 OK -Hdl

B.10

2• ALL -2 Hm2il OK -Hmlil
2• ALL 2 -Hm2i3 OK -Hmli3
! Exact cases huge and 4.
2• ALL 4 Hm2dl OK Hdl
2• ALL -4 Hm2d1 OK -Hdl
2• ALL 4 -Hm2dl OK -Hdl
2• ALL -4 -Hm2dl OK Hdl
2• ALL 4 Hm2d 1 OK Hdl
2' ALL -4 Hm2dl OK -Hdl
2• ALL 4 -Hm2dl OK -Hdl
2• ALL -4 -Hm2dl OK Hdl
2• ALL Hm2d3 4 OK Hd3
2• ALL Hm2d3 -4 OK -Hd3
2• ALL -Hm2d3 4 OK -Hd3
2• ALL -Hrn2d3 -4 OK Hd3
2• ALL Hm2d3 4 OK Hd3
2• ALL Hm2d3 -4 OK -Hd3
2• ALL -Hm2d3 4 OK -Hd3
2• ALL -Hm2d3 -4 OK Hd3
! Exact cases tiny and 2.
2• ALL 2 E OK Epl
2• ALL E -2 OK -Epl
2• ALL -2 Eil OK -Eplil
2• ALL 2 -Ei3 OK -Epli3
2• ALL 2 E OK Epl
2• ALL E -2 OK -Epl
2• ALL -2 Ei9 OK -Epli9
2• ALL 2 -Ei5 OK -Epli5
2' ALL 2 Eil OK Eplil
2• ALL Eil -2 OK -Eplil
2• ALL -2 Ei5 OK -Epli5
2• ALL 2 -Ei3 OK -Epli3
2° ALL 2 Eil OK Eplil
2• ALL Eil -2 OK -Eplil
2• ALL -2 Ei5 OK -Epli5
2• ALL 2 -Ei3 OK -Epli3
! Just below denormalization tlrreshold.
2' ALL Edl 2 OK Epld2
2' ALL -2 Ed3 OK -Epld6
2' ALL -Ed3 -2 OK Epld6
2• ALL -2 Ed3 OK -Epld6
2• ALL Ed4 2 OK EpldB
2• ALL 2 -Ed3 OK -Epld6
I NormaliziIJ8 tinies.
2• ALL Oil 2 OK Oi2
2• ALL 3 Oi2 OK O:i6
2• ALL -Oi 1 5 OK -Oi5
2• ALL 1 -O:i9 OK -O:i9
2• ALL -O:i4 -1 OK Oi4
2• ALL 4 Oi2 OK OiB
2• ALL Oil 2 OK Oi2
2• ALL 3 Oi2 OK Oi6
2• ALL -Oi 1 5 OK -Oi5
2• ALL 1 -Oi9 OK -Oi9
2• ALL -Oi4 -1 OK Oi4
2• ALL 4 Oi2 OK OiB
2• ALL Oil 2 OK Oi2
2• ALL 3 Oi2 OK Oi6
2• ALL -Di 1 5 OK -Oi5
2• ALL 1 -Oi.9 OK -Oi9
2• ALL -Oi4 -1 OK Oi4
2• ALL 4 Oi2 OK OiB
2• ALL Oil 2 OK Oi2
2• ALL 3 Oi2 OK Oi6

2" ALL -Oil 5 OK -Oi5
2• ALL 1 -Oi9 OK -Oi9
2• ALL -Oi4 -1 OK Oi4
2• ALL 4 Oi2 OK OiB
I 1.0 • various.
2• ALL 1 Epli3 OK Epli3
2" ALL -Epld2 1 OK -Epld2
2• ALL -1 Ei9 OK -Ei9
2• ALL -Eil -1 OK Eil
2• ALL 1 Epli3 OK Epli3
2" ALL -Epld2 1 OK -Epld2
2" ALL -1 Ei9 OK -Ei9
2• ALL -Eil -1 OK Eil
2• ALL 1 Ed3 OK Ed3
2• ALL -Oi2 1 OK -Oi2
2• ALL -1 Oi9 OK -Oi9
2• ALL -Edl -1 OK Edl
2• ALL 1 Ed3 OK Ed3
2• ALL -Oi2 1 OK -Oi2
2• ALL -1 Oi9 OK -Oi9
2' ALL -Edl -1 OK Edl
! Now some tricky roundiIJ8 cases
! involviIJ8 1.0 with some ulps.
! result = 1.00000 ... 0101000 ... 0001
2• =0< lil lil :x li2
2• > lil lil x li3
! Try signs ...
2' =O> ·lil lil :x -li2
2' < -lil lil x -li3
2' =0> lil -lil x -li2
2• < lil -lil :x -li3
2° =0< -lil -lil :x li2
2" > -lil -lil :x li3
! result= 1.0000 .. 01110000100
2• =0< li2 li l :x li3
2• > li2 lil :x li4
! Try signs ...
2' =0> -li2 lil :x -li3
2' < -li2 lil :x -li4
2° =0> lil -li2 :x -li3
2• < lil -1i2 x -li4
2• =0< -li2 -lil :x li3
2• > -lil -li2 x li4
2' > -li2 -lil :x 1i4
2' =0< -lil -li2 x 1i3
I (m + k ulps of m) • (1 + j ulps of 1)
I = m + (k + m•j/2-floor(log m)) ulps
I of m + tiny.
2' => 3i1 lil :x 3i3
2• 0< 3i1 li l :x 3i2
2• >= 3il li3 :x 3i6
2• O< 3il li3 :x 3i5
2• ==< -3i1 lil x -3i3
2• 0> -3il lil :x -3i2
2' <= 3il -li3 :x -3i6
2" 0> 3il -li3 X ·3i5
2• > 5i1 lil X 5i3
2' =0< 5il lil :x 5i2
2• > -5il -lil x 5i3
2• =0< -5i1 -lil :x 5i2
2' >= 7il lil x 7i3
2• <0 7i1 lil x 7i2
2• O<= 3dl ldl x 3d2
2• > 3dl ldl :x 3d1

B.11

2• 0< 3dl ld3 x 3d4
2• => 3dl ld3 x 3d3
2• 0>= -3dl ld 1 x -3d2
2• < -3dl ldl x -3dl
2• 0> 3d} -ld3 x -3d4
2• =< 3dl -ld3 x -3d3
2• => 3dl ld2 x 3d2
2• 0< 3dl ld2 x 3d3
2• 0<= 5dl ldl x 5d2
2• > 5dl ldl x 5dl
2• 0<= -5d1 -ldl x 5d2
2• > -5dl -ldl x 5dl
2• <=0 7dl ldl x 7d2
2° > 7dl ldl x 7dl
2• => 7dl ld4 x 7d4
2• O< 7dl ld4 x 7d5
I Some overflow conditions, watching
! round mode.
2• => Hml 2 ox H
2• 0< Hml 2il ox Hdl
2• =< -3d2 Hml ox -H
2• 0> Hml -4i5 ox -Hdl
2• => -5d2 -Hml ox H
2 ♦ 0< Hml 6il ox Hdl
2• =< -7d7 Hml ox -H
2• 0> Hml -8i3 ox -Hdl
2' => -9il -Hml ox H
2• 0< Hml 6 ox Hdl
2• =< -9 Hml ox -H
2• 0> Hml -2 ox -Hdl
2• 0< -7 -Hml ox Hdl
2• => Hml 2 ox H
2° 0> -5 Hml ox -Hdl
2• 0> Hml -2 ox -Hdl
2• => -3 -Hml ox H
! Heavy overflow conditions,
! watching round mode.
2• => Hml Hml xo H
2• =< -Hd3 Hml xo -H
2• =< Hml -Hm2i4 xo -H
2• => -Hmli5 -Hmlil ox H
2• => Hmli9 Hd6 xo H
2• =< -Hm2d7 Hml xo -H
2• =< Hml -Hm2 xo -H
2• => -Hdl -Hdl XO H
2• 0< Hml Hm2i6 xo Hdl
2• =< -Hmld9 Hm2il xo -H
2• =< Hml -Hml xo -H
2• 0< -Hm2d7 -Hdl XO Hdl
2• => Hml Hd2 xo H
2• 0> -Hm2 Hml xo -Hdl
2• 0> Hmli9 -Hm2i2 xo -Hdl
2• => -Hd3 -Hmlil xo H
! Mixed bag overflow conditions,
! watching round mode. Tricky cases
! require careful]ook at power series
! expansion. Example - -Hmdl • lil:
! In single ...
I -(2-127 (1 - 2--24)) • (1 + 2~23) ->
! -(2-12? (1 + 2.-...24 - 2--47)) ->
I -2-127 except when rounding<, in which
I case -(2-127 (1 + 2--23)); that is,
! -Hm or -Hmil, respectively!
2• =0> -Hmldl lil x -Hml

2• < -Hmldl lil x -Hmlil
2' =0< -ldl -Hdl x Hd2
2• > -ldl -Hdl x Hdl
2• < -Hm2dl 2il x -Hmlil
2• =0> -Hm2dl 2il x -Hml
2• <= Hmld3 -2i8 xo -H
2• >0 Hmld3 -2i8 xo -Hdl
2• =0< -Hrn2d7 -4dl x HdB
2• > -Hm2d7 -4dl x Hd7
2• => li2 Hd2 XO H
2• 0< li2 Hd2 XO Hdl
2' =< Hmli9 -6i2 xo -H
2' 0> Hmli9 -6i2 xo -Hdl
2• => -Hd3 -3il XO H
2' O< -Hd3 -3il XO Hdl
! Exact and be]ow denomalization
! threshold - no underflow.
2• ALL E ld2 OK Edl
2" ALL Oil 1 OK Oil
2' ALL 1 -Oil OK -Oil
2' ALL Epld2 1ml OK Edl
2• ALL -Epld4 -lml OK Ed2
2• ALL Epld2 -lml OK -Edl
2" ALL -Epld4 1ml OK -Ed2
2• ALL EpldB 1ml OK Ed4
2" ALL OiB lm3 OK Oil
2• ALL Oi6 1ml OK Oi3
2' ALL -OiB lm3 OK -Oil
2' ALL Oi6 -lml OK -Oi3
I Inexact, extreme underflows.
2• =0< EE xu 0
2• =0< -E -E xu 0
2' > E Epl XU Oil
2• > -Epl -Epl xu Oil
2• =0> -E E xu -0
2' =0> E -E xu -0
2' < -E Epl XU -Oil
2• < E -E xu -Oil
2• =0< Edl Ed2 xu 0
2• =0< -Edl -Ed2 xu 0
2' > Edl Ed2 xu Oil
2• > -Edl -Ed2 xu Oil
V =0> -Ed9 Epli3 xu -0
2' =0> Ed9 -Epli3 xu -0
2" < -Ed9 Epli3 xu -Gil
2• < Ed9 -Epli3 xu -Oil
2• > Oil 1ml xu Oil
2• =O< Oil 1ml XU 0
2' < 1ml -Gil xu -Oil
2' =0> 1ml -Gil XU -0
2• <0 Oil ldl xu 0
2• => Oil ldl xu Oil
V > Oil Oil xu Oil
2° =0< Oil Oil xu 0
2• >0 -Gil ldl XU -0
2• =< Oil -ldl xu -Oil
2° < Oil -Oil XU -Oil
2 9 =0> -Oil Oil XU -0
! Underflow, barely.
2• 0< Epldl 1ml xu Edl
2• 0< -Epldl -lml xu Edl
2• 0> -Epldl 1ml xu -Edl
2• >= Epldl 1ml xu E
2' <= Epldl -lml xu -E

B.12

2• 0< Edl lil xu Edl
2• 0> Edl -lil xu -Edl
2" 0< Eil ld6 xu Ed3
2• > Ed2 1d4 xu Ed3
2• 0< Ed4 lil xu Ed4
2• 0< Eil ld2 xu Edl
! Underflow, unJess detected e.s e.ccure.cy
! loss due to denorme.lization.
2" >= Ed2 lil xv Edl
2• <= Ed2 -lil xv -Edl
2• >= EdB lil xv Ed7
2• <= -Ed9 lil xv -EdB
2• <= EdB -lil xv -Ed7
2" => Eil ld6 xv Ed2
2• <=0 Ed2 ld4 xv Ed4
I Underflow, only if tininess is detected
I before roundffi8.
2• >= Edl lil xw E
2• <= -Edl lil xw -E
2• >= EdB liB xw E
2• <= EdB -liB xw -E
2• >= Eil ld2 xw E
2• >= Ei2 ld4 xw E
! NaN operands.
2• ALL Q O OK Q
2• ALL Q -0 OK Q
2• ALL O Q OK Q
2• ALL -0 Q OK Q
2• ALL Q 1 OK Q
2• ALL Q -1 OK Q
2• ALL 1 Q OK Q
2• ALL -1 Q OK Q
2• ALL Edl Q OK Q
2• ALL -Edl Q OK Q
2• ALL Q Edl OK Q
2• ALL Q -Edl OK Q
2• ALL Q Oil OK Q
2• ALL Q -Oil OK Q
2• ALL Oil Q OK Q
2• ALL -Oil Q OK Q
2• ALL Q Hdl OK Q
2• ALL Q -Hdl OK Q
2" ALL Hd 1 Q OK Q
2• ALL -Hdl Q OK Q
2• ALL Q H OK Q
2• ALL Q -H OK Q
2• ALL H Q OK Q
2• ALL -H Q OK Q
2• ALL Q Q OK Q
2• ALL S O i Q
2• ALL S -0 i Q
2• ALL O S i Q
2• ALL -0 S i Q
2• ALL S 1 i Q
2• ALL S -1 i Q
2• ALL 1 S i Q
2• ALL -1 S i Q
2• ALL Edl Si Q
2• ALL -Edl S i Q
2• ALL S Edl i Q
2• ALL S -Ed 1 i Q
2• ALL S Oi 1 i Q
2• ALL S -Oil i Q
2• ALL Oil S i Q

2• ALL -Oil S i Q
2" ALL S Hdl i Q
2• ALLS -Hdli Q
2• ALL Hdl S i Q
2• ALL -Hdl S i Q
2• ALL S H i Q
2" ALL S -H i Q
2• ALL H S i Q
2• ALL -H S i Q
2• ALL Q S i Q
2"ALLSQiQ
2" ALL S S i Q

B.13

! First the consistency checks.
21 ALL 1 1 OK 1
2/ ALL 2 1 OK 2
2/ ALL 9 3 OK 3
2/ ALL 5 5 OK 1
2/ ALL 6 2 OK 4
! Check out sign manipuJation.
2/ ALL -1 1 OK -1
2/ ALL -2 1 OK -2
2/ ALL 2 -1 OK -2
2/ ALL -6 2 OK -4
2/ ALL 3 -3 OK -1
2/ ALL -7 7 OK -1
2/ ALL -1 -1 OK 1
2/ ALL -2 -1 OK 2
2/ ALL -6 -3 OK 2
2/ ALL -9 -3 OK 3
! Some zero tests, round mode
! is irrelevant.
2/ ALL O O i Q
21 ALL -0 O i -Q
2/ ALL 0 -0 i -Q
21 ALL -0 -o i Q
! Inftn:ity tests, round mode
! irrelevant.
2/ALLHHiQ
2/ ALL -H H i -Q
2/ ALL H -H i -Q
2/ ALL -H -H i Q
I Inf I O -> Inf with no problem.
2/ ALL H O OK H
21 ALL -H O OK -H
21 ALL H --0 OK -H
2/ ALL -H -0 OK H
I 0 / Inf-> 0 with no problem.
2/ ALL OH OK 0
2/ ALL -o H OK --0
21 ALL 0 -H OK -0
21 ALL -0 -H OK 0
! lni / sm.al.Linteger -> Inf.
21 ALL H 1 OK H
21 ALL -H 2 OK -H
21 ALL H -3 OK -H
21 ALL -H -4 OK H
2/ ALL H 5 OK H
21 ALL -H 6 OK -H
21 ALL H -7 OK -H
2/ ALL -H -6 OK H
! Smal.Lint I Inf-> o.
2/ ALL l H OK 0
2/ ALL -2 H OK --0
21 ALL 3 -H OK -0
21 ALL -4 -H OK 0
2/ ALL 5 H OK 0
2/ ALL -6 H OK -0
2/ ALL 7 -H OK --0
21 ALL -6 -H OK o
! Huge I Jnf -> 0.
2/ ALL Hml H OK 0
2/ ALL -Hm2 H OK -0
21 ALL Hml -H OK --0
2/ ALL -Hm2 -H OK O
2/ ALL Hmldl H OK 0
21 ALL -Hm2dl H OK --0

21 ALL Hdl -H OK -0
2/ ALL -Hdl -H OK O
! Inf/ huge-> Inf.
2/ ALL H Hml OK H
2/ ALL -H Hm2 OK -H
2/ ALL H -Hml OK -H
2/ ALL -H -Hm2 OK H
2/ ALL H Hmldl OK H
2/ ALL H -Hm2dl OK -H
2/ ALL H -Hdl OK -H
2/ ALL -H -Hdl OK H
! Inf /tiny-> Inf.
21 ALL H E OK H
2/ ALL -H Epl OK -H
21 ALL H -Epl OK -H
21 ALL -H -E OK H
2/ ALL H Epldl OK H
2/ ALL -H Eil OK -H
2/ ALL H -Eil OK -H
2/ ALL -H -Epldl OK H
I Tiny I Inf-> 0.
2/ ALL E H OK 0
21 ALL -Epl H OK -0
2/ ALL Epl -H OK -0
2/ ALL -E -H OK 0
2/ ALL Epldl H OK 0
21 ALL -Eil H OK -0
21 ALL Eil -H OK -0
2/ ALL -Epldl -H OK 0
! Inf / denormalized -> Inf.
2/ ALL H Oil OK H
2/ ALL -H Oi3 OK -H
2/ ALL H -Oi2 OK -H
21 ALL -H -Oi4 OK H
2/ ALL H Edl OK H
2/ ALL -H Edl OK -H
2/ ALL H -Edl OK -H
2/ ALL -H -Edl OK H
! Denorm / Inf-> 0.
21 ALL Oil H OK O
2/ ALL -Oi3 H OK -0
2/ ALL Oi2 -H OK -0
2/ ALL -Oi4 -H OK 0
2/ ALL Edl H OK O
2/ ALL -Edl H OK -0
2/ ALL Edl -H OK -0
2/ ALL -Edl -H OK 0
! 0 / smalUnteger -> 0.
2/ ALL O 1 OK 0
21 ALL -0 2 OK -0
21 ALL O -3 OK -0
2/ ALL --0 -4 OK 0
2/ ALL O 5 OK O
2/ ALL -0 6 OK -0
21 ALL 0 -7 OK --0
2/ ALL -0 -6 OK 0
! SmalLint I 0 -> Ini with DivBy0.
2/ ALL 1 Oz H
2/ ALL -2 O z -H
2/ ALL 3 --0 z -H
21 ALL -4 -0 z H
21 ALL 5 O z H
2/ ALL -6 O z -H
21 ALL 7 -0 z -H

B.14

21 ALL -8 -0 z H
! 0 / huge-> 0.
2/ ALL 0 Hml OK 0
21 ALL -0 Hm2 OK -0
21 ALL O -Hml OK -0
2/ ALL -0 -Hm2 OK O
21 ALL 0 Hmldl OK 0
2/ ALL -0 Hm2dl OK -0
2/ ALL O -Hm2dl OK -0
2/ ALL -0 -Hmldl OK 0
I H1J8e I O -> Inf with DivByO.
21 ALL Hml O z H
21 ALL -Hm2 0 z -H
2/ ALL Hml -0 z -H
2/ ALL -Hm2 -0 z H
2/ ALL Hmldl O z H
2/ ALL -Hm2dl Oz -H
2/ ALL Hm2dl -0 z -H
2/ ALL -Hmldl -0 z H
I O / tiny -> 0.
2/ ALL 0 E OK 0
2/ ALL -0 Epl OK -0
2/ ALL O -Epl OK -0
2/ ALL -0 -E OK 0
2/ ALL O Epldl OK 0
2/ ALL -0 Eil OK -0
2/ ALL 0 -Eil OK -0
2/ ALL -0 -Epldl OK 0
! Tiny IO-> Inf with DivByO.
2/ ALL E oz H
2/ ALL -Epl 0 z -H
21 ALL Epl -0 z -H
2/ ALL -E -0 z H
2/ ALL Epldl Oz H
2/ ALL -Eil O z -H
2/ ALL Eil -0 z -H
2/ ALL -Epldl -0 z H
! 0 /denormalized-> 0.
2/ ALL O Oil OK O
2/ ALL -0 Oi3 OK -0
2/ ALL 0 -Oi2 OK -0
2/ ALL -0 -Oi4 OK 0
2/ ALL 0 Edl OK 0
2/ ALL -0 Edl OK -0
2/ ALL 0 -Edl OK -0
2/ ALL -0 -Edl OK 0
I Denormalized • 0 -> Inf, DivByO.
2/ ALL Oil O z H
21 ALL -Oi3 0 z -H
21 ALL Oi2 -0 z -H
2/ ALL -Oi4 -0 z H
21 ALL Ed 1 0 z H
2/ ALL -Edl O z -H
2/ ALL Edl -0 z -H
2/ ALL -Edl -0 z H
! Exact cases h1J8e and 2.
2/ ALL Hml 2 OK Hm2
2/ ALL Hml -2 OK -Hm2
2/ ALL -Hmldl 2 OK -Hm2dl
2/ ALL Hmld3 -2 OK -Hm2d3
2/ ALL Hml 2 OK Hm2
21 ALL Hml -2 OK -Hm2
2/ ALL -Hmldl 2 OK -Hrn2dl
21 ALL Hmld3 -2 OK -Hm2d3

2/ ALL Hdl Hmldl OK 2
2/ ALL Hdl -2 OK -Hmldl
21 ALL -Hm1i1 Hm2il OK -2
2/ ALL Hmli3 -Hm2i3 OK -2
2/ ALL Hdl Hmldl OK 2
2/ ALL Hdl -2 OK -Hmldl
2/ ALL -Hmlil Hm2il OK -2
21 ALL Hm1i3 -Hm2i3 OK -2
I Exact cases huge and 4.
2/ ALL Hdl Hm2dl OK 4
2/ ALL -Hdl Hm2dl OK -4
2/ ALL Hdl -Hm2dl OK -4
2/ ALL -Hdl -Hm2dl OK 4
2/ ALL Hdl Hm2dl OK 4
2/ ALL -Hdl Hm2dl OK -4
2/ ALL Hdl -Hm2dl OK -4
2/ ALL -Hdl -Hm2dl OK 4
2/ ALL Hd3 4 OK Hm2d3
2/ ALL Hd3 -4 OK -Hm2d3
2/ ALL -Hd3 4 OK -Hm2d3
2/ ALL -Hd3 -4 OK Hm2d3
21 ALL Hd3 4 OK Hm2d3
2/ ALL Hd3 -4 OK -Hm2d3
2/ ALL -Hd3 4 OK -Hm2d3
2/ ALL -Hd3 -4 OK Hm2d3
! Exact cases tiny and 2.
2/ ALL Epl E OK 2
21 ALL Epl -2 OK -E
2/ ALL -Eplil Eil OK -2
2/ ALL Epli3 -2 OK -Ei3
2/ ALL Epl E OK 2
2/ ALL Epl -2 OK -E
2/ ALL -Eplil Eil OK -2
2/ ALL Epli3 -2 OK -Ei3
2/ ALL Eplil Eil OK 2
2/ ALL Eplil -2 OK -Eil
2/ ALL -Epli5 Ei5 OK -2
2/ ALL Epli3 -Ei3 OK -2
2/ ALL Eplil Eil OK 2
2/ ALL Eplil -2 OK -Eil
2/ ALL -Epli5 Ei5 OK -2
2/ ALL Epli3 -Ei3 OK -2
2/ ALL Edl 1ml OK Epld2
2/ ALL Edl 1m9 OK Ep9d2
! HU8e /tiny-> overflow.
2/ => Hml 1ml ox H
2/ 0< Hml 1ml ox Hdl
2/ => -Hml -lml ox H
2/ 0< -Hml -lml ox Hdl
2/ =< Hml -lml ox -H
2/ =< -Hml 1ml o:z -H
2/ 0> Hml -lml ox -Hdl
2/ 0> -Hml 1ml ox -Hdl
2/ => Hm9 Ep9 ox H
2/ 0< Hm9 Ep9 o:z Hdl
2/ e:> Hdl Oil ox H
2/ 0< Hdl Oil OX Hdl
2/ => Hml Edl ox H
2/ 0< Hmt Edl ox Hdl
21 => Hdl ldl ox H
21 0< Hdl ldl ox Hdl
! Will underflow unless loss of accuracy
! is detected as a denormalization loss.
2/ e:0< E li1 xv Ed 1

B.15

21 =0> -E lil xv -Edl
2/ >= Ed2 ld2 xv Edl
21 >= Ed9 ld2 xv Ed8
21 <= -Ed8 ld2 xv -Ed7
2/ <=0 Eil li2 xv Edl
21 <=0 Edl li2 xv Ed3
2/ <=0 Ei2 li6 xv Ed4
2/ 0< Edl lil xv Ed2
I Tiny /huge-> underflow.
2/ =<0 Oil Hdl xu 0
2/ > Oil Hdl xu Oil
2/ =<0 -oil -Hdl xu 0
2/ > -Oil -Hdl xu Oil
2/ =0> Oil -Hdl XU -0
2/ < Oil -Hdl xu -Oil
2/ =0> -Q:i l Hd 1 xu -0
2/ < -Oil Hdl xu -Oi 1
I Tiny/ 2.
2/ > Oil 2 XU Oil
2/ =0< Oil 2 XU 0
2/ > -Oil -2 XU Oil
2/ =0< -oil -2 XU 0
2/ < Oil -2 :xu -Oil
2/ =O> Oil -2 xu -0
2/ < -Oil 2 XU -Oil
2/ =0> -oil 2 XU -0
I Barely underflow.
2/ 0< Epldl 2 XU Edl
2/ 0> Epldl -2 xu -Edl
2/ >= Epldl 2 xu E
2/ > E lil xu E
2/ < -E li 1 xu -E
2/ > Eil li2 xu E
2/ > Edl li2 xu Ed2
I Denorm result but will not underflow.
2/ ALL Ep1d2 2 OK Edl
2/ ALL Edl 1 OK Edl
2/ ALL Oil 1ml OK Oi2
2/ ALL Oil 1m3 OK Oi8
2/ ALL Oi9 9 OK Oil
21 ALL Oi9 -9 OK -Oil
2/ ALL Edl -1 OK -Edl
21 ALL -Oil 1ml OK -Oi2
I Tricky divides based on power
! series expansions
! 1 / (1 + Nu1p+) ->
I 1 - (2Nu1p-) + tiny.
2/ = 1 lil x ld2
21 0 1 lil x ld2
2/ < 1 lil x ld2
2/ > l lil x ldl
2/ = 1 li2 x ld4
2/ 0 1 li2 x ld4
2/ < 1 li2 x ld4
2/ > 1 li2 x ld3
2/ = 1 li3 x ld6
2/ 0 1 li3 x ld6
2/ < 1 1i3 x ld6
2/ > 1 li3 x ld5
2/ = 1 1i4 x ldB
2/ 0 1 1i4 x ld8
2/ < l 1i4 x ld8
2/ > 1 li4 x ld7
I l / (1 - Nu-) -->

! 1 + (Q/2u+) + tiny.
2/ = 1 ldl x lil
2/ 0 1 ldl x 1
2/ < 1 ldl x 1
2/ > 1 ldl x lil
2/ = 1 ld2 x lil
2/ 0 1 ld2 :x lil
2/ < 1 ld2 x lil
2/ > 1 ld2 x li2
2/ = 1 ld3 x li2
2/ 0 1 ld3 x lil
21 < 1 1d3 x lil
21 > 1 ld3 x li2
2/ = 1 ld4 x li2
2/ 0 1 ld4 x li2
2/ < 1 ld4 x li2
2/ > 1 ld4 x li3
2/ = 1 ld5 x li3
2/ 0 1 ld5 x li2
2/ < 1 ld5 x li2
21 > 1 ld5 x li3
2/ = 1 ld8 x li4
2/ 0 1 ld8 x li4
2/ < 1 ld8 x li4
21 > 1 ld8 x li5
21 = 1 ld9 x li5
2/ 0 1 ld9 x li4
2/ < 1 ld9 x li4
2/ > 1 ld9 x li5
! (1 +Mu+)/ (1 +Nu+)->
! Case M > Q: (1 + Mu+) •
I (1 - Nu+ + (Nu+)-2 - tiny)-->
! 1 + (M-Q)u+ - (MN-NN)(u+)-2 + tiny->
I 1 + (M-Q)u+ - tiny.
! M + Q = 3.
21 = li2 lil x lil
21 0 li2 lil x l
2/ < li2 lil x 1
2/ > li2 lil x lil
! M + Q =4.
21 = li3 lil x li2
2/ 0 li3 lil x lil
21 < li3 lil x lil
2/ > li3 lil x li2
! M + Q = 5.
2/ = li4 lil x li3
2/ 0 li4 lil x li2
2/ < li4 lil x li2
21 > li4 lil :x 1i3
IM+ Q = 9.
2/ = li7 li2 :x: 1i5
2/ 0 li7 li2 :x: li4
2/ < li7 li2 :x: li4
21 > li7 li2 x li5
! Q = 17.
2/ = li9 li8 :x lil
2/ 0 li9 li8 X 1
2/ < li9 li8 :x 1
21 > li9 li8 x lil
! (1 + Mu1p+) I (1 + NuJp+)-->
! Case M < Q: (1 + 2Mu1p-) •
I (1 - 2Nu1p- + (2Nu1p-)-2 - tiny)->
I 1 - 2(Q-M)uJp- +
! 4(NN-MN)(uJp-)-2 + tiny->

B.16

! 1 - 2(Q-M)ulp- + tiny.
1M+Q=3.
21 = lil li2 x ld2
21 0 lil li2 x ld2
2/ < lil li2 x ld2
21 > lil li2 x ldl
! M + Q = 4.
2/ = lil li3 x 1d4
2/ 0 lil li3 x ld4
21 < lil li3 x 1d4
21 > lil li3 x ld3
!M+Q=5.
21 = li2 li3 x ld2
21 0 li2 li3 x ld2
21 < li2 li3 x ld2
21 > li2 li3 x ldl
IM+ Q = 11.
21 = li4 li? x 1d6
2/ 0 li4 Ii? x 1d6
21 < li4 Ii? x ld6
21 > li4 Ii? x ld5
! M + Q = 14.
21 = li6 liB x ld4
2/ 0 li6 liB x ld4
2/ < li6 liB x ld4
21 > li6 liB :x ld3
I (1- Mulp-) I (1- Nulp-) ->
I Case M > Q: (1 - Mulp-) •
! (1 + Nulp- + (Nulp-)-2 +tiny)-->
I 1 - (M-Q)ulp- -
I (MN-NN)(ulp-)-2 +tiny-->
I 1 - (M-Q)ulp- - tiny.
!M+Q=3.
2/ = ld2 ldl x ldl
2/ 0 ld2 ldl x ld2
2/ < ld2 ldl x ld2
21 > ld2 ldl x ldl
IM+ Q = 4.
21 = ld3 ldl x ld2
2/ 0 ld3 ldl x ld3
2/ < ld3 ldl x ld3
21 > ld3 ldl x ld2
!M+Q=5.
2/ = ld3 ld2 x ldl
21 0 ld3 ld2 x ld2
2/ < ld3 ld2 x ld2
2/ > ld3 ld2 x ldl
2/ = ld4 ldl x ld3
2/ 0 ld4 ldl x 1d4
2/ < ld4 ldl x ld4
2/ > ld4 ldl x ld3
IM+ Q = 6.
2/ = ld4 ld2 x 1d2
2/ 0 ld4 ld2 :x ld3
2/ < ld4 ld2 x ld3
2/ > ld4 ld2 x 1d2
IM +Q =7.
21 = ld4 ld3 x ldl
2/ 0 ld4 1d3 x ld2
2/ < ld4 ld3 x ld2
21 > 1d4 1d3 x ldl
IM+Q=ll.
21 = ldB 1d3 x ld5
21 0 ldB 1d3 x ld6

2/ < ldB ld3 x ld6
21 > ldB ld3 x ld5
21 = ld9 ld2 x ld?
21 0 ld9 ld2 x ldB
2/ < ld9 ld2 x ldB
2/ > ld9 ld2 x ld?
! M + Q = 12.
2/ = ldB ld4 x ld4
2/ 0 ldB ld4 x ld5
2/ < ldB ld4 x ld5
2/ > ldB ld4 x ld4
! M + Q = 14.
21 = ld9 ld5 x ld4
2/ 0 ld9 ld5 x ld5
2/ < ld9 ld5 x ld5
2/ > ld9 ld5 x ld4
! (1 - Mulp-) / (1 - Nulp-)-->
! Case M < Q: (1 - (Mt2)ulp+) •
! (1 + (Q/2)ulp+ +
! ((Q/2)ulp+)-2 +tiny)->
! 1 + ((Q-M)t2)ulp+ +
! (NN-MN)14(ulp+)-2 +tiny-->
! 1 + (Q-M)t2ulp+ + tiny.
! M + Q = 3.
2/ = ldl ld2 x lil
2/ 0 ldl ld2 x 1
2/ < ldl ld2 x 1
2/ > ldl ld2 x lil
! M + Q = 4.
21 = ldl ld3 x lil
21 0 ldl ld3 x lil
21 < ldl ld3 x lil
2/ > ldl ld3 x li2
! M + Q = 5.
21 = ld2 ld3 x lil
2/ 0 ld2 ld3 x 1
21 < l d2 l d3 x 1
2/ > ld2 ld3 x lil
21 = ldl ld4 x li2
21 0 ldl ld4 x lil
2/ < ldl ld4 x lil
2/ > ldl ld4 x li2
! M + Q = 6.
21 = ld2 ld4 x lil
2/ 0 ld2 ld4 x lil
21 < ld2 ld4 :x lil
2/ > ld2 ld4 x li2
IM+ Q = 7.
21 = ld3 ld4 x lil
2/ 0 ld3 ld4 x 1
21 < ld3 ld4 x 1
21 > lcl3 ld4 x lil
IM+ Q = B.
21 = ldl ld7 x li3
21 0 ldl ld7 x li3
21 < ldl ld7 x li3
21 > ldl ld7 x li4
! M + Q = 9.
21 = ld2 ld7 x li3
2/ 0 ld2 ld? x li2
2/ < 1d2 ld? x li2
2/ > ld2 ld7 x li3
! M + Q = 10.
21 = ld3 ld? x li2

B.17

2/ 0 ld3 ld7 x li2
2/ < ld3 ld7 x li2
2/ > ld3 ld7 x li3
! M + Q = 11.
2/ = ld4 ld7 x li2
2/ 0 ld4 ld7 x lil
2/ < ld4 ld7 x lil
2/ > ld4 Jd7 x 1i2
! M + Q = 12.
2/ = ld5 ld7 x lil
2/ 0 ld5 ld7 x 1i1
2/ < ld5 ld7 x lil
2/ > ld5 ld7 x li2
! M + Q = 13.
2/ = ld6 ld7 x lil
2/ 0 ld6 ld7 x 1
2/ < ld6 ld7 x 1
2/ > ld6 ld7 x lil
! (1 + Mulp+) I (1- Nulp-)->
! (1 + Mulp+) •(I+ (Ql2)ulp+ +
I ((Q/2)ulp+)-2 +tiny)-->
! 1 + (M + Ql2)ulp+ + tiny.
!M+Q=2.
21 = lil ldl x li2
2/ 0 lil ldl x lil
2/ < lil ldl x lil
2/ > 1i1 ldl x li2
!M+Q=3.
2/ = lil ld2 x li2
2/ 0 lil ld2 x li2
2/ < lil ld2 x li2
2/ > lil ld2 x li3
2/ = li2 ldl x li3
2/ 0 li2 ldl x li2
2/ < li2 ldl x li2
2/ > li2 ldl x li3
IM +Q = 4.
2/ = lil ld3 x li3
2/ 0 lil ld3 x li2
2/ < lil ld3 x li2
2/ > lil ld3 x li3
2/ = li3 ldl x li4
2/ 0 li3 ldl x li3
2/ < li3 ldl x li3
2/ > li3 ldl x li4
2/ = li2 ld2 x li3
2/ 0 li2 ld2 x li3
2/ < li2 ld2 x li3
2/ > 1i2 ld2 x 1i4
!M+Q=5.
2/ = li3 ld2 x li4
2/ 0 li3 ld2 x li4
2/ < li3 ld2 x li4
2/ > li3 ld2 x li5
2/ = li2 ld3 x li4
2/ 0 li2 1d3 x 1i3
2/ < li2 ld3 x li3
2/ > li2 ld3 x 1i4
! M +Q = 6.
2/ = 1i3 1d3 x 1i5
2/ 0 li3 1d3 x li4
2/ < li3 ld3 x li4
2/ > li3 ld3 x li5
21 = lil ld5 x li4

2/ 0 lil ld5 :x li3
2/ < lil ld5 x li3
2/ > lil ld5 x li4
2/ = li5 ldl x li6
2/ 0 li5 ldl :x li5
2/ < li5 ldl x li5
2/ > li5 ldl x li6
2/ = li2 ld4 x li4
2/ 0 li2 ld4 x li4
2/ < li2 ld4 x li4
2/ > li2 ld4 :x li5
2/ = li4 ld2 x li5
2/ 0 li4 ld2 :x li5
2/ < li4 ld2 :x li5
2/ > li4 ld2 x li6
! (1 - Mu1p-) I (1 + Nulp+)-->
! (1 - Mu1p-) • (1 - 2Nulp- +
! (2Nulp-)-2 - tiny)-->
! 1 - (M + 2N)ulp- + tiny.
IM+ Q =2.
2/ = ldl lil x ld3
2/ 0 ldl lil x ld3
2/ < ldl lil x ld3
2/ > ldl lil :x ld2
! M + Q = 3.
2/ = ld2 lil :x ld4
2/ 0 ld2 lil x ld4
2/ < ld2 lil x ld4
2/ > ld2 lil x ld3
2/ = ldl li2 x ld5
2/ 0 ldl li2 :x ld5
2/ < ldl li2 x ld5
2/ > ldl li2 :x ld4
! M + Q =4.
21 = ld3 lil x ld5
2/ 0 ld3 lil :x ld5
2/ < ld3 lil x ld5
2/ > ld3 lil x ld4
2/ = ldl li3 x ld7
2/ 0 ldl li3 x ld7
2/ < ldl li3 x ld7
2/ > ldl li3 x ld6
2/ = ld2 li2 :x ld6
2/ 0 Id2 li2 x ld6
2/ < ld2 li2 x ld6
2/ > ld2 li2 x ld5
I M+Q=5.
2/ = ld4 lil x ld6
2/ 0 ld4 lil x ld6
2/ < ld4 lil x ld6
2/ > ld4 lil x ld5
2/ = ldl li4 x ld9
2/ 0 ldl li4 :x Id9
21 < ldl li4 :x ld9
2/ > ldl li4 :x ld8
2/ = ld3 li2 :x ld7
2/ 0 ld3 li2 x ld7
2/ < ld3 li2 :x ld7
2/ > Id3 li2 :x ld6
2/ = ld2 li3 x 1d8
2/ 0 1d2 li3 x ld8
2/ < ld2 li3 x ldB
2/ > ld2 li3 x ld7
! Nan operands.

B.18

2/ ALL Q O OK Q
2/ ALL Q -0 OK Q
2/ ALL O Q OK Q
2/ ALL -0 Q OK Q
2/ ALL Q 1 OK Q
2/ ALL Q -1 OK Q
2/ ALL 1 Q OK Q
2/ ALL -1 Q OK Q
2/ ALL Edl Q OK Q
2/ ALL '-Edl Q OK Q
2/ ALL Q Edl OK Q
2/ ALL Q -Edl OK Q
2/ ALL Q Oil OK Q
2/ ALL Q -Oil OK Q
2/ ALL Oil Q OK Q
2/ ALL -Oil Q OK Q
2/ ALL Q Hd 1 OK Q
2/ ALL Q -Hdl OK Q
2/ ALL Hdl Q OK Q
2/ ALL -Hdl Q OK Q
2/ ALL Q H OK Q
2/ ALL Q -H OK Q
2/ ALL H Q OK Q
2/ ALL -H Q OK Q
2/ ALL Q Q OK Q
21 ALL S o i Q
2/ ALL S -0 i Q
21 ALL O S i Q
2/ ALL -0 S i Q
2/ALLSliQ
2/ ALL S -1 i Q
2/ALLlSiQ
2/ ALL -1 S i Q
2/ ALL Edl Si Q
2/ ALL -Ed 1 S i Q
2/ ALL S Edl i Q
2/ ALLS -Edli Q
2/ ALL S Oi 1 i Q
2/ ALL S -Oi 1 i Q
2/ ALL Oi 1 S i Q
2/ ALL -Oil S i Q
2/ ALL S Hdl i Q
2/ALLS-HdliQ
2/ ALL Hdl S i Q
2/ ALL -Hdl S i Q
2/ALLSHiQ
2/ ALLS-Hi Q
2/ALLHSiQ
21 ALL -H S i Q
2/ALLQSiQ
21 ALL S Q i Q
2/ ALL S S i Q

B.19

! Middle-range numbers.
2% ALL 1 2 OK 1
2% ALL 1 -2 OK 1
2% ALL -1 2 OK -1
2% ALL -1 -2 OK -1
2% ALL 3 2 OK -1
2% ALL 3 -2 OK -1
2% ALL -3 2 OK 1
2% ALL -3 -2 OK 1
2% ALL 2 2 OK 0
2% ALL 2 -2 OK O
2% ALL -2 2 OK -0
2% ALL -2 -2 OK -0
2% ALL lil 2 OK -ld2
2% ALL 3dl 2 OK ld4
2% ALL 1 4 OK 1
2% ALL 2 4 OK 2
2% ALL 3 4 OK -1
2% ALL 4 4 OK 0
2% ALL 5 4 OK 1
2% ALL 6 4 OK -2
2% ALL 7 4 OK -1
2% ALL 8 4 OK O
2% ALL 0 1ml OK 0
2% ALL lm3 1ml OK lm3
2% ALL 3m3 1ml OK -lm3
2% ALL 5m3 1ml OK lm3
I Step across jump.
2% ALL 2i 1 4 OK -2d2
2% ALL 2il -4 OK -2d2
2% ALL -2i1 4 OK 2d2
2% ALL -2il -4 OK 2d2
2% ALL 2iB 4 OK -2d8d8
2% ALL 6d1 4 OK 2d4
2% ALL 6dl -4 OK 2d4
2% ALL -6d 1 4 OK -2d.4
2% ALL -6dl -4 OK -2d4
2% ALL 6d8 4 OK 2d8d8d8d8
2% ALL lm2 1ml OK lm2
2% ALL 1ilm2 1ml OK -ld2m2
! (l+x)l(l+y), x,y«l.
2% ALL lil li5 OK -lu4
2% ALL lil -li5 OK -lu4
2% ALL -lil 1i5 OK lu4
2% ALL -lil -li5 OK lu4
2% ALL li2 li5 OK -lu3
2% ALL li3 li5 OK -1u2
2% ALL li4 li5 OK -lul
2% ALL 1i6 1i5 OK lul
2% ALL 3dl 3 OK -3u1
2% ALL 3dl -3 OK -3ul
2% ALL -3d 1 3 OK 3u1
2% ALL -3dl -3 OK 3ul
2% ALL 2dl 2 OK -lul
2% ALL lil ld2 OK lu2
2% ALL 1 ld2 OK lul
2% ALL ld4 ld2 OK -lul
2% ALL ldl 2dl OK ldl
2% ALL 1 2dl OK -ld2
I Large numbers.
2% ALL Hmlil Hmld2 OK Hmlu2
2% ALL Hml Hmld2 OK Hmlu1
2% ALL Hmld4 Hmld2 OK -Hmlul
2% ALL Hmldl Hdl OK Hmldl

2% ALL Hml Hdl OK -Hmld2
2% ALL Hm2 Hml OK Hm2
2% ALL Hdl Hd2 OK Hdlul
2% ALL Hdl -Hd2 OK Hdlul
2% ALL -Hdl Hd2 OK -Hdlul
2% ALL -Hdl -Hd2 OK -Hdlul
2% ALL Hmlul Hmlu4 OK Hmlul
2% ALL Hdl Hml OK -Hmlul
2% ALL Hmli3 Hmli5 OK -Hmlu2
2% ALL Hmli4 Hmli5 OK -Hmlul
2% ALL Hmli6 Hmli5 OK Hmlul
I Large and small numbers.
2% ALL Hdl Oil OK 0
2% ALL Hdl -Oil OK 0
2% ALL -Hdl Oil OK -0
2% ALL -Hdl -Oil OK -0
2% ALL Hdl Eul OK 0
2% ALL Hdl Epldl OK 0
2% ALL Hdl E OK 0
2% ALL Hmldl Hml OK -Hm2ul
2% ALL Hmldl -Hml OK -Hm2ul
2% ALL -Hmldl Hml OK Hm2ul
2% ALL -Hmldl -Hml OK Hm2ul
! Small munbers.
2% ALL Oil Oi4 OK Oil
2% ALL Oil -Oi4 OK Oil
2% ALL --Oil Oi4 OK --Oil
2% ALL -Oil -Oi4 OK -Oil
2% ALL Oi2 Oi4 OK Oi2
2% ALL Oi3 Oi4 OK -Oil
2% ALL Oi3 --Oi4 OK -Oil
2% ALL -Oi3 Oi4 OK Oil
2% ALL --Oi3 -Oi4 OK Oil
2% ALL Oi4 Oi4 OK 0
2% ALL Oi4 -0i4 OK 0
2% ALL -Oi4 -Oi4 OK -0
2% ALL -Oi4 Oi4 OK --0
2% ALL Ep9dl EpB OK -EpBul
2% ALL Eil Ed2 OK Eu3
2% ALL E Ed2 OK Eu2
2% ALL Ed4 Ed2 OK -Eu2
2% ALL Ed4 -Ed2 OK -Eu2
2% ALL -Ed4 Ed2 OK Eu2
2% ALL -Ed4 -Ed2 OK Eu2
2% ALL Edl Epldl OK Edl
2% ALL E Epldl OK -Edl
2% ALL Ei3 Ei5 OK -Eu2
2% ALL Ei4 Ei5 OK -Eul
2% ALL Ei6 Ei5 OK Eul
2% ALL Ep ld 1 E-p 1 OK -Eul
! Special case: invalid operations
! delivernl8 NaNs.
2% ALL o O i Q
2% ALL o -0 i Q
2% ALL --0 0 i Q
2% ALL --0 -0 i Q
2% ALL 1 0 i Q
2% ALL ldl O i Q
2% ALL Hd 1 O i Q
2% ALL Hdl -0 i Q
2% ALL -Hdl 0 i Q
2% ALL -Hdl -0 i Q
2% ALL Ed 1 o i Q
2% ALL Ed 1 -0 i Q

B.20

2% ALL -Edl O i Q
2% ALL -Edl -0 i Q
2% ALL Oil O i Q
2% ALL H O i Q
2% ALL H -0 i Q
2% ALL -H O i Q
2% ALL -H -0 i Q
2% ALL H 1 i Q
2% ALL H Hd l i Q
2% ALL H -Hdl i Q
2% ALL -H Hdl i Q
2% ALL -H -Hdl i Q
2% ALL H Edl i Q
2% ALL H Oi 1 i Q
2% ALL H H i Q
I Orem y = 0, y e number <> O.
2% ALL O 1 OK 0
2% ALL O -1 OK O
2% ALL -0 1 OK -0
2% ALL -0 -1 OK -0
2% ALL O ldl OK 0
2% ALL O Hdl OK 0
2% ALL O Edl OK 0
2% ALL O Oil OK 0
2% ALL O -Oil OK 0
2% ALL -0 Oil OK -0
2% ALL -0 --Oil OK -0
2% ALL O H OK 0
2% ALL O -H OK O
I x rem INF = x, x a number <> 0.
2% ALL 1 H OK 1
2% ALL 1 -H OK 1
2% ALL -1 H OK -1
2% ALL -1 -H OK -1
2% ALL ldl HOK ldl
2% ALL Hdl H OK Hdl
2% ALL Hdl -H OK Hdl
2% ALL -Hdl H OK -Hdl
2% ALL -Hdl -H OK -Hdl
2% ALL Edl H OK Edl
2% ALL Oil H OK Oil
2% ALL Oil -H OK Oil
2% ALL -Oil H OK -Oil
2% ALL -Oil -H OK --Oil
! Vectors based on
I (x + 1) I (x-n + 1) for n odd -
! for significands with even
I numbers of bits.
2% s Hmlil Hmlu3 OK 0
2% s Hmli2 Hmlu3 OK Hmlul
2% s Hmli3 Hmlu3 OK -Hmlul
2% s Hmlil 3 OK 0
2% s Hmlil Oi3 OK 0
2% s Hml Hmlu3 OK -Hmlul
2% s Hmld2 Hmlu3 OK Hmlul
2% s Eil Eu3 OK 0
2% s E Eu3 OK -Oil
2% s Edl Eu3 OK Oil
2% s Ei 1 Oi3 0 K 0
2% s Ei2 Eu3 OK Eul
2% s Ei3 Eu3 OK -Eul
2% s Hmlil -Hmlu3 OK 0
2% s Hmli2 -Hmlu3 OK Hmlul
2% s Hmli3 -Hrnlu3 OK -Hmlul

2% s Hmlil -3 OK 0
2% s Hrnlil -Oi3 OK 0
2% s Hrnl -Hmlu3 OK -Hrnlul
2% s Hmld2 -Hmlu3 OK Hmlul
2% s Eil -Oi3 OK 0
2% s E -Eu3 OK -Eul
2% s Edl -Eu3 OK Eul
2% s Eil -Eu3 OK 0
2% s Ei2 -Eu3 OK Eul
2% s Ei3 -Eu3 OK -Eul
2% s -Hmlil Hmlu3 OK -0
2% s -Hmli2 Hmlu3 OK -Hmlul
2% s -Hmli3 Hmlu3 OK Hmlul
2% s -Hmlil 3 OK -0
2% s -Hmlil Oi3 OK -0
2% s -Hml Hmlu3 OK Hmlul
2% s -Hmld2 Hmlu3 OK -Hmlul
2% s -Eil Oi3 OK -0
2% s -E Eu3 OK Eul
2% s -Edl Eu3 OK -Eul
2% s -Eil Eu3 OK -0
2% s -Ei2 Eu3 OK -Eul
2% s -Ei3 Eu3 OK Eul
2% s -Hmlil -Hmlu3 OK -0
2% s -Hmli2 -Hmlu3 OK -Hmlul
2% s -Hmli3 -Hmlu3 OK Hmlul
2% s -Hmlil -3 OK -0
2% s -Hmlil -Oi3 OK -0
2% s -Hml -Hmlu3 OK Hmlul
2% s -Hmld2 -Hmlu3 OK -Hmlul
2% s -Eil -Oi3 OK -0
2% s -E -Eu3 OK Eul
2% s -Edl -Eu3 OK -Eul
2% s -Eil -Eu3 OK -0
2% s -Ei2 -Eu3 OK -Eul
2% s -Ei3 -Eu3 OK Eul
I Vectors based on
! (x + 1) I (x-n + 1) for n odd;
I for significands with
! odd numbers of bits.
2% d Hmld2 Hrnlu3 OK 0
2% d Hmli3 Hmlu3 OK Hmlul
2% d Hmli4 Hmlu3 OK -Hmlul
2% d Hmli2 3 OK 0
2% d Hmli2 Oi3 OK 0
2% d Hmld4 Hmlu3 OK -Hmlul
2% d Hml Hmlu3 OK Hmlul
2% d Edl Eu3 OK 0
2% d Eil Eu3 OK -Oil
2% d E Eu3 OK Oil
2% d Ei2 Oi3 OK O
2% d Ei3 Eu3 OK Eul
2% d Ei4 Eu3 OK -Eul
2% d Hmld2 -Hmlu3 OK 0
2% d Hmli3 -Hmlu3 OK Hmlul
2% d Hmli4 -Hmlu3 OK -Hmlul
2% d Hrnli2 -3 OK 0
2% d Hmli2 -Oi3 OK 0
2% d Hmld4 -Hmlu3 OK -Hmlul
2% d Hml -Hmlu3 OK Hmlul
2% d Edl -Oi3 OK 0
2% d Eil -Eu3 OK -Eu1
2% d E -Eu3 OK Eul
2% d Ei2 -Eu3 OK O

B.21

2% d Ei3 -Eu3 OK Eul
2% d Ei4 -Eu3 OK -Eul
2% d -Hmld2 Hmlu3 OK -0
2% d -Hmli3 Hmlu3 OK -Hmlul
2% d -Hmli4 Hmlu3 OK Hmlul
2% d -Hmli2 3 OK -0
2% d -Hmli2 Oi3 OK -0
2% d -Hmld4 Hmlu3 OK Hmlul
2% d -Hml Hmlu3 OK -Hmlul
2% d -Edl Oi3 OK -0
2% d -Eil Eu3 OK Eul
2% d -E Eu3 OK -Eul
2% d -Ei2 Eu3 OK -0
2% d -Ei3 Eu3 OK -Eul
2% d -Ei4 Eu3 OK Eul
2% d -Hmld2 -Hmlu3 OK -0
2% d -Hmli3 -Hmlu3 OK -Hmlul
2% d -Hmli4 -Hmlu3 OK Hmlul
2% d -Hmli2 -3 OK -0
2% d -Hmli2 -Oi3 OK -0
2% d -Hmld4 -Hmlu3 OK Hmlul
2% d -Hml -Hmlu3 OK -Hmlul
2% d -Ei2 -Oi3 OK -0
2% d -Eil -Eu3 OK Eul
2% d -E -Eu3 OK -Eul
2% d -Ei2 -Eu3 OK -0
2% d -Ei3 -Eu3 OK -Eul
2% d -Ei4 -Eu3 OK Eul
! NaN operands.
2% ALL Q O OK Q
2% ALL Q -0 OK Q
2% ALL O Q OK Q
2% ALL -0 Q OK Q
2% ALL Q 1 OK Q
2% ALL Q -1 OK Q
2% ALL 1 Q OK Q
2% ALL -1 Q OK Q
2% ALL Edl Q OK Q
2% ALL -Edl Q OK Q
2% ALL Q Ed 1 OK Q
2% ALL Q -Edl OK Q
2% ALL Q Oil OK Q
2% ALL Q -Oil OK Q
2% ALL Oil Q OK Q
2% ALL -Oil Q OK Q
2% ALL Q Hdl OK Q
2% ALL Q -Hdl OK Q
2% ALL Hdl Q OK Q
2% ALL -Hdl Q OK Q
2% ALL Q HOK Q
2% ALL Q -H OK Q
2% ALL H Q OK Q
2% ALL -H Q OK Q
2% ALL Q Q OK Q
2% ALL S O i Q
2% ALL S -0 i Q
2%ALLOSiQ
2% ALL -0 S i Q
2%ALLSliQ
2% ALL S -1 i Q
2%ALL1SiQ
2% ALL -1 S i Q
2% ALL Edl Si Q
2% ALL -EdlS i Q

2% ALL S Edl i Q
2% ALL S -Edl i Q
2% ALL S Oil i Q
2% ALL S -Oi 1 i Q
2% ALL Oi 1 S i Q
2% ALL -Oil S i Q
2% ALL S Hd 1 i Q
2% ALL S -Hdl i Q
2% ALL Hdl S i Q
2% ALL -Hd 1 S i Q
2% ALL S H i Q
2% ALL S -H i Q
2% ALL H S i Q
2% ALL -H S i Q
2% ALL Q S i Q
2% ALL S Q i Q
2% ALL S S i Q

B.22

I First some easy integer cases.
2C ALL 1 l OK =
2C ALL 1 2 OK <
2C ALL 2 l OK >
2C ALL 2 2 OK =
2C ALL 2 -2 OK >
2C ALL 5 -5 OK >
2C ALL l 7 OK <
2C ALL 5 -1 OK >
2C ALL 2 -5 OK >
2C ALL 5 -o OK >
2C ALL 5 +0 OK >
! Infinity VS Infinity,
2C ALL H H OK = always equal
2C ALL -H -H OK = always equal
2C ALL H -H OK >
2C ALL -H H OK <
! Infinity vs huge.
2C ALL H Hml OK >
2C ALL H -Hml OK >
2C ALL -H Hml OK <
2C ALL -H -Hml OK <
2C ALL H Hdl OK >
2C ALL H -Hdl OK >
2C ALL -H Hdl OK <
2C ALL -H -Hdl OK <
2C ALL Hml H OK <
2C ALL Hml -H OK >
2C ALL -Hml H OK <
2C ALL -Hml -H OK >
! Infinity VS 0.
2C ALL H O OK >
2C ALL H -0 OK >
2C ALL -H O OK <
2C ALL -H -0 OK <
2C ALL O H OK <
2C ALL -0 H OK <
2C ALL O -H OK >
2C ALL -0 -H OK >
! Infinity vs denormalized.
2C ALL H Edl OK >
2C ALL -H Edl OK <
2C ALL H -Edl OK>
2C ALL -H -Edl OK <
2C ALL H Oil OK >
2C ALL -H Oil OK <
2C ALL H -Oil OK >
2C ALL -H -Oil OK <
2C ALL Edl H OK <
2C ALL Edl -H OK >
2C ALL -Edl H OK <
2C ALL ·Edl -H OK >
I Zero vs finite - watch that sign
! of O is mea.TJ.ingless.
2C ALL 0 Hml OK <
2C ALL -0 Hml OK <
2C ALL -Hml O OK <
2C ALL -Hml -0 OK <
2C ALL 1 -0 OK >
2C ALL -1 -0 OK <
2C ALL O 1 OK <
2C ALL -0 -1 OK >
! Zero vs denormalized.
2C ALL O Edl OK<

2C ALL -0 Edl OK <
2C ALL O -Edl OK >
2C ALL -0 -Edl OK >
2C ALL O Oil OK <
2C ALL -0 Oil OK <
2C ALL O -Oil OK >
2C ALL -0 -Oil OK >
2C ALL EGl O OK>
2C ALL Edl -0 OK >
2C ALL -Edl O OK <
2C ALL -Edl -0 OK <
! Zero vs tiny - just in case.
2C ALL -0 -E OK >
2C ALL E O OK >
2C ALL O -E OK >
2C ALL -E O OK <
! Zero vs Zero -- watch signs
! and rounding modes.
2C ALL O -0 OK =
2C ALL -0 0 OK =
2C ALL O -0 OK =
2C ALL -0 0 OK =
! Big cancellations.
2C ALL Hml Hml OK =
2C ALL Hml Hml OK =
2C ALL -Hml -Hml OK =
2C ALL -Hml -Hml OK =
2C ALL Hm1d2 Hmld2 OK =
2C ALL -Hmld2 -Hmld2 OK =
2C ALL Hdl Hdl OK =
2C ALL Hdl Hdl OK =
2C ALL -Hdl -Hdl OK =
2C ALL -Hdl -Hdl OK =
! Medium cancellations.
2C ALL 1 1 OK =
2C ALL 1ml 1ml OK =
2C ALL 3 3 OK =
2C ALL E E OK =
2C ALL Hm2 Hm2 OK =
! Tiny cancellations -- might
I have underflowed.
2C ALL Edl Edl OK=
2C ALL -Edl -Edl OK =
2C ALL Oi4 Oi4 OK =
2C ALL -Oi4 -Oi4 OK =
2C ALL Oil Oil OK=
2C ALL -Oil -Oil OK =
! Doublings.
2C ALL Hml -Hml OK >
2C ALL -Hmld2 Hmld2 OK <
2C ALL 1 -1 OK >
2C ALL -3 3 OK <
2C ALL E -E OK >
2C ALL -E E OK <
2C ALL Ed4 -Ed4 OK>
2C ALL -Edl Edl OK <
2C ALL Oil -Oil OK >
2C ALL -Oil Oil OK <
I Cancellation with difl in LSB
! Difference is in last place of
! larger number.
! Medium numbers ...
2C ALL lil 1 OK >
2C ALL -lil -1 OK <

B.23

2C ALL lil li2 OK <
2C ALL -lil -li2 OK >
2C ALL 2 2il OK <
2C ALL -2 -2il OK >
2C ALL 2i4 2i3 OK >
2C ALL -2i4 -2i3 OK <
2C ALL 4dl 4d2 OK >
2C ALL -4dl -4d2 OK <
2C ALL 2d4 2d3 OK <
2C ALL -2d4 -2d3 OK >
I HiJBe numbers ...
2C ALL Hmlil Hml OK >
2C ALL -Hmlil -Hml OK <
2C ALL Hmlil Hmli2 OK <
2C ALL -Hmlil -Hmli2 OK >
2C ALL Hm2 Hm2il OK <
2C ALL -Hm2 -Hm2il OK >
2C ALL Hm2i4 Hm2i3 OK >
2C ALL -Hm2i4 -Hm2i3 OK <
2C ALL Hm2dl Hm2d2 OK >
2C ALL -Hm2dl -Hm2d2 OK <
2C ALL -Hd2 -Hdl OK >
2C ALL Hd2 Hdl OK<
! Tiny numbers ...
2C ALL -Eil -E OK <
2C ALL Eil E OK >
2C ALL -Edl -E OK >
2C ALL Edl E OK<
2C ALL Eil Ei2 OK <
2C ALL -Eil -Ei2 OK >
2C ALL Edl Ed2 OK>
2C ALL -Edl -Ed2 OK <
2C ALL Ed3 Ed2 OK <
2C ALL -Ed3 -Ed2 OK >
2C ALL Oi2 Oil OK >
2C ALL -Oi2 -Oil OK <
2C ALL Oi3 Oi2 OK >
2C ALL -Oi3 -Oi2 OK <
I Normalize from round bit - set up
! tests so that operands have
! exponents differing by 1 unit.
I Medium numbers ...
2C ALL 2 2dl OK >
2C ALL -2 -2dl OK <
2C ALL -2dl -2 OK >
2C ALL 2dl 2 OK <
2C ALL 4.il 4dl OK>
2C ALL -4il -4dl OK <
2C ALL 4d1 4i2 OK <
2C ALL -4d 1 -4i2 OK >
2C ALL 2il lil OK >
2C ALL -2i1 -lil OK <
2C ALL 2i2 lil OK >
2C ALL -2i2 -lil OK <
2C ALL 2i2 li3 OK >
2C ALL -2i2 - li3 OK <
! Huge numbers ...
2C ALL Hm2 Hm2d1 OK >
2C ALL -Hm2 -Hm2d1 OK <
2C ALL -Hmldl -Hml OK >
2C ALL Hmldl Hml OK <
2C ALL Hm4il Hm4d1 OK >
2C ALL -Hm4il -Hm4dl OK <
2C ALL Hm2dl Hm2i2 OK <

2C ALL -Hm2dl -Hm2i2 OK >
2C ALL Hrn2il Hmlil OK <
2C ALL -Hm2il -Hmlil OK >
2C ALL Hmli2 Hm2il OK >
2C ALL -Hmli2 -Hm2il OK <
2C ALL Hrn2i2 Hm3i3 OK >
2C ALL -Hm2i2 -Hm3i3 OK <
! Tiny numbers ...
2C ALL Epl Epldl OK>
2C ALL -Epl -Epldl OK <
2C ALL -Epldl -Epl OK >
2C ALL Epldl Epl OK<
2C ALL Eplil Epldl OK >
2C ALL -Eplil -Epldl OK <
2C ALL Ep2 Ep2dl OK >
2C ALL -Ep2 -Ep2dl OK <
2C ALL -Ep2dl -Ep2 OK >
2C ALL Ep2dl Ep2 OK<
2C ALL Ep2i1 Ep2dl OK >
2C ALL -Ep2il -Ep2dl OK <
2C ALL Epldl Epli2 OK <
2C ALL -Epldl -Epli2 OK >
2C ALL Epldl Epli4 OK <
2C ALL -Epldl -Epli4 OK >
2C ALL Eplil Eil OK >
2C ALL -Eplil -Eil OK <
2C ALL Epli2 Eil OK >
2C ALL -Epli2 -Eil OK <
2C ALL Ep2i2 Epli3 OK >
2C ALL -Ep2i2 -Epli3 OK <
I

B.24

! Add magnitude cases where one operand
! is off in sticky - rounding
! perhaps to an overflow.
I Huge vs medium
2C ALL Hml 1 OK >
2C ALL -Hml -1 OK <
2C ALL Hmldl -1 OK >
2C ALL Hmldl 1 OK >
2C ALL -Hmldl 1 OK <
2C ALL -Hmldl -1 OK <
2C ALL Hd 1 1 OK >
2C ALL Hdl -1 OK >
2C ALL -Hdl 1 OK <
2C ALL -Hdl -1 OK <
2C ALL Hd2 -1 OK >
2C ALL Hd2 1 OK>
2C ALL -Hd2 1 OK <
2C ALL -Hd2 -1 OK <
! Huge vs tiny.
2C ALL Oil Hml OK <
2C ALL Oil -Hml OK >
2C ALL -Oil Hml OK <
2C ALL -Oil -Hml OK >
2C ALL Oil Hmld 1 OK <
2C ALL Oil -Hmldl OK >
2C ALL -Oil Hmldl OK <
2C ALL -Oil -Hmldl OK >
2C ALL Oil Hdl OK <
2C ALL Oil -Hdl OK >
2C ALL -Oil Hdl OK <
2C ALL -Oil -Hdl OK >
2C ALL Oil Hd2 OK <
2C ALL Oil -Hd2 OK>

2C ALL -Oil Hd2 OK <
2C ALL -Oil -Hd2 OK >
I Medium vs tiny.
2C ALL Oil 1 OK <
2C ALL Oil -1 OK >
2C ALL -Oil l OK <
2C ALL -Oil -1 OK >
2C ALL Oil ldl OK <
2C ALL Oil -ldl OK >
2C ALL -Oil ldl OK <
2C ALL -Oil -ldl OK >
2C ALL Oil 2dl OK<
2C ALL Oil -2d1 OK >
2C ALL -Oil 2dl OK<
2C ALL -Oil -2d1 OK >
2C ALL Oil 2d2 OK <
2C ALL Oil -2d2 OK >
2C ALL -Oil 2d2 OK <
2C ALL -Oi 1 -2d2 OK >
I
! Magnitude subtract when an operand
I is in the sticky bit.
I The interesting cases will arise
! when directed rounding
! forces a nonzero cance1lation.
! Huge and medium.
2C ALL Hml 1 OK >
2C ALL Hml -1 OK >
2C ALL -Hml 1 OK <
2C ALL -Hml -1 OK <
2C ALL Hmldl 1 OK >
2C ALL Hmldl -1 OK >
2C ALL -Hmldl 1 OK <
2C ALL -Hmldl -1 OK <
2C ALL Hdl 1 OK >
2C ALL Hdl -1 OK >
2C ALL -Hdl 1 OK <
2C ALL -Hdl -1 OK <
2C ALL Hd2 1 OK>
2C ALL Hd2 -1 OK >
2C ALL -Hd2 1 OK <
2C ALL -Hd2 -1 OK <
! Huge and tiny.
2C ALL Hdl Oil OK >
2C ALL Hdl -Oil OK >
2C ALL -Hdl Oil OK <
2C ALL -Hdl -Oil OK <
2C ALL Oi3 Hml OK <
2C ALL -Oi3 Hml OK <
2C ALL Oi3 -Hml OK >
2C ALL -Oi3 -Hml OK >
! Medium and tiny.
2C ALL ldl Oil OK >
2C ALL ldl -Oil OK >
2C ALL 2dl Oil OK >
2C ALL -2dl Oil OK <
2C ALL Oi3 3 OK <
2C ALL -Oi3 3 OK <
2C ALL Oi3 5 OK <
2C ALL Oi3 -5 OK >
I
! Add me.gnitude with difference in
! LSB so, except for denorms,
I round bit is crucia1.

! Ha1f-way cases arise.
I Medium cases.
2C ALL li 1 l OK >
2C ALL lil -1 OK >
2C ALL -lil 1 OK <
2C ALL -lil -l OK <
2C ALL -2 2il OK <
2C ALL -2 -2il. OK >
2C ALL 2 -2il OK >
2C ALL 2 2i 1 OK <
2C ALL 1 li3 OK <
2C ALL 1 -li3 OK >
2C ALL -1 li3 OK <
2C ALL -1 -li3 OK >
2C ALL -2i1 -2i2 OK >
2C ALL -2il 2i2 OK <
2C ALL 2il -2i2 OK >
2C ALL 2il 2i2 OK <
! Huge cases.
2C ALL Hd2 Hdl OK<
2C ALL Hd2 -Hdl OK >
2C ALL -Hd2 Hdl OK <
2C ALL -Hd2 -Hdl OK >
2C ALL Hmldl Hml OK <
2C ALL Hmldl -Hml OK >
2C ALL -Hmldl Hml OK <
2C ALL -Hmldl -Hml OK >
2C ALL Hmlil Hml OK >
2C ALL Hmlil -Hml OK >
2C ALL -Hmlil Hml OK <
2C ALL -Hmlil -Hml OK <
2C ALL Hm2il Hm2 OK >
2C ALL Hm2il -Hm2 OK >
2C ALL -Hm2il Hm2 OK <
2C ALL -Hm2il -Hm2 OK <
2C ALL Hm1d2 Hmldl OK <
2C ALL Hmld2 -Hmldl OK >
2C ALL -Hmld2 Hmldl OK <
2C ALL -Hmld2 -Hmldl OK >
! NaN operands.
2C ALL Q O OK ?
2C ALL Q -0 OK ?
2C ALL O Q OK ?
2C ALL -0 Q OK ?
2C ALL Q 1 OK ?
2C ALL Q -1 OK ?
2C ALL 1 Q OK ?
2C ALL -1 Q OK ?
2C ALL Edl Q OK ?
2C ALL -Edl Q OK ?
2C ALL Q Ed 1 OK ?
2C ALL Q -Edl OK ?
2C ALL Q Oil OK ?
2C ALL Q -Oil OK ?
2C ALL Oil Q OK ?
2C ALL -Oil Q OK ?
2C ALL Q Hdl OK?
2C ALL Q -Hdl OK ?
2C ALL Hdl Q OK ?
2C ALL -Hdl Q OK ?
2C ALL Q H OK?
2C ALL Q -H OK ?
2C ALL H Q OK ?
2C ALL -H Q OK ?

B.25

2C ALL Q Q OK?
2C ALL S O i ?
2C ALL S -0 i ?
2C ALL O S i ?
2C ALL -0 S i ?
2C ALL S 1 i ?
2C ALL S -1 i ?
2C ALL 1 S i ?
2C ALL -1 S i ?
2C ALL Ed 1 S i ?
2C ALL -Edl S i ?
2C ALL S Ed 1 i ?
2C ALLS -Edli?
2C ALL S Oil i ?
2C ALL S -Oi 1 i ?
2C ALL Oi 1 S i ?
2C ALL -Oi 1 S i ?
2C ALL S Hd 1 i ?
2C ALLS -Hdl i?
2C ALL Hd 1 S i ?
2C ALL -Hd 1 S i ?
2C ALL S H i ?
2C ALL S -H i ?
2C ALL H S i ?
2C ALL -H S i ?
2C ALL Q S i ?
2C ALL S Q i ?
2C ALL S S i ?

B.26

! First a few trivial cases ...
ZV ALL 1 0 OK 1
2V ALL 4 0 OK 2
ZV ALL 9 0 OK 3
2V ALL lpB O OK lp4
ZV ALL lmB O OK lm4
ZV ALL 4p6 o OK 2p3
2V ALL 4m6 0 OK 2m3
2V ALL 9pB O OK 3p4
ZV ALL 9mB O OK 3m4
ZV ALL 9p9p9 0 OK 3p9
ZV ALL 9m9m9 0 OK 3m9
! And the usua1 zero business.
2V ALL +0 O OK +0
ZV ALL -o O OK -0
! And tests for in:finjty.
2V ALL +H O OK +H
2V ALL -H 0 i Q
! Case: 2-EVEN • (1 + NuJp+) ->
I 2-(EVEN 12) •
! (1 + (l /2)NuJp+ -
! (l /B)(NuJp+)-2 + tiny)
I 1 + lulp -> 1 + 0.5u1p - tiny.
2V =0< lil O x l
ZV > lil O x li 1
! 1 + 2u1p -> 1 + lulp - tiny.
ZV ""> li2 0 x lil
2V 0< li2 0 x 1
I 1 + 3u1p -> 1 + l.5u1p - tiny.
ZV !::Q< li3 0 X lil
ZV > li3 0 :x li2
I 1 + 4u1p -> 1 + 2u1p - tiny.
ZV => li4 0 x li2
ZV 0< li4 0 :x lil
I (1 + 5u1p) -> 1 + 2.5u1p - ...
ZV =0< li5 0 x li2
ZV > li5 0 :x li3
I (1 + 6u1p) -> 1 + 3u1p - ...
2V => li6 0 x li3
ZV 0< li6 0 x li2
! (1+7u1p) --> 1 + 3.5u1p - ...
ZV =0< li7 0 X li3
ZV > li7 0 x li4
I sqrt(l - NuJp-) ->
I 1 - (1 /2)Nu1p- -
I (1 IB)(NuJp-)-2 - tiny
I 1 - lulp- ->
I 1 - 0.5uJp- - tiny.
ZV =0< ldl Ox ldl
ZV > ldl O :x 1
I 1 -2uJp- ->
I 1 - lulp- - tiny.
ZV => ld2 0 x ldl
ZV 0< ld2 0 x ld2
I 1- 3ulp- ->
I 1 - l.5uJp- - tiny.
ZV =0< ld3 0 x 1d2
2V > ld3 0 x ldl
I l-4uJp- ->
I 1 - 2uJp- - tiny.
ZV => ld4 0 x ld2
ZV 0< ld4 0 x ld3
I l - 5uJp- ->
! 1 - 2.5uJp- - tiny.

ZV =0< ld5 0 x ld3
2V > ld5 0 x 1d2
! 1 - 6u1p- ->
! 1 - 3u1p- - tiny.
ZV => ld6 0 x ld3
ZV 0< ld6 0 x ld4
I 1 - 7u1p- ->
! 1 - 3.5u1p- - tiny.
ZV =0< ld7 0 x ld4
ZV > ld7 0 x ld3
! 1 - 8u1p- -->
! l - 4u1p- - tiny.
ZV => ldB Ox ld4
ZV 0< ldB O :x ld5
! 1 - 9ulp- ->
! l - 4.5u1p- - tiny.
ZV =0< ld9 0 x ld5
ZV > ld9 0 x ld4
! Invalid negative cases.
2V ALL -1 0 i Q
2V ALL -2i2 O i Q
ZV ALL -3i4 0 i Q
ZV ALL -4d5 0 i Q
2V ALL -lul O i Q
2V ALL -lu2 0 i Q
2V ALL -lu3 0 i Q
2V ALL -Hmli2 O i Q
2V ALL -Hm2i2 O i Q
ZV ALL -Hmldl O i Q
ZV ALL -Hm2d4 0 i Q
2V ALL -Eplil O i Q
2V ALL -Epld3 0 i Q
ZV ALL -Epl O i Q
2V ALL -Epl O i Q
ZV ALL -Ed4 0 i Q
2V ALL -Ed3 0 i Q
ZV ALL -Ed2 0 i Q
2V ALL -Edl 0 i Q
ZV ALL -Ed4 0 i Q
2V ALL -Ed3 0 i Q
2V ALL -Ed7 0 i Q
ZV ALL -Ed9 0 i Q
ZV ALL -Oi 1 0 i Q
2V ALL -Oi 1 0 i Q
ZV ALL -Oi9 0 i Q
2V ALL -Oi 7 0 i Q
ZV ALL -Oi5 0 i Q
ZV ALL -Oi2 0 i Q
! NaN operand.
2V ALL Q 0 OK Q
ZVALLSOiQ

B.27

! Exact cases.
2I ALL 1 O OK l
2I ALL Hdl O OK Hdl
2I ALL -1 0 OK -1
2I ALL -Hdl O OK -Hdl
2! ALL 9p9 O OK 9p9
2! ALL -9p9 O OK -9p9
2! ALL O O OK O
2! ALL -0 O OK -0
2! ALL Hm9 0 OK Hm9
2I ALL Hm9dl O OK Hm9dl
2I ALL Hm9d9 O OK Hm9d9
21 ALL Hm9d9d9 0 OK Hm9d9d9
2! ALL -Hm9 0 OK -Hm9
2I ALL -Hrn9dl O OK -Hm9dl
2I ALL -Hrn9d9 0 OK -Hm9d9
2I ALL -Hrn9d9d9 0 OK -Hm9d9d9
! hlfinities.
2I ALL H O OK H
2I ALL -H O OK -H
! Inexact cases.
2I =0< li 1 0 x 1
2I > lil 0 x 2
2I => ldl O x l
2I 0< 1 d l O x 0
2! =< -ldl O x -1
2I 0> -ldl O x -0
21 =0> -lil 0 x -1
21 < -lil 0 x -2
2I > E O x 1
2! =0< E O x 0
2! < -E O :x -1
2! =0> -E 0 x -0
2! > Edl 0 x 1
2I =0< Ed 1 0 x 0
21 < -Edl O x -1
2I =0> -Edl 0 x -0
2! =0< Oil 0 X 0
21 > Oi 1 0 :x l
21 =0> -Oil 0 X -0
2I < -Oil 0 x -1
2I > Bil O x 9
2I 0=< Bil 0 x 8
21 < -Bil 0 x -9
2! 0=> -8il 0 x -8
2I => 8dl O x 8
21 0< 8dl 0 x 7
21 =< -8dl O :x -8
2I 0> -8dl 0 x -7
21 => lp9d8 0 x lp9
2I =< -lp9d8 0 x -lp9
2I => lp9p9d l O :x lp9p9
2! =< -lp9p9dl O :x -lp9p9
2! =<O lp9i8 0 x lp9
2I =>0 -lp9i8 0 x -lp9
2! =<0 lp9p9il O x lp9p9
2! =>O -1p9p9il O x -lp9p9
! Half-way cases.
2! > 1ml 0 X 1
2I ==0< 1ml O :x 0
21 < -lrnl O x -1
21 =0> -lrnl O :x -0
2I >= 3ml O :x 2
2I <0 3ml 0 x l

2I >0 -3m1 0 x -1
2! =< -3ml 0 X -2
2! > 9ml 0 X 5
21 =0< 9ml O X 4
2! < -9ml 0 x -5
21 =0> -9ml O x -4
21 ::: lmlil 0 x 1
21 = -lrnlil 0 x -1
21 = 3rnldl 0 x 1
21 = -3mldl 0 :x -1
21 = 9mlil 0 x 5
2I = -9mlil 0 x -5
! NAN operand,
21 ALL Q O OK Q
21 ALL S o i Q

B.28

!
! CopySign test vectors:
!
2@ ALL l 1 OK 1

2@ ALL 1 -1 OK -1
2@ ALL -1 1 OK 1
2@ ALL -1 -1 OK -1
2@ ALL 1 Oil OK l
2@ ALL 1 -Oil OK -1
2@ ALL -1 Oil OK 1
2@ ALL -1 -Oil OK -1
2@ ALL 1 Hdl OK 1
2@ ALL 1 -Hdl OK -1
2@ ALL -1 Hdl OK 1
2@ ALL -1 -Hdl OK -1
2@ ALL 1 H OK 1
2@ ALL 1 -H OK -1
2@ ALL -1 H OK 1
2@ ALL -1 -H OK -1
2@ ALL 1 0 OK 1
2@ ALL l -0 OK -1
2@ ALL -1 0 OK l
2@ ALL -1 -0 OK -1
2@ ALL Oil l OK Oil
2@ ALL Oil -1 OK -Oil
2@ ALL -Oil 1 OK Oil
2@ ALL -Oil -1 OK -Oil
2@ ALL Oil H OK Oil
2@ ALL Oil -H OK -Oil
2@ ALL -Oil H OK Oil
2@ ALL -Gil -H OK -Oil
2@ ALL Oil O OK Oil
2@ ALL Oil -0 OK -Oil
2@ ALL -Oil O OK Oil
2@ ALL -Oi 1 -0 OK -Oi 1
2@ ALL Hdl E OK Hdl
20 ALL Hdl -E OK -Hdl
2@ ALL -Hdl E OK Hdl
2@ ALL -Hdl -E OK -Hdl
2@ ALL Hdl H OK Hdl
2@ ALL Hdl -H OK -Hdl
2@ ALL -Hdl H OK Hdl
2@ ALL -Hdl -H OK -Hdl
2@ ALL Hdl O OK Hdl
2@ ALL Hdl -0 OK -Hdl
2@ ALL -Hdl O OK Hdl
2@ ALL -Hdl -0 OK -Hdl
2@ ALL H 1 OK H
2@ ALL H -1 OK -H
2@ ALL -H 1 OK H
2@ ALL -H -1 OK -H
2@ ALL H Edl OK H
2@ ALL H -Edl OK -H
2@ ALL -H Edl OK H
2@ ALL -H -Edl OK -H
2@ ALL HO OK H
2@ ALL H -0 OK -H
2@ ALL -H O OK H
2@ ALL -H -0 OK -H
2@ ALL H H OK H
2@ ALL H -H OK -H
2@ ALL -H H OK H
2@ ALL -H -H OK -H
! NaNs - FPTEST checks that NaNs

! are returned and with no exceptions.
2@ ALL Q 1 OK Q
2@ ALL Q -1 OK -Q
2@ ALL -Q 1 OK Q
2@ ALL -Q -1 OK -Q
2@ ALL Q Oil OK Q
2@ ALL Q -Oil OK -Q
2@ ALL -Q Oil OK Q
2@ ALL -Q -Oil OK -Q
2@ ALL Q H OK Q
2@ ALL Q -H OK -Q
2@ ALL -Q H OK Q
2@ ALL -Q -H OK -Q
2@ ALL Q O OK Q
2@ ALL Q -0 OK -Q
2@ ALL -Q O OK Q
2@ ALL -Q -0 OK -Q
2@ ALL S 1 OKS
2@ ALL S -1 OK -S
2@ ALL -S 1 OK S
2@ ALL -S -1 OK -S
2@ ALL S Oil OK S
2@ ALL S ·Oil OK -S
2@ ALL -S Oil OK S
2@ ALL -S -Oil OK -S
2@ ALL S H OK S
2@ ALL S -H OK -S
2@ ALL -S H OK S
2@ ALL -S -H OK -S
2@ ALL S O OKS
2@ ALL S -0 OK -S
2@ ALL -S O OK S
2@ ALL -S -0 OK -S
2@ ALL 1 Q OK 1
2@ ALL l -Q OK -1
2@ ALL 1 S OK 1
2@ ALL 1 -S OK -1
2@ ALL -1 Q OK 1
2@ ALL -1 -Q OK -1
2@ ALL -1 S OK 1
2@ ALL -1 -S OK -1
2@ ALL H Q OK H
2@ ALL H -Q OK -H
2@ ALL H S OK H
2@ ALL H -S OK -H
20 ALL -H Q OK H
2@ ALL -H -Q OK -H
2@ ALL -H S OK H
2@ ALL -H -S OK -H
2@ ALL S Q OKS
2@ ALL S -Q OK -S
2@ ALL S S OK S
2@ ALL S -S OK -S
2@ ALL -S Q OK S
2@ ALL -S -Q OK -S
2@ ALL -S S OK S
2@ ALL -S -S OK -S
2@ ALL Q Q OK Q
2@ ALL Q -Q OK -Q
2@ ALL Q S OK Q
2@ ALL Q -S OK -Q
2@ ALL -Q Q OK Q
2@ ALL -Q -Q OK -Q
2@ ALL -Q S OK Q

B.29

B.30

2@ ALL -Q -S OK -Q

!
! Negate test vectors:
I
2~ ALL 1 0 0 K -1
2~ ALL -1 O OK 1
2~ ALL Edl O OK -Edl
2~ ALL -Edl O OK Edl
2~ ALL Oil O OK -Oil
2~ ALL -Oil O OK Oil
2~ ALL Hml O OK -Hml
2~ ALL -Hml O OK Hml
2~ ALL Hdl O OK -Hdl
2~ ALL -Hdl O OK Hdl
2~ ALL H O OK -H
2~ ALL -H O OK H •
2~ ALL o O OK -0
2~ ALL -0 O OK O
I NaNs - FPTEST checks onJy that
I NaNs are produced and with no exceptions.
2~ ALL -Q O OK Q
2~ ALL Q O OK -Q
2~ ALL -S O OK S
2~ ALL S O OK -S

B.31

I
I Absolute value test vectors:
I
2A ALL l O OK l
2A ALL -1 0 OK l
2A ALL Edl O OK Edl
2A ALL -Edl O OK Edl
2A ALL Oil O OK Oil
2A ALL -Oil O OK Oil
2A ALL Hml O OK Hml
2A ALL -Hml O OK Hml
2A ALL Hdl O OK Hdl
2A ALL -Hdl O OK Hdl
2A ALL H O OK H
2A ALL -H O OK H
2A ALL O O OK 0
2A ALL -0 O OK O
! NaNs - FPTEST checks that results
! are NaNs with no exceptions.
2A ALL Q O OK Q
2A ALL -Q O OK Q
2A ALLS O OKS
2A ALL -S O OK S

B.32

' I Ne:rtafter Test Vectors:
!
I From 1.
2N ALL 1 2 OK li 1
2N ALL l O OK ldl
2N ALL 1 -0 OK ldl
2N ALL 1 lil OK lil
2N ALL 1 ldl OK ldl
2N ALL 1 Hml OK lil
2N ALL 1 Hdl OK lil
2N ALL 1 1 OK l
2N ALL 1 -Hdl OK ldl
2N ALL 1 E OK ldl
2N ALL l Edl OK ldl
2N ALL 1 Oil OK ldl
2N ALL 1 -1 OK ldl
2N ALL 1 -H OK ldl
2N ALL 1 H OK lil
I From-1.
2N ALL -1 -2 OK -lil
2N ALL -1 0 OK -ldl
2N ALL -1 -0 OK -ldl
2N ALL -1 -lil OK -lil
2N ALL -1 -ldl OK -ldl
2N ALL -1 Hml OK -ldl
2N ALL -1 Hdl OK -ldl
2N ALL -1 1 OK -ldl
2N ALL -1 -Hdl OK -lil
2N ALL -1 E OK -ldl
2N ALL -1 Edl OK -ldl
2N ALL -1 Oil OK -ldl
2N ALL -1 -1 OK -1
2N ALL -1 H OK -ldl
2N ALL -1 -H OK -lil
! From 1 + lulp of 1.
2N ALL lil 2 OK li2
2N ALL lil O OK 1
2N ALL lil li2 OK li2
2N ALL lil 1 OK 1
2N ALL lil Hml OK li2
2N ALL lil Hdl OK li2
2N ALL lil -lil OK 1
2N ALL lil -Hdl OK 1
2N ALL lil E OK 1
2N ALL lil Edl OK l
2N ALL lil Oil OK 1
2N ALL lil lil OK 1i1
2N ALL 1il H OK li2
2N ALL lil -H OK 1
I From 1 - lulp- of 1.
2N ALL ldl 2 OK 1
2N ALL ldl O OK ld2
2N ALL ldl 1 OK 1
2N ALL ldl ld2 OK ld2
2N ALL ldl Hml OK l
2N ALL ldl Hdl OK 1
2N ALL ldl -ldl OK ld2
2N ALL ldl -Hdl OK ld2
2N ALL ldl E OK ld2
2N ALL ldl Edl OK ld2
2N ALL ldl Oil OK ld2
2N ALL ldl ldl OK ldl
2N ALL ldl H OK 1

2N ALL ldl -H OK ld2
! From largest power of 2.
2N ALL Hml Hm2 OK Hrnldl
2N ALL Hml O OK Hmld 1
2N ALL Hml Hmldl OK Hmldl
2N ALL Hml Hml OK Hml
2N ALL Hml Hdl OK Hmlil
2N ALL Hml -Hml OK Hmldl
2N ALL Hml -Hdl OK Hrnldl
2N ALL Hml E OK Hmldl
2N ALL Hml Edl OK Hmldl
2N ALL Hml Oil OK Hmldl
2N ALL Hml H OK Hmlil
2N ALL Hml -H OK Hmldl
! From largest number.
2N ALL Hdl Hrnl OK Hd2
2N ALL Hdl O OK Hd2
2N ALL Hdl -0 OK Hd2
2N ALL Hdl Hd2 OK Hd2
2N ALL Hdl Hdl OK Hdl
2N ALL Hdl -Hdl OK Hd2
2N ALL Hdl E OK Hd2
2N ALL Hdl Edl OK Hd2
2N ALL Hdl Oil OK Hd2
2N ALL Hdl H ox H
2N ALL Hdl -H OK Hd2
2N ALL -Hd l -H ox -H
2N ALL -Hd 1 H OK -Hd2
! From smallest normalized number.
2N ALL E 2 OK Eil
2N ALL E O xu Edl
2N ALL E -0 xu Edl
2N ALL E Eil OK Eil
2N ALL E Edl xu Edl
2N ALL E Hml OK Eil
2N ALL E Hdl OK Eil
2N ALL E -E xu Edl
2N ALL E -Hdl xu Edl
2N ALL E E OK E
2N ALL E Oil xu Edl
2N ALL E H OK Eil
2N ALL E -H xu Edl
! From largest denormalized number.
2N ALL Edl 2 OK E
2N ALL Edl O xu Ed2
2N ALL Edl E OK E
2N ALL Edl Ed2 xu Ed2
2N ALL Edl Hml OK E
2N ALL Edl Hdl OK E
2N ALL Ed 1 -Ed 1 xu Ed2
2N ALL Edl -Hdl xu Ed2
2N ALL Edl Edl OK Edl
2N ALL Edl Oil xu Ed2
2N ALL Edl H OK E
2N ALL Edl -H xu Ed2
2N ALL -Edl -2 OK -E
2N ALL -Edl -0 xu -Ed2
2N ALL -Edl -E OK -E
2N ALL -Edl -Ed2 xu -Ed2
2N ALL -Edl -Hml OK -E
2N ALL -Ed1 -Hdl OK -E
2N ALL -Edl Edl :ru -Ed2
2N ALL -Edl Hdl xu -Ed2
2N ALL -Edl -Edl OK -Edl

B.33

2N ALL -Edl -Oil xu -Ed2
2N ALL -Edl -H OK -E
2N ALL -Edl H xu -Ed2
! From smallest denormalized number.
2N ALL Oil 2 xu Oi2
2N ALL Oi 1 0 xu 0
2N ALL Oil Oi2 xu Oi2
2N ALL Oil Hml xu Oi2
2N ALL --Oil -0 xu -0
2N ALL -Oi 1 -Di2 xu -Oi2
2N ALL --Oil -Hml xu -Oi2
2N ALL Oil Hdl xu Oi2
2N ALL Oil O xu 0
2N ALL Oil -0 XU 0
2N ALL -Oi 1 -0 xu -0
2N ALL -Oil O xu -0
2N ALL Oil -Hdl xu 0
2N ALL Oi 1 E xu Oi2
2N ALL Oi 1 Ed 1 xu Oi2
2N ALL Oil Oil OK Oil
2N ALL Oil H XU Oi2
2N ALL Oil -H xu 0
I From 0.
2N ALL O 2 xu Oi 1
2N ALL O O OK 0
2N ALL O -0 OK O
2N ALL O Oil xu Oi 1
2N ALL O -Oil xu -Oil
2N ALL O Hml xu Oil
2N ALL O Hdl xu Oil
2N ALL O -Hdl xu -Oil
2N ALL O E xu Oil
2N ALL O Edl XU Oil
2N ALL O H xu Oil
2N ALL O -H xu -Oil
! From-0.
2N ALL -0 2 xu Oil
2N ALL -0 -0 OK -o
2N ALL -0 0 OK -0
2N ALL -0 Oil xu Oil
2N ALL -0 -Oil xu -Oil
2N ALL -0 Hml xu Oil
2N ALL -0 Hdl xu Qi l
2N ALL -0 -Hdl xu -Oil
2N ALL -0 E xu Oil
2N ALL -0 Edl xu Oi 1
2N ALL -0 H xu Oil
2N ALL -0 -H ::ru -Oil
! From infinity.
2N ALL H 2 OK Hdl
2N ALL HO OK Hdl
2N ALL H -0 OK Hdl
2N ALL H Hml OK Hdl
2N ALL H Hdl OK Hdl
2N ALL H -Hdl OK Hdl
2N ALL HE OK Hdl
2N ALL H Edl OK Hdl
2N ALL H Oil OK Hdl
2N ALL H HOK H
2N ALL H -H OK Hdl
2N ALL -H 2 OK -Hdl
2N ALL -H O OK -Hd1
2N ALL -H -0 OK -Hdl
2N ALL -H -Hml OK -Hdl

2N ALL -H -Hdl OK -Hdl
2N ALL -H Hdl OK -Hdl
2N ALL -H -E OK -Hdl
2N ALL -H -Edl OK -Hdl
2N ALL -H -Oil OK -Hdl
2N ALL -H H OK -Hdl
2N ALL -H -H OK -H
! Next-afters
2N ALL Q O OK Q
2N ALL Q -0 OK Q
2N ALL O Q OK Q
2N ALL -0 Q OK Q
2N ALL Q 1 OK Q
2N ALL Q -1 OK Q
2N ALL 1 Q OK Q
2N ALL -1 Q OK Q
2N ALL Edl Q OK Q
2N ALL -Edl Q OK Q
2N AL.:., Q Edl OK Q
2N ALL Q -Edl OK Q
2N ALL Q Oil OK Q
2N ALL Q -Oil OK Q
2N ALL Oil Q OK Q
2N ALL -Oil Q OK Q
2N ALL Q Hdl OK Q
2N ALL Q -Hdl OK Q
2N ALL Hdl Q OK Q
2N ALL -Hdl Q OK Q
2N ALL Q H OK Q
2N ALL Q -H OK Q
2N ALL H Q OK Q
2N ALL -H Q OK Q
2N ALL Q Q OK Q
2N ALL S O i Q
2N ALL S -0 i Q
2N ALL O S i Q
2N ALL -0 S i Q
2N ALL S 1 i Q
2N ALL S -1 i Q
2N ALL 1 S i Q
2N ALL -1 S i Q
2N ALL Edl Si Q
2N ALL -Ed 1 S i Q
2N ALL S Edl i Q
2N ALL S -Ed 1 i Q
2N ALL S Oil i Q
2N ALL S -Oi 1 i Q
2N ALL Oil S i Q
2N ALL -Oil S i Q
2N ALL S Hd 1 i Q
2N ALL S -Hd 1 i Q
2N ALL Hdl S i Q
2N ALL -Hd 1 S i Q
2N ALL S H i Q
2N ALL S -H i Q
2NALLHSiQ
2N ALL -H S i Q
2N ALL Q S i Q
2N ALL S Q i Q
2N ALL S S i Q

B.34

! ScaJb test vectors. Those with
! 2nd arguments that overflow
! the integer format are commented
I out, since the response to
I :float.ing->integer conversion on
I overflow is system-dependent
I
! Warm ups.
2S ALL 1 1 OK 2
2S ALL -1 l OK -2
2S ALL l -1 OK 1ml
2S ALL -1 -1 OK -lml
2S ALL 1 3 OK 8
2S ALL 1 -3 OK lm3
2S ALL 9 9 OK 9p9
2S ALL 9 -9 OK 9m9
2S ALL 7 8 OK 7p8
2S ALL -7 -8 OK -7m8
2S ALL 5 O OK 5
2S ALL 5 -0 OK 5
2S ALL -5 -0 OK -5
! Big numbers.
2S ALL Hml -8 OK Hm9
2S ALL Hm9 8 OK Hml
2S ALL Hdl -9 OK Hdlm9
2S ALL Hdlm9 9 OK Hdl
2S ALL -Hdl -9 OK -Hdlm9
2S ALL -Hdlm9 9 OK -Hdl
2S ALL Hdl O OK Hdl
2S ALL Hdl -0 OK Hdl
I Overflows.
2S >= Hml 1 xo H
2S <= -Hml 1 xo -H
2S s>= 1 lp7 xo H
2S s<= -1 lp7 xo -H
I 2S >= 1 Hm9 :xo H
2S ds>= 1 lp9p5 xo H
I 2S >= 1 Hd 1 XO H
2S ds<= -1 lp9p5 xo -H
! 2S <= -1 Hdl XO -H
I 2S >= lm9 Hm9 :xo H
2S >= Hd l l :XO H
2S >= Hm9 9 xo H
2S ds>= E lp9p5 xo H
2S ds>= Edl lp9p5 xo H
2S ds>= Oil lp9p5 xo H
2S ds<= -Oil lp9p5 xo -H
! 2S >= E Hml xo H
! 2S >= Edl Hml xo H
I 2S >= Oil Hml :xo H
I 2S <= --Oil Hml xo -H
2S <0 Hml 1 xo Hdl
2S >0 -Hml 1 xo -Hdl
2S s<O 1 lp7 xo Hdl
2S s>O -1 lp7 xo -Hdl
I 2S <0 1 Hm9 xo Hd 1
2S ds<O l lp9p5 xo Hdl
12S <0 l Hdl XO Hdl
2S ds>O -1 lp9p5 xo -Hdl
! 2S >0 -1 Hdl :XO -Hdl
I 2S <0 lm9 Hm9 xo Hdl
2S <0 Hdl 1 XO Hdl
2S <0 Hm9 9 xo Hdl
2S ds<O E lp9p5 xo Hdl

2S ds<O Edl lp9p5 xo Hdl
2S ds<O Oil lp9p5 xo Hdl
2S ds>O -Oil lp9p5 xo -Hdl
! 2S <0 E Hml xo Hdl
! 2S <0 Edl Hml xo Hdl
! 2S <0 Oil Hml :xo Hdl
! 2S >O --Oil Hml :xo -Hdl
I Tiny operand.
2S s E lp7 OK 4
2S s Edl lp7 OK ld2p2
2S s -Edl lp7 OK -ld2p2
2S d E lp7p3 OK 4
2S d Edl lp7p3 OK ld2p2
2S d -Edl lp7p3 OK -ld2p2
2S ALL Oil 1 OK Oi2
2S ALL -Oil 1 OK -Oi2
2S ALL Oi2 -1 OK Oil
2S ALL Oil 3 OK Oi8
2S ALL Oi8 -3 OK Oil
2S ALL Edl 1 OK Epld2
2S ALL Epld2 -1 OK Edl
2S ALL Edl O OK Edl
2S ALL Edl -0 OK Ed 1
! Underflows.
2S <=0 Oil -1 XU 0
2S > Oil -1 xu Oil
2S >=0 -Oil -1 XU -0
2S < -Oil -1 xu -Oil
2S <0 Oi3 -2 xu 0
2S => Oi3 -2 xu Oil
2S <=0 Oi9 -3 XU Oil
2S > O:i9 -3 xu Oi2
2S => Oi3 -1 xu Oi2
2S 0< Oi3 -1 xu Oil
2S >= Epldl -1 xu E
2S 0< Ep ldl -1 xu Edl
2S >= Ep9dl -9 xu E
2S 0< Ep9dl -9 xu Edl
2S <=Ods 1 -lp9p5 :xu 0
2S >ds 1 -lp9p5 xu Oil
I 2S <=0 1 -Hml :xu 0
! 2S > 1 -Hml xu Oil
2S <= -Ep9dl -9 xu -E
2S 0> -Ep9dl -9 xu -Ed 1
2S >=Ods -1 -lp9p5 xu -0
2S <ds -1 -lp9p5 xu --Oil
2S <=Ods E -lp9p5 xu 0
2S >ds E -lp9p5 xu Oil
2S <=Ods Oil -lp9p5 xu 0
2S >ds Oil -lp9p5 xu Oil
2S >=Ods -Oil -lp9p5 xu -0
2S <ds -Oil -lp9p5 xu --Oil
I 2S >=0 -1 -Hml xu -0
! 2S < -1 -Hml xu -Oil
! 2S <=0 E -Hml xu 0
! 2S > E -Hml xu Oil
! 2S <=0 Oil -Hdl xu 0
! 2S > Oil -Hdl xu Oil
! 2S >=0 -Oil -Hdl xu -0
! 2S < -Oil -Hdl xu -Oil
I Infinity operands.
2S ALL H o OK H
2S ALL H -0 OK H
2S ALL -H O OK -H

B.35

2S ALL -H -0 OK -H
2S ALL H 1 OK H
28 ALL H lp9p5 OK H
2S ALL H -lp9p5 OK H
2S ALL -H lp9p5 OK -H
28 ALL -H -lp9p5 OK -H

28 ALL H Hd 1 OK H
2S ALL H -Hdl OK H
28 ALL -H Hdl OK -H
2S ALL -H -Hdl OK -H
28 ALL 1 H OK H
2S ALL Hd 1 H OK H
2S ALL Oil H OK H
2S ALL H H OK H
2S ALL -H H OK -H
28 ALL H -H i Q
28 ALL O H i Q

! Zeros.
2S ALL O 1 OK 0
28 ALL O lp9p5 OK 0
2S ALL O -lp9p5 OK 0
! 2S ALL O Hdl OK 0
!2S ALL O -Hdl OK 0
2S ALL O O OK 0
28 ALL O -0 OK O
28 ALL -0 1 OK -0
I 2S ALL -0 Hdl OK -0
I 2S ALL -0 -Hdl OK -0
2S ALL -0 -0 OK -0
28 ALL -0 O OK -0
! NaNs.
28 ALL Q 1 OK Q
28 ALL Q lp9p5 OK Q
2S ALL Q -lp9p5 OK Q
I 2S ALL Q H OK Q
! 2S ALL Q -Hdl OK Q
! 2S ALL Q H OK Q
I 28 ALL Q -Hdl OK Q
I 28 ALL Q -H OK Q
! 28 ALL Q Hdl OK Q
28 ALL Q O OK Q
I 28 ALL Q Q OK Q
! 2S ALL 1 Q OK Q
I 2S ALL H Q OK Q
! 2S ALL -H Q OK Q
I 28 ALL O Q OK Q
28ALLSliQ
2S ALL S lp9p5 i Q
28 ALL S -lp9p5 i Q
28 ALL S lp9p5 i Q
2S ALL S -1p9p5 i Q
! 28 ALL S H i Q
! 28 ALL S -Hdl i Q
! 2S ALL S -H i Q
I 2S ALL S Hdl i Q
2SALLSOiQ
! 2S ALL S S i Q
! 28 ALL Q S i Q
128 ALL S Q i Q
128 ALL 1 S i Q
12S ALLHSiQ
! 2S ALL -H S i Q
12S ALL O S i Q

B.36

!
! Test vectors for the fraction part
! or number as if with in..firrite range.
!
! Mid-range.
2F ALL 1 0 OK 1
2F ALL -1 0 OK -1
2F ALL 2 0 OK 1
2F ALL 3 0 OK 3ml
2F ALL 4 0 OK 1
2F ALL 5 O OK 5m2
2F ALL 6 O OK 6m2
2F ALL 7 0 OK 7m2
2F ALL -7 0 OK -7m2
2F ALL 8 0 OK 1
2F ALL 9 O OK 9m3
2F ALL lil O OK lil
2F ALL 2il O OK lil
2F ALL 3il O OK 3mlil
2F ALL 4il O OK 1i1
2F ALL 5il O OK 5m2il
2F ALL 6il O OK 6m2il
2F ALL 7il O OK 7m2il
2F ALL Bil O OK lil
2F ALL 9il O OK 9m3il
2F ALL -9i 1 O OK -9rn3i 1
2F ALL ldl O OK 2dl
2F ALL 2dl O OK 2dl
2F ALL 3dl O OK 3dlml
2F ALL 4dl O OK 2dl
2F ALL 5dl O OK 5dlm2
2F ALL 6d1 0 OK 6dlm2
2F ALL 7dl O OK 7dlm2
2F ALL Bdl O OK 2dl
2F ALL -Bdl O OK -2dl
2F ALL 9dl O OK 9dlm3
! Small.
2F ALL E O OK 1
2F ALL -E O OK -1
2F ALL Eil O OK lil
2F ALL Edl O OK 2d2
2F ALL Ei8 0 OK liB
2F ALL Ed4 O OK 2d8
2F ALL Oil O OK 1
2F ALL -Oil O OK -1
2F ALL Oi8 0 OK 1
2F ALL Oi9 O OK 9m3
2F ALL Epldl O OK 2dl
2F ALL Epld9 0 OK 2d9
2F ALL Eplil O OK lil
I Large.
2F ALL Hml O OK 1
2F ALL Hdl O OK 2dl
2F ALL -Hml O OK -1
2F ALL -Hdl O OK -2dl
2F ALL Hd9 O OK 2d9
2F ALL Hmlil O OK lil
2F ALL Hmli8 0 OK li8
2F ALL Hmldl O OK 2dl

B.37

! LogB test vectors
2L ALL l O OK 0
2L ALL 2 O OK 1
2L ALL -2 0 OK l
2L ALL 3 0 OK 1
2L ALL 4 O OK 2
2L ALL 5 0 OK 2
21 ALL 6 O OK 2
2L ALL 7 0 OK 2
21 ALL 8 O OK 3
21 ALL 9 0 OK 3
2L ALL lp9 0 OK 9
2L ALL 2pB O OK 9
21 ALL 3pB O OK 9
21 ALL -3pB O OK 9
21 ALL 4p7 O OK 9
21 ALL 5p7 0 OK 9
21 ALL 6p7 O OK 9
21 ALL 7p7 O OK 9
21 ALL Bp6 0 OK 9
21 ALL 9p6 O OK 9
21 ALL lp9dl O OK 8
2L ALL 2pBdl O OK 8
21 ALL 3pBdl O OK 9
21 ALL 4p7dl O OK B
21 ALL -4p7dl O OK 8
21 ALL 5p7dl O OK 9
21 ALL 6p7dl O OK 9
21 ALL 7p7dl O OK 9
21 ALL Bp6dl O OK 8
21 ALL 9p6dl O OK 9
21 ALL 1ml O OK -1
21 ALL 3ml O OK 0
2L ALL 3m2 O OK -1
21 ALL 9ml O OK 2
21 ALL 9m2 O OK 1
21 ALL 9rn3 0 OK 0
21 ALL 9m4 O OK -1
21 ALL 9m5 0 OK -2
21 ALL 9m6 O OK -3
21 ALL -9m6 0 OK -3
21 ALL 9m7 0 OK -4
21 ALL 9mB O OK -5
21 ALL ldl O OK -1
21 ALL 2d1 0 OK 0
21 ALL 3d1 O OK 1
21 ALL 4dl O OK 1
21 ALL 5dl O OK 2
21 ALL 6d1 0 OK 2
21 ALL 7d1 O OK 2
21 ALL Bdl O OK 2
21 ALL -6d1 O OK 2
21 ALL 9dl O OK 3
21 ALL lmldl O OK -2
21 ALL 3mldl O OK 0
21 ALL 3rn2dl O OK -1
21 ALL 9mldl O OK 2
21 ALL 9rn2d 1 0 OK l
21 ALL 9m3dl O OK 0
21 ALL 9m4dl O OK -1
2L ALL 9m5d 1 O OK -2
21 ALL 9m6d 1 0 OK -3
21 ALL 9m7d 1 O OK -4
21 ALL 9mBd 1 O OK -5

2L ALL -9m7dl O OK -4
21 ALL lpBpB O OK lp4
21 ALL lpBp8pBp8 0 OK lp5
21 ALL lp8p8p8pBpBpBpBp8 0 OK 1p6
21 ALL lp8p8p8pBpBp8pBp8i9 0 OK lp6
21 ALL -lp8pBpBpBp8p8p8p8i9 0 OK lp6
21 ALL 1m8mB O OK -lp4
21 ALL lm8m8m8m8 0 OK -lp5

B.38

21 ALL lm8m8m8mBm8m8mBmB O OK -lp6 .
21 ALL lmBm8m8m8mBm8mBmBi9 0 OK -lp6
21 ALL -lmBmBm8m8mBm8mBmBi9 0 OK -lp6
! Exceptional cases.
21 ALL Q O OK Q
21 ALL S O i Q
21 ALL H o OK H
21 ALL -H O OK H
21 ALL O O z -H
21 r:.~. -0 O z -H

APPENDIX C

Test Program for P754 Arithmetic - Version 2.0

f•
•• FPTEST: Program to test IEEE jloating-poi:nt units.
•• Written by Jim Thomas and Jerome Goonen, 5 Jan 83 .
••
•• Overview: FPTEST is a general Pascal program suitable for testi:ng
•• different floating-poi:nt units. FPTEST calls certain procedures and
•• functions from a unit FP; these are specific to the system being
•• tested .
••
••
••
••
••
••
••
••
••
••

On.lJ input file contains a list of filenames of test files .
These files contain test vectors, one per li:ne .
Each test vector specifies environment, operands, arithmetic
operation, correct result, and correct exception flags for a
given test. FPTEST sets the environment,
performs the operation on the operands, checks the
result and flags obtained with those speciJied i:n the test vector,
and reports discrepancies to a specified output file .

•• Use: FPTEST begins with a series of questions for the user:
•• Verbose? -- printing all is slow but aids debugging.
•• Check flags? -- check flags as well as numeric results?
•• Stop on errs? -- or conti:nue, listing all to the output file.
•• Single? Double? Extended? -- which formats are to be tested?
• • File with list of test files?
• • Ou.tput file?
••
•• Test Vectors: An example:
••

Version
& Op Modes Oprndl Oprnd2 Flags Result Comment

••
••
••
••
••

2+ = 4d1 Ju3 X 4 check roundi:ng

•• Each test vector consists of seven fields: version number
•• and operator; rounding mode and precisions; 1st operand; 2n,d operand;
•• flags; result; and comment. The fields are separated by white
•• space {blanks and/or tabs); th-us, no field but the last may be blank,
•• and only the last field can itself contain white space. Each line
•• in a file of test vectors must be blank, a test vector, or a comment
•• Line beginnig with an excla:m.ationpoint {!) .
••
••
••
••
••
••
••
••

In the example,
version = 2
operator = addition (+)
rounding = round to nearest (=)
precision = single (s)
Jst operand= 4 decremented by 1 in its least significant bit,

to single precision (4d1)

C.1

••
••
••
••
••
••
••

2nd operand= 3units in the last place of 1, to smgle
precision (1u3)
= inexact (x) flag

resu.lt
comment

=4
= check rounding.

•• Operators:
•• The operators available with this version of FPTES Tare +, - , •,
•• /, V (square root), % (remainder), I (round to integer), N (next-
•• after),~ (negate),@ (copy sign), A {absolute value), S (scalb),
•• L {logb), F {fraction part). and C (compare) .
••
•• Modes:
•• The rou:nd:ing modes are = (to nearest), > (toward +INF),
•• < (toward -INF), and O (toward zero). The precisions are
•• s {s-i:ngle), d {double), and e (extended). Both operands and the
•• "correct" result will be constructed in the specified precision.
•• The test vector is processed only if its precision is one of those
•• initially requested by the user. If no rounding mode is specified
•• then all are tested, and similarly for the precisions. The
.. placekeeper ALL is used when there are no mode or precision
•• restrictions .
••
•• Flags:
•• The flags are i {invalid), o (overflow), x {inexact),
•• z {divide by zero), and u, v, and w {underflow). A 'w' flag
•• indicates that underflow must be signaled O'nly if the
•• floati:ng-point implementation tests for tininess before rounding.
•• A 'v' flag indicates that underflow mu.st be signaled
•• unless the floating-point detects underflow as a loss of
•• accuracy due to denormalization. A 'u.' indicates that
•• all implementations must signal underflow. OK indicates
•• no exceptions signaled .
••
•• Numeric Value Specifiers:
•• These specifiers a,re scanned left to right. They consist
•• of an optional sign, a root number, and one or more optional
•• modifiers for the root number. The sign is specified by + or -
•• as usual, though the + may be omitted. The root number is
•• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, H {infinity), E {the smallest
•• normalized power of 2, Q (a qu,iet NaN), and S (a signaling NaN).
•• Each modifier is a letter, i (increment in the last place),
•• d {decrement in the last place), u (units in the last place),
•• p {plus exponent bias), or m (minus exponent bias), followed by
•• a. smgle digit. "[m,its in the last place" refers to bina:ry units.
•• The following examples illustrate the notation:
••
••
••
••
••
••
••
••
••
••
••

3i2 = 3 incremented by 2 units in its last place, i.e. the
2nd representable number aJter 3 .

1u3 = 3units in the last place of 1, e.g. 3 • 2----23in s-i:ngle .
Hdl = the largest finite number .
Hml = the largest power of 2 .
Edl = the largest denormal number .
Oil = the smallest positive denormal number .
3ml = 3 • 2----1 = 1 V2 .
9p3= 9• 2-3= 72 .
-ldl = the 1st number greater than -1 (note that the minus is

C.2

••
••
•j

C.3

applied la..st) .

program FPTEST; FPTEST
uses

FPSoft, ! • 'i:nterface to software jloating-po'i:nt arithmetic •I
FP; f • interface to test routines •j

f•
•• Type StrB, string[B]. is defined 'i:n Jp. The XXXStr values
•• are parsed from LinBuj. The XXXLim values limit tests
•• to certain rounding modes and precisions. PossErrs is
•• the list of possible error flags.
•j
PossErrs, RndLim, PrcLim, PrcStr, FlgStr, CF!gStr: Str8;

f•
•• Type Str90, string[90], is defined infp. LinBuf is the input
•• buffer for test vectors, TmpBuf is for VO utilities, and the
•• Str XXX variables are the string values in L'i:nBuf represent'i:ng
•• numerical a:rguments.
•j
LinBuI, TmpBuI, StrArgl, StrArg2, StrRes: Str90;

f•
•• Type [mp Form is defined 'i:n Jp. The [mpXXX variables contain
•• values from the corresponding StrXXX variables. The folloVJi:ng
•• integer variables refer to the r.mpXXX record, for a given
•• precision.
•j
UnpArgl, UnpArg2, UnpRes: UnpForm;
MaxExp, MinExp, SigBits, LowBit, LowByte : integer;

f•
•• Type PckForm is defined in Jp. The PckXXXva:riables contain
•• values packed from the corresponding UnpXXX variables.
•j
PckArgl,PckArg2,PckRes,PckFnd.Res:PckForm;

1·
•• UJlowType is defined in Jp. It tells which of the th:ree
•• P754 definitions of underflow is in effect.
•j
UflowOpt: UflowType;

Whitespace: set of char; !• contains <space> and <tab> •I

f•
•• FlgErr and NumErr record errors; OtkF1.gErr determines whether
•• flags are to be checked; StopOnErr determines whether to stop
•• onfu.rther errors. Verbose requests same. The L'i:nOu.t flag
•• records whether 'i:nput line and unpacked values mask has been
•• printed yet.
•1
FlgErr, NumErr, ChkFlgErr, StopOnErr,

1•

Verbose, LinBufOut : boolean;

1•
•• The Xpt-r a:re indexes into argument and line buffer strings.
•• Dots, errors and successful tests are counted by XXXC'nt.
•1
aptr, lptr, DotCnt, FlgErrCnt, NumErrCnt, OKCnt : integer;

1·
•• pc and re a:re the current precision and rounding characters.
•• rev and operator are the revision number and arithmetic
•• operator parsed from LinBuf. The XXXRes are the results
•• of comparisons.
•!
pc, re, rev, operator, CmpRes, CCmpRes: char;

1·
•• List Pile contains a list of potential InFile's containing
•• test vectors. Error reports are written to OutFile.
•j
ListFile, lnFile, OutFile : text;

C.4

• • CaJ,led by Add Ulps and AddExp to normalize an UnpForm.
•j
procedure Normalize(var r: UnpForm); Normalize

Tar

begin

end;

i, c, t : integer;

while (r.man[1] < 128) and {r.exp > MinExp) do
begin

end

c:= O;
for i := MANLEN d01JI1to 1 do
begin

t := r.man[i] • 2 + c;
if t > 255 then
begin

end
else
begin

end
end;
r.exp:=r.exp-1

r.man[i] := t - 256;
C := 1

r.man[i] := t;
C := 0

1•
• • Called by Bu:ildNum.
•• Add n ulps to the number in UnpForm rand normalize the result
•• as much as possible. This routine is complicated by the need
•• to do bit operations using Pascal types.

C.5

•J
procedure AddUJps(var r : UnpForm; n : integer); AddUlps

Yar

begin

c, i, j, t : integer;

if n >= 0 then

1·
.. Add one ulp at a time up to n. This is much easier
•• than t7-ying to add all a:t once. Integer c propagates
•• the carry-out from byte to byte.
•1
for i := 1 ton do
begin

end

c := LowBit;
for j := LowByte down.to 1 do
begin

end;

t := r.man[j] + c;
if t > 255 then
begin

end
else
begin

end

r.manLl] := t - 256;
C := 1

r.man[j] := t;
C := 0

if C = 1 then
begin

f • Carry out of left end? •I

end

r.man[1] := 128;
r.exp := r.exp + 1

for i := 1 to -n do
begin

C := LowBit;
for j := LowByte down.to 1 do
begin

t := r.man[j] - c;
if t < 0 then
begin

end
else

r.man[jJ := t + 256;
C := 1

begin

end
end;

r.man[j] := t;
C := 0

C.6

if (r.man[1] < 128) and (r.exp > MinExp) then
begin

end;

1•

end
end;

Normalize(r)

r.man[l] := r.man[l] + 128;
r.exp := r.exp - 1

• • Called by Bu:ildNum.
•• Add n to the exponent of UnpForm r, taking account of
•• the bottom of the exponent range. If the number mu.st
•• be denormalized, shift right by a given number of bytes and
•• then normalize to the extent possible.
•1
procedure AddExp(,rar r: UnpForm; n: integer);

YB.r

begin

end;

f•

i, j : integer;

r.exp := r.exp + n;

if r.exp < MinExp then
begin

i := ((MinExp - r.exp) div 8) + 1;
for j := MANLEN down.to (i + 1) do

r.rnan[j] := r.man[j - i];
for j := 1 to i do

r.man[j] := O;
r.exp := r.exp + (i • 8)

end;

Normalize(r)

•• Called by BuildNum.
•j
procedure HexFloating(s: Str90; YBr r: UnpForm);

Tar

i, val : integer;
HiNib, more : boolean;

begin

AddExp

HexFloating

aptr := aptr + 1; f • skip over S •j

HiNib := true; f • place first nibble in high half of byte •j
i := 1; J• index of first man[] •j
more := true;
while more and (aptr <= length(s)) do
begin

end;

case s[aptr] of

'O' '1' '2' '3' '4' '5' '6' '7' '8' '9'·
' ' ~al:~ ord(s(°apt;]) ...'.. ord('O;);

"A", "B"'J .,C.._ 'D". "E", "F":
val:= ord(s[aptr]) - ord('A') + 10;

"'a', "b.,, 'c". "d"', ""e", "f":
val:= ord{s[aptr]) - ord('a') + 10;

otherwise more := false

end;

if more then
begin

end

if HiNib then
val := val • 16 ! • Left-align nibble in byte •j

else
i := i - 1; f • recover from last i := i + 1 •j

r.man[i] := r.man[i] + val;
i := i + 1;
HiNib := not HiNib;
aptr := aptr + 1

r.exp := O;
i := 1; f • exponent sign carrier •j
if aptr <= length(s) then
begin

if s[aptr] = ,_, then
begin

aptr := aptr + 1;

if aptr <= length(s) then
if s[aptr] ='+'then

aptr := aptr + 1
else if s[aptr] =,_,then
begin

end;

more:= true;

aptr := aptr + 1;
i := -1

while more and (aptr <= length(s)) do
if (ord('O') <= ord(s[aptr]))

C.7

DD.d (ord('9') >= ord(s[aptr])) then

r.exp := (r.exp • 10)

C.B

+ (ord(s(aptr]) - ord('O'));
aptr := aptr + 1

end;

1•

end
end;

r.exp := r.exp • i;

end
else

more := false

aptr := aptr - 1 I• because will increment upon return •l

•• Called by Bu:ildUnpOps.
•l
procedure BuildNum{s: Str90; Tarr: UnpForrn);

begin

i: integer;

aptr := 1; f • index into argument string•!

r.sgn := O;
ifs[aptr] ='+'then

aptr := aptr + 1
else if s(aptr] =,_,then
begin

r.sgn := 1;
aplr := aplr + 1

end;

for i : = 1 lo MANLEN do
r.man[i] := O;

case s[aptr] of
'O': r.exp := MinExp;
'1': begin r.exp := O; r.man[l] := 128 end;
'2': begin r.exp := 1; r.man[l] := 128 end;
'3': begin r.exp := 1; r.man[l] := 192 end;
'4': begin r.exp := 2; r.man[l] := 128 end;
'5': begin r.exp := 2; r.man[l] := 160 end;
'6': begin r.exp := 2; r.man[l] := 192 end;
'7'; begin r.exp := 2; r.man[l] := 224 end;
'8': begin r.exp := 3; r.man[l] := 128 end;
'Q': begin r.exp := 3; r.man[l] := 144 end;
'e', 'E': begin r.exp := MinExp; r.man[1] := 128 end;
'h', 'H': begin r.exp := MaxExp; r.rnan[l] := 128 end;
'q', 'Q': begin r.exp := MaxExp; r.man[l] := 1 end;
's', 'S': begin r.exp := MaxExp; r.man[l] := 65 end;
'S': HexFloating(s, r)
end;

aplr := aptr + 1;

while aptr < length(s) do

BuildNurn

begin
case s[aptr] of
'i': AddUlps(r, ord(s[aptr+l]) - ord('O'));
'd': AddUlps(r, ord('O') - ord(s[aptr+l]));
"u":

begin
for i := 1 to MANI.EN do

r.man[i] := O;

C.9

AddUlps(r, ord(s[aptr+l]) - ord('O'))

end
end;

1·

end;
'p': AddExp(r, ord(s[aptr+ 1]) - ord('O'));
'm': AddExp(r, ord('O') - ord(s[aptr+l]))
end;

aptr := aptr + 2

• • Called by Err Report and Bu:ild Unp Ops.
•1
procedure DispMask;
begin

end;

1·

writeln(OutFile);
writeln(OutFile, 'rev:', rev,' op:', operator);
writeln(OutFile, 'Modes: ', RndLim, , Precs: ', PrcLim);
writeln(OutFile, 'FlgStr: ', FlgStr, ' ');
FpShow(PckArgl, TmpBuf, pc);
write(OutFile, 'PckArgl :', TmpBuf);
FpShow(PckArg2, TmpBuf, pc);
writeln(OutFile,' PckArg2 :', TmpBuf)

•• Called by Err Report.
•1
procedure DispRes;
begin

writeln(OutFile);

DispMask

DispRes

writeln(OutFile, 'Rnd:', re,' CFlags:', CF!gStr,' Flags:', FlgStr);

end;

if operator = 'C' then

else
begin

end

writeln(OutFile,'Computed: ',CCmpRes, ' Should be:', CmpRes)

FpShow{PckFndRes, TmpBuf, pc);
write(OutFile, 'Computed: ', TmpBuf);
FpShow{PckRes, TmpBuf, pc);
writeln(OutFile, ' Should be: ', TmpBuf)

1•
•• Called by TestLoop.
•• Pirst, the string operands a:re bu:ilt in the generic unpacked
•• format UnpForm, then they are packed into the va:riant record
•• PckForm according to the precision pc.

C.10

•1
procedure BuildUnpOps; Build Unp Ops

Tar

begin

i: integer;

case pc of

's':
begin

end;

'd':
begin

end;

begin

end

end;

MaxExp := 128;
MinExp := -126;
SigBits := 24;
LowBit := 1;
LowByte := 3

Max.Exp := 1024;
MinExp := -1022;
SigBits := 53;
LowBit := 8;
LowByte := 7

MaxExp := EXTMAXEXP;
MinExp := EXTMINEXP;
SigBits := EXTSIGBITS;

LowBit := 1;
i := {EXTSIGBITS mod 8);
while (i 1nod 8) <> 0 do
begin

end;

LowBit := LowBit + LowBit;
i := i + 1

LowByte := (EXTSIGBITS + 7) div 8

BuildNum(StrArgl, UnpArgl);
FpPack(UnpArgl, PckArgl, pc);

BuildNum(StrArg2, UnpArg2);
FpPack(UnpArg2, PckArg2, pc);

if operator<> 'C' then

end;

f•

begin

end;

BuildNum{StrRes, UnpRes);
FpPack{UnpRes, PckRes, pc)

if Verbose then
DispMask

• • Called by Test Loop to

C.11

•• set rou.nding mode, clear error flags, a:nd compu.te.
•j
procedure ComputeResult;
begin

Co-mputeResult

end;

f•

FpSetRound(rc);
FpClearFlags;

case operator of

end

'+': FpAdd {PckArg1, PckArg2, PckFndRes, pc);
'-': FpSub {PckArgl, PckArg2, PckFndRes, pc);
,.,: FpMul {PckArgl, PckArg2, PckFndRes, pc);
'l': FpDiv {PckArgl, PckArg2, PckFndRes, pc);
'V': FpSqrt {PckArgl, PckFndRes, pc);
'%': FpRem {PckArgl, PckArg2, PckFndRes, pc);
'C': FpCmp (PckArgl, PckArg2, CCmpRes, pc);
'I': Fplnt (PckArgl, PckFndRes, pc);
'N': FpNxt (PckArgl, PckArg2, PckFndRes, pc);
'~': FpNeg (PckArgl, PckFndRes, pc);
'@': FpCpySgn(PckArg 1, PckArg2, PckFndRes, pc);
'S': FpScl (PckArgl, PckArg2, PckFndRes, pc);
'L': FpLog {PckArgl, PckFndRes, pc);
'A': FpAbs (PckArgl, PckFndRes, pc);
'F': FpFrc (PckArgl, PckFndRes, pc)

•• Called by TestLoop to check the error flags.
•1
procedure FlgChk;

..ar

begin

i: integer;
ChrStr : string[1];

CF!gStr := ";
FlgErr := false;

for i := 1 to length(PossErrs) do
if FplfX(PossErrs[i]) then
begin

ChrStr := copy(PossErrs, i, 1);

FlgChk

C.12

CFlgStr := concat(CFlgStr, ChrStr);
FlgErr := FlgErr or (pos(ChrStr, FlgStr) = 0)

end;

FlgErr := ChkFlgErr and (FlgErr or {length(FlgStr) <> length(CFlgStr)))
end;

f•
•• Called by TestLoop to check the numerical result.
•• If both operands are NANs, they needn't be equal.
•• Comparisons have a one-character result.
·!
procedure NurnChk;
begin

if operator<> 'C' then
begin

NurnErr := not FpEqual(PckFndRes, PckRes, pc);

NumChk

if FplsNAN(PckFndRes, pc) and FpisNAN(PckRes, pc) then
NurnErr := false

end;

f•

end
else

NurnErr := CCmpRes <> CmpRes

•• Called by Err Report and main program.
•• Asks u.ser Ye:;/No question, rkfau.lting to yes.
•!
function 1nYesNo(Query: Str90) : boolean;
begin

writeln;
write(Query,' [default Y]? ');
readln(TmpBuf);
1nYesNo := true;
if (length(TmpBuf) > 0) then

lnYesNo := not (TmpBuf[l] in ['n', 'N'])
end;

1•
•• Called by TestLoop.
•• If OK, print a dot (no more than 50per line).
•• Otherwise display bad news and stop if requested.
•1
procedure ErrReport;
begin

if not (FlgErr or NumErr) then
begin

OKCnt := OKCnt + 1;
DotCnt := DolCnt + 1;
if DotCnt > 50 then
begin

DotCnt := O;

InYesNo

Err Report

end;

t·

end;

writeln(OutFile)
end;
write(OutFile, '.')

if (FlgErr or NumErr) and (not LinBufOut) then
begin

end;

LinBufOut := true;
writeln(OutFile);
writeln(OutFile, LinBuf);
DispMask

if Verbose or FlgErr or NumErr then
DispRes;

if NumErr then
begin

end;

NurnErrCnt := NumErrCnt + 1;
writeln(OutFile, 'NUM ERROR')

if FlgErr then
begin

end;

FlgErrCnt := FlgErrCnt + 1;
writeln(OutFile, 'FLAG ERROR')

if (FlgErr or NumErr) and StopOnErr then
StopOnErr := InYesNo('Keep stopping on errors')

•• Called by Readl.Dop.
••Fora given parsed input line, coordinate the tests for
•• each desired precision and rounding mode, and check results.
•1
procedure TestLoop;

begin

i, ir, ip: integer;

t•
•• For each precision, run the tests Jor this lme.
•j
for ip := 1 to length(PrcLim) do
begin

pc:= PrcLim[ip];

BuildUnpOps;

for ir := 1 to length{RndLim) do
begin

re := RndLim[ir];
ComputeResult;

C.13

TestLoop

end
end;

f•

end

FlgChk;
NumChk;
ErrReport

•• Called by Parse Line to get revsion number a:nd operator.
•• If revision number is invalid, then force an illegal
• • operator code.
•j
procedure GetOperator;
begin

end;

f•

rev := LinBuf[lptr];
lptr := lptr + 1;
operator := LinBuf[lptr];
lptr := lptr + 1;

if rev <> '2' then
operator := '!'

•• Called by Pa:rseLine to set rounding mode and precisions.
•• If no rounding modes are specified, test all four.
•• If no precisions are specified, test all of PrcStr;
•• otherwise test only tlwse specified that are in PrcStr.
•• WARNING: if none of the specified precisions a:re in
•• PrcStr, then test no precisions at all.
•j
procedure GetModes;

var

begin

PrcLost : boolean;
ChrStr : string[1];

while LinBuf[lptr] in White Space do
lptr := lptr + 1;

RndLim := ";
PrcLim := ";
PrcLost := false;

while not {LinBuf[lptr] in WhiteSpace) do
begin

ChrStr := copy(LinBuf, lptr, 1);

ca:se ChrStr[1] of

'=' 'O .. "'< >.,·
' ' llildLi.rn := concat(RndLim, ChrStr);

C.14

Get Operator

GetModes

c.15

,ills', 'd ... , 'e':
if pos{ChrStr, PrcStr) <> 0 then

PrcLirn := concal(PrcLim, ChrStr)

end;

1•

else

end;

lptr := lptr + 1
end;

if length(RndLim) = 0 then
RndLim := '=<>0';

PrcLost := true

if {not PrcLost) and (length(PrcLim) = 0) then
PrcLim := PrcStr

•• Called by Pa:rseLine to get operand strings verbatim.
•• This routine simple retrieves the next non-white su.btring
• • of LinBu,f.
•1
procedure GetVerbatim(-war s: Str90);

,rar

begin

end;

1·

oldptr : integer;

while LinBuJ[lptr Jin WhlteSpace do
lptr := lptr + 1;

oldptr := lptr; I• Start of numeric string. •j

while not (LinBuf[lptr] in WhiteSpace) do
lptr := lptr + 1;

s := copy(LinBuJ, oldptr, (lptr - oldptr))

•• Called by Pa:rseLine to place flags in a string.
•1
procedure GetFlags;

begin

c: char;
ChrStr : string[1];

while LinBuf[lptr] in White Space do
lptr := lptr + 1;

FlgStr := ";

Get Verbatim

GetFlags

end;

f•

ChrStr := '1'; f • I>u.mmy one-character string. •I

while not (LinBuI[lptr] in Whitespace) do
begin

end

c := LinBuI[lptr];

f•
•• OJ the 3 underflow flags, u --> v --> w.
•• Set the character in FlgStr to 'u' if
•• underflow should occur for the system tested.
•j
if (c = 'w') and (UflowOpt = UFLBEF0RE) then

C := 'u'
else if (c = 'v') and (Uflow0pt <> UFLIDEAL) then

C := 'u";

ChrStr[l] := c;
if c in. [.. x", "'i', 'o", 'u'. 'z'] then

FlgStr := concat(FlgStr, ChrStr);

lptr := lptr + 1 I• Slcip over fla.g character. •I

•• Called by Readlllop to pa:rse the tine of input.
•1
procedure ParseLine;
begin

lptr := 1; f • Index into LinBu.f. •I

GetOperator;
GetModes;
GetVerbatim{StrArgl);
GetVerbatim{StrArg2);
GetF!ags;
GetVerbatim{StrRes);

C.16

Parse Line

if operator= 'C' then f• Compare has character result. •j
CmpRes := StrRes[1];

end;

t·

if Verbose then f • FJnd line started by parse routines. •j
writeln(0utFile)

•• Called by main program to process test vectors.
•1
procedure ReadLoop;

begin
repeal

readln(LlstFile, TmpBuf);
writeln(Out File);

ReadLoop

end;

writeln(OutFile, 'Input file: ', TmpBuf);
reset(InFile, TmpBuf);

repeat
readln(InFile, LinBuf);
LinBuf := concat(LinBuf, ' ');

f • end with white space •l

if Verbose then
begin

end;

wrileln(OutFile);
writeln(OutFile, LinBuf);

LinBufOut := Verbose;

f • Skip lines too short {blank) or starting with'!' •l
if (length(LinBuI) > 8) and (LlnBuf[1] <> '!') then
begin

Parse Line;
TestLoop

end
until eof(InFile);

close(InFile)
until eof(ListFile);

begin!• main program •j

f•
•• Initialize constants and counters.
•j
WhiteSpace := [chr(32), chr(9)]; f • space and tab chars•!
PossErrs := 'iouxz';
UflowOpt := UFLBEFORE;
DotCnt := O;
FlgErrCnt := O;
NumErrCnt := O;
OKCnt := O;

Verbose := lnYesNo('Verbose');
ChkFlgErr := lnYesNo('Check flags');
StopOnErr := lnYesNo('Stop on errors');

PrcStr := ";
if lnYesNo('Test Single') then

PrcStr := 's';
if InYesNo('Test Double') then

PrcStr := concat(PrcStr, 'd');
if InYesNo('Test Extended') then

PrcStr := concat(PrcStr, 'e');

writeln;
write('File with list of test files [default TLIST.TEXT]: ');
readln(TmpBuf);
if length(TmpBuf) = 0 then

C.17

end.

TmpBuf := 'TLIST.TEXT';
reset(LislFile, TmpBuf);

wrileln;
wrile('Oulpul file [default CONSOLE:]:');
readln(TmpBuf);
if lenglh(TmpBuf) = 0 then

TmpBuf := 'CONSOLE:';
rewrite{OutFile, TmpBuf);

ReadLoop;

writeln(OutFile);
writeln(OutFile);
writeln(OutFile, 'Successful tests: ', OKCnt);
wrileln(OutFile, 'Numerical Errors:', NumErrCnt);
writeln(OutFile, 'Flag Errors: ', FlgErrCnt);

close(OutFile);
close(ListFile)

C.18

f•
•• FP: Unit to be used by the program FPTEST for testing the
•• SANE floating-point unit for Apple computers.
•• Written by Jim Thomas and Jerome Coonen, 5 Ja:n 83.

••
•.•
••
••
••
••
••
••
••
••
••
••
••
••
•1

FP uses the SANE Interface and should not requ:ire modification
unless the SANE Inter/ace or the parameters (in INTERFACE below)
change .

The ordering of the bytes in a floating-point number dilfers
/or different comJYU,ters. On the III, the bytes, from Low address
to high, run from least to most significant. The order is just
the opposite for Lisa. This matters in FpPack, which
converts from type UnpForm to PckForm and in FpShow, which displays
a number as a string of hex digits (most to Least significa:nt) .
For the arithmetic routines that logically OR a 1 into
a double number's least significa:nt bit, the constant LSW
indicates which is the least significant word
of a double format number .

unit FP;

INTERFACE

uses FPSoft;

c:orurt

type

f•
•• SYSTEM-DEPENDENT: index of least significant word of a double
•• format number. 0 for III, 3 for Lisa.
•1
LSW = O;

EXTMAXEXP = 16384;
EXTMINEXP = -16383;
EXTSIGBITS = 64;
M.AI-.."'LEN = 9; f • MAN LEN= (EXTSIGBITS + 7) div 8 + 1 •!

UflowType = (UFLIDEAL, UFLAFTER, UFLBEFDRE);
Str90 = string[90];
StrB = string[8];

UnpForrn =
record

sgn: 0 .. 1; f• Ofor + and 1 for- •j
exp: integer; f • unbiased •j
man: packed array [1..MM"'LEN] of 0 .. 255

f • explicit 1-bit to Left of binary point •!
end;

PckForm =
record

case char of
's': (s : Single);
'd': (d : Double);
'e': (e: Extended);

C.19

C.20

'b': (b : packed array [0 .. 9] of 0 .. 255)
end;

procedure FpPack (var x: UnpForrn; -.ara: PckForrn; pc: char); FpPack

FpShow

FpaearFlags

Fp!JX

procedure FpShow (var a: PckFonn; ,rar v: Str90; pc : char);

procedure FpClearFlags;

function FpifX (err : char) : boolean;

procedure FpSetRound (rndc : char);

function FpEqual (var a,b: PckForrn; pc : char): boolean;

function FpisNAN (var a: PckForrn; pc: char): boolean;

procedure FpAdd (Yar a,b,c: PckForm; pc: char);

procedure FpSub (var a,b,c: PckForrn; pc: char);

procedure FpMul (YBr a,b,c : PckForrn; pc : char);

procedure FpDiv (var a,b,c: PckForm; pc: char);

procedure FpRern (YBr a,b,c: PckForrn; pc: char);

procedure FpNxt (YBr a,b,c : PckForm; pc : char);

procedure FpScl (Yill" a,b,c: PckForm; pc: char);

procedure FpLog (YBr a,c : PckForrn; pc : char);

procedure FpSqrt (YBr a,c : PckForm; pc : char);

procedure Fpint (YBr a,c : PckForrn; pc : char);

procedure FpCpySgn (var a,b,c: PckForm; pc: char);

procedure FpNeg (var a,c : PckForrn; pc : char);

procedure FpAbs (YBr a,c : PckForrn; pc : char);

procedure FpFrc (YBr a,c : PckForm; pc : char);

procedure FpCrnp {var a,b : PckForrn; var c : char; pc : char);

IMPLEMENTATION

i •
.., The following variables a:re used as local temporaries in the

FpSetRound

FpEqual

FpfsNAN

FpAdd

FpSub

Fplv!ul

FpDiv

FpRem

FpNxt

FpScl

FpLog

FpSqrt

Fpfnt

FpCpySgn

FpNeg

FpAbs

FpFrc

FpCmp

•• routines that follow. They are declared globally for convenience.
•1

var

(•

t, to : Extended;
EnvSav : Environ;
RndSav : RoundDir;

•• Pack number in UnpForm x into PckForm a with precision pc.
•• SYSTEM DEPENDENCY: The ordering of bytes in a floating-point
•• "word" is the vital issu.e here.

C.21

•j
procedure FpPack f • (va:r x : UnpForm; var a : PckForm; pc : char) •I; Fp Pack

Yar
i, bexp : integer;

begin
case pc of
"'s' :

begin
bexp := x.exp+127;
a.b[3] := bexp div 2 + 128•x.sgn;
a.b[2] := (bexp mod.2)•128 + x.man[l] mod 128;
a.b[l] := x.man[2];
a.b[O] := x.man[3];
if (x.man[1]<128) and (bexp=l) then a.b[2] := a.b[2]-128

end;

'd':
begin

bexp := x.exp+1023;
a. b[7] := bexp div 16 + 128•x.sgn;
a.b[6] := {bexp mod 16)•16 + (x.man[l] div 8) mod 16;
for i := 5 downto O do

a.b[i] := (x.man[6-i] mod 8)•32
+ x.man[?-i] div 8;

if (:x.man[1]<128) and (bexp=l) then a.b[6] := a.b[6]-16
end;

.-e ... :
begin

bexp := x.exp-'-16383;
a.b[9) := bexp div 256 + 128•x.sgn;
a.b[B] := bexp mod 256;
for i := 7 downto Odo a.b[i] := x.man[B-i];
if (x.exp = EXTMAXEXP) and (x.man[1] > 127) then

a.b[?] := a.b[?]-128
end

end
end;

, .
.. Called by FpShow; returns the hex digit for the nibble n.
•j
function Nib2Hex(n: integer): char; Nib2Hex

begin

end;

f•

if n < 10 then
Nib2Hex .- chr(ord('O') + n)

else
Nib2Hex .- chr(ord('A') + n - 10);

• • Return with v equal the hexa.deci:mal representation of a.
•• SYSTEM DEPENDENCY: order of bytes presumed here.
•j

C.22

procedure FpShow f • (var a : PckForm; var v : Str 90; pc : char) • I; FpShow

begin

end;

f•

i, last : integer;
s : string[3];

case pc of

end;

V -= ,,.
• '

's': last := 3;
'd': last := 7;
'e': last := 9

for i := last downto Odo
begin

end

S ·=, ,. . '
s[2] := Nib2Hex(a.b[i] div 16);
s[3] := Nib2Hex(a.b[i] mod 16);
v := concat(v, s)

•• aear flags.
•j
procedure FpC!earFlags;

YBr

begin

end;

f•

xcp : Exception;

for xcp := INVAUD to INEXACT do
SetXcp(xcp,false)

• • Return true if! err flag is set.
•j

FpaearFlags

function FplfX f • (err : char) : boolean •l;

begin

end;

f•

case err of
'u': FplfX := Test.Xcp(UNDERFLOW);
'o': FplfX := TestXcp(OVERFLOW);
'x': FplfX := TestXcp(INEXACT);
'i': FpifX := TestXcp(INVALlD);
'z': FplfX := TestXcp(DfVBYZERO)
end

•• Set rou:nding modes.
•j
procedure FpSetRound f• (rndc : char) •j;

begin

end;

f•

case rndc of
'=': SetRnd(TONEAREST);
'>': SetRnd(UPWARD);
'<': SetRnd(DOWNWARD);
'O': SetRnd(TOWARDZERO)
end

0 Return true iff a aru:1 b are bit-for-bit equal.
•!
function FpEqual f • {a,b : PckFbrm; pc : char) : boolean •j;

"YB.r

begin

end;

f•

i, last : integer;

case pc of

end;

's': last:= 1;
'd' : last:= 3;
'e' : last := 4

FpEqual := true;
for i := 0 to last do

if a.e[i] <> b.e[i] then
FpEqual := false

•• Return true if f a is a NaN.
·!

C.23

FpIJX

FpSetRound

FpEqual

C.24

function FplsNAN I• (var a: PckForm; pc: char): boolean •l; FplsNAN

sign : integer;

begin
case pc of
's': FplsNAN := (ClassS(a.s,sign)=QNAN) or (ClassS(a.s,sign)=SNAN);
'd': FpisNAN := (ClassD(a.d,sign)=QNAN) or (ClassD(a.d,sign)=SNAN);
'e': FpisNAN := (ClassX(a.e,sign)=QNAN) or (ClassX(a.e,sign)=SNAN)
end

end;

(•
•• FPoperations :
••
•• Perform c <--- a operation b where a, b, and c have precision pc.
•• The actual procedure is move b to extended, operate on the extended
•• value with a, and move the result to c. Care is taken to avoid double
•• roundings in double precision by simulating atomic operations.
•l

(•
•• c := a+ b
•1
procedure FpAdd !• (var a,b,c: PckForm; pc: char) •j;
begin

case pc of
... s"':

begin
S2X(a.s,t);
AddS(b.s, t);
X2S(t,c.s)

end;

'd':
begin

D2X(a.d,t);
AddD(b.d,t);
if TestXcp(INEXACT) then
begin

RndSav := GetRnd;
SetRnd(TOWARDZERO);
D2X(a.d,t);
AddD(b.d,t);
if not odd(t[LSW]) then

t[LSW) := t[LSW) + 1;
SetRnd(RndSav)

end;
X2D(t,c.d)

end;

'e ... :
begin

c.e := a.e;
AddX{b.e,c.e)

FpAdd

end
end;

,.
•• c := a - b
•!

end

procedure FpSub !• (var a,b,c: PckForm; pc: char) •j;
begin

case pc of
's.,.:

'd':

'e":

end
end;

f•
•• c := a• b
•!

begin

end;

begin

end;

begin

end

S2X(a.s,l);
SubS{b.s,l);
X2S(l,c.s)

D2X(a.d,t);
SubD{b.d,l);
if TeslXcp(INEXACT) then
begin

RndSav := GetRnd;
SetRnd (TOW ARD ZERO);
D2X{a.d,t);
SubD(b.d,l);
if not odd(l[LSW]) then

t[LSW] := l[LSW] + 1;
SetRnd(RndSav)

end;
X2D(l,c.d)

c.e := a.e;
SubX(b.e,c.e)

procedure FpMul !• (var a,b,c; PckForm; pc : char)•!;
begin

case pc of
"'s':

begin

end;

S2X(a.s,l);
MulS{b.s, l);
X2S(t,c.s)

C.25

FpSub

FpMul

'd':
begin

end;

begin

end
end

end;

f•

RndSav := GetRnd;
SetRnd(TOWARDZERO);
D2X{a.d,t);
Mu!D{b.d,t);
if TestXcp(INEXACT) and (not odd(t(LSW]))then

t[LSW] := t[LSW] + 1;
SetRnd(RndSav);
X2D(t,c.d)

c.e := a.e;
MuIX(b.e,c.e)

C.26

•• c := a/ b
•!
procedure FpDiv f • (var a, b,c : PckForm; pc : char) •!;
begin

FpDiv
case pc of
"'s ... :

begin

end;

'd':
begin

end;

'e':
begin

end
end

end;

S2X(a.s,t);
DivS(b.s,t);
X2S(t,c.s)

RndSav := GetRnd;
SetRnd(TOWARDZERO);
D2X(a.d, t);
DivD(b.d,t);
if TestXcp(INEXACT) and (not odd(t[LSW])) then

l[LSW] := t[LSW] + 1;
SetRnd(RndSav);
X2D(t,c.d)

c.e := e..e;
DivX(b.e,c.e)

1•
•• c := a rem b
•j

C.27

procedure FpRem I• (var a,b,c : PckForm; pc : char) •j; FpRem
YBr

quo: integer;

begin
case pc of
's':

'd':

'e':

end
en¢

1·
•• c := sqrt(a)
•j

begin

encl

begin

end;

begin

end

S2X(a.s,t);
S2X(b.s, tO);
RemX(tO,t,quo);
X2S{t,c.s)

f • double rounding ignored •!
D2X(a.d, t);
D2X(b.d,t0);
RemX(t0,t,quo);
X2D(t,c.d)

c.e := a.e;
RemX(b.e,c.e,quo)

procedure FpSqrt j • (var a, c : PckForm; pc : char) •!; FpSqrt
begin

casepcof

begin

end;

'd':
begin

S2X{a.s,t);
SqrtX(t);
X2S{t,c.s)

RndSav := GelRnd;
SelRnd (TOW ARD ZERO);
D2X(a.d,t);
SqrtX{t);
if TestXcp(INEXACT) and (not odd(t[LSW])) then

t[LSW] := t[LSW] + 1;

'e':

end
end;

f•

end;

begin

end

SetRnd(RndSav);
X2D(t,c.d)

c.e := e.e;
SqrtX(c.e)

•• c := a rounded to an integer
·!
procedure Fplnt f • (va:r a,c : PckForm; pc : char) •l;

begin
case pc of
"s":

begin
S2X(a.s, t);
RintX(t);
X2S(t,c.s)

end;

'd':
begin

D2X(a.d,t);
RintX(t);
X2D(t,c.d)

end;

"'e":
begin

c.e := a.e;
RintX(c.e)

end
end

end;

t·
•• c := next representable value from a to b.
•j
procedure FpNxt ! • (va:r a,b,c : PckForm; pc : char)•!;

begin
C := a;
case pc of

end
end;

's': NextS(c.s,b.s);
'd': NextD(c.d,b.d);
'e': NextX(c.e,b.e)

C.2B

Fplnt

FpNxt

f•
•• c := a• 2--c
•1
procedure FpScl I• (vcn- a,b,c : PckForm; pc: char}•!;

'YBr

n: integer;

begin
case pc of
's .. :

begin
S2X(b.s, l);
X2I(t,n);
S2X(a.s,l);
ScalbX(n,l);
X2S(t,c.s)

end;

'd':
begin

D2X(b.d,t);
X2I(l,n);
D2X(a.d,t);
ScalbX(n,l);
X2D(l,c.d)

end;

;e":
begin

X2I(b.e,n);
c.e := a.e;
ScalbX(n,c.e)

end
end

end;

1•
•• c := binary exponent of a
•1
procedure FpLog !• (var a,c : PckForm; pc : char)•!;

begin
case pc of
"'s':

begin

end;

'd':
begin

S2X(a.s,l);
LogbX(l);
X2S(l,c.s)

D2X(a.d, t);
LogbX(t);
X2D(t,c.d)

C.29

FpScl

FpLog

end;

begin

end
end

end;

1·
•• n := logb{a)
•• C := scalb{-n. a)
•j
procedure FpFrc I• (va:r a,c

Tar

n: integer;

begin
case pc of
... s"":

begin

end;

'd':
begin

end;

... e":
begin

end
end

end;

c.e := a.e;
LogbX(c.e)

: PckForm; pc : char) •j;

S2X(a.s,l);
to:= l;
LogbX(lO);
X2I(t0,n);
ScalbX(-n,l);
X2S(t,c.s)

D2X(a.d, t);
tO := l;
LogbX(lO);
X2I(t0,n);
ScalbX(-n. t);
X2D(l,c.d)

t := a.e;
to:= t;
LogbX(tO);
X2I(t0,n);
ScalbX(-n,l);
c.e := t

C.30

FpFrc

f•
•• The next three procedures, FpCpySgn, FpNeg, and FpAbs a:re
••setup to unexceptional, even/or signaling NANs. The
•• arithmetic environment is save and restored across the calls.
•• If the source operand is a signaling NAN, a. quiet NAN is
•• returned, but its sign is appropriately tweaked.
•j

f•
• • c := a. with the sign of b
•j
procedure FpCpySgn f• (var a,b,c: PckForm; pc : char) •j;

YBr

sgn : integer;

begin
case pc of
's"':

begin
GetEnv{EnvSav);
S2X(a.s,t0);
S2X(b.s,t);
SetEnv(EnvSav);
CpySgnX(tO,t);
X2S(t0,c.s)

end;

'd':
begin

GetEnv(EnvSav);
D2X(a.d,t0);
D2X(b.d,t);
SetEnv(EnvSav);
CpySgnX(tO,t);
X2D(t0,c.d)

end;

'e':
begin

c.e := a.e;
CpySgnX(c.e,b.e)

end
end

end;

f•
.. c := a, but with opposite sign
•j
procedure FpNeg I• (var a,c : PckForm; pc : char) •!;

YBr

sgn : integer;

begin
case pc of

C.31

FpCpySgn

FpNeg

"s":
begin

end;

'd':
begin

end;

'e .. :
begin

end
end

end;

1•
•• c := absolute value of a
•!

C.32

GetEnv(EnvSav);
S2X(a.s,t);
SetEnv(EnvSav);
NegX(t);
X2S(t,c.s)

GetEnv{EnvSav);
D2X(a.d,t);
SetEnv(EnvSav);
NegX(t);
X2D(t,c.d)

c.e := a.e;
NegX(c.e)

procedure FpAbs l • (var a,c : PckForm; pc : char)•!; FpAbs
Tar

sgn : integer;

begin
CB!'lle pc of
"s"":

begin

end;

begin

end;

GetEnv(EnvSav);
S2X(a.s,t);
SetEnv(EnvSav);
AbsX(t);
X2S(t,c.s)

GetEnv{EnvSav);
l • to avoid invalid on signaling NaNs -- a quiet • I
D2X{a.d,t);
(• NaN is returned but FPTESTdoes not notice •!
SetEnv(EnvSa v);
AbsX{t);
X2D(t,c.d)

end
end;

1•
••Comparisons:

begin

end

c.e := a.e;
AbsX(c.e)

•• This rather elaborate set of procedures tests two kinds of comparison:
•• (1) Condition code -- as in the test vectors.
•• (2) Predicates.
•• P754 specifies which of the predicates should signal invalid on
•• unordered (one operand is NAN). The predicates available throt.L{lh
•• the type RelOp are:
•• GT-- >, LT-- <, GL -- <>, EQ-- =. GE -- >=, LE -- <=.
•• GEL -- <=>, UNORD -- unordered.
•• If all tests are satisfied, the appropriate condition=, <, >, ?

C.33

•• is returned to CCrnpRes (via parameter c}; otherwise! is returned.
•1
procedure FpCmp I• (var a,b: PckForm;var c: char; pc: char) •j; FpCrnp
con.st

UNORDFLAGS = 'iiiOiiiO';
INVFLAGS = 'iiiiiiii';
OKFLAGS = '00000000';

rslts,t : integer;
rel : RelOp;
flgsO,flgsl,flgs : Str90;
ee,be : Extended;

1•
•• Save flags as a string of i, o, u, x, and z.
•1
procedure SavFlgs(var flgs : Str90);

Yar

begin

end;

xcp: Slr8;
i : integer;

xcp := 'iouxz';
figs:=";
for i := 1 to 5 do

if FplfX{xcp[i]) then
figs:= concal(flgs, copy(xcp, i, 1));

if flgs=" then
flgs := 'O'

SavFlgs

C.34

f•
•• Restore flags according to the string: figs.
•1
procedure RstFlgs(flgs : Str90); RstFZgs
YBr i : integer;

begin
fpclearflags;
if flgs<>'O' then

for i := 1 to length(flgs) do
case flgs[i] of

T: SetXcp(INVALID,true);
'o': SetXcp(OVERFLOW, true);
'u': SetXcp(UNDERFLOW, true);
'x': SetXcp(INEXACT, true);
'z': SetXcp(DfVBYZERO, true)

end
end;

,.
•• Qear all flags and signal inexact.
•1
procedure Markinx;
begin

end;

begin I• FpCrnp •j

FpC!earFlags;
SetXcp(INEXACT, true)

case pc of

end;

's': begin S2X(a.s,ae); S2X(b.s,be) end;
'd': begin D2X(a.d,ae); D2X(b.d,be) end;
'e': begin ae := a.e; be:= b.e end

rslts := O;
flgs := ";
SavFlgs(flgsO);

I• SYSTEM DEPENDENCY: Linear ordering of relationals •j
t := l;
for rel := GT to UNO RD do
begin

end;

C := ')(';

RstFlgs(flgsO);
if CmpX(ae,rel,be) then

rslts := rslts + t;
t := t•2;
SavFlgs(flgsl);
flgs := concat(flgs. flgsl)

case rslts of

Mark!nx

end;

end;

128: if RelX(ae,be) = UNORD lb.enc:='?';
B5: if RelX(ae,be) = GT then c := '>';
102: if RelX(ae,be) = LT then c := '<';
120: if RelX(ae,be) = EQ then c := '='

case rslts of
128:

if FplsNAN(a,pc) or FpisNAN(b,pc) then

C.35

if (flgs <> INVFLAGS) and {flgs <> UNORDFLAGS) then
Marklnx

else
else if flgs <> UNORDFLAGS lb.en

Marklnx;

85,102,120:

end

if (flgs <> OKFLAGS) and (flgs <> INVFLAGS) then
Marklnx;

end!• ofu.nitfp •j.

C.36

UNIT FPS oft;
I• Interface to floating-point software library. •l

INTERFACE

CONST

1YPE

SIGDIGLEN = 20; I Maximum Length of Sig.Dig. I
DECSTRLEN = 80; l Marimu.m length of DecStr. I

1--
•• Numeric types.
--1
Single = array [0 .. 1] of integer;
Double = array [0 .. 3] of integer;
Extended= array [0 . .4] of integer;

1--
•• Decimal string type and intermediate decimal
•• type, representing the value:
•• (-1)-sgn • 10--erp • dig

--1
SigDig = string [SIGDIGLEN];
DecStr = string [DECSTRLEN];
Decimal =

record

end;

sgn: 0 .. 1; ! Sign (O for pos, 1 for neg). I
exp : integer; I Erponent. l
sig: Sig Dig I String of significant digits. I

1--· -
•• Modes, flags, and selections.
--!
Environ = integer;
RoundDir = (TONEAREST, UPWARD, DOWNWARD, TOWARDZERO);
RelOp = (GT, LT, GL, EQ, GE, LE, GEL, UNORD);

I > < <> = >= <= <=> !
Exception = (INVALID, UNDERFLOW, OVERFLOW, DIVByzERO, INEXACT);
NumClass = (SNAN, QNAN, INFINITE, ZERO, NORMAL, DENORMAL);
DecForm =

record
style : (FLOAT, FIXED);
digits : integer

(--
•• Two address, extended-based arithmetic.
--1
procedure AddS (x : Single; vary : Extended);

procedure AddD (x: Double; vary: Extended);

AddS

AddD

procedure AddX (x: Extended; vary: Extended);
I y := y + X l

procedure SubS (x : Single; vary : Extended);

procedure SubD (x : Double; vary : Extended);

procedure SubX (x : Extended; vary : Extended);
I y := y -x l

procedure MulS (x : Single; Tar y : Extended);

procedure MulD (x: Double; vary : Extended);

procedure MulX (x : Extended; vary : Extended);
I y := y. X l

procedure DivS (x: Single; vary: Extended);

procedure DivD (x : Double; vary : Extended);

procedure DivX (x : Extended; vary : Extended);
I y := y/x l

function CmpX (x : Extended; r : Re!Op; y : Extended) : boolean;
fxry!

function RelX (x, y : Extended) : Re!Op;
Ix RelXy, whEre RelXin [GT, LT, EQ. UNORD] l

1--
.. Conversions between Extended and
•• the othEr numeric types.
--!
procedure S2X (x : Single; vary : Extended);

procedure D2X (x: Double; vary: Extended);

procedure X2X (x : Extended; vary : Extended);
I y := x (arithmetic assignment) I

procedure X2S (x: Extended; Tar y: Single);

procedure X2D (x : Extended; vary: Double);
(y := x (arithmetic assignment) l

1--
•• Numerical 'library' procedures andfunctions.
--!

C.37

AddX

SubS
SubD
SubX

MulS
MulD
MulX

Divs
DivD
DivX

CmpX

RelX

S2X
D2X
X2X

X2S
X2D

procedure RemX (x : Extended; vary: Extended; var quo : integer); RemX
I newy := remainder of ({oldy)/ x), such that lnew YI<= lxl/ 2;

quo := low order seven bits of integer quotient y / x,
so that-127<= quo<= 12?. I

procedure SqrtX (var x: Extended); SqrlX

I x := sqrt (x) I
procedure RintX: (..-ar x: Extended);

I x := rounded value of x I
procedure NegX (..-ar x: Extended);

IX:= -x l

C.3B

RintX

NegX

AbsX procedure AbsX (..-ar x : Extended);
Ix:= lxl !

procedure CpySgnX (var x : Extended; y : Extended);
(x := x with the sign of y I

CpySgnX

procedure NextS (var x: Single; y : Single);

procedure NextD (var x: Double; y: Double);

procedure NextX (var x : Extended; y : Extended);
I x := next representable value from x toward y I

function ClassS (x: Single; ..-ar sgn: integer): NurnClass;

function ClassD (x: Double; ..-ar sgn: integer) : NumClass;

function ClassX (x: Extended; var sgn: integer): NumClass;
(sgn := sign of x (0 for pos, 1 for neg) I

procedure ScalbX (n : integer; ..-ar y : Extended);
I y := y • 2--n !

procedure LogbX {var x: Extended);
I returns unbiased exponent of x !

(--
•• Manipulations of the static numeric state.
--1
procedure SetRnd {r: RoundDir);

procedure SetEnv (var e : Environ);

function GetRnd : RoundDir;

procedure GetEnv (Ya.re : Environ);

function TestXcp (x : Exception) : boolean;

procedure SetXcp (x: Exception; OnOff: boolean);

function TestHlt (x : Exception) : boolean;

procedure SetHlt (x: Exception; OnOff : boolean);

IMPLEMENTATION

I ... I

END.

NextS

NextD

NextX

ClassS

ClassD

ClassX

Scalb){

LogbX

SetRnd

SetEnv

GetRnd

GetEnv

TestXcp

SetXcp

TestHlt

SetHlt

APPENDIX D

Pascal Unit for Correctly Rounded Binary-Decimal Conversions

UNIT CorrBD;

f•
•• Correctly rounded conversions between unpacked bi:nary and
•• decimal floating-point formats. Numbers ha:ve the form:
•• (-1)-sign •radix-exp• significand
•• with an implicit radix point after the first digit (decimal)
•• or bit (binary). Numbers need not be normalized in this
•• unpacked format. Results are normalized unless underflow
•• causes denormalization. Translations between the unpacked
•• formats are not part of this unit .
••
• • Each conversion is governed by an environment record with
•• rounding and underflow information. These are dealt with
•• according to proposed IEEE floating-point standards P754
•• (binary) and P854 (radix-independent). That is, underflowed
•• values are denormalized and overflowed values are set to
•• either the format's largest value or to the next bigger value
•• (the latter is intended to represent IEEE infinity) .
••
•• Version 1. 0 17 Januo:ry 82 Jerome T. Coonen
•l

INTERFACE

f•

CONST

•• The constants specify properties of the binary and decimal
•• formats. A decimal value is a packed array of BCD digits.
•• A binary value is a packed array of bytes, with 8 bits per
•• byte in this implementation .
••
•• The constants DEXPJJAXand BEXPJJAX are not tight bounds.
•• Rather, they limit the width of the decimal and binary buffers
•• that must be used to Jwldinput values. The bounds should
•• at least cover the range of exponents of all representable
•• numbers in a NORMALIZED form.
•j

DDIGLEN = 9; ! ma.x decimal precision !
DEXPMAX = 99; l m.a.x magnitude of decimal exponent I

BBITLEN = 24; I max binary precision in bits !
BEXPMAX = 150; f max magnitude of binary exponent I
BITSDIG = 8; f bits per machine 'digit' {byte)!
BDIGLEN = 2; l max bytes = BBITLEN / BITSDIG, less 1 !

D.1

TYPE

1•

MAXB = 255; I byte ranges from Oto 255 j

1·
•• If space is an issue, these may be redefined as 'packed' records.
•!

_ UnpDec = f unpacked decimal format !
record

sgn:0 .. 1;
exp: -DEXPMAX..DEXPMAX;
dig : array [O .. DDIGLEN] of 0 .. 9

end;

UnpBin = l unpacked binary format l
record

sgn:0 .. 1;
exp : -BEXPMAX .. BEXPMAX;
dig : array [O .. BDIGLEN] of 0 .. MAXB

end;

RDir = (Rl\1EAR, RUP, RDOWN, RZERO); l rounding directions!

1·
.. If style is Float Style. pre is the number of significant digits
•• output; if style is FixedStyle pre is the number, posmly negative .
.. of fraction digits output. Because it is presumed that decimal
•• to binary conversion will only be used to convert to machine types,
•• type Float Style is presumed in the D2BEnv. In both environment
•• records, the error flags inexact, uflow, oflow are NOT sticky;
•• they are set according to the result of the latest conversion.
·!
B2DEnv =

record

end;

D2BEnv =
record

end;

pre : integer;
style : (FixedStyle, FloatStyle);
rnd : RDir;
MinExp : integer;
MaxExp : integer;
inexact: boolean;
uflow : boolean;
oflow : boolean

pre : integer;
rnd : RDir;
MinExp : integer;
MaxExp : integer;
inexact: boolean;
uflow : boolean;
oflow : boolean

•• Conversions bet'lJ.)een UnpDec a:nd UnpBin records. For convenience in
•• packing the results of Dec2Bin, if e.pre is not a multiple of
•• BITSD!Gthen thee.pre output bits are right-aligned in the leading

D.2

•• ((e.pre div BITSDIG} + 1) bytes of b.dig[]. Of cou.rse the implicit
•• binary point is still to the ri.ght of the first bit of b. dig[O].

D.3

•1
procedure Dec2Bin(var e : D2BEnv; d: UnpDec; var b : UnpBin);

procedure Bin2Dec(var e: B2DEnv; b: UnpBin; var d: UnpDec);

Dec2Bin
Bin2Dec

IMPLEMENTATION

f•

CONST

TYPE

f•

•• Constants determining the bu.ffer widths are based on the
•• interfa.ce valu.es. Ea.ch bu.ff er mu.st a.ccommodate exactly
•• any valu.e representable in the respective UnpXXX format,
•• with several extra digits for rounding.
•j

DBUFLEN = 60;
BBU FLEN = 30;
MAXB2 = 128;

(•

I DMAXEXP + DD/GLEN+ several I
f (BMAXEXP/ BITSBYT) + BBYTLEN + several l

f MAXBdiv2 I

•• Binary and decimal valu.es are manipu.lated in wide byte and
•• digit bu.ffers. For efficiency, the valu.es head and tail
•• refer to the most and least significant ends of the 'relevant'
•• part of the string. An exponent is maintained separately.
•• Depending on time and space constraints, a DBu.f dig may either
•• be a packed hex nibble (0.. 4) or a full byte. Thou.gh consu.ming
•• twice as much spa.ce, and u.nable to take advantage of a compu.ter's
•• BCD operations in assembly-language su.pport rou.tines, the latter
•• are mu.ch more easily indexed.
•1

DBuf =

BBuf =

packed record

end;

head : integer;
tail : integer;
dig: packed array [O .. DBUFLEN] of 0 .. 255 I or 0 .. 15 !

packed record

end;

head : integer;
tail : integer;
dig : packed array [O .. BBUFLEN] of O .. MAXB

•• Bin2Dec and Dec2Bi:n. employ exactly the same conversion strategies,
.. so together they are serviced by corresponding sets of utilities for
•• handling DBu.fs and BBu.fs. Here is a list of the u.tilities:

•• BDZero -- clear two Bu.fs to zero.

•• BRighi, DRight -- shift a Buf ri{Jhi n digs.
•• BTimes2, DTimes2 -- Bu/• 2.
•• Blnc -- add 0-9 in the last dig of a BBuf .
.. BTimesJ0 -- BBuf • 10.
•• BWidth --find width of a BBufin bits.
•• B Uflow, D Uflow -- denormalize a Buf, if necessary, before rounding.
•• BRound, DRound -- round a Bu/.
•• BOflow, DOflow -- check and handl,e Buf overflow, after rounding .
••
•• Both Bin2Dec and Dec2Bin require two BBufs a:nd DBu.fs, a working Buf
•• and a temporary for intermediate calculatwns. For efficiency, a
•• temporary is passed as a var parameter to any utility itself
•• requiring a temporary Bu/.
•1

f•

D.4

•• Called by Dec2Bin and Bin2Dec to initialize.
•1
procedure BDZero(var bx: BBuf; var dx: DBuf);
var

BDZero

begin

end;

f•

i: integer;

for i := 0 to BBUFLEN do
bx.dig[i] := O;

bx.head := BBUFLEN;
bx.tail := BBUFLEN;

for i := 0 to DBUFLEN do
dx.dig[i] := O;

dx.head := DBUFLEN;
dx. tail := DBUFLEN

I set all digs to 0 I
l set head and tail to last dig I

.. Called by BRound to remove Guard and Sticky bit positions, by BUflow
•• to denormalize, and by Dec2Bin to remove excess integer digits.
•• bx. head is not updated rightward if all bits are shifted from the
•• leading word. Since bit shifts are only done for the last
•• (n mod BITSDIG) bits, this is not aparticula:rly time-consuming
••routine.
•1
procedure BRight(var bx : BBuf; n : integer); B Rig ht
YBr

begin

i, j, k : integer;
S: boolean;

S := false;

k := n div BITSDIG; f number of .full bytes to be shifted l
for i := (BBUFLEN - k + 1) to BBUFLEN do

S := S or (bx.dig[i] <> O); f OR doomed bits to SI
for i := (BBUFLEN - k) do11D.lo bx.head do

end;

(•

bx.dig[i + k] := bx.dig[i]; (shift right k bytes l
for i := bx.head to (bx.head+ k - 1) do

bx.dig[i] := O; f clear lead k bytes I

for i := 1 to (n mod BITSDIG) do
begin

end;

S := S or odd(bx.dig[bx. tail]); (record lowest bit I

for j := BBUFLEN downto (bx.head+ k) do
if odd(bx.dig[j - 1]) then (bx.head> 1 he.re I

bx.dig[j] := MAXB2 + (bx.dig[j] div 2)
ebe

bx.dig[j] := bx.dig[j] div 2

(force sticky bit I
if Sand (not odd(bx.dig[BBUFLENJ)) then

bx.dig[BBUFLEN] := bx.dig[BBUFLEN] + 1

•• Called by Bin2Dec to convert integer, Dec2Bin to convert fraction.
•• Replace by external assembly-language routine for high speed.

D.5

•j
procedure BTimes2(var bx: BBuf); I external; I BTimes2
Yar

begin

end;

i, sum, iC : integer;

iC := O; I integer Carry flag I
for i := bx.tail dmirnlo bx.head do
begin

end;

sum:= bx.dig[i] + bx.dig[i] + iC;
if sum > MAXB then
begin

end
ebe
begin

end

iC := 1;
bx.dig[i] := sum - (MAXB + 1)

iC := O;
bx.dig[i] := sum

if iC <> 0 then I check for carry out of bx.dig[bx.head] I
begin

end

bx.head := bx.head - 1;
bx.dig[bx.head] := 1

t·
•• Called by BRound to add 1 ulp, and by Dec2Bin to add a di,git.
•• Add O <= m <= 9into BBuf bx by adding m into low byte and
•• propagating carry. Return true if and only if there is a
••carryout of tlw bx.di,g[bx.head].
•l
function Binc(m : integer; var bx : BBuf) : boolean;
Tar

begin

end;

t·

i, sum : integer;
C: boolean;

Binc := false; I assume no carry out I
sum := bx.dig[BBUFLEN] + m;
if sum <= MAXB then

else
begin

end

bx.dig[BBUFLEN] := sum I easy case, no carry out l

bx.dig[BBUFLEN] := sum - (MAXB + 1);
C := true;
i := BBUFLEN;
while C do
begin

i := i - 1;
sum := bx.dig[i] + 1;
C :=sum> MAXB;
if C lb.en

bx.dig[i] := 0
else

bx.dig[i] := sum
end;

if i < bx.head then
begin

Blnc := true;
bx.head:= i f in this case i = bx.head-1 l

end

•• Called by Bin2Dec to convert fraction digits and by Dec2Bin
•• to convert integer digits. Replace by external assembly-
•• language routine for hi,gh speed.

D.6

Blnc

•l
procedure BTimeslO(Tarbx: BBuf); I external; l
Tar

BTimesJO

begin
i, sum, iC : integer;

iC := O;
for i := bx. tail down.lo bx.head do
begin

end;

sum:= (10 • bx.dig[i]) + iC;
bx.dig[i] := sum mod (MAXB + 1);
iC := sum div (MAXB + 1)

if iC <> 0 then

end;

f•

begin

end

bx.head:= bx.head - 1;
bx.dig[bx.head] := iC

•• Called by Dec2Bin to determine how many fraction bits to find .
.. Lead dig <> 0, since BRigh:t () has not been called yet.
•j
function BWidth(var bx : BBuf) : integer;
-.ar

begin

end;

f•

i, j : integer;

I overshoot, as though lead bit of lead dig is 1 I
i := (BBUFLEN - bx.head + 1) • BITSDIG;

f correct by decrementing ifor leading Os of leading dig!
j := bx.dig[bx.head];
while j < MAXB2 do
begin

i := i - 1;
j := j + j

end;

BWidth := i

•• Called by Dec2Bin.
•j
procedure BUflow(var bx : BBuf; var b : UnpBin; var e : D2BEnv);
YBr

begin
i: integer;

i := b.exp - e.MinExp;
if i < 0 then
begin

BRight(bx, -i); I denormalize!

D.7

BWidth

BU/low

e.uflow := true; f m,a,rk tiny; BRound determines true Ujlow I
b.exp := e.MinExp

end;

1•

end
else

e.uflow := false

.. Called by Dec2Bin.
•1
procedure BRound(var bx: BBuf; Yar b : UnpBin; Yar e : D2BEnv);
-.ar

i, LowDig : integer;

BRound

begin

end;

f •

L, G, S, A: boolean;

I bx has Z extra trailing bits, Guard and Sticky I
LowDig := bx.dig[BBUFLEN];
S := odd(LowDig);
if S then

LowDig := LowDig - 1;
G := odd(LowDig div 2);
if G then

LowDig := LowDig - 2;

L := odd(LowDig div 4); I least significant bit I
bx.dig[BBUFLEN] := LowDig; I replace stri:pped low byte l
BRighl(bx, 2); I right-align significand l

(set inexact flag, and suppress u.flow if exact l
e.inexacl := G or S;
e. uflow := e.uflow and e.inexact;

f A := whether to add 1 in L's bit position I
case e.rnd of
RZERO: A:= false;
RUP: A:= (b.sgn = 0) and (G or S);
RDOWN: A:= (b.sgn = 1) and (G or S);
RNEAR: A := G and (S or L)
end;

if A then I add an ULP and check for carry-out l
if Binc(1, bx) then
begin

end

BRighl(bx, 1);
b.exp := b.exp + 1

•• Called by DecZBin.
•• Set to HUGE or IN FIN !TY according to P754" P854 criteria.
•• HUGE has maximum exponent and all 1 bits; INFINITY has just
•• larger exponent and bits 1000 ... 00
•!
procedure BOflow(va.r bx: BBuf; var b: UnpBin; var e: D2BEnv);
Tar

begin
i, fix : integer;

e.oflow := b.exp > e.MaxExp;
if e.oflow then
begin

e.inexact := true; I force inexact on any overflow l

f decide between HUGE and INFINITY I
if (e.rnd = RNEAR) or ((e.rnd = RUP) and (b.sgn = 0))

or ((e.rnd = RDOWN) and (b.sgn = 1)) then
fix:= 1

else
fix:= O;

D.B

BO/low

end
end;

1•

b.exp := e.MaxExp + fix; f force excessive exponent I
BRighl(bx, (e.pre - 1)); (clear all but leading 1 l
for i := 1 lo (e.pre - 1) do (renormalize l
begin

BTimes2(bx);
bx.dig[EBUFLEN] := bx.dig[EBUFLEN] + (1 - fix)

end

•• Called by DUflow to denormalize, by DRou.nd to rem.ave Ouard and Sticky
•• digit positions, and by Bin2Dec to remove excess integer digits.
•• dx.head is not incremented.

D.9

•1
procedure DRight(Yar dx: DBuf; n: integer); DRight
Tar

begin

end;

(•

i : integer;
S: boolean;

S := false;
for i := (DEUFLEN - n + 1) to DBUFLEN do

S := S or (dx.dig[i] <> O); l OR doomed digits to S l
for i := (DBUFLEN - n) downto dx.head do

dx.dig[i + n] := dx.dig[i]; (move right n digits l
for i := dx.head to (dx.head + n - 1) do

dx.dig[i] := O; I clear lead n digits l

if S then
dx.dig[DBUFLEN] := dx.dig[DBUFLEN] + 1 (OK if> 9 !

.. Called by Bin2Dec to convert integer, by Dec2Bin to convert fraction.
•• Replace by external assembly-language routine for high speed.
•1
procedure DTimes2(Yardx: DBuf); l external; I DTimes2
Tar

begin
i, sum, iC : integer;

iC := O; (integer Ca:rry flag I
for i := dx.tail down.to dx.head do
begin

sum:= dx.dig[i] + dx.dig[i] + iC;
if sum > 9 then
begin

end
else
begin

iC := 1;
dx.dig[i] := sum - 10

iC := O;

end;

f•

dx.dig[i] := sum
end

end;

if iC <> 0 then f check for carry out of dx.dig[dx.head] !
begin

end

dx.head := dx.head - 1;
dx.dig[dx.head] := 1

•• Called by Bin2Dec.
•j
procedure DUflow(Yar dx: DBuf; Yard: UnpDec; Yar e : B2DEnv);
"YBr

begin
i: integer;

i := d.exp - e.MinExp;
if i < 0 then
begin

DRight{dx, -i); I denormalize !

D.10

DU/low

e.uflow := true; I mark tiny; DRound determines true Uflow !
d.exp := e.MinExp

end;

1•

end
else

e.uflow := false

•• Called by Bin2Dec.
•j
procedure DRound(var dx : DBuf; Yard : UnpDec; Yar e : B2DEnv);
Yar

begin

i, iG, sum : integer;
L, S, A : boolean;

DRound

I dx has 2 extra trailing digits, Guard and Stick:y, to be ignored I
S := dx.dig[DBUFLEN] <> O;
iG := dx.dig[DBUFLEN - 1];
L := odd(dx.dig[DBUFLEN - 2]); l Low bit of LSD I

I set inexact flag, and su.ppress uflow if exact l
e.inexact := {iG <> 0) or S;
e.uflow := e.uflow and e.inexact;

I A := whether to add 1 in L's bit position l
case e. rnd of
RZERO: A:= false;
RUP: A:= {d.sgn = 0) and ((iG <> O) or S);
RDOWN: A:= {d.sgn = 1) and {(iG <> O) or S);
RNEAR: A:= (iG > 5) or ((iG = 5) and (Lor S))

end;

if A then (add an ULP and check for carry-ov.t !
begin

S : = true; l use to propagate carry I
i := DBUFLEN - 1; ! will discard low 2 digits l
while S do
begin

end;

i := i - 1;
sum:= dx.dig[i] + 1;
S :=sum> 9;
if S then

dx.dig[i] := 0
else

dx.dig[i] := sum

if (i < dx.head) then
if (e.style = FloatStyle) then
begin

D.11

dx.dig[dx.head] := 1;
d.exp := d.exp + 1

l carry out at left !

end
end;

f•

end
else

dx.head := i

• • Called by Bin2Dec.
•• Set to HUGE or INFINITY accordi:ng to P754/P854 criteria.
•• HUGE has maximum exponent and all nines; INFINITY has jv.st
• • larger exponent a:nd decimal digits 1000 ... 00.
•1
procedure DOflow(-.-ar dx: DBuI; TIU" d : UnpDec; var e : B2DEnv);
Yer

begin
i, fix : integer;

e.oflow := d.exp > e.MaxExp;
if e.oflow then
begin

e.inexact := true; l force inexact on any overflow I

I decide between HUGE and INFINITY l
if (e.rnd = RNEAR) or ((e.rnd = RUP) and (d.sgn = 0))

or ((e.rnd = RDOWN) and (d.sgn = 1)) then
fix := 0

else
fix := 1;

d.exp := e MaxExp + 1 - fix; f force big exponent !
dx.dig[dx.head] := (8 •fix)+ 1; I either 9or 1 I
for i := (dx.head + 1) lo (DBUFLEN - 2) do

DOflow

dx.dig[i] := 9 • fix I either 9 or O l
end

end;

(•
•• Both conversions Bin2Dec and Dec2Binfollow the same strategy:
••
0 (0) lf inptd has all zero digits, then the resu.J:ut is O; else ...
••
•• (1) Align input in Huf as O.XXXXXXX • RADIX-exp, with dig[O] = 0
•• and the significand shifted far enough right that exp >= 0 .
••
•• (2) Convert integer part, that is until exp = 0 .
••
•• (3) If no nonzero output digit has been found, then convert
•• the fraction u.p to the first nonzero digit .
••
•• (4) The object is to have exactly p+2 significant digit~bits,
•• the last one stick:y in the sense of P754 rounding. If there
•• are too ma.ny already, then right shift a.nd gather lost digits
•• in stick:y; otherwise, convert until there are ju.st p+2.
•• Gather unconverted digit~bits into sticky .
••
•• (5) If result is tiny in the sense of P754, then right shift
•• (denormalize) it until the exponent is the minimum allowed .
••
•• (6) Round the result top digiWbits .
••
•• (7) Deal with overflow according to P754, that is, replacing a.n
•• overflowed result with either INFINITY or HUGE .
••
•• Both conversions align their input to the Left of a. Bu./, up to
•• dig[O], a.nd form their output aligned to the right in its Huf.
••
•• The conversions set flags inexact, oflow, a:nd uflow in the
•• environment record according to P754, except that the flags are
•• NOT STICKY A full P754 system would 'logically OR' these flags
•• into the system's true exception flags after each conversion .
••
•• A P754 trapping mechanism is not supported here.
•l

D.12

procedure Bin2Dec f (va.r e : B2DEnv; b : Un.pBin; var d: UnpIJec) l ; Bin2De C
TIU"

begin

i, j, BExp : integer;
S: boolean;
bx: BBuf;
dx: DBuf;

d.sgn := b.sgn; (copy sign l
for i := 0 lo DDIGLEN do I place a.ll zero digits l

d.dig[i) := O;

f Step 0: check for all zeros. !
S := true; I assume the significa:nd is zero !
for i := 0 to BDIGLEN do

S := S and (b.dig[i) = O);

if S then I process zero !

else
begin

d.exp := e.MinExp

BExp := b.exp + 1;
if BExp >= 0 then

j := 1
else

I align binary point left of lead bit !
I significand in dig[{0+J). ..] l

j := 2 - (BExp div BITSDIG);

I Step 1: set bx to input b, aligned.
BDZero(bx, dx);
bx.head := 1;
bx. tail := BDIGLEN + j;
for i := 0 to BDIGLEN do

bx.dig[i+j) := b.dig[i];

D.13

I Adjust BExp < 0, si:nce bx shifted right to the nearest byte. !
BExp := (BITSDIG • {j - 1)) + BExp; I j=J when BExp >= 0 l

d.exp := e.pre + 1; I dee point after lead dig, then Gand S !

I Step 2: convert mteger part of bx. l
while BExp > 0 do
begin

end;

DTimes2(dx); I make way for the next bit I
BTimes2(bx); f get next bit in bx. dig[0] l
BExp := BExp - 1;
if bx.dig[OJ <> 0 then
begin

end

dx.dig[DBUFLEN) := dx.dig[DBUFLEN] + 1;
bxdig[OJ := 0

I Step 3: gU,a,rantee some nonzero digit in dx.
while dx.dig[dx.head] = 0 do
begin

BTimes 1 O(bx);
dx.dig[DBUFLEN] := bx.dig[O);
d.exp := d.exp - 1

end·
bx.d,ig[O] := O;

I Step 4: check for too ma:ny or too few digits.
if e.style = FloatStyle then

j := (DBUFLEN - dx.head + 1) - (e.pre + 2)
else

j := -e.pre; I number of 'fraction' digits !

end
end;

if j < 0 then f j too Jew digits I
begin

end

for i := dx.head to DBUFLEN do
begin f make TO om for -j more digits I

dx.dig[i + j] := dx.dig[i];
dx.dig[i] := 0

end;
dx.head := dx.head + j;

for i := (DBUFLEN + 1 + j) to DBUFLEN do
begin I get -j fraction digits !

end

BTimes lO(bx);
dx.dig[i] := bx.dig[O];
bx.dig[O] := 0

else f j too many digits already l
begin

DRight(dx, j);
dx.head := dx.head + j

end;

f Pix e:r:p for j-char shift. !
d.exp := d.exp + j;

S := false;
for i := bx.head to bx.tail do

D.14

S := Sor (bx.dig[i] <> O); I unconverted bits --> sticky l
if S then

dx.dig[DBUFLEN] := dx.dig[DBUFLEN] + 1;

DUflow(dx, d, e);
DRound(dx, d, e);
DOflow(dx, d, e);

for i := dx.head to (DBUFLEN - 2) do
d.dig[i - dx.head] := dx.dig[i]

procedure Dec2Bin ! (var e : D2BEnv; d : UnpDec; var b : UnpBin) l ; De C 2Bin
var

begin

i, j, k, DExp : integer;
S: boolean;
bx: BBuf;
dx: DBuf;

b.sgn := d.sgn; I copy sign I
for i := 0 to BDIGLEN do I place a,J,l zero bits l

b.dig[i] := O;

D.15

I Step 0: check for all zeros. l
S := true; I assume the significa:nd is zero I
for i := 0 lo DDIGIEN do

S :=Sand (d.dig[i] = O);

if S then I process zero I

else
begin

b.exp := e.MinExp

I Steps 1 and 2: convert integer part and align fraction in dx. I
BDZero(bx, dx); I initialize bx and dx I
b.exp := e.pre + 1; I dee point after lead dig, then G and S l
DExp := d.exp + 1; I align binary point before dig[O] l

if DExp >= 0 then
begin

end
else

for i := 0 lo (DExp - 1) do I compute integer part l
begin

BTimeslO(bx);
if i <= DDIGIEN then

S := Binc(d.dig[i), bx)
I but ignore carry-out S l

end;

j := DExp I i:ndex of first fraction digit!

j :=O; I index of first fraction digit I

for i := j to DDIGLEN do I align fraction digits l
dx.dig[i + 1 - DExp) := d.dig[i);

dx.head := 1;
dx.tail := DDIGLEN + 1 - DExp;
if dx.tail < dx.head then

dx.tail := dx.head;

I Step 3: guarantee some nonzero digit in bx.
while bx.dig[bx.head] = 0 do
begin

DTimes2(dx);
bx.dig[bx.head] := dx.dig[O];
b.exp := b.exp - 1

end·
dx.dig[O] := 0;

I Step 4: check for too many or too few bits. I
j := BWidth(bx) - (e.pre + 2);

if j < 0 then I -;j too few bits I
begin

fori := 1 lo-j do
begin

BTimes2(bx); ! malce room for fraction bit l

end
end;

D.16

DTimes2(dx); l next fraction bit in dig[O] !
bx.dig[BBUFLEN] := bx.dig[BBUFLEN] + dx.dig[O];
dx.dig[O] := 0

end
end

else l j too many bits already !
BRight(bx, j);

l Fi:n.al adjustments according to shift above. l
b.exp := b.exp + j;

S := false;
for i := dx.head to dx.tail do

S :=Sor (dx.dig[i] <> O);
l unconverted digits --> sticky !

if S and (not odd(bx.dig[BBUFLEN])) then
bx.dig[BBUFLEN] := bx.dig[BBUFLEN] + 1;

BUflow(bx, b, e);
BRound(bx, b, e);
BOflow(bx, b, e);

l Fi:n.ally, store trailing e.pre bits, right adjusted. l
l Fix exponent for possible lea.ding Os in first byte. I
j := e.pre mod BITSDIG;
if j <> 0 then

b.exp := b.exp + (BITSDIG - j);
j := bx.tail - ((e.pre - 1) div BITSDIG);
for i := j to bx.tail do

b.dig[i - j] := bx.dig[i]

END. l of unit CorrBD I

l•
•• Convert betu;een Corr ED Bin and P754 types S, D, E assuming a byte
•• ordering in which less significant t,ytes are at lou;er addresses.
•!
UNIT FormBD;

INTERFACE

uses FPSoft, CorrBD;

procedure S2Bin(s: Single; ..-ar b: UnpBin);

procedure D2Bin(d: Double; ..-ar b: UnpBin);

procedure E2Bin(e : Extended; var b : UnpBin);

procedure Bin2S(b : UnpBin; vars : Single);

procedure Bin2D(b : UnpBin; ..-ar d : Double);

procedure Bin2E(b : UnpBin; var e : Extended);

IMPLEMENTATION

type

1•

SByte =
record

end;

DByte =
record

end;

EByte =
record

end;

case char of
's' : (s : Single);
'b' : (b : packed array [0 .. 3] of 0 .. 255)

case char of
'd' : (d : Double);
'b' : (b : packed array [0 .. 7] of 0 .. 255)

case char of
'e' : (e : Extended);
'b' : (b : packed array [D .. 9] of 0 .. 255)

•• Unit Corr ED leaves the bits in UnpBin right aligned so that no shifting
•• is required when they are moved to the P754 packed types. Hou;ever,
•• the exponent field must be modified to account for any leading zeros.
·!

D.17

S2Bin

D2Bin

E2Bin

Bin2S

Bin2D

Bin2E

procedure Bin2S I (b : UnpBin; va:r s : Single) I;

begin

k: integer;
t: SByte;

k := b.exp + 127; l bias the e2:ponent J
t.b[3] := (128 • b.sgn) + (k di.., 2); (sign and 7e:cp bits J

D.1B

Bin2S

I get low e:cponent bit and 7 significant bits, masking the highest I
t.b[2] := ((k mod2) • 128) + {b.dig[O] mod 128);

end;

t.b[l] := b.dig[l];
t.b[O] := b.dig[2];
I i/ denormalized. value, adjust ezponent bias l
if (b.dig[O] < 128) and {k = 1) then

t.b[2] := t.b[2] - 128;
s := l.s

prac~ure S2Bin I (s : Single,· var b : Unp.Bin) J;

t: SByte;

begin

end;

i: integer;

t.s := s;
b.sgn := t.b[3] di• 128; I sign I
b.exp := ((t.b[3] mod 128) • 2) + (t.b[2] div 128) - 127;

for i := 0 ta BDIGLEN do
b.dig[i] := 0;

b.dig[O] := t.b[2] mad 128; f first 7 e:,;plicit bits J
b.dig[1] := t.b[l];
b.dig[2] := t.b[O];

if b.exp = -127 lhen
b.exp := b.exp + 1 I correct bia.s of minimum. e:r;p I

ebe
b.dig[O] := b.dig[O] + 128 (force e:r:plicit Lea.ding 1 J

procedure Bin2D I (b : Unp.8in; var d : Double) j;

t: DByte;

begin

end;

i, k : integer;

k := b.exp + 1023 - 3; (biased. e:r;ponent, with fix/or Lead Os I
t.b[?] := (128 • b.sgn) + (k di• 16);
t.b[6] := ((k mod 16) • 16) + b.dig[O];
for i := 5 downlo O do

t.b[i] := b.dig[6-i];

if (b.dig[O] < 16) and (k = 1) then
t.b[6] := l.b[6] - 16;

d := t.d

S2Bin

Bin2D

(

(

procedure D2Bin f (d: Double; var b: UnpBin) j;
TIU'

begin

end;

t: DByte;
i: integer;

t.d := d;
b.sgn := t. b[7] div 128; I sign !
b.exp := ((t.b[?] mod 128) • 16) + (t.b[6] div 16) - 1023;

for i := 0 to BDIGLEN do
b.dig[i] := 0;

b.dig[O] := t.b[6) mod 16;
for i := 1 to 6 do

b.dig[i] := t.b[6-i];

if b.exp = -1023 lhen
b.exp := b.exp + 1 I correct bias of minimum exp !

ebse
b.dig[O] := b.dig[O] + 16 I.force explicit leading 1 I

procedure Bin2E I (b : UnpBin; var e : Extended) I;
Tar

begin

end;

t: EByte;
i, k : integer;

k := b.exp + 16383; I biased exponent I
t.b[9] := (128 • b.sgn) + (k div 256);
t.b[8] := k mod 256;
for i : = 7 down to O do

t. b[i] := b.dig[7-i];
e := t.e

procedure E2Bin I (e: Extended; var b: UnpBin) j;
Tar

begin

end;

t: EByte;
i: integer;

t.e := e;
b.sgn := t. b[9) div 128;
b.exp := ((t.b[9] mod 128) • 256) + t.b[8] - 16383;
for i := 0 to BDIGLEN do

b.dig[i) := O;
for i := 0 to 7 do

b.dig[i] := t.b[7-i]

END. I of unit FormBD l

D.19

D2Bin

Bin2E

E2Bin

