
, .
. , ...
.-, ...
....

' ·::~.
t.~ -~
~ ... ·
: ,.:~

.-.. : ... ~:: . •• , . \j:,.'

1:lt?c
~~;,-. ;~ ,."! .~ ... ,~- ~
, "••--::r -·~ • •

~;~~!.;\

JfT-.
~e~-.:.:,_

• .. -~.-
?? :.. •
;;i• . .. ,

.ii~
!"~-··:-- ·

.;,(
. ~~:..~•;·,

:,~'(~.~:,:

SUMMARY

CYDROME'™ bas employed several new
technologies in the Cydra S:

• Directed Data.flow (Cydrome proprietary
architecture)

• Compiler optimizing technology
• High-speed memoiy with guaranteed bandwidth
• Tightly integrated multiple optimized processors

• Parallel processing
• Parallelized UNIX49 compatible operating system.

Cydrome bas merged these innovative technologies
into a balanced and functionally complete mini­
supercomputer called the Cydra S Depaitmental
Supercomputer. The Cydra S makes extensive use of
industry stamards, such as AT&T UNIX System V.3,
ANSI FORTRAN 77, and the IEEE 754 tloating point
standanl, to take advantage of customer's investments
in application, software. In addition, the open
architecture of the Cydra S, including the use of the
VME™ bus, makes it an attractive platfonn for
systems integrators. Most important, the
sophistication of the technology enables Cydrome to
present customers with a very simple and familiar user
interface.

INTRODUCTION

The building and testing of prototypes is as important
to the engineer's job as the conducting of experiments
is to the scientist's work. Also common to both
activities are the high costs in time and money.
Hence, computer simulations, which provide much
faster turnaround and dramatically lower cost, have
triggered a revolution in science and engineering.

The extremely visible success of computer
simulations in such fields as computer-aided design
bas validated the use of this technique in engineering
and science. As confidence in computer simulation
bas increased, so has dependence on it. Larger
problems are being tackled and at a finer level of
detail. Toe net result is a sharp increue in the need
for computing power. Users who were fonnedy
content with their departmental minicomputer now
find it quite inadequat~.

The architecture of the Cydra S Numeric Processor
and the compiler technology that goes band-in-hand
with it, as well as the Cydra S system architecture,
provide a complete solution to user needs. The chief
virtue of this combination is its ability to excel with a
broad spectrum of computations. It enables users to
achieve large perfonnance gains over supenninis

1

without re-engineering their existing application
software and algorithms.

ARCHITECTURAL
ALTERNATIVES FOR
HIGH PERFORMANCE

The Nature of Parallelism in
Applications
Any serious attempt at high perfonnance computing
involves the concurrent execution of multiple
operations. The methods of achieving concurrent
execution can be classified as fine-grained parallelism
and coarse-grained parallelism.

Fine-grained parallelism is the simultaneous
execution of multiple primitive operations such as
additions and multiplications. This type of parallelism
is usually exploited at a low level of operations in a
piece of straight-line code or across the multiple
iterations of an innennost loop. It is the fonn of
parallelism used by uniprocessor architectures, such as
vector and sequential processors, which overlap the
execution of successive operations.

Coarse-grained parallelism refers to larger
computations run in parallel and can be exploited by
running multiple outer loop iterations or subroutine
invocations in parallel on different processors. The
tenn "parallel processing" generally refers to this type
of computation. Each coars""-grained computation has
some fine-grained parallelism that can be exploited by
the individual processors in the parallel processor
system. Thus, fine-grained and coarse-grained
parallelism are complementary fonns of parallelism
that can be exploited individually or jointly.

Because most scientific and engineering programs are
written in FORTRAN, a sequential language, it is up
to the compiler to detect parallelism in the
sequentially expressed program. The compiler must,
in effect, prove to itself that two operations are
independent of each other before it can exploit the
parallelism inherent in a program.

Cwrent compiler technology and the nature of the
FORTRAN language allow the compiler to do a
reasonably good job at the level of tine-grained
parallelism. The task of proving that coarse-grained
parallelism exists is considerably more difficult, if not
impossible. for the compiler. As a rule, the user must
either modify the program and indicate where
opportunities for coarse-grained parallelism lie or use
a language other than FORTRAN. Either alternative
would simplify the compiler's task. but users are
generally opposed to both alternatives.

The Attraction of Parallel Processing
Despite the difficulties, coarse-grained parallel
processing continues to attract a lot of attention as a
means of achieving high perfonnance. 1be reason
may be that the uniprocessor's perfonnance does not
increase proportionately with its price. Empirically,
the achieved perfonnance of the most cost-effective
uniprocessor computer in each price band is
proportional to the price of the product raised to a
power less than 1. This is shown by the dashed cwve
in Figure 1.

Assuming that on a single parallel job one could get a
linear improvement in perfonnance as the number of
processors increased, one could achieve an arbitrarily
large performance advantage over the best
uniprocessor. 'Ibis is demonstrated by the solid
curves in Figure 1. Note that in this figure the
generous assumption is made that the price of the
parallel processor increases only linearly with the
number of uniprocessors that comprise it.
Furthermore, it would appear to be more
advantageous to use many slower uniprocessors than a
few faster processors. Therein lies the seductive
appeal of the massively parallel processor.

In reality, the situation is quite different. As the
number of proc.essors increases, the time spent in
executing the parallel portion of the job decreases but
there is no effect on the sequential portion of the job.

Eventually this fact determines~ minimum
execution time and limits the attainable performance,
regardless of the number of processors used.

To make matters worse, executing a job in parallel
invariably incurs some overhead cost. This overhead
results from the time required to start up each parallel
process, the time spent in communicating ~ta from
one process to another, and the time lost while one
process waits on another or conte~ds for some .
essential resource. The net effect 1S that the achieved
performance eventually decreases as the ~umber of
processors increases. Each processor begms to spend
more time on overhead activities than it does on
useful work.

Figure 2 demonstrates this effect. Given a
uniprocessor with a certain price and performance
(lying on the dashed curve), the initial effect of
increasing the number of processors is to increase the
performance of the parallel processor above that ~f the
equivalently priced uniprocessor. Beyond a certain
point. however, the parallel processor's perfonnance
flattens and drops off, while the uniprocessor's
performance rises steadily.

The proponents of parallel processing tend to focus on
the speedup that is possible with multiple processors
while ignoring the fact that an equivalently priced
uniprocessor might give almost the same, if not better,
performance. This is not to say that the parallel

~ 281-----1-..:,_--A--__,il::......;-f._,,.~~...;._+=-~-~
@; I I
..J i
~ 1sL---__J_...J...-L--L......i~____;,,~~,,,,=.~----l,,.J2.~4-.J....,,.~~~~
u..,
c.,
:z
C

I
~
CZ:
u..,
a. s

e 1 2
PRICE (,c sun

Curves:

- Uniprocessor performance vs. price

3 4 5

•0•0•} Parallel processors composed of uniprocessors with a certain price
•■•■• and performance. The uniprocessor price and performance Is

Indicated by the point at which the solld curve emanates from
•C•C• the dashed (uniprocessor) curve. Each solld curve shows the
....,_.._.,. price and performance for 1 through 8 processors as well as for
____. 16, 32, and 64 processors.

Figure 1. Comparison of Uniprocessor Performance
With Idealiz.ed Perfonnance of Parallel Processors

2

processor architecture is without merit A parallel
architecture makes sense in applications where the
fraction of sequential computation and the overhead
are small, or where the level of performance required
makes it impossible to use a uniprocessor regardless
of cost. Also, a parallel processor can be profitably
used to run multiple independent jobs requiring a
single processor for a job. 'Ibis is the most common
and beneficial way to use a multiple processor system.

In any event, whether a uniprocessor is intended for
use as an individual processor or as the building block
for a parallel processor, it is essential that its
architecture be most effective at exploiting
fine-grained parallelism.

Dataflow Architecture

From a theoretical viewpoint, the most desirable
architecture for fine-grained parallelism is datatlow.
Dataflow is the only architecture that can exploit all
forms of parallelism in a program; hence, it achieves
higher performance over a broader class of
computations than any other architecture.

In a datatlow processor, computation is viewed as a
computation graph that explicitly represents all the
dependencies between operations. Consider, for
instance, the code segment and its corresponding

25

..... 28 en
0.
0 _,

i I
2! 15
w
0 z i I
-c:
:I 19
0:
0 c{,..;a;·c
a:
w s C Q. ... m:r-■ ,.,a .. o __

e,
a 1 2

;
I
l

I

computation graph in Figure 3. It is clear that the
operation labeled Al cannot be executed until
operations Ml and M2 have completed, since Ml and
M2 provide the inputs to Al. Operatiom RI, R2, R3
and R4, however, are all independent of one another
and could be executed in parallel.

Of all processor architectures, the datatlow
architecture places the minimum constraints on when
operatiom may be executed. A dataflow processor
can execute an operation any time after all its inputs
are available, i.e., when all inputs have been computed
and have arrived at the point of execution. By
maximizing the number of operations that are eligible
for execution at any point in time, the dataflow
architecture can fully exploit the parallelism in an
algorithm.

Despite these advantages, the datatlow architecture
bas failed to become a commercial success because of
the extremely high overhead incuned at nm-time. For
each operation executed, five issues must be
addressed at nm-time:

• Will the operation be executed at all?
• If so, when will it execute?
• On which processing element will it execute?
• Where are the input operands located?
• Where will the result be placed?

! '

•
3 4 S

PRICE Cx $!Ml

Curves:

:mm:1111:111 Uniprocessor performance vs. price

•0•0•} Parallel processors composed of uniprocessors with a certain price
•■•■• and performance. The uniprocessor price and performance Is
•C•C• Indicated by the point at which the solid curve emanates from
r........ the dashed (uniprocessor) curve. Each solld curve shows the

price and performance for 1 through 8 processors as well as for
~ 16, 32, and 64 processors.

Figure 2. Comparison of Uniprocessor Performance
With the Realizable Performance of Parallel
Processors

3

1be net effect of this overhead is apparent when one
considers that a dataflow machine with a peak
perfonnance of, say, SO million floating-point
operations per second would have to perfonn about
400 million associative searches per second--clearly
an enonnously expensive proposition.

a=u·v
Y=X-Q

X=a+v·x

R2 R3 R4

Figure 3. Code Segment and Corresponding
Computation Graph

Directed Dataflow Architecture
Directed Dataflow, the Cydra 5 proprietary
architecture, retains the important benefits of the
dataflow architecture but makes the concept
commercially viable by moving as much

Adder Multiplier

Pipeline l l stage time
Pipeline 2 3 latency

Figure 4. Simplified Dircted Dataflow Processor

decision-making as possible from run-time to
compile-time. As a consequence, the cost of the
hardware is comparable to that of other machines
providing the same peak perfonnance, but a
significantly larger fraction of peak perfonnance is
consistently delivered.

In the datatlow architecture, the five issues listed
above must be addressed at run-time for each
operation that is executed. With the Directed
Dataflow architecture, these issues are settled at
compile-time to the extent possible. Where it is not
possible, the processor hardware provides the support
needed to resolve issues at run-time.

Scheduling of Computation Graphs. Conceptually,
the compiler simulates the decision-making processes
of the dataflow processor and creates a schedule that
details when and where each operation is to be
performed. The compiler bas a slight advantage in
that it can look ahead in the computation and make
decisions that are globally more optimal. The
dataflow processor cannot do this because its
scheduling decisions are made in real-time.

The compiler's schedule is incorporated into the
program that is executed by the Directed Datafl<'w
processor. If the program specifies that a particular
operation is to be executed at a particular time, one
can safely assume that the inputs are available.

The actions of the compiler during scheduling are best
illustrated by a series of simple examples. All the
examples assume the simplified hypothetical
processor shown in Figure 4. The processing
elements (adder, multiplier, and two memory ports)
are pipelined with the indicated latencies (the nwnber
of cycles to complete an individual operation), and
each element is able to start a new operation every
cycle. For simplicity, it is assumed that the
interconnect can transmit results, in parallel, from the
outputs of each processing element to either input of
any processing element with no delay.

Interconnect

Memory Memory
port 1 port 2

l l

s s

4

I~

Schedu&ng of Straight-Line Code. Table 1 shows
the schedule that the compiler would prepare for the
code and the conesponding computation graph in
Figure 3. The schedule is designed for execution on
the processor in Figure 4.

Table 1. Compiler Schedule for the Code Segment in
Figure 3

Mem Mem
Time Port l Port 2 Multiplier Adder
0 RI R2

1 R3 R4
2
3
4

s Ml
6 M2
7
8
9 Al
10 SI
11 Wl

12 W2

At the outset, the only operations that can be executed
are read operations Rl through R4. Operations Rl
and R2 are scheduled for execution at time O on
Memory Ports 1 and 2, respectively. Given the
5-cycle execution latency for read operations, both
inputs of Ml will be available at time Sand may be
scheduled for execution at 5 or any time thereafter.
Operations R3 and R4 are scheduled for execution at
time 1, making M2 eligible for execution at time 6 or
any time thereafter.

Operations Ml and M2 are scheduled for execution on
the multiplier at times 5 and 6, respectively. Since the
multiplier latency is 3 cycles, A 1 and S 1 are
scheduled for execution at times 9 and 10,
respectively. Write operations Wl and W2 have been
delayed with respect to Al and Sl by the 2-cycle
adder latency and are scheduled at times 11 and 12
respectively. '

This rather simple procedure can exploit the
fine-grained parallelism within a single segment of
straight-line code. The operations corresponding to

5

the third FORTRAN statement, viz., Rl, R2, Al, and
Wl, have been scheduled to execute in parallel with
the operations of the first two FORTRAN statements.
Assuming the same processing unit structure and
pipeline latencies, a simple sequential processor
would take at least 32 cycles to execute this code
sequence, and even a rather sophisticated overlapped
scalar processor would take 26 cycles. In contrast, the
13-cycle schedule for the Directed Dataflow processor
represents a significant performance improvement,
especially when one considers the simplicity of the
hardware that controls the execution of the processing
elements.

Nevertheless, the processor is considerably
underutilized, owing to the pipeline latencies of the
operatioas, the data dependencies between them, and
iasufficient amounts of parallelism. Note the nwt1ber
of empty slots in the schedule of Table 1. This
processor, which is capable of starting four operations
every cycle, ends up starting only 10 operations in 13
cycles, yielding a performance that is less than 25
percent of its peak performance.

Increasing the number of processing elements is not
the solution. A processor with a larger number of
processing elements would only achieve a lower
utilization and very little improvement in
performance. In fact, with an unlimited number of
processing elements, the schedule length would
reduce by only one cycle. As with parallel
processing, it is far better to have fewer but faster
processing elements. To use this processor more
fully, one must exploit the far larger amounts of
parallelism that exist between successive iteratioas of
a loop.

Scheduling of Simple Loops. Let us now assume
that the code sequence in Figure 3 is the body of an
innermost loop, as shown in Figure 5. The
computation graph now consists of multiple copies of
the graph in Figure 3, with one copy for each iteration
of the loop.
When there are no data dependencies between
operatioas in different iterations of the loop, the
dataflow architecture allows the processor to execute
any number of iterations in parallel, limited only by
the nwt1ber of processing elements. For a compiler
doing compile-time scheduling for the Directed
Datatlow processor, the challenge is to exploit the
inter-iteration parallelism to the point where the most
heavily used processing element is fully utilized.

-

11 12 U R4

At 112 A3 114

11 112 U 114

x·mi rmi

.. @9 ..

DO 10 I= 1,N

Q = U(l)*Y(I)

Y(I) m X(I) -0

X(I) = Q + V(l)*X(I)

10 CONTINUE

1=1

f::J

1:5

Figure 5. Code for a Simple Vectorizable Loop and
Computation Graph for the Loop Body

The first step is to determine which processing
element is most heavily used. Each iteration perfonns
two operations on the adder and multiplier,
respectively, and six memory operations. Since there
are two memory ports, this represents three operations
per memory port. Thus, the memory ports are the
most heavily used processing elements. The objective
of maximizing perfonnance on the loop can be served
by scheduling successive iterations to start as
frequently as possible. The interval between the
initiation of two consecutive iterations is the
11iDitiation in~rval". Cearly, the initiation interval
cannot be less than the number of times the most
heavily used processing element is used per iteration.
(A shorter initiation interval would require the use of
some processing elements more than 100%, which is
impossible.) In our example, the minimum initiation
interval is 3. This corresponds to optimal
performance.

The schedule shown in Table 2 is based on the
assumption that a new iteration is started every 3
cycles. Therefore, scheduling the first iteration

6

implicitly schedules all subsequent iterations. For
example, when RI for the fust iteration is scheduled
on Memory Port 1 at time 0, corresponding R 1
operations for subsequent iterations are implicitly
scheduled at times 3, 6, 9, 12, et cetera. Thus, every
time slot for Memory Port 1 which is at time 0 modulo
3 is crossed off as unavailable. With this additional
"modulo" constraint, the scheduling of the rest of the
operations proceeds as before.

1be first time this constraint makes a difference to the
schedule is when W2 is scheduled. From the
viewpoint of input availability. W2 may be scheduled
at time 12 or later. If it were scheduled at time 12, it
would conflict with R2 of the fifth iteration. Thus,
W2 is scheduled for execution at time 14, the next
available time slot.

Table 2. Schedule for One Iteration of the ~p in
Figure 5

Time Mem Mem
Time Modulo3 Port 1 Port2 Multt2ller Adder

0 0 Rl R2
1 1 R3 R4
2 2

3 0
4 1
s 2 Ml
6 0 M2
7 1
8 2
9 0 Al
10 1 Sl

11 2 Wl
12 0
13 1
14 2 W2

This schedule can be replicated, with successive
copies staggered at 3-cycle intervals. The iterations
will dovetail perfectly. Table 3 shows the results
when the schedule is executed at run-time. From the
end of the initial start-up phase to the last few
iterations, both memory ports--the most heavily used
processing elements--are fully utilized. This result
represents optimal perfonnance. The processor now
issues 10 operations every 3 cycles, which is 83% of
its peak capability of four operations per cycle.

r"\

• Table J. Schedule of Multiple Iterations of the Loop
in Fig. 6, Overlapped in Time

Time Mem Mem
Time ModuloJ Portl Port2 Multl2Uer Adder

0 0 Rl R2

1 1 R3 R4
2 2

3 0 Rl R2
4 1 R3 R4
5 2 Ml
6 0 Rl R2 M2

7 1 R3 R4
8 2 Ml
9 0 Rl R2 M2 Al
10 1 R3 R4 SI
11 2 Wl Ml
12 0 Rl R2 M2 Al
13 1 R3 R4 S1
14 2 Wl W2 Ml
15 0 Rl R2 M2 Al
16 1 R3 R4 S1
17 2 Wt W2 Ml
18 0 Rl R2 M2 Al
19 1 R3 R4 S1
20 2 Wl W2 Ml
21 0 Rl R2 M2 Al
22 1 R3 R4 S1

Scheduling of Recurrence Loops. The loop in the
previous example is one of the simpler types ofloops;
it contains no data dependencies between the
operations in one iteration and the same operations in
subsequent iterations. This type of loop can be
"vectorized", i.e, reduced to a set of vector operation.,.
All instances of Ml, in all iterations, can be executed
in their entirety as one vector operation; then all
instances of M2 can be executed as one vector
operation, and so on.

Now consider the example in Figure 6, where the
value referenced as Y(I) on one iteration is the value
computed for Y(l-1) on the previous iteration. In the
computation graph of Figure 6, an arc is drawn from
S 1 in one iteration to M2 in the next iteration. This
indicates that the result computed by S 1 is used by M2
in the next iteration. This cyclic dependency is a
recurrence; hence, this loop cannot be vedoriz.ed.
Clearly, the vedor operation coaesponding to S 1
cannot be perfonned until the vedor operation for M2
is complete, because S1 is dependent on :M2. Nor can
the M2 vedor operation be performed first, because
the second operation in it is dependent on the first

7

operation in the S 1 vedor operation. The sequence of
M2 and S l operations must happen in an interleaved
order, which a vector processor cannot do. The vector
processor would have to execute this loop in a
degraded scalar mode.

Scheduling of recunence loops poses no major
problems for the Direded Dataflow processor. It only
requires a different initiation interval from the one
used in the previous loop schedule. The nature of the
recurrence data dependency requires that M2 of the
second iteration be scheduled at least 2 cycles after S 1
of the first iteration. In the first iteration, S 1 must be
scheduled at least 3 cycles after M2. Therefore, the
interval between the M2 operations for two
consecutive iterations must be at least 5 cycles. After
computing this initiation interval, the compiler
constructs the schedule shown in Table 4.

The inter-iteration dependency prevents the compiler
from overlapping successive iterations as much as
processing element usage alone would have permitted.
Although the Direded Data.flow processor's
perfonnance on the recurrence loop is 40 percent less
than on the vectorb.ed loop, it is considerably better
than a vector processor could achieve using scalar
execution.

1H

111 R2

Al R2

lit

DO 10 I a 1,N

Q a U(l)*Y(l-1)

Y(I) a X(I) - Q

RJ

Ill

l=l

X(I) m Q + V(l)*X(I)

10 CONTINUE

Rl

[:3

Figure 6. Code for a Recurrence Loop and
Computation Graph for the Loop Body

. I

)

Table 4. Schedule for One Iteration of the Loop

Time Mcm Mem
Time ModuloS Port 1 Port2 Multiplier Adder

0 0 Rl R2

1 1 R3 R4
2 2
3 3

4 4
5 0 Ml
6 1 M2
7 2
8 3

9 4 Al
10 0 Sl
11 1
12 2 Wl W2

1be advantage of the Directed Dataflow architecture
becomes even more evident as the order of the
recurrences increases. Suppose we change the first
statement in the loop body (Figure 'l) to read Y(l-2)
instead of Y(l-1). 1be statement now constitutes a
second-order recurrence, because the data dependency
is between iterations that are two removed. Now the
M2 operations from iterations that are two removed
must be at least S cycles apart. In other words, twice
the initiation interval must be at least 5 cycles; hence,
the initiation interval must be at least 2.5, viz., 3. Th.is
initiation interval allows the Directed Dataflow
processor to achieve the same performance it would
achieve if the loop were vectorizable. It is this ability
to perform well on linear as well as nonlinear
recurrences that sets the Directed Dataflow
architecture apart from the vector architecture.

Hardware Support for Loop Scheduling. A result
generated by the execution of an operation must reside
in some storage location, either memory or register,
until is has been used by all the operations to which it
is an input. Concurrent instances of a result must
reside in different storage locations, and a mechanism
must exist to ensure that each instance is matched to
the correct operation. In the dataflow architecture,
each iteration of a loop or invocation of a procedure
constitutes a distinct "context" with a distinct name.

8

Confusion is averted by tagging each result with the
name of the context in which the result will be used.
Associative searching is used to find matching inputs
tagged with the same context name.

In the case of procedure calls, the conventional
method of handling this problem is to allocate
separate stack _frames to hold the results computed on
the various invocations of the procedure. While it
appears that the results from each invocation are
written to the same location, the frame pointer
actually guides the results to equivalent locations in
separate stack frames.

1be Directed Dataflow architecture uses this
conventional mechanism to handle multiple
invocations of the same procedure. In addition, it
employs iteration frames to handle parallel execution
of multiple iterations of loops. At compile-time each
result is assigned a definite location. At run-time the
processor steers different instances of the same result
to equivalent locations in separate iteration frames.
This mechanism avoids the cost of associative storage.

Scheduling of Conditional Loop Bodies. One
decision that cannot be made at compile-time is
whether a data-dependent branch will be taken at
run-time. Data-dependent branching complicates the
task ofloop scheduling, since the computations
performed vary from one iteration to the next and
make it impossible to devise a single schedule that can
be replicated and overlapped at periodic intervals.

In the sequential mode of computing, the decision to
execute an operation is made by data-dependent
branches that direct the flow of control either to or
away from the code containing the operation.

In the dataflow architecture, this issue is determined
by data switches controlled by data-dependent
conditions. The switches either inhibit or permit the
input data to flow into the computation graph
containing the operation. Consider the example in
Figure 7 of a loop with some conditional branching.
The switch operations transmit their input data down
one of their two outgoing arcs (depending on the
value of the boolean input) and control data flow into
the subgraph of the computation. If the condition is
false, no data flows into the subgraph consisting of
operation Wl. (This is the equivalent of branching
away in the conventional sequential program.)

10

0O10I=1,N

IF (X(I) .LT. X(l-1)X(I) = X(l-1)

Y(I) = X(I) - X(l-1)

CONTINUE

Figure 7. Code for a Loop With Conditional
Branching and Dataflow Graph for the Loop Body

Because data-dependent conditions obviously cannot
be evaluated at compile-time, the Directed Dataflow
architecture uses a different but equivalent approach.
Instead of inhibiting the Oow of data into a
computation graph, it inhibits the execution of the
operations in the graph. Control over the execution of
operations is provided by a third boolean input to the
operation. This input is computed at run-time and
reflects the data-dependent condition. Toe boolean
input is treated exactly like the other inputs for
purposes of detennining when an operation can be
executed.
Figure 8 displays the Directed Dataflow computation
graph for the example in Figure 7. Every operation
now has an additional boolean input, shown entering
the operation at the side. If the input is TRUE, the
operation is executed nonnally. If it is F Al.SE, the
operation becomes a "null" operation. (Operations
shown without the boolean input actually have a
boolean input that is constantly TRUE.) The SELECT
operation selects either the left or the right input as its
result, depending on the value of the boolean input.
The twdware support for the conditional execution of
operatiom makes it unnecessary to branch around the
operations that will not be executed. Because no
branching is involved in the Directed Dataflow
computation, the task of scheduling the computation is
no harder than in the earlier examples and proceeds as
descri~d in those examples.

9

Table S shows the resulting schedule. Toe initiation
interval is 4 and is determined by the first-order
recurrence involving the references to X(I) and X(l•l).
In this example, the achieved performance, an
iteration every 4 cycles, is better by a factor of at least
3 than the performance that would be achieved with
traditional branching. This mechanism for handling
loops with data-dependent branching applies to
arbitrarily complex patterns of branching within the
loop.

Figure 8. Directed Dataflow Computation Graph for
the Loop Body in Figure 7

Table 5. Schedule for One Iteration of the Loop

Time Memory Memory
Time Modulo4 Port 1 Port2 Multielier Adder

0 0 RI
1 1

2 2
3 3
4 0
5 1 LI
6 2
7 3 Wl L2
8 0
9 1
10 2 Sl
11 3
12 0
13 1
14 2 W2

Generality of the Directed
Dataflow Architecture
Code containing fine-grained parallelism can be
classified as:

• Code with vectorizable innermost loops
• Sequential code with little parallelism
• C~ ~ith innermost loops containing recurrences,

condition branches, or irregular array accesses.

With vectorizable innermost loops, the Directed
Dataflow architecture bas a modest advantage over
the vector architecture for two reasons. First, the
Directed Datatlow architecture can chain an unlimited
number of vector operations by spacing successive
operations of one vector operation sufficiently to
allow other vector operations to run concurrently,
interleaved in time, on the same pipeline. This
amortizes the vector startup penalty over a large
number of vector operations. Second, because all the
vector operations are chained, the Directed Dataflow
architecture only needs to store a small part of each
vector temporary; viz., the part that has been
generated by one vector operation but bas not yet been
used as an input for the last time. Strip mining is
unnecessary, which further reduces the vector startup
penalty. (Strip mining is the partitioning of a long
vector operation into short vectors the size of a vector
register.)

With sequential code with little parallelism, the
Directed Dataflow processor does better than the
vector processor operating in its scalar mode. 1bis is
because the Directed Dataflow processor can execute
operations out of sequence.

With code containing sets of innermost loops with
recurrences, conditional branches, or irregular array
accesses, the Directed Dataflow architecture has the
greatest advantage. Whereas the vector processor
drops to a sequential mode of execution, the Directed
Dataflow processor continues to exploit any
parallelism that exists.

Central to the superiority of the Directed D.atatlow
architecture are the compiler techniques and the
supporting hardware. Toe hardware provides efficient
allocation of register storage for the iteration frames
and conditional execution of operations. The
compiler and the hardware are inseparable design
considerations. Even the most complex compiler
techniques would fail to fully exploit fine-grained
parallelism if the hardware failed to provide the
appropriate architectural features.

THE CYDRA 5 SYSTEM

The Cydra 5 Departmental Supercomputer is a
heterogeneous multi-processor system designed to be
a functionally complete data processing solution for
serious users in the engine • ring and scientific
disciplines. It draws upon the most appropriate
technology to meet each need.

As shown in Figure 9, the Cydra 5 is designed around
a central bus and supports three types of processor: the
Numeric Processor, the Interactive Processors
(general processors), and the 1/0 Processors. Each of
these processors is optimized for a particular type of
task.

HeMary Systeri

Interactiue
Processor

Interactiue
Processor

Interactiue
Processor

I/0 Processor

UME UHE UME

Figure 9. Cydra 5 System Diagram

Nul'leric
Pracessar

Service
Processor
Console

10

Interactive
Processor

Interactive
Processor

Interactive
Processor

I/0 Processor

UME UHE UHE

The Numeric Processor has been optimized for the
task of running large floating-point intensive
applications. By virtue of its Directed Dataflow
architecture, it can sustain high perfotmance over a
much broader spectrum of computations than other
mini-supercomputer processors. Consequently, it is
better equipped to meet the user's need for high
perfotmance without re-engineering of the application
software.

Maintaining a balance with the high-perfonnance
Numeric Processor requires a high bandwidth memory
system. Although the Numeric Processor has an
instruction cache, it avoids data caching in order to
avoid the anomalous perfonnance that results when
working with large data sets. The highly interleaved
main memory incorporates a unique architecture that
guarantees a uniformly high memory bandwidth
regardless of how data is placed and referenced in
memory. 1bese features have been provided to meet a
very important design objective: the user must be able
to use the computer without perceiving any
anomalous characteristics or perfonnance shortfalls.

While the Numeric Processor is intended to execute
numerically intensive applications, Cydrome
recognizes that the typical user will run other jobs that
are not numerically intensive, such as text editors,
compilers, and interactive tasks. Rather than tie up the
Numeric Processor with such tasks, Cydrome
designed a tightly integrated general-purpose
subsystem that shares memory with the Numeric
Processor. 1bis subsystem provides most of the
operating system services, leaving the Numeric
Processor free to run applications continuously. By
dghtly integrating the Numeric Processor and the
general-purpose subsystem, Cydrome avoided the
clumsiness of the host/attached-processor combination.

To avoid the bottleneck that occurs when the
operating system does not execute the application's
I/O requests fast enough, Cydrome has designed a
UNIX V.3-compatible operating system with greatly
improved I/O handling capability. This CYDRIX™
operating system executes on the general-purpose
subsystem, which contains multiple general-purpose
processors (the Interactive Processors). Cydrix is

11

designed to execute as a set of parallel processes
operating in a symmetric parallel mode on multiple
processors.

In running Cydrix, the general-purpose subsystem
functions as a parallel processor. UNIX, being a
procedure-oriented system, is inherently
parallelizable. Its execution consists of the joint
activity of all user processes that are currently in
kernel mode. This potential parallelism has been
successfully exploited in Cydrix by modifying the
kernel to make it re.entrant.

With multiple independent non-numeric user tasks,
the Interactive Processors function as a
multiprocessor, achieving near-linear speedup with
the nwnber of processors. In this mode, the
Interactive Processors yield considerably better
cost-perfonnance than an equivalently priced
uniprocessor.

-

High I/O perfonnance is also achieved by using
multiple processors. These microprocessor-based 1/0
processors can perfotm gather/scatter operations and
handle tens of I/O transfers in both directions
simultaneously. The total I/O bandwidth and storage
capacity are more than adequate to ensure a balance
with the perfonnance capability of the Numeric
Processor.

CONCLUSION

The Cydra S Departmental Supercomputer combines
a radically different internal design with a familiar
and comfortable user interface. It achieves
significantly higher perfonnance than supenninis
and higher cost-perfotmance than conventional
mini-supercomputers without re-engineering of
applications. Cost.effective Directed Data.flow
architecture and sophisticated compiler technology
work band-in-hand to provide an innovative solution
to the computing needs of the engineering and
scientific communities.

SUMMARY OF CYDRA ™ S SPECIFICATIONS

Numeric Processor

Interactive Processors

Input/Output Processors

Memory Subsystem

Peripheral Devices

Cydrlx™ 5.3 Operating System

Directed Dataflow™ architecture

Contcltt Register Matrix

Conditional Scheduling Control

Floating Point Arithmetic: IEEE 754 Standard

Arithmetic precision: 32-bit and 64-bit

Instruction Cache: 32 kilobyte

Cycle Time: 40 nanoseconds

General purpose 32-bit processors

Cache per processor: 16 kilobytes

Multipr<x:essor cache coherency hardware

Maximum configuration: 6 Interactive Processors

Sustained transfer rate per processor: 40 megabytes/second

Gather/Scatter data transfer

Industry-standard VME bus interface

Maximum configuration: 2 lnput/Output Processors

Maximum number of simultaneous VME buses: 6

Maximum number of simultaneous I/0 controllers: 30

Virtual Address Space: 4 gigabytes

Main Memory Capacity: 8 megabytes to 256 megabytes

Sustained transfer rate: 400 megabytes/second

Stride insensitive design

Up to 64-way interleaving

Support Memory Capacity: 8 megabytes to 64 megabytes

Optimized for rapid data access

Disk: 830 megabytes per drive with 2.5 megabytes/second transfer rate

Tape: 6250 bpi with 75 ips in start/stop mode

Printer: 600 1pm

Communications: RS-232C and Ethernet'~ support

Compatible extension of AT&1"9 lJNIXII System V.3

Transparent multi processing

Dynamic load balancing

Extent-based file system

Buffered and unbuffered input/output

Asynchronous input/output

Disk striping

Batch queue facility

TCP/IP support

Remote Graphics Library

UNIX tools and utilities

Application performance profiling tools

Socket library compatible with Berkeley 4.2 UNIX

12

~.t : :·. • - . ., : ,

