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SUMMARY 

CYDROME'™ bas employed several new 
technologies in the Cydra S: 

• Directed Data.flow (Cydrome proprietary 
architecture) 

• Compiler optimizing technology 
• High-speed memoiy with guaranteed bandwidth 
• Tightly integrated multiple optimized processors 

• Parallel processing 
• Parallelized UNIX49 compatible operating system. 

Cydrome bas merged these innovative technologies 
into a balanced and functionally complete mini­
supercomputer called the Cydra S Depaitmental 
Supercomputer. The Cydra S makes extensive use of 
industry stamards, such as AT&T UNIX System V.3, 
ANSI FORTRAN 77, and the IEEE 754 tloating point 
standanl, to take advantage of customer's investments 
in application, software. In addition, the open 
architecture of the Cydra S, including the use of the 
VME™ bus, makes it an attractive platfonn for 
systems integrators. Most important, the 
sophistication of the technology enables Cydrome to 
present customers with a very simple and familiar user 
interface. 

INTRODUCTION 

The building and testing of prototypes is as important 
to the engineer's job as the conducting of experiments 
is to the scientist's work. Also common to both 
activities are the high costs in time and money. 
Hence, computer simulations, which provide much 
faster turnaround and dramatically lower cost, have 
triggered a revolution in science and engineering. 

The extremely visible success of computer 
simulations in such fields as computer-aided design 
bas validated the use of this technique in engineering 
and science. As confidence in computer simulation 
bas increased, so has dependence on it. Larger 
problems are being tackled and at a finer level of 
detail. Toe net result is a sharp increue in the need 
for computing power. Users who were fonnedy 
content with their departmental minicomputer now 
find it quite inadequat~. 

The architecture of the Cydra S Numeric Processor 
and the compiler technology that goes band-in-hand 
with it, as well as the Cydra S system architecture, 
provide a complete solution to user needs. The chief 
virtue of this combination is its ability to excel with a 
broad spectrum of computations. It enables users to 
achieve large perfonnance gains over supenninis 
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without re-engineering their existing application 
software and algorithms. 

ARCHITECTURAL 
ALTERNATIVES FOR 
HIGH PERFORMANCE 

The Nature of Parallelism in 
Applications 
Any serious attempt at high perfonnance computing 
involves the concurrent execution of multiple 
operations. The methods of achieving concurrent 
execution can be classified as fine-grained parallelism 
and coarse-grained parallelism. 

Fine-grained parallelism is the simultaneous 
execution of multiple primitive operations such as 
additions and multiplications. This type of parallelism 
is usually exploited at a low level of operations in a 
piece of straight-line code or across the multiple 
iterations of an innennost loop. It is the fonn of 
parallelism used by uniprocessor architectures, such as 
vector and sequential processors, which overlap the 
execution of successive operations. 

Coarse-grained parallelism refers to larger 
computations run in parallel and can be exploited by 
running multiple outer loop iterations or subroutine 
invocations in parallel on different processors. The 
tenn "parallel processing" generally refers to this type 
of computation. Each coars""-grained computation has 
some fine-grained parallelism that can be exploited by 
the individual processors in the parallel processor 
system. Thus, fine-grained and coarse-grained 
parallelism are complementary fonns of parallelism 
that can be exploited individually or jointly. 

Because most scientific and engineering programs are 
written in FORTRAN, a sequential language, it is up 
to the compiler to detect parallelism in the 
sequentially expressed program. The compiler must, 
in effect, prove to itself that two operations are 
independent of each other before it can exploit the 
parallelism inherent in a program. 

Cwrent compiler technology and the nature of the 
FORTRAN language allow the compiler to do a 
reasonably good job at the level of tine-grained 
parallelism. The task of proving that coarse-grained 
parallelism exists is considerably more difficult, if not 
impossible. for the compiler. As a rule, the user must 
either modify the program and indicate where 
opportunities for coarse-grained parallelism lie or use 
a language other than FORTRAN. Either alternative 
would simplify the compiler's task. but users are 
generally opposed to both alternatives. 



The Attraction of Parallel Processing 
Despite the difficulties, coarse-grained parallel 
processing continues to attract a lot of attention as a 
means of achieving high perfonnance. 1be reason 
may be that the uniprocessor's perfonnance does not 
increase proportionately with its price. Empirically, 
the achieved perfonnance of the most cost-effective 
uniprocessor computer in each price band is 
proportional to the price of the product raised to a 
power less than 1. This is shown by the dashed cwve 
in Figure 1. 

Assuming that on a single parallel job one could get a 
linear improvement in perfonnance as the number of 
processors increased, one could achieve an arbitrarily 
large performance advantage over the best 
uniprocessor. 'Ibis is demonstrated by the solid 
curves in Figure 1. Note that in this figure the 
generous assumption is made that the price of the 
parallel processor increases only linearly with the 
number of uniprocessors that comprise it. 
Furthermore, it would appear to be more 
advantageous to use many slower uniprocessors than a 
few faster processors. Therein lies the seductive 
appeal of the massively parallel processor. 

In reality, the situation is quite different. As the 
number of proc.essors increases, the time spent in 
executing the parallel portion of the job decreases but 
there is no effect on the sequential portion of the job. 

Eventually this fact determines~ minimum 
execution time and limits the attainable performance, 
regardless of the number of processors used. 

To make matters worse, executing a job in parallel 
invariably incurs some overhead cost. This overhead 
results from the time required to start up each parallel 
process, the time spent in communicating ~ta from 
one process to another, and the time lost while one 
process waits on another or conte~ds for some . 
essential resource. The net effect 1S that the achieved 
performance eventually decreases as the ~umber of 
processors increases. Each processor begms to spend 
more time on overhead activities than it does on 
useful work. 

Figure 2 demonstrates this effect. Given a 
uniprocessor with a certain price and performance 
(lying on the dashed curve), the initial effect of 
increasing the number of processors is to increase the 
performance of the parallel processor above that ~f the 
equivalently priced uniprocessor. Beyond a certain 
point. however, the parallel processor's perfonnance 
flattens and drops off, while the uniprocessor's 
performance rises steadily. 

The proponents of parallel processing tend to focus on 
the speedup that is possible with multiple processors 
while ignoring the fact that an equivalently priced 
uniprocessor might give almost the same, if not better, 
performance. This is not to say that the parallel 
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Figure 1. Comparison of Uniprocessor Performance 
With Idealiz.ed Perfonnance of Parallel Processors 
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processor architecture is without merit A parallel 
architecture makes sense in applications where the 
fraction of sequential computation and the overhead 
are small, or where the level of performance required 
makes it impossible to use a uniprocessor regardless 
of cost. Also, a parallel processor can be profitably 
used to run multiple independent jobs requiring a 
single processor for a job. 'Ibis is the most common 
and beneficial way to use a multiple processor system. 

In any event, whether a uniprocessor is intended for 
use as an individual processor or as the building block 
for a parallel processor, it is essential that its 
architecture be most effective at exploiting 
fine-grained parallelism. 

Dataflow Architecture 

From a theoretical viewpoint, the most desirable 
architecture for fine-grained parallelism is datatlow. 
Dataflow is the only architecture that can exploit all 
forms of parallelism in a program; hence, it achieves 
higher performance over a broader class of 
computations than any other architecture. 

In a datatlow processor, computation is viewed as a 
computation graph that explicitly represents all the 
dependencies between operations. Consider, for 
instance, the code segment and its corresponding 
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computation graph in Figure 3. It is clear that the 
operation labeled Al cannot be executed until 
operations Ml and M2 have completed, since Ml and 
M2 provide the inputs to Al. Operatiom RI, R2, R3 
and R4, however, are all independent of one another 
and could be executed in parallel. 

Of all processor architectures, the datatlow 
architecture places the minimum constraints on when 
operatiom may be executed. A dataflow processor 
can execute an operation any time after all its inputs 
are available, i.e., when all inputs have been computed 
and have arrived at the point of execution. By 
maximizing the number of operations that are eligible 
for execution at any point in time, the dataflow 
architecture can fully exploit the parallelism in an 
algorithm. 

Despite these advantages, the datatlow architecture 
bas failed to become a commercial success because of 
the extremely high overhead incuned at nm-time. For 
each operation executed, five issues must be 
addressed at nm-time: 

• Will the operation be executed at all? 
• If so, when will it execute? 
• On which processing element will it execute? 
• Where are the input operands located? 
• Where will the result be placed? 
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1be net effect of this overhead is apparent when one 
considers that a dataflow machine with a peak 
perfonnance of, say, SO million floating-point 
operations per second would have to perfonn about 
400 million associative searches per second--clearly 
an enonnously expensive proposition. 

a=u·v 
Y=X-Q 

X=a+v·x 

R2 R3 R4 

Figure 3. Code Segment and Corresponding 
Computation Graph 

Directed Dataflow Architecture 
Directed Dataflow, the Cydra 5 proprietary 
architecture, retains the important benefits of the 
dataflow architecture but makes the concept 
commercially viable by moving as much 

Adder Multiplier 

Pipeline l l stage time 
Pipeline 2 3 latency 

Figure 4. Simplified Dircted Dataflow Processor 

decision-making as possible from run-time to 
compile-time. As a consequence, the cost of the 
hardware is comparable to that of other machines 
providing the same peak perfonnance, but a 
significantly larger fraction of peak perfonnance is 
consistently delivered. 

In the datatlow architecture, the five issues listed 
above must be addressed at run-time for each 
operation that is executed. With the Directed 
Dataflow architecture, these issues are settled at 
compile-time to the extent possible. Where it is not 
possible, the processor hardware provides the support 
needed to resolve issues at run-time. 

Scheduling of Computation Graphs. Conceptually, 
the compiler simulates the decision-making processes 
of the dataflow processor and creates a schedule that 
details when and where each operation is to be 
performed. The compiler bas a slight advantage in 
that it can look ahead in the computation and make 
decisions that are globally more optimal. The 
dataflow processor cannot do this because its 
scheduling decisions are made in real-time. 

The compiler's schedule is incorporated into the 
program that is executed by the Directed Datafl<'w 
processor. If the program specifies that a particular 
operation is to be executed at a particular time, one 
can safely assume that the inputs are available. 

The actions of the compiler during scheduling are best 
illustrated by a series of simple examples. All the 
examples assume the simplified hypothetical 
processor shown in Figure 4. The processing 
elements (adder, multiplier, and two memory ports) 
are pipelined with the indicated latencies (the nwnber 
of cycles to complete an individual operation), and 
each element is able to start a new operation every 
cycle. For simplicity, it is assumed that the 
interconnect can transmit results, in parallel, from the 
outputs of each processing element to either input of 
any processing element with no delay. 

Interconnect 

Memory Memory 
port 1 port 2 

l l 

s s 
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Schedu&ng of Straight-Line Code. Table 1 shows 
the schedule that the compiler would prepare for the 
code and the conesponding computation graph in 
Figure 3. The schedule is designed for execution on 
the processor in Figure 4. 

Table 1. Compiler Schedule for the Code Segment in 
Figure 3 

Mem Mem 
Time Port l Port 2 Multiplier Adder 
0 RI R2 

1 R3 R4 
2 
3 
4 

s Ml 
6 M2 
7 
8 
9 Al 
10 SI 
11 Wl 

12 W2 

At the outset, the only operations that can be executed 
are read operations Rl through R4. Operations Rl 
and R2 are scheduled for execution at time O on 
Memory Ports 1 and 2, respectively. Given the 
5-cycle execution latency for read operations, both 
inputs of Ml will be available at time Sand may be 
scheduled for execution at 5 or any time thereafter. 
Operations R3 and R4 are scheduled for execution at 
time 1, making M2 eligible for execution at time 6 or 
any time thereafter. 

Operations Ml and M2 are scheduled for execution on 
the multiplier at times 5 and 6, respectively. Since the 
multiplier latency is 3 cycles, A 1 and S 1 are 
scheduled for execution at times 9 and 10, 
respectively. Write operations Wl and W2 have been 
delayed with respect to Al and Sl by the 2-cycle 
adder latency and are scheduled at times 11 and 12 
respectively. ' 

This rather simple procedure can exploit the 
fine-grained parallelism within a single segment of 
straight-line code. The operations corresponding to 
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the third FORTRAN statement, viz., Rl, R2, Al, and 
Wl, have been scheduled to execute in parallel with 
the operations of the first two FORTRAN statements. 
Assuming the same processing unit structure and 
pipeline latencies, a simple sequential processor 
would take at least 32 cycles to execute this code 
sequence, and even a rather sophisticated overlapped 
scalar processor would take 26 cycles. In contrast, the 
13-cycle schedule for the Directed Dataflow processor 
represents a significant performance improvement, 
especially when one considers the simplicity of the 
hardware that controls the execution of the processing 
elements. 

Nevertheless, the processor is considerably 
underutilized, owing to the pipeline latencies of the 
operatioas, the data dependencies between them, and 
iasufficient amounts of parallelism. Note the nwt1ber 
of empty slots in the schedule of Table 1. This 
processor, which is capable of starting four operations 
every cycle, ends up starting only 10 operations in 13 
cycles, yielding a performance that is less than 25 
percent of its peak performance. 

Increasing the number of processing elements is not 
the solution. A processor with a larger number of 
processing elements would only achieve a lower 
utilization and very little improvement in 
performance. In fact, with an unlimited number of 
processing elements, the schedule length would 
reduce by only one cycle. As with parallel 
processing, it is far better to have fewer but faster 
processing elements. To use this processor more 
fully, one must exploit the far larger amounts of 
parallelism that exist between successive iteratioas of 
a loop. 

Scheduling of Simple Loops. Let us now assume 
that the code sequence in Figure 3 is the body of an 
innermost loop, as shown in Figure 5. The 
computation graph now consists of multiple copies of 
the graph in Figure 3, with one copy for each iteration 
of the loop. 
When there are no data dependencies between 
operatioas in different iterations of the loop, the 
dataflow architecture allows the processor to execute 
any number of iterations in parallel, limited only by 
the nwt1ber of processing elements. For a compiler 
doing compile-time scheduling for the Directed 
Datatlow processor, the challenge is to exploit the 
inter-iteration parallelism to the point where the most 
heavily used processing element is fully utilized. 
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DO 10 I= 1,N 

Q = U(l)*Y(I) 

Y(I) m X(I) -0 

X(I) = Q + V(l)*X(I) 

10 CONTINUE 

1=1 

f::J 

1:5 

Figure 5. Code for a Simple Vectorizable Loop and 
Computation Graph for the Loop Body 

The first step is to determine which processing 
element is most heavily used. Each iteration perfonns 
two operations on the adder and multiplier, 
respectively, and six memory operations. Since there 
are two memory ports, this represents three operations 
per memory port. Thus, the memory ports are the 
most heavily used processing elements. The objective 
of maximizing perfonnance on the loop can be served 
by scheduling successive iterations to start as 
frequently as possible. The interval between the 
initiation of two consecutive iterations is the 
11iDitiation in~rval". Cearly, the initiation interval 
cannot be less than the number of times the most 
heavily used processing element is used per iteration. 
(A shorter initiation interval would require the use of 
some processing elements more than 100%, which is 
impossible.) In our example, the minimum initiation 
interval is 3. This corresponds to optimal 
performance. 

The schedule shown in Table 2 is based on the 
assumption that a new iteration is started every 3 
cycles. Therefore, scheduling the first iteration 
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implicitly schedules all subsequent iterations. For 
example, when RI for the fust iteration is scheduled 
on Memory Port 1 at time 0, corresponding R 1 
operations for subsequent iterations are implicitly 
scheduled at times 3, 6, 9, 12, et cetera. Thus, every 
time slot for Memory Port 1 which is at time 0 modulo 
3 is crossed off as unavailable. With this additional 
"modulo" constraint, the scheduling of the rest of the 
operations proceeds as before. 

1be first time this constraint makes a difference to the 
schedule is when W2 is scheduled. From the 
viewpoint of input availability. W2 may be scheduled 
at time 12 or later. If it were scheduled at time 12, it 
would conflict with R2 of the fifth iteration. Thus, 
W2 is scheduled for execution at time 14, the next 
available time slot. 

Table 2. Schedule for One Iteration of the ~p in 
Figure 5 

Time Mem Mem 
Time Modulo3 Port 1 Port2 Multt2ller Adder 

0 0 Rl R2 
1 1 R3 R4 
2 2 

3 0 
4 1 
s 2 Ml 
6 0 M2 
7 1 
8 2 
9 0 Al 
10 1 Sl 

11 2 Wl 
12 0 
13 1 
14 2 W2 

This schedule can be replicated, with successive 
copies staggered at 3-cycle intervals. The iterations 
will dovetail perfectly. Table 3 shows the results 
when the schedule is executed at run-time. From the 
end of the initial start-up phase to the last few 
iterations, both memory ports--the most heavily used 
processing elements--are fully utilized. This result 
represents optimal perfonnance. The processor now 
issues 10 operations every 3 cycles, which is 83% of 
its peak capability of four operations per cycle. 

r"\ 



• Table J. Schedule of Multiple Iterations of the Loop 
in Fig. 6, Overlapped in Time 

Time Mem Mem 
Time ModuloJ Portl Port2 Multl2Uer Adder 

0 0 Rl R2 

1 1 R3 R4 
2 2 

3 0 Rl R2 
4 1 R3 R4 
5 2 Ml 
6 0 Rl R2 M2 

7 1 R3 R4 
8 2 Ml 
9 0 Rl R2 M2 Al 
10 1 R3 R4 SI 
11 2 Wl Ml 
12 0 Rl R2 M2 Al 
13 1 R3 R4 S1 
14 2 Wl W2 Ml 
15 0 Rl R2 M2 Al 
16 1 R3 R4 S1 
17 2 Wt W2 Ml 
18 0 Rl R2 M2 Al 
19 1 R3 R4 S1 
20 2 Wl W2 Ml 
21 0 Rl R2 M2 Al 
22 1 R3 R4 S1 

Scheduling of Recurrence Loops. The loop in the 
previous example is one of the simpler types ofloops; 
it contains no data dependencies between the 
operations in one iteration and the same operations in 
subsequent iterations. This type of loop can be 
"vectorized", i.e, reduced to a set of vector operation.,. 
All instances of Ml, in all iterations, can be executed 
in their entirety as one vector operation; then all 
instances of M2 can be executed as one vector 
operation, and so on. 

Now consider the example in Figure 6, where the 
value referenced as Y(I) on one iteration is the value 
computed for Y(l-1) on the previous iteration. In the 
computation graph of Figure 6, an arc is drawn from 
S 1 in one iteration to M2 in the next iteration. This 
indicates that the result computed by S 1 is used by M2 
in the next iteration. This cyclic dependency is a 
recurrence; hence, this loop cannot be vedoriz.ed. 
Clearly, the vedor operation coaesponding to S 1 
cannot be perfonned until the vedor operation for M2 
is complete, because S1 is dependent on :M2. Nor can 
the M2 vedor operation be performed first, because 
the second operation in it is dependent on the first 
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operation in the S 1 vedor operation. The sequence of 
M2 and S l operations must happen in an interleaved 
order, which a vector processor cannot do. The vector 
processor would have to execute this loop in a 
degraded scalar mode. 

Scheduling of recunence loops poses no major 
problems for the Direded Dataflow processor. It only 
requires a different initiation interval from the one 
used in the previous loop schedule. The nature of the 
recurrence data dependency requires that M2 of the 
second iteration be scheduled at least 2 cycles after S 1 
of the first iteration. In the first iteration, S 1 must be 
scheduled at least 3 cycles after M2. Therefore, the 
interval between the M2 operations for two 
consecutive iterations must be at least 5 cycles. After 
computing this initiation interval, the compiler 
constructs the schedule shown in Table 4. 

The inter-iteration dependency prevents the compiler 
from overlapping successive iterations as much as 
processing element usage alone would have permitted. 
Although the Direded Data.flow processor's 
perfonnance on the recurrence loop is 40 percent less 
than on the vectorb.ed loop, it is considerably better 
than a vector processor could achieve using scalar 
execution. 

1H 

111 R2 

Al R2 

lit 

DO 10 I a 1,N 

Q a U(l)*Y(l-1) 

Y(I) a X(I) - Q 

RJ 

Ill 

l=l 

X(I) m Q + V(l)*X(I) 

10 CONTINUE 

Rl 

[:3 

Figure 6. Code for a Recurrence Loop and 
Computation Graph for the Loop Body 

. I 

) 



Table 4. Schedule for One Iteration of the Loop 

Time Mcm Mem 
Time ModuloS Port 1 Port2 Multiplier Adder 

0 0 Rl R2 

1 1 R3 R4 
2 2 
3 3 

4 4 
5 0 Ml 
6 1 M2 
7 2 
8 3 

9 4 Al 
10 0 Sl 
11 1 
12 2 Wl W2 

1be advantage of the Directed Dataflow architecture 
becomes even more evident as the order of the 
recurrences increases. Suppose we change the first 
statement in the loop body (Figure 'l) to read Y(l-2) 
instead of Y(l-1). 1be statement now constitutes a 
second-order recurrence, because the data dependency 
is between iterations that are two removed. Now the 
M2 operations from iterations that are two removed 
must be at least S cycles apart. In other words, twice 
the initiation interval must be at least 5 cycles; hence, 
the initiation interval must be at least 2.5, viz., 3. Th.is 
initiation interval allows the Directed Dataflow 
processor to achieve the same performance it would 
achieve if the loop were vectorizable. It is this ability 
to perform well on linear as well as nonlinear 
recurrences that sets the Directed Dataflow 
architecture apart from the vector architecture. 

Hardware Support for Loop Scheduling. A result 
generated by the execution of an operation must reside 
in some storage location, either memory or register, 
until is has been used by all the operations to which it 
is an input. Concurrent instances of a result must 
reside in different storage locations, and a mechanism 
must exist to ensure that each instance is matched to 
the correct operation. In the dataflow architecture, 
each iteration of a loop or invocation of a procedure 
constitutes a distinct "context" with a distinct name. 

8 

Confusion is averted by tagging each result with the 
name of the context in which the result will be used. 
Associative searching is used to find matching inputs 
tagged with the same context name. 

In the case of procedure calls, the conventional 
method of handling this problem is to allocate 
separate stack _frames to hold the results computed on 
the various invocations of the procedure. While it 
appears that the results from each invocation are 
written to the same location, the frame pointer 
actually guides the results to equivalent locations in 
separate stack frames. 

1be Directed Dataflow architecture uses this 
conventional mechanism to handle multiple 
invocations of the same procedure. In addition, it 
employs iteration frames to handle parallel execution 
of multiple iterations of loops. At compile-time each 
result is assigned a definite location. At run-time the 
processor steers different instances of the same result 
to equivalent locations in separate iteration frames. 
This mechanism avoids the cost of associative storage. 

Scheduling of Conditional Loop Bodies. One 
decision that cannot be made at compile-time is 
whether a data-dependent branch will be taken at 
run-time. Data-dependent branching complicates the 
task ofloop scheduling, since the computations 
performed vary from one iteration to the next and 
make it impossible to devise a single schedule that can 
be replicated and overlapped at periodic intervals. 

In the sequential mode of computing, the decision to 
execute an operation is made by data-dependent 
branches that direct the flow of control either to or 
away from the code containing the operation. 

In the dataflow architecture, this issue is determined 
by data switches controlled by data-dependent 
conditions. The switches either inhibit or permit the 
input data to flow into the computation graph 
containing the operation. Consider the example in 
Figure 7 of a loop with some conditional branching. 
The switch operations transmit their input data down 
one of their two outgoing arcs (depending on the 
value of the boolean input) and control data flow into 
the subgraph of the computation. If the condition is 
false, no data flows into the subgraph consisting of 
operation Wl. (This is the equivalent of branching 
away in the conventional sequential program.) 
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0O10I=1,N 

IF (X(I) .LT. X(l-1 )X(I) = X(l-1) 

Y(I) = X(I) - X(l-1) 

CONTINUE 

Figure 7. Code for a Loop With Conditional 
Branching and Dataflow Graph for the Loop Body 

Because data-dependent conditions obviously cannot 
be evaluated at compile-time, the Directed Dataflow 
architecture uses a different but equivalent approach. 
Instead of inhibiting the Oow of data into a 
computation graph, it inhibits the execution of the 
operations in the graph. Control over the execution of 
operations is provided by a third boolean input to the 
operation. This input is computed at run-time and 
reflects the data-dependent condition. Toe boolean 
input is treated exactly like the other inputs for 
purposes of detennining when an operation can be 
executed. 
Figure 8 displays the Directed Dataflow computation 
graph for the example in Figure 7. Every operation 
now has an additional boolean input, shown entering 
the operation at the side. If the input is TRUE, the 
operation is executed nonnally. If it is F Al.SE, the 
operation becomes a "null" operation. (Operations 
shown without the boolean input actually have a 
boolean input that is constantly TRUE.) The SELECT 
operation selects either the left or the right input as its 
result, depending on the value of the boolean input. 
The twdware support for the conditional execution of 
operatiom makes it unnecessary to branch around the 
operations that will not be executed. Because no 
branching is involved in the Directed Dataflow 
computation, the task of scheduling the computation is 
no harder than in the earlier examples and proceeds as 
descri~d in those examples. 
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Table S shows the resulting schedule. Toe initiation 
interval is 4 and is determined by the first-order 
recurrence involving the references to X(I) and X(l•l). 
In this example, the achieved performance, an 
iteration every 4 cycles, is better by a factor of at least 
3 than the performance that would be achieved with 
traditional branching. This mechanism for handling 
loops with data-dependent branching applies to 
arbitrarily complex patterns of branching within the 
loop. 

Figure 8. Directed Dataflow Computation Graph for 
the Loop Body in Figure 7 

Table 5. Schedule for One Iteration of the Loop 

Time Memory Memory 
Time Modulo4 Port 1 Port2 Multielier Adder 

0 0 RI 
1 1 

2 2 
3 3 
4 0 
5 1 LI 
6 2 
7 3 Wl L2 
8 0 
9 1 
10 2 Sl 
11 3 
12 0 
13 1 
14 2 W2 



Generality of the Directed 
Dataflow Architecture 
Code containing fine-grained parallelism can be 
classified as: 

• Code with vectorizable innermost loops 
• Sequential code with little parallelism 
• C~ ~ith innermost loops containing recurrences, 

condition branches, or irregular array accesses. 

With vectorizable innermost loops, the Directed 
Dataflow architecture bas a modest advantage over 
the vector architecture for two reasons. First, the 
Directed Datatlow architecture can chain an unlimited 
number of vector operations by spacing successive 
operations of one vector operation sufficiently to 
allow other vector operations to run concurrently, 
interleaved in time, on the same pipeline. This 
amortizes the vector startup penalty over a large 
number of vector operations. Second, because all the 
vector operations are chained, the Directed Dataflow 
architecture only needs to store a small part of each 
vector temporary; viz., the part that has been 
generated by one vector operation but bas not yet been 
used as an input for the last time. Strip mining is 
unnecessary, which further reduces the vector startup 
penalty. (Strip mining is the partitioning of a long 
vector operation into short vectors the size of a vector 
register.) 

With sequential code with little parallelism, the 
Directed Dataflow processor does better than the 
vector processor operating in its scalar mode. 1bis is 
because the Directed Dataflow processor can execute 
operations out of sequence. 

With code containing sets of innermost loops with 
recurrences, conditional branches, or irregular array 
accesses, the Directed Dataflow architecture has the 
greatest advantage. Whereas the vector processor 
drops to a sequential mode of execution, the Directed 
Dataflow processor continues to exploit any 
parallelism that exists. 

Central to the superiority of the Directed D.atatlow 
architecture are the compiler techniques and the 
supporting hardware. Toe hardware provides efficient 
allocation of register storage for the iteration frames 
and conditional execution of operations. The 
compiler and the hardware are inseparable design 
considerations. Even the most complex compiler 
techniques would fail to fully exploit fine-grained 
parallelism if the hardware failed to provide the 
appropriate architectural features. 

THE CYDRA 5 SYSTEM 

The Cydra 5 Departmental Supercomputer is a 
heterogeneous multi-processor system designed to be 
a functionally complete data processing solution for 
serious users in the engine • ring and scientific 
disciplines. It draws upon the most appropriate 
technology to meet each need. 

As shown in Figure 9, the Cydra 5 is designed around 
a central bus and supports three types of processor: the 
Numeric Processor, the Interactive Processors 
(general processors), and the 1/0 Processors. Each of 
these processors is optimized for a particular type of 
task. 

HeMary Systeri 

Interactiue 
Processor 

Interactiue 
Processor 

Interactiue 
Processor 

I/0 Processor 

UME UHE UME 

Figure 9. Cydra 5 System Diagram 
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The Numeric Processor has been optimized for the 
task of running large floating-point intensive 
applications. By virtue of its Directed Dataflow 
architecture, it can sustain high perfotmance over a 
much broader spectrum of computations than other 
mini-supercomputer processors. Consequently, it is 
better equipped to meet the user's need for high 
perfotmance without re-engineering of the application 
software. 

Maintaining a balance with the high-perfonnance 
Numeric Processor requires a high bandwidth memory 
system. Although the Numeric Processor has an 
instruction cache, it avoids data caching in order to 
avoid the anomalous perfonnance that results when 
working with large data sets. The highly interleaved 
main memory incorporates a unique architecture that 
guarantees a uniformly high memory bandwidth 
regardless of how data is placed and referenced in 
memory. 1bese features have been provided to meet a 
very important design objective: the user must be able 
to use the computer without perceiving any 
anomalous characteristics or perfonnance shortfalls. 

While the Numeric Processor is intended to execute 
numerically intensive applications, Cydrome 
recognizes that the typical user will run other jobs that 
are not numerically intensive, such as text editors, 
compilers, and interactive tasks. Rather than tie up the 
Numeric Processor with such tasks, Cydrome 
designed a tightly integrated general-purpose 
subsystem that shares memory with the Numeric 
Processor. 1bis subsystem provides most of the 
operating system services, leaving the Numeric 
Processor free to run applications continuously. By 
dghtly integrating the Numeric Processor and the 
general-purpose subsystem, Cydrome avoided the 
clumsiness of the host/attached-processor combination. 

To avoid the bottleneck that occurs when the 
operating system does not execute the application's 
I/O requests fast enough, Cydrome has designed a 
UNIX V.3-compatible operating system with greatly 
improved I/O handling capability. This CYDRIX™ 
operating system executes on the general-purpose 
subsystem, which contains multiple general-purpose 
processors (the Interactive Processors). Cydrix is 
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designed to execute as a set of parallel processes 
operating in a symmetric parallel mode on multiple 
processors. 

In running Cydrix, the general-purpose subsystem 
functions as a parallel processor. UNIX, being a 
procedure-oriented system, is inherently 
parallelizable. Its execution consists of the joint 
activity of all user processes that are currently in 
kernel mode. This potential parallelism has been 
successfully exploited in Cydrix by modifying the 
kernel to make it re.entrant. 

With multiple independent non-numeric user tasks, 
the Interactive Processors function as a 
multiprocessor, achieving near-linear speedup with 
the nwnber of processors. In this mode, the 
Interactive Processors yield considerably better 
cost-perfonnance than an equivalently priced 
uniprocessor. 

-

High I/O perfonnance is also achieved by using 
multiple processors. These microprocessor-based 1/0 
processors can perfotm gather/scatter operations and 
handle tens of I/O transfers in both directions 
simultaneously. The total I/O bandwidth and storage 
capacity are more than adequate to ensure a balance 
with the perfonnance capability of the Numeric 
Processor. 

CONCLUSION 

The Cydra S Departmental Supercomputer combines 
a radically different internal design with a familiar 
and comfortable user interface. It achieves 
significantly higher perfonnance than supenninis 
and higher cost-perfotmance than conventional 
mini-supercomputers without re-engineering of 
applications. Cost.effective Directed Data.flow 
architecture and sophisticated compiler technology 
work band-in-hand to provide an innovative solution 
to the computing needs of the engineering and 
scientific communities. 



SUMMARY OF CYDRA ™ S SPECIFICATIONS 

Numeric Processor 

Interactive Processors 

Input/Output Processors 

Memory Subsystem 

Peripheral Devices 

Cydrlx™ 5.3 Operating System 

Directed Dataflow™ architecture 

Contcltt Register Matrix 

Conditional Scheduling Control 

Floating Point Arithmetic: IEEE 754 Standard 

Arithmetic precision: 32-bit and 64-bit 

Instruction Cache: 32 kilobyte 

Cycle Time: 40 nanoseconds 

General purpose 32-bit processors 

Cache per processor: 16 kilobytes 

Multipr<x:essor cache coherency hardware 

Maximum configuration: 6 Interactive Processors 

Sustained transfer rate per processor: 40 megabytes/second 

Gather/Scatter data transfer 

Industry-standard VME bus interface 

Maximum configuration: 2 lnput/Output Processors 

Maximum number of simultaneous VME buses: 6 

Maximum number of simultaneous I/0 controllers: 30 

Virtual Address Space: 4 gigabytes 

Main Memory Capacity: 8 megabytes to 256 megabytes 

Sustained transfer rate: 400 megabytes/second 

Stride insensitive design 

Up to 64-way interleaving 

Support Memory Capacity: 8 megabytes to 64 megabytes 

Optimized for rapid data access 

Disk: 830 megabytes per drive with 2.5 megabytes/second transfer rate 

Tape: 6250 bpi with 75 ips in start/stop mode 

Printer: 600 1pm 

Communications: RS-232C and Ethernet'~ support 

Compatible extension of AT&1"9 lJNIXII System V.3 

Transparent multi processing 

Dynamic load balancing 

Extent-based file system 

Buffered and unbuffered input/output 

Asynchronous input/output 

Disk striping 

Batch queue facility 

TCP/IP support 

Remote Graphics Library 

UNIX tools and utilities 

Application performance profiling tools 

Socket library compatible with Berkeley 4.2 UNIX 
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