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Benchmarking 
Scientific machines frequently are compared on the basis of their performance on key FORTRAN loops 
representative of the workload at various universities and labs. Examples include the Livermore Loops 
(renamed Uvennore Fortran Kernels, or LFKs), the Sandia kemels, the DFVLR kernels, the NAS kernels, 
and the Argonne benchmark (LINPACK). However, a machine's performance on two nearly Identical loop 
computations can show substantial performance differences. This performance brief examines various 
architectural considerations, which impact measurements of computational kernels. As wfll be shown, the 
Cydra 5, unlike a number of other systems, consistently yields high performance across a wide variety of 
FORTRAN codes. 

Architectural Considerations 
Machines that have high speed cache memories for data and/or instructions often demonstrate higher 
performance on kernel benchmarks than on more representative, larger applications. Since kemels 
typically are timed on a •quier machine (meaning no other workload), cache miss rates can be very low. 
In production environments such miss rates will depend upon the rest of the workload in the computer. 
Cache miss rates also are very sensitive to data structure size. If the benchmark fits entirely In cache, 
extremely high performance will be obtained. In practice, It is difficult to control the size of the data 
structures. Furthermore, as a software architecture consideration, some compilers may do a better job of 
optimizing small tight loops compared to more complex, typical production codes. 

A Look At The SAXPY Operation 
The aaonym SAXPY stands for scalar A times X plus Y, or 

y(I) • y(i) + a • x(I) for I • 1, 2, .... , n 

This kemel is timed in both the LFK set and In UNPACK. In LFK loop 21 the SAXPYoperation is used to 
perform matrix multiplication Is as follows: 

do 21 I • 1, loop 
do 21 k• 1, 25 

do21 i • 1,25 
do21 j • 1, 

21 continue 
px(l,j) • px(l,j)+ vy(l,k) • cx(k,J) (LFI<) 
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In UNPACK the SAXPY operation is implemented through a CALL, and Is used to perform row elimination 
With column indexing as follows: 

do 30 j • kp1, n 
t • a(l,j) 
if (I .eq. k) go to 20 

aQ,j) • a(k, j) 
a(k,j) • t 

20 continue 
call saxpy (n-k,t,a(k+ 1,k), 1, a(k+ 1, j), 1) 

30 continue 
(LINPACK) 

A multiprocessor system can utilize multitasking for the UNPACK loop, but not not for loop (1 ). Yet 
production codes are more likely to resemble the LFK loop since with modem, highly optimizing 
FORTRAN compilers simple operations such as SAXPY are most efficiently computed inllne. Figure 1 
shows a comparison of the Cydra 5 with other systems. The robust architecture of the Cydra 5 yields 
comparable performance on both loops. The LFK loop, uses a longer vector length (101 vs 51 ), but most 
machines report a lower perfonnance partly due to the stride penaJty for row access, and partly due to the 
flushing of the cache prior to timing the kernel. 

The Cydra 5 was designed to deliver high performance with minimal degradation fn perfonnance due to 
strided access of data, or other programming techniques. The Cydra 5 also supports fast gather/scatter 
operations 1. 
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Figure 1. UNPACK and LFK Performance Comparisons 

The LFK results2
, correspond to vector length 101. 

The UNPACK results
3 

on the standard 100x100 full precision problem corresponds to a vector length of 
50 (on average) for the loop in question. 

On the LFK kernel, the FX/8 achieves little improvement over an FX/1. The FX/8 LFK performance also is 
adversely impacted by the fact that the vector length is reduced to 12 for the multitasked code4. 
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Robust Memory Design 
Several of the commonly used architectures for scientific and engineering machines place a heavy 
burden on the programmer or the numerical analyst to devise algorithms yielding contiguous vector 
access. Non-contiguous or strided access causes performance degradation ranging from a few percent 
to 90% on many vector computers. A typical FORTRAN loop involving strided access Is the following: 

DOI • 1,N.M 
Y(I) • Y(I) + X(I) • S 

ENDDO (1) 

Strided access arises in matrix (row) operations, complex arithmetic, fourier transforms, multidimensional 
fourier transforms. multi-dimensional models in time-space domain. and so on. In performing two 
dimensional fast fourier transforms (FFTs) at least one of the transforms will involve row access of data. 
Especially degraded performance may be obtained if the stride is modulo 4 or 8 on such machines. The 
responsibility rests on the programmer to 'fix' array declarations so that stride penalty is minimized. The 
Cydra™ 5, as shown in the following performance section, demonstrates nearly indiscernible per1ormam.) 
stride penalties. The programmer need only worry about the physics and mathematics of the problem he 
is solving. In addition to a powerlul memory access system, the Cydra 5 incorporates the following 
advanced computational features: 

• Powerful gather/scatter hardware. 
• Overlapped address computation with arithmetic computation. 
• Fast computation of recurrences. 
• Fast computation of conditional statements. 
• Computation of dot product at near peak speed of the machine. 
• IEEE floating point hardware. 
• Support for both single and double precision arithmetic at high speeds. 
• Large main memory, ranging up to 256 MB, that reduces or even eliminates the need for 1/0. 
• Unique memory access capability that suffers little penalty for strided data access. 
• Disk capacity exceeding 29 Gigabytes. 
• Cydrix™ operating system based on standard UNIX® System V.3 for ease-of-use. 
• State-of-the-art compiler with sophisticated optimization capabilities that enable the application 

programmer to exploit Cydra 5 computational power in FORTRAN. 
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Benchmark Data 
The ACCU 1 benchmark suite consists of kernel codes as well as productions codes in the application 
areas of PDE solvers, Laplacian random walk, molecular dynamics of water molecules, etc. One of the 
kernels times the following task: 

0OINCR • 1, 16 
00 J • 1, SIZE • INCR, INCR 
S • S +A(I) • B{I) 
ENO DO 

ENO DO (2) 

Note that this is actual CydrixTM F77 code. Cydrix F77 contains several enhancements, in the spirit of the 
current draft proposal for FORTRAN Bx. 

Data on competitive machin~s were published by ACCU 1. Figure 1 shows the performance on the 
Cydra 5 and other competitive mdthines. The Cydra 5 incorporates a sophisticated memory access 
mechanism that is Insensitive to the access pattern; hence high performance is obtained irrespective of 
the access pattern. 
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The Correct Mean 
The Cydra 5 Departmental Supercomputer features high, sustained workload performance. One method 
for measuring workload performance is with a composite of multiple, representative preformance tests. In 
a landmark article In 1984, Jack Worlton examined various approaches to benchmarking scientific and 
engineering computers 1. Worlton reinforced the concept of using a set of representative program kernels 
for benchmarking for reasons of efficiency, portablllty, and when done properly, for the accuracy of such 
measurements. Of the widely available tests, the Livermore FORTRAN Kemals (LFKs)2, also referred to 
as the •uvermore Loops,• best satisfy this measurement approach. The LFKs include 24 representative, 
Individual tests that are characteristic of actual engineering and scientific workloads. One of these tests, 
•Kernel 21 • Is the same loop calculation, named •sAXPY, • as in the well-known single application test 
LINPACK3. 

Early In 1987, the Lawrence Livermore Laboratory began publishing LFK performance results for a wide 
range of computers. With this publication2, the use of the LFKs throughout the industry is increasing 
rapidly. The LFKs are becoming a preeminent workload performance measurement. 

Based on Worlton's analysis, harmonic averages represent the most appropriate comparison of 
performance between machines on production application workloads. Various forms of averaging can be 
used for analyzing machine performance. Straightforward averaging of the rates, ri, for individual kernels 
is referred to as arithmetic mean: 

Arithmetic Mean: 
n 

The unweighted arithmetic mean (all w = 1) can be very unrepresentative of actual performance, 
especially for machines with unbalanced, varying performance from kernel to kernel. As succinctly 
discussed In Wortton's report, harmonic averages such as the harmonic mean are far more meaningful 
when comparing perfonnance data on kernels: 

Harmonic Mean: 
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The following shows LFK data published by the Lawrence Livermore Laboratory for two well-known 
machines: 

Harmonic Mean, Full Precision 

Alllant™ FX/8™, 
SCEs 
1.6 megaflops 

Convex™C1 

1.3 megatlops 

As published in the announcement material for Muftiflow™ TRACE™ 7/200, the harmonic mean for this 
machine is 2.3 megaflops. 

The corresponding Cydra 5 performance is: 

Cydra 5 
Harmonic Mean, Full Precision .a. 7 megaflops 

The Cydra 5 harmonic mean performance is indicative of a robust, well-balanced machine that can 
provide high performance on a wide variety of workloads. 

CYDRA 5 Highlights 
• Pov,~rful gather/scatter hardware. 
• Overlapped address computation with arithmetic computation. 
• Fast computation of recurrences. 

~ • Fast computation of conditional statements. 
• Computation of dot product at near peak speed of the machine. 
• IEEE floating point hardware. 
• Support of both single and double precision arithmetic at high speeds. 
• Large main memory, ranging up to 256 MB, that reduces or even eliminates the need for 1/0. 
• Unique memory access capability that suffers little penalty for strided data access. 
• Disk capacity exceeding 29 Gigabytes. 
• CydrixTM operating system based on standard UNIX9 System V.3 for ease-of-use. 
• State-of-the-art compiler with sophisticated optimization capabilities that enable the application 

programmer to exploit Cydra 5 computational power in FORTRAN. 

References 
1. J. Wor1ton, Datamation, Sept. 1984, p. 121 

2. F. McMahon, The Livermore Fortran Kernels, Dec. 1986, National Technical Information Service 

3. J.J. Dongarra, Performance of Various Computers Using Standard Linear Equations Software in a 
Fortran Environment, Technical Memorandum No. 23, October 5, 1987. 
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Linear Recurrences 
Unear recurrences are among the most Important class of non-vectorizable problems In typical scientific 
and engineering workloads. The following is an example of a simple linear recurrence: 

SUM(1) 
DOI 

X(I) 
ENO DO 

• A(1) 
• 2,N 
• X(l -1) • z(I) + y(I) 

(1) 

The lmpad on overall machine perfonnance by the presence of recurrences has been Investigated by 
Wor1ton 1. Even when recu"ences make up only a small portion of the workload, their impact can be 
significant For Instance in analyzing the original fourteen Livermore kernels, 3 loops involve recurrences 
while 9 loops are fully vectorized on the Cray™ XMP2. If the performance of the 9 vectorized loops were 
doubled, the overall impact as measured through the harmonic mean would be on the order of 5%. If the 
performance of the 3 loops with recurrences were doubled, the overall performance rating would improve 
by a very significant 37%. The Cvdra™ 5 was designed to execute linear recurrences at near peak speed 
of the machine. In an operation such as (1) above the output term x(i - 1) can be immediately used in a 
succeeding arithmetic operation. A practical example of linear recurrences is the evaluation of running 
sums of vectors for scaling purposes in signal processing applications: 

SUM(1) • A(1) 
DOI • 2,N 

SUM(I) • SUM(I - 1) + A(I) 
ENO DO 

Another common example occurs in solving partial differential equations (PDEs) with the numerically 
stable Crank-Nicholson schemes 

i1-u au 
---'iix2 at 

(2) 

uO + 1, k) • uQ,k) + (a/2) • (uO + 1, k + 1) - 2 • uO + 1,k) + uij + 1,k - 1) + uO,k + 1) 2 • uij,k) + uO,k - 1)) (3) 

This expression involves recurrences with regard to both of the indices J and k. One approach to 
handling Unear recurrences on vector computers has been to use recursive doubling, or cyclic reduction 
techniques3. These involve a doubling or tripling of the computational workload* and also Involve the 
relatively low performance gather/scatter operations. Another approach Is optimization in scalar mode 

Such schemes force the use of much smaller Integration intervals in order to assure stability, thus increasing the total 
computation required. 
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through unrolling techniques. At best this yields a performance improvement of around 50%. The Cydra 
5, with its unique ability to handle recurrences and gather/scatter operations, eliminates the need for 
cumbersome recoding. The result is high performance with straightforward FORTRAN code as shown in 
the next section. 

Performance Measurement 
The following kernel was timed, with N = 100: 

DOI 
A(I) 

ENDDO 

where: 

• 1 + j, n - j 
• 8(1) + S • A(I - J) 

s is a scalar 
j defines the tree height of the recurrence 
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The j • 0 case corresponds to a normal, vectorizable operation (no recurrence). The 
"Vector" machine columns demonstrates typical vector processor behavior, viz full speed 
when there is no recurrence, and purely scalar performance thereafter. CYDRA 5 
performance improves as the order of the recurrence is increased. 

Figure 1. 

References 

1. J . Worlton, Computer World, Nov 9, 1981 
2. J. Worlton, Datamation, pp 121-130, 1984 
3. L. Hyafil and H.T. Kung, CACM, vol. 24, no. 3, p. 513, 1977. 
4. Cydrome Performance Brief "Robust Memory Design•. 
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High Performance Sparse Matrix Computations 
Matrices where most of the elements are zero are called sparse matrices. Sparse matrices may arise 
naturally from the modeling of a physical process or they may arise during analysis, simplHication, and 
solution of complex systems of equations. A basic source of sparsity is a common assumption that forces 
are localized. For Instance In modeling a bridge, the equations at a node Involve only the beams that 
meet there. The number is about the same whether the bridge Is short and Involves only a few beams, or 
whether the bridge spans several miles and involves thousands of beams. Sparse matrices may have a 
structure (e.g. tridiagonal, banded, block diagonal, symmetric, etc.) or the sparsity may be random. The 
efficient solution of sparse matrices is at the heart of such Important application areas as structural 
analysis, finite element modeling, reservoir modeling, computational fluid dynamics, and quantum 
chemistry. The capabilities of the Cydra ™ 5 system for solving sparse systems can be demonstrated 
with the industry standard software package ITPACK 

ITPACK Overview 
ITPACK 2c 1 is a collection of FORTRAN subroutines for solving large sparse linear systems by adaptive 
accelerated Iterative algorithms. The Jacobi (J), Symmetric Successive Over-Relaxation (SSOR), aud 
Reduced System (RS) basic Iterative methods accelerated by either Conjugate Gradient (CG) or 
Chebyshev (SI, for semi-iterative) acceleration are induded. Also Included is the Successive 
Over-Relaxation (SOR) method with no acceleration. A typical compute intensive loop In ITPACK is the 
following: 

DOJ • 1, MAXNZ 
DOI• 1,N 

Y(I) • Y(I) + COEF(l,J) • X (JCOEF(l,J)) 
END DO 

END DO 

Note that this ls actual CYDRIX™ F77 code. CYDRIX F77 contains several enhancements, in the spirit 
of the cu"ent draft proposal for FORTRAN Bx. 

The array JCOEF is often referred to as the list vector, for it points to elements of array x that must be 
accessed. More generally the above loop and other key loops used in solving sparse systems may be 
represented as: 

SPARSE SAXPY 
SPARSE SAXPY (2) 
SPARSE SOOT 

Y(O • Y(I) + S • A(JCOEF(I)) 
A(JCOEF(I)) • A(JCOEF(I)) - S • Y(I) 
S • S + A(JCOEF(I)) • Y(I) 

Such loops are executed at high performance rates on the Cydra 5, through use of a robust memory 
system plus extensive hardware features to support fast gather/scatter and strided access. The Cydra 5 
can also exearte first order recurrences at near peak execution speed. 

(1) 
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ITPACK performance 
ITPACK on problem 1 ; natural ordering 

Method Iterations 
JCG 100 
JSI 100 
SOR 100 

CPU time in seconds 

Cydras CYBER™205 CRA'(TMXMP 
0.455 0.280 0.227 
0.465 0.252 0.213 
0.614 0.432 0.38 

The CRAY and CYBER™ 205 data are taken from research by Oppe and Kincald1. 

ITPACK for the Cydra 5 Is available from Cydrome. For more information contact your Cydrome 
representative. 

Cydra 5 Highlights 
• Powerful gather/scatter hardware. 
• Overlapped address computation with arithmetic computation. 
• Fast computation of recurrences 
• Fast computation of conditional statements 
• Computation of dot product at near peak speed of the machine. 
• IEEE floating point hardware 

• Support for both single and double precision arthmetic at high speeds. 
• Large main memory, ranging up to 256 megabytes, that reduces or even eliminates the need for 1/0. 
• Unique memory access capability that suffers little penalty for strided data access. 
• Disk capacity exceeding 29 Gigabytes. 
• CYDRIXrMoperating system based on standard UNIX~System V.3 for ease-of-use. 
• State-of-the-art compiler with sophiscated optimization capabilities that enable the application program­

mer to exploit Cydra 5 computational power In FORTRAN. 

Reference 
1. T.C. Oppe and D.R. Kincaid, The Performancs of ff PACK on Vector Computers for Solving Large 

Sparse Linear Systems Arising in Sample Oil Reservoir Simulation Problems, Comm. in Applied 
Numerical Methods, Vol. 3, pps. 23-29 (1987). 
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High Performance Signal Processing 
The CydraTM 5 system offers a powerful computing facility for signal processing applications. Through a 
joint marketing agreement, Cydrome and Quantitative Technology Corporation (OTC) are making 
available a highly optimized version of Math Advantage111• Among the routines In Math Advantage are the 
following functions: 

ACORF 
CCORF 
CFFT 
CFFT2D 
RFFT 
CONV 
CONV2D 

Frequency domain autCMX>rrelation 
Frequency domain cross-correlation 
In-place Complex FFT 
Complex 2-d FFT 
Real-to-Complex FFT 
1 ·D convolution/correlation 
2-D convolution/correlation 

This set of functions Is widely used In signal processing, image processing, seismic data processing, and 
In many other data analysis areas. 

Two Dimensional Filtering 
A common application In signal analysis is the removal of noise from 1-0 and 2-0 data. The noise or 
contamination may arise from deficiencies in the collecting equipment, or may represent ambient 
background noise where measurements are being performed. In seismic data processing, for example, 
the desired signal is the pressure wave that travels Into the earth and is reflected back to the surface by 
the sub-surface lithology. Waves that travel along the surface (shear waves) represent undesirable 
noise. On a typical grid size of 2048 points by 64 points, the removal of noise takes only 1.1 seconds of 
CPU time on the CYDRA 5 Numeric Processor (NP). A time varying filter of dimensions 35 points by 9 
points Is applied to the data for removal of the noise train (Figure 1 ). This corresponds to sustained 
computation rate of 37 megaftops. Single precision arithmetic was used for this task. 
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Convolution Operation 
The convolution operation Is widely used in signal processing applications. Convolution is defined by: 

C1= ~ A F 
M+i-j j 

for 1=1 ,2, ...... N 

where a is the Input vector, f Is a filter of length M, and c is the output vector of length N. A typical 
FORTRAN code which implements the convolution operation is a follows: 

00•11,N 
C(l) • O 
ENDOO 

0OJ-1,N 

END DO 

001•1,M 
C(I) • C(I) + A(l+M-JO) • F(J) 
END DO 

With only minor modifications to the above code, the convolution operation yields high per1ormance on 
the Cydra 5. Table 1 shows the convolution timing, single precision data for a filter length of 32 on the 
Cydra5. 

Table 1. Convolution Timing Test 

Vector Length MFLOPS 
20 21 
50 29 

100 33 
250 37 
500 38 

1000 39 
2000 39 
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Figure 1. Convolution Operation (Single Precision Data) 

Cydra 5 Highlights 
• Powerful gather/scatter hardware. 
• Overlapped address computation with arithmetic computation. 
• Fast computation of recurrences. 
• Fast computation of conditional statements. 
• Computation of dot produc; at near peak speed of the machine. 
• IEEE floating point hardware. 

1588 

• Support for both single and double precision arithmetic at high speeds. 

2eee 

• Large main memory, ranging up to 256 megabytes, that reduces or even eliminates the need for 1/0. 
• Unique memory access capability that suffers little penalty for strided data access. 
• Disk capacity exceeding 29 Gigabytes. 
• Cydrix~ 5.3 operating system based on standard UNIX3 System V.3 for ease-of-use. 
• State-of-the-art compiler with sophiscated optimization capabilities that enable the application 

programmer to exploit Cydra 5 computational power in FORTRAN. 
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FFT 
The Fast Fourier Transform (FFT) is widely used by the signal processing community. Table 1 shows the 
FFT1 D (complex to complex 1 D transform) single precision data timing test on the Cydra 5. 

Table 1. FFT1 D Single Precision Data Timing Test 

Vector Length 

32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 
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Figure 1. FFT Performance (Single Precision Data) 
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FIDAP 
FIOAP9 Is a computational fluid dynamics application that Is used to simulate a wide variety of 
Incompressible flow problems. 

Computational fluid dynamics (CFO) can provide detailed lnfonnation on the flow of matter, energy, 
momentum, and other properties from point to point within a system. The techniques of CFO are widely 
used In the automotive, aerospace, discrete manufacturing, electronic devices, chemical, and other 
Industries. Table 1 summarizes typical uses of FIDAP in various industries. 

Table 1. Use of CFD Techniques In Various Industries 

Industry 
Automotive and Aerospace 

Electronic 

Food 
Power Utllitles 

Appllcatlons 
Aer~ynamics analysis to reduce drag 
Combustion process analysis 
Flow and thermal modeling for hydraulics 
Component heating/cooling behavior 
Fan sizing, cabinet design 
Pasteurization time studies 
Sizing of cooling systems. 

FIOAP uses the finite element method for performing the computations. FIDAP is comprised of three 
modules: FIPREP, FIDAP, and FIPOST. FIPREP generates the analytical mesh and accepts Input for 
physical system properties and initial conditions. The main module, FIDAP, transforms the governing 
partial differential equations Into algebraic equations (matrix algebra) with iterations and time stepping. 
FIPOST provides graphical post-processing of output field variables such as temperature. FIPREP and 
FIPOST may be executed in lnteradfve or batch mode; FIDAP is executed in batch mode. Execution 
time can range from a few minutes to multiple hours depending on the problem size. 

The Cydra 5 system Is well suited for the execution of FIOAP. For 2D models the memory requirements 
are In the 4 to 8 MB range with scratch disk space in the 30 to 70 MB range. 3D models require roughly 6 
to 12 MB memory and between 100 to 300 MB of scratch disk space. The Cydra 5 with a large memory 
size of up to 256 MB has two additional attributes which make it a powerful processor for executing 
FIOAP: 

• Execution of the dot product (inner product) at high speed 
• Powerful memory access system, featuring memory access rates that are insensitive to access pattern 

(stride). 
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The dot product operation, typically, cannot be performed very efficiently on traditional vector computers. 
Summation of successive terms has an implied recurrence. Table 2 shows the computation rate of the 
dot product operation on the Cydra 5. ~ 

Table 2 . Dot Product Operation on the Cydra 5 (in megaflops) 

Vector Length 100 500 1000 5000 
Single Precision 10.0 27.5 35.0 46.9 
Double Precision 8.0 17.5 20.6 22.2 

The dot product operation Is the principal basic computation in FIDAP, often performed on sparse or 
banded matrix data structures. 

Table 3 shows Cydra 5 performance results on a series of FIDAP test cases. The cases span a range of 
problem sizes, from small through relatively large. Comparative data on a Convex™ C1 XP is also 
shown; data has been provided by Fluid Dynamics Incorporated. 

Table 3. FIDAP Version 4 Performance Data (in seconds) 

Test Case Cydra 5 Convex C1 Ratio• 

8 85.6 183.8 2.1 
11 5854.3 16n4.6 2.9 
15 3916.7 8670.6 2.2 
16 17589.1 41852.4 2.4 
20 2074.9 5452.9 2.6 

• Comparison of execution rate of Cydra 5 and the Convex C1 . The Cydra 5 is 2 to 3 times faster than the Convex C1 . 
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