
I I I I
C y D R A 5

TM

Performance Brief

Benchmarking
Scientific machines frequently are compared on the basis of their performance on key FORTRAN loops
representative of the workload at various universities and labs. Examples include the Livermore Loops
(renamed Uvennore Fortran Kernels, or LFKs), the Sandia kemels, the DFVLR kernels, the NAS kernels,
and the Argonne benchmark (LINPACK). However, a machine's performance on two nearly Identical loop
computations can show substantial performance differences. This performance brief examines various
architectural considerations, which impact measurements of computational kernels. As wfll be shown, the
Cydra 5, unlike a number of other systems, consistently yields high performance across a wide variety of
FORTRAN codes.

Architectural Considerations
Machines that have high speed cache memories for data and/or instructions often demonstrate higher
performance on kernel benchmarks than on more representative, larger applications. Since kemels
typically are timed on a •quier machine (meaning no other workload), cache miss rates can be very low.
In production environments such miss rates will depend upon the rest of the workload in the computer.
Cache miss rates also are very sensitive to data structure size. If the benchmark fits entirely In cache,
extremely high performance will be obtained. In practice, It is difficult to control the size of the data
structures. Furthermore, as a software architecture consideration, some compilers may do a better job of
optimizing small tight loops compared to more complex, typical production codes.

A Look At The SAXPY Operation
The aaonym SAXPY stands for scalar A times X plus Y, or

y(I) • y(i) + a • x(I) for I • 1, 2, , n

This kemel is timed in both the LFK set and In UNPACK. In LFK loop 21 the SAXPYoperation is used to
perform matrix multiplication Is as follows:

do 21 I • 1, loop
do 21 k• 1, 25

do21 i • 1,25
do21 j • 1,

21 continue
px(l,j) • px(l,j)+ vy(l,k) • cx(k,J) (LFI<)

Psrlormancs Brief 1

-

In UNPACK the SAXPY operation is implemented through a CALL, and Is used to perform row elimination
With column indexing as follows:

do 30 j • kp1, n
t • a(l,j)
if (I .eq. k) go to 20

aQ,j) • a(k, j)
a(k,j) • t

20 continue
call saxpy (n-k,t,a(k+ 1,k), 1, a(k+ 1, j), 1)

30 continue
(LINPACK)

A multiprocessor system can utilize multitasking for the UNPACK loop, but not not for loop (1). Yet
production codes are more likely to resemble the LFK loop since with modem, highly optimizing
FORTRAN compilers simple operations such as SAXPY are most efficiently computed inllne. Figure 1
shows a comparison of the Cydra 5 with other systems. The robust architecture of the Cydra 5 yields
comparable performance on both loops. The LFK loop, uses a longer vector length (101 vs 51), but most
machines report a lower perfonnance partly due to the stride penaJty for row access, and partly due to the
flushing of the cache prior to timing the kernel.

The Cydra 5 was designed to deliver high performance with minimal degradation fn perfonnance due to
strided access of data, or other programming techniques. The Cydra 5 also supports fast gather/scatter
operations 1.

2 Performance Brief

rm :wmtt-

Notes:

Cl)
C.
0
..J
u.
::::e

Cl)
C.
0
..J
u.
::::e

LFK Kernel #21

9

8
~

7 (0

6

5

4

3

2

0
Alliant™ Convex™ Alliant

VAX™ 8800 FX/1™ C1 FX/8™ CYDRA™ 5

14

12

10

8

6

4

2

0

UNPACK

Al l iant
VAX 8800 FX/ 1

Convex
C1

~

0

Alliant
FX/8 CYDRAS

Figure 1. UNPACK and LFK Performance Comparisons

The LFK results2
, correspond to vector length 101.

The UNPACK results
3

on the standard 100x100 full precision problem corresponds to a vector length of
50 (on average) for the loop in question.

On the LFK kernel, the FX/8 achieves little improvement over an FX/1. The FX/8 LFK performance also is
adversely impacted by the fact that the vector length is reduced to 12 for the multitasked code4.

Performance Brief 3

I I I I I I
C y D R A 5

TM

Performance Brief

Robust Memory Design
Several of the commonly used architectures for scientific and engineering machines place a heavy
burden on the programmer or the numerical analyst to devise algorithms yielding contiguous vector
access. Non-contiguous or strided access causes performance degradation ranging from a few percent
to 90% on many vector computers. A typical FORTRAN loop involving strided access Is the following:

DOI • 1,N.M
Y(I) • Y(I) + X(I) • S

ENDDO (1)

Strided access arises in matrix (row) operations, complex arithmetic, fourier transforms, multidimensional
fourier transforms. multi-dimensional models in time-space domain. and so on. In performing two
dimensional fast fourier transforms (FFTs) at least one of the transforms will involve row access of data.
Especially degraded performance may be obtained if the stride is modulo 4 or 8 on such machines. The
responsibility rests on the programmer to 'fix' array declarations so that stride penalty is minimized. The
Cydra™ 5, as shown in the following performance section, demonstrates nearly indiscernible per1ormam.)
stride penalties. The programmer need only worry about the physics and mathematics of the problem he
is solving. In addition to a powerlul memory access system, the Cydra 5 incorporates the following
advanced computational features:

• Powerful gather/scatter hardware.
• Overlapped address computation with arithmetic computation.
• Fast computation of recurrences.
• Fast computation of conditional statements.
• Computation of dot product at near peak speed of the machine.
• IEEE floating point hardware.
• Support for both single and double precision arithmetic at high speeds.
• Large main memory, ranging up to 256 MB, that reduces or even eliminates the need for 1/0.
• Unique memory access capability that suffers little penalty for strided data access.
• Disk capacity exceeding 29 Gigabytes.
• Cydrix™ operating system based on standard UNIX® System V.3 for ease-of-use.
• State-of-the-art compiler with sophisticated optimization capabilities that enable the application

programmer to exploit Cydra 5 computational power in FORTRAN.

Performance Brief

Benchmark Data
The ACCU 1 benchmark suite consists of kernel codes as well as productions codes in the application
areas of PDE solvers, Laplacian random walk, molecular dynamics of water molecules, etc. One of the
kernels times the following task:

0OINCR • 1, 16
00 J • 1, SIZE • INCR, INCR
S • S +A(I) • B{I)
ENO DO

ENO DO (2)

Note that this is actual CydrixTM F77 code. Cydrix F77 contains several enhancements, in the spirit of the
current draft proposal for FORTRAN Bx.

Data on competitive machin~s were published by ACCU 1. Figure 1 shows the performance on the
Cydra 5 and other competitive mdthines. The Cydra 5 incorporates a sophisticated memory access
mechanism that is Insensitive to the access pattern; hence high performance is obtained irrespective of
the access pattern.

50

40

(I) 30 C.
0

i:;::
ffl
O>
Q) 20 ::E

10

0

0 2 4 6

Figure 1. Stride Memory Test

2 Performance Brief

8 10 12
stride

14 1 6

-a- Cydra 5 (DP)
-+ Convex™ C1
~ SCS-40™
-o- FX/8™
+ Cydra 5 {SP)

I I I I I I
C y D R 5

Performance Brief

The Correct Mean
The Cydra 5 Departmental Supercomputer features high, sustained workload performance. One method
for measuring workload performance is with a composite of multiple, representative preformance tests. In
a landmark article In 1984, Jack Worlton examined various approaches to benchmarking scientific and
engineering computers 1. Worlton reinforced the concept of using a set of representative program kernels
for benchmarking for reasons of efficiency, portablllty, and when done properly, for the accuracy of such
measurements. Of the widely available tests, the Livermore FORTRAN Kemals (LFKs)2, also referred to
as the •uvermore Loops,• best satisfy this measurement approach. The LFKs include 24 representative,
Individual tests that are characteristic of actual engineering and scientific workloads. One of these tests,
•Kernel 21 • Is the same loop calculation, named •sAXPY, • as in the well-known single application test
LINPACK3.

Early In 1987, the Lawrence Livermore Laboratory began publishing LFK performance results for a wide
range of computers. With this publication2, the use of the LFKs throughout the industry is increasing
rapidly. The LFKs are becoming a preeminent workload performance measurement.

Based on Worlton's analysis, harmonic averages represent the most appropriate comparison of
performance between machines on production application workloads. Various forms of averaging can be
used for analyzing machine performance. Straightforward averaging of the rates, ri, for individual kernels
is referred to as arithmetic mean:

Arithmetic Mean:
n

The unweighted arithmetic mean (all w = 1) can be very unrepresentative of actual performance,
especially for machines with unbalanced, varying performance from kernel to kernel. As succinctly
discussed In Wortton's report, harmonic averages such as the harmonic mean are far more meaningful
when comparing perfonnance data on kernels:

Harmonic Mean:

Psrformancs Brief 1

The following shows LFK data published by the Lawrence Livermore Laboratory for two well-known
machines:

Harmonic Mean, Full Precision

Alllant™ FX/8™,
SCEs
1.6 megaflops

Convex™C1

1.3 megatlops

As published in the announcement material for Muftiflow™ TRACE™ 7/200, the harmonic mean for this
machine is 2.3 megaflops.

The corresponding Cydra 5 performance is:

Cydra 5
Harmonic Mean, Full Precision .a. 7 megaflops

The Cydra 5 harmonic mean performance is indicative of a robust, well-balanced machine that can
provide high performance on a wide variety of workloads.

CYDRA 5 Highlights
• Pov,~rful gather/scatter hardware.
• Overlapped address computation with arithmetic computation.
• Fast computation of recurrences.

~ • Fast computation of conditional statements.
• Computation of dot product at near peak speed of the machine.
• IEEE floating point hardware.
• Support of both single and double precision arithmetic at high speeds.
• Large main memory, ranging up to 256 MB, that reduces or even eliminates the need for 1/0.
• Unique memory access capability that suffers little penalty for strided data access.
• Disk capacity exceeding 29 Gigabytes.
• CydrixTM operating system based on standard UNIX9 System V.3 for ease-of-use.
• State-of-the-art compiler with sophisticated optimization capabilities that enable the application

programmer to exploit Cydra 5 computational power in FORTRAN.

References
1. J. Wor1ton, Datamation, Sept. 1984, p. 121

2. F. McMahon, The Livermore Fortran Kernels, Dec. 1986, National Technical Information Service

3. J.J. Dongarra, Performance of Various Computers Using Standard Linear Equations Software in a
Fortran Environment, Technical Memorandum No. 23, October 5, 1987.

2 Performance Brief

I I I I I I
C y D R A 5

TU

Performance Brief

Linear Recurrences
Unear recurrences are among the most Important class of non-vectorizable problems In typical scientific
and engineering workloads. The following is an example of a simple linear recurrence:

SUM(1)
DOI

X(I)
ENO DO

• A(1)
• 2,N
• X(l -1) • z(I) + y(I)

(1)

The lmpad on overall machine perfonnance by the presence of recurrences has been Investigated by
Wor1ton 1. Even when recu"ences make up only a small portion of the workload, their impact can be
significant For Instance in analyzing the original fourteen Livermore kernels, 3 loops involve recurrences
while 9 loops are fully vectorized on the Cray™ XMP2. If the performance of the 9 vectorized loops were
doubled, the overall impact as measured through the harmonic mean would be on the order of 5%. If the
performance of the 3 loops with recurrences were doubled, the overall performance rating would improve
by a very significant 37%. The Cvdra™ 5 was designed to execute linear recurrences at near peak speed
of the machine. In an operation such as (1) above the output term x(i - 1) can be immediately used in a
succeeding arithmetic operation. A practical example of linear recurrences is the evaluation of running
sums of vectors for scaling purposes in signal processing applications:

SUM(1) • A(1)
DOI • 2,N

SUM(I) • SUM(I - 1) + A(I)
ENO DO

Another common example occurs in solving partial differential equations (PDEs) with the numerically
stable Crank-Nicholson schemes

i1-u au
---'iix2 at

(2)

uO + 1, k) • uQ,k) + (a/2) • (uO + 1, k + 1) - 2 • uO + 1,k) + uij + 1,k - 1) + uO,k + 1) 2 • uij,k) + uO,k - 1)) (3)

This expression involves recurrences with regard to both of the indices J and k. One approach to
handling Unear recurrences on vector computers has been to use recursive doubling, or cyclic reduction
techniques3. These involve a doubling or tripling of the computational workload* and also Involve the
relatively low performance gather/scatter operations. Another approach Is optimization in scalar mode

Such schemes force the use of much smaller Integration intervals in order to assure stability, thus increasing the total
computation required.

Performance Brief 1

through unrolling techniques. At best this yields a performance improvement of around 50%. The Cydra
5, with its unique ability to handle recurrences and gather/scatter operations, eliminates the need for
cumbersome recoding. The result is high performance with straightforward FORTRAN code as shown in
the next section.

Performance Measurement
The following kernel was timed, with N = 100:

DOI
A(I)

ENDDO

where:

• 1 + j, n - j
• 8(1) + S • A(I - J)

s is a scalar
j defines the tree height of the recurrence

10

8

6
It)

C'CJ ...
-0
>,
(.)

4

2

0
0 2

recurrence

■ Cydra 5
rJ Vector

3

The j • 0 case corresponds to a normal, vectorizable operation (no recurrence). The
"Vector" machine columns demonstrates typical vector processor behavior, viz full speed
when there is no recurrence, and purely scalar performance thereafter. CYDRA 5
performance improves as the order of the recurrence is increased.

Figure 1.

References

1. J . Worlton, Computer World, Nov 9, 1981
2. J. Worlton, Datamation, pp 121-130, 1984
3. L. Hyafil and H.T. Kung, CACM, vol. 24, no. 3, p. 513, 1977.
4. Cydrome Performance Brief "Robust Memory Design•.

2 Performance Brief

(3)

I I I I I I
C y D R A 5

TM

Application Brief

High Performance Sparse Matrix Computations
Matrices where most of the elements are zero are called sparse matrices. Sparse matrices may arise
naturally from the modeling of a physical process or they may arise during analysis, simplHication, and
solution of complex systems of equations. A basic source of sparsity is a common assumption that forces
are localized. For Instance In modeling a bridge, the equations at a node Involve only the beams that
meet there. The number is about the same whether the bridge Is short and Involves only a few beams, or
whether the bridge spans several miles and involves thousands of beams. Sparse matrices may have a
structure (e.g. tridiagonal, banded, block diagonal, symmetric, etc.) or the sparsity may be random. The
efficient solution of sparse matrices is at the heart of such Important application areas as structural
analysis, finite element modeling, reservoir modeling, computational fluid dynamics, and quantum
chemistry. The capabilities of the Cydra ™ 5 system for solving sparse systems can be demonstrated
with the industry standard software package ITPACK

ITPACK Overview
ITPACK 2c 1 is a collection of FORTRAN subroutines for solving large sparse linear systems by adaptive
accelerated Iterative algorithms. The Jacobi (J), Symmetric Successive Over-Relaxation (SSOR), aud
Reduced System (RS) basic Iterative methods accelerated by either Conjugate Gradient (CG) or
Chebyshev (SI, for semi-iterative) acceleration are induded. Also Included is the Successive
Over-Relaxation (SOR) method with no acceleration. A typical compute intensive loop In ITPACK is the
following:

DOJ • 1, MAXNZ
DOI• 1,N

Y(I) • Y(I) + COEF(l,J) • X (JCOEF(l,J))
END DO

END DO

Note that this ls actual CYDRIX™ F77 code. CYDRIX F77 contains several enhancements, in the spirit
of the cu"ent draft proposal for FORTRAN Bx.

The array JCOEF is often referred to as the list vector, for it points to elements of array x that must be
accessed. More generally the above loop and other key loops used in solving sparse systems may be
represented as:

SPARSE SAXPY
SPARSE SAXPY (2)
SPARSE SOOT

Y(O • Y(I) + S • A(JCOEF(I))
A(JCOEF(I)) • A(JCOEF(I)) - S • Y(I)
S • S + A(JCOEF(I)) • Y(I)

Such loops are executed at high performance rates on the Cydra 5, through use of a robust memory
system plus extensive hardware features to support fast gather/scatter and strided access. The Cydra 5
can also exearte first order recurrences at near peak execution speed.

(1)

Application Brief 1

ITPACK performance
ITPACK on problem 1 ; natural ordering

Method Iterations
JCG 100
JSI 100
SOR 100

CPU time in seconds

Cydras CYBER™205 CRA'(TMXMP
0.455 0.280 0.227
0.465 0.252 0.213
0.614 0.432 0.38

The CRAY and CYBER™ 205 data are taken from research by Oppe and Kincald1.

ITPACK for the Cydra 5 Is available from Cydrome. For more information contact your Cydrome
representative.

Cydra 5 Highlights
• Powerful gather/scatter hardware.
• Overlapped address computation with arithmetic computation.
• Fast computation of recurrences
• Fast computation of conditional statements
• Computation of dot product at near peak speed of the machine.
• IEEE floating point hardware

• Support for both single and double precision arthmetic at high speeds.
• Large main memory, ranging up to 256 megabytes, that reduces or even eliminates the need for 1/0.
• Unique memory access capability that suffers little penalty for strided data access.
• Disk capacity exceeding 29 Gigabytes.
• CYDRIXrMoperating system based on standard UNIX~System V.3 for ease-of-use.
• State-of-the-art compiler with sophiscated optimization capabilities that enable the application program

mer to exploit Cydra 5 computational power In FORTRAN.

Reference
1. T.C. Oppe and D.R. Kincaid, The Performancs of ff PACK on Vector Computers for Solving Large

Sparse Linear Systems Arising in Sample Oil Reservoir Simulation Problems, Comm. in Applied
Numerical Methods, Vol. 3, pps. 23-29 (1987).

2 Application Brief

I I I I I I
C y D R A 5

TU

Application Br1ef

High Performance Signal Processing
The CydraTM 5 system offers a powerful computing facility for signal processing applications. Through a
joint marketing agreement, Cydrome and Quantitative Technology Corporation (OTC) are making
available a highly optimized version of Math Advantage111• Among the routines In Math Advantage are the
following functions:

ACORF
CCORF
CFFT
CFFT2D
RFFT
CONV
CONV2D

Frequency domain autCMX>rrelation
Frequency domain cross-correlation
In-place Complex FFT
Complex 2-d FFT
Real-to-Complex FFT
1 ·D convolution/correlation
2-D convolution/correlation

This set of functions Is widely used In signal processing, image processing, seismic data processing, and
In many other data analysis areas.

Two Dimensional Filtering
A common application In signal analysis is the removal of noise from 1-0 and 2-0 data. The noise or
contamination may arise from deficiencies in the collecting equipment, or may represent ambient
background noise where measurements are being performed. In seismic data processing, for example,
the desired signal is the pressure wave that travels Into the earth and is reflected back to the surface by
the sub-surface lithology. Waves that travel along the surface (shear waves) represent undesirable
noise. On a typical grid size of 2048 points by 64 points, the removal of noise takes only 1.1 seconds of
CPU time on the CYDRA 5 Numeric Processor (NP). A time varying filter of dimensions 35 points by 9
points Is applied to the data for removal of the noise train (Figure 1). This corresponds to sustained
computation rate of 37 megaftops. Single precision arithmetic was used for this task.

Application Brief 1

Raw Data

6

5

4
3
2
1
0

-1
-2
-3

-4

-5
-6

0 50 100 150 200

Processed Data
6

4

2

0

-2

-4

-6

0 50 100 150 200

Figure 1.

2 Application Brief

I I I I I I
C y D R As 5

Performance Brief

Convolution Operation
The convolution operation Is widely used in signal processing applications. Convolution is defined by:

C1= ~ A F
M+i-j j

for 1=1 ,2, N

where a is the Input vector, f Is a filter of length M, and c is the output vector of length N. A typical
FORTRAN code which implements the convolution operation is a follows:

00•11,N
C(l) • O
ENDOO

0OJ-1,N

END DO

001•1,M
C(I) • C(I) + A(l+M-JO) • F(J)
END DO

With only minor modifications to the above code, the convolution operation yields high per1ormance on
the Cydra 5. Table 1 shows the convolution timing, single precision data for a filter length of 32 on the
Cydra5.

Table 1. Convolution Timing Test

Vector Length MFLOPS
20 21
50 29

100 33
250 37
500 38

1000 39
2000 39

Convolution Operation Performance-Brief 1

V,

~ 38 ...
:a

me
Vector Length

Figure 1. Convolution Operation (Single Precision Data)

Cydra 5 Highlights
• Powerful gather/scatter hardware.
• Overlapped address computation with arithmetic computation.
• Fast computation of recurrences.
• Fast computation of conditional statements.
• Computation of dot produc; at near peak speed of the machine.
• IEEE floating point hardware.

1588

• Support for both single and double precision arithmetic at high speeds.

2eee

• Large main memory, ranging up to 256 megabytes, that reduces or even eliminates the need for 1/0.
• Unique memory access capability that suffers little penalty for strided data access.
• Disk capacity exceeding 29 Gigabytes.
• Cydrix~ 5.3 operating system based on standard UNIX3 System V.3 for ease-of-use.
• State-of-the-art compiler with sophiscated optimization capabilities that enable the application

programmer to exploit Cydra 5 computational power in FORTRAN.

Copyright Notice:

Copyright ~ 1988 CYDROME Inc.
All Rights Reserved.

The material contained herein has been carefully reviewed. Cydrome does not warrant it to be free of errors or omissions.
Cydrome reserves the right to make corrections, updates, revisions or changes to the information contained herein.

CYDROME<a, CYDRA<a, and CYDRIXa are registered trademarks of CYDROME Inc.
Performance that Counts"' is a trademark of CYDROME Inc.

MKG-AB009-B May 1988

Performance
that CountsrM

runr.--·-
---· CU/flll::0

1589 Centre Pointe Drive
Milpitas, CA 95035

Phone: (408) 945-6300
FAX: 408-262-8938

I I I I I I
C y D R 5

Performance Brief

FFT
The Fast Fourier Transform (FFT) is widely used by the signal processing community. Table 1 shows the
FFT1 D (complex to complex 1 D transform) single precision data timing test on the Cydra 5.

Table 1. FFT1 D Single Precision Data Timing Test

Vector Length

32
64

128
256
512

1024
2048
4096
8192

38

en

Is 28 -..... :a

18

MFLOPS
11
17
24
29
32
33
34
34
34

Tlme/FFT
(mlcrosec)

74
109
185
348

717
1533
3321
7245

15695

e 1124 2148 3112 499& sm 61'4 7168 am
Vector Length

Figure 1. FFT Performance (Single Precision Data)

FFT Performance Brief 1

~

I I I I I I
C y D R 5

Application Brief

FIDAP
FIOAP9 Is a computational fluid dynamics application that Is used to simulate a wide variety of
Incompressible flow problems.

Computational fluid dynamics (CFO) can provide detailed lnfonnation on the flow of matter, energy,
momentum, and other properties from point to point within a system. The techniques of CFO are widely
used In the automotive, aerospace, discrete manufacturing, electronic devices, chemical, and other
Industries. Table 1 summarizes typical uses of FIDAP in various industries.

Table 1. Use of CFD Techniques In Various Industries

Industry
Automotive and Aerospace

Electronic

Food
Power Utllitles

Appllcatlons
Aer~ynamics analysis to reduce drag
Combustion process analysis
Flow and thermal modeling for hydraulics
Component heating/cooling behavior
Fan sizing, cabinet design
Pasteurization time studies
Sizing of cooling systems.

FIOAP uses the finite element method for performing the computations. FIDAP is comprised of three
modules: FIPREP, FIDAP, and FIPOST. FIPREP generates the analytical mesh and accepts Input for
physical system properties and initial conditions. The main module, FIDAP, transforms the governing
partial differential equations Into algebraic equations (matrix algebra) with iterations and time stepping.
FIPOST provides graphical post-processing of output field variables such as temperature. FIPREP and
FIPOST may be executed in lnteradfve or batch mode; FIDAP is executed in batch mode. Execution
time can range from a few minutes to multiple hours depending on the problem size.

The Cydra 5 system Is well suited for the execution of FIOAP. For 2D models the memory requirements
are In the 4 to 8 MB range with scratch disk space in the 30 to 70 MB range. 3D models require roughly 6
to 12 MB memory and between 100 to 300 MB of scratch disk space. The Cydra 5 with a large memory
size of up to 256 MB has two additional attributes which make it a powerful processor for executing
FIOAP:

• Execution of the dot product (inner product) at high speed
• Powerful memory access system, featuring memory access rates that are insensitive to access pattern

(stride).

Application Brief 1

The dot product operation, typically, cannot be performed very efficiently on traditional vector computers.
Summation of successive terms has an implied recurrence. Table 2 shows the computation rate of the
dot product operation on the Cydra 5. ~

Table 2 . Dot Product Operation on the Cydra 5 (in megaflops)

Vector Length 100 500 1000 5000
Single Precision 10.0 27.5 35.0 46.9
Double Precision 8.0 17.5 20.6 22.2

The dot product operation Is the principal basic computation in FIDAP, often performed on sparse or
banded matrix data structures.

Table 3 shows Cydra 5 performance results on a series of FIDAP test cases. The cases span a range of
problem sizes, from small through relatively large. Comparative data on a Convex™ C1 XP is also
shown; data has been provided by Fluid Dynamics Incorporated.

Table 3. FIDAP Version 4 Performance Data (in seconds)

Test Case Cydra 5 Convex C1 Ratio•

8 85.6 183.8 2.1
11 5854.3 16n4.6 2.9
15 3916.7 8670.6 2.2
16 17589.1 41852.4 2.4
20 2074.9 5452.9 2.6

• Comparison of execution rate of Cydra 5 and the Convex C1 . The Cydra 5 is 2 to 3 times faster than the Convex C1 .

2 FIDAP Application Brief

.~

