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UNDERFLOW AND THE RELIABILITY OF NUMERICAL SOFTWARE*
JAMES DEMMEL1

Abstract. We examine the effects of different underflow mechanisms on the reliability of numerical
software. Software is considered reliable in the face of underflow if the effects of underflow are no worse
than the uncertainty due to roundoff alone. The two primary underfiow mechanisms discussed are store
zero and gradual underflow, although we consider other mechanisms as well. By cxamining a variety of
codes, including Gaussian elimination, polynomial evaluation, and cigenvalue calculation, we conclude that
gradual underflow makes it significantly easier to write good numerical codes than store zero, and that this
remains true even if extra range and precision are available for intermediate calculations.
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1. Introduction and summary. In this paper we examine the effects of underflow
on the reliability of codes for solving a wide variety of numerical problems. In particular
we demonstrate the utility of gradual underflow for writing more robust codes than
are usually written when the conventional “store zero” approach to underflow is used.
This paper summarizes the work of several people over a period of several years during
which they participated in the IEEE Floating Point Standard subcommittee’s deliber-
ations about the proper way to handle underflow. In addition to the author, these
people are J. Coonen, D. Hough, W. Kahan and S. Linnainmaa. Some of the results
presented here have been published (separately) before; others have not.

When we speak of reliable software, we mean software that ideally produces
accurate results whenever they can be represented, and otherwise gives a warning.
Needless to say, such software must cope with roundoff, and that may be difficult for
many problems even in the absence of underflow. These unavoidable roundoft errors
have led to diminished expectations and less stringent definitions of reliability for
different kinds of codes. For example, a Gaussian elimination code to solve a system
of linear equations is commonly called reliable if it delivers the exact solution of a
problem close to the one it received as input (we will discuss this example in more
detail below). Users have come to expect no more than these weaker forms of reliability
from many of their codes because both experience and sometimes proofs have demon-
strated that roundoff errors prevent better performance.

How much further must the notion of reliability be weakened in the face of
underflow? For example, does Gaussian elimination still deliver the exact solution of
a problem close to the input if underflows occur during the computation? If so, and
in general, if we can show that the effects of underflow on a code are no worse than
the uncertainty due to roundoff alone, then we consider that code no less reliable in
the face of underflow than in the face of roundoff. Thus, our approach during our
investigations has been to decide if underflow contributes nothing worse to a code
than the uncertainty from the expected effects of roundoff errors which must be
toierated anyway.

To explain our approach and conclusions, we need some notation. A more complete
discussion of the following terminology may be found in § 2 of this paper. We describe
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floating point arithmetic with two parameters: £ and A. £ denotes the difference between
1 and the next larger floating point number; thus ¢ bounds the rounding error in the
operations +, —, * and /. A denotes the underflow threshold, i.e. the smallest positive
normalized floating point number. The two basic underflow mechanisms we have
compared are store zero and gradual underflow. Store zero, the standard response to
underflow, simply replaces any result that would be smaller than A in magnitude by
0. Gradual underflow, on the other hand, returns an unnormalized floating point
number less than A in magnitude which approximates the tiny result. These unnormal-
ized numbers form an arithmetic progression between 0 and A with common separation
Ag, and are called denormalized to emphasize that they occur only at the bottom of
the exponent range. Gradual underflow will henceforth be abbreviated by G.U. and
store zero by S.Z.

There are actually many more mechanisms available to the system architect; all
underflow mechanisms will be discussed further in § 2 below. For reasons also explained
there we selected the following variations on G.U. and S.Z. for analysis in this paper:

We compared using the same precision and range for intermediate calculations
as are used to represent the inputs and outputs with using extra precision and range
for intermediate calculations.

We compared using gradual underflow with the underflow flag being set by a
threshold test (which signals underflow whenever the result is denormalized) with using
gradual underflow with the flag being set by an accuracy test (which signals underflow
only if the denormalized result has a numerical value different from that of the correctly
rounded result).

We compared using underflow flags which are sticky (which, once set, remain set
until explicitly reset by the user) with underflow flags which are nonsticky (which are
reset prior to each floating point operation).

We have compared the effects of these mechanisms on the robustness of codes
written without attention to over/underflow problems, but we occasionally consider
highly robust, expert codes as well.

Our main conclusions are given below:

(1) For many algorithms written without attention to over/underflow, only if
G.U. is used instead of S.Z. is the algorithm as robust in the face of roundoff and
underflow as it is with roundoff alone. More specifically, as long as the data is normalized
(> A in magnitude) the results are as good as can be expected just with roundoff when
using G.U., but when using S.Z. the data must be at least A/¢ to expect the same
performance.

(2) For some computations, one can claim more than in (1). Suppose we measure

backwards error in the following combined relative/absoluté way:
.. elx| if|x{ZA,
the change in x is comparable to {a\ if]x] <A,

for G.U., and
elx| if|x]=A/e,
A if |x| <A/e,

for S.Z. For G.U. this means the change in x is comparable to a few units in the last
place stored of x, no matter if x is normalized or not. For S.Z., on the other hand.
numbers near A contain almost no significant digits. Then with respect to this new
distance function, many algorithms always deliver the exact solution of a problem close
to the input problem, no matter if underflow occurs or not. This statement is true of
Gaussian elimination as long as the results themselves do not underflow and lose

the change in x is comparable to {
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UNDERFLOW AND RELIABILITY OF NUMERICAL SOFTWARE 889

accuracy, of polynomial evaluation, and of computing the eigenvalues of a symmetric
tridiagonal matrix, for example. In other words, these algorithms always have a small
backwards error with respect to this new definition (and subject to easily testable
constraints), no matter what the inputs are. For G.U., this means nearly every bit
stored in a number is significant, whereas in S.Z. almost no bits in any number of the
problem may be significant, if all the numbers are too close to A.

(3) In addition to extending the effective exponent range of the system by —log, ¢
as described in (1), G.U. preserves certain mathematical relationships (such as x=y
if and only if fl(x—y)=0) over the entire range of floating point numbers. These
relationships may occasionally fail with S.Z. Their failure can lead to strange and
elusive bugs in codes (see § 4 below), whereas it is easier to write reliable code if these
relationships can be depended on.

(4) Availability of extended precision and range does not always obviate the
advantage of G.U. over S.Z. For some computations, such as polynomial evaluation,
an extended format does eliminate almost all worry about intermediate over/underfiow,
but for others, such as Gaussian elimination and Cholesky decomposition, as long as
the solution itself and the triangular factors of the matrix are stored in the basic format,
the conclusions in (1) above remain valid even if all intermediate results are computed
exactly. Thus, G.U. is of advantage to a system with an extended format as well as to
a system with just one format.

(5) There are computations for which the accuracy test for G.U. is preferable to
the threshold test and computations for which the threshold test is preferable, but the
relative advantage is not very great for either type of test. The only advantage of the
accuracy test over the threshold test we discovered was in the underfiow flag being a
false alarm less frequently. These potential false alarms arise from the assignment
statement a := b when b is denormalized, negation (a = —b when b is denormalized),
addition, subtraction, multiplication when one factor is an integer, and remainder
(a mod b). The only potential advantage of the threshoid test over the accuracy test
was in helping to automatically verify the constraint that inputs be normalized (>A in
magnitude) mentioned in (1) above. It was not clear that this could be used easily in
practice (see the discussion of Gaussian elimination in § 8 below).

(6) Thesticky underflow flag is much more useful than the nonsticky kind, although
there are several applications of nonsticky flags in expert codes (see the discussion of
Gaussian elimination below). The sticky flag can be used to simulate a nonsticky one
at the cost of resetting it before each relevant operation, a cost which may be severe
if resetting requires an expensive system call in a tight loop.

(7) Highly robust, expert codes for problems like polynomial root finding are
easier to write using G.U. than S.Z. However, as soon as any scaling is done it is
usually as easy to scale to avoid S.Z. underflows as G.U. (see the discussions of Gaussian
elimination, Cholesky decomposition, and eigenvalue computations in [2]).

We believe that the evidence weighs clearly in favor of G.U. over S.Z. Presumably
that is why gradual underflow is required by the proposed floating point standard.

The evidence shows neither the accuracy test for G.U. nor the threshold test to
be uniformly superior to the other, but the choice depends on whether the floating
point designer also has control over how the compilers implement assignment and
negation statements (see § 5). If he does have control, he should insist on simple bit
copying (nonfloating point) operations; if not, choosing the accuracy test over the
threshold test eliminates the possibility of spurious underfiow messages during assign-
ment and negation. The proposed standard incorporates the accuracy test for lack of
control over compiler design.
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890 JAMES DEMMEL

The sticky underflow flag is preferable to the nonsticky kind if there can be only
one; a friendly system would make both available. The proposed standard requires
sticky flags for all exception conditions, including underflow.

The rest of this paper is organized as follows. Section 2 presents underflow from
a system architect’s point of view. We discuss number formats and the options available
for handling underflows, both when the underflow occurs and when the result is used
later. Section 3 discusses underfiow from a numerical analyst’s point of view and shows
how to extend conventional error analyses to include underflow. Sections 4 through
14 claborate on the above results (without proofs) for the eleven computations listed
below. Sections 4 through 14 may be read independently of one another:

tests and comparisons

the accuracy test versus the threshold test for G.U.

complex arithmetic

inner product calculations

Gaussian elimination

Cholesky decompaosition

iterative refinement of linear systems

polynomial evaluation and root finding

eigenvalue computations for symmetric tridiagonal matrices

numerical quadrature

accelerating the convergence of sequences

2. A system architect’s view of underflow. In this section we have two goals, first
to describe the mechanisms available to the system architect for handling underflow,
and second to describe the mechanisms we compare in this paper and why we have
chosen them. We will introduce much notation in this section; when a new term is
defined it will appear in italics.

The design questions facing the system architect are of two kinds: what value
should be returned in the destination word when underflow occurs, and what side
effects (if any) should underflow have? Options for the destination value are G.U.,
S.Z., and several other conventions such as exponent wraparound {10] and nonnumeric
symbols like UN [4] and NAN {8]. Possible side effects are raising an underflow flag
and continuing execution, invoking a trap handler that may execute any code of the
system’s or user’s choice, waiting until an underflowed quantity is to be used to decide
what to do, or most simply doing nothing. In case the architect decides to have flags
or traps, the efficiency of his implementation will affect how the programmer writes
codes to use the flags or traps (see the discussion of Gaussian elimination in § 5, for
example). Other side effects arise from design decisions made in the compiler; these
are discussed below and in §§ 4 and 5. We will first discuss the different values that
can be returned from an underflowed operation, and then possible side effects.

To describe the values that can be returned we need to refer to a specific floating
point format which we now describe (the conclusions of this paper apply to similar
formats as well). It contains three fields: a sign bit o, a significand f, and an exponent
e, and represents the value x =(—1)7-f-2°. The exponent e satisfies €n;n = € = €max-
The binary point follows the leading bit of f.

We call f (and the entire floating point number) normalized if its leading bit is 1
(orif e=0and f = 0, which represents 0). This means 1 = f < 2. Otherwise 0 = f <1 and
is called unnormalized.

The rounding error of the arithmetic is the largest possible value of
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where 8 denotes one of the operations {+, —, *,/}, and a and b are such that asb =0
and fl (a ® b), which denotes the floating point result of the operation a ® b, is normalized
and nonzero. As long as fl (a®b) is the first floating point number greater than or
equal to a®b or the first number less than or equal to a®b (e.g. if the arithmetic
truncates or rounds), then '

= 2l—n,

where n is the number of bits used to represent f, is a bound on the rounding error.
In other words, ¢ is the difference between 1 and the next larger floating point number.
Note that ¢ is twice as big as the rounding error if fl (a®b) is the nearest floating point
number to the true result a®b. '

The largest normalized number has e=¢,,, and f=1.1---1 (na bits long); it is
called the overflow threshold and denoted by

A 20%mes(2— g) == 2%t

The smallest normalized number, which has e = e, and f =1, is called the underflow
threshold, and is denoted by

A = 26,

Even though A is called the underflow threshold, we will see that underflow might not
always be signalled whenever a result is less than A in magnitude.

When e = e,;; and f <1 we call the number denormalized. Denormalized numbers
are also called subnormal [6], a name which is perhaps more descriptive than denormal-
ized. The denormalized numbers, which are a subset of the unnormalized numbers,
form an arithmetic progression between 0 and A with common separation Ae. Not all
floating point systems allow denormalized numbers, or any unnormalized numbers at
all. If denormalized numbers are not allowed, we typically handle underflow using
store zero (S.Z.). This means that if the rounded value of a computation x would lie
strictly between +A so that we could not represent it as a normalized nonzero number,
we return zero. If denormalized numbers are allowed then we can use gradual underflow
(G.U.), which means rounding such an x to the nearest denormalized number and
returning that instead of zero. Gradual underflow is also called graceful underflow (6).

Exponent wraparound [10] is another possibility which only makes sense on a
system which does not trap on over/underflow but which increments/decrements a
counter designated in advance by the user (cf. Kahan’s Counting Mode [10]). When
a result would underflow, the value returned has the normalized significand of the
result stored in f and the result’s exponent biased upward by a constant (such as
—3- emin/2) stored in e. (The analogous technique applies to overflow). By examining
the counter the user can keep track of the powers of two contributed by wraparound.

Finally, the system may return a nonnumeric symbol such as UN [4] or NAN (Not
A Number) [8]. A NAN is encoded in the IEEE proposal by an exponent € = €py,+1
and a nonzero significand f that may contain or point to diagnostic information about
where and when the underflow occurred. This technique allows the user to defer
deciding what to do about an underflow until later when he has more information (this
is discussed further below). For more detail on floating point formats and representing
underflowed quantities see [1]. '

The architect also has many options for side effects. Side effects of underflow may
be generated on two occasions: when an underflowed quantity is created, and later
when it is used. First we describe creation time side effects and then use time side effects.

The creation time options are raising a flag/not raising one, trapping/not trapping,
and doing nothing. Doing nothing is the most common response of systems today
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because underflow is generally presumed to be harmless (were that true, this paper
would not have been written).

One attribute a flag can have is “stickiness”. An underflow flag is sticky if, once
set, it remains set until explicitly reset by the user (as in the proposed standard);
otherwise it is nonsticky, that is reset prior to each operation. A sticky flag is generally
much more useful than a nonsticky one because it allows the user to ask if any
underflows have occurred anywhere in a section of code (since the last time the flag
was reset). This is the proper type of flag for debugging or when underflows are not
anticipated. A nonsticky flag, which can always be simulated by a sticky one, is useful

only when analysis has shown that underflow in only a certain few operations can

matter. This is the case in certain expert codes (see § 8 below) but is rare.

Another attribute a flag can possess is available only with G.U.: it can be set
either by a threshold test or an accuracy test:

Threshold test. Signal underflow if the exact result would have been less than A
in magnitude and not zero, and

Accuracy test. Signal underflow if, in addition to the computed result being no
more than A in magnitude, it is different from what would have been the result had
exponent range been unbounded.

The reason for the option is as follows. Just because a result of an operation must
be represented as a denormalized number does not mean accuracy has been lost. It
may be that the error incurred by denormalization is no worse than what roundoft
would have caused had exponent range been unlimited. For example, A /2 is represent-
able exactly as a denormalized number. In such cases, the architect may decide not to
signal underflow, since the error is no worse than what roundoff alone would have
caused. This more restrictive definition of underflow has the advantage of signalling

underflow less frequently than the threshold test and therefore generates fewer false -

alarms. For example, the accuracy test will never signal underflow on copy (assigning
a:=b), negation (a:= —b), addition, subtraction, multiplication where one factor is
an integer, or remainder (@ mod b) [16]. On the other hand, a threshold test may be
better for an application where any nonzero result less than A in magnitude causes
problems later in the code. In the friendliest system, the user would be able to choose
the definition depending on his application. For example, when debugging a new code
in which ‘underflow is not expected to occur, a threshold test with a smart trap
handler/debugger would be useful, whereas a clever, robust code might exploit the
more restrictive definition. We give examples of codes which use both types of flags
below.

There are at least as many options available to the designer of a trap handler,
because in principle a trap handler can contain any code of the system’s or user’s
choice. For example, one may want a smart trap handler/debugger which lets the user
examine his operands and code when underflow occurs, or one which keeps a record
of where and when all underflows occur and lets the user examine them at the end of
the program, or even one which attempts to perform the computation in a totally
different way to avoid underflow. Actually, any given underflow mechanism can be
implemented using a trap handler if a trap occurs on every underflow, although this
may be slow. Obviously these possibilities involve compiler and operating system
questions which would be difficult and interesting even without raising any numerical
issues; we will not consider traps further in this paper.

Finally, the system (or user) can decide at the time of use what to do about
underflow. This option is not available in an S.Z. system because there is nothing
unusual about an underflowed S.Z. value (it is zero) that lets us detect when it is used:
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UNDERFLOW AND RELIABILITY OF NUMERICAL SOFTWARE 893

with G.U., however, denormalized numbers mark themselves as underflowed quan-
tities. By delaying a reaction until time of use, the user can defer judgement about
the harmfulness or harmlessness of an underflow until he has more information available
to help him decide. If a denormalized number is to be added to a much larger number,
for example, little or nothing is lost. If it is to be multiplied by a large number, accuracy
lost in denormalization might become significant later, especially if cancellation occurs.
In general these decisions can better be made when the denormalized number is to
be used rather than when it is created. Again, it is advantageous to give the user a
choice in response. One approach considered by the IEEE committee was to have two
modes: warning and normalizing. Warning mode caused a trap whenever

the uncertainty in a denormalized operand (+Ae/2) would be magnified relative

to the result by multiplication or division by a normalized operand, or

dividing a finite nonzero dividend by a denormalized divisor, or

taking the square root of a denormalized number.

Normalizing mode does not trap in these cases. As with the different definitions of
underflow, waming mode may be useful for debugging new codes, and normalizing
mode for writing clever, robust ones. We again give examples of such clever codes
below. The committee chose not to include warning mode in the standard.

Given this bewildering array of options, how do we intend to compare G.U. and
S.Z. systems? It is obviously possible to compute anything using S.Z. that can be
computed with G.U. (and vice versa) by testing and scaling each pair of operands
before use, but this is hardly a fair comparison since one code may be much harder
to write or take much longer to run than the other. One fair comparison is to ask if
for a given level of system support and given level of effort the code using G.U. has
substantially different reliability than one using S.Z. For the comparisons in this paper,
we chose the least effort possible, meaning that we want to compare codes written
without regard to underflow at all if possible, or sight modifications of such codes.
Furthermore, we chose the least possible system support short of doing nothing:
providing a user testable underflow flag (and, of course, not trapping on underflow).
We also consider the two ways to raise the G.U. flag described above: the threshold
test and the accuracy test (in what follows we will often use the phrase “inaccurate
underflows” to refer to both S.Z. underflows and G.U. underflows according to the
accuracy test). Applications of nonsticky flags will be noted when they exist; unless a
flag is explicitly called nonsticky it should be assumed sticky. In addition to these
underflow options, we examine the utility of performing intermediate calculations with
extra precision and range to avoid as many underflows as possible.

Finally, a writer of clever library routines may well be interested in how much
reliability he can get for a fixed execution time, code size, etc., independent of
development cost. We believe several of the codes discussed in this paper (and in more
detail in [2]) will provide a basis for such a comparison.

3. A numerical analyst’s view of underflow. In this section we show how to extend
traditional floating point error analyses to take underflow into account. Let ® be one
of the operations {+, —, *, /} and let fl (a® b) denote the floating point result of the
indicated operation. Traditional error analyses use the formula [23]

(1) fl(amp)=(amb)(1+e) unless amb underflows or overflows,
where |e] = e. To take underflow into ccount, we write [13]

(2) _ fl (alb)=(alb)(1>+ e)+7n unless a®b overflows.

RN
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In the case of G.U. there are the following constraints on e and 7:

(3) lejl=e and |n|=Ae
(4) n-e=0 (i.e. at most one of  and e is nonzero), and
(5) n=0 if ®is either addition or subtraction.

In the case of S.Z. we have the following somewhat different constraints on e and 7:
3" lelse and |n|=A, and
4) n°e=0.

Let us examine the differences in constraints. The different bounds on || in (3)
and (3') mean that the error contributed by underflow for S.Z. can be 1/¢ times as
large as for G.U. (5) means that there can be no underfiow error in addition or
subtraction for G.U., whereas underflow can cause complete loss of relative accuracy
for S.Z.

Formula (2) gives a combined relative/absolute error bound on the error in
floating point. For G.U. we have a bound ¢ on the relative error as long as the true
result is bigger than a threshold A, and an absolute error bound Ae for smaller resulis.
The bounds match, in that for results at the underflow threshold A, the absolute
magnitude of the largest relative error (&-result) is equal to the largest absolute error
(£-A) (see Fig. 1). This property of (2) means that when doing a G.U. error analysis,
we are really doing both a floating point and fixed point analysis simultaneously, because

fi(amb)=(amb)+17

is the error formula used in fixed point analyses.

For S.Z. on the other hand, the error jumps at A. For results just bigger than A,
the largest possible error is Ae as with G.U., but for smaller results the error leaps up
to nearly A (see Fig. 2). In order to analyze errors in S.Z. arithmetic as in G.U. (relative
error above a threshold, absolute below, and at the threshold the errors match), we
must raise the threshold to A/ € (see Fig. 3). Said another way, G.U. reduces underflow
errors to the size of roundoff for all normalized results, but S.Z. underflow errors are
roundoff size only for results greater than A / £ in magnitude. This explains why so many
of the results to be presented later read as follows:

When using G.U., as long as the data is normalized (>A), the results are as good as can be

(6) expected just with roundoff, but when using S.Z. the data must be at least A/ ¢ to expect the
same performance. Furthermore, as the data decreases below the threshold (A or A/€) G.U.'s
results degrade smoothly rather than abruptly, as do S.Z.'s.

A is a much more natural threshold (and easier to test for, depending on the definition
of underflow) than A/¢ for the range of application of a code.

For some codes one can make a backwards error bound independent of input
values if one measure backwards error in the way suggested in conclusion (2) of § 1.
For G.U., this measure means every number is viewed as uncertain in the last few
places stored, whether denormalized or not. For S.Z., it means some numbers near A
are viewed as uncertain in nearly all their places. Gaussian elimination without inaccur-
ate underflows in the solution components themselves, polynomial evaluation, and our
algorithm for eigenvalues of symmetric tridiagonal matrices have backwards error
bounds of this form. For these codes. G.U. more than extends the apparent exponent
range by —log. € over S.Z.: it asserts the significance of nearly all bits in every number
in the machine.
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Horizontal axis: True result of operation a8 b. (Tic marks represent floating point numbers.)
Vertical axis: —— Error in computed resuit all b—fl (aB b). (Arithmetic is binary and chopped with
€ =} = maximum rounding error, A =underflow threshold)
—— Error bound.

.
Ae

A 2A 4A 8A

el e - >
Denormalized Normalized
(absolute error 5 Ae) (relative error S ¢)
F1G. 1. Error with gradual underflow (see (2), (3), (4) for error bound).
'
/
A
0 A 2A 4A 8A

FIG. 2. Error with store zero (see (2), (3'), (4') for error bound).
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FI1G. 3. Store zero error bounded in same way as gradual underflow error.

If all G.U. did were to extend the apparent exponent range of the system, then
the argument for G.U. over S.Z. would become weaker as the actual exponent range
grew larger. As we have just seen, however, there are certain mathematical relation-
ships, preserved by G.U. but not S.Z. over the range of all floating point numbers,
which make codes that are to work over the range of all inputs easier to write. Other
useful relationships preserved by G.U. but occasionally violated by S.Z. include [1]:

7 x=y ifandonlyif A(x-y)=0,
(8) fi((x—y)+y)=x (to within a rounding error in the larger of x and y),

and assuming the exponent range [€min, €max) i nearly symmetrical about 0 (as with
the proposed 1EEE standard), then if no overflow occurs

(N ) fi(1/(1/x))=x to within a few rounding errors in x.

Failure to satisfy statements like (7) to (9) can induce strange and elusive bugs in
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codes (see § 4 and [10]). Their validity makes it much easier to write and maintain
codes by eliminating the need for tests for the very rare cirumstances in which they fail.

The combined relative/absolute error measure given in (2) arises naturally in
several ways. When solving linear equations with iterative refinement, we stop when
the relative error in the solution vector is (hopefully) small. This means large com-
ponents are known to high relative accuracy, and small components to an absolute
accuracy of the same magnitude. In physical problems there is often a noise level which
means that only measurements above it can be made relatively accurately, and below
it only with absolute accuracy equal to the noise level.

4. Tests and comparisons. To analyze codes containing tests like

ifx#y then r:=f—(x—)%t-‘(—’2
(10) =y
elseif 100*x # 100+ y then print why?
or
(11) if x#0 and |x—y|=.001}x| then z=SQRT (1.5-y/x)

the first of which can produce a divide by zero error and the second of which a square
root of negative number error, we must not only know how underflow is handled, but
how the compiler implements tests like *“x # y?”. There are two possibilities for this:
a fixed point (bitwise) comparison of x and y, and a comparison of fl (x—y) with 0.

Let us first analyze (10) and (11) using S.Z. With the first (fixed point) implementa-
tion of “x # y?”, any choice of x and y such that 0<|x— y| < A (such as x=1.25A and
y=2A) will pass the test “x # y?”" and cause a divide by zero error in the expression
for rin (10). In (11), the same choice of x and y passes both tests but causes 1.5—y/x
to equal —.1 and gives a square raot of negative number error. Using the second,
floating point implementation of “x # y?” the same x and y causes why? to be printed
by (10). Thus, both implementations and even the more robust looking test in (11)
can cause strange results using S.Z.

With G.U., on the other hand, the two implementations of the test “‘x # y?" are
equivalent (barring overflow of fl (x—y)), and neither divide by zero nor why? nor
square root of negative number messages are possible from (10) or (11). Any underflow

‘flags raised by the threshold test should be ignored in these examples because if an

addition or subtraction underflows in G.U. arithmetic, it must give the exact result
(thus no underflow flag would be raised with the accuracy test).

The pitfalls of using extended range and precision in comparisons have been well
documented in [15].

5. The accuracy test versus the threshold test for G.U. When an operation a®b
underflows, the denormalized result need not have a different numerical value from
the result that would have been returned had the exponent range been unbounded.
For example, the resultsof A/2, A/4,-- -, A/(1/¢) are all denormalized yet represent-
able without error. The accuracy test for G.U. will not raise the underflow flag for
these operations, or for any others where the denormalized result is identical to the
result that would have been returned had the exponent range been unbounded. In
contrast, the threshold test raises an underflow flag whenever a nonzero result is less
than A in magnitude (there are slight variations possible on this definition, but they
do not effect the results of this analysis).

The accuracy test has the advantage over the threshold test, that if the only bad
effect of underfiow is its abnormally large loss of accuracy. then it avoids raising the
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underflow flag unnecessarily, whereas the threshold test raises the flag whenever the
result is small even if accurate. If, on the other hand, it is the size of an underflowed
result that can cause difficulty later, the threshold test is more useful. We have found
examples where both definitions of underflow are useful.

First we discuss examples where the threshold test appears advantageous. In
conclusion (1) of the § 1, we stated that for many algorithms as long as the inputs
were normalized (>A in magnitude), they would perform as well as expected with
roundoff. This seems like an ideal use for the threshold test, but as described in the
section on Gaussian elimination, for example, what we need to test is if any entry of
the input matrix is normalized, a weaker condition on the matrix, but one requiring
testing the underflow flag (and resetting it as well if it is a sticky flag) for each matrix
entry. If testing, or more likely resetting, involves an expensive system call, we would
not want to include it in such a tight loop. Similar input constraints apply to Cholesky,
iterative refinement, inner product calculations and others: we would need to test and
possibly reset the underflow flag in a tight loop. If these are expensive operations, the
usefulness of the threshold test is undermined. Furthermore, some of these codes
satisfy a combined relative/absolute error bound independent of the input values (see
conclusion (2) of § 1).

Now we discuss the situations in which the accuracy test appears more useful. In
Gaussian elimination, iterative refinement, and complex divide we may use the accuracy
test to test intermediate and final results for underflows we know can be harmful only
if they are inaccurate. There are also the simple assignment statement a:=b and
negation a:=—b, If b is denormalized, and the compiler implements these statements
as floating point operations, then the accuracy test will raise no flag, but the threshold
test will. If they are implemented as fixed point operations, then of course no flags
will be raised, but in the unhappily common situation where one designer designs the
floating point and another the compiler, the floating point designer may have no control
over the compiler design decisions. One may counter that one could just test and reset
the underflow flag after assignments and negations, but if this incurs the overhead of
a system call, it may not be a good solution. These examples of assignment and negation
may well be the major contributor of false alarms on threshold underflow.

6. Complex arithmetic. In order to make error analysis in complex arithmetic as
similar as possible to the analysis in real arithmetic, we would like to have formulas
describing the error in complex addition, subtraction, multiplication and division that
are nearly identical to (1) to (5) and (3’) and (4’) which describe the error in real
arithmetic.

6.1. Complex addition and subtraction. Here the situation is most satisfying:

formulas (1) to (5) and (3') and (4') all remain true as long as “a®b overflows” is-

interpreted as “‘overflows in either component”. We repeat these formulas for com-
pleteness. In the absence of overflow or underflow we have

(12) fl(axb)=(axb)(1+e) unless a+b underflows or overflows.
To take underflow into account, we write

(13) fllaxb)=(axb)(1+e)+n unlessa=boverflows.

In the case of G.U. there are the following constraints on e and 7:

(14) lefl=e and 7 =0.

pé.'x‘:;itsrf%;hﬁif.:
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In the case of S.Z. we have the following somewhat different constraints on e and 7:
(15) lel=e and [n|=A.
It is not true that at most one of e and 5 can be nonzero, as it was with real addition.

6.2. Complex multiplication. Multiplication is not quite so satisfactory as addition
and subtraction because of the possibility of intermediate overflow in the obvious
algorithm:

(16) (a+i-b)-(c+i-d)=(ac—bd)+i-(ad+bc)=p,+i-p,

even though the final product may be a representable number. Since this can only
happen if one of p, or p; is within a factor of 2 of the overflow threshold A anyway,
we accept this slight loss of robustness since formula (16) is otherwise so satisfactory,
as we now discuss.

In the absence of overflow or underflow (in the intermediate or final results)

0¥)) fi(asb)=(a*b)(1+e)

where a, b, 2and e are all complex quantities, and |e| <2v2¢. To take underflow into
account we again write

(18) fi(asb)=(a*b)(1+e)+7n in the absence of overflow.

For G.U. we have the following constraints on e and 7 (to first order in ¢):
(19) lef=2v2e and |9l=2V2ae.

For S.Z. we have the following slightly different constraints:

(20) |e|§2sfie_ and |1;|§2\/5A.

Thus, complex multiplication can be analyzed in the identical way as real multiplication
but with slightly larger bounds on e and 7.

Hence, analyses of algorithms which use only +, —, and * operations (such as
inner product) and the error bounds in (2) extend immediately to the complex case.

It is no longer possible to test for underflow in multiplication with S.Z. by
comparing the product to zero as in real multiplication. Indeed, it is possible for a
nonzero product computed with S.Z. to be wrong in the second bit in both components
due to underflow. For example, consider the product of 2/A +i-0.5/A and JA +i-/A.
The correct product, produced with G.U., is 1.5A +i-2.5A, but S.Z. delivers 2A +i- 2A.
The underflow flag, however, may also be raised spuriously, for S.Z. or G.U., accuracy
test or threshold test, even though the product is exemplary.

6.3. Complex division. This case was originally analyzed by Hough [7). The
algorithm is due to Smith and can be found in Knuth {17, p. 195] and avoids almost
all-unnecessary intermediate overflows in the calculation. We want to compute the
quotient (a+i-b)/(c+i-d)=q,+i-q;:

a+bld/c) . b=ald/c)

c+d(dfc)  c+d(d/c)

b+a(c/d) i_-a+b(c/d)

d+c(c/d) d+c(c/d)’

As with complex multiplication, it is possible to have intermediate overflows even if

q. and g; are exactly representable, but this can only happen if either the a and b or
¢ and d are both within a factor of 2 of A anyway.

if |d| <|c| then compute g, +i-g; =
(21)

else compute g, + i- g, =

-3
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If no overflows or underflows occur, then the relative error in the quotient is
bounded by 7v2e, where ¢ is the error in the underlying arithmetic. In contrast to
addition, subtraction and multiplication, however, it is not possible to bound the error
in the presence of underflow simply in terms of a few units in the last place of the
correct result plus a few underflow errors. If either the dividend a+i- b or divisor
c+i-d is entirely denormalized, it is possible to get a normalized quotient that may
be wrong in most of its places. If both dividend and divisor are normalized in at least
one component, however, then with G.U. the computed quotient does indeed agree
with the correct quotient to all but a few units in the last place of |q, +i- q;|. With S.Z.
both divisor and divided have to be at least A/ € to be assured of the same accuracy.
We write these conclusions as follows:

(22) fi(a/b)=(a/b)*(1+e)+n if both |a| and |b] are bigger than 7

where

(23) le|=7V2e for both G.U. and S.Z.
and

(24) r=A and 7 =J2x¢ forG.U.
and .

(25) r=A/e and n=v2A forS.Z.

Thus, when analyzing algorithms with complex division, more care must be taken than
with real division to make sure the constraints given by 7 above are satisfied.

Here are some examples to show what happens when the constraints given by 7
are violated. We use 6 decimal arithmetic for ease of presentation. First, let a+i-b=
2A +i-1A and c+i-d =4A +i-2A. The correct quotient (a +i- b)/(c+i-d)=.5, but in
S.Z. the term A(1/2) underflows to 0 and we get the quotient .4 instead of .5. With
G.U. we get .5. If we now multiply both dividend and divisor by ¢ so they are
denormalized, G.U. suffers the same fate as S.Z. and delivers .4 instead of .5.

Unfortunately, an underflow flag may be raised even though the product is very
accurate. This is true for S.Z. or G.U. with either accuracy test or threshold test.

With extended precision and range both the multiplication and division routines
can underflow (or overflow) only when storing the final results, thus avoiding all false
alarms.

7. Inner product calculations. Consider the two vectors a =(A, A, 1/2, A,0) and
b=(0,1/2, A, 1, A). If we compute their inner product ¥, s a:b; in the straightforward
way

sum:=20
for i==11t0 5 do sum:=sum+a;* b;

we get very different answers if we use G.U. than if we use S.Z. With G.U. we get
the exact answers 2A whereas with S.Z. we get A because both a,b, and a;3b; are less
than A and so flush to zero in a S.Z. system. The difference is large in the forward
sense (A is relatively much different than 2A) and the backward sense as well, because
it cannot be explained by saying that the result obtained from S.Z. is the exact result
of a different inner product whose vector components differ from the original ones by
a few units in the last place. Note also that there are no scale factors a and 8 such

iRk,
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that the inner product can be calculated as
1 3
— X (aa;)(Bb):
aB =

without underflow or overflow.
We can state the following propositions about inner products which generalize

the above example [2).
PROPOSITION 1. Let g’ be a bound on the partial sums and individual terms of the,

inner product ¥, a;b;:

(26) g'= max (ﬂ (;é a,b,), a.b‘).

1S8iSn

We can bound the error in computing ¥,., a;b; as follows: In the absence of
underflow we have

(27) lﬂ(): a,b.-)-ﬁ‘ aiy

=(2n—-1)eg

where g=g'/(1-¢).
In the case of G.U. we have

Iﬂ (z aibi) -1 ab,

i=1 im]

=(n—-1)eg+nemax (A, g)

(28)
S(2n-1l)eg ifgz=a

where g=g'/(1—¢).
In the case of S.Z. we have

Iﬂ( 5 aibi) -3 ab;

i=] im}

=(2n—-1)¢ max(A g)

)
€

(29)
=(2n—1)eg ifg>£—

where g =(g'+A)/(1—¢€). Note that the g used in equation (28) may differ from the
g used in equation (29) because g depends on the kind of arithmetic used (G.U. or
S.Z.). Also, g depends on the order of the terms a;b.

The proof is a straightforward extension of the usual error analysis of inner
products [23] using formula (2) of § 3.

The significance of this proposition is the following: (27) states the well-known
result that the error in an inner product subject only to roundoft errors can be as large
as about 2n rounding errors in the largest intermediate result g’. The second line of
(28) says that the same is true for G.U. as long as the largest intermediate results g’
is normalized. In particular, if the final result is normalized, then underflow is no worse
than roundoft. (If g’ is not normalized, then we have effectively computed the inner
product in fixed point and we get only an absolute error bound from the first line of
(28) as expected.) If we use the accuracy test with G.U. and the underflow flag is not
raised, then (27) holds independent of the size of g. For S.Z. on the other hand (29)
says that g’ must exceed A/ ¢ for the same claim to hold. This is an example of statement

(9)in § 3.
To analyze the backwards error in an inner product, we need another expression

for the error.

l'ﬁ
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PROPOSITION 2. The floating point result of the inner product ¥;, a;b;may be written

(30) ﬂ( T a.-b.-) =T ab(1+E)+n.
i i=]

iml
In the absence of underflow we have
|E\| S ne,
|El=(n+2—j)e ifj>1.
In the case of G.U. we have the same bounds on the |E;|, and

(31)

(32) |n| = naAe.
In the case of S.Z. we have the same bounds on the |E,}, and
(33) |nl=na.

The proof is again a straightforward extension of the usual error analysis [23]
using formula (2).

(31) means that in the absence of underflow, an inner product can be computed
with small backwards error; in other words the computed result is the exact inner
product of two vectors whose components differ by at most n rounding errors from
the components of the original vectors. (32) means that with G.U., as long as some
intermediate result fl (a;b;) is normalized (> A), then the backwards error is also small,
because 7 can be absorbed into the a;b;,(1+ E;) term, increasing E; by at most ne. In

_particular, if the final result is normalized, underflow is no worse than round off. (33)

means that some intermediate term must be as large as A/ ¢ for a similar claim to hold
for S.Z.

Of course, if we are using the accuracy test with G.U. and no flag is raised, then
7 =0 and the roundoff only error bounds in (31) hold.

These two propositions may be used to extend the results of error analyses for
many matrix computations to include underflow. The next three sections present the
results of such analyses for Gaussian elimination, Cholesky decomposition, and iterative
refinement. :

8. Gaussian elimination.

8.1. Summary. The algorithm we analyze for solving the system of linear
equations Ax =} is a standard form of Gaussian elimination:

(1) Decompose A =LU = (lower triangular) (upper triangular) using pivoting,
so that the diagonal of L contains all 1’s and no entries of L exceed 1 in absolute value;

(2) Solve Ly=b for y (forward substitution); )

(3) Solve Ux=y for x (back substitution).

What kind of reliability do we expect from this algorithm in the absence of
underflow? It is well-known that even though we can not expect an accurate solution
if the input matrix is ill-conditioned, we can expect to get a residual AX—b (& is the
computed solution) that is small in a sense made precise later. We also expect a small
backwards error: £ will be the exact solution of a problem slightly different from the
original, again in a sense to be made precise later.

It turns out that as long as one component each of the matrix A and right-hand
side b are normalized, then the only gradual underflows that can possibly contribute
significantly to the residual or backwards error are inaccurate underflows in the final
solution vector £. Here we are using the accuracy test for underflow (see § 3), but our
conclusions are also valid with the threshold test, though we get more false alarms.

Bivanisani
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This is a situation where the proper choice of underflow test depends on the application:
if the output of the Gaussian elimination routine is input for another call to it, the
user may choose the threshold test to see if he is passing normalized data to the second
call as required for the conclusions above to apply. This may not be easy to do in
practice, of course, but it shows that the accuracy test might not be best for all situations.

In contrast, unless one component each of the A and b is greater than A/e in
magnitude, intermediate underflows with S.Z. during any stage of solution can introduce
significant errors, possibly producing reasonable looking results whose error greatly
exceeds the uncertainty attributable to roundoff alone (see the examples).

The measure of backwards error on which these conclusions depend is the follow-
ing: in trying to solve Ax=b we really compute £ where (A+8A)%=b+5b and

(34a) [|6A[l is comparable to e- [JA[|
and :
(34b) [18b/| is comparable to &- [|b].

[lAll is a measure of the size of A (similarly for [|b]), and “comparable to” means not
larger by more than a factor f(n) which is a low order polynomial in the dimension
n of A (this will be made more explicit later). In other words, under the conditions
stated above, Gaussian elimination has an error no larger than f(n) rounding errors
in the largest entry of A or b.

If we weaken our measure of backwards error in (34) and ask how much larger
fl6A]l ([|8b]]) can be than e[| A||+ €A (£]|b]]+€A) instead of e[| A[| (¢]|b]]), then as long
as the solution £ itself does not underflow inaccurately, we can prove that Gaussian
elimination using G.U. always has a small backwards error no matter how big || A or
(i)l is. In other words, A changes A (8b changes b) in the last few places of the
largest entry, no matter if the largest entry is normalized or not. This robustness is
not shared by S.Z.: almost all the bits in all the entries of A or b can be insignificant
using S.Z. if the entries are too close to A in size.

Gaussian elimination using G.U. with a warning of (inaccurate) underflows in the
solution X appears to be a robust enough program to deserve inclusion in a library. If
we insist on the traditional measure of backwards error in (34a) and (34b) above, and
if we are willing to include an explicit scaling test (“are the largest entries of A and
b at least A in magnitude?”) then G.U. offers no great advantage over S.Z. because
changing the test threshold from A to A/& makes an equally ironclad program in S.Z.
with an only slightly smaller range of application, and eliminates the largest potential
advantage of G.U.: making robust code faster to execute or easier to write. Note that
we want to test whether any input component of A and b exceeds the threshold A,
and whether any output component of £ underflows inaccurately. The most efficient
test on the inputs would use a nonsticky flag based on the threshold test, since a sticky
flag would have to be reset after each entry was tested. The most efficient test on the
outputs would also use a nonsticky flag but be based on the accuracy test instead.
Since each component £; of £ is computed in a loop with other computations, a sticky
flag would have to be reset within the loop just before the last operation yielding £.

It is very important to point out that use of extended range and precision for
intermediate results does not invalidate the results just discussed. As long as the entries
of L and £ must be stored in the basic format the conclusions remain valid, because
it is possible underflows in these entries that undermine the code’s reliability. Thus,
the conclusions of this section are as relevant to a system with just one precision and
range available as to one with extended precision and range.
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Section 8.2 contains examples and § 8.3 presents the theorems and offers con-
clusions. This material has been published before [3].

8.2. Examples of Gaussian elimination. [|A[.({|5]~) denotes the infinity norm
of the matrix A (vector b):

lAle=max3 |4y and [bje=max|bi.
1

|A] (|b]) denotes the matrix (vector) whose entries are the absolute values of the entries
of A(b). Inequalities like |A| <|B| are meant componentwise.
We denote the usual condition number of the matrix A by

k(A)=[lAxll- |A™ |,
and a new set of condition numbers by

-t
Cond (4, = LA 1Azl

Cond (A) =[||A™"|| Al [l

These new condition numbers, due to Skeel [20], will be discussed more fully below.
Note Cond (A)=Cond (A, x) for all x.

~ In this section we present four examples of the effects of underflow on performing
Gaussian elimination. The first example shows how store zero can produce a reasonable
looking but completely inaccurate decomposition of a well conditioned matrix, whereas
gradual underflow either produces the correct decomposition or correctly decides the
matrix is singular. (There are no rounding errors nor pivot growth in this example.)
The second example shows that G.U. produces the correct decomposition of a well
conditioned matrix which S.Z. incorrectly decides is singular. Third, we present an
innocuous looking ordinary differential equation and show that the linear system arising
from trying to solve it numerically leads to underflow which is handled correctly by
G.U. and not by S.Z. Finally, we present an example which shows that regardless of
whether we use G.U. or S.Z., Gaussian elimination can only guarantee small residuals,
not an accurate answer, even when the matrix A is well conditioned in the sense that
Cond (A) is small.

8.2.1. Example 1. Consider the family of matrices A(x) where

2

(35) A(x)=A- 2

[ A N

2
1111

(blanks denote zero entries). The LU decomposition obtained.-by G.U. is

1 2

1
1

(36) LOY(x)-U%Y(x)= 1 “A- 2 1 [=A()
1 2 1
5.5.5 .5 1 x=2

rmg;sg:szsszz;.
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exactly, and by S.Z. is

(37) Lz (x)- US%(x) = 1 ‘A 2 =A(x)+E,
1 2

S5 555 1
where the error matrix E equals

MNOrh pd bk s

(38) E=A.

-2
We see S.Z. causes a relatively large error in the U(x)ss entry, whereas G.U. gives
the correct decomposition. When x = 2, using S.Z. leads us to conclude that the matrix
is far from singular, when in fact it is exactly singular. Note that the matrix A(x) is
well conditioned when x is far from 2, and if x is a smaller integer no rounding errors

occur in either decomposition.
8.2.2. Example 2. Let

20 3
o2 2
a well conditioned matrix. Using G.U. we obtain
1 20 3A
G.U. U, =A,
(@0) N P v
but by using S.Z. we obtain
1 24 3A
4 sz, s.z=[ ][ ]
(41) L>*-u 5 1 0

Thus, G.U. correctly decomposes the matrix A, whereas S.Z. incorrectly makes the
matrix look singular.
8.2.3. Example 3. Consider the ordinary differential equation

1-(¢/ T)M
T-

We try to solve this equation numencally by replacing x(t) by the truncated power
series Z,,-, x,", the function (1—(t/ T)N)/(T —1) by its (finite) power series, and then
equating coefficients of equal powers of ¢ on both sides of equation (42). After we
scale the last row (which represents the initial condition) down to have the largest
entry equal to 1, we get the linear system Ax = b, where -

(42) ()= x(1), x(To)=c

N -1/T -1/T% --- -1/
N-1 -yT --- -y

— . = . — N-?'

1 -1/T

1 YT, YTs - YTETY YT

fF e

~ =

A e e

B i =
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Finally, if we swapped f with k at the start, we must remember to swap ¢z with sg and s,
with ¢R.

Our Program

Considering how complicated it was to figure out, our program is surprisingly short. It is
presented here in a syntax like that of Fortran 77, but with two innovations. One is the
invocation of an intrinsic procedure SWAP(z,y) that swaps the values of its arguments. On
a machine that contains a SWAP instruction in its hardware, this should be preferable to
the three MOVES that would be needed instead. The second innovation is the use of three
consecutive dots (...) to introduce a comment at the end of a line rather than have to add
a line beginning with “C” for every short annotation.

SUBROUTINE SvD2x2(f,g,h,cL,sL,w,v,cR,sR)
c Accurate singular value decomposition of a given 2x2 real

matrix: el sk f g ¢cR -sR\_ (xw 0
¢ TIXE N sL eL J'\0 R ) \sR ¢ /T 0 v )’

c with cL*cL+sl*sL = cR*cR+sR*sR = 1 and w .GE. v .GE O .

REAL f,g,h, cL,sL,w,v,cR,sR
c == Input -- -- Output -- Aliasing is OK
c w and v are the singular values; the c’s and s’s define
c the singular vectors of the given matrix. In the special
c case g=0 ,wegetcL=cR=1adsL=sR=0. 1In
c the special case h =0 , we get cL =1 and sL =0 .
LOGICAL L
REAL ft,gt,ht, cLt,slLt, cRt,sRt ... Copied and scratch values
REAL fa,ga,ha ... may be kept in registers
REAL o,é, A, u,up, p,0,7 ... to improve speed & accuracy.
REAL ’ Zero, Half, One, Two, Four
DATA Zero,Half,One,Two,Four / 0.0, 0.5, 1.0, 2.0, 4.0 /
ft = £
fa = ABS(ft)
ht = h
ha = ABS(ht)
L = ( ha .GT. fa )
IF (L) THEN
SWAP( ft, ht )
SWAP( fa, ha )
ENDIF .. mowfa > ha.
c .
gt = g
ga = ABS(gt)
IF ( ga .EQ. Zero ) THEN
v = ha ... the trivial case.
w = fa
cLt = One
cRt = One

sLt = Zero
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c
ELSE IF
c
ELSE
c

= Zearo

( gatfa .EQ. ga ) THEN

W= ga ... the case of gargantuan g .
IF ( ha .GT. One ) THEN
v = fa/(ga/ha)
ELSE
v = (fa/ga)*ha
ENDIF
cLt = One
sLt = ht/gt
cRt = ft/gt
sRt = One
6 = fa - ha ... the normal cases.
IF (6 .EQ. fa) THEN
A = 0One ... copes with infinite for h .
ELSE
A=6/fa
ENDIF <A<l
p = gt/ft lulg1/e
7T =Tuwo - A r>1
B = po*p
o = SQRT(T* 7 + pp) wl<€ao<141/e
IF (A .EQ. Zero) THEN
p = ABS(u)
ELSE
p = SQRT(A * A+ pup)
ENDIF
a = Half*(c + p) wl<a<lt|pl
v = ha/a
w = faxa
IF (up .EQ. Zero) THEN ... & must be very tiny.
IF (A .EQ. Zero) THEN ... with IEEE 754/854
T = CopySign(Two,pu)
i. e., 7 = SIGN(Two,ft)*SIGN(One,gt)
ELSE
T = gt/SIGN(6,£) + u/7
ENDIF
ELSE
7 = (uf(o+7)+ pf(p+ A))* Oneta)
ENDIF ... see previous footnote
A = SQRT(T *T + Four) .. about A=1- |h/f]
cRt = Two/A
sRt = 7/A
cLt = (cRt + sRt*u)/a
sLt = (ht/ft)*sRt/a
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ENDIF
€2 emeeme e e e ceeeeee=~--=
IF (L) THEN
SWAP( cLt, sRt )
SWAP( sLt, cRt )
ENDIF
clL = cLt
sL = sLt
cR = cRt
sR = sRt
RETURN
[ Cost: 15 Add/Subtract/Compares, 9 Multiplies, 10 Divides, 3 SQRTs
END.

c = = = End of SVD2x2 = = = W. Kahan April 27, 1988



gives
natrix
(x) is
errors

es the

sower
i then
er we
argest

UNDERFLOW AND RELIABILITY OF NUMERICAL SOFTWARE 905

b7 =(0,--+,0,¢/TY),and x" =(xn" " *, Xo).

We chose M =15, N=14, T=3512., To=500., and c =100. for this example. We
used a single precision implementation of the IEEE Floating Point Standard [8] on a
VAX 11/780' for which & was 27*=1.19,0—7 and A was 27'%=1.18,,—38. There
was a switch on the compiler to enable/disable G.U., so we were able to obtain
numerical results using both G.U. and S.Z.

L and U have a simple structure. L will be zero below the diagonal, except for
the last row, which is gradedfrom L, ; = 7.14285,0—2 down to L, ;4= 5.34726,,— 35.
U is identical to A in all but its last row.

[ 1 ]
0 1
(44) t={ 2 0
0 0 .- 1
| Lisa Lisz -+ Lisas 1]
N -yT -yT* -~ - -YTM]
N-1 -YT --- - =yTV!
— . e . — N-z
45) Ue N-2 - 1/;1'
1 -UT
i Uisas |

A'’s columns are badly scaled, although this is not obvious bcause no row nor column
is drastically smaller in norm than any other; nonetheless, bad scaling causes A to
appear very ill conditioned, and this ill conditioning shows up in the last row of U,
making U, s, s very small, barely above the underflow threshold. S.Z. and G.U. compute
all elements of L and U identically except for U,s,s. In fact, all additions in the
computation of L add normalized numbers with like magnitudes and like signs, so no
cancellation, loss of significance, nor underflows occur. If the exponent range were
unbounded, so underflow never happened, the correct value U;s,s=2.09261,,—37
would be computed. This is the value computed using G.U. But when S.Z. is used
instead, the computed value is U$Zs=1.72763,o—37, a relative difference of .174
from the correct value. All additions in the computation of U, s involve numbers of
like magnitude and sign, so canceliation cannot be blamed for the discrepancy. This
relative difference in the last entry of U is very important, because one divides by
U,s.s in the course of solution. Thus, the computed solution x%Y is very close to the
true x, and the relative difference in solution vectors is

Thus, G.U. obtains markedly better results than S.Z. This exampie is very interest-
ing because there is nothing obviously wrong with the matrix. All its entries are
unexceptional normalized numbers, and every row and every column contains at least
one number no tinier than 1/ T =.00195 and none larger than N =14, yet 11 out of
14 products L, ;*U;, s in the sum for U, s, s underflow just slightly below the underflow

' VAX is trademark of the Digital Equipment Corporation.
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threshold. Since the true value of U,s,s is itself not much larger than the underflow
threshold, this makes for a large relative error.

This example was chosen to be simple and realistic; even though it can be solved
analytically, it could be changed easily into a two-dimensional problem without an
explicit solution, but with the same sensitivity to underflow.

We repeat that even though A appears very ill conditioned, since k(A)=1/A (i.e.
near the overflow threshold in most arithmetics), it is also well conditioned in the sense
that Cond (A, x)=5.5. We will discuss the significance of this example later in § 8.4.

8.2.4. Example 4. Let

_[6 G _,=[ 2/G -I/g]
A [s 23]' A =l-v6 vl

where g/G underflows to 0 using either S.Z. or G.U. The L obtained is thus the
identity matrix since L,; =fl(g/G)=0, and so the L and U obtained are the exact
factors of the matrix

G G]
0 2g)
which is a very different matrix than A. If b7 =(G,0), then x=A"'b=(2, -1)7,

whereas £=(A+E)™'b=(1,0)7, so £ does not resemble x at all. The residual r is
however guaranteed to be small, in the sense that ||r|o/[||Al|£]+|b| || is small:

(I7]le = | EX "m
NAf|2+{bllle NlAHZ+5]]o

ase=|

gt  _g_
__—-=_=A 20
GrRl+GE -G/

Of course A is an exceedingly ill conditioned matrix in the sense that k(A)=2G/g
is beyond the reciprocal of the underflow threshold, so we would be inclined not to
trust our results anyway. However, Cond (A) is only 7. This is true because Cond (A) =
Cond (DA) for any nonsingular diagonal matrix D, so A has the same condition
number as the utterly tame matrix

[ eaeli3)

Needless to say, in the absence of underflow we would compute a very accurate solution.
We will return to this example later to explain why we can get inaccurate results from
a matrix with a small condition number Cond (A).

1)

8.3. Results of error analysis.
8.3.1. Approach. As stated in the introduction, we use backward error analysis.
Thus, when Gaussian elimination is used to solve

(46) Ax=b

for x it generates instead an approximation £ = x + 8x which satisfies some perturbed
problem

(47) (A+8A)%=b+85b.

The task of backwards error analysis is to infer bounds on 8A and b from the details
of the arithmetic used to implement the elimination process. These bounds can be
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used in turn to bound the residual
(48) r=AX—b=-8AX+8b=Abx

and then the error éx.
Wilkinson's approach [22] is to determine a bound w,, on the errors

(49) HSA"eog ‘!’w"A“m and I‘sb“aos "’w“b"w
whence
(50) lrlleo = @[ Alleoll £l + [ 5]l o]

and then it will follow that the error x is bounded:

162 [|eo
xllea+ | £]leo
The detailed derivation of w,, from the details of the arithmetic is given elsewhere
(2). Theorem 1 below states simple requirements on A and b that ensure w,, will be
scarcely worse if underfiow occurs than if it does not.

Skeel’s approach [20], modified slightly here, is to determine a bound w; on the
relative error in each entry of A and b:

(52) |8A|=w,|A| and |8b|=w,|b].
From these inequalities follows a bound upon the error 8x:

ll&‘[lwéw HAaTA] ] +]ATY 18] |l
flx]l f(1-o |A_1“A| lloo) [ flo

{provided the denominator is positive). This motivates defining the following condition
numbers:

(51) S wk(A).

(53)

-1
(54a) Cond (A, x) = (A~|Allx| uao,
%]
(54b) Cond (A) = [||A™"||Al [«

Cond (A) is an upper bound for Cond (A, x) for all x; the error bounds are useful
only if w, Cond (A)< 1.

Following Oettli and Prager [19] and Skeel [20] we use an expression for w,
obtainable from (48) in terms of the residual r:

_ l'i|
(55) @ = I All£]+ 15D,

where the max is over those i for which the denominator is nonzero. Following Skeel,
we overestimate w, by analyzing the elimination process to infer an inequality

(56) Irlle= wil|All£]+|5] [lo

from which we compute the overestimate @, as

__ max; (|Al|x]+|]); ,

ws = - -~ “’s
min;(|Al[£]+[5]);

(where the min in the denominator is over the nonzero values of (|A[|x]); only).
Unfortunately @, can be a gross overestimate of w,, as we will see when we return to
Example 3 later.

(57)

k)
iinspatitg
i
I
1

i
It
h



ARrnRRanhg:

908 JAMES DEMMEL

The detailed derivation of w is given in [2). Theorem 2 below states requirements
on A and b that ensure w will be scarcely worse if underflow occurs than if it does
not. These requirements on A and b are nearly identical to the requirements in the
Wilkinson style analysis.

8.3.2. Results.

THEOREM 1. Wilkinson style error analysis of solving Ax = b with Gaussian elimi-
nation in the presence of underflow: Let an,, =max;; |A;|, and g =[largest intermediate
result appearing in the decomposition]/ G- 8 is the * pivot growth factor” and is <2"".

Then a bound w,, for which

(50) rllo= wull| Alloll £l + [ 5]
is given as follows. In the absence of underflow, we have
(58) w, =neg/2.

If underflow occurs then

(59) w,.=3n’cg/2

provided certain conditions are met. For G.U. these conditions are:

BAmax = A if there are any underflows during triangular decomposition,

(60) [blloz A if there are any intermediate underflows during
®“n  forward and back substitutions,

b 26 L. .
——IL e _2_—"2 if the solution X itself underflows in some component.
max

For S.Z. the above conditions still apply but A must be increased to A[e.

Proof. See [2]. .

THEOREM 2. Skeel style error analysis of solving Ax = b with Gaussian elimination
in the presence of underflow: Let a;=max; |A;|, and gc = max; ([largest intermediate
result appearing in the decomposition in column j)/a;). gc is the “columnwise pivot
growth factor” and is 52"7".

Then a bound w; for which

(56) Irile= wsllAl| £ +]8] |l

.

is given as follows. In the absence of underflow we have

(61) w!,=n’ege.

If underflow occurs, then

(62) w,=3n"egc/2

provided certain conditions are met. For G.U. these conditions are:

ca;Z A for all j, if there are any underflows during triangular

decomposition,
(63) bz A ifthere are any intermediate underflows during
*T2n forward and back substitutions,
Ibfla o A

if the solution 3 itself underflows in some component.

-
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For S.Z. the above conditions apply with except A must be increased to A/ e.

Proof. See {2].

The theorems indicate how to write software that will solve Ax = b reliably despite
underflow, and how the requirements for G.U. differ from those for S.Z. To keep the
residual small in the sense of a Wilkinson style error analysis, we appeal to Theorem
1. With G.U,, as long as one normalized number appears during the decomposition
(88max = A), residual with underflow has a bound not much worse than residual without
underfiow. If there are intermediate underflows while solving the triangular systems,
as long as some component of b is normalized ([|b[|»= A), residual with underflow has
a bound scarcely worse than without underflow. If the answer £ itself underflows, we
can either issue an error message (which would be very reasonable since the first goal
of reliable software is only to compute an answer if it is representable) or test to see
if [|bllw/ @rmax is NOt too small.

All these requirements are natural ones to make, since they say that when a
problem’s inputs and its computed solution are normalized numbers, we should expect
the residual to be scarcely worse with underflow than without. Thus, the only gradual
underflows which can cause concern in a problem with normalized inputs are underflows
in the solution itself. The scaling condition {|b{|c/ @msx = A/ n? arises naturally; consider
solving the scalar equation ax = b by the division x=b/a.

In contrast, the bounds for S.Z. are all higher by a factor of 1/¢. Thus, using S.Z.
we can neither solve as many problems as the G.U., nor decide so easily which
underflows matter. Thus, from the point of view of a Wilkinson style error analysis,
G.U. makes writing reliable software easier.

Theorem 2 shows that Skeel style bounds for the residual are scarcely worse with
underflow than without provided conditions are satisfied that are almost the same as

in Theorem 1. Therefore the previous paragraphs’ comments remain valid provided,

when underflow is gradual, at least one normalized number appears in each column
of A, rather than just somewhere is A, before or during the decomposition process.

8.4. Examples 3 and 4 revisited. We wish to emphasize that we have only derived
conditions under which with underflow are about the same as without underflow. There
is no way using this analysis to say how closely this bound will be approached with
and without underflow, or how accurate the computed solution will be.

In Example 4 above, the matrix A and vector b satisfy all the conditions of
Theorems 1 and 2 for G.U. as well as S.Z., so the residual is small, but the answer £
is totally inaccurate. This inaccuracy can be explained either by the huge condition
number k(A)=overflow threshold, or the large backwards error in equation (55):
w, =1. In this case w,’s upper bound @, in (57) is also 1. Thus, having a small value
of Cond (A) is not sufficient to guarantee accuracy given a small residual w; ((56)),
although a small value of k(A) combined with a small residual w, is enough, as can
be seen from (51).

Example 3 is another case where the conditions of Theorems 1 and 2 hold, but
now- G.U. successfully computes the last pivot U, s,s and an accurate solution £ while
S.Z. does not. Again, we have a problem where k(A) is huge and Cond (A, x) is small.
Now the w, of equation (55) is =5.23,,—8, verifying the high accuracy of solution.
Unfortunately the bad scaling of the matrix causes the upper bound @, of equation
(57) to be 2.0,,20. This example demonstrates the occasionally intense pessimism of
Skeel’s approach.

In summary, the significance of Examples 3 and 4 is to show that maintaining a
small residual in the face of underflow does not guarantee an accurate solution <.

Bhatinn:
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although we conjecture that for not terribly ill conditioned matrices G.U. will provide wh
answers at least as accurate as provided by S.Z. '
We have proven something quite unremarkable: if underflows are gradual, then

we continue to get what we have come to expect from Gaussian elimination. That is,

- we get a small residual as long as the inputs and outputs are all representable
(normalized) numbers and there is no indication of singularity or excessive pivot

growth. If, however, underflows are handled in the usual way and set to zero, then no L®
such simple guarantee can be made, and some kind of testing on the scaling of the the
problem is necessary. These results demonstrate that gradual underflow makes it easier pr¢

to write reliable linear equation solvers than “store zero.”

9. Cholesky decomposition.

9.1. Summary. The algorithm we discuss is analogous to Gaussian elimination, ;
but is applicable only to positive definite symmetric matrices A: § wh

(1) Decompose A=LLT where L is lower triangular;

(2) Solve Ly=b for y (forward substitution);

(3) Solve L™x=1y for x (backward substitution).

We expect the same kind of reliability from this algorithm in the absence of
underflow as we do from Gaussian elimination: a small residual A% —b where £ is the
computed solution, and that £ is the exact solution of a slightly different problem than
the original.

With G.U,, as long as one component each of the matrix A and right-hand side
b are normalized the only harmful underflows are underflows in components of x and
y (recall that with Gaussian elimination the only harmful underflows were in the
solution x). Intermediate gradual underflows contribute an error with a bound scarcely
worse than the bound for the error contributed by roundoff alone. As with Gaussian
elimination, the accuracy test for underflow (see § 3) leads to fewer false alarms than
the threshold test, although the threshold test might make it easier to test the inputs
to the Cholesky routine (“are the largest components of A and b at least A in It
magnitude?”’) for the applicability of this analysis. i

In contrast, with S.Z. intermediate underflows during any stage of solution can !
introduce significant errors, possibly producing reasonable looking results whose error '
greatly exceeds the uncertainty attributable to roundoff alone (see the examples). In
fact, one can show that S.Z. can only produce a decomposition of a matrix when G.U.
fails if the matrix is so ill conditioned that the computed solution cannot be trusted,
or if it is not positive definite at all (see §9.2.2). .

As with Gaussian elimination, the resuits of this section remain true even if ; Ti
intermediate products are computed to extra range and precision, as long as the entries

SO
sir

il

of L, y and X are stored in the range and precision of A and b. i S:
Section 9.2 contains examples and § 9.3 contains theorems and conclusions. Proofs . ot

of these results can be found in [2]. T
9.2. Examples. ) _ ' g‘
9.2.1. Example 1. Let m be the smallest floating point number = VA, so that m? , cf
does not underflow. Consider the family of symmetric matrices: § . c?
4 2 1| is

A(x)=m?-|2 2 1 P

1 1 «x iy
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which has the exact lower triangular factor

2
L(x)=m-[l 1 ]
S5 5 Jx—5

LSY(x), the factor provided by Cholesky using G.U., is the same as L(x) except for
the rounding error incurred by having to represent (x—.5)/2. L5%(x), the factor

provided by S.Z., is
2
LS%(x)=m-{ 1 1
S 1 L3F(x)

. 0 if2>x=1
so S.Z. computes a totally wrong value for Lii(x), incorrectly labelling the matrix

singular for 2> x =1 when in fact it is well conditioned.
9.2.2. Example 2. Let m be as before. Consider the family of matrices

where

4 1
4 1
A(x)=m? 4 1
1
1111 «x
Its correct factor L(x), if it exists, is
2
2
L(x)=m- 2

2
S5 .55 .5 Vx=2

This matrix is positive definite if x> 2, positive semidefinite if x=2, and has both
positive and negative eigenvalues if x <2. Both G.U. and S.Z. compute all entries of
the factor L(x) except the (5,5) entry correctly (using Cholesky decomposition). G.U.
obtains the correct value (x—2)m? for its value of L%, whereas S.Z. computes xm?.
Thus, as x decreases from 3 to 2 to 1, G.U. correctly decides the matrix is positive
definite when x =3, and becomes nonpositive definite when x =2. S.Z,, on the other
hand, produces an (incorrect) decomposition all the way down to x =1. Thus, S.Z.
cannot only produce an inaccurate decomposition, but produces it after G.U. has
correctly decided no such decompaosition exists.

S.Z. can produce a decomposition of a matrix when G.U. fails only if the matrix
is either 1) so ill conditioned that the decomposition cannot be trusted, or 2) not
positive definite at all. Here is the reason. Assume G, = A, since otherwise the matrix
is identically 0 in S.Z. arithmetic. G.U. fails when its computed value of L} either
rounds to 0 or is negative for some j. L} rounds to 0 when L} <Ae. It is easy to see

Mnphpthnmt
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that @, = Ama,(A) and L} = Apq(A), because

1 -1yy\2 -12 -1 1
=(A = = = :
Therefore
Amax. 3max. 1
ky(A)=——7>—"5">—,
2 Amin . L2

which means that the matrix is so ill conditioned as to make it difficult to even recognize
an accurate inverse, let alone compute one. If L} is in fact negative, the matrix is not
positive definite.

9.3. Results of error analysis.

9.3.1. Approach. Our approach is essentially identical to the one we used to
analyze Gaussian elimination with the following additions. The Cholesky decomposition
uses the square root operation which Gaussian elimination does not. We model the
error in square root as follows:

(64) SQRT (x) =vx-(1+e¢) forall x

where |e| < &. (SQRT denotes the floating point square root.) (64) holds because SQRT
compresses the exponent range, making overflow and underflow impossible. We make
an extra assumption about A and £ we did not need before; it also arises from the use
of square roots in the Cholesky decomposition. This relationship is satisfied by all
single precision arithmetics known to the author (but not by a number of double
precision arithmetics, such as D format on the VAX, for example) and is only needed
to analyze Cholesky decomposition using S.Z.: A < ¢&>.

9.4. Results. .

THEOREM 3. Wilkinson style error analysis of solving Ax=b with Cholesky
Decomposition in the presence of underflow. Let @p,, =max;; |A;|. Then a bound w. for
which

(50) firlle = wull| Alloll £lleo + | bllco]
is given as follows. In the absence of underflow, we have
(65) w.=n'e/2.

If underflow occurs then

(66) w,=4n%c/2

provided certain conditions are met. For G.U these conditions are:

Qrax Z A if there are any underflow during Cholesky
decomposition,

1l 2X  if there are any intermediate underflow during
®= n? forward substitution,

(67) .Lb"igi if some y; underflow or there are any
Qm.. n  intermediate underflows during back substitution,

bl 24

a 5 if the solution X itself underflows in some component.
mix n-
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For 8.Z. the above conditions still apply but A must be increased to A/ .

Proof. See [10].

The above theorem shows how to write software that will solve Ax=b with
Cholesky reliably despite underflow just as Theorems 1 and 2 in § 8.3.2 did for Gaussian
elimination. With G.U., as long as there is one normalized component in A (@, > A)
residual with underflow has a bound scarcely worse than without underflow. If there
are intermediate underflows during forward substitution, the residual bound is again
scarcely worse than without underflow as long as some component of b is normalized
(IIb[lc= A). Intermediate underflows during back substitution or in y require a scaling
condition (||b]lw/amsx=A/n) to be satisfied, as do underflows in the final solution
(1bllee/ @emax = 24/ n?). It is*clear that some such scaling condition needs to be satisfied
from considering the n =1 case (i.e. solving the scalar equation ax = b by two divisions
x= (b/s/Z)/J;). If there are underflows in the back substitution, y, or x, then we can
either issue an error message or check the scaling.

For S.Z. all the bounds are higher than the ones for G.U. by a factor of 1/¢.

The situation with Cholesky is not as satisfactory as for Gaussian elimination,
where only underflows in the final solution x could matter for G.U.

10. Iterative refinement. We study the following algorithm for refining the sol-
ution of the linear system Ax = b. The phrase “in precision (&, A)’’ means that particular
computation is to be done in arithmetic with rounding error ¢ and underflow threshold
A. X is an arbitrary starting vector.

i=0

repeat
r;’= Ax;— b in precision (¢,, A,)
solve Ad;=r; for d; in precision (¢, A)
X;+1 = X;—d; in precision (g, A)
=i+l ’

until convergence.

Double precision computation of the residual (the traditional algorithm) corresponds
to €, = £2, and single precision to ¢, = &. We also assume A, = A.

In order to understand the effects of underflow on this algorithm, we need a
theorem due to Skeel [21] which shows, contrary to popular belief, that computing 7;
in single precision (&, = €) does improve the solution in a significant way.

THEOREM 4. Analysis of iterative refinement in the absence of underflow for both
single and double precision computation of the residual: As long as the condition number
Cond (A) =[||A7"||A| [ is sufficiently less then 1/¢, then

1) If &, = £* (double precision residual computation) then

(68) lim sup [|x — x[|lo = 2¢( x{l

where x denotes the exact solution; .
2) If €, = ¢ (single precision residual computation) then

(69) lim sup |Ax; ~ b| = 4ne|A||x;].

-

Furthermore, this inequality is almost always attained after just one application of iterative
refinement.

b
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Proof. See [21].
This last inequality means that for large enough i, x; is the solution of a slightly
perturbed problem

(/‘4‘8}‘)x;==b

where |6A;| <4ne|A;]. In other words, the perturbed problem agrees with the original
problem up to a few rounding errors in each component [19]. This is a very strong
notion of backwards error, and so Skeel’s theorem shows that single precision iterative
refinement does lead to a significantly more reliable code than no refinement at all.

How does underflow effect this reliability? For G.U., we can say the following:

If the inputs A and b and the output x are normalized and if either double or
single precision residuals are computed, then gradual underflows can degrade the
algorithm’s performance to the level of single precision residual computation but no
worse. To guarantee double precision performance, both b and x need to exceed A/&.
Specifically, it is underflow in r,= Ax;— b that contributes to the lower bound on b
and underflow in d; that contributes to the lower bound in x. Using this information,
the accuracy test for G.U. could be used to decide wh.en underflow might degrade the
performance more precisely than the threshold test. For S.Z., all thresholds are
increased by 1/e. ‘

The use of extended range and precision in intermediate computations does not
change these conclusions. Assuming r; and d; are stored in the same format as A, b
and x, underflows in r; and d; have the same potential effects on performance as they
did when they were not computed in extended range.

We have not yet considered underflow’s effect on the rate of convergence of the
iteration. There are matrices for which the iteration converges only if underflows do
not occur, but the matrices are so ill conditioned as to make the computed solution
untrustworthy anyway. It follows from the analysis of § 8 that as long as some entry
of A is large enough (A for G.U. and A/ e for S.Z.) then underflows will have an effect
on the convergence rate comparable to round-off.

11. Polynomial evaluation and root finding.
11.1. Horner’s rule for polynomial evaluation. We consider Horner’s rule for
evaluating the polynomial ¥ _, ax’ for real a; and x:

sum:= a,
(70) .
for i:=n—1 to 0 do sum:=sum*x+a;

We have the following very satisfying theorem.

THEOREM 5 (Analysis of Horner’s rule for polynomial evaluation). Let P denote
the result of applying Horner's rule to the polynomial ¥ ax' above. Then in the absence
of underflow and overflow we have

(m P=Y% a(1+E)x'
1 =A{)
where
7 |E\|=2ne and |E|=Q2i+1)e ifi<n
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In the presence of underflow we write

(73) P=7 (a+n)(1+E)x'

im0
where E; has the same bound as in (72), n, =0 for both G.U. and S.Z., and
(74) || = Ae for G.U. and |n| =24 for S.Z.

fori<n.

The proof is a straightforward extension of the usual error analysis of Horner’s
rule [23] using formula (2) of § 3.

Thus, in the absence of underflow and overfiow, Horner’s rule delivers the exact
value of a new polynomial each coefficient a; of which differs by a few rounding errors
from the corresponding original a;. This is a strong backwards error bound.

For G.U., we can make the same kind of statement providing we define backwards
error as motivated by the last paragraph of § 3: a relative error no greater than ¢ for
values >A and an absolute error no greater than A¢ for smaller values. Thus, for
example, we treat the value 0 as indistinguishable from any value in the interval
[—Ae/2, Ae/2]. By this definition of backwards error, Horner’s rule with G.U. delivers
the exact value of a new polynomial each of whose coefficients differs by a small
relative/absolute error from the corresponding original coefficient. We can further
guarantee each new coefficient has a small relarive error with respect to the original if
each g; is a nonzero normalized number.

For S.Z. all thresholds in the last paragraph increase by 1/¢ to be able to make
corresponding statements.

Here, extended range and precision is extremely beneficial, eliminating most
concerns about over/underflow. Indeed, any overflows in extended range would have
occurred with the original range, and any underflows in extended range would con-
tribute an uncertainty far less than a unit in the last place of even the smallest
denormalized number to any a;

11.2. Polynomial root finding. Linnainmaa [18] has analyzed Newton’s method
for root finding and shown that it is much easier to write an underflow/overflow proof
code if G.U. is available than if it is not. An essential feature of his code is evaluating
Y a,-;z' at z=1/x instead of ¥ ax’ when x> 1. This changes almost all potential
overflow problems to underflow problems, which are handled by G.U. The advantage
of evaluating polynomials at points x <1 is that any rounding or underflow errors
made early in Horner’s recurrence are multiplied down by factors of x. In particular,
underflow errors, already at the level of roundoff in the smallest normalized number,
only decrease in significance so that if the final value P is normalized we know that
any gradual underflows must be completely harmless.

12. Computing eigenvalues of symmetric tridiagonal matrices. Given the sym-
metric tridiagonal matrix:

a, bz

(75) r=| b @ b .

b, a,

how do we compute its eigenvalues? One way is to use the following program which.
given a real value z, computes (in exact arithmetic) v(z) =the number of eigenvalues

Ippsisaein:




yRaNIagy

916 JAMES DEMMEL

of T that are <z:

u=1
vi=0
(76) forj:=1to n do

u=a;—z—(b/u)b;
if u<0 then vi=v+1,

where we define b, = 0. We assume b; # 0 for i > 1, since otherwise T is block diagonal
and its eigenvalues are those of its diagonal blocks. We also use the conventions
+1/0=xc0 and 1/+00=0 (which are part of the proposed IEEE floating point stan-
dard). A proof that this algorithm computes what we claim is based on Sylvester’s
inertia theorem and can be found in [5]. It can be used to obtain eigenvalues to any
desired accuracy by bisecting an interval in which v(z) increases (which means the
interval contains an eigenvalue) until the interval is narrow enoug...

What does this algorithm compute when implemented in floating point? There
are two interesting questions:

Is v(z) a monotone increasing function of 2 as it is in exact arithmetic?

Do we compute accurate eigenvalues either of our original matrix or a matrix
very close to our original matrix?

In the absence of overflow and underflow, the answer to both questions is yes [11]:

The function v(z) computed by algorithm (76) in the absence of overflow and
underflow is an increasing function of z. Furthermore, the value of v(z) computed is
the exact value of v(z) for a matrix T’ whose diagonal entries a| are identical to the
diagonal entries a; of T, and whose off diagonal entries b; satisfy b; = b;(1+¢;) where
le;l=2e. T' will in general depend on z.

This is a very strong backwards error bound. It says we can compute the exact
number of eigenvalues less than z of a matrix differing from the original by a small
relative error in the off diagonal entries, and with no difference on the diagonal.

What can be said in the presence of underflow? Barring overflow, v(z) remains
monotonic using either S.Z. or G.U. The only property of the arithmetic needed to
prove v(z) monotonic is monotonicity of the arithmetic: if a = b are the exact results
of two different arithmetic operations, then fl (a) must be =Ml (b) as well.

The monaqtonicity of v(z) is an appealing property but not necessary for the
correct functioning of a bisection algorithm for determining one eigenvalue [22]. Lack
of monotonicity could lead to lower bounds exceeding upper bounds in codes for
determining such bounds for all eigenvalues at once, but since v(z) is monotonic, we
will not discuss this possibility further.

Kahan [11] discusses an ironclad version of (76) which scales the problem and
inserts tests against carefully chosen thresholds into the inner loop to guarantee that
overflow and underflow (G.U. or S.Z.) cannot degrade the results appreciable more
than roundoff. Here, we discuss the robustness of the unadorned code in (76) which
differs from the most obvious algorithm only in using (b;/ 4)b; in the inner loop instead
of b?/u. At the end we will say why this change is important. We assume we have a
balanced exponent range, i.e. AA cannot be larger than a small integer m (m=4in
the proposed IEEE standard). The backwards error in (76) is given as follows:

The function v(z) computed by algorithm (76) is the exact value of v(z) for a
matrix T' whose entries a; and b; satisfy:

a;=a;+mn, where|n|=(1+m)aAe
(77) !

bi=b(1+e) wherele|=2¢
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when using G.U., and
a;=a;+7; where|n|=(3+m)A
bi=b(1+e) where|e|s2e

when using S.Z.

Thus, in order to claim that we are computing the exact v(z) for a matrix T’
which differs from T by at most a few rounding errors in each component, which is
the case in the absence of underflow, we need to make the following constraints on a;:

a2 {»\ for G.U.,
! A/e forS.Z.

If we adopt the relative/absolute error measure suggested in the last paragraph of § 3
and discussed further in § 11.1 in connection with polynomial evaluation, then there
is no constraint at all on the a; if we ue G.U. in order to claim that e} differs from a;
by a small error.

These backwards error bounds are so strong that it does not seem the accuracy
test for G.U. could be of much more use than the threshold test, if indeed it is of any
use at all.

A weaker form of backwards error often used in analyses of matrix computations
[22]is

(78)

max,; | Ty— T
(79) _*I_._;L.
max;; |T,,|

With respect to this definition, underflow is insignificant if

A forG.U,,
Ale forS.Z.

What would happen if we used b?/u instead of (b;/u)b; in the inner loop? In that
case, any |b;| smaller than JeA » A would underflow to zero when squared whether
we used G.U. or 8.Z., and the resulting perturbation could not always be explained
as a small change in either b; or a;. Thus, a seemingly small change in the code effects
the robustness a great deal.

If extended range and precision are available, then almost all concerns with
over/underflow vanish, as with Horner’s rule for polynomial evaluation.

max |T| = {
i

13. Numerical quadrature. Quadrature, along with the matrix algorithms dis-
cussed earlier, benefits from the ability to compute inner products more robustly with

G.U. than S.Z. This is because most quadrature codes, when asked to compute

a+h
(80) I w(x)f(x) dx

evaluate an inner product

n
(81) h- T waf(x,).

im=]
From the analysis of inner products in § 6, we see that as long as the inner product in
(81) is a normalized number, the effects of gradual underflows are no worse than
roundoff, but that some intermediate result in the inner product must exceed A/¢ to
make the same claim about S.Z. All the benefits of extended range and precision to
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inner products also accrue to numerical quadrature. A more detailed analysis can be
found in [14].

14. Accelerating the convergence of sequences. Methods to accelerate conver-
gence of sequences often do so by extrapolating an estimated error to zero. This
requires taking the ratio of differences of successive elements in the sequence. If the
sequence is converging to a value near the underflow threshold, these differences can
underflow to zero using S.Z. but not G.U. We illustrate with Aitken’s 52 method.

Given a sequence {x,} which converges to a finite nonzero x, Aitken’s 8° method
produces a new sequence {x,}

Xne1— Xn
82 x:,=x,,—( ) Xpty— Xn
( ) (xn+2—xn+l)_(xn+l_tn) ( " )
which will converge to x faster than {x,} under certain conditions [9]. We have written
the term following x in (82) (the correction term) as it appears instead of as in

(xn-bl - xn)z

(83) xn:xn—xn+2_2xn+l+xn

because of the latter’s much greater susceptibility to over/underflow. (83) is likely to
cause over/underflow if |x| is much outside the range [\/I . JK]. (82) is much more
robust. In fact, if N is large enough so that

1 IX,.l f
—<—<V2
V2 A

for n> N and we use G.U., then the correction term in (82) will be computed to
within 2 rounding errors in x if A =|x|=A and to within +Ae if |x| <A. In contrast,
SESRHE SO |x] must exceed A/e to make the same claim for S.Z. The use of extended range and
precision would not make S.Z.’s disadvantages disappear, since if |x| is very close to
A, the correction term, even if calculated to extra precision, may make x; underflow.
A more detailed analysis can be found in [14].
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