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UNDERFLOW AND THE RELIABILITY OF NUMERICAL SOFIWARE* 

JAMES DEMMELt 

Absuact. We examine the effects of different underflow mechanisms on the reliability of numerical 
software. Software is considered reliable in the face of underflow if the effects of underflow are no worse 
than the uncenainty due to roundoff alone. The two primary underflow mechanisms discussed are store 
zero and gradual underflow, although we consider other mecbanisms u well. By examining a variety of 
codes, including Gaussian elimination, polynomial evaluation, and eigenvalue cak:uJation, we conclude that 
gradual underflow makes it significandy easier to write good numerical codes than store zero, and that this 
remains true even if extra range and precision are available for intermediate calculations. 
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1. Introduction ancl mmm•ry. In this paper we examine the effects of underflow 
on the reliability of codes for solving a wide variety of numerical problems. In particular 
we demonstrate the utility of gradual underflow for writing more robust codes than 
are usually written when the conventional "store zero" approach to underflow is used. 
This paper summarizes the work of several people over a period of several years during 
which they participated in the IEEE Floating Point Standard subcommittee's deliber
ations about the proper way to handle underflow. In addition to the author, these 
people are J. Coonen, D. Hough, W. Kahan and S. Linnainmaa. Some of the results 
presented here have been published (separately) before; others have not. 

When we speak of reliable software, we mean software that ideally produces 
accurate results whenever they can be represented, and otherwise gives a warning. 
Needless to say, such software must cope with roundoff, and that may be difficult for 
many problems even in the absence of underflow. These unavoidable roundoff errors 
have led to diminished expectations and less stringent definitions of reliability for 
different kinds of codes. For example, a Gaussian elimination code to solve a system 
of linear equations is commonly called reliable if it delivers the exact solution of a 
problem close to the one it received as input (we will discuss this example in more 
detail below). Users have come to expect no more than these weaker forms of reliability 
from many of their codes because both experience and sometimes proofs have demon
strated that roundoff errors prevent better performance. 

How much further must the notion of reliability be weakened in the face of 
underflow? For example, does Gaussian elimination still deliver the exact solution of 
a problem close to the input if underflows occur during the computation? If so, and 
in general, if we can show that the effects of underflow on a code are no worse than 
the uncertainty due to roundoff alone, then we consider that code no less reliable in 
the face of underflow than in the face of roundoff. Thus, our approach during our 
investigations has been to decide if underflow contributes nothing worse to a code 
than the uncertainty from the expected effects of roundoff errors which must be 
toierated anyway. 

To explain our approach and conclusions, we need some notation. A more complete 
discussion of the following terminology may be found in § 2 of this paper. We describe 
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floating point arithmetic with two parameters: e and .\. e denotes the difference between 
1 and the next larger floating point number; thus e bounds the rounding error in the 
operations +, - , • and / . .\ denotes the underflow threshold, i.e. the smallest positive 
normalized floating point number. The two basic und~rflow mechanisms we have 
compared are store zero and gradual underflow. Store zero, the standard response to 
underflow, simply replaces any result that would be smaller than .\ in magnitude by 
0. Gradual underflow, on the other hand, returns an unnormalized floating point 
number less than A in magnitude which approximates the tiny resulL These unnormal
ized numbers form an arithmetic progression between O and A with common separation 
Ae, and are called denormalized to emphasize that they occur only at the bottom of 
the exponent range. Gradual underflow will henceforth be abbreviated by G.U. and 
store zero by S.Z. 

There are actually many more mechanisms available to the system architect; all 
underflow mechanisms will be discussed further in§ 2 below. For reasons also explained 
there we selected the following variations on G.U. and S.Z. for analysis in this paper: 

We compared using the same precision and range for intermediate calculations 
as are used to represent the inputs and outputs with using extra precision and range 
for intermediate calculations. 

We compared using gradual underflow with the underflow flag being set by a 
threshold test ( which signals underflow whenever the result is denormalized) with using 
gradual underflow with the flag being set by an accuracy test ( which signals underflow 
only if the denormalized result has a numerical value different from that of the correctly 
rounded result). 

We compared using underflow flags which are sticky ( which, once set, remain set 
until explicitly reset by the user) with underflow flags which are nonsticky (which are 
reset prior to each floating point operation). 

We have compared the effects of these mechanisms on the robustness of codes 
written without attention to over/underflow problems, but we occasionally consider 
highly robust, expert codes as well. 

Our main conclusions are given below: 
(1) For many algorithms written without attention to over/underflow, only if 

G.U. is used instead of S.Z. is the algorithm as robust in the face of roundoff and 
underflow as it is with roundoff alone. More specifically, as long as the data is normalized 
(> >. in magnitude) the results are as good as can be expected just with roundoff when 
using G.U., but when using S.Z. the data must be at least >./ e to expect the same 
performance. 

(2) For some computations, one can claim more than in (1). Suppose we measure 
backwards error in the following combined relative/absolute way: 

for G.U .. and 

. . bl { elxl if Ix( i; .\, 
the change m x 1s compara e to EA. if lxl < >., 

{
elxl 

the change in x is comparable to A 
if lxl ~ >./ e, 
if lxl <A/£, 

for S.Z. For G. U. this means the change in x is comparable to a few units in the last 
place stored of x. no matter if x is normalized or not. For S.Z., on the other hand. 
numbers near >. contain almost no significant digits. Then with respect to this new 
distance function, many algorithms always deliver the exact solution of a problem close 
to the input problem, no matter if underflow occurs or not. This statement is true of 
Gaussian elimination as Jong as the results themselves do not underflow and lose 
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accuracy, of polynomial evaluation, and of computing the eigenvalues of a symmetric 
tridiagonal matrix, for example. In other words, these algorithms always have a small 
backwards error with respect to this new definition (and subject to easily testable 
constraints), no matter what the inputs are. For G.U., this means nearly every bit 
stored in a number is significant, whereas in S.Z. almost no bits in any number of the 
problem may be significant, if all the numbers are too close to A. 

( 3) In addition to extending the effective exponent range of the system by -log2 e 
as described in (1), G.U. preserves certain mathematical relationships (such as x= y 
if and only if ft (x - y) = 0) over the entire range of floating point numbers. These 
relationships may occasionally fail with S.Z. Their failure can lead to strange and 
elusive bugs in codes (see§ 4 below), whereas it is easier to write reliable code if these 
relationships can be depended on. 

( 4) Availability of extended precision and range does not always obviate the 
advantage of G. U. over S.Z. For some computations, such as polynomial evaluation, 
an extended format does eliminate almost all worry about intermediate over/ underflow, 
but for others, such as Gaussian elimination and Cholesky decomposition, as long as 
the solution itself and the triangular factors of the matrix are stored in the basic format, 
the conclusions in ( 1) above remain valid even if all intermediate results are computed 
exactly. Thus, G. U. is of advantage to a system with an extended format as well as to 
a system with jusf one format . 

(5) There are computations for which the accuracy test for G.U. is preferable to 
the threshold test and computations for which the threshold test is preferable, but the 
relative advantage is not very great for either type of test. The only advantage of the 
accuracy test over the threshold test we discovered was in the underflow flag being a 
false alarm less frequently. These potential false alarms arise from the assignment 
statement a:= b when b is denormalized, negation (a:= -b when b is denormalized), 
addition, subtraction, multiplication when one factor is an integer, and remainder 
(a mod b). The only potential advantage of the threshold test over the accuracy test 
was in helping to automatically verify the constraint that inputs be normalized (> A in 
magnitude) mentioned in (1) above. It was not clear that this could be used easily in 
practice (see the discussion of Gaussian elimination in§ 8 below). 

( 6) The sticky underflow flag is much more useful than the nonsticky kind, although 
there are several applications of nonsticky flags in expert codes (see the discussion of 
Gaussian elimination below). The sticky flag can be used to simulate a nonsticky one 
at the cost of resetting it before each relevant operation, a cost which may be severe 
if resetting requires an expensive system call in a tight loop. 

(7) Highly robust, expert codes for problems like polynomial root finding are 
easier to write using G. U. than S.Z. However, as soon as any scaling is done it is 
usually as easy to scale to avoid S.Z. underflows as G.U. (see the discussions of Gaussian 
elimination, Cholesky decomposition, and eigenvalue computations in [2]). 

We believe that the evidence weighs clearly in favor of G.U. over S.Z. Presumably 
that is why gradual underflow is required by the proposed floating point standard. 

The evidence shows neither the accuracy test for G.U. ~or the threshold test to 
be uniformly superior to the other, but the choice depends on whether the floating 
point designer also has control over how the compilers implement assignment and 
negation statements (see § 5). If he does have control, he should insist on simple bit 
copying (nonftoating point) operations; if not, choosing the accuracy test over the 
threshold test eliminates the possibility of spurious underflow messages during assign
ment and negation. The proposed standard incorporates the accuracy test for lack of 
control over compiler design. 
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The sticky underflow ftag is preferable to the nonsticky kind if there can be only 
one; a friendly system would make both available. The proposed standard requires 
sticky flags for all exception conditions, including underflow. 

The rest of this paper is organized as follows. Section 2 presents underflow from 
a system architect's point of view. We discuss number formats and the options available 
for handling underflows, both when the underflow occurs and when the result is used 
later. Section 3 discusses underflow from a numerical analyst's point of view and shows 
how to extend conventional error analyses to include underflow. Sections 4 through 
14 elaborate on the above results (without proofs) for the eleven computations listed 
below. Sections 4 through 14 may be read independently of one another: 

tests and comparisons 
the accuracy test versus the threshold test for G.U. 
complex arithmetic 
inner product calculations 
Gaussian elimination 
Cholesky decomposition 
iterative refinement of linear systems 
polynomial· evaluation and root finding • 
eigenvalue computations for symmetric tridiagonal matrices 
numerical quadrature 
accelerating the convergence of sequences 

2. A system architect's view of underflow. In this section we have two goals, first 
to describe the mechanisms available to the system architect for handling underflow, 
and second to describe the mechanisms we compare in this paper and why we have 
chosen them. We will introduce much notation in this section; when a new term is 
defined it will appear in italics. 

The design questions facing the system architect are of two kinds: what value 
should be returned in the destination word when underflow occurs, and what side 
effects (if any) should underflow have? Options for the destination value are G.U., 
S.Z., and several other conventions such as exponent wraparound (10] and nonnumeric 
symbols like UN [4] and NAN [8]. Possible side effects are raising an underflow flag 
and continuing execution, invoking a trap handler that may execute any code of the 
system's or user's choice, waiting until an underflowed quantity is to be used to decide 
what to do, or most simply doing nothing. In case the architect decides to have flags 
or traps, the efficiency of his implementation will affect how the programmer writes 
codes to use the flags or traps (see the discussion of Gaussian elimination in § 5, for 
example). Other side effects arise from design decisions made in the compiler; these 
are discussed below and in §§ 4 and 5. We will first discuss the different values that 
can be returned from an underflowed operation, and then possible side effects. 

To describe the values that can be returned we need to refer to a specific floating 
point format which we now describe (the conclusions of this paper apply to similar 
formats as well). It contains three fields: a sign bit er, a significand f, and an exponent 
e, and represents the value x = (-1 )v • /· 2~. The exponent e satisfies emin :i e :i emax• 

The binary point follows the leading bit of /. 
We call / (and the entire floating point number} normalized if its leading bit is 1 

( or if e = 0 and/= 0, which represents 0). This means 1 ~ / < 2. Otherwise 0 ~ / < 1 and 
is called unnormalized. 

The rounding error of the arithmetic is the largest possible value of 

1ft (a• b)- a• bl 
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where ■ denotes one of the operations { +, - , •, /}, and a and b are such that a ■ b '#:- 0 
and ft ( a • b), which denotes the floating point result of the operation a ■ b, is normalized 
and nonzero. As long as ft ( a ■ b) is the first floating point number greater than or 
equal to a ■ b or the first number less than or equal to a ■ b (e.g. if the arithmetic 
truncates or rounds), then • 

where n is the number of bits used to represent/, is a bound on the rounding error. 
In other words, s is the difference between 1 and the next larger floating point number. 
Note that e is twice as big as the rounding error if ft (a ■ b) is the nearest floating point 

• number to the true result a• b. 
The largest normalized number has e = ~ and / = 1.1 • • • 1 ( n bits long); it is 

called the overflow threshold and denoted by 

A• 2•-c2- e) == 2•-•1. 

The smallest normalized number, which has e = em1a and/= 1, is called the underflow 
threshold, and is denoted by 

Even though A is called the underflow threshold, we will see that underflow might not 
always be signalled whenever a result is less than A in magnitude. 

When e = emin and/< 1 we call the number denormalized. Denormalized numbers 
are also called subnonnal [6], a name which is perhaps more descriptive than denormal
ized. The denormalized numbers, which are a subset of the unnormalized numbers, 
form an arithmetic progression between O and A with common separation Ae. Not all 
floating point systems allow denormalized numbers, or any unnormalized numbers at 
all. If denormalized numbers are not allowed, we typically handle underflow using 
store zero (S.Z.). This means that if the rounded value of a computation x would lie 
strictly between ±A so that we could not represent it as a normalized nonzero number, 
we return zero. If denormalized numbers are allowed then we can use gradual unde,flow 
( G. U.), which means rounding such an x to the nearest denormalized number and 
returning that instead of zero. Gradual underflow is also called graceful unduflow [6]. 

Exponent wraparound [10] is another possibility which only makes sense on a 
system which does not trap on over/underflow but ·which increments/decrements a 
counter designated in advance by the user (cf. Kahan's Counting Mode (10]). When 
a result would underflow, the value returned has the normalized significand of the 
result stored in / and the result's exponent biased upward by a constant (such as 
-3 • emin/2) stored in e. (The analogous technique applies to overflow). By examining 
the counter the user can keep track of the powers of two contributed by wraparound. 

Finally, the system may return a nonnumeric symbol such as UN [ 4] or NAN (Not 
A Number) [8]. A NAN is encoded in the IEEE proposal by an exponent e =emu+ l 
and a nonzero significand / that may contain or point to diagnostic information about 
where and when the underflow occurred. This technique allows the user to defer 
deciding what to do about an underflow until later when he has more information (this 
is discussed further below). For more detail on floating point formats and representing 
underflowed quantities see [l]. 

The architect also has many options for side effects. Side effects of underflow may 
be generated on two occasions: when an underflowed quantity is created, and later 
when it is used. First we describe creation time side effects and then use time side effects. 

The creation time options are raising a flag/not raising one. trapping/not trapping, 
and doing nothing. Doing nothing is the most common response of systems today 
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because underflow is generally presumed to be harmless ( were that true, this paper 
would not have been written). 

One attribute a flag can have is "stickiness". An underflow flag is sticky if, once 
set, it remains set until explicitly reset by the user (as in the proposed standard); 
otherwise it is nonsticky, that is reset prior to each operation. A sticky flag is generally 
much more useful than a nonsticky one because it allows the user to ask if any 
underflows have occurred anywhere in a section of code (since the last time the flag 
was reset). This is the proper type of flag for debugging or when underflows are not 
anticipated. A nonsticky flag, which can always be simulated by a sticky one, is useful 
only when analysis has shown that underflow in only a certain few operations can 
matter. This is the case in certain expert codes (see 18 below) but is rare. 

Another attribute a flag can possess is available only with G.U.: it can be set 
either by a threshold test or an accuracy test: 

Threshold test. Signal underflow if the exact result would have been less than A 
in magnitude and not zero, and 

Accuracy test. Signal underflow if, in addition to the computed result being no 
more than A in magnitude, it is different from what would have been the result had 
exponent range been unbounded. 

The reason for the option is as follows. Just because a result of an operation must 
be represented as a denormalized number does not mean accuracy has been lost. It 
may be that the error incurred by denormali7.ation is no worse than what roundoff 
would have caused had exponent range been unlimited. For example, A/2 is represent
able exactly as a denormalized number. In such cases, the architect may decide not to 
signal underflow, since the error is no worse than what roundoff alone would have 
caused. This more restrictive definition of underflow has the advantage of signalling 
underflow less frequently than the threshold test and therefore generates fewer false 
alarms. For example, the accuracy test will never signal underflow on copy (assigning 
a== b), negation (a:= -b), addition, subtraction, multiplication where one factor is 
an integer, or remainder (a mod b) [16]. On the other hand, a threshold test may be 
better for an application where any nonzero result less than A in magnitude causes 
problems later in the code. In the friendliest system, the user would be able to choose 
the definition depending on his application. For example, when debugging a new code 
in which ·underflow is not expected to occur, a threshold test with a smart trap 
handler/ debugger would be useful, whereas a clever, robust code might exploit the 
more restrictive definition. We give examples of codes which use both types of flags 
below. 

There are at least as many options available to the designer of a trap handler, 
because in principle a trap handler can contain any code of the system's or user's 
choice. For example, one may want a smart trap handler/debugger which lets the user 
examine his operands and code when underflow occurs, or one which keeps a record 
of_ where and when all underflows occur and lets the user examine them at the end of 
the program, or even one which attempts to perform the computation in a totally 
different way to avoid underflow. Actually, any given underflow mechanism can be 
implemented using a trap handler if a trap occurs on every underflow, although this 
may be slow. Obviously these possibilities involve compiler and operating system 
questions which would be difficult and interesting even without raising any numerical 
issues; we will not consider traps further in this paper. 

Finally, the system (or user) can decide at the time of use what to do about 
underflow. This option is not available in an S.Z. system because there is nothing. 
unusual about an underflowed S.Z. value (it is zero) that lets us detect when it is used: 
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with G.U., however, denormalized numbers mark themselves as underflowed quan
tities. By delaying a reaction until time of use, the user can defer judgement about 
the harmfulness or harmlessness of an underflow until he has more information available 
to help him decide. If a denormalized number is to be added to a much larger number, 
for example, little or nothing is lost. If it is to be multiplied by a large number, accuracy 
lost in denormalization might become significant later, especially if cancellation occurs. 
In general these decisions can better be made when the denormalized number is to 
be used rather than when it is created. Again, it is advantageous to give the user a 
choice in response. One approach considered by the IEEE committee was to have two 
modes: warning and normalizing. Warning mode caused a trap whenever 

the uncertainty in a denormalized operand (:Ue/2) would be magnified relative 
to the result by multiplication or division by a normalized operand, or 
dividing a finite nonzero dividend by a denormalized divisor, or 
taking the square root of a denormalized number. 

Normalizing mode does not trap in these cases. As with the different definitions of 
underflow, warning mode may be useful for debugging new codes, and normalizing 
mode for writing clever, robust ones. We again give examples of such clever codes 
below. The committee chose not to include warning mode in the standard. 

Given this bewildering array of options, how do we intend to compare G. U. and 
S.Z. systems? It is obviously possible to compute anything using S.Z. that can be 
computed with G.U. (and vice versa) by testing and scaling each pair of operands 
before use, but this is hardly a fair comparison since one code may be much harder 
to wri~e or take much longer to run than the other. One fair comparison is to ask if 
for a given level of system support and given level of effort the code using G. U. bas 
substantially different reliability than one using S.Z. For the comparisons in this paper, 
we chose the least effort possible, meaning that we want to compare codes written 
without regard to underflow at all if possible, or sight modifications of such codes. 
Furthermore, we chose the least possible system support short of doing nothing: 
providing a user testable underflow flag (and, of course, not trapping on underflow). 
We also consider the two ways to raise the G.U. flag described above: the threshold 
test and the accuracy test (in what follows we will often use the phrase uinaccurate 
underflows" to refer to both S.Z. underflows and G.U. underflows according to the 
accuracy test). Applications of nonsticky flags will be noted when they exist; unless a 
flag is explicitly called nonsticky it should be assumed sticky. In addition to these 
underflow options, we examine the utility of performing intermediate calculations with 
extra precision and range to avoid as many underflows as possible. 

Finally, a writer of clever library routines may well be interested in how much 
reliability he can get for a fixed execution time, code size, etc., independent of 
development cost. We believe several of the codes discussed in this paper (and in more 
detail in [21) will provide a basis for such a comparison. 

3. A numerical analyst's view of underflow. In this section we show how to extend 
traditional floating point error analyses to take underflow into account. Let ■ be one 
of the operations { +, - , *, /} and let ft ( a ■ b) denote the floating point result of the 
indicated operation. Traditional error analyses use the formula [23] 

(1) ft ( a • i,) = ( a ■ b) ( I + e) unless a ■ b underflows or overflows, 

where lei~ e. To take underflow into ccount, we write [13] 

(2) fl (a• b) =(a• b)(l + e) + "1 unless a ■ b overflows. 
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In the case of G.U. there are the following constraints on e and 11: 
(3) 

(4) 

(5) 

lel~E and l11l~AE, 

11· e = 0 (i.e. at most one of .,, and e is nonzero), and 

11 = 0 if ■ is either addition or subtraction. 

In the case of S.Z. we have the following somewhat different constraints on e and 11: 

(3') lel ~ e and 1111 :ii A, and 

(4'} 11·e=0. 

Let us examine the differences in constraints. The different bounds on l111 in (3) 
and (3') mean that the error contributed by underflow for S.Z. can be 1/ s times as 
large as for G.U. (5) means that there can be no underflow error in addition or 
subtraction for G.U., whereas underflow can cause complete loss of relative accuracy 
for S.Z. 

Formula (2) gives a combined relative/ absolute error bound on the error in 
floating point. For G.U. we have a bound eon the relative error as long as the true 
result is bigger than a threshold A, and an absolute error bound Ae for smaller results. 
The bounds match, in that for results at the underflow threshold A, the absolute 
magnitude of the largest relative error (e· result) is equal to the largest absolute error 
(E· .\) (see Fig. 1). This property of (2) means that when doing a G.U. error analysis, 
we are really doing both a floating point and fixed point analysis simultaneously, because 

fl(a ■ b)=(a ■ b)+11 

is the error formula used in fixed point analyses. 
For S.Z. on the other hand, the error jumps at A. For results just bigger than A, 

the largest possible error is .\e as with G.U., but for smaller results the error leaps up 
to nearly A (see Fig. 2). In order to analyze errors in S.Z. arithmetic as in G.U. (relative 
error above a threshold, absolute below, and at the threshold the errors match), we 
must raise the threshold to A/ e (see Fig. 3). Said another way, G.U. reduces underflow 
errors to the size of roundoff for all normalized results, but S.Z. underflow errors are 
roundoff size only for results greater than A/ e in magnitude. This explains why so many 
of the results to be presented later read as follows: 

(6) 

When using G.U .. as long as the data is normalized (>A), the results are as good as can be 
expected just with roundoff. but when using S.Z. the data must be at least A/ e to expect the 
same performance. Funhermore. as the data decreases below the threshold (A or A/ E) O.U.'s 
results degrade smoothly rather than abruptly, as do S.Z. ·s. 

A is a much more natural threshold (and easier to test for, depending on the definition 
of underflow) than >../ E for the range of application of a code. 

For some codes one can make a backwards error bound independent of input 
values if one measure backwards error in the way suggested in conclusion (2) of § 1. 
For G.U., this measure means every number is viewed as uncertain in the last few 
places stored, whether denormalized or not. For S.Z., it means some numbers near A 
are viewed as uncertain in nearly all their places. Gaussian elimination without inaccur
ate underflows in the solution components themselves, polynomial evaluation, and our 
algorithm for eigenvalues of symmetric tridiagonal matrices have backwards error 
bounds of this form. For these codes. G.U. more than extends the apparent exponent 
range by -log1 e over S.Z.: it asserts the significance of nearly all bits in every number 
in the machine. 
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Horizontal axis: True result of operation a ■ b. (Tic marks represent floating point numbers.) 
Venical axis: - Error in computed result a■ b-ft (a ■ b). (Arithmetic is binary and chopped with 

E = i = maximum rounding error, A = underflow threshold) 
- Error bound. 

lf--lJlllf----------------------• 
Dcnormamed 

(absolute error :i .\a) 

Normalized 

(relative error:i a) 

Fae;. 1. Error with grad,uil undaflow (see (2), (3), (4) for mor bound). 

A:Lr 
0 A 2A 4A 8A 

Fao. 2. E"or with stort zero (set (2), (3'), (4') for mar bound). 

(absolute error :i ,\) (relative error:i a) • 

Fm. 3. Store ztro t"or bounded in same way as gradual undaflow error. 

If all G. U. did were to extend the apparent exponent range of the system, then 
the argument for G.U. over S.Z. would become weaker as the actual exponent range 
grew larger. As we have just seen, however, there are certain mathematical relation
ships, preserved by G.U. but not S.Z. over the range of all floating point numbers, 
which make codes that are to work over the range of all inputs easier to write. Other 
useful relationships preserved by G.U. but occasionally violated by S.Z. include [1]: 

(7) x = y if and only if ft (x-y) =0, 

( 8) ft (( x - y) + y) == x ( to within a rounding error in the larger of x and y), 

and assuming the exponent range [emin• emaxl is nearly symmetrical about O (as with 
the proposed IEEE standard), then if no overflow occurs 

(9) ft ( 1 / ( 1 / x)) == x to within a few rounding errors in x. 

Failure to satisfy statements like (7) to (9) can induce strange and elusive bugs in 
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codes (see § 4 and [10]). Their validity makes it much easier to write and maintain 
codes by eliminating the need for tests for the very rare cirumstances in which they fail. 

The combined relative/ absolute error measure given in (2) arises naturally in 
several ways. When solving linear equations with iterative refinement, we stop when 
the relative error in the solution vector is (hopefully) small. This means large com
ponents are known to high relative accuracy, and small components to an absolute 
accuracy of the same magnitude. In physical problems there is often a noise level which 
means that only measurements above it can be made relatively accurately, and below 
it only with absolute accuracy equal to the noise level. 

4. Tests and comparisons. To analyze codes containing tests like 

if .x ¢ y then ,:_/(.x)-/(y) 
.x-y (10) 

else if 100•x¢ 100•y then print why? 
or 

(11) if x¢0 and lx-yl~.0011.xl then z=SQRT(l.5-y/x) 

the first of which can produce a divide by zero error and the second of which a square 
root of negative number error, we must not only know how underflow is handled, but 
how the compiler implements tests like "x ¢ y?". There are two possibilities for this: 
a fixed point (bitwise) comparison of x and y, and a comparison of fl (.x-y) with 0. 

Let us first analyze (10) and (11) using S.Z. With the first (fixed point) implementa
tion of ".x '#- y?", any choice of .x and y such that O < Ix - yl < ,\ (such as x = 1.25A and 
y = 2A) will pass the test ".x ¢ y?" and cause a divide by zero error in the expression 
for r in (10). In (11), the same choice of .x and y passes both tests but causes 1.5-y/ x 
to equal -.1 and gives a square root of negative number error. Using the second, 
floating point implementation of ".x ¢ y?" the same x and y causes why? to be printed 
by (10). Thus, both implementations and even the more robust looking test in (11) 
can cause strange results using S.Z. 

With G.'l)., on the other hand, the two implementations of the test ".x ¢ y?" are 
equivalent (barring overflow of ft (.x- y)), and neither divide by zero nor why? nor 
square root of negative number messages are possible from (10) or (11). Any underflow 
• flags raised by the threshold test should be ignored in these examples because if an 
addition or subtraction underflows in G.U. arithmetic, it must give the exact result 
(thus no underflow flag would be raised with the accuracy test). 

The pitfalls of using extended range and precision in comparisons have been well 
documented in [15]. 

S. The accuracy test versus the threshold test for G.U. When an operation a ■ b 
underflows, the denormalized result need not have a different numerical value from 
the result that would have been returned had the exponent range been unbounded. 
For example, the results of >./2, A/4, • • • , A./(1/ e) are all denormalized yet represent
able without error. The accuracy test for G.U. will not raise the underflow ftag for 
these operations, or for any others where the denormalized result is identical to the 
result that would have been returned had the exponent range ·been unbounded. In 
contrast, the threshold test raises an underflow flag whenever a nonzero result is less 
than A in magnitude ( there are slight variations possible on this definition, but they 
do not effect the results of this analysis). 

The accuracy test has the advantage over the threshold test. that if the only bad 
effect of underflow is its abnormally large loss of accuracy. then it avoids raising the 



1in 
1il. 
in 
en 
m
ite 
1ch 
)W 

ire 

JUt 

1is: 
0. 
ta
nd 
on 
·/x. 
1d, 
ed 
.1) 

ire 

1or 
)W 

an 
ult 

ell 

■ b 

,m 
:d. 
1t

or 
he 
In 
!SS 

ey 

ad 
he 

UNDERFLOW AND RELIABILITY OF NUMERICAL SOFTWARE 897 

underflow flag unnecessarily, whereas the threshold test raises the flag whenever the 
result is small even if accurate. If, on the other hand, it is the size of an underflowed 
result that can cause difficulty later, the threshold test is more useful. We have found 
examples where both definitions of underflow are useful. 

First we discuss examples where the threshold test appears advantageous. In 
conclusion (1) of the § 1, we stated that for many algorithms as long as the inputs 
were normalized (>A in magnitude), they would perform as well as expected with 
roundoff. This seems like an ideal use for the threshold test, but as described in the 
section on Gaussian elimination, for example, what we need to test is if any entry of 
the input matrix is normalized, a weaker condition on the matrix, but one requiring 
testing the underflow flag (and resetting it as well if it is a sticky flag) for each matrix 
entry. If testing, or more likely resetting, involves an expensive system call, we would 
not want to include it in such a tight loop. Similar input constraints apply to Cholesky, 
iterative refinement, inner product calculations and others: we would need to test and 
possibly reset the underflow flag in a tight loop. If these are expensive operations, the 
usefulness of the threshold test is undermined. Furthermore, some of these codes 
satisfy a combined relative/absolute error bound independent of the input values (see 
conclusion (2) of § 1 ). 

Now we discuss the situations in which the accuracy test appears more useful. In 
Gaussian elimination, iterative refinement, and complex divide we may use the accuracy 
test to test intermediate and final results for underflows we know can be harmful only 
if they are inaccurate. There are also the simple assignment statement a := b and 
negation a == -b. If b is denormalized, and the compiler implements these statements 
as floating point operations, then the accuracy test will raise no flag, but the threshold 
test will. If they are implemented as fixed point operations, then of course no flags 
will be raised, but in the unhappily common situation where one designer designs the 
floating point and another the compiler, the floating point designer may have no control 
over the compiler design decisions. One may counter that one could just test and reset 
the underflow flag after assignments and negations, but if this incurs the overhead of 
a system call, it may not be a good solution. These examples of assignment and negation 
may well be the major contributor of false alarms on threshold underflow. 

6. Complex arithmetic. In order to make error analysis in complex arithmetic as 
similar as possible to the analysis in real arithmetic, we would like to have formulas 
describing the error in complex addition, subtraction, multiplication and division that 
are nearly identical to (1) to (5) and (3') and (4') which describe the error in real 
arithmetic. 

6.1. Complex addition and subtraction. Here the situation is most satisfying: 
formulas (1) to (5) and (3') and (4') all remain true as long as "a ■ b overflows" is· 
interpreted as "overflows in either component". We repeat these formulas for com
pleteness. In the absence of overflow or underflow we have 

(12) ft ( a ± b) = ( a ± b) ( 1 + e) unless a ± b underflows or overflows. 

To take underflow into account, we write 

(13) ft ( a ± b) = ( a ± b) ( 1 + e) + .,, unless a ± b overflows. 

In the case of G.U. there are the following constraints on e and 11: 

( 14) I el ~ e and .,, = 0. I 
i 
1 

t 
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In the case of S.Z. we have the foil owing somewhat different constraints on e and TJ: 

(15) lel ~ e and 1111 ~ A. 

It is not true that at most one of e and 11 can be nonzero, as it was with real addition. 

6.2. Complex multiplication. Multiplication is not quite so satisfactory as addition 
and subtraction because of the possibility of ·intennediate overflow in the obvious 
algorithm: 

(16) (a +i· b)· (c+i· d) = (ac-bd)+i•(ad+bc)• p,+i· p1, 

even though the final product may be a representable number. Since this can only 
happen if one of p, or p, is within a factor of 2 of the overflow threshold A anyway, 
we accept this slight loss of robustness since formula (16) is otherwise so satisfactory, 
as we now discuss. 

In the absence of overflow or underflow (in the intermediate or final results) 

(17) ft(a•b)=(a•b)(l+e) 

where a, b, sa.nd e are all complex quantities, and lel < 2he. To take underflow into 
account we again write 

(18) fl(a•b)=(a•b)(l+e)+11 in the absence of overflow. 

For G.U. we have the following constraints on e and 11 (to first order in e): 

(19) lel~2he and l111~2hAe. 

For S.Z. we have the following slightly different constraints: 

(20) lel~2he_ and l111~2hA. 

Thus, complex multiplication can be analyzed in the identical way as real multiplication 
but with slightly larger bounds on e and 11· 

Hence, analyses of algorithms which use only +, - , and * operations (such as 
inner product) and the error bounds in (2) extend immediately to the complex case. 

It is no longer possible to test for underflow in multiplication with S.Z. by 
comparing the product to zero as in real multiplication. Indeed, it is possible for a 
nonzero product computed with S.Z. to be wrong in the second bit in both components 
due to underflow. For example, consider the product of 2JI + i • 0.SJI and Jr+ i ·Jr. 
The correct product, produced with G.U., is 1.5A + i· 2.5A, but S.Z. delivers 2A + i· 2A. 
The underflow flag, however, may also be raised spuriously, for S.Z. or G.U., accuracy 
test or threshold test, even though the product is exemplary. 

6.3. Complex division. This case was originally analyzed by Hough [7]. The 
algorithm is due to Smith and can be found in Knuth (17, p. 19S] and avoids almost 
all- unnecessary intermediate overflows in the calculation. We want to compute the 
quotient (a+ i· b)/(c+ i· d) = q,+ i· q;: 

. . a+b(d/c)"· . b-a(d/c) 
tf ldl < lcl then compute q, + ,. q; = c + d(d/ c) + ,. c + d(d/ c), 

(21) 
. b+a(c/d) . -a+b(c/d) 

elsecomputeq,+r·q;= d+c(c/d) +1· d+c(c/d). 

As with complex multiplication. it is possible to have intermediate overflows even if 
q, and q; are exactly representable. but this can only happen if either the a and b or 
c and d are both within a factor of 2 of A anyway. 
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If no overf!.ows or underflows occur, then the relative error in the quotient is 
bounded by 7J2e, where e is the error in the underlying arithmetic. In contrast to 
addition, subtraction and multiplication, however, it is not possible to bound the error 
in the presence of underflow simply in terms of a few units in the last place of the 
correct result plus a few underflow errors. If either the dividend a+ i· b or divisor 
c+ i· d is entirely denormalized, it is possible to get a normalized quotient that may 
be wrong in most of its places. If both dividend and divisor are normalized in at least 
one component, however, then with G. U. the computed quotient does indeed agree 
with the correct quotient to all but a few units in the last place of lq, + i· q,j. With S.Z. 
both divisor and divided have to be at least A. Is to be assured of the same accuracy. 
We write these conclusions as follows: 

(22) ft (a/ b) = (a/ b)*(l +e)+ 11 if both lal and lbl are bigger than T 

where 

(23) 

and 

(24) 

and 

(25) 

lel ~ 1he for both G.U. and S.Z. 

-r=A and 77 =h>..e forG.U. 

-r = A/ e and 77 =h>.. for S.Z. 

Thus, when analyzing algorithms with complex division, more care must be taken than 
with real division to make sure the constraints given by ,,. above are satisfied. 

Here are some examples to show what happens when the constraints given by -r 
are violated. We use 6 decimal arithmetic for ease of presentation. First, let a+ i· b = 
2A + i· 1>.. and c + i· d = 4A + i· 2>... The correct quotient (a+ i· b)/(c+ i· d) = .5, but in 
S.Z. the term A ( 1/2) underflows to O and we get the quotient .4 instead of .5. With 
G.U. we get .5. If we now multiply both dividend and divisor by e so they are 
denormalized, G.U. suffers the same fate as S.Z. and delivers .4 instead of .5. 

Unfortunately, an underflow flag may be raised even though the product is very 
accurate. This is true for S.Z. or G.U. with either accuracy test or threshold test. 

With extended precision and range both the multiplication and division routines 
can underflow ( or overflow) only when storing the final results, thus avoiding all false 
alarms. 

7. Inner product calculations. Consider the two vectors a= (A,>.., 1/2, >.., O) and 
b = (0, 1/2, A, 1, A). If we compute their inner product l:;-i.s a;b; in the straightforward 
way 

sum:=O 
for i:= 1 to 5 do sum:=sum+a;•b; 

we get very different answers if we use G.U. than if we use S.Z. With G.U. we get 
the exact answers 2A whereas with S.Z. we get >.. because both a2b2 and a3b3 are less 
than A and so flush to zero in a S.Z. system. The difference is large in the forward 
sense(>.. is relatively much different than 2A) and the backward sense as well, because 
it cannot be explained by saying that the result obtained from S.Z. is the exact result 
of a different inner product whose vector components differ from the original ones by 
a few units in the last place. Note also that there are no scale factors a and /3 such 
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that the inner product can be calculated as 

l s ,; r (aai)(~b)i 
a,-, l•i 

without underflow or overflow. 
We can state the following propositions about inner products which generalize 

the above example [2]. 
PaoPosmoN 1. Let g' be a bound on the partial sums and individual ,~nns of the. 

inner product l:~ _ 1 a,bi: 

(26) g' = max (fl ( f aJ>,), a,b,). 
l:Sl:lin /•l 

We can bound the error in computing l:~.1 a1b1 as follows: In the absence of 
underflow we have 

(27) 
1
ft ( r, a,b;)- f a,b, I ~ (2n-l)sg 

1-1 1•1 

where g = g'/(1-e). 
In the case of G. U. we have 

(28) 
I fl ( _ f aibi)- _r ajb; I ~ ( n -1) eg + ns max ( A, g) 

1.al ••1 

~ (2n-l)sg if g e; A 

where g=g'/(1-e). 
In the case of S.Z. we have 

(29) 
lfl(_r a;b;)-_r. a;b;I ~(2n-l)smax(~,,) 

1•1 1•1 S 

~(2n-l)sg if g>~ 
s 

where g = (g' + >. )/ ( 1 - e ). Note that the g used in equation (28) may differ from the 
g used in equation (29) because g depends on the kind of arithmetic used (G.U. or 
S.Z.). Also, g depends on the order of the terms a;b;. 

The proof is a straightforward extension of the usual error analysis of inner 
products (23) using formula (2) of § 3. 

The significance of this proposition is the following: (27) states the well-known 
result that the error in an inner product subject only to roundoff errors can be as large 
as about 2n rounding errors in the largest intermediate result g'. The second line of 
(28) says that the same is true for G.U. as long as the largest intermediate results g' 
is normalized. In particular, if the final result is normalized, then underflow is no worse 
than roundoff. {If g' is not normalized, then we have effectively computed the inner 
product in fi,ced point and we get only an absolute error bound from the first line of 
(28) as expected.) If we use the accuracy test with G.U. and the underflow flag is not 
raised, then (27) holds independent of the size of g. For S.Z. on the other hand (29) 
says that g' must exceed A/ e for the same claim to hold. This is an example of statement 
(9) in § 3. 

To analyze the backwards error in an inner product, we need another expression 
for the error. 
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PROPOS[TION 2. The floating point result of the inner product r: .. a;b; may be writlen 

(30) 

In the absence of underflow we have 

IE1I~ ne, 

IE11~(n+2-j)e ifj>l. 
(31) 

In the case of G.U. we have the same bounds on the IEil, and 

(32) 1111 ~ nAe. 

In the case of S.Z. we have the same bounds on the IE,I, and 

(33) 

The proof is again a straightforward extension of the usual error analysis [23] 
using formula (2). 

(31) means that in the absence of underflow, an inner product can be computed 
with small backwards error; in other words the computed result is the exact inner 
product of two vectors whose components differ by at most n rounding errors from 
the components of the original vectors. (32) means that with G.U., as long as some 
intermediate result ft (a,bi) is normalized(> A), then the backwards error is also small, 
because.,, can be absorbed into the a,b;(l + E,) term, increasing E1 by at most ne. In 

. particular, if the final result is normalized, underflow is no worse than round off. (33) 
means that some intermediate term must be as large as A/ e for a similar claim to hold 
for S.Z. 

Of course, if we are using the accuracy test with G. U. and no flag is raised, then 
11 = 0 and the roundoff only error bounds in (31) hold. 

These two propositions may be used to extend the results of error analyses for 
many matrix computations to include underflow. The next three sections present the 
results of such analyses for Gaussian elimination, Cholesky decomposition, and iterative 
refinement. 

8. Gaussian elimination. 
8.1. Summary. The algorithm we analyze for solving the system of linear 

equations Ax= b is a standard form of Gaussian elimination: 
(1) Decompose A= LU= (lower triangular) (upper triangular) using pivoting, 

so that the diagonal of L contains all 1 'sand no entries of L exceed 1 in absolute value; 
(2) Solve Ly= b for y (forward substitution); • 
(3) Solve Ux = y for x (back substitution). 
What kind of reliability do we expect from this algorithm in the absence of 

underflow? It is well-known that even though we can not expect an accurate solution 
if the input matrix is ill-conditioned, we can expect to get a residual Ai- b (.i is the 
computed solution) that is small in a sense made precise later. We also expect a small 
backwards error: .i will be the exact solution of a problem slightly different from the 
original, again in a sense to be made precise later. 

It turns out that as long as one component each of the matrix A and right-hand 
side b are normalized, then the only gradual underflows that can possibly contribute 
significantly to the residual or backwards error are inaccurate underflows in the final 
solution vector x. Here we are using the accuracy test for underflow (see§ 3), but our 
conclusions are also valid with the threshold test, though we get more false alarms. 
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This is a situation where the proper choice of underflow test depends on the application: 
if the output of the Gaussian elimination routine is input for another call to it, the 
user may choose the threshold test to see if he is passing normalized data to the second 
call as required for the conclusions above to apply. This may not be easy to do in 
practice, of course, but it shows that the accuracy test might not be best for all situations. 

In contrast, unless one component each of the A and b is greater than A/ e in 
magnitude, intermediate underflows with S.Z. during any stage of solution can introduce 
significant errors, possibly producing reasonable looking results whose error greatly 
exceeds the uncertainty attributable to roundoff alone (see the examples). 

The measure of backwards error on which these conclusions depend is the follow
ing: in trying to solve Ax= b we really compute i where (A+ 8A)i = b + Bb and 

(34a) !!BAIi is comparable toe• [IAII 

and 

(34b) IIBbll is comparable toe• llbll. 
IIAII is a measure of the size of A (similarly for llbll), and "comparable to" means not 
larger by more than a factor /( n) which is a low order polynomial in the dimension 
n of A ( this will be made more explicit later). In other words, under the conditions 
stated above, Gaussian elimination has an error no larger than /(n) rounding errors 
in the largest entry of A or b. 

If we weaken our measure of backwards error in (34) and ask bow much larger 
!IBAII (ll8bll) can be than ellAll+s.\ (ellbll +e.\) instead of e!IAII (sllbll), then as long 
as the solution £ itself does not underflow inaccurately, we can prove that Gaussian 
elimination using G.U. always has a small backwards error no matter bow big IIAII or 
II b II is. In other words, BA changes A ( Bb changes b) in the last few places of the 
largest entry, no matter if the largest entry is normalized or not. This robustness is 
not shared by S.Z.: almost all the bits in all the entries of A or b can be insignificant 
using S.Z. if the entries are too close to .\ in size. 

Gaussian elimination using G.U. with a warning of (inaccurate) underflows in the 
solution i appears to be a robust enough program to deserve inclusion in a library. If 
we insist on the traditional measure of backwards error in (34a) and (34b) above, and 
if we are willing to include an explicit scaling test ("are the largest entries of A and 
b at least A in magnitude?") then G.U. offers no great advantage over S.Z. because 
changing the test threshold from .\ to A/£ makes an equally ironclad program in S.Z. 
with an only slightly smaller range of application, and eliminates the largest potential 
advantage of G.U.: making robust code faster to execute or easier to write. Note that 
we want to test whether any input component of A and b exceeds the threshold A, 
and whether any output component of x underflows inaccurately. The most efficient 
test on the inputs would use a nonsticky flag based on the threshold test, since a sticky 
flag would have to be reset after each entry was tested. The most efficient test on the 
outputs would also use a nonsticky flag but be based on the accuracy test instead. 
Since each component i; of xis computed in a loop with other computations, a sticky 
flag would have to be reset within the loop just before the last operation yielding X;. 

It is very important to point out that use of extended range and precision for 
intermediate results does not invalidate the results just discussed. As long as the entries 
of L and £ must be stored in the basic format the conclusions remain valid, because 
it is possible underflows in these entries that undermine the code's reliability. Thus. 
the conclusions of this section are as relevant to a system with just one precision and 
range available as to one with extended precision and range. 
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Section 8.2 contains examples and § 8.3 presents the theorems and offers con
clusions. This material has been published before [3]. 

8.2. Examples of Gaussian elimination. flAllao(llbllm) denotes the infinity norm 
of the matrix A ( vector b): 

IIAllm=maxrlA,JI and llbllao=maxlb,I. 
I j I 

IAI (lbl) denotes the matrix (vector) whose entries are the absolute values of the entries 
of A(b). Inequalities like IAl<IBI are meant componentwise. 

We denote the usual condition number of the matrix A by 

k(A) = (IAao(I • (IA -I llao, 

and a new set of condition numbers by 

C d (A ) = fllA-1IIAllxlflCl0 
on 'x llxllao 

Cond (A)= II IA-11 IAI llao• 

These new condition numbers, due to Skeel [20], will be discussed more fully below. 
Note Cond (A)e;Cond (A, x) for all x. 

In this section we present four examples of the effects of unde.rftow on performing 
Gaussian elimination. The first example shows how store zero can produce a reasonable 
looking but completely inaccurate decomposition of a well conditioned matrix, whereas 
gradual underflow either produces the correct decomposition or correctly decides the 
matrix is singular. (There are no rounding errors nor pivot growth in this example.) 
The second example shows that G.U. produces the correct decomposition of a well 
conditioned matrix which S.Z. incorrectfy decides is singular. Third, we present an 
innocuous looking ordinary differential equation and show that the linear system arising 
from trying to solve it numerically leads to underflow which is handled correctly by 
G. U. and not by S.Z. Finally, we present an example which shows that regardless of 
whether we use G. U. or S.Z., Gaussian elimination can only guarantee small residuals, 
not an accurate answer, even when the matrix A is well conditioned in the sense that 
Cond (A) is small. 

(35) 

8.2.l. Example 1. Consider the family of matrices A(x) where 

2 

A(.t)=A· 

1 

1 
2 1 

2 1 
2 1 

1 1 1 .t 

(blanks denote zero entries). The LU decomposition obtained-by G.U. is 

1 2 I 
I 2 I 

(36) L G.U.(x). uG,U.{.t) = I ·A· 2 1 =A(x) 

1 2 1 
.5 .5 .5 .5 x-2 

j· 
f 
!: 
I· 



904 JAMES DEMMEL 

exactly. and by S.Z. is 

1 2 1 
1 2 1 

(37) Ls.z.(X) • us.z.(x) = 1 • A· 2 1 =A(x)+E, 
1 2 1 

.s .s .s .5 1 X 

where the error matrix E equals 

(38) 

-2 

We see S.Z. causes a relatively large error in the U(x)55 entry, whereas G.U. gives 
the correct decomposition. When x = 2, using S.Z. leads us to conclude that the matrix 
is far from singular, when in fact it is exactly singular. Note that the matrix A(x) is 
well conditioned when x is far from 2, and if .x is a smaller integer no rounding errors 
occur in either decomposition. 

8.2.2. Example 2. Let 

(39) A= [2,\ J,\] 
A 2A ' 

a well conditioned matrix. Using G.U. we obtain 

(40) [ 
·1 ] [2A L o.u •• r..,0.u. = .5 1 • 3A] ,\/2 =A, 

but by using S.Z. we obtain 

(41) Ls.z.. us.z. = L! il [2.\ ~Al 

Thus, G.U. correctly decomposes the matrix A, whereas S.Z. incorrectly makes the 
matrix look singular. 

8.2.3. Example 3. Consider the ordinary differential equation 

(42) i(t)=l-i/T)Mx(t), .r(T0)=c. 
-t 

We try to solve this equation numerically by replacing x(t) by the truncated power 
series L~-• x"t", the function (1-(t/ T)N)/( T-t) by its (finite) power series, and then 
equating coefficients of equal powers of t on both sides of equation (42). After we 
scale the last row ( which represents the initial condition) down to have the largest 
entry equal to I, we get the linear system Ax = b, where 

(43) A= 

N -1/T -I/T2 

N-1 -1/T 
N-2 

-1/T"' 
-1/TN-t 
-I/TN-l 

-1/T 
1/T;~-• 1/T;; 

·1 

I 
I 

I 

fi 

U' 

\" 
V. 

nt 

tt 

t 

(-
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Finally, if we swapped f with hat the start, we must remember to swap CL with SR and SL 
with en. 

Our Program 
Considering how complicated it was to figure out, our program is surprisingly short. It is 
presented here in a syntax like that of Fortran 77, but with two innovations. One is the 
invocation of an intrinsic procedure SWAP(x, y) that swaps the values of its arguments. On 
a ma.chine that contains a SWAP instruction in its hardware, this should be preferable to 
the three MOVES that would be needed instead. The second innovation is the use of three 
consecutive dots( ... ) to introduce a comment at the end of a line rather than have to add 
a line beginning with "C" for every short annotation. 

SUBROUTINE SVD2x2(f,g,h,cL,sL,w,v,cR,sR) 
c Accurate singular value decomposition of a given 2x2 real 

C matrix: ( ~:L :n . u n . ( :! -c~n = ( ±Ow :v ) ' 

c with cL*cL+sL*sL = cR*cR+sR*sR = 1 and w .GE. v .GEO. 
REAL f,g,h, cL,sL,v,v,cR,sR 

c -- Input -- -- Output -- Aliasing is OK 
c v and v are the singular values; the e's and s's define 
c the singular vectors of the given matrix. In the special 
c case g = 0, ve get cL = cR = 1 and sL = sR = 0 In 
c the special case h = 0, ve get cL = 1 and sL = 0. 

C 

LOGICAL L 
REAL ft, gt, ht, cL t, sL t, cRt, sRt ... Copied and scratch values 

REAL fa, ga, ha ... may be kept in registers 

REAL a, 6, ..\, µ, µµ, p, CT, T •.. to improve speed & accuracy. 

REAL Zero, Half, One, Two, Four 
DATA Zero,Half,One,Tvo,Four / 0.0, 0.5, 1.0, 2.0, 4.0 / 
ft= f 
fa= ABS(ft) 
ht= h 
ha= ABS(ht) 
L = (ha.GT. fa) 
IF (L) THEN 

ENDIF 

gt= g 
ga = ABS(gt) 

SWAP( ft, ht) 
SWAP( fa, ha ) 

IF ( ga .EQ. Zero) THEN 
v = ha 
w = fa 
cLt = One 
cRt = One 
sLt = Zero 

... now fa~ ha. 

... the trivial case. 
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C 

C 

C 

sRt = Zero 

ELSE IF ( ga+fa .EQ. ga) THEN 
w = ga ... the case of gargantuan g . 

ELSE 

IF (ha.GT. One) THEN 

cLt = One 
sLt = ht/gt 
cRt = ft/gt 
sRt = One 

6 = fa - ha 
IF (6 .EQ. fa) THEN 

ELSE 

ERDIF 

ELSE 

ENDIF 
µ=gt/ft 
T = Two - A 
µµ = µ •µ 
<1 = SQRT(T * T + µµ) 
IF (A .EQ. Zero) THEN 

ELSE 

ENDIF 
a: = Half•(u + p) 
v = ha/a: 
v = fa•o 
IF(µµ .EQ. Zero) THEN 

IF (A .EQ. Zero) THEN 

ELSE 

i. e., 
ELSE 

ENDIF 

v = fa/ (ga/ha) 

v = (fa/ga)•ha 

... the normal cases. 

A = One ... copes with infinite r or h . 

A=6/fa 
... 0 ~ ,\ ~ 1. 

... Iµ I:$; 1/e. 

... 'T-~ 1. 

••• 1 ~ (I < 1 + 1/ E, 

p = ABS(µ) 

p = SQRT (A * A + µµ) 

... 1 ~ a < i+ I µ 1-

... µ must be very tiny. 

... with IEEE 754/854 

T = CopySign(Tvo,µ) 
T = SIGN(Tvo,ft)•SIGN(One,gt) 

T = gt/SIGN(6,f) + µ/r 

T = (µ/(u + r) + µ/(p + A))•(One+o) 
END IF ... sec previous footnote 

A = SQRT(T * T + Four) ... about.\= 1- lh//l 
cRt = Two/A 
sRt = r/A 
cLt = (cRt + sRt•µ)/o 
sLt = (ht/ft)•sRt/o 

6 
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C 

ENDIF 

IF (L) THEN 

ENDIF 
cL = cLt 
sL = sLt 
cR = cRt 
sR = sRt 
RETURN 

SWAP( cLt, sRt) 
SWAP( sLt, cRt) 

c Cost: 15 Add/Subtract/Compares, 9 Multiplies, 10 Divides, 3 SQRTe 

END. 
c ===End of SVD2x2 = = c W. Kahan April 27, 1988 

7 
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b T = (0, • • • , 0, c/ T:;'). and x r = (xN, • • ·, Xo). 

WechoseM=15,N=l4, T=512., T0 =500.,and c=lOO.forthisexample. We 
used a single precision implementation of the IEEE Floating Point Standard [8] on a 
VAX 11/7801 for which s was 2-23 = 1.1910-7 and>.. was i-126 == 1.1810-38. There 
was a switch on the compiler to enable/disable G.U., so we were able to obtain 
numerical results using both G.U. and S.Z. 

Land U have a simple structure. L will be zero below the diagonal, except for 
thelastrow,whichisgradedfromLu.1-7.142851o-2downtoL15,14 •5.3472610-35. 
U is identical to A in all but its last row. 

1 
0 1 

(44) L= 
0 0 

0 0 1 
Lu.1 L1s.2 Lu,14 1 

N -1/T -l/T2 -1/TN 
N-1 -1/T -l/TN-1 

(45) U= 
N-2 -1/TN-2 

1 -1/T 

Uu.is 

A's columns are badly scaled, although this is not obvious bcause no row nor column 
is drastically smaller in nonn than any other; nonetheless, bad scaling causes A to 
appear very ill conditioned, and this· ill conditioning shows up in the last row of U, 
making V15,15 very small, barely above the underflow threshold. S.Z. and G.U. compute 
all elements of L and U identically except for U15,15• In fact, all additions in the 
computation of L add normalized numbers with like magnitudes and like signs, so no 
cancellation, loss of significance, nor underflows occur. If the exponent range were 
unbounded, so underflow never happened, the correct value U15•15 ==2.09261 10-37 
would be computed. This is the value computed using G.U. But when S.Z. is used 
instead, the computed value is Vflis ::z:: 1. 7276310- 37, a relative difference of .174 
from the correct value. All additions in the computation of V15•15 involve numbers of 
like magnitude and sign, so cancellation cannot be blamed for the discrepancy. This 
relative difference in the last entry of U is very impo~ant, because one divides by 
V15,15 in the course of solution. Thus, the computed solution .xo.u. is very close to the 
true x, and the relative difference in solution vectors is 

llxo.u. - .xs.z.llao 
11.xo.u.llm .211. 

Thus, G.U. obtains markedly better results than S.Z. This example is very interest
ing because there is nothing obviously wrong with the matrix. All its entries are 
unexceptional normalized numbers, and every row and every column contains at least 
one number no tinier than 1/T= .00195 and none larger than N = 14, yet 11 out of 
14 products L, 5.; * V;.,s in the sum for U1s.1s underflow just slight~y below the underflow 

1 VAX is trademark of the Digital Equipment Corporation. 

ii 

~ 
ll 
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threshold. Since the true value of U15.15 is itself not much larger than the underflow 
threshold, this makes for a large relative error. 

This example was chosen to be simple and realistic; even though it can be solved 
analytically, it could be changed easily into a two-dimensional problem without an 
explicit solution, but with the same sensitivity to underflow. 

We repeat that even though A appears very ill conditioned, since k(A) = 1/ A (i.e. 
near the overflow threshold in most arithmetics), it is also well conditioned in the sense 
that Cond (A, .x) = S.S. We will discuss the significance of this example later in§ 8.4. 

8.2.4. Example 4. Let 

A=[G G], 
g 2g 

A_1 =[ 2/G -1/g] 
-1/G 1/g ' 

where g/G underflows to O using either S.Z. or O.U. The L obtained is thus the 
identity matrix since L2.1 =fl (g/ G) =0, and so the L and U obtained are the exact 
factors of the matrix 

A+E=[~ ~], 

which is a very different matrix than A. If b T = ( G, 0), then x = A- 1 b = (2, -1) T, 

whereas .i =(A+ E)-1 b = (1, 0) T, so .i does not resemble x at all. The residual r is 
however guaranteed to be small, in the sense that llrll«JIIIAll.il+lblll«> is small: 

llrlloc, IIB.illm 
IIIAllil+lblll«> IIIAll.il+fblll«> 

< slxal < g <, 12 -Gl.i1l+Gl.i2I-G="E • 

Of course A is an exceedingly ill conditioned matrix in the sense that k(A) = 2G/ g 
is beyond the reciprocal of the underflow threshold, so we would be inclined not to 
trust our results anyway. However, Cond (A) is only 7. This is true because Cond (A)= 
Cond (DA) for any nonsingular diagonal matrix D, so A has the same condition 
number as the utterly tame matrix 

[a-• ] [1 1] 
g-• A= 1 2 • 

Needless to say, in the absence of underflow we would compute a very accurate solution. 
We will return to this example later to explain why we can get inaccurate results from 
a matrix with a small condition number Cond (A). 

8.3. Results of enor analysis. 
8.3.1. Approach. As stated in the introduction, we use backward error analysis. 

Thus, when Gaussian elimination is used to solve 

(46) Ax=b 

for x it generates instead an approximation £ = x + 6.x which satisfies some perturbed 
problem 

(47) (A+8A).i = b+6b. 

The task of backwards error analysis is to infer bounds on oA and ob from the details 
of the arithmetic used to implement the elimination process. These bounds can be 
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used in turn to bound the residual 

(48) r = Ax - b = -8A.i + 8b = Ac5x 

and then the error 6x. 
Wilkinson's approach (22] is to determine a bound "'w on the errors 

(49) 

whence 

(50) 

and then it will follow that the error 8x is bounded: 

(51) IIBxllm 

The detailed derivation of "'"' from the details of the arithmetic is given elsewhere 
[2]. Theorem 1 below states simple requirements on A and b that ensure "'"' will be 
scarcely worse if underflow occurs than if it does not. 

Skeet's approach (20], modified slightly here, is to determine a bound"'' on the 
relative error in each entry of A and b: 

(52) 

From these inequalities follows a bound upon the error Bx: 

(53) 

(provided the denominator is positive). This motivates defining the following condition 
numbers: 

(54a) 

(54b) 

C d (A ) ~ IIIA-1IIAllxlllm 
on ,x llxllm , 

Cond (A)-= II IA-11 IAI llm• 
Cond (A) is an upper bound for Cond (A, x) for all x; the error bounds are useful 
only if w, Cond (A)< I. 

Following Oettli and Prager (19] and Skeet (20] we use an expression for w11 
obtainable from (48) in terms of the residual r: 

(55) 

where the max is over those i for which the denominator is nonzero. Following Skeel, 
we overestimate "'s by analyzing the elimination process to inf er an inequality 

(56) llrllm~ w~II IAll.il+lbl llm 
from which we compute the overestimate w, as 

(57) 
_ max; (IAll.il+lbl); , 

"'11 = min;(IAll.il + lb!); "'s 

(where the min in the denominator is over the nonzero values of (IAll.il); only). 
Unfortunately <ii, can be a gross overestimate of"'~ as we will see when we return to 
Example 3 later. 

I • 
I 
I 

.. 
! ~lttmttt)n!nl!tii?~ 
I 

! . 
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The detailed derivation of w: is given in [2]. Theorem 2 below states requirements 
on A and b that ensure w: will be scarcely worse if underflow occurs than if it does 
not. These requirements on A and b are nearly identical to the requirements in the 
Wilkinson style analysis. 

8.3.2. Results. 
THEOREM 1. Wilkinson style error analysis of solving Ax= b with Gaussian elimi

nation in the presence of underflow: Let amax = max;; IA,11, and g = [largest intermediate 
result appearing in the decomposition]/ amax• g is the "pivot growth factor" and is ~2"-1

• 

Then a bound Ww for which 

(50} 

is given as follows. In the absence of underflow, we have 

(58) 

If underflow occurs then 

(59) 

provided certain conditions are met. For G. U. these conditions are: 

(60) llblla)~~ 
n 

if there are any underflows during triangular decomposition, 

if there are any intermediate underflows during 
forward and back substitutions, 

llbll(X) 2.\ 
--~2 
amax n 

if the solution x itself underflows in some component. 

For S.Z. the above conditions still apply but .\ must be increased to A/ e. 
Proof. See [2]. 
THEOREM 2. Skeel style error analysis of solving Ax= b with Gaussian elimination 

in the presence of underflow: Let a1 = max; IA;;I, and Be= max; ([largest intermediate 
result appearing in the decomposition in column j]/ a1). Be is the ucolumnwise pivot 
growth factor" and is ~2n-t. 

Then a bound w: for which 

(56) 

is given as follows. In the absence of underflow we have 

(61) 

If underflow occurs, then 

(62) 

provided certain conditions are met. For G.U. these conditions are: 

(63) 
A 

llbll.-.:-~2n 

llbll«>~ 
Qffl,lll = fl:! 

for all j, if there are any underflows during triangular 
decomposition, 

if there are any intermediate underflows during 
forward and back substitutions, 

if tlte solution x itself u11derfiows in some component. 
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For S.Z. the above conditions apply with except A must be increased to ,\ / e. 
Proof. See [2]. 
The theorems indicate how to write software that will solve Ax= b reliably despite 

underflow, and how the requirements for G.U. differ from those for S.Z. To keep the 
residual small in the sense of a Wilkinson style error analysis, we appeal to Theorem 
1. With G.U., as long as one normalized number appears during the decomposition 
(gamax ~ A), residual with underflow has a bound not much worse than residual without 
underflow. If there are intermediate underflows while solving the triangular systems, 
as long as some component of bis normalized ((lbllmi:A), residual with underflow has 
a bound scarcely worse than without underflow. H the answer i itself underflows, we 
can either issue an error message ( which would be very reasonable since the first goal 
of reliable software is only to compute an answer if it is representable) or test to see 
if II b llao/ Gmax is not too small. 

All these requirements are natural ones to make, since they say that when a 
problem's inputs and its computed solution are normalized numbers, we should expect 
the residual to be scarcely worse with underflow than without. Thus, the only gradual 
underflows which can cause concern in a problem with normalized inputs are underflows 
in the solution itself. The scaling condition II b llcx,/ Gmax e; A/ n 2 arises naturally; consider 
solving the scalar equation ax= b by the division x = b/ a. 

In contrast, the bounds for S.Z. are all higher by a factor of. 1/ e. Thus, using S.Z. 
we can neither solve as many problems as the G.U., nor decide so easily which 
underflows matter. Thus, from the point of view of a Wilkinson style error analysis, 
G.U. makes writing reliable software easier. 

Theorem 2 shows that Skeet style bounds for the residual are scarcely worse with 
underflow than without provided conditions are satisfied that are almost the same as 
in Theorem 1. Therefore the previous paragraphs' comments remain valid provided, 
when underflow is gradual, at least one normalized number appears in each column 
of A, rather than just somewhere is A,.before or during the decomposition process. 

8.4. Examples 3 and 4 revisited. We wish to emphasize that we have only derived 
conditions under which with underflow are about the same as without underflow. There 
is no way using this analysis to say how closely this bound will be approached with 
and without underflow, or how accurate the computed solution will be. 

In Exa1J1ple 4 above, the matrix A and vector b satisfy all the conditions of 
Theorems 1 and 2 for G.U. as well as S.Z., so the residual is small. but the answer i 
is totally inaccurate. This inaccuracy can be explained either by the huge condition 
number k(A) ~overflow threshold, or the large backwards error in equation (55): 
"'s = 1. In this case €AJs 's upper bound ws in (57) is also 1. Thus, having a small value 
of Cond (A) is not sufficient to guarantee accuracy given a small residual (AJ~ ((56)), 
although a small value of k(A) combined with a small residual "'w is enough, as can 
be seen from (51 ). 

Example 3 is another case where the conditions of Theorems 1 and 2 hold, but 
now·G.U. successfully computes the last pivot U15.15 and an accurate solution x while 
S.Z. does not. Again, we have a problem where k(A) is huge and Cond (A, x) is small. 
Now the "'' of equation (55) is =5.2310-8, verifying the high accuracy of solution. 
Unfortunately the bad scaling of the matrix causes the upper bound ciis of equation 
(57) to be 2.0w20. This example demonstrates the occasionally intense pessimism of 
Skeel's approach. 

In summary, the significance of Examples 3 and 4 is to show that maintaining a 
small resjdual in the face of underflow does not guarantee an accurate solution .i. 
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although we conjecture that for not terribly ill conditioned matrices G.U. will provide 
answers at least as accurate as provided by S.Z. 

We have proven something quite unremarkable: if underflows are gradual, then 
we continue to get what we have come to expect from Gaussian elimination. That is, 
we get a small residual as long as the inputs and outputs are all representable 
(normalized) numbers and there is no indication of singularity or excessive pivot 
growth. If, however, underflows are handled in the usual way and set to zero, then no 
such simple guarantee can be made, and some kind of testing on the scaling of the 
problem is necessary. These results demonst~te that gradual underflow makes it easier 
to write reliable linear equation solvers than "store zero. n 

9. Cbolesky decomposition. 
9.1. Summary. The algorithm we discuss is analogous to Gaussian elimination, 

but is applicable only to positive definite symmetric matrices A: 
(1) Decompose A= LL T where L is lower triangular; 
(2) Solve Ly= b for y (forward substitution); 
(3) Solve L Tx = y for x (backward substitution). 
We expect the same kind of reliability from this algorithm in the absence of 

underflow as we do from Gaussian elimination: a small residual Ai - b where £ is the 
computed solution, and that i is the exact solution of a slightly different problem than 
the original. 

With G.U., as long as one component each of the matrix A and right-hand side 
b are normalized the only harmful underflows are underflows in components of x and 
y (recall that with Gaussian elimination the only harmful underflows were in the 
solution x). Intermediate gradual underflows contribute an error with a bound scarcely 
worse than the bound for the error contributed by roundoff alone. As with Gaussian 
elimination, the accuracy test for underflow (see§ 3) leads to fewer false alarms than 
the threshold test, although the threshold test might make it easier to test the inputs 
to the Cholesky routine ("are the largest components of A and b at least .A in 
magnitude?") for the applicability of this analysis. 

In contrast, with S.Z. intermediate underflows during any stage of solution can 
introduce significant errors, possibly producing reasonable looking results whose error 
greatly exceeds the uncertainty attributable to roundoff alone (see the examples). In 
fact, one can show that S.Z. can only produce a decomposition of a matrix when G.U. 
fails if the matrix is so ill conditioned that the computed solution cannot be trusted, 
or if it is not positive definite at all (see § 9.2.2). 

As with Gaussian elimination, the results of this section remain true even if 
intermediate products are computed to extra range and precision, as long as the entries 
of L, y and i are stored in the range and precision of A and b. 

Section 9.2 contains examples and§ 9.3 contains theorems and conclusions. Proofs 
of these results can be found in [2]. 

9.2. Examples. _ 
9.2.1. Example 1. Let m be the smallest floating point number ~J>.., so that m1 

does not underflow. Consider the family of symmetric matrices: 

[

4 2 l] 
A(x)=m 1

• 2 2 1 

1 1 x 
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which has the exact lower triangular factor 

L(x) = m • [ : 1 ] 
.5 .5 Jx-.S • 

L0
•
0 ·(x), the factor provided by Cholesky using G.U., is the same as L(x) except for 

the rounding error incurred by having to represent (x- .5)112• L5.z.(x), the factor 
provided by S.Z., is 

where 

L s.z.(x) = {J x -1 if x e; 2, 
33 0 if 2 > X e; 1 

so S.Z. computes a totally wrong value for L33(x), incorrectly labelling the matrix 
singular for 2 > x e; 1 -when in fact it is well conditioned. 

9.2.2. Example 2. Let m be as before. Consider the family of matrices 

4 1 
4 1 

A(x)=m2
• 4 1 . 

4 1 
1 1 1 1 X 

Its correct factor L(x), if it exists, is 

2 
2 

L(x)=m· 2 
2 

.5 .5 .5 .5 Jx-2 

This matrix is positive definite if x > 2, positive semidefinite if x = 2, and has both 
positive and negative eigenvalues if x < 2. Both G.U. and S.Z. compute all entries of 
the factor L(x) except the (5,5) entry correctly (using Cholesky decomposition). G.U. 
obtains the correct value (x-2)m2 for its value of L~s, whereas S.Z. computes xm 2

• 

Thus, as x decreases from 3 to 2 to 1, G.U. correctly decides the matrix is positive 
definite when x = 3, and becomes nonpositive definite when x ~ 2. S.Z., on the other 
hand, produces an (incorrect) decomposition all the way down to x = 1. Thus, S.Z. 
cannot only produce an inaccurate decomposition, but produces it after G.U. has 
correctly decided no such decomposition exists. 

S.Z. can produce a decomposition of a matrix when G. U. fails only if the matrix 
is either 1) so ill conditioned that the decomposition cannot be trusted, or 2) not 
positive definite at all. Here is the reason. Assume Dmax ~ A, since otherwise the matrix 
is identically O in S.Z. arithmetic. G.U. fails when its computed value of Lr; either 
rounds to O or is negative for some j. L;; rounds to O when L;; < AE. It is easy to see 



912 JAMES DEMMEL 

that amax ~ Amax(A) and L! ~ Amin(A), because 

• l L2 (Amux(L- 1
))

2 ~1L-lli=IA- 1b l 
mmi ;; Amin(A)° 

Therefore 

k ( ) Amu 8ma1t 1 
2 A =-->-2->-, 

Amin Lu E 

which means that the matrix is so ill conditioned as to make it difficult to even recognize 
an accurate inverse, let alone compute one. If Lj is in fact negative, the matrix is not 
positive definite. 

9.3. Results of error analysis. 
9.3.1. Approach. Our approach is essentially identical to the one we used to 

analyze Gaussian elimination with the following additions. The Cholesky decomposition 
uses the square root operation which Gaussian elimination does not. We model the 
error in square root as follows: 

(64) SQRT (x) =fx • (1 + e)for all x 

where lei<£. (SQRT denotes the floating point square root.) (64) holds because SORT 
compresses the exponent range, making overflow and underflow impossible. We make 
an extra assumption about A and £ we did not need before; it also arises from the use 
of square roots in the Cholesky decomposition. This relationship is satisfied by all 
single precision arithmetics known to the author (but not by a number of double 
precision arithmetics, such as D format on the VAX, for example) and is only needed 
to analyze Cholesky decomposition using S.Z.: A < e3

• 

9.4. Results. 
THEOREM 3. Wilkinson style e"or analysis of solving Ax = b with Cholesky 

Decomposition in the presence of underflow. Let amaa = max;; IA;;!. Then a bound cu". for 
which 

(50) 

is given as follows. In the absence of underflow, we have 

(65) 

If underflow occurs then 

(66) 

provided certain conditions are met. For G. U these conditions are: 

(67) 

2A 
llbllco~2 n 

llbll<XI A 
-->-
Jamu = n 

if there are any underflow during Cholesky 
decomposition, 

if there are any intermediate underflow during 
forward substitution, 

if some Yi underflow or there are any 
intermediate underflows during back substitution. 

llbll~ 2A 
--~---:; if the solution i itself underflows in some component. 
ama-. n-
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For S.Z. the above conditions still apply but A must be increased to A/ E. 

Proof See (10]. 
The above theorem shows how to write software that will solve Ax = b with 

Cholesky reliably despite underflow just as Theorems 1 and 2 in § 8.3.2 did for Gaussian 
elimination. With G.U., as long as there is one normalized component in A (amax> A) 
residual with underflow has a bound scarcely worse than without underflow. If there 
are intermediate underflows during forward substitution, the residual bound is again 
scarcely worse than without underftow as long as some component of b is normalized 
(llbllaoe; .\). Intermediate underftows during back substitution or in y require a scaling 
condition ( II b 11ml ama• e; .\In) to be satisfied, as do underflows in the final solution 
(II bllml ama• e; 2.\/ n2

). It is•clear that some such scaling condition needs to be satisfied 
from considering the n = 1 case (i.e. solving the scalar equation ax = b by two divisions 
x = (b/Ji)/Ji). If there are underflows in the back substitution, y, or .x, then we can 
either issue an error message or check the scaling. 

For S.Z. all the bounds are higher than the ones for G.U. by a factor of 1/ e. 
The situation with Cholesky is not as satisfactory as for Gaussian elimination, 

where only underflows in the final solution x could matter for G.U. 

10. Iterative refinement. We study the following algorithm for refining the sol
ution of the linear system Ax = b. The phrase "in precision ( e, .\)" means that particular 
computation is to be done in arithmetic with rounding error e and underflow threshold 
.\. x0 is an arbitrary starting vector. 

i:=O 
repeat 

r; := Ax;-b in precision (e,, .\,) 
solve Ad; = r; for d; in precision ( s, A) 
X;+ 1 := x; - d; in precision ( e, A) 
i == i+ 1 

until convergence. 

Double precision computation of the residual (the traditional algorithm) corresponds 
to E, = e2, and singJe precision to e, = e. We also assume A,~ A. 

In order to understand the effects of underflow on this algorithm, we need a 
theorem due to Skeel [21] which shows, contrary to popular belief, that computing r; 

in single precision (e, = e) does improve the solution in a significant way. 
THEOREM 4. Analysis of iterative refinement in the absence of underflow for both 

single and double precision computation of the residual: As long as the condition number 
Cond (A)= II IA-11 IAI !lac is sufficiently less then 1/ e, then 

1) If E, = £ 2 (double precision residual computation) then 

(68) lim sup !Ix- x,IICIC)~ 2ellxll110 
i4CIO 

where x denotes the exact solution; 
2) If E, = E (single precision residual computation) then 

(69) lim sup !Ax; - bl~ 4ne1AI lx;I. 
i-a::, 

Furthermore. this inequality is almost always attained after just one application of iterative 
refinement. 
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Proof. See [21 ]. 
This last inequality means that for large enough i, X; is the solution of a slightly 

perturbed problem 

(A+ 8A)x; = b 

where IBA;;I < 4nejA;;I. In other words, the perturbed problem agrees with the original 
problem up to a few rounding errors in each component [19]. This is a very strong 
notion of backwards error, and so Skeel's theorem shows that single precision iterative 
refinement does lead to a significantly more reliable code than no refinement at all. 

How does underflow effect this reliability? For G.U., we can say the following: 
If the inputs A and b and the output x are normalized and if either double or 

single precision residuals are computed, then gradual underflows can degrade the 
algorithm's performance to the level of single precision residual computation but no 
worse. To guarantee double precision performance, both band x need to exceed A./ e. 
Specifically, it is underflow in r, = Ax; - b that contributes to the lower bound on b 
and underflow in d; that contributes to the lower bo~nd in x. Using this information, 
the accuracy test for G.U. could be used to decide wt-en underflow might degrade the 
performance more precisely than the threshold te!;t. For S.Z., all thresholds are 
increased by 1 / e. 

The use of extended range and precision in intermediate computations does not 
change these conclusions. Assuming r; and d; are stored in the same format as A, b 
and x, underflows in r; and d; have the same potential effects on performance as they 
did when they were not computed in extended range. 

We have not yet considered underflow's effect on the rate of convergence of the 
iteration. There are matrices for which th~ iteration converges only if underflows do 
not occur, but the matrices are so ill conditioned as to make the computed solution 
untrustworthy anyway. It follows from the analysis of§ 8 that as long as some entry 
of A is large enough (A for G.U. and A/ e for S.Z.) then underflows will have an effect 
on the convergence rate comparable to round-off. 

11. Polynomial evaluation and root finding. 
11.1. Homer's rule for polynomial evaluation. We consider Homer's rule for 

evaluating the polynomial [7.0 a;x; for real a; and x: 

(70) 
for i:= n-1 to Odo sum:=sum*x+a;. 

We have the following very satisfying theorem. 
THEOREM 5 (Analysis of Homer's rule for polynomial evaluation). Let P denote 

the result of applying Horner's rule to the polynomial L a;X; above. Then in the absence 
of underflow and overflow we have 

" (71) P = L a;(l + E;)x
1 

1•0 

where 

172) IE,.l~2nr and IE.1~(2i+lh· ifi<n. 
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In the presence of underflow we write 

n 

(73) P = L (a;+ 17;)(1 + E;)x; 
i•O 

where E, has the same bound as in (72), Tin = 0 for both G.U. and S.Z., and 

(74) l11;l~AE/orG.U. and 111,l~lA/orS.Z. 

for i< n. 

The proof is a straightforward extension of the usual error analysis of Homer's 
rule [23] using formula (2) of§ 3. 

Thus, in the absence of underflow and overflow, Homer's rule delivers the exact 
value of a new polynomial each coefficient a, of which differs by a few rounding errors 
from the corresponding original a;. This is a strong backwards error bound. 

For G.U., we can make the same kind of statement providing we define backwards 
error as motivated by the last paragraph of§ 3: a relative error no greater than£ for 
values > A and an absolute error no greater than A£ for smaller values. Thus, for 
example, we treat the value O as indistinguishable from any value in the interval 
[-Ae/2, Ae/2]. By this definition of backwards error, Homer's rule with G.U. delivers 
the exact value of a new polynomial each of whose coefficients differs by a small 
relative/ absolute error from the corresponding original coefficient. We can funher 
guarantee each new coefficient has a small relative error with respect to the original if 
each a; is a nonzero normalized number. 

For S.Z. all thresholds in the last paragraph increase by 1/ e to be able to make 
corresponding statements. 

Here, extended range and precision . is extremely beneficial, eliminating most 
concerns about over/underflow. Indeed, any overflows in extended range would have 
occurred with the original range, and any underflows i~ extended range would con
tribute an uncertainty far less than a unit in the last place of even the smallest 
denormalized number to any a;. 

11.2. Polynomial root finding. Linnainmaa [18] has analyzed Newton's method 
for root finding and shown that it is much easier to write an underflow/ overflow proof 
code if G.U. is available than if it is not. An essential feature of his code is evaluating 
L an-;Z; at z = 1/ x instead of L a;x; when x > 1. This changes almost all potential 
overflow problems to underflow problems, which are handled by G.U. The advantage 
of evaluating polynomials at points x < 1 is that any rounding or underflow errors 
made early in Homer's recurrence are multiplied down by factors of .x. In panicular, 
underflow errors, already at the level of roundoff in the smallest normalized number, 
only decrease in significance so that if the final value P is normalized we know that 
any gradual underflows must be completely harmless. 

12. Computing eigenvalues of symmetric tridiagonal matrices. Given the sym
metric tridiagonal matrix: 

(75) 

how do we compute its eigenvalues? One way is to use the following program which. 
given a real value z. computes (in exact arithmetic) v(z) = the number of eigenvalues 
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of T that are <z: 

(76) 

u:= 1 
v:=O 
for j := I to n do 

u == a;-z-(b;f u)b; 
if u < 0 then v := v + 1, 

where we define b1 e20. We assume bi~ 0 for i > 1, since otherwise Tis block diagonal 
and its eigenvalues are those of its diagonal blocks. We also use the conventions 
±1/0=±oo and 1/±oo=O (which are part of the proposed IEEE floating point stan
dard). A proof that this algorithm computes what we claim is based on Sylvester's 
inertia theorem and can be found in [5]. It can be used to obtain eigenvalues to any 
desired accuracy by bisecting an interval in which v( z) increases ( which means the 
interval contains an eigenvalue) until the interval is narrow enoug;,. 

What does this algorithm compute when implemented in floating point? There 
are two interesting questions: 

Is v(z) a monotone increasing function of z as it is in exact arithmetic? 
Do we compute accurate eigenvalues either of our original matrix or a matrix 

very close to our original matrix? 
In the absence of overflow and underflow, the answer to both questions is yes [11]: 
The function v(z) computed by algorithm (76) in the absence of overflow and 

underflow is an increasing function of z. Furthermore, the value of v( z) computed is 
the exact value of v( z) for a matrix· T' whose diagonal entries at are identical to the 
diagonal entries ai of T, and whose off diagonal entries bi satisfy b; = M 1 + ei) where 
le,I ~ 2e. T' will in general depend on z. 

This is a very strong backwards error bound. It says we can compute the exact 
number of eigenvalues less than z of a matrix differing from the original by a small 
relative error in the off diagonal entries, and with no difference on the diagonal. 

What can be said in the presence of underflow? Barring overflow, v(z) remains 
monotonic using either S.Z. or G.U. The only property of the arithmetic needed to 
prove v( z) monotonic is monotonicity of the arithmetic: if a Ei b are the exact results 
of two different arithmetic operations, then ft (a) must be Eift (b) as well. 

The monqtonicity of v(z) is an appealing property but not necessary for the 
correct functioning of a bisection algorithm for determining one eigenvalue [22). Lack 
of monotonicity could lead to lower bounds exceeding upper bounds in codes for 
determining such bounds for all eigenvalues at once, but since v( z) is monotonic, we 
will not discuss this possibility further. 

Kahan [11] discusses an ironclad version of (76) which scales the problem and 
inserts tests against carefully chosen thresholds into the inner loop to guarantee that 
overflow and underflow (G.U. or S.Z.) cannot degrade the results appreciable more 
than roundoff. Here, we discuss the robustness of the unadorned code in (76) which 
differs from the most obvious algorithm only in using ( b;/ u) b; in the inner loop instead 
of b7/u. At the end we will say why this change is important._We assume we have a 
balanced exponent range, i.e. >. A cannot be larger than a small integer m ( m = 4 in 
the proposed IEEE standard). The backwards error in (76) is given as follows: 

The function v(z) computed by algorithm (76) is the exact value of v(z) for a 
matrix T' whose entries a; and b; satisfy: 

(77) 
a:= a;+ 11, where 111,I ~ ( 1 + m )AE 
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when using G.U., and 

a,= a;+ 1li where 111;1 ~ (3+ m)A 
(78) 

b: = b;(l + e;) where le;I ~ 2e 

when using S.Z. 
Thus, in order to claim that we are computing the exact v(z) for a matrix T' 

which differs from T by at most a few rounding errors in each component, which is 
the case in the absence of underflow, we need to make the following constraints on a,: 

la,I it{" for G.U., 
,\/e forS.Z. 

If we adopt the relative/ absolute error measure suggested in the last paragraph of § 3 
and discussed further in§ 11.1 in connection with polynomial evaluation, then there 
is no constraint at all on the a, if we ue G.U. in order to claim that a; differs from a; 

by a small error. 
These backwards error bounds are so strong that it does not seem the accuracy 

test for G. U. could be of much more use than the threshold test, if indeed it is of any 
use at all. 

A weaker form of backwards error often used in analyses of matrix computations 
[22] is 

(79) 
max;.; IT1;-T;;I 

max;.; I 7i;I • 
With respect to this definition, underflow is insignificant if 

I I {
A forG.U., 

~~x T;; ~ I f s z ,,1 A e or .. 

What would happen if we used bf/u instead of (b;/u)b; in the inner loop? In that 
case, any I b;I smaller than J eA » A would underflow to zero when squared whether 
we used G.U. or S.Z., and the resulting perturbation could not always be explained 
as a small change in either b; or a;. Thus, a seemingly small change in the code effects 
the robustness a great deal. 

If extended range and precision are available, then almost all concerns with 
over/underflow vanish, as with Homer's rule for polynomial evaluation. 

13. Numerical quadrature. Quadrature, along with the matrix algorithms dis
cussed earlier, benefits from the ability to compute inner products more robustly with 
G.U. than S.Z. This is because most quadrature codes, when asked to compute 

(80) r+• w(x)f(x) dx 

evaluate an inner product 

n 

(81) h· 1 wnf(x"). 
i•I 

From the analysis of inner products in§ 6, we see that as long as the inner product in 
( 81) is a normalized number, the effects of gradual underflows are no worse than 
roundoff. but that some intermediate result in the inner product must exceed A/ E to 
make the same claim about S.Z. All the benefits of cxt~ndc=d range and precision to 
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inner products also accrue to numerical quadrature. A more detailed analysis can be 
found in [14]. 

14. Accelerating the convergence of sequences. Methods to accelerate conver
gence of sequences often do so by extrapolating an estimated error to zero. This 
requires taking the ratio of differences of successive elements in the sequence. If the 
sequence is converging to a value near the underflow threshold, these differences can 
underflow to zero using S.Z. but not G.U. We illustrate with Aitken's 82 method. 

Given a sequence {x"} which converges to a finite nonzero x, Aitken's t,2 method 
produces a new sequence {x~} 

(82) X~=Xn-( Xn+i-X,. )(X,.+1-X,.) 
(Xn+l- X11+1)-(Xn+I - X,.) 

which will converge to x faster than {x,.} under certain conditions [9]. We have written 
the term following x in (82) (the correction term) as it appears instead of as in 

(83) 

because of the latter's much greater susceptibility to over/underflow. (83) is likely to 
cause over/underflow if lxl is much outside the range [5, JA]. (82) is much more 
robust. In fact, if N is large enough so that 

1 lx,.I c
2 h<Vi<-JL 

for n > N and we use G.U., then the correction term in (82) will be computed to 
within 2 rounding errors in x ·if A~ lxl ;i A and to within ±A£ if lxl < A. In contrast, 
lxl must exceed A/ E to make the same claim for S.Z. The use of extended range and 
precision would not make S.Z. 's disadvantages disappear, since if lxl is very close to 
A, the correction term, even if calculated to extra precision, may make x~ underflow. 

A more detailed analysis can be found in [14 ]. 
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