
Section 4 

Using Matrix Operations 

Matrix algebra is a powerful tool. It allows you to more easily 
formulate and solve many complicated problems, simplifying 
otherwise intricate computations. In this section you will find 
information about how the IIP-15C performs certain mutrix 
operations and about using matrix operations in your applications. 

Several results from numerical linear algebra theory are 
summarized in this section. This material is not meant to be ee)f. 
contained. You may want to consult a reference for more complete 
presentations.• 

Understanding the LU Decomposition 
The HP-15C can solve systems of linear equations, invert matrices, 
and calcul11te determinants. In performing these calculations, the 
HP-15C transforms II square matrix into a computationally 
convenient form called the LU decomposition of the matrix. 

The LU decomposition procedure factors II squnre matrix A into 
the matrix product LU. Lis a lower-triangular matrixt with l's on 
its diagonal and with subdiagonal elements (those below the 
diagonal) between - 1 and + !, inclusive. U is an upper-triangular 
matrix. t Por example: 

A • [: j [; ~ [: -~ • W. 

• Two eurh reft!rencee ore 
Alkinaon, Kendell E.. An J,11rw.Ju rtw11 to Numn,rnl Annly,is. Wilry. l!f7R. 
Kohan, W. "Numerical Linear AIKehrn," Ca11ad,an Mathnnallrul llu/1,•lin, Volume!}, 
1966. pp. 756-H0I. 

t A lowcr-trieniulur molrix hut1 O's for ull elements obove ila di11.ion11I. An up11er• 
triunwulur mutrix ho.a O'e ror all elemcnl.8 below its dingonol. 
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Some matrices can't he foctor_cd into Lhc l ,U form. For example, 

A = [U IJ ¢ LU 
I 2 

for any pair of lower- and upper-triangular matrices L and U. 
However, if rows are interchanged in the matrix lo be factored, an 
LU decomposition can always be constructed. Row interchanges in 
the matrix A can be represented by the matrix product PA for some 
square matrix P. Allowing for row interchanges, the LU 
decomposition can be represented by the equation PA = LU. So for 
the above example, 

PA = fotl 10 1l = 11 27 = 11 ol 11 27 =LU .. 

Li oJ Li 2_J Lo 1J Lo ~ Lo 1J 

Row intercha nges can also reduce rounding errors that can occur 
during the ca lculation of the decomposition. 

The H P-l 5C uses the Doolittle method with extended-precision 
arithmetic to construct the LU decomposition. It generates the 
decomposition entirely within the result matrix. The LU 
decomposition is stored in the form 

It is not necessary lo save the diagonal elements of L since they are 
always equal to I. The row interchanges are also recorded in the 
same matrix in a coded form not visible to you. The decomposition 
is flogged in the process, and its d escriptor includes two dashes 
when displayed. 

When you calculate a determinant or solve a system of equations, 
the LU decomposition is automatically snved. It may be useful lo 
use the decomposed form of a matrix as input to a subsequent 
calculntion. If so, it is essential that you not destroy the 
information nbout row interchanges stored in the matrix; don't 
modify the matrix in which the decomposition is stored. 
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To calculate the determinant of a matrix, A for example, the 
HP-15C uses the equnlion A = p· 1LU, which nllows for row 
interchnnges. The dctcrminnn l is then just (-1 )' time!l the product 
of the diagonal elements of U, where r is the number of row 
interchanges. The HP-15C calculates this product with the correct 
sign after decomposing the matrix. If the mulrix is already 
decomposed, the calculator just computes the signed product. 

It's easier lo invert an upper- or lower-triangular matrix lhun a 
general square matrix. The HP-15C calculates the inverse of a 
matrix, A for exomple, using the relationship 

It does this by first decomposing matrix A, inverting both Land U, 
calculating their product u-11,- 1, and then interchanging the 
columns of the result. This is all done within the resu lt matrix
which could be A itself. If A is already in decomposed form, the 
decomposition step is skipped. Using this method, the HP-15C can 
invert a matrix without using additional storage registers. 

Solving a system of equations, such as solving AX = B for X, is 
easier with an upper- or lower-triangular system matrix A thon 
with a general square matrix A. Using PA = LU, the equivalent 
problem is solving LUX = PB for X. The rows of B are 
interchanged in the same wuy that the rows of the matrix A were 
during decomposition. The HP-15C solves LY = PB for Y (forward 
substitution) and then UX = Y for X (backward substitution). The 
LU form is preserved so that you can find the solutions for several 
matrices B without reentering the system matrix. 

The LU decomposition is an importnnt intermediate step for 
calculating determinants, inverting ma trices, and solving linear 
systems. The LU decomposition can be used in lieu of the original 
matrix as input to these calculations. 

Ill-Conditioned Matrices 
and the Condition Number 
In order to discuss errors in matrix calculations, it's useful to define 
a measure of distance between two matrices. One measure of the 
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distance between matrices A and Bis the ,wrm of their difference, 
denoted IIA - HII. The norm can also he used lo define the cu11ditio11 
1111111/,c r of a matrix, which inrl ica leH how the relative error of a 
calculation compares to the reluti ve error of the matrix itself. 

The lll'-15C provides three norms. The Frube11ius 11ur111 of a matrix 
A, denoted IIAIIF, is the square root of the sum of the squares of the 
matrix elements. Thie is the matrix analog of the Euclidean length 
of e vector. 

Another norm provided by the 1-11'-l fiC is the row 11urm. The row 
norm of an III X 11 matrix A is the largest row sum of absolute 
values and is denoted IIAIIH: 

II 

IIAIIH = mn_x Lia,). 
I t:. , ~ mj = I 

The c:u/1111111 11or111 of the matrix is denoted IIAllc nnd can be 
computed by II Alie = IIA 7 IIH· Thecolumn norm is the largest column 
sum of absolute vnlues. 

For example, consider the matrices 

Then 

and 

A = [~ ! :] und [

2 2 
B = 

4 5 

[

- I 
A - B = O 0 I] 

0 3 

IIA - BIIF = JTT"" :l.:l (Fruheniue norm), 

IIA - BIIH = 3 (row norm), end 

IIA - HIie = 4 (column norm). 

T he remainder of this di~cussion assumes that the row norm is 
used. Similar results are obtained if any of the other norms is used 
instead. 

The ccJ11clitiu111111111hl'r of n square matrix A is defined as 

K(A) = IIAIIIIA-111 . 

Then I ~ K1Al < 00 using any norm. The condition number is 
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useful for measuring errors in calculations. A matrix is ,mid to be 
i ll-co11ditiu11ed if K(A) is very la rge. 

If rounding or other errors are present in matrix elements, the!le 
errors will propugate through subsequent matrix cnlculutions. 
They can be magnified eignificanlly. For example, suppose that X 
a nd B ure nonzero vectors satisfying AX = B for some sq uure 
matrix A. Suppose A is perturbed by AA and we compute D + ilB = 
(A+ ilA)X. Then 

with equality for some perturbation AA. Thie measures how much 
the relative uncertainty in A can be magnified when propuguted 
into the product. 

The condition number also measures how much larger in norm the 
relative uncertainty of the solution to a system can be compared to 
that of the stored data. Suppose again that X and D are nonzero 
vectors satisfying AX = B for some matrix A. Suppose now that 
matrix B is perturbed (by rounding errors, for example) by an 
amount ilB. Let X + AX satisfy A(X + ilX) = D +AD.Then 

(IIAXll ! IIXII) 
(11 .:lBll ! IIBII) ..; K(A), 

with equality for some perturbation AB. 

Suppose instead that matrix A is perturbed by AA. Let X + ilX 
satisfy (A+ ilA)(X + ilX) = B. If d(A,ilA) = K(A)IIAAII / IIAII < I, 
then 

(1i.ix11 111x11> .:: K(A) / (1 - d(A ilA)) 
(11.iAII ! IIAII) "' • • 

Similarly, if A-1 + Z is the inverse of the perturbed matrix A + ilA, 
then 

(IIZII I IIA"'II> 
<llt.AII I IIAII) ..; K(A) / (1 - d(A,AA)). 

Moreover, certain perturbations AA cause the inequalities to 
become equalities. 

All of the preceding relationships show how the relntive error of the 
result is related to the relative error of matrix A via the condition 
number K(A). For each inequality, there are matrices for which 
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e11uality i!I true. A large condition number makes pos11ible a 
relatively large error in the result. 

Errors in the data-!lometimes very small relative errors-can 
cause the solution of an ill-conditioned system to be quite different 
from the solution of the original sy!ltem. In the some way, the 
inverse of a perturbep ill-condi tioned matrix can be c1uite different 
from the inverne of the unperturbed matrix. llut both differences 
are bounded by the condition number; they can be relatively large 
011/y if the condition number K(A) is large. 

Also, a large condition number K(Al of a nonsing_luar matrix A 
indicates that the matrix A is relntively close, 111 norm, to a 
singular matrix. That is. 

I / K(A) = min<IIA - SII I IIAII) 

and 

l / llA"1II = min(IIA - s111. 

where the minimum is taken over oil s ingular matrices S . That is, 
if K(A) is large, then the relative difference between A and the 
closest singular matrix S is email. If the norm of A - I is large, the 
difference between A and the closest singular matrix Sis small . 

For example, let 

A = [: .9999~!19999] . 

Then 

· I _ [ -9,999,99!1,!)99 IO lll 
A - IOIU - 1u•nJ 

and IIK'II = 2 X 101°. Therefore, there s hould exis t II perturbation 
AA with 11,lAII = 5 X 10· 11 that mnke11 A+ ilA singular. Indeed, if 

.iA = [ oo -5 x 10•11] 
5 X I0-11 

with 11,lAII = 5 X 10· 11 , then 

HOA • [: 
.99!)!)~)!1!1!)!)95] 

. 99!)!)99()9995 
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X, in error by E = X - Z. Then E satisfies the linear system AE = 
AX - AZ = R, where R is the residual for Z. The next step is to 
calculate the residual and then lo solve AE = H for E. The 
calculnted solution, denoted by F, is treated as on approximation lo 
E = X - Z nnd ie added to Z to obtain a new ap1>roximntion to X: 
F + Z - (X - Z) + Z = X. 

In order for F + Z to be a better approximation lo X than is Z, the 
residual R = B - AZ must be calculated to extended precision. The 
HP-15C's !MATRIX! 6 operation does this. The system matrix A is 
used for finding both solutions, Z and F. The LU decomposition 
formed while calculating Z can be used for calculating J,', thereby 
shortening the execution time. The refinement process can be 
repeated, but moet of the improvement occurs in the first 
refinement. 

(Refer to Applications at the end of this section for a program that 
performs one iteration of refinement.) 

Making Difficult Equations Easier 
A system of equations EX = B ie difficult to numerically solve 
accurately if E is ill-conditioned (nearly singular). Even iterative 
refinement can fail to improve the calculated solution when E is 
sufficiently ill-conditioned. However, instances arise in practice when 
a modest extra effort suffices to change difficult equations into others 
with the some solution, but which are easier to solve. Scaling and 
preconditioning are two procesece to do this. 

Scaling 

Bod scaling is a common cause of poor results from attempts to 
numerically invert ill-conditioned matrices or lo solve systems of 
eq uations with ill-conditioned system matrices. llut it ie a cause 
that you can easily diagnose and cure. 

Suppose a matrix E ie obtained from a matrix A by E = LAR, 
where L and R ore scaling diagonal matrices whose diagonal 
elements are all integer pow ere of I 0. Then E ie said to be obtained 
from A by scaling. L scales the rows of A, and R scales the 
columns. Presumably E · t = n· 1 A · t L"1 can be obtained either from 
A "1 by scaling or from Eby inverting. 
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For example, let matrix A be 

[

:J x 1cr411 

A = 1 

2 

2] 1 . 

- 1 

The HP-15C correctly calculates A •1 to 10-digit accuracy as 

A -1 = [ -: -~ -:J 
- I 2 - 1 

Now let 

[

10t11 

L = R = 0 

0 

eo that 

E= [~ 
2 

2 J 10·◄11 • 

- 10· 411 

E ie very near o singular matrix 

and IIE - sn I IIEII = 1/ , X 10··111. This mcnns that K(S) ~ :.I X 10411
, 80 

it's not surprising that the calculated E.1 

[

-tl.67 X 1o· tt 

E" 1 = 0.8fl(i9 

0.071!i5 

ur
111 l 8.fl(i!I X Hi1 -4.284 X l0!1 

- 4.284 X Uf1 2. 1-12 X 10!1 
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is far from the true va lue 

r
-2 X 10· •IU 

E "1 = 3 

-1 

:J 

-4 X 1040 

2 X 10411 

- 1 ] 
2 X 10411 . 

-1040 

Multiplying the c11lcul11ted inverae and the original matrix verifies 
thut the calculated inverse is poor. 

The trouble is that Eis badly scaled. A well-scaled matrix, like A, 
has all its rows and columns comparable in norm and the same 
must hold true for its inverse. The rows and columns of E are about 
as comparable in norm as those of A, but the first row and column 
of E"1 are small in norm compared with the others. Therefore, to 
achieve better numerical results, the rows and columns of E should 
be scaled before the matrix is inverted. This means that the 
diagonal matrices I. and n discussed earlier should he chosen to 
make LER and (LEH.)"1 = n •1E· 11,· t not so bndly Real eel . 

In genera l, you can't know the true inverse of matrix E in advance. 
So the detection of bad scaling in E and the choice of scaling 
matrices Land R must be based on E and the calculated E· 1. The 
calculated E"1 shows poor scaling and might suggest trying 

[

10-f, 0 

O J L = R = ~ !Or, 0 . 

0 10'' 

Using these sculing mutrices, 

[

:J x llr 10 

2 ] LEH = I 10•:III 10•:111 . 

2 I 0 - :111 -JO•:MI 

which is still poorly scaled, but not so poorly that the 111'-l :,C cnn't 
cope. The calculated inverse is 

(LEH)"1 = 
[

-2 X 10"•111 

:J -4 X l0:111 

- I 2 X 10:lu 

ef: 
e-.-·~ 
c:.-,~ 
~ C:.-·, 

e-,~ 
e.,~ 
e I -~ 
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e -~ 
e -~ 
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e. ~ 
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This result is correct to 10 digits, ulthough you wouldn't be 
expected to know thi8. This result is verifiably correct in the sense 
that using the calculuted inverse, 

(LEH)" 1(LEH) = (LEH)(LEHr1 = I (the identity matrix) 

to IO digits. 

Then E· 1 is cnlculuted as 

[

-2x 10· 111 

E· 1 = R(LEHr 1L = :1 -4 X l040 

-I 2 X 10411 

:.! 
_, l 

2 X 10411 , 

- 1040 

which is correct to 10 digits. 

If (LEHr1 is verifiably poor, you can repeat the scaling, using 
LEH in place of E and using new scaling matrices suggested by 
LEH and the calculated (LERr1. 

You can a lso apply scaling to solving a system of equations, for 
example EX = B, where E is poorly scaled. When solving for X, 
replace the system EX= H by a sys tem (LEH)Y = LB lo he solved 
for Y. The diagonal scaling matrices Land R arc chosen as he fore 
lo make the motrix LErt well-scaled. After you calculnte Y from 
the new system, calculate the desired solution as X = ll Y. 

Preconditioning 

Prcconditiunin~ is another method by which you can replace u 
difficult system, EX = B, hy uneasier one, AX = D, with the same 
solution X. 

Suppose that Eis ill -conditioned (nearly sin~ular). You can clelecl 
this by calc:ulatin~ the inverse E· 1 ancl observing that 11UE· 111 is 
very small compnred lo IIEII (or equi va lently hy II lar~e condition 
numhcr K( I~ )). Then nlmosl evt>ry row vedor u 7' will have the 
properly that llu ru / llu rw 111 is als1; very small ('Olllpilrt!cl with IIEII, 
wlH're i,: · t is the calc-ulal.ed inverse. This is because most row 
v1•clors 11 '/' will ha vt• llu 'l'i,: · 111 not 111 ud1 smaller than llu '']I II i,: · 1 II. and 
IIE·1II will he large. Cho11:rn such II row vecl11r 11'/' and calculate 
v'I' "' au'l'E· 1. Choose th,· Sl'a lar II s11 that the row vel'l11r r1', 
obtained by roundin~ every e lemunt of v r lo nn inte~er between 
- 100 a11d 100, does not differ mul'h from vT_ Then r1'is a row vector 
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with integer elements with magnitudes less than 100. IJrTEIJ will he 
small compared with llr7111JEl-the smaller the bcllcr. 

Nexl, choose the kth element of rr having one of the lnrgesl 
magnitudes. Replace lhe klh row of Eby rrE and the klh row of B 
hy rrB. Provided thnl no roundoff has occurred during the 
evaluation of these new rows, the new system matrix A should be 
heller conditioned (farther from singular) than E was, but the 
system will still have the same solution X as before. 

This process works best when E and A are both scaled so lhal 
every row of E and of A have roughly lhe same norm as every 
other. You can do this by multiplying the rows of the systems of 
equations EX= 8 and AX = D by suitable powers of 10. If A is nol 
far enough from singular, though well scaled, repeat the 
preconditioning process. 

As an illustration of the preconditioning process, consider lhe 
system EX= 8, where 

X y y y y 1 

y X y y y 0 

E= y y X y y ,B= 0 

y y y X y 0 

y y y y X 0 

and x = 8000.00002 and y = -1999.99998 . If you atlempl to solve 
this system directly, the HP-15C culculales the solution X a nd lhe 
inverse E · 1 lo be 

2014.6 

2014.6 

X = 2014.6 andE.1 "'-' 2014.6 

2014.6 

2014.6 
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Substituting, you find 

1.00 I 46 

0.00146 

EX = 0.00146 

0.00146 

0.00147 

Upon checking (using !MATRIX! 7), you find that 1111E· 111 = 
9.9 X HJ"5, which is very small compared with IJEII = 1.6 X 104 (or 
that the calcululed condition number is large-II Ell II E. 111 = 
1.6 X 108). 

Choose any row vector u T = ( 1, 1, 1, 1, I) and calculate 

u1'E· 1 = 10,07:.1(1, I, I , 1, 1). 

Using a= 10-\ 

vr = au.,-E· 1 "" 1.007:.1(1, I, I, I, I) 

T -r -(1,1,1,1,1) 

llrTEIJ = 5 X 10· 4 

1Jr7]III E IJ"'-'8X 101
. 

As expected, llr.,.EII is small compared with llr7l111EII. 

Now replace lhe first row of Eby 

107rTE = (1000, 1000, 1000, 1000, l000) 

and the firs t row of B by I07r'fU = 107. This gives a new system 
equation AX = L>, where 

1000 1000 1000 1000 1000 )07 

.Y X y y y 0 

A = .)' y X y .Y and D = 0 

y y .)' X y 0 

y .Y y y X 0 
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Note that r7'E was scaled by 107 eo that each row of E nncl A has 
roughly the same norm ae every other. Using this new system, the 
HP-15C culculutes the solution 

2000.000080 107 

1999.999!)8() -10• f) 

X = I 999. !J!l9980 , with AX = -9 X 10·6 

I !199.999980 0 

1999.999980 0 

This solution differs from the earlier solution and is correct tu JO 
digits. 

Sometimes the elements of a nearly singular matrix E are 
calculated us ing a formula to which roundoff contributes so much 
error that the calculated inverse E-t must be wrong even when it is 
calculated using exact arithmetic. Pn,cunditioning is valuable in 
this case only if it ie app\ied to the formula in such a way that the 
modified row of A is calculated accurately. In other words, you 
must change the formula exactly into a n ew and better formula by 
the preconditioning process if you are to gain any benefit. 

Least-Squares Calculations 
Matrix operations are frequently used in /east -squa res calculu
tione. The typical leaet-equaree problem involves an II X p matrix 
X of observed data and a vector y of II observations from which you 
must find a vector b with p coefficients tha t minimizes 

II 

llrll} = Lrr 
i = I 

where r = y - Xb ie the residual vector. 

Normal Equations 

From the expression ubove, 

Solving the least-squares problem is equivulent to finding u 
solution b to the 110,mal eq11atio11s 
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x rxh = xry. 

llowever, the normal equations are very 1rnnsitive to rounding 
errors. (Orthogonal factorization, discussed on page I 1:.1, is 
relatively imienllitive to rounding errors.) 

The w eighted leasl -squares problem is a generalization of the 
ordinary least-squares problem. In it you seek to minimize 

II 

IIWrll;= Lwfrf 
i = I 

where W is a diagonal ri X 11 matrix with positive diagonal 
e le1ncnls It' 1, u•i, .... u,,,. 

Then 

and any solution b also satisfies the weighted normal equations 

xTwTWXh = xTwrwy . 

These are the normal equations with X and y replaced by WX and 
Wy. Conse(1uenlially, these equations are eeneilive lo rounding 
errors a lso. 

The li11ear/y constrai11t•d leasl-sqtwres problem involves finding b 
such that it minimizes 

llrll; =lly - Xbll/ 

subject to the constrain ls 

( tc,/>, = d, for i = I, 2, ... , 111) . 
J = I 

Cb = d 

This is equivalent lo finding a solution b lo the aug111e11tcd 1wrmc1/ 

e11unti1111s 

where I, a vector of Lagrange mullipliers, is part of the solution hut 
isn't used further. Agnin , the aul(mented equation!! ure very 
t1cnsitive lo rounding errors. Note a lso lhnt weights can also he 
included hy replacin i:- X and y with WX and Wy. 
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As an example of how the normnl equations can be numerically 
unsatisfactory for solving least-squares problems, consider the 
system defined by 

Then 

and 

[

100,000. - 100,000.l [0. ll 
QI QI QI 

X = and y = . 
0.2 0.0 0.1 

0.0 0.2 0.1 

x rx = [10,000,000,000.os -9,999,999,999.99] 

-9,999,999,999.99 10,000,000,0U0.05 

xr y = [10,000.03]. 
-9,999.97 

However, when rounded to 10 digits, 

xrx = 
[ 

,ow 

- 1010 

which is the same as what would be calculated if X were rounded to 
five significant digits relative to the largest element: 

x-["r-,r1 
The HP-15C solves X rxb = xr y (perturbing the singular matrix 
as described on page I 18) and gets 

[
0.060001] 

b = 0.060000 
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with 

X y - X Xb = . 1- r [ O.o:J~ 
0.0:1 

However, the correct least-squares solution is 

[
o.sooooon] 

b = 0.499999n 

despite the fact thnt the calculated solution and the exact solution 
satisfy the computed normal equations equally well. 

The normal equnlions should be used only when the elements of X 
are a ll small integers (say between -::IO00 and 3000) or when you 
know that no perturbations in the columns xi of X of as much as 
llx,111 I 04 could make those columns linearly dependent. 

Orthogonal Factorization 

The following orthogonal factorization method solves the least
squares problem and is less sensitive to rounding errors than the 
normal equation method. You might use this method when the 
normal equations aren't appropriate. 

Any II X p matrix X can be factored as X = qru, where(~ is an 
n X 11 orthogonal matrix charncterizecl by Qr = Q · 1 and U is an 
11 X p upper-triangular matrix . The essential properly of 
orthogonal matrices is that they preserve length in the sense that 

IIQrllf = (Qr)r(Qr) 

= r'/'Q'i'(}r 

= r1'r 

Therefore, if r = y - Xb, it has the same length as 

Qr = Qy - <~Xb = Qy - Ub. 
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The upper-triungulur mutrix U and the product Qy can be written 
as 

Then 

[
U](p rows) 

U = 0 (n - prows) d Q [
g] (p rows) 

an y = 
f (11 - prows) 

llrll ; = IIQrllJ 

= l!Qy - Ubl!; 

= Ilg - Ubll;+llfll; 

~ llrllj 

with equality when g - Uh = 0 . In other words, the solution to the 
ordinary least-squores problem is any solution to Ub = g and the 
minimal sum of s4uures is llfll}. This is the busis of all numerically 
sound least-squares programs. 

You can solve the unconstrained least-squares problem in two 
steps: 

I. Perform the orthogonal factorization of the uugmenled 
n X (p + I) mutrix 

where QT = Q · I, and retain only the upper-triungular fuclor 
V, which you cun then purtilion as 

[

U g] (prows) 

V = 0 q (I row) 

0 0 ( 11 - p - I rows) 

• Co column) 
~ (p columns) 

Only the fir11t p + I rows (and columns) of V need to he 
reta ined. (Note that Q here iB not the same as that mentioned 
earlier, since this Q mus t also transform y.) 
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2. Solve the following system for b: 

(If q = 0, replace it by any smull nonzero number, say 10·99.) 

The - I in the solution mntrix automatically appears; it 
requires no additional calculutions. 

In the absence of rounding e rrors, q = ± lly - XbllF; this may 
be innccurule ifJ11J is loo s ma ll, say s ma ller than IIYll / 106. If 
you desire II more nccurule estimate of IIY - XbllF, you can 
calcula te it directly from X , y, and the computed solution b . 

Fur the weighted least-squares problem, replace X and y by WX 
and Wy, where W i11 the diagonal mutrix containing the weights. 

For the linearly constrained least-squares problem, you must 
recognize that constraints may be inconsistent. In addition , they 
con 't a lway11 be sa tisfied exactly by a calculated solution because 
of rounding errors. Therefore, you must specify n tolerance I such 
thut the constraints are said lo be satisfi ed when l!Cb - di! < I. 
Certainly I > lldll / 10111 for JO-digit computotion, and in some cases 
a much larger tolerance must be used. 

lluving chosen I, select a weight fnctor 11• that satisfies w > IIYJI I I . 
For convenience, ch uose III lo be u power of 10 somewhat bigger 
thun Jlyll!t . Then wllCb - dll > Jlyll unless IICb - di! < I. 

llowever, the cons traint muy foil lo be satis fi ed for one of two 
reusuns: 

• Nu h exists for which JICh - dJI < I. 

• The leading columns of C arc nearly linenrly dependent. 

Check for the firnl situation by determining whether a solution 
exis ts fur the constrain I ll nlune. When I wC 11 •dl hns been factored 
to QIU i:I. sol v1• this Bystem for I., 

(p i I ~

1

: :::::: [ ~ a;.,:(,,.] [ •,] {: ]: : :::;• 

using uny 11mall nonzero number CJ. If the computed solution b 
sutisfieB Cb = d, then the 1·on.itraints nre nut incun11islenl. 
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The second situation is rarely encountered and can be ovoided. It 
shows itself by causing ot least one of the diagonal elements of U 
to be much smaller than the largest element above it in the same 
column, where U is from the orthogonal factorization wC = QU. 

To avoid this situation, reorder the columns of wC and X end 
similarly reorder the elements (rows) of b. The reordering can be 
chosen easily if the troublesome diagonal element of U is also 
much smaller than some subsequent element in its row. Just swop 
the corresponding columns in the original dutu end refactor the 
weighted constraint equations. Repeat this procedure if necessary. 

For example, if the factorization of wC gives 

_ [1.0 2.~ 0.5 - .1.5 0.3J 
U - 0 0.02 0.5 3.0 0.1 

0 0 2.5 1.5 -1.2 

then the second diagonal element is much smaller tha n the value 
2.0 above it. This indicates that the first and second columns in the 
original constraints are nearly dependent. The diogonal element is 
a lso much smaller than the subsequent value 3.0 in its row. Then 
the second and fourth columns should be swapped in the original 
data and the factorization repeated. 

It is always prudent to check for consistent constraints. The test fur 
smell diagonal elements of U can be done at the same time. 

Finally, using U ond gas the first k rows, odd rows corresponding 
to X and y. (Refer to Least-Squares Using Successive Rowe on 
page 140 for additional information.) Then solve the unconstrained 
least-squares problem with 

[
we] [wdl X+ X and y+ y J. 

Provided the colculated solution b satisfies IICb - dll < I, tha t 
solution will a lso minimize IIY - Xbll subject to the constraint 
Cb ... d. 
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Singular and Nearly Singular Matrices 
A matrix is si ngulur if und only if its determinant is zero. The 
determinant of o mutrix is equal lo (-1)' times the product of the 
diagonul elements of U, where U is the upper-diagonal matrix of 
the matrix's LU dccomputiition und r is the number of row 
interchungcs in the decomposition. Then, theoretically, a matrix is 
singular if at lcust one of the diugonul elements of U, the pivots , is 
zero; otherwise it is nonsingular. 

llowever, because the IIP-15C performs calculations with only a 
finite number of dil{its, some singulur and neurly singulur ma trices 
can't be distinguished in this way. For example, consider the 
matrix 

_ [ :I 3] _ [l 0~ [ :l :1] = 8 - - LU, 
1 1 11:t 1 0 0 

which is singular. Us ing 10-digil accuracy, this matrix is 
decomposed as 

[ 

1 
LU = 

.3:13333:133:1 
o7 [ 3 3 J 
1J 0 10· 10 ' 

which is nonsingular. The sinl{ulnr mntrix H can't be dis tin
guished from the nonsingular matrix 

D = [ :1 :11] 
.999999!)!}!)9 

since they both hnve idenlicnl culculuted I.U decompositions. 

On the other hnnd, the mntrix 

[
3 3 ] [· 

A = 1 .999!J!l!l!l!l!l!l = 1/:, 
l~ [:l 3 ] 
1J O - 10· 1II = LU 
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is nonsing ula r. Using 10-digit accuracy, ma trix A is d ecomposed 
88 

[ I OJ [3 3] LU = .333333:1333 I O O • 

Thie would incorrectly indicate that m a trix A is singula r. The 
nons ingula r matrix A can't be distinguished from the singular 
matrix 

[ 
3 3 J 

C= .9999999999 .9999999999 

since they both have identical calcula ted LU decom positions. 

When you use the HP-15C to calcula te an inverse or to solve a 
system of equations, you s hould understand that some s ingular 
and nearly singular ma trices have the same calcule ted LU 
decomposition. For this reason , the HP-15C always calcula tes a 
result by ensuring tha t a ll decomposed ma trices 11 euer have zero 
pivots. It does this by perturbing the pivots, if nece1rnary, by an 
amount that is usua lly sma ller tha n the rounding error in the 
calcula tions. This enables you to invert matrices a nd solve systems 
of equations without being interru11ted by zero pivots. This is very 
importa nt in applications such as calcula ting eigenvectors us ing 
the method of inverse iteration (refer to page 155). 

The effect of rounding errors a nd possible intentiona l perturba
tions is to cause the calcula ted decomposition to have a ll nonzero 
pivots and to correspond lo a nonsingular ma trix A + :.A usually 
identical to or negligibly different from the original matrix A. 
Specifically, unless every element in some column of A has 
abso lute va lue Iese than 10·tt!I, the column sum norm 11:.AII,· will be 
negligible (to 10 significant digits) compared with IIAllc-

The HP-15C calcula tes the determ inant of a square mat rix as the 
s igned prod uct of the (possibly perturhed) calcula ted pivo ts . The 
calcula ted determinant is the determinant of the ma trix A + :.A 
represented by the LU decomposition. It can he zero only if the 
product's magnitude becomes smaller than 10-m, (underOow). 
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Applications 
The following programs illus trate how you can use matrix 
operations to sol ve many types of advanced problems. 

Constructing an Identity Matrix 

This prog ra m crea tes a n identity matrix I,, in the matrix whose 
des1:riptor is in the Index regis ter. The program assumes tha t _the 
ma trix is a lready dimensioned to II X 11 . Execute the program us mg 
I GS B 18. The linul mutrix will have l 's for a ll diagonal elements and 
O's for a ll other elements. 

K eystrokes Dis1>lay 

@.!!PI A) Program mode. 

(] CLEAR I PAGM I 000-
[Ill LBL I 8 001-42.21. 8 
[I)!MATAIXll 002- 4 2. 16, 1 Sets i = j = I. 

(]!LBLl9 003- 42.21 . 9 
!ACLIO 004- 46 0 
!ACL) 1 006- 4 5 
[9J!TESTl6 006- 43,30. 6 Te1:1ts i # j . 

[9 l! c Lx l 007- 43 36 
(9 HTESTl5 008- 43.30. 5 Tests i = j . 

!EEX I 009- 26 Sets element to I if i = j . 

[DI USER II STO l(ili) 010u 44 24 Skips nex t step a t last 
(]!USEA I element. 
!GTO l9 011- 22 9 
[iHATNI 012- 43 32 
[!il!Pt AI Run mode. 

l.uhels used: 8 a nd ~l. 

Hegis ters used: H11, H 1• a nd I ncl cx rci:is ler. 

One-Step Residual Correction 

The following program solves the system of !'(t ll a linns A X = B for 
X. then performs one s l a l(e iterative refinement lo improve the 
solution. The program usc1:1 four matrices: 



Appendix 

Accuracy of 
Numerical Calculations 

Misconceptions About Errors 
Error is not sin, nor is it a lways II mistake. Numerical error is 
merely the difference between what you wis h to calculate and what 
you get. The diffe rence matters only if it is too big. Usually it is 
negligible; but sometimes error is distressingly big, hard to 
explain, and harder to correct. This appendix focuses on errors, 
especially those that might be large-however rare. Here are some 
examples. 

Example 1: A Broken Calculator. Since(/;'?- = x whenever 
x;;, 0, we expect also 

_ ✓ ~ 2 2 2 2 /(x) - (( ... ((v .. . v vi) ) ... ) ) 

should equa l x too. 

---50 
routs 

----,-
50 

squares 

A program of 100 steps can evaluate the expression /(x) fur any 
positive x. When x = 10 the HP-15C calculates 1 instead. The error 
10 - 1 = 9 appears enormous considering that only 100 arithmetic 
operations were performed, each one presumably correct to 10 
digits. What the program actua lly delivers instead of/( x) = x turns 
out to be 

/(x) = { 0 
for.1: ;;, 1 

forU ,:;; x < I, 

which seems very wrong. Should this calcula tor be repaired? 
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~ 
~G I c -,~ 
c .,~ 
c,~ 
c . !) 

C ~ 
C :> 
C ~ 
~ ~ 

C :> 
C ~ 

C :> 
C :> 
C :> 
C :> 
C :> 
C ~ 
C ~ 

~'~ ~!-~ 
~ · ~ 
~-~ 
~ --;-
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ExnmJ)le 2: Many Pennies. A corporation retains Suimn a!I a 
scientific and engineering consultant at a fee of one penny per 
second for her thoughts , paid every second of every day for a year. 
Hather tha n dis tract her with the sounda of pennies dropping, the 
corporation proposes to deposit them for her into a bank account in 
which interest accrues a t the rate of 11 1/4 percent per annum 
compounded every second. At year's end these pennies will 
accumulate tu a !!um 

(I + i/11 )" - I total = (payment) X -'----...;_ _ _ 
ii II 

where payment = $0.01 = one penny per second, 

i = 0.1125 = l l .2fl percent per annum interest rate, 

11 = 60 X 60 X 24 X 365 = number of seconds in a year. 

Using her 1-11'-lf>C, S usan reckons that the total will be 
$376,877.67. Hut at year's end the bunk nccount is found tu hold 
$:133,783.;J5. Is Susan entitled tu the $-1:1,094.32 difference'? 

In hoth examples the discrepancies a re caused by rounding errors 
that could h ave been avoided. This appendix explains how. 

The war againsl error begins with a salvo against wishful 
thinking, which mig ht cun fmie what we want with what we get. To 
a void confusion, lhe lrue and calculated rcsulls mus l be given 
different names even lhough their difference may he so small that 
the distinction seems peda nlic. 

Example 3 : Pi. Theconslant rr = :.l.14l!i9265358979a2:184626433 .... 
Pressing theGJ key on the I IP-15C delivers a different value 

0 = 3. l 41592fifl4 

which agrees wilh rr to 10 significant digits. Rut GJ °"' rr, so we 
s hould not he s urprised when, in Hadiana mode, the calculator 
does n'l produce sin GJ = 0 . 

S uppose we wis h to calculate x hut we gel X instead. (This 
convention is used throughout this appendix.) The error is x - X. 
The ahsulufr nror is Ix - Xj . The relutiu,· ,·rror is us ually reckoned 
(x - X )/ x fur x°"' U. 



174 Appendix: Accuracy of Numerical Calculations 

Example 4: A Bridge Too Short. The lengths in meters of three 
sections of a cantilever bridge are designed lo be 

X = 333.7(i y= 195.07 z = 33:1.76. 

The measured lengths turn out lo be respectively 

X = 33:1.69 Y = 195.00 Z = 333.72. 

The discrepancy in total length is 

d = (x + y + z) - (X + Y+ Z) = 862.59 - 862.4 1 =0.18 . 

Ed, the engineer, compares the disc repancy d with the total length 
(x + y + z) and considers the relative discrepancy 

dl (x + y + z) = 0.0002 = 2 parts in 10,000 

lo be tolerably small. But Rhonda, the riveter, considers the 
absolute discrepancy I di = 0.18 meters (about 7 inches) much too 
large for her liking; some powerful stretching will be needed to line 
up the bridge girders before she can rivet them together. Both see 
the same discrepancy d, but what looks neglibible to one penmn 
can seem awfully big to another. 

Whether large or small, errors must have sources which if 
unders tood, usually permit us lo compensate for the errors o; to 
circumvent them altogether. To understand the distortions in the 
girders of a bridge, we should learn ubout structural engineering 
and the theory of elasticity. To understand the errors introduced by 
the very act of computation, we s hould learn how our calculating 
instruments work and what a re their limitations. These arc details 
most of us want not lo know, especially since a well-designed 
calculator's rounding errors ore a lways nearly minimal and 
therefore appear insignificant when they are introduced. Hut when 
on rare occasions they conspire lo send a computation awry, they 
must be reclassi fied as "significant" nfler all. 
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Example I Explained. Here/(x) = s(r(x)), where 

r(x) = JJ ... ~ = x1•1/ •"1 

--,--

and 

50 
roots 

s( r) = (( ... (( r)i)i ... f)l = r't'''". ..__,__, 
50 

squares 

The exponents are 1;/"1= 8.8818 X 10-11; and :("' = J.1259 X JO"'. 
Now, x must lie between 10-!19 and !l.9H9 ... X IO!~I since no positive 
numbers outside that range can be keyed into the calculator. Since 
r is an increasing function, r(x) lies between 

r( 10-!l!I) = 0.99999!)99(19997975 ... 

and 

T( JOIIKI) = ) .0000000000002045 .... 

This suggests that R (x ), the C"alculatcd value of r(x ), would be J for 
ull valid cnlculutor arguments x. In fact, hecuuse of roundoff, 

{ 

0.99999!)!)999 
R(x) = 

I .000000000 

forO < x < I 

for I ~ x ~ 9.99999!)999 X 10!1
~. 

If O< x < I, then x ~ O.!l!l9!)9999!JH inn IO-digit calculator. We 
would then rightly expect that , ,x ~ \'10.9!l!l9!J!lfl9!l!l, which is 
0.9!l9!l!l!l!Hl!l!l•l!l9!J!lH!J!J!l9/l ... , whiC'h rounds lo O.!l9!l9!JH!l9!J9 again. 
Therefore, if l]D is pressed arhitrnrily often starting with x < I, the 
result cannot t•xceed 0.!l!l!l!l!.l!l99!J!l . This explains why we obtain 
R(x) = O.!l!l!l!J!Hl!l!J!l!l for O < x < l a hove. When R(x) is squured 50 
times tu produ,·e F(x) = S(R(x)), the result is clearly I for x ;;a I, hut 
whyisf'(x) = OforO :s; .\· < l'! Whenx < I, 
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This vnlue is so small that the culculated value F(x) = S(R(x )) 
underflows lo 0. So the IIP-15C isn't broken; il is doing the best that 
can be done with 10 significant digits of precision and 2 exponent 
digits. 

We have explained example 1 using no more information nbout the 
HP-15C than that it performs each arithmetic operation@] and IZ) 
fully as accurately us is possible within the limitations of 10 
significant digits and 2 exponent digits. The rest of the information 
we needed was mathematical knowledge about the functions/, r, 
ands. For instance, the value r(l0 11IO) above wue evaluated as 

r()0llKI) = (10100)"/};0I 

= exp (In ( I olll0)/2~"1) 

= exp (100 (In 10)/250) 

= exp (2.045 X 10-1:1) 

= I+ (2.045 X 10-1:1) + 1/,(2.045 X 10- 1:1)2 + ... 

by using the series exp (z) = 1 + z + 1i,z2 + 'l~z3 + .... 
Similarly, the binomial theorem was used for 

) 0.9999999999 = (I - 10-10) '11 

These mathematical fuels lie well beyond the kind of knowledge 
that might have been considered adequate to cope with a 
calculation containing only a handful of multiplications and 
square roots. In this respect, example 1 illus trates an unhappy 
truism: Errors make computation very much harder to analyze. 
That is why a well-designed calculator, like the HP-15C, will 
introduce errors of its own as sparingly as is possible at a tolerable 
cost. Much more error than that would turn an already difficult 
task into something hopeless. 

Example 1 should lay two common 111isco11ceptiu11s to rest: 

• Rounding errors can overwhelm a computation only if vast 
numbers of them accumulate. 

• A few rounding e rrors can overwhelm a computation only if 
accompanied by massive cancellation. 
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Hel-(nrding the first misconception, example I would behave in the 
same perverse way if it suffered only one roundin!( error, the one 
that produces R(:c) = I or 0.999~1999999, in error by less than one 
unit in its last ( 10th) significant digit. 

Hegardin!( the second misconception, cancellation ii; what happens 
when two nea rly equal numhcrs are s ubtracted. For example, 
calculating 

c(:c) = (I - cos x)l x l 

in Hadians mode for small values of x is hazardous because of 
cancellation. lls ini: x = 1.2 X 10-r, and rounding results to 10 digits, 

COS X = 0.999!)999999 

and 

1 - cos x = 0.000000000 I 

with cancellation leaving maybe one significant digit in the 
numerator. Also 

Then 

C(x) = 0.6944. 

This calculated value is wrong because O,,; r(x) < 1/, for ull x ~ 0. To 
avoid numerical cuncellalion, exploit the tri!(onomclric identity 
cos x = 1 - 2 sini(xn) lo cancel the 1 l'Xart/y and ohluin n better 
formula 

1 ( sin (x n) ) 1 
r(x) = - ---- . 

2 xn 

When this latter expression is evalua ted (in Hadians mode) at 
x = 1.2 X 10-r,, the computed res ult C(x) = O.fl is correct lo 10 
s ignificant digits. This example, while cxplainin!( the meanin!( of 
the word "cancellation," SUl{!(csls that it is always a had thin!(. 
Thul is another misconception lo be dispatched Inter. For the 
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present, recall that example I cnnlains nu s ubtruclinn, therefore nu 
cancella tion, and is still devastated by its rounding error. In this 
respect example I is counterintuitive, a little bit scary. Nowhere in 
it can we find one nr two ari thmetic operations lo blame for the 
cala1:1trophe; no small rearrungemcnl will set every thing rii:ht ns 
happened for c(x ). Alas, example I is nol an isolated example. As 
computers ond calculalur1:1 grow in power, so do inslonc1•1:1 of 
insidious error growth become more common. 

To help you recognize erro r growth and cope with it is the ultimate 
gnal nf this appendix. We s hall start with the simples t kinds of 
errors a nd work our way up gradually lo the subtle errors tha t con 
a fflict the suphistico ted computations pn!lsible on the 111'-l f>C. 

A Hierarchy of Errors 
Some errors ore easier lo explain und lo tolerate than others. 
Therefore, the functions delivered by single keystrokes un the 
IIP-15C have bee n categorized, for the purpuse1:1 of easier 
exposition, according to how difficult their errors ore to estimate. 
The estimates should be regarded us goals set by the ca lculator's 
designers rather than as specifications that guarantee 1:1nme staled 
level of accuracy. On the other hand, the designers believe they can 
prove m othemat ically that their accuracy goals have been 
nchieved, ond extensive testing h as produced no indication so far 
that they might be mistaken. 

Level 0: No Error 
F unctions which should map smnll integers (smaller thun 10111) tu 
small integers do so exactly, without error, us you might expect. 

Examples: 

14= 2 - i 1=-8 

log (10!1) = 9 

3111 = 3,486,784,401 

6! = 720 

cos- 1(0) = 90 (in Degrees mnde) 

AUS(4 ,6!:l4,660 + 4,684,6fl9i) = 6,6:lfl, 109 (in Complex mode) 

Also exact for reol urgments ure !ABS I. !FRAC l. !tNTI, (ANDI, and 
comparisons (such as~). !Jut the ma tri x functions 0 , [D, ~. 
I MATRIX 16, and I MATRIX 19 (determinant) arc exceptions (refer to 
poge 192). 

I / 1 t 

Level 00: Overflow/ Underflow 
Heirn ltM which would lie closer lo zero than 10-:m undernow quietly 
lo zero. Any resu lt that would li e lwvo nd the nvcrllow threi;lwlds 
J !L!J!l!l!J!l!l!J!Jfl X 11111!1 is replac1!d hy ti;,: nearest threshold, and then 
llag !.I is set and the display hi inks. (l'ressi111d.illi]@illor @9 or[B 
will clea r nui: !land s top the blinking.) Most functions that result 
in more than one cwnponcnt cun tolerule ovcrllow/ undernow in 
one 1·om1,0111cnl wi thout contaminating the other; examples ure 
(;+]], [+fl, com(llex arithmetic, and must matrix operations. The 
exceptiom1 ure matrix inversion ({1:z:;t) und [D), !MATRIX!9 
(determinant), and (IK]. 

Level 1 : Correctly Rounded, or Nearly So 
Opera tions tha t dl'liver "c·nrrectly rnundl•d" results whose erro r 
cannot cxn•1•d ':, unit in their la!il ( l lll h ) !lignificunl digit include 
the real algebraic 011eralions[±J,[J,0. (D.[Z], (K].~. and ill), 
the com(llcx a nd ma tri x operations [D und O. ma tri x by scalar 
opcratiuns 0 urul G](cxcluding di vision by u matrix), u nd !+H.MS]. 
These n•s ult s arc the hest tha t 10 sii:nifirnn l digits can represent, 
as arc familiar rnnstanls 0, 1 0. 2 lffi], 10 (TID, 1 !+RADI. und 
many more. Opt-rations that can s uff,·r a s ligh tly larger error, but 
s till 1:1ii:nifica11Lly s maller Lhun one unit in the 10th significant digit 
of the result , irwlucll' [~~ . !+HJ. [+RA6], [+OEGI. ~. and~; 
[TID . [LOG], [Ioi], and @NH] for rea l 11rgument1:1: I +Pl.~. I cos 1 I, 
@"'1. ~ INH~. [cosif], and !TANH'] for rcul and complex 
ari:uments; ~B[j, [Kl, and [th] for cum(llcx arll'uments; matrix 
norms I MAIB}x) 7 uncl [MAIBix] 8; and finally I SIN I. [ COS I. uncl ( TAN J 

for real :Hll'IIIIWnt:; in Dci:rees and Grads modes (bu t not in 
Haclians mode- refer lo Level 2, pai:e 18-l). 

A fu1wti11n Llwl ll'l"OWS 111 oc. ur decays lo O 1•xpo111•11tially fast as it s 
arll'um1·nl a(lproac·lws I oc may suff,·r a n errnr laq!1•r lhan une unit 
in it s 10th sill' nif"it-a nl dii:il , hut only if its rnai:nitudt• is s malh·r 
than 10-~11 or lari:cr than 10~11

: aml Lhoull'h the rela ti ve error i:1•ts 
wors;• as tlw n•su lt ll'••ls nwn• 1·xlre1111· (small or lari:e), the error 
sla.vs lll'low thrl'l' unil s in LIil' last t llllh l sill' nifican l clii:it. T he 
n•asun for this 1·rrur is 1•xplai1w1l lall'r. Functions so affected are 
[2], G,'], (~] (fur 1wn inll·ll'•'r .rl. [~TNt{], and !COSH! for real 
ari:unwnls. TIil' wors t cas1• known is :1~111, which is calcula ted as 
7.!lti8'1 I !llili-1 ~- 111i,:,_ 'l'h1• last dii:it •I s hnuld hi' fi instcnd, as is the 
1·ns1i for 7.:m·'·"'. c;tlculatl'cl as 7.!llill-11 !llifili ">-. lit~"-
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The foregoing slalcmenls abuul errors can be summarized for a ll 
funclions in Level I in u way lhal wi ll prove convenient later: 

Attempts to calculate n function / in Level I produce 
instead a computed value F = (I + ,)/whose relative error 
,, though unknown, is very small: 

Id < 
{ 

5 X 10-10 if Fis correctly rounded 

I X 10-9 for all other functions Fin Level I. 

This simple characlerization of all the functions in Level I foils to 
convey many other important properties they all possess, 
properties like 

• Exact integer values: mentioned in Level 0. 

• Sign symmetry: sinh(- x) = - sinh(x ), cosh(- x) = cosh(x ), 
ln(l /x) = - ln(x) (if 1/ xis computed exactly). 

• Monotonicity: if /(x) ;i, /(y), then computed F(x) ;i, F(y ). 

These additiona l properties have powerful implicalions; for 
instance, TAN(20°) = TAN(200 °) = TAN(2,000°) = .. . = 

TAN(2 X 1099 0) = 0.,!63970234:l correctly. But the s imple character• 
ization conveys most of what is worth knowing, and that can be 
worth money. 

Example 2 Explained. Susan t ried to calculate 

(I + i / 11)" - I total = payment X -'---...:..._ __ 
iln 

where 

payment = $0.01, 

i = 0.1125, and 

n = 60 X 60 X 24 X :.165 = 31,536,000. 

She calculated $376,877.67 on her IIP-15C, but the bank's total was 
$:.133, 78:J.35, and this latter total agrees with the results calculated 
on good, modern financial calculators like the HP-12C, HP-:17E, 
HP-381':/38C, and HP-92. Where did Susan'll calcula t ion go awry? 
No severe cancellation, no vast accumulation of errors; ju1Jt one 
rounding error that grew insidiously caused the damage: 
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i / 11 = 0.00000000:lfifi7:l:il598 

I -t i I 11 = I. 000000004 

when rounded to 10 significant digits. There is lhe rounding error 
that hurls. Subscquenl ly atlempting to calculate (I+ i l n)", Susan 
must get instead (1.000000004):11 •5:m.iHMt = 1.134445516, which is 
wrong in ils second decimal place. 

How can the correct value be calculated'? Only by not throwing 
away so muny digits of i / 11. Observe that 

( I + i / 11)" =e"lnl l , , "', 

so we m ight try to calcu late the logarilhrn in some way that does 
not discard t hose precious digits. An easy way to do so on lhe 
HP-I 5C does exist. 

To calculale >-(x ) = ln( I t- x)accurately for all x > - 1,even if !xi is 
very small: 

I. Culculate u = I + x rounded. 

2. Then 

{

X 
>-(x) = 

ln(u)x/ (u - I ) 

ifu = I 

ifu;o'I. 

The fo llowing program calcu lates >.(x) = In( I+ :c). 

Keystrokes Uisplay 

[9. )iP/AI 

m cLEAR I PAGM 1 000-

[Il!LBLl0 001 - 42,21 ,11 Assumes x is in X-register. 

[]NTEA I 002- 36 

!ENTER! 003- 36 

!EEXI 004- 26 l'lnces I in X-registcr. 

0 005- 40 Calculates 11 = I + x 
roun,led. 

[ij][ill] 006 - 43 12 Culculates ln(11) (zero for 
11 = I). 

~ 007- 34 Hes tores :c to X-regisler. 

[9ULSTrl 008- 43 36 Ht!calls u. 



Keyt1trokes Displ uy 

!EEX ) 009- 26 Places 1 in X-rel(ister. 
[[JITESTl6 010-43.30. 6 Tests 11 ~ 1. 

G 011- 30 Cnlcula tl's 11 -· I when 
II ~ I. 

G 0 12- 10 Calculat1•sx / (11 - l )or 
11 1. 

0 013- 20 Cnln1lates ,\(x). 

illlRTNI 014- 43 32 
(]: HP/RI 

The calculated value of 11, correctly rounded hy the lil'-l :1C, is 
u = (I + t) (I + x), whereld < 5 X 10· "'. lf u = 1, then 

lx l = i l l (l +t) - Jl ~ 5 X I0· 111 

too, in which case the Tay lor series ,\(x ) = x /1 - 'hx t- 1/oxi - .. . ) 
tells us that the correctly rounded vahw of .\ (x ) mus t he just x . 
Otherwi!le, we shall calculate x ,\( 11 - 1 ), ( 11 - 11 fairly uccuratl'ly 
instead of ,\(x). But ,\(x ) / x = 1 - 'l, x I· 'l:oxl - ... varies very s lowly, 
so s lowly that the absolute error ,\(x )/ x - A(u - l )/ (11 - I) is 1w 

worse than the absolute error x - ( 11 - I ) = - t( 1 + x ), and if x ~ I, 
this error is nei:ligible relative to ,\(x)l x. When x > 1, then 11 •• I is 
so nearly x that the error is negligihle ni:ain; ,\(x) is correct lo nine 
significant digits. 

As usua l in error analyses, the explanation is far longer than the 
simple procedure being explained and obscures an importa n t fact: 
the errors in 111(11) and 11 - I were ignored du ring the explanation 
because we knew they would he nei:ligihle. T h is knowledge, and 
hence the s imple procedure, is invalid 1111 some olher calculators 
and big computers! Machines do ex is t which calculate In( 11) and/ or 
I - 11 with small absolute error, hut large rl'lnti1w error when t1 is 
near 1; on those machines the forei:oing calculations must he 
wrong or much more complica ted , oflen hoth . (Hefor to the 
discussion under Level 2 for more ahoul thi!:!.) 

Back Lo Susan'11 s um. By us ing the foregoing s imple procedure lo 
calculate .\(i/ 11) = In(!+ i / 11 ) = :l.:if;7:l!i l fi!)l X 10·", she uhtnimi 11 
better value: 

(I -f- i / 11)" = ('IIA(I "' = l.11 !)072,!:,7 

'·', .. . 
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from which the correct total follows. 

To unde rs tand the error in aw•, note that this iH calculated us 
etu1 1111:11 = ,,w1.Ht1..._ To kee11 the final relative error below one unit in 
the 10th s ignificant digit, 201 ln(:l) would have to be calculated 
with an absolute error rather smaller than 10•1U, which would 
entail currying al leas t 14 significant dii:its for tl~u ~ intermedia_te 
value. The cnlculutor does carry 13 s ii:nificant cltg1ls for cerla rn 
intermediate calculations of its own, but a 14th digit would cost 
more than it's worth. 

Level 1 C: Complex Level 1 
Most complex arithmetic functions cunm'.t guarante_e 9 _ ? r 10 
correct significant cli1dts in each of a results real a nd 1mag111ary 
purls scpurately, a lthough the result will conform lo the summa ry 
s tatement about functions in Level 1 provided /, F, and • are 
interpreted us complex numbers. In other words, every complex 
function / in Level IC will produce a calculated complex v~lue 
F = ( 1 t- <)/ whose smull complex re lulive error t mus t satisfy 
l•I < 10·9 . The complex functions in Level IC are@, G, [2), [!]], 
I LOG I. ~I.I cos' I. !TAN' I. !SINH·' l. !COSH1 I. and !TANH·' I. Therefore, 
u function like.\( z) = In( 1 + z) can be calculated accurately for a ll z 
by the same program as given above and with the same 
explanation. 

Tu understand why a complex res ult's real a nd imaginary parts 
might not individua lly he correct lo 9 or 10 significa'.1t digi ts, 
consider 0, fur example: ( n + ihl X ( c +id) = (ac - hd) + 1(ad + be) 

ideally. Try this with a = c = !J.99!J!l!l!J9!JR, b = !l.999999999, and 
d = 9.99!J9!J!J!l!J7; the exact value of the product's rea l part ( nc - bd) 
should then be 

(!l.9!1ml!l9!1!)8)t - (9.!)!J!J9!1!J9!JU) W.9!1!J!)!l!l!l97) 

= !l!J.9!)9!1!1!1980000000004 - !l!J.99!J!l999H0U0000000:3 

= l()• I X 

which requires that a l leas t 20 significant digits he carri_ed ~uring 
the intermediate cah-ulation . The 111'- l f>C carries l:l s1g111ficant 
digits for internal inli'rmediate re11 ull.>1, and therefo_re ohta_in_s 0 
in11tead of I()" I H for the rea l part, hu t this error 1s neghg1ble 
compared to the imaginary part 199.99!19!19!1 . 
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Level 2: Correctly Rounded for Possibly 
Perturbed Input 

Trigonometric Functions of Real Radian Angles 

Hecall example 3, which noted that the calculator's@ key delivers 
an approximation to ,r correct to 1U s ignificant digits but still 
slightly different from "• so O = sin( ,r) 7' sin(@) for which the 
calculator delivers 

fSIN!{G]) = - 4.IUOOOOOOO X 10· 10. 

This computed value is not quite the same us the true value 

sin(@) = -4.10206761537356 ... x 10- 10. 

Whet~er the discrepa ncy looks small (absolute error less thun 2.1 
X I 0· 1

•
1
) or relatively !urge (wrong in the fourth s ignificant digit) for 

a JO-significant-digit calcula tor, the discrepancy deserves to be 
understood because it foreshadows other e rrors that look at first 
s ight, much more serious. ' 

Consider 

I 0 14 ,r = 314159265358979.3238462613 ... 

with sin 0014 ,r) = 0 and 

1014 X0 = 314159265400000 

with I SIN !0014 0) = 0.7990550814, a lthough the true 

sin 00140) = -0.78387 .... 

The wro~g sign is an error too serious to ignore; it seems to s uggest 
a defect m the ca lculator. To understa nd the error in trigonometric 
functions we mus t pay a ttention to small differences umong ,rand 
two approximations to ,r; 

true ,r = 3.1415926535897932384626433 ... 
key 0 = 3.141 59265,t (matches,rto lOcligits) 
interna l p = 3.141592653590 (matches" to 13 cligits) 

Then all is explained by the following formula for the calcula ted 
va lue: fSIN !(r) = sin(r,r/ p ) to within ±0.6 units in its last (10th) 
s ignificant digit. 

More generally, if trig(x) is a ny of the functions sin( r ), cos(x), or 
tan(r), evaluated in real Radians mode, the HP-15C produces 
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I TRIG I< x) = trig(r ,r/ p) 

to within ±0.U unitt1 in its 10th significant digit. 

This formul a hus impurtunl practica l implications: 

• Since rr/ p = I - 2.067li ... X 10•1:1; p = 0.9999999999!199342 ... , 
the va lue produced hy [fruG](x) differs from trig(r) by no more 
than con be uttributed to two perturbations: one in the 10th 
s ignificant digit of the output t rii:( r ), and one in the 13th 
sii:nilicant digit of the input x. 

If x has heen calcula ted and rounded to 1U significunt digits, 
the error inherited in its 10th Mignificunt digit is probably 
ordeni of mugnitude bigger than fTRIG!'s second perturba tion 
in r's 13th s ignificant digit, MO this second perturbation can be 
ignored unless xis regarded as known or calcula ted exactly. 

• Every trigonometric identity that does nut explicitly involve rr 
is satis fied to within roundoff in the 10th s ignificant digit of 
the ca lculated values in the identity. For insta nce, 

sin~(.-.:)+ cos~(r) = I, so(! SIN !(x))z + (f COS !(x))l = I 

sin(x )/ cus(x) = tan(x ), so I SIN Hx )/ I COS !(x) = I TAN Hx) 

with each calculutecl result correct to nine significant digits 
for a ll x . Note that I COS !(x) vanish es for no value of x 
representable exactly with jU!1t IO s ignificant digits . And if 2x 
can be calculated exactly given x, 

s in(2x) = 2sin(x )cos(x ), so f SIN !(2x) = 2 1 SIN !(x)f COS l<x) 

tu nine s ignificant digits. Try the last identity for x = 52174 
radiuns on the 11 I'-I 5C: 

f SIN !(2x) = -0.00001100815000, 

2! SIN !(xlf COS !(x) = -0.00001100815000 . 

Note the close agreement even though for this x, sin(2x) = 
2sin(x )cos(x) = -0.000011 OJ fill l 7n ... disagrees with f SIN !(2x) in 
its fourth significant digit. The same identities nre sutis fied by 
ITRIGH xl values as by trig(x) values even thoughfTAIG!(x) nnd 
trig(x) may disagree. 

• Des pite the two kinds of errors in !TRIG!, its computed va lues 
preserve fnmiliar relati1111s hipt1 wherever possible: 

• Sign symmetry: fCOS!(-x) = I COS!(x ) 
I SIN !(- x) = -I SIN!(x) 
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• Monotonicity: ifLrig(x) ;;, Lrig(y), 
then !TRIG !(x) ;., (ffttG](y) 
(provided Ix - YI< :I) 

• Limiting inequa lities: I SIN!( x )I x ,a; I for all x -,e 0 
!TANl(x)/ x;;, I forO < lxl < rr/'2 
- 1 ,,; js1Nl(x)ancl!COS!(x) ..; I 
for a ll x 

WhnL do these properties imply for cngineerinl{ calculations? l'uu 
don't hcwe lo remember them! 

In general. engineering calculations will not be affected hy the 
difference between p and rr, because the consequences of that 
difference in the formula defining !TRIGl(x) above are swamped by 
the difference hetween 0 and rr nnd by ordinary unavoidable 
roundoff in x or in trig(x ). For engineering purposes, the ratio TT I p 
= 0.9!J999!l!J!J9!)99!lJ42 ... could be replaced by I without vit1ible 
effect upon the behavior of! TRIG I. 
Example 5: Lunar Phnses. If the distance between our Earth 
and its moon were known accurately, we could calculate the phase 
difference between radar signals transmitted to and reflected from 
the muon. In this calculation the phase s hift introduced by p -,e TT 

has less effect than changing the dista nce between Earth and 
moon by us lillle us the thickness of this page. Moreover, the 
calcu lation of the strength, direction , and rate of change of 
radiated signals near the moon or reflected signals near the 1':arth, 
calculations that depend upon the trigonometric identities' 
continuing validity, are unaffected by the fact thutp -,e TT; they rely 
instead upon the fa ct that p i11 a constant (independent of x in the 
formula for I TRIG l(x )), and that constant is very neur TT. 

The lll'-15C's keyboard functions thut involve p are the 
trigonometric functions I SIN I. [cos], and !TAN I for real and rnmplcx 
a rguments; hyperbolic functions I SINH I. I COSH I, and I TANH I for 
complex arguments; complex operations ~. ~. and 0; and 
real and complex !+R I. 

It all seems like much ado about very little. After a hlizzard uf 
formulas and examples, we conclude that the (,rror caused by p -1- TT 

is neglil{ible for engineering purposes, so we need not have 
bothered to know ahout it. Thul is the burden that conscientious 
error analysts must heur; if they merely look for granted that s mall 
errors nrc nel{ligible, they mi1;ht be wrong. 
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Backward Error Analysis 

Until the late 19fi0'11, must computer 1•xpcrts incl ined to paranoia in 
their a ss1•ss111cnts uf the damal{c done tu numerical computations 
hy rou11din1; errors. To justify their paranoia, they could ci te 
published error analyses like the one from which a famous scientist 
concluded that matrices as larl(c at1 40 X 40 were almost certainly 
impossible tu invert numerically in the face of roundoff. However, 
by the mid l ~lliU's matrices as larl{t! as 100 X 100 were heing 
inverted routinely, and nowadays equations with hundreds of 
thousands of unknowns are being solved during i:eodctic 
ca lculations worldwide. llow can we reconcile these accomplish
mt!lltS with the fact that that famous scien tis t 's mathematical 
analysis was quite correct'! 

We understand better now than then why different formulas to 
calculate the same result might differ utterly in their degradation 
by rounding errors. For ins tance, we understand why the normal 
equations belonginl{ Lo certain leas t-squares problems can be 
solved only in arithmetic carrying cxtrnvagantly high precis ion; 
this is what that famous scientist al'lually proved. We also know 
new procedures (one is presented 1111 pal{e 1•10) tha t can solve the 
same least-squares problems without carrying much more 
precision than s uffices to represent the data. The new and better 
numerical proccdun,s arc not uhvious, and mil(ht never have been 
found hut for new and heller techniques of error analysis by which 
we have learned lo distinl(uish formulas that arc hypersensiti ve to 
roundin~ errors from formulas that aren't. One of the new (in 19fi7) 
technique:; is now called "backward error analysis," and you have 
already seen it in action twic1,: fi rnt, it explained why the procedure 
that rnlculutes ,\(x ) is accurate cnou~h to dispel the inaccuracy in 
example 2; next, it explained why llw calculator 's !TAIGI functions 
very nearl y s ati sfy the same idenlilies as nrc satisfied by trig 
functions cv1,n for huge radian arguments x at which I TRIG I( x) and 
tril{(X) ran l,e very cliffcrcnt. Tlw followinl{ paragraphs explain 
backward error analysis its1•lf in l(e1wral terms. 

Consider some system I-' intended to transform an input x into an 
output .Y = /(xi.Fur instance, Fcould he a si1;n11l amplifier, u filter, 
a transdueer, a control sysh•m, a refinery, a country's economy, a 
computer pro~ram, or a 1·:tlculalor. Th,· input and output need nol 
he nu111lwni; llw.v could he ,wts of numhcrs or matrices or anything 
else quanti tative. Were tlw input .r tu loe l'onlaminatcd hy noise .ix, 



188 Appendix: Accw acy of Nu111errcal Calculations 

then in consequence the output y + ..l.y = f(x + ..l.x) would generully 
be contaminated by noise uy = f(x + ux) - f(x). 

x-0---y = f(x) 

Llx 

x~y= f(x+Llx) 

No Noise Noisy Input 

Some transformations fare stable in the presence of input noise; 
they keep uy relatively email as long as ..l.x is relatively email. 
Other trnneformatione f may be unstable in the presence of noise 
because certain relatively small input noises ..l.x cause relatively 
huge perturbations uy in the output. In general, the input noise t.x 
will be colored in some way by the intended transformation f on the 
way from input to output noise uy, and no diminution in ~y is 
possible without either diminishing ux or changing f. Having 
accepted f as a specification for performance or as a goal for 
design, we must acquiesce to the way f colors noise at its input. 

The real system F differs from the intended f because of noise or 
other discrepancies inside F. Before we can appruise the 
consequences of that internal noise we must find a way to 
represent it, a notation. The simplest way is to write 

F(x)=(/HfXx) 

where the perturbation of represents the internal noise in F. 

r--------7 
I I 
I I 

X 
I I 

--~-y = F(x) 

I Fl L ________ ..J 

One Small Oulput Perturbation (level 1) 

We hope the noise term of is negligible compared with f . When that 
hope is fulfilled, we classify F in Level I for the purposes of 
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exposition; this means that the noise internal to F can be explained 
as one small addition of to the intended output f . 

For example, F(x) = Q;fil(x) is clatrnified in Level I because the 
dozens of email errors committed by the HP-15C during its 
calculation of F(x) = (/ + o/)(x) amounts to a perturbation of(x) 
smaller than 0.6 in the last (10th) significant digit of the desired 
outputf(x) = ln(x). But F( x) =I SIN l(x) is not in Level I for radian x 
because F(x) can differ too much from f(x) = sin(x); for instance 
F(I0140) = 0.799 ... is opposite in sign from f(I0 140) = - 0.784 ... , 
so the equation F(x) = (/ + o/)(x) can be true only if ofie sometimes 
rather bigger than f, which looks bud. 

Real systems more often resemble! SIN I than Q;fil. Noise in most real 
systems can accumulate occasionally to swamp the desired output, 
at least for some inputs, and yet such systems do not necessarily 
deserve condemnation. Many a real syshim F operates reliably 
because its internal noise, though sometimes large, never causeR 
appreciably more harm than might be caused by some tolerably 
small perturbation ox to the input signal x. Such systems can be 
represented as 

F(x) = (/ + o/)(x + ox) 

where of is always small compared with f and ox is always smaller 
than or comparable with the noise t.x expected to contaminate x. 
The two noise terms of and ox are hypothetical noises introduced to 
explain diverse noise sources actually distributed throughout F. 
Some of the noise appears as a tolerably small perturbation ox to 
the input- hence the term "backward error analysis." Such a 
system F, whose noise can be accounted for by two tolerably small 
perturbations, is therefore classified into Level 2 for purposes of 
exposition. 

X 

~ 0--i r0-i 7 
: [ _4>-L-0-~y= F(x) 

I F I L ____ ____ ____ ___ J 

Small lnpul and Ou1put Perturbations (Level 2) 



Nu difference will be perceived al first hetween Level I a11<I Level 2 
by readers accustomed Lo linear systems a nd small sil{nals lwcause 
such systems' errors can he referred indiscriminately lo output or 
input. However, other more general systems that arc digital or 
nonlinear do nut admit arbitrary reattrihution of output noise lo 
input noise nor vice-versa. 

For example, can nil the error in (cos] he attributed, mcn•ly by 
writing !COSl(x) = cos(x + 6x), lo a n input perturbation 6x small 
compared with the input x? Not when xis very small. For instance, 
when x approaches w -r, rad ians, then cos(x) falls very near 
0.9!J!l9!l!HHW95 and must then round to either I = cos(O) or 
0.99!-l!l9!l!l!JB9 = cos( 1.414 ... X 10"''). Therefore I COS !Lt) = cus(x +/ix) 
is true only if 6x is allowed lo be relatively larl{c, nearly as large as 
x when xis very small. If we wish to explain the error in I COS I hy 
us ing only relatively small perturbations, we need at least two of 
them: one a perturbation 6x = (-6.58 ... X 10"14).r s maller than 
roundoff in the input; and another in the output comparable with 
roundoff there, so thnt ICOS!(x) = (cos+ 6cos )(x + 6.r ) fur some 
unknown lo5cosl .,; (6 X io· W)jcusl. 

Like I COS l. every system Fin Level 2 is chnraclerized hy just two 
small tolerances- call them , and 1)-thal sum up ull you have lo 
know about that system's internal noise. The tolerance, constrains 
a hypotheticnl output noise, I 6fl ~ •lfl, and 'l rnnslrains n 
hypotheticnl input noise, l6xl,;;; 'llxl , that might appear in a s imple 
formula like 

F(x) = (f + 6f)(x + ox) fur 16fl ~ dfl and loxl ~ ,,lxl. 

The goal of hackward error analysis is lo ascertain that all the 
internal noise of F rea lly can he encompassed by so simple a 
formula with sntisfactorily small tolerances , and 'l· At its hes l, 
backward error analys is confirms that the realized 11alttt• F(x ) 

scarcely differs from the id,•a/ t/Cllue /(x ➔ ox) that wo11/,I luw,• hl't'II 
produced hy tilt i11p11t x + ox scarcely different frc,m th,· 11ct1111/ 
i nput x, and gives the word "i;carccly" a quantitative meaning(, 
and IJ). But, backward error a nalys is succeeds only for systems F 
designed very carefully to ens ure that every internal noise sourre is 
equiva lent at worst to a tolerably small input or output 
perturbation. First attempts a t system design, especially prol{rams 
to perform numerical computations , often s uffer from internal 
noise in a more complicated and disagreeable way illustrated hy 
the following example. 
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Exnmplt! H: The Smnllcr Hoot of 11 (~undrotic. The two roots x 
and y of the quadratic c11ualion c - 'i.hz + azl = 0 arc real wh enever 
d = h~ - ac is nontlCl{alive. Then the root y of smaller mal{nitudc 
1·an he regarded as a function y = /(u ,h,c) of the quadratic's 
coeflicit•nls 

{ 

(h - Jd sgnt /,))/ a 
f(a,b,c) = 

(c / /,) / '2 

if a ;,le 0 

otherwise. 

W1•rc this form ula translated din~l"lly in a prol{ram F(tl, b, c) 

intended to calculate f( 11. b, c l , then whenever llC is so s mall 
com parcel wilh /, ~ that the computed value of d rounds tub~, that 
program could deliver F ~ 0 even though f ;e 0. So drastic an error 
cannot he ex plained by backward error analysis because 11t1 

relatively s mall pcrlurhations to each cocflicicnl "· h, and c could 
drive,. to zero, as would he nect!ssary lo change the s maller root y 
into 0. On the other hand, the algebra ically equi va lent formula 

{

1· / (/,+ Jdsgn(hJ) 
f( a h c) = • • 0 

if divisor is nun zero 

otherwise 

translates into a much more ac1·ur;tle prol{ram J,' whose errors do 
no more damage than would a pcrlurhation in the las t ( I Olh) 
s il{nificanl digit of c. Such a prugn,m will be li,ited later (page '205) 

a nd mus t he used in those inst.tnccs, 1·0111111011 in enginl'c ring, when 
the s maller root y is ncl'dcd ael'uratcly despite the fact that the 
quadratic's other unwuntcd root is rl'latively large. 

Almost all the functions llllill inlo the 111'-lf>C have been designed 
so that backward l'rror analys is wi ll account for their errors 
satisfactori ly. Tlw exceptions a re I SOLVE I. 0 . and the statistics 
keys @. I L.A. I, and [B which rnn malfunction in certain 
puthological cases. Ollll'rwise, 1•very cnku lntor function F 
intended to prndurc f(x) produces ins lt•ad a value F(x) nu farther 
fromf(x) than iffirstx had hcen 1wrlurlwd lox ~ 6.r withloxl ,s, •11.rl, 
then/(.\' I ox) werl' perturh1•d to (f I {,{)( ,\' + 6.r) with lr.rl ~ <lfl. The 
tolerances 'land, va ry a little from funl'lion lo function; roughly 
speaking, 

,1 = O and, < I 11"11 for all funl"liuns in Level I, 

'l < JO 
1
~ und, < Ii x 111" 111 for ollwr rea l and rnmplex functions. 
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For matrix operations, the magnitudes llixl. lxl, 16/1, and I/I must he 
replaced by matrix norms lllixll, llxll, lllifll, and llfll respectively, 
which are expla ined in section 4 and evaluated us i11g( MATRIXl7 or 
( MATRIX I 8. Then a ll matrix functions not in Level I fall into Level 2 
with roughly 

for matrix operations (other than 
determinan t I MATRIX I 9, G, and [lli]) 

for determinant IMATRIXl9,[lli], 
andGwilh a matrix divisor 

where II is the largest dimens ion of any matrix involved in the 
operation. 

The implications of successful backward error analysis look simple 
only when the input data x comes contaminated by unavoida ble 
and uncorrelated noise Ax, as is often the case. Then when we wish 
to calcula te /(x), the best we could hope lo get is /(x + Ax), but we 
a ctua lly gel F(x + Ax) = (/ + 6/)(x + <lx +/ix), where Iii/I ~ , I/I a nd 
l1ixl~ 11lxl. 

Whal we get is scarcely worse than the beet we could hope for 
provided the tolerances , and 11 are email enough, particularly if 
(Ax( is likely to be et least roughly as big as 11lxl. Of course, the beet 
we could hope for may be very bad, especia lly if/ possesses a 
singularity closer to x then the tolerances upon x 'e perturbations 
Ax end /ix . 

Backward Error Analysis Versus Singularities 

The word "singularity" refers to both a special value of the 
a rgument x and to the way /(x) mis behaves as x approaches that 
specia l value. Moel commonly, /(x) or its fi rst derivative /'(x ) may 
become infinite or violently oscilla tory as x approaches the 
s ingula rity . Sometimes the singularities of lnl/1 a rc ca lled 
singular ities of /, thereby including the zeros of / among its 
singularities; th is makes sense when the rela tive accuracy of a 
computation of / is at issue, as we shall see. For our purpoaee the 
meaning of"singularily" can be left n litlle vague. 

What we us ually want to do with sin gula rities is avoid or 
neutralize them. For instance, the function 

c(x) = {
(1 - cosx)/ x2 ifx'l"0 

1/2 otherwise 

' ···. 

~1! I e-l~ 
er~ 
e-, ~ 
C -f"~ 

cl'~ 
C -~ 

C ~ 

C ~ 

<::- ~ 

~- :> 
C, :) 

C :) 

C ':) 

C !) 

C !) 

C !) 

c:: !) 

~ ~ 

c::I~ 
cl~ 
CI~ 

cl~ 
~I~ 
c; ~ 

Appendix Accuracy of Numerical Calcula11ons 193 

hue no singularity a t x = ()even though its constituents I - cos x 
and x 2 (actua lly, their logarithms) do behave singula rly es x 
approaches 0. The constituent singu la rities cause trouble for the 
program thnl calculates c(x ). Most of the t rouble ie neutralized by 
the choice of a heller formula 

{ 

J__ ( sin (x /2) )
2 

c(x) = 2 x / 2 

112 

if x/2'1" 0 

otherwise. 

Now the eingulnrily can be avoided entirely by testing whether 
x 12 = 0 in the program that calculates c(x). 

Backward error a nalye ia complicates singularities in a way that is 
easiest lo illustrate with the function A( x) = ln(l + x) that solved 
the savings problem in example 2. The procedure used there 
calculated u = I + x (rounded)= I + .r + ux. Then 

if u = I 
A(X) = { X 

ln(u)x / (u - 1) otherwise. 

This procedure exploits the fact thnt >.(:r)/ .r has a removable 
singulari ty at x = 0, which means that >.(.r)/ x varies continuously 
and a ppronches I us .r nppronches 0. Therefore, >.(x)/ .r is relatively 
cloeely approximated by >.(x + Ax)/ (x + il.r) when (Ax( < 10-9, and 
hence 

>.( .r) = x(>.( .r)/ x) = x(>.( x + .lx)l (.r + .lx)) = .r(ln( u)/ ( u - I)), 

a ll calculnlcd accurutely because (j]) is in Level I. Whal might 
happen if(j]) were in Level 2 instead? 

If (j]) were in Level 2, then "eucceseful" backward error ana lyeis 
would show that, fur arguments u neur I , (j])( u) = In( 11 + 611) wi th 
(liu( < 10-~. Then the procedure nhuve would produce not 
:r(ln(u)/ (u - 1)), but 

x( ln(u + li11)/ (u - I )) = x>.( x ➔ .lx + liu)l (x + .l.r) 

.r + ~.r+liu 
= .r(>.(.r I .lx + liu )l (x I .l.r + li11))----

x + Ax 

= .r(>.(x)/ :r )( l + liu / (x + ux)) 

= >.(x)( I + liu l (x + .l.r)) . 



194 Aµµend1x: Accuracy of Numer1cal Calcula1ions 

When Ix+ ~xi is nut much biia:er than 10-~. the last expresl:liun can 
he utterly different from A( x ). Therefore, the procedure that solved 
example :l would fail on machines who11e CT]) is not in Level I. 
There are such machines, and on them the procedure dues collup,ie 
for certa in otherwise innocuous inputs. Similar failures also occur 
on machines that produce ( u + 6' u) - I instead of u - I because 
their (:] function lies in Level 2 instead of Level I. And those 
machines that produce ln(u + ll u)/ ( u + 6' u - I) instead uf 
In( u)/ ( u - I), because both CT]) and (:] lie in Level 2, would be 
doubly vulnerable but for an ill·underetoud accident that usually 
correla tes the two backwa rd errors fiu a nd ll' u in such a way as 
causes only half the significant digits of the computed>- , instead of 
all of them, to be wrung. 

Summary to Here 

Now that the complexity injected by backward error a nalysis into 
singula rities has been exposed, the time has come to summarize, to 
simplify, and to consolidate wha t has been discussed so far. 

• Many numerical procedures produce resul ts loo wrong to be 
justified by any satisfac tory error analysis, backwa rd or not. 

• Some numerica l procedures produce results only slightly 
worse then would have been obtained by exactly solving a 
problem differing only slightly from the given problem. Such 
procedures, classified in Level 2 for our purposes, a re widely 
accepted us satisfactory from the point of view of bock word 
error analysis. 

• Procedures in Level 2 cnn produce results relative ly far from 
what would have been obtained had no errors at all been 
committed, but large errors can res ult only for data relatively 
near a singula rity of the function being computed. 

• Procedures in Level I produce relative ly uccura te resu lts 
regard less of near approach to o s ingularity. Such procedures 
are rare, but preferable if only becaul:le their results are easier 
to interpret, especially when several variables ore involved. 

A simple example illustrates a ll four points. 

Example 7: The Angle in u Triangle. The cos ine law for 
triangles says 

~ - ~ 

c . ~ 
~ . ·~ 

~ - ·~ 
~ -~ 

~ - ~ 

~ ·~ 

~ ~ 

c;, ~ 

~ ~ 

~ ~ 

~ - ~ 
~J~ 
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for the figure shown below. Engineering and scien tific calculations 
often n,quire that the angle O be calculated from given va lues p, q , 
and r for the length of the triangle's sides. T his calculation is 
feasible provided O < p ,;;; q + r, 0 < q ,;;; p + r, and O,;;; r <;;; p + C/ , a nd 
then 

0 <;;; O= cos-1(((p2 + qi) - ,:Lj/ (2pq))<;;; 180°; 

otherwise, no triangle exists with those side lengths, or else O = 0/ 0 
is indeterminate. 

q 

The foregoing formula for O defines a function O = / (p,q,r) and a lso 
in a natural way , a program F(p ,q,r) intended to calculate the 
function, That program is labeled "A" below, wi th results 
F ,4 (p,q,r) lubulotcd for certain inputs p, q, and r corresponding to 
sliver-shaped triangles fo r which the formula suffers badly from 
roundoff. The numerical unreliabili ty of this formula is well known 
as is that of the olgebJ icully equivalent but more reliable formula 
0 = ((p,q,r) = 2 tan· 1 ab l ( cs), wheres = (p + C/ + r)/2, a= s - p, 
b = s - q, nnd c = s - r . Another program F(p,q,r) based upon this 
better formula is labeled "B" below, with results F 11(p,q ,r) for 
selected inputs. Apparently F11 is not much more reliable than FA
MoHt of the poor results could he explained by backward error 
analysis if we assume that the calculations yield F(p,q,r) = 
/(p + llp,q I- llq,r I· fir ) for unknown hut small perturba tions 
sati.;fyillg lllPI < 10-YIPI , etc. Even if this explanation were true, it 
would h a ve perplexing and disagreeahlc consequences, because the 
anl(les in sliver-sh a ped lriaugles can change relatively drastica lly 
when the sides are pcrlurhed rt•lati vcly s lightly; /(p,q,r) is 
relatively uns luhle for marginal inputs. 

Actually the preceding expla nation is false. No backward error 
analysis coulrl account fo r the results tabulated for F,1 a nd F11 
under case I helmv unll'ss perturhations llp, ll</ , nnd ll r were 
allowed lo corrupt the liflh sil(nific:ant digit of the input, changing 
I lo 1.0001 or 0.!)!l!J!I. Thal much is loo much n oise tu tolerate in a 
Ill-digit calculation . A lwlter program hy fa r is Fe, labeled "C" a nd 
expla ined shortly afterwards. 
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The lhree bollom lines in the table hclow show results for lhrec 
programs "A", " U", und "C" bused upon three difforenl formulas 
F(p,q ,r) ull ulgcbruicu lly cquivulenl lo 

0 = f(p,q,r) = cos"1((p1 + q1 - r2)1(:lpq)). 

Disparate Results from Three Programs FA• F8 . Fe 

Case 1 Case 2 Case3 

p 1. 9.999999996 10. 

q 1 . 9.999999994 5.000000001 

r 1.00005 X 1 o·6 3 X 10·9 15. 

FA 0 . 0. 180. 

Fs 5.73072 X 10·4 Error 0 180. 

Fe 5.72986 X 10·4 1.28117 X 10' 8 179.9985965 

Case 4 Case 6 Case 6 

p 0 .527864055 9.999999996 9.999999999 

q 9.472135941 3 X 10·9 9.999999999 

r 9.999999996 9.999999994 20. 

FA Error 0 48. 18968509 180. 

Fs Error 0 Error 0 180. 

Fe 180. 48. 18968510 Error 0 

Csse7 Case 8 Case 9 

p 1.00002 3.162277662 3.162277662 

q 1.00002 2.3X 10·9 1.5555 X 10·5 

r 2.00004 3.162277661 3.162277661 

FA Error 0 90. 90. 

Fs 180. 70.52877936 89.96318706 

Fe 180. 64.22853822 89.96315156 

To use a program, key in p I ENTER IQ ( ENTER Ir , run program " A", 
"B", or "C", and wuit lo see lhe program's upproximution Flo O = f. 
On ly program " C" is reliable. 
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Keystrokes 

[ij(DEG! 
[ij(PIR! 
(D CLEAR I PRGM I 
I IJ(LBL!~ 
[g](Z) 
(iii] 
@(Z) 
[VI LSTx! 
illlTIJ 
0 
(iii] 
ff)( LSTx! 
@(Z) 
0 
@(]J] 
El 
(iii] 
(ENTER! 

0 
[£] 
Ci:)(cos·'J 
m1 RTN 1 
r,utsuno 
(STO! l 
(ENTER ! 

illlTIJ 
(STO!(!J 1 

illlTIJ 
(STO!l.!] 1 
2 
(STOH£)1 
(ill 
(RCLU-=] 1 
(iii] 
(RCLl[:::J 1 

0 
!Kl 
(iii] 
(ACLU:::] 1 
(ACLU ~ 1 

000-
001-42.2 1. ll 
002- 43 11 
003- 34 
004- 43 11 
005- 43 36 
006- 43 33 
007- 20 
008- 34 
009- 43 36 
010- 43 11 
011- 40 
0 12- 43 33 
013- 30 
0 14- 34 
015- 36 
0 16- 40 
017- 10 
018- 43 24 
019- 43 32 
020-42,2 1,12 
021- 44 1 
022- 36 
023- 43 33 
024-44,40, 1 
025- 43 33 
026-44.40, 1 
027- 2 
028-44, 1 o. 1 
029- 33 
030-46,30, 1 
031- 34 
032-45,30, 1 
033- 20 
034- 1 1 
035- 34 
036-45,30, 1 
037-46,20. 1 

197 
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Keystrokes 

(CHS! 

!Kl 
mfEJ 
(ffi 
0 
[fH RTNI 
(I)jLBL!lg 
(STO!0 
(ffi 
[fil[ilil 
[ili] 
(STO!l 
1srn180 
[ili] 
(STO!li)0 
G 
[]](IT) 
I STO ll:J 1 
ru1LsT,d 
(ENTER! 
(RCLH+]l 

!Kl 
(I)[ii)o 
!Kl 
(STO!lx] 0 
[fil(CLx! 
(D 
(ffi 
(D 
(I)[ii)l 
[]](IT) 
[fil(LSTx! 
[filgi] 

(GT0!.9 
(ffi 
[fil(TEST!2 

!Kl 
[ili] 
(GTOL8 
(Il(LBLL9 

Displuy 

038- 16 
039- 11 
040- 43 1 
041- 33 
042- 20 
043- 43 32 
044-42.21 , 13 
045- 44 0 
046- 33 
047- 43 10 
048- 34 
049- 44 1 
050-44.40. 0 
051- 34 
062-44.40. 0 
063- 30 
064- 43 33 
065-44,30. 1 
056- 43 36 
067- 36 
068-46,40, 1 
0 69- 11 
060-42. 4. 0 
061- 11 
062-44.20, 0 
063- 43 36 
064- 40 
065- 33 
066- 40 
067-42. 4. 1 
068- 43 33 
069- 43 36 
070- 43 10 
071- 22 .9 
072- 33 
073-43.30, 2 
074- 1 1 
076- 34 
076- 22 .8 
077-42.21 . . 9 

C 

C 

C 

C 

C 

C 

Keystrokes 

~]ITEST!2 

!Kl 
[]](IT) 
l!JILBL L8 

G 
!Kl 
I RCL! 1 

!Kl 
0 
(RCL IO 
ru@ 
~llx=O! 

G 
~ 
(ENTER! 
(D 
~HRTNI 

~IIPIR! 
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Displuy 

078-43,30, 2 
079- 11 
080- 43 33 
081-42,21 .. 8 
082- 30 
083- 1 1 
084- 46 1 
085- 11 
086- 20 
087- 46 0 
088- 43 1 
089- 43 20 
090- 10 
091- 34 
092- 36 
093- 40 
094- 43 32 

The results Fc(/J,C/ , r ) ure correct tu at least nine significant digits. 
They arc obtained from a program "C" thnt is utterly reliable 
though rather longer than the unrelinhle programs " A" nnd " II". 
The method underlying program "C" ii;: 

I. If p < 11. then swnp them to ensure p ;;;, q. 

2. Cnkulatcb = (p - q) + r,c = ( p - r) +11,nnd s = (p + r) +11. 

:I. C alculate 

{

r - (p - q) 

a = 11 - (p - r ) i fr > q ;;;, O 

Error O otherwise (no triangle exis ts). 

4. Calculate F('( p ,q ,r) = :! tan·• ( Jnii ; Jcs). 

This proced ure delivers F,•(p,q,r ) = O correct to nlmost nine 
significant digits, u rei;u )t s urely easi1·r to use and interpret thnn 
the results given hy the other better-known formulas. But this 
procedure's internal workings are ha rd lo explain; indeed, the 
procedure muy malfunction on some calculators and computers. 
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The procedure works impeccably on only certain machine!l like the 
HP-i5C, whose subtraction operation is free from avoidable error 
and therefore enjoys the following property: Whenever y lies 
between x 12 and 2x , the sublruc.:tion operation introduces no 
roundoff error into the calculated value of x - y. Consequently, 
whenever cancellation might leave relatively large errors contami
nating a, b, or c, the pertinent difference (p - q) or (p - r) turns out 
to be free from error, and then cancellation turns out to be 
advantageous! 

Cancellation remains troublesome on those other machines that 
calcula te (x + cSx) - (y + 6y ) instead of x - y even though neither 
6x nor oy amounts to as much as one unit in the lust significant 
digit curried in x or y respectively. Those machines deliver 
F c(P, q, r) = /(p + op, q + 6q, r + 6r) with end-figure perturbations 
6p, 6q, and 6r that always seem negligible from the viewpoint of 
backward error analysis, but which can have disconcerting 
consequences. For inatance, only one of the triples (p,q ,r) or 
(p + 6p, q + 6q, r + 6r), not both, might constitute the edge lengths 
of a feasible triangle, so Fe might produce an error message when 
it shouldn 't, or vice-versa, on those machines. 

Backward Error Analysis of Matrix Inversion 

The usual measure of the magnitude of a ma trix X is a norm IIXII 
such as is calculated by either I MATRIX 17 or I MATRIX IB; we shall use 
the former norm, the row norm 

IIXII = m~x Llx," 
I j 

in what follows. Thie norm has properties similar to those of the 
length of a vector and also the multiplicative property 

IIX YII ~ II XII IIYII. 

When the equation Ax = bis solved numerically with a given II X 11 

ma trix A and column vector b, the calculated solution is a column 
vector c which satis fi es nearly the same equation ae doc!l x, 
namely 

(A + cSA)c = b 

with llcSAII < 10·911 IIAII. 
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Corniequently the residual b - Ac = (cSA)c is a lways relatively 
small; c1uite often the residual norm llb - Acll is smaller than 
llb - Axil where x is obtained from the true solution x by rounding 
each of its elements to 10 significant digits. Consequently, c can 
differ significantly from x only if A is nearly singular , or 
equiva lently only if llA· ' II is relatively large compared with IIIIAII; 

llx - ell = IIA"1(b - Aclll 

~ IIA-1l1 IIMII llcll 

~ 10·9 11 llcll / o(A) 

where o(A) = 1/ (IIAII IIA"'lll is the reciprocal of the condition 
number and measures how relatively near to A is the nearest 
singular matrix S , since 

min !IA - SIi = o(A) IIAII. 
det(Sl=U 

These relations and some of their consequences a re discussed 
extensively in section 4. 

The calculation of A "1 is more complicated. Each column of the 
calculated inverse ~(A) is the corresponding column of some 
(A+ 6A)"1, hut each column has its own small cSA. Consequently, 
no single email .SA, with II.SAIi ~ 10·9 11 IIAII, need exist satisfying 

ll(A + 6A)"1 -CiE)(Alll ~ 10"9 ll (iE]<Alll 

roughly. Usua lly such a cSA exists, hut not always. This does not 
violate the prior assertion that the mutrix operations CiE) and G 
lie in Level 2; they are covered by the ,iecond assertion of the 
summa ry on page 194. The accuracy of(iE](A) can be described in 
terms of the inver!lcs of a ll matrices A + ..\A so nea r A tha t 
II..\AII ~ l(J"9 11IIAII; the worst among those (A + ..\A)" 1 is at least 
about as far from A "1 in norm us the calculuted CiE)(A). The figure 
below illustrates the s itua tion. 

0 1/a- (A + ..\A)- 1 isinhere 
f A "

1 
I 

I • ' 
\ I 

><--. 
A + 6 A is in here - - ITZ!](A) is in here 
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As A+ .lA runs through matrices with 11.iAII at least about as la rge 
as roundoff in IIAII, its inverse (A+ .lAf1 must roam at least about 
as for from A - I as the dietnnce from A - I lo the computed ~(A). 
All these excursions ore very small unles11 A is too near n singular 
matrix, in which case the matrix should be preconditioned away 
from near singularity. (Refer lo section 4.) 

If among those neighboring matrices A + ..lA lurk some that nre 
singular, then many (A + .lA)"1 and ~ (A) may differ utterly 
from A -l. However, the residual norm will always be relatively 
small: 

This last inequality remains true when ~(A) replaces 
(A+ .1Ar1. 

If A is far enough from singularity that all 

then also 

This inequality also remains true when ~(A) replaces 
(A+ AAf

1
, and then everything on the right-hand side can be 

calculated, so the error in ITZ!)(A) cannot exceed a knowable 
amount. In other words, the radius of the dashed ball in the figure 
above can be calculated. 

The estimates above tend to be pessimistic. However, tu show why 
nothing much better is true in general, consider the matrix 

[

~-00002 -50,000 50,000.03 - 45 
50,000 -50,000.03 

45 l X= 
0 0 0.00002 -50,000.03 
0 0 0 52,000 
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and l 
[

50 000 50,000 p q 

O 0.0000:.! 50 000.0:i 48,076.98077 ... x-• - -
- U O 50,000 48,071l.95 I 92 ... 

O O O 0.00001923076923 .. 

Ideally, p = q = 0, but the IIP-15C's npproximation lo x-1, namely 
(lli](X), has q = 9,fi43.269:.!:ll instead, a relative error 

Ux-• - (lli](X)li 

11x-•11 
0.0964 ... , 

nearly 10 percent. On the other hand, ifX + .lX differs from X only 
in its second column where -50,000 and 50,000 are replaced 
respectively by -50,000.000002 and 4!-l,99~.9999~8 (~ltered in the 
I Ith significant digit), then (X + AXf1 differs s1gn1ficantly from 
x-1 only insofar as p = 0 and q = 0 must be replaced by P = 
10,000.0061)0 ... and q = 9,615.:196154 .... Hence, 

11x ·
1

- ,x+AXr
1

II = 0.196 .. . ; 
11x-•11 

the relative error in (X + ..lXr1 is nearly twice that in (lli](X). Do 
not try tu calculate (X + .lX)' 1 dire<'lly, but use instead the formula 

(X - cb-,.f1 = x-1 + x-1cb1'X-1 / (I - b7'X-1c), 

which is valid for any column vector c and row vector hr, and 
specifically for 

, = [;J,"dh'= IO OOIM~, O OI 

Despite that 

11x-1 - (lli](X)II < ux-• - (X + .1xr111 ' 

it can be shown that no very smnll end-figure perturbation liX 
exi11t11 for which (X + liXf1 mulches (lli](X) to more than five 
significant digits in norm. 
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Of course, n'.ine ofthetw horrible things could happen ifX were not 
eo neur!y singular. Hecuuse IIXII 11x· •11 > JO"', a change in X 
amounttng to le~s than one unit in the 10th significunt digit of IIXII 
c~uld make X singular; such II change mi1d1t replace one of the 
d_iagunul elements 0.00002 of X by zero. Since X ie 

80 
nearly 

8 •~gular, the uccuracy of~(X) in this case rather exceed
9 

what 
might b~ expected in general. Whal makes this example special is 
bad ecahng; X was obtained from un unexceptional matrix 

[

2. -5. 5.00000:1 - 4.5 X IQ-IZ] 

X = 0 5. -5.00000:J 4.5 X 10· •i 

0 0 2. -5.000003 

0 0 0 5.2 

by multiplying each row a nd each column by a carefully chosen 
power of I 0. Com_pensatory division of the columns and rows of the 
equally unexceptwnal matrix 

x. - 1 = [ ~·

5 

~:: ~.500000:J ~-4807698077. .J 

0 0 0.5 0.4807695192 .. . 

0 0 0 0.192:1076923 .. . 

yielded x·1
, with_p = q = 0. The HP-15C culculates ITZ!)(X) = :x -1 

except that q = 0 1s replaced by q = 9 6 x 10-11 a 1· 'bl h Th· • . • , neg 1g1 e c unge. 
18 illustrates how dras tically the perceived 1iuulity of computed 

~eeulle c~n be altered by scaling. (Hefer to section 4 for more 
10formatton about scaling.) 

Is Backward Error Analysis a Good Ideal 

The o~ly ~ood thing to be said for backward error anulysis is tha t it 
explatns ~nternul errors in u wny tha t libern tes a system's user 
from ha v111g to know about interna l details of the system. Given 
two toler~n ces, one upon the input noi1:1e 6x and one upon the 
ou~pu~ noise 6/, the user can analyze the consequences of in ternal 
no1ee 10 

F(x) = (/ + 6fJ(x + 6x) 

b~ s tudying the noise propagation properties of the ideal system/ 
without further reference to the possibly complex internal struc ture 
ofF. 

;:-:> 
;:-~ 

;:-~ 
;:-~ 
;:...:..:> 
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But huckward error unuly11is is no panacea; it may expla in errors 
but not excuse them. Because it complic11te1:1 computations 
involving s ingularities, we have t ried to elimina te the need fo r it 
wherever we could. If we knew how to eliminate the need for 
backward error analysis from every function built into the 
ca lculator, and to du so al tolerub;c co1:1t , we would do that a nd 
1:1implify life for everyone. That simplicity would coal too much 
speed nnd memory for today's technology. The nex t example will 
illustrutc the trnde-uffa involved. 

Example 6 Continued. The program lii;ted below solves the real 
quadra tic equa tion c - 2hz + az2 = 0 for rcnl or complex roots. 

To use th e program, key the real constant1:1 into the stack (c I ENTER I 
h I ENTER In) and run program "A ". 

The routs x and y will appear in the X- and Y-registers. If the roots 
are com1>lex, the C unnuncialor turns on, indicating thul Complex 
mode has been activated. The program uses lubcls " A" and ".9" 
and the Index regi11tcr (but none uf the other regis ters O to .9); 
therefore, the progrum mny readily be called us a subroutine by 
other program!!. The calling programs (after clearing flag 8 if 
necessary) can discover whether roots are rea l or complex by 
testing flag ll, which gets set only if roots a re com11lex. 

The roots x and y are so ordered thut lxl ;;;, IYI except possibly when 
lx l and IYI agree to more than nine s ignifican t digits. The route are 
us accurate as if the coefficient c- hncl firnt been perturbed in its 10th 
eigni ficnnt digit, the perturbed equation had been solved exactly, 
and its mots rounded to 10 significant digits. Consequently, the 
computed roots matd1 the given quadrutic's mots to ut leust five 
1:1ignificant digits. Mure generally, if the roots :rand y ugree to 11 

1:1ignifkanl digits for 8nme positive 11 ,;;; 5, then they are correct to at 
least 10 - 11 s ig nificant digits unle!!s overflow or underflow occurs. 

Kt•ystrokcs Di1:1pl11y 

ui.UPIRI 
III CLEAR I PRGM I 000-
(IHLBLU~ 001 - 42,21 , 11 
!ENTER I 002- 36 
@IHI 003- 43 33 
0 004- 20 
[!iJI LSTrl 006- 43 36 
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Keystrokes l>ispluy 

~ 006- 34 
@][ff) 007- 43 33 
!STOIII] 00 8- 44 26 
[]]0 009- 43 11 
El 01 0 - 30 
[]l!TEST!l 0 11 -43,30, 1 
!GTOl.9 0 12 - 22 .9 
! CHSI 013- 16 
[K] 0 14- 11 
01:illlil 016-42. 4 .2 6 
[iil!TESTl2 016-43.30, 2 
!RCLlf:JIIl 0 17-45,30,26 
[ii UTESTl3 0 18-43.30. 3 
I RCLII !JIIl 019-46,40,25 
(]UTESTIO 020-43,30, 0 
G 021- 10 
ffilLSTxl 022- 43 36 
[]J[fil] 023- 43 33 
G 024- 10 
[jlfRTNI 026- 43 32 
(DI LBLl.9 026-42.21 . . 9 
[Kl 027- 11 
IRCLllD 028- 46 25 
[]][IT] 029- 43 33 
G 030- 10 
~ 031- 34 
m1 Ls1.r I 032- 43 36 
G 033- 10 
mm · 034- 42 26 
!ENTER! 035 - 36 
[D!Re ~ 1ml 036- 42 30 
!CHS I 037- 16 
[D!Re~ 1ml 038- 42 30 
[ f l!RTNI 039- 43 32 
C9: IIP/RI 

The method uses d = bi - ac. 

If d < 0, then the roots are a complex conjugate pair 

(b l a) ± i H l a. 
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If d;;, 0, then the roots arc real numbers x and y calculated by 

s = h+,/Jsgn(h) 

x = s l a 

ifs ;,le u 
ifs = 0. 

The s calcula tion avoid11 destructive cancellation. 

When a = 0 ;,< h. the la rger root x, which s hould be 00, encounters 
division by zero (Error 0) that can be cleared by pressing I]]] three 
times to exhihit the s ma ller root y correctly calculated. But when 
all three coefficients vanish, the Error O message signals that both 
roots are arbitrary. 

The results of several cases are summarized below. 

Case 1 Case2 Case 3 Case 4 

C 3 4 1 654.321 

b 2 0 1 654.322 

8 1 1 10· 13 654.323 

Roots Real Complex Real Real 

3 0± 2i 2 X 1013 0.9999984 717 

1 0.5 0.9999984717 

Case 5 Case 6 

C 46,152.709 12,066.163 

b 735.246 987,644 

a 11.713 80.841 

Roots Real Complex 

62. 77179203 12.21711755 .t i0.001 377461 

62.77179203 
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The Inst three cnse11 show how severe are the results of perturbing 
the 10th significunl digit of uny coefficien t of uny quadratic whose 
roots are nearly coincident. The correct roots for these cases are 

Case 4: I and 0.9999969434 

Cuse 5: 62.77179203 ± i B.5375 X 10-r, 

Cuse6: 12.21711755± i0.001374514 

Despite errors in the fifth s ignificant digit of the results, subroutine 
"A" suffices for almost all engineering und scientific oppliculions 
of quadratic equations. Its results ore correct to nine significnnl 
digits for most data, including c , b , and a representuble exactly 
using only five significant digits; and the computed roots ure 
correct to at least five significnnt digits in any case because they 
cannot be appreciably worse than if the data had been entered with 
errors in the 10th significnnt digit. Nonetheless, some readers will 
feel uneasy about results calculated to IO significant digits but 
correct lo only 5. If only to simplify their understanding of the 
relationship between input dntn and output results, they might still 
prefer roots correct to nine significant digits in all cases. 

Programs do exist which, while currying only 10 significant digits 
during arithmetic, will calculate the roots of any qundratic 
correctly to at least nine significant digits regardless of how 
nearly coincident those roots may be. All such programs calculate 
d = b

2 
- ac by some trick tantamount to carrying 20 significant 

digits whenever b
2 

and ac nearly cancel, eo those programs ore n 
lot longer and slower than the simple subroutine "A" provided 
above. Subroutine "B" below, which uses such a trick,• is o very 
short program that guarantees nine correct significant digits on n 
10-digit calculator. It uses labels "B", ".7", and ".8" nnd regis ters 
R0 through R9 and the Index register. To use it, key in c [ENTER I b 
IENTER)a, run subroutine "H", and wait for results as before. 

K eystrokes 

@ IP/ A) 
(I] CLEAR I PAGM) 
(I]!LB[lf'ID 
ISTO)(j] 

IHI 

Display 

000-
001-42,21 ,12 
002- 44 25 
003- 33 

• PrnKrum "U" 4•.,cµloitN a lricky prnp,•rly o f th~ (8 un,I lI!J k.-y 11 wh,·n•l,y rcrtu in 
cnlculn1 iun11 can he carried out to 1:1 aitcnificunt ,ligit.a hcfort' beintc rou11d1"tf bndt tu IU. 

~ -3 
~~ 
~.:, 
~~ 

~~ 

~-~ 

~-~ 

~ --~ 

~ -,:) 

Kcy8trokes 

ISTO)0 
ISTOI B 
(iii] 
!STOil 
ISTOl9 
(!JI SCI 12 
ffilLBLl .8 
(I]CLEAR(Ij 
!RCLIB 
ISTOl7 

®:QGOJ 
[I]IANDI 
IRCLl[D 

m!B 
IRCLl9 
(I]{ii] 7 
~ 
!RCLIB 
[I]IB 
IHI 
[I][B 
IRCLl7 
[9 IIABSI 
IRCLl9 
LJi11ABS) 
m~ 
I GTO l(fil 
I ENTER I 
[I](H) 
!STO IB 
IACL)7 
!STOl9 
ffilABS) 
!EEX) 
2 
0 
0 
[Rei] 1 
[Ql(Ass) 
m~ 
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Displuy 

004- 44 0 
005- 44 8 
006- 34 
007- 44 1 
008- 44 9 
009-42, 8. 2 
010-42.21 . . 8 
011 - 42 32 
012- 45 8 
013- 44 7 
014-45.10,25 
016- 4334 
016- 45 25 
017- 43 49 
018- 45 9 
019- 42. 4 , 7 
020- 34 
021 - 45 8 
022- 43 49 
023- 33 
024- 43 49 
025-
026-
027-
028-
029-
030-
031 -
032-
033-
034-
035-
036-
037-
038-
039-
040-
041-
042-
043-

45 7 
43 16 
45 9 
43 16 
43 10 
22 12 

36 
43 33 
44 8 
45 7 
44 9 
43 16 

26 
2 
0 

20 
45 1 
43 16 
43 10 

209 
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K eystrokes Display 

! GT0 1.8 044- 22 .0 
(DI LBL!l]J 046-42.21 .12 
(D(IBJ9 046-42. 7 , 9 
!RCL j8 047- 46 8 
(!JIZ] 048- 43 11 
j sTo j7 049- 44 7 
I RCL II.TI 060- 46 26 
! RCLj9 061- 46 9 
(!][El 062- 43 49 
!RCL!7 063- 46 7 
[iilj TESTj2 064 -43,30. 2 
!GT0 L7 066- 22 .7 
(ID 066- 11 
(D[tl]o 067- 42. 4 . 0 
@l!TEST!2 068- 43,30. 2 
!RcL!Go 069- 46,30, 0 
@ljTEST! 3 060- 43,30. 3 
jACLj(i)0 061-46,40, 0 
(D[tl) 1 062-42. 4 . 1 
@l!TEST!O 063-43,30, 0 
!RCLlf £) 1 064- 46. 10. 1 
!RCLj 1 066- 45 1 
I RCL lfi)[D 066-46, 10,26 
[fHRTN! 067- 43 32 
(DjLBLL7 068-42.21, .7 
jCHSj 069- 16 
(ID 070- 11 
I RCLjff.j[D 071 - 46.10,25 
! ENTER! 072- 36 
! CHS! 073- 16 
I RCL!0 074- 46 0 
!RCLj[D 076- 46 26 
G 076- 10 
lilil 077- 34 
(D[D 078- 42 25 
! ENTER! 079- 36 
(!][ff] 080- 43 33 
(D[D 081- 42 26 
(!JjATNj 082- 43 32 
(!JjP/ Rj 
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This program's accuracy i11 phenumenal: helter tha n nine 
significant digit!! even for the imuginury purls of nea rly 
indistinguis ha hle complex roots (as when c = 4,877, t fi:1,819 and 
b = 4,877,262,lil:I and a = 1,877,:lli t ,:17!Jl; if the roots are integers, 
real or complex, a n cl if a = I, then the rout!! are cnlculuted exactly 
(as when c = 1,219,3:12,!l:J7 X 101, h = 111,111.5, and a = I). But the 
program is costly; it uses more than twice as much memory for 
both program and data aH does suhroutine "A", and much more 
time, to achieve nine significant digit11 of accuracy instead of five 
in a few cases tha t can h a rdly ever matler-i;imply because th e 
quadratic's coefficients can ha rdly ever he calculated exactly. If 
a ny coefficient c, b , or a is uncertain hy ns much a11 one unit in its 
10th s igni ficant dig it, then s ubroutine " H" is overkill. Subroutine 
" B" is like Grnndmnther's expem;ive chinawnre, reserved for 
specia l occasions, leaving s ubroutine " A" for everyday use. 


