Section 4

Using Matrix Operations

Matrix algebra is a powerful tool. It allows you to more easily
formulate and solve many complicated problems, simplifying
otherwise intricate computations. In this section you will find
information about how the HP-15C performs certain matrix
operations and about using matrix operations in your applications.

Several results from numerical linear algebra theory are
summarized in this section. This material is not meant to be self-
contained. You may want to consult a reference for more complete
presentations.*

Understanding the LU Decomposition

The HP-15C can solve systems of linear equations, invert matrices,
and calculate determinants. In performing these calculations, the
HP-15C transforms a square matrix into a computationally
convenient form called the L U decomposition of the matrix.

The LU decomposition procedure factors a square matrix A into
the matrix product LU. Lis a lower-triangular matrixf with 1's on
its diagonal and with subdiagonal elements (those below the
diagonal) between —1 and +1, inclusive. U is an upper-triangular
matrix.t For example:

*Two such references are
Atkinson, Kendall E., An Introduction to Numerical Analysis, Wiley, 1978,

Kaohan, W. *Numerical Linear Algebru,” Canadian Mathematical Bulletin, Volume 9,

1966, pp. 756-801,

tA lowertriangular matrix has 0's for all elements above its dingonal. An upper-

trinngular matrix has 0's for all elements below its dingonal.

e i e

Section 4. Using Matrix Operations
Some matrices can't be factored into the LU form. For example,

0
LU
2

for any pair of lower- and upper-triangular matrices L and U.
However, if rows are interchanged in the matrix to be factored, an
LU decomposition can always be constructed. Row interchanges in
the matrix A can be represented by the matrix product PA for some
square matrix P. Allowing for row interchanges, the LU
decomposition can be represented by the equation PA = LU. So for
the above example,

Row interchanges can also reduce rounding errors that can occur
during the calculation of the decomposition.

The HP-15C uses the Doolittle method with extended-precision
arithmetic to construct the LU decomposition. It generates the
decomposition entirely within the result matrix. The LU
decomposition is stored in the form

U

Itis not necessary to save the diagonal elements of L since they are
always equal to 1. The row interchanges are also recorded in the
same matrix in a coded form not visible to you. The decomposition
is flagged in the process, and its descriptor includes two dashes
when displayed.

When you calculate a determinant or solve a system of equations,
the LU decomposition is automatically saved. It may be useful to
use the decomposed form of a matrix as input to a subsequent
calculation. If so, it is essential that you not destroy the
information about row interchanges stored in the matrix; don't
modify the matrix in which the decomposition is stored.

98 Section 4: Using Matrix Operations

To calculate the determinant of a matrix, A for example, the
HP-15C uses the equation A = P'LU, which allows for row
interchanges. The determinant is then just (-1) times the product
of the diagonal elements of U, where r is the number of row
interchanges. The HP-15C calculates this product with the correct
sign after decomposing the matrix. If the matrix is already
decomposed, the calculator just computes the signed product.

It's easier to invert an upper- or lower-triangular matrix than a
general square matrix. The HP-15C calculates the inverse of a
matrix, A for example, using the relationship

A'l'=(PLUy!'=UIL'P.

It does this by first decomposing matrix A, inverting both L and U,
calculating their product U'L™!, and then interchanging the
columns of the result. This is all done within the result matrix—
which could be A itself. If A is already in decomposed form, the
decomposition step is skipped. Using this method, the HP-15C can
invert a matrix without using additional storage registers.

Solving a system of equations, such as solving AX = B for X, is
easier with an upper- or lower-triangular system matrix A than
with a general square matrix A. Using PA = LU, the equivalent
problem is solving LUX = PB for X. The rows of B are
interchanged in the same way that the rows of the matrix A were
during decomposition. The HP-15C solves LY = PB for Y (forward
substitution) and then UX = Y for X (backward substitution). The
LU form is preserved so that you can find the solutions for several
matrices B without reentering the system matrix.

The LU decomposition is an important intermediate step for
calculating determinants, inverting matrices, and solving linear
systems. The LU decomposition can be used in lieu of the original
matrix as input to these calculations.

lll-Conditioned Matrices
and the Condition Number

In order to discuss errors in matrix calculations, it's useful to define
a measure of distance between two matrices. One measure of the

Section 4 Usimg Matnx Operations 99

distance between matrices A and B is the norm of their difference,
denoted||A — BJ|. The norm can also be used to define the condition
number of a matrix, which indicates how the relative error of a
calculation compares to the relative error of the matrix itself,

The HP-15C provides three norms. The Frobenius norm of a matrix
A, denoted ||A|l, is the square root of the sum of the squares of the
matrix elements. This is the matrix analog of the Euclidean length
of a vector.

Another norm provided by the HP-15C is the row norm. The row
norm of an m X n matrix A is the largest row sum of absolute
values and is denoted [|A ||

n
IAle= max D la,|
l=sis m}- =

The column norm of the matrix is denoted ||All> and can be
computed by [|All- = l|AT|l 4. The column norm is the largest column
sum of absolute values.

For example, consider the matrices

1 2 3
A= and B=
4 5 9

-1 0 1
0 0 3

A-B=

A = B[z = 11 = 3.3 (Frobenius norm),
A — B|lz = 3 (row norm), and

IIA = Bll;» = 4 (column norm).

The remainder of this discussion assumes that the row norm is
used. Similar results are obtained if any of the other norms is used
instead.

The condition number of a square matrix A is defined as
KA =|lAllla™).

Then 1 < K(A) < oo using any norm. The condition number is

100 Section 4: Using Matrix Operations

useful for measuring errors in calculations. A matrix is said to be
ill-conditioned if K(A) is very large.

If rounding or other errors are present in matrix elements, these
errors will propagate through subsequent matrix calculations.
They can be magnified significantly. For example, suppose that X
and B are nonzero vectors satisfying AX = B for some square
matrix A. Suppose A is perturbed by AA and we compute B+ AB =
(A + AA)X. Then

(laBll 7Bl
(laAll 7 [lal

with equality for some perturbation AA. This measures how much
the relative uncertainty in A can be magnified when propagated
into the product.

< K(A),

The condition number also measures how much larger in norm the
relative uncertainty of the solution to a system can be compared to
that of the stored data. Suppose again that X and B are nonzero
vectors satisfying AX = B for some matrix A. Suppose now that
matrix B is perturbed (by rounding errors, for example) by an
amount AB. Let X + AX satisfy A(X + AX) =B + AB. Then

dlaxi 7 1x1
(laBjf 7|8

with equality for some perturbation AB.

<K(A),

Suppose instead that matrix A is perturbed by AA. Let X + aX
satisfy (A + AA)(X + aX) = B. If d(A,aA) = K(A)|aA| 7 ||A| < 1,
then

x|l Z1xih
(laal /1Al

Similarly, if A™' + Z is the inverse of the perturbed matrix A + AA,
then

<K(A)/(1 —d(A,aA)).

A1zl /1A
UlaAl 7| ally

Moreover, certain perturbations AA cause the inequalities to
become equalities.

<K(A)/(1 —d(A,AA)).

All of the preceding relationships show how the relative error of the
result is related to the relative error of matrix A via the condition
number K(A). For each inequality, there are matrices for which

eeee00

JL000 0

Moo

Section 4. Using Matnix Operations 101
equality is true. A large condition number makes possible a

relatively large error in the result.

Errors in the data—sometimes very small relative errors—can
cause the solution of an ill-conditioned system to be quite different
from the solution of the original system. In the same way, the
inverse of a perturbed ill-conditioned matrix can be quite different
from the inverse of the unperturbed matrix. But both differences
are bounded by the condition number; they can be relatively large
only if the condition number K(A) is large.

Also, a large condition number K(A) of a nonsingluar matrix A
indicates that the matrix A is relatively close, in norm, to a
singular matrix. That is.

1/ K(A)=min(|A - S||/||Al)
and
1A = min(|A - S|,

where the minimum is taken over all singular matrices S. That is,
if K(A) is large, then the relative difference between A and the
closest singular matrix S is small. If the norm of A is large, the
difference between A and the closest singular matrix S is small.

For example, let

1 1
1 .9999999999

-9,999,999,999 10"
10 —jpW

and [|A7'] = 2 X 10", Therefore, there should exist a perturba_lion
AA with ||AA|| =5x 107" that makes A + AA singular. Indeed, if

0 -5x10Y

AA = A
0 s5x10M

with JaA[|=5x 107", then

99999999995
.99999999995

A+aA=

D0NNANNAINININNOOOO
VOO ULVLOVLOLOVLLLVLLLLLLVLLVLLLLOLO

Section 4: Using Matrix Operations

and A + AA is singular.

The figures below illustrate these ideas. In each figure matrix A
and matrix S are shown relative to the “surface” of singular
matrices and within the space of all matrices. Distance is measured
uging the norm. Around every matrix A is a region of matrices that
are practically indistinguishable from A (for example, those within
rounding errors of A). The radius of this region is [[AA]l. The

distance from a nonsingular matrix A to the nearest singular
matrix Sis 1/[|A™Y.

In the left diagram, [laA|l < 1/[|A)|. If laA] << 1/JA7Y (or
K(A)|[aAllZ]All << 1), then
relative variation in A™ =|[|change in A™!/||A7!||

= (laAl/lAlK (A)

=llaAllzaz1a)

= (radius of sphere)/(distance to surface)

In the right diagram, [|AA[| > 1/]]A”'. In this case, there exists a
singular matrix that is indistinguishable from A, and it may not
even be reasonable to try to compute the inverse of A.

Section 4 Using Matnix Operations 103

The Accuracy of Numerical Solutions
to Linear Systems

The preceding discussion dealt with how uncertainties in the data
are reflected in the solutions of systems of linear equations and in
matrix inverses. But even when data is exact, uncertainties are
introduced in numerically calculated solutions and inverses.

Consider solving the linear system AX = B for the theoretical
solution X. Because of rounding errors during the calculations, the
calculated solution Z is in general not the solution to the original
system AX = B, but rather the solution to the perturbed system
(A + AA)Z = B. The perturbation AA satisfies |[AA]| < ¢||A[|, where
¢ is usually a very small number. In many cases, AA will amount to
less than onein the 10th digit of each element of A.

For a calculated solution Z, the residual is R = B — AZ. Then
[IR]| < €¢||AJIIZ]]. So the expected residual for a calculated solution is
small. But although the residual R is usually small, the error Z — X
may not be small if A is ill-conditioned:

I1Z = Xl < el AlllAMIZI = € KcA)IZ].

A useful rule-of-thumb for the accuracy of the computed solution is

(number of correct) > (number of) ~logIAIIA) - log(10m)

decimal digits digits carried

where n is the dimension of A. For the HP-15C, which carries 10
accurate digits,

(number of correct decimal digits) =9 — log(||A[[|A']) — log(n).

In many applications, this accuracy may be adequate. When
additional accuracy is desired, the computed solution Z can usually
be improved by iterative refinement (also known as residual
correction).

[terative refinement involves calculating a solution to a system of
equations, then improving its accuracy using the residual
associated with the solution to modify that solution.

To use iterative refinement, first calculate a solution Z to the
original system AX = B. Z is then treated as an approximation to

104 Section 4: Using Matnix Operatons

X, in error by E = X — Z. Then E satisfies the linear system AE =
AX — AZ = R, where R is the residual for Z. The next step is to
calculate the residual and then to solve AE = R for E. The
calculated solution, denoted by F, is treated as an approximation to
E =X — Z and is added to Z to obtain a new approximation to X:
F+Z~(X-Z)+Z=X.

In order for F + Z to be a better approximation to X than is Z, the
residual R = B — AZ must be calculated to extended precision. The
HP-15C’s 6 operation does this. The system matrix A is
used for finding both solutions, Z and F. The LU decomposition
formed while calculating Z can be used for calculating F, thereby
shortening the execution time. The refinement process can be
repeated, but most of the improvement occurs in the first
refinement.

(Refer to Applications at the end of this section for a program that
performs one iteration of refinement.)

Making Difficult Equations Easier

A system of equations EX = B is difficult to numerically solve
accurately if E is ill-conditioned (nearly singular). Even iterative
refinement can fail to improve the calculated solution when E is
sufficiently ill-conditioned. However, instances arise in practice when
a modest extra effort suffices to change difficult equations into others
with the same solution, but which are easier to solve. Scaling and
preconditioning are two processes to do this.

Scaling

Bad scaling is a common cause of poor results from attempts to
numerically invert ill-conditioned matrices or to solve systems of
equations with ill-conditioned system matrices. But it is a cause
that you can easily diagnose and cure.

Suppose a matrix E is obtained from a matrix A by E = LAR,
where L and R are scaling diagonal matrices whose diagonal
elements are all integer powers of 10. Then E is said to be obtained
from A by scaling. L scales the rows of A, and R scales the
columns. Presumably E' = R'A"'L"! can be obtained either from
A' by scaling or from E by inverting.

Section 4. Using Matnix Operations
For example, let matrix A be

3t 1

0 0
1004
0 o

so that

3 1 2
= 1 lo—-ﬂl lu-dll
gz 1w 0"

E is very near a singular matrix

and |E = S|l /|E|| = v x 107", This means that K(S) =3 x 10", so
it’s not surprising that Lthe calculated E™!
-6.67x 107" 1 1
E'= 0.8569 8.5649 % 10" -4.284 x 10"
0.07166 -4.284 % 10" 2142 % 107

106 Section 4: Using Matrix Operations

is far from the true value

-2x 107 3 -1
El= 3 -4 x 101 2x 10"
-1 2x 104 -0

Multiplying the calculated inverse and the original matrix verifies
that the calculated inverse is poor.

The trouble is that E is badly scaled. A well-scaled matrix, like A,
has all its rows and columns comparable in norm and the same
must hold true for its inverse. The rows and columns of E are about
as comparable in norm as those of A, but the first row and column
of E*! are small in norm compared with the others. Therefore, to
achieve better numerical results, the rows and columns of E should
be scaled before the matrix is inverted. This means that the
diagonal matrices L. and R discussed earlier should be chosen to
make LER and (LER)!' = R"'E"'L."! not so badly scaled.

In general, you can't know the true inverse of matrix E in advance.
So the detection of bad scaling in E and the choice of scaling
matrices L and R must be based on E and the calculated E™'. The
calculated E™' shows poor scaling and might suggest trying

10 0 0
L=R=| 0 10° 0
0 0 10°

Using these scaling matrices,

Xt

ax 100 2
LER = I w0 |
9 In-:lﬂ _]{riiﬂ

which is still poorly scaled, but not so poorly that the HP-15C can't
cope. The calculated inverse is

LDx10™ 8 -1
(LER)' = 3 —4x10™ 2x10M
I 2 X lu:lll _I(l:HI

OCo00000

O0000O0

Q

Section 4 Using Matrix Operations 107

This result is correct to 10 digits, although you wouldn't be
expected to know this. This result is verifiably correct in the sense
that using the calculated inverse,

(LERy {LER) = (LER)LER)' =1 (the identity matrix)
to 10 digits.

Then E! is calculated as

-2x 10" 3 -1
E"'=R(LER)'L = d -4 x10™ 2x 0%
-1 2x10% -10%

which is correct to 10 digits.

If (LER)"! is verifiably poor, you can repeat the scaling, using
LER in place of E and using new scaling matrices suggested by
LER and the calculated (LER)™.

You can also apply scaling to solving a system of equations, for
example EX = B, where E is poorly scaled. When solving for X,
replace the system EX = B by a system (LER)Y = LB to be solved
for Y. The diagonal scaling matrices L and R are chosen as before
to make the matrix LER well-scaled. After you calculate Y from
the new system, calculate the desired solution as X = RY.

Preconditioning

Preconditioning is another method by which you can replace a
difficult system, EX = B, by an easier one, AX = I), with the same
solution X,

Suppose that E is ill-conditioned (nearly singular). You can detect
this by calculating the inverse E' and observing that 1/]|EY|| is
very small compared to ||E|| (or equivalently by a large condition
number K(E)). Then almost every row vector u’ will have the
property that [Ju”|| 7 [[u”E™"] is also very small compared with | E]|,
where E7' is the calculated inverse. This is because most row
veetors u? will have [[u”E!|| not much smaller than [lu|[|E-Yl, and
[[EY will be large. Choose such a row vector u” and calculate
vl = qu’E"". Choose the sealar a so that the row vector r7,
obtained by rounding every element of v to an integer between
-100 and 100, does not differ much from v’ Then r’ is a row vector

108 Section 4: Using Matrnix Operations

with integer elements with magnitudes less than 100. [[r TE| will be
small compared with ||rT]|| E|—the smaller the better.

Next, choose the kth element of r” having one of the largest
magnitudes. Replace the kth row of E by r’E and the kth row of B
by r"B. Provided that no roundoff has occurred during the
evaluation of these new rows, the new system matrix A should be
better conditioned (farther from singular) than E was, but the
system will still have the same solution X as before.

This process works best when E and A are both scaled so that
every row of E and of A have roughly the same norm as every
other. You can do this by multiplying the rows of the systems of
equations EX = B and AX = D by suitable powers of 10. If A is not
far enough from singular, though well scaled, repeat the
preconditioning process.

As an illustration of the preconditioning process, consider the
system EX = B, where

R O e W W
=]
il

c c S -

and x = 8000.00002 and y = -1999.99998 . If you attempt to solve
this system directly, the HP-15C calculates the solution X and the
inverse E™! to be

2014.6
2014.6
2014.6 | and E™' =~ 2014.6
2014.6
2014.6

Section 4 Using Matrix Operations 109
Substituting, you find

1.00146
0.00146
0.00146
0.00146
0.00147

Upon checking (using 7), you find that 1/|E"|| =
9.9 X 107°, which is very small compared with ||[E|| = 1.6 X 10* (or
that the calculated condition number is large—||E||[|[E*|| =
1.6 X 10%).

Choose any row vectoru? =(1, 1, 1, 1, 1) and calculate
wE'=10,07301,1,1,1,1).
Usinga =107,
vi=aulE'=1.0073(1,1,1,1,1)
r’=(,1,1,1,1)
IrTE||=5x 10
eI IE] ~ 8 x 10*.

As expected, ||[rTE|| is small compared with | r?||||]
Now replace the first row of E by
107+ TE = (1000, 1000, 1000, 1000, 1000)

and the first row of B by 107r"B = 107. This gives a new system
equation AX = D), where

1000 1000 1000 1000 1000
Yy

¥
Y
X

110 Section 4: Using Matnix Operations

Note that r"E was scaled by 107 so that each row of E and A has
roughly the same norm as every other. Using this new system, the
HP-15C calculates the solution

2000.000080 107
1999.999980 -10
1999.999980 |, with AX = | -9%x 10
1999.999980 0
1999.999980 0

This solution differs from the earlier solution and is correct to 10
digits.

Sometimes the elements of a nearly singular matrix E are
calculated using a formula to which roundoff contributes so much
error that the calculated inverse E™! must be wrong even when it is
calculated using exact arithmetic. Preconditioning is valuable in
this case only if it is applied to the formula in such a way that the
modified row of A is calculated accurately. In other words, you
must change the formula exactly into a new and better formula by
the preconditioning process if you are to gain any benefit.

Least-Squares Calculations

Matrix operations are frequently used in least-squares calcula-
tions. The typical least-squares problem involves an n X p matrix
X of observed data and a vector y of n observations from which you
must find a vector b with p coefficients that minimizes

n

ez = 52

i=1
where r =y — Xb is the residual vector.

Normal Equations

From the expression above,
IellZ=(y — Xb)T(y — Xb) = yTy — 2b"X "y + b"X"Xb.

Solving the leasl-squares problem is equivalent to finding a
solution b to the normal equations

Section 4 Using Matnix Operations 111
XT'Xb=XTy.

However, the normal equations are very sensitive to rounding
errors. (Orthogonal factorization, discussed on page 113, is
relatively insensitive to rounding errors.)

The weighted least-squares problem is a generalization of the

ordinary least-squares problem. In it you seek to minimize
n

IWrllZ= D wir?

=1
where W is a diagonal n X n matrix with positive diagonal
elements w, wy, ..., W,
Then
[Wrll7=(y — Xb)"WTW(y — Xb)
and any solution b also satisfies the weighted normal equations
X"WI'WXb=X"Wiwy.
These are the normal equations with X and y replaced by WX and

Wy. Consequentially, these equations are sensitive to rounding
errors also.

The linearly constrained least-squares problem involves finding b
such that it minimizes

- 2

el =lly — Xbll¢

subject to the constraints
k
Ch=d Z(‘,Ih}:d, fori=1,2,...m

E=
This is equivalent to finding a solution b to the augmented normal
equations

X' 6 Xy
C 0 d

where I, a vector of Lagrange multipliers, is part of the solution but
isn't used further. Again, the augmented equations are very
gensitive to rounding errors. Note also that weights can also be
included by replacing X and y with WX and Wy.

112 Section 4: Using Matrix Operations

As an example of how the normal equations can be numerically

unsatisfactory for solving least-squares problems, consider the
system defined by

100,000. -100,000. 0.1
0.1 0.1 0.1

0.2 0.0 0.1
0.0 0.2 0.1

10,000,000,000.05 -9,999,999,999.99
-9,999,999,999.99 10,000,000,000.05

10,000.03

xT
= -9,999.97

However, when rounded to 10 digits,

L

TY =~
X'X _10|U lOIH

which is the same as what would be calculated if X were rounded to
five significant digits relative to the largest element:

100,000 -100,000
0 0
0 0
0 0

The HP-15C solves XTXb = X7y (perturbing the singular matrix
as described on page 118) and gets

0.060001
0.060000

Section 4 Using Matnix Operations 113

0.03

XTy -X"Xb=
0.03

However, the correct least-squares solution is

0.5000005
0.4999995

despite the fact that the calculated solution and the exact solution
satisfy the computed normal equations equally well.

The normal equations should be used only when the elements of X
are all small integers (say between -3000 and 3000) or when you
know that no perturbations in the columns x; of X of as much as
1%l #10* could make those columns linearly dependent.

Orthogonal Factorization

The following orthogonal factorization method solves the least-
squares problem and is less sensitive Lo rounding errors than the
normal equation method. You might use this method when the
normal equations aren’t appropriate.

Any n X p matrix X can be factored as X = QTU, where Q is an
n X n orthogonal matrix characterized by QT = Q™! and U is an
n X p upper-triangular matrix. The essential property of
orthogonal matrices is that they preserve length in the sense that

lQrll? = @n7Qr)
QTQr
7

=r¢Ty
= [Irll.
Therefore, if r =y — Xb, it has the same length as
Qr=Qy - QXb=Qy - Ub.

114 Section 4. Using Matrnix Operations

The upper-triangular matrix U and the product Qy can be written
as

fI (p rows)
U= and Qy= i |1p vows] :
0 |(n— prows) f |(n— prows)

el =lQrl?
=llQy — Ub||?
=g — UblIF +|1fll
= el
with equality when g — Ub = 0. In other words, the solution to the
ordinary least-squares problem is any solution to Ub = g and the

minimal sum of squares is || f]| . This is the basis of all numerically
sound least-squares programs.

You can solve the unconstrained least-squares problem in two
steps:

Perform the orthogonal factorization of the augmented

nX(p+ 1) matrix
[x +]-am

where.QT =Q"!, and retain only the upper-triangular factor
V., which you can then partition as

0 g |(prows)
V=10 gq |l row)
0 0 |(n—p-1rows)

u_(l column)
(p columns)
Only the first p + 1 rows (and columns) of V need to be

retained. (Note that Q here is not the same as that mentioned
earlier, since this Q must also transform y.)

Section 4 Using Matnix Operations

Solve the following system for b:

g b
q -1

(If ¢ = 0, replace it by any small nonzero number, say 107%.)
The -1 in the solution matrix automatically appears; it
requires no additional calculations.

In the absence of rounding errors, g = %|ly — Xb||¢; this may
be inaccurate if|g| is too small, say smaller than ||y||/105. If
you desire a more accurate estimate of |y — Xb||, you can
calculate it directly from X, y, and the computed solution b.

For the weighted least-squares problem, replace X and y by WX
and Wy, where W is the diagonal matrix containing the weights.

For the linearly constrained least-squares problem, you must
recognize that constraints may be inconsistent. In addition, they
can’t always be satisfied exactly by a calculated solution because
of rounding errors. Therefore, you must specify a tolerance t such
that the constraints are said to be satisfied when ||[Cb — d|| < ¢.
Certainly ¢ > ||d||/10"" for 10-digit computation, and in some cases
a much larger tolerance must be used.

Having chosen ¢, select a weight factor w that satisfies w > [ly]l/¢.
For convenience, choose 1w to be a power of 10 somewhat bigger
than |ly[|/t. Then w||Cb — d|| > |ly|| unless |Cb — d|| <.

However, the constraint may fail to be satisfied for one of two
reasons:

e No b exists for which [|[Cb —d| < t.
¢ The leading columns of C are nearly linearly dependent.
Check for the first situation by determining whether a solution
exists for the constraints alone. When | wC wd] has been factored
to QU g), solve this system for b
(krows)| U g b 0 |(prows)
(pt1—krows)| 0 diag(q) -1 -q |(1 row)

using any small nonzero number g. If the computed solution b
salisfies Ch = d, then the constraints are not inconsistent.

2

Section 4. Using Matnix Operations 117
116 Section 4 Using Matrix Operations

Singular and Nearly Singular Matrices

A matrix is singular if and only if its determinant is zero. The
determinant of a matrix is equal to (-1)" times the product of the
diagonal elements of U, where U is the upper-diagonal matrix of
the matrix’s LU decomposition and r is the number of row
interchanges in the decomposition. Then, theoretically, a matrix is
singular if at least one of the diagonal elements of U, the pivots, is
zero; otherwise it is nonsingular.

However, because the HP-15C performs calculations with only a

finite number of digits, some singular and nearly singular matrices
can’t be distinguished in this way. For example, consider the

matrix

The second situation is rarely encountered and can be avoided. It
shows itself by causing at least one of the diagonal elements of U
to be much smaller than the largest element above it in the same
column, where U is from the orthogonal factorization wC = QUuU.

R

LLL

; To avoid this situation, reorder the columns of wC and X and
I similarly reorder the elements (rows) of b. The reordering can be
chosen easily if the troublesome diagonal element of U is also
much smaller than some subsequent element in its row. Just swap
the corresponding columns in the original data and refactor the
weighted constraint equations. Repeat this procedure if necessary.

VR1)

For example, if the factorization of w C gives

1.0 20 05-15 0.3
U=] 0 @02 05 30 01|,
0 0 25 15 -12

zl' = 3 =it
o 00

P00 DD

which is singular. Using 10-digit accuracy, this matrix is
decomposed as

0
L3

then the second diagonal element is much smaller than the value
2.0 above it. This indicates that the first and second columns in the
original constraints are nearly dependent. The diagonal element is
also much smaller than the subsequent value 3.0 in its row. Then
the second and fourth columns should be swapped in the original
data and the factorization repeated.

” 1 ol[3 3
LS 3333333333 1 o 1|’

which is nonsingular. The singular matrix B can’t be distin-

I It is always prudent to check for consistent constraints. The test for
guished from the nonsingular matrix

small diagonal elements of U can be done at the same time,

Finally, using U and g as the first & rows, add rows corresponding
[to X and y. (Refer to Least-Squares Using Successive Rows on
page 140 for additional information.) Then solve the unconstrained
least-squares problem with

J 3
9999999999 1

since they both have identical calculated LU decompositions.

JOOOVOUVUVOVVLLVLLVLOLLLLOLYY

N0Co0000OCCOCO O

wC wd .
X+ X and y+ v On the other hand, the matrix
; , _ 3 3 Y e S
Provided the calculated solution b satisfies ICb — d|| < ¢, that - A= = i LU
solution will also minimize |ly — Xb|| subject to the constraint 19999999999 4 10 =1

Cb=~d.

00

i

%

{00

3
5

118 Section 4: Using Matrix Operations

is nonsingular. Using 10-digit accuracy, matrix A is decomposed
as

1 0 3
.J333333333 1 00
This would incorrectly indicate that matrix A is singular. The

nonsingular matrix A can’t be distinguished from the singular
matrix

3 3
.9999999999 9999999999

gince they both have identical calculated L U decompositions.

When you use the HP-15C to calculate an inverse or to solve a
system of equations, you should understand that some singular
and nearly singular matrices have the same calculated LU
decomposition. For this reason, the HP-15C always calculates a
result by ensuring that all decomposed matrices never have zero
pivots. It does this by perturbing the pivots, if necessary, by an
amount that is usually smaller than the rounding error in the
calculations. This enables you to invert matrices and solve systems
of equations without being interrupted by zero pivots. This is very
important in applications such as calculating eigenvectors using
the method of inverse iteration (refer to page 155).

The effect of rounding errors and possible intentional perturba-
tions is to cause the calculated decomposition to have all nonzero
pivots and to correspond to a nonsingular matrix A + AA usually
identical to or negligibly different from the original matrix A.
Specifically, unless every element in some column of A has
absolute value less than 10", the column sum norm [|AA]- will be
negligible (to 10 significant digits) compared with Al

The HP-15C calculates the determinant of a square matrix as the
signed product of the (possibly perturbed) calculated pivots. The
calculated determinant is the determinant of the matrix A + A
represented by the LU decomposition. It can be zero only if the
product’s magnitude becomes smaller than 107 (underflow).

Section 4. Using Matnix Operations 119

Applications

The following programs illustrate how you can use matrix
operations to solve many types of advanced problems.

Constructing an Ildentity Matrix

This program creates an identity matrix I, in the matrix whose
descriptor is in the Index register. The program assumes that .the
matrix is already dimensioned to n X n. Execute the program using
[GSB]8. The final matrix will have I's for all diagonal elements and
0's for all other elements.

Keystrokes Display

[e](P7R] Program mode.
()CLEAR [PRGM] 000-
(1)(tel8 001-42,21, B o
[([MATRIX] 1 002-42,16, 1 Setsi=j=1.

(f[teL]9 003-42,21, 9

[RcL]O 004- 45 0

[RCL] 1 005- 45 1 .

[g](TEST]6 006-43,30, 6 Testsi+].

007- 4335 o

[e)(EsT)6 008-43,30, 5 Testsi=}.

009- 26 Setselementtolifi=j.

[N(user](sTO](1] 010u 44 24 Skips next step at last

()(UsER] element.
[GTO]9 011- 22 9

(a)(RTN) 012- 4332
(a](p/R] Run mode.

l.abels used: 8 and 9.

Registers used: Ry, R, and Index register.

One-Step Residual Correction

The following program solves the system of equations AX = B for
X, then performs one stage iterative refinement to improve the
solution. The program uses four matrices:

Appendix
Accuracy of
Numerical Calculations

Misconceptions About Errors

Error is not sin, nor is it always a mistake. Numerical error is
merely the difference between what you wish to calculate and what
you get. The difference matters only if it is too big. Usually it is
negligible; but sometimes error is distressingly big, hard to
explain, and harder to correct. This appendix focuses on errors,
especially those that might be large—however rare. Here are some
examples. d

Example 1: A Broken Calculator. Since (\/;)2 = x whenever
x 20, we expect also

f(x) = (.. (Vo VR LDD?
S—— N

50 50
roots squares

should equal x too.

A program of 100 steps can evaluate the expression f(x) for any
positive x. When x =10 the HP-15C calculates 1 instead. The error
10 —1 =9 appears enormous considering that only 100 arithmetic
operations were performed, each one presumably correct to 10
digits. What the program actually delivers instead of f(x) = x turns
out to be

1
21,

for x

>
for0<

which seems very wrong. Should this calculator be repaired?

[

VOVOVOVUVLLVLOVLLLLLLLLLLOLLOL

'|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

!

0000000000000 DOOOODDDD
(VY]

Appendix: Accuracy of Numencal Calculations 173

Example 2: Many Pennies. A corporation retains Susan as a
scientific and engineering consultant at a fee of one penny per
second for her thoughts, paid every second of every day for a year.
Rather than distract her with the sounds of pennies dropping, the
corporation proposes to deposit them for her into a bank account in
which interest accrues at the rate of 11% percent per annum
compounded every second. At year's end these pennies will
accumulate to a sum

+i/n)"—1
total = (payment) X L&‘—
'n

payment = $0.01 = one penny per second,
£=0.1125 = 11.25 percent per annum interest rate,
n =60 X 60 X 24 X 365 = number of seconds in a year.

Using her HP-15C, Susan reckons that the total will be
$376,877.67 . But at year's end the bank account is found to hold
$333,783.35 . Is Susan entitled to the $4:3,094.32 difference?

In both examples the discrepancies are caused by rounding errors
that could have been avoided. This appendix explains how.

The war against error begins with a salvo against wishful
thinking, which might confuse what we want with what we get. To
avoid confusion, the true and calculated results must be given
different names even though their difference may be so small that
the distinction seems pedantic.

Example 3: Pi. The constant = =3.141592653589792384626433 ...
Pressing the[r]key on the HP-15C delivers a different value

[x]= 3.141592654

which agrees with = to 10 significant digits. But [x] # m, so we
should not be surprised when, in Radians mode, the calculator
doesn't produce sin (7] = 0.

Suppose we wish to calculate x but we get X instead. (This
convention is used throughout this appendix.) The error is x — X.
The absolute erroris| x — X]. The relative erroris usually reckoned
(x— X)/xforx#0.

174 Appendix: Accuracy of Numerical Calculations

Example 4: A Bridge Too Short. The lengths in meters of three
sections of a cantilever bridge are designed to be

x =J333.76 y=195.07 z2=333.76 ..

The measured lengths turn out to be respectively

X =333.69 ¥Y=195.00 Z=1333.72.

The discrepancy in total length is

d=(x+y+z)—(X+ Y+2Z)=86259 —862.41 =0.18.

Ed, the engineer, compares the discrepancy d with the total length
(x + y+2) and considers the relative discrepancy

d/(x+y+2)=0.0002=2 parts in 10,000

to be tolerably small. But Rhonda, the riveter, considers the
absolute discrepancy |d| = 0.18 meters (about 7 inches) much too
large for her liking; some powerful stretching will be needed to line
up the bridge girders before she can rivet them together. Both see
the same discrepancy d, but what looks neglibible to one person
can seem awfully big to another.

Whether large or small, errors must have sources which, if
understood, usually permit us Lo compensate for the errors or to
circumvent them altogether. To understand the distortions in the
girders of a bridge, we should learn about structural engineering
and the theory of elasticity. To understand the errors introduced by
the very act of computation, we should learn how our calculating
instruments work and what are their limitations. These are details
most of us want not to know, especially since a well-designed
calculator's rounding errors are always nearly minimal and
therefore appear insignificant when they are introduced. But when
on rare occasions they conspire to send a computation awry, they
must be reclagsified as “significant” after all.

Appendix: Accuracy of Numerical Calculations 175
Example 1 Explained. Here f(x)= s(r(x)), where

rx)= Vo Vv = 2
—
50

roots

s(r) = (.. (D)2)32 = 20,
o p—
50

squares

The exponents are %" =88818x10°'% and 2= 11259 x 10",
Now, x must lie between 107" and 9.999 ... X 10% since no positive
numbers outside that range can be keyed into the calculator. Since
ris an increasing function, r(x) lies between

r(107%%) = 0.9999999999997975 ...

r(10'" = 1.0000000000002045

This suggests that R(x), the calculated value of r(x), would be 1 for
all valid calculator arguments x. In fact, because of roundoff,

0.9999999999 for0<x<1

il 1.000000000 for 1 < x <9.999999999 x 10",

If 0<x<1, then x<0.9999999999 in a 10-digit calculator. We
would then rightly expect that vx < ./0.9999999999, which is
0.999999999949999999998... , which rounds to 0.9999999999 again.
Therefore, if [J7]is pressed arbitrarily often starting with x < 1, the
result cannot exceed 0.9999999999 . This explains why we obtain
R(x)=0.9999999999 for 0 < x < 1 above. When R(x) is squared 50
times to produce F(x) = §(R(x)), the resultis clearly 1 for x = 1, but
whyis F(x)=0for0sx<1?Whenx < 1,

s{R(x)) < $(0.9999999999) = (1 — 107102 = §.14 x 10198,

176 Appendix. Accuracy of Numerical Calculations

This value is so small that the calculated value F(x) =8(R(x))
underflows to 0. So the HP-15C ian't broken: it is doing the best that
can be done with 10 significant digits of precision and 2 exponent
digits.

We have explained example 1 using no more information about the
HP-15C than that it performs each arithmetic operation [Jand [¥%)
fully as accurately as is possible within the limitations of 10
significant digits and 2 exponent digits. The rest of the information
we needed was mathematical knowledge about the functions f, r,
and s. For instance, the value r(10'"%) above was evaluated as

F(10'090) = “Onm)w,-"":

= exp (In (10')/250)

=exp (100 (In 10)/25%)

= exp (2.045X% 10"

=1+(2.045X 107" + 14(2.045 X 10792 + .,

by using the series exp(z) =1 +z + Yz? 4+ V23 + ...

Similarly, the binomial theorem was used for

+/0.9999999999 = (1 — 10-'0)*
=1-%(10" — /o2 —

These mathematical facts lie well beyond the kind of knowledge
that might have been considered adequate to cope with a
calculation containing only a handful of multiplications and
square roots. In this respect, example 1 illustrates an unhappy
truism: Errors make computation very much harder to analyze.
That is why a well-designed calculator, like the HP-15C, will
introduce errors of its own as sparingly as is possible at a tolerable
cost. Much more error than that would turn an already difficult
task into something hopeless.

Example 1 should lay two common misconceptions to rest:

¢ Rounding errors can overwhelm a computation only if vast
numbers of them accumulate.

® A few rounding errors can overwhelm a computation only if
accompanied by massive cancellation.

>0

(]

Appendix: Accuracy ol Numencal Calculations 177

Regarding the first misconception, example 1 would behave in the
same perverse way if it suffered only one rounding error, the one
that produces R(x)=1 or 0.9999999999, in error by less than one
unitin its last (10th) significant digit.

Regarding the second misconception, cancellation is what happens
when two nearly equal numbers are subtracted. For example,
calculating

c(x)=(1 — cos x)/x2

in Radians mode for small values of x is hazardous because of
cancellation. Using x = 1.2 X 10" and rounding results to 10 digits,

cos x = (1.9999999999

1 — cos x = 0.0000000001

with cancellation leaving maybe one significant digit in the
numerator. Also

x2=1.44x 107",

C(x)=0.6944 .

This calculated value is wrong because 0 < e(x) < % for all x # 0. To
avoid numerical cancellation, exploit the trigonometric identity
cosx = 1 — 2sin*(x/2) to cancel the 1 exactly and obtain a better
formula

1 [sintr) ¥
2 x/2

clx)=

When this latter expression is evaluated (in Radians mode) at
x=1.2x107 the computed result ('(x)=0.5 is correct to 10
significant digits. This example, while explaining the meaning of
the word “cancellation,” suggests that it is always a bad thing.
That is another misconception to be dispatched later. For the

00000000000000000000000999
VQOVVOVOVOVLLVLOVLVLVLOVLLVLLVLLVLLVLOLOVLOVLVLLVLLLLL

178 Appendix: Accuracy of Numerical Calculations

present, recall that example 1 contains no subtraction, therefore no
cancellation, and is still devastated by its rounding error. In this
respect example 1 is counterintuitive, a little bit scary. Nowhere in
it can we find one or two arithmetic operations to blame for the
catastrophe; no small rearrangement will set everything right as
happened for c(x). Alas, example 1 is not an isolated example. As
computers and calculators grow in power, so do instances of
insidious error growth become more common.

To help you recognize error growth and cope with it is the ultimate
goal of this appendix. We shall start with the simplest kinds of
errors and work our way up gradually to the subtle errors that can
afflict the sophisticated computations possible on the HP-15C,

A Hierarchy of Errors

Some errors are easier to explain and to tolerate than others.
Therefore, the functions delivered by single keystrokes on the
HP-15C have been categorized, for the purposes of easier
exposition, according to how difficult their errors are to estimate.
The estimates should be regarded as goals set by the calculator’s
designers rather than as specifications that guarantee some stated
level of accuracy. On the other hand, the designers believe they can
prove mathematically that their accuracy goals have been
achieved, and extensive testing has produced no indication so far
that they might be mistaken.

Level O: No Error

Functions which should map small integers (smaller than 10') to
small integers do so exactly, without error, as you might expect.

Examples:
N ~-24= -8 320 = 3 486,784,401
log (10") =9 6! =720

cos™'(0) =90 (in Degrees mode)

ABS(4,684,660 + 4,684,6591) = 6,625,109 (in Complex mode)

Also exact for real argments are [ABS], [FRAC], [INT], [RND], and
comparisons (such as[x<y]). But the matrix functions [x], [£],[1/x],
MATRIX]6, and [MATRIX]9 (determinant) are exceptions (refer to
page 192).

Level =o: Overflow/Underflow

Results which would lie closer to zero than 107" underflow quietly
to zero. Any result that would lie beyond the overflow thresholds
£9.999999999 X 10" is replaced by the nearest threshold, and then
flag Y is set and the display blinks. (Pressing [ON][ON] or [CF]9 or[«]
will clear flag Y and stop the blinking.) Most functions that result
in more than one component can tolerate overflow/underflow in
one component without contaminating the other; examples are
[#R], [+P], complex arithmetic, and most matrix operations. The
exceptions are matrix inversion ([17x] and [(5]), [MATRIX]9
(determinant), and [LR].

94

Level 1: Correctly Rounded, or Nearly So

Operations that deliver “correctly rounded” results whose error
cannot exceed Y2 unit in their last (10th) significant digit include
the real algebraic operations [+], (-], [x], (5], (7). [z], [1/x], and

the complex and matrix operations and [-], matrix by scalar
operations [x]and [#](excluding division by a matrix), and [#H.MS].
These results are the best that 10 significant digits can represent,
as are familiar constants (], 1 [¢¥], 2 [LN], 10 [LN], 1 [®RAD], and
many more. Operations that can sulfer a slightly larger error, but
still significantly smaller than one unit in the 10th significant digit
of the result, include [8%], [#H], [+RAD], [*DEG], [Py,x], and [Cyx];
[tn], [LOG). [107], and [TANH] for real arguments; [+P], [SINT], [COS'],

arguments; [ABS], [T], and [1/x] for complex arguments; matrix
norms [MATRIX] 7 and [MATRIX] 8; and finally [SIN], [COS], and

for real arguments in Degrees and Grads modes (but not in
Radians mode—refler to Level 2, page 184).

A function that grows to = or decays 1o 0 exponentially fast as its
argument approaches to may suffer an ervor larger than one unit
in its 10th significant digit, but only if its magnitude is smaller
than 107" or larger than 107" and though the relative error gets
worse as the resull gets more extreme (small or large), the error
stuys below three units in the last (10th) significant digit. The
reason for this error is explained later. Functions so alfected are
[e¥], [¥*), [x1) tfor noninteger 1), [SINH], and [COSH] for real
arguments. The worst case known is 32 which is calculated as
6841966 = 10" The last digit 4 should be 6 instead, as is the
case for 7299 caleulated as 7968419666 > 1070,

Ak

Appendix. Accuracy of Numencal Caleulations
180 Appendix. Accuracy of Numerical Calculations

i/n = 0.000000003567351598
1+ i/n = 1.000000004

The foregoing statements about errors can be summarized for all
functions in Level 1 in a way that will prove convenient later:

>0 0

VOO

Attempts to calculate a function f in Level 1 produce
instead a computed value F = (1 + ¢)f whose relative error
¢, though unknown, is very small:

when rounded to 10 significant digits. There is the rounding error
that hurts, Subsequently atlempting to calculate (1 +i/n)", Susa_n
must get instead (1.000000004)* 536000 = 1 134445516, which is

5X 107" if Fis correctly rounded wrong in its second decimal place.

le] < _
How can the correct value be calculated? Only by not throwing
away so many digits of i/n. Observe that

1x10° for all other functions Fin Level 1.

This simple characterization of all the functions in Level 1 fails to
convey many other important properties they all possess,

i i 1+1i/n uzeulnlluru’
properties like ()

so we might try to calculate the logarithm in some way that does
not discard those precious digits. An easy way to do so on the
HP-15C does exist.

To calculate A(x) = In(1 + x) accurately for all x> —1, even if | x| is
very small:

e Exactinteger values: mentioned in Level 0.

e Sign symmetry: sinh(—x)=—sinh(x), cosh(—x)=cosh(x),
In(1/x) = —In(x) (if 1/x is computed exactly).

e Monotonicity: if f(x) = f(y), then computed F(x) = F(y).
1. Calculateu =1+ x rounded.

These additional properties have powerful implications; for 9. Th
2. en

instance, TAN(20°) = TAN(200°) = TAN(2,000°) = ... =
TAN(2 X 10% °) = 0.3639702343 correctly. But the simple character-
ization conveys most of what is worth knowing, and that can be
worth money.

ifu=1

S In(u)x/(u—1) ifu#1l.

The following program calculates A(x) = In(1 + x).
Example 2 Explained. Susan tried to calculate

Keystrokes Display

(@)e7m)

({JCLEAR 000-

[MsU(A] 001-42,21,11 Assumes x isin X-register.

(ENTER) 002- 36

[ENTER] 003- 36

EEX 004- 26 DPlaces 1 in X-register.

005- 40 Calculatesu=1+x
rounded.

006- Calculates In(u) (zero for
u=1).

[xxy] 007- Restores x to X-register.

[g][LSTx] 008- Recalls u.

(I+i/n)'—1
i/‘n

total = payment X

where
payment = $0.01,
1=10.1125, and
n = 60X 60X 24 x 365 = 31,536,000.

She calculated $376,877.67 on her HP-15C, but the bank’s total was
$333,783.35, and this latter total agrees with the results calculated
on good, modern financial calculators like the HP-12C, HP-37E,
HP-38E/38C, and HP-92. Where did Susan’s calculation go awry?
No severe cancellation, no vast accumulation of errors; just one
rounding error that grew insidiously caused the damage:

nnnnnnnnononnonoonoooonnon
VOOVOVOVLULVLLVLOLVLLVLVLLVLLVLLLLOLLOVLLLOL

1b2 Appendha Acconacy ol N cal Conclbations

Keystrokes Display

009- 26 Places 1 in X-register.
[g](TEST]6 010-43.30, 6 'Testsu#1.
011- 30 Calculatesu — 1 when
w# 1.
012- 10 Calculates x/(u — 1) or
II'I.
013- 20 Calculates A(x).
014- 4332

The calculated value of u, correctly rounded by the HP-150, is
u=(1+e (1 +x) wherelef <5 X 107" Ifu = I, then

x| =111+ =1 <Hx 10

too, in which case the Taylor series A(x) = x (1 - Vox + Vax? —)
tells us that the correctly rounded value of A(x) must be just x
Otherwise, we shall calculate x A(u — 1):(u ~ 1) lairly m:c:urnu-l-y.
instead of A(x). But A(x)/x =1 - %x F Vix?2 — _ varies very slowly,
8o slowly that the absolute error A(x)/x - Alu - 1)/(u 1) is l;l)
worse than the absolute error x — (1 — 1) = ~¢(1 + x),andifx < 1
this error is negligible relative to A(x)/x. When x > I,thenu 1 is:
8o nearly x that the error is negligible again: A(x) is correct to nine
significant digits.

A's usual in error analyses, the explanation is far longer than the
simple procedure being explained and obscures an important fact:
the errors in In(u) and « — 1 were ignored during the explanation
because we knew they would be negligible. This knowledge, and
hence the simple procedure, is invalid on some other calculators
and big computers! Machines do exist which calculate In(u) and/or
I = u with small absolute error, but large relative error when u is
near 1; on those machines the foregoing calculations must be
wrong or much more complicated, often both. (Refer to the
discussion under Level 2 for more about this.)

Back to Susz.m'u sum. By using the foregoing simple procedure to
calculate A(i/n)=In(l +i/n)= 3567351591 X 10" she oblains a

»

better value:

(I+i/n)t= e A n) =1 119072257

Appendix: Accuracy of Numenical Calculations

from which the correct total follows.

To understand the error in 3%°!, note that this is calculated as
U Ineh = 20821 Ty keep the final relative error below one unitin
the 10th significant digit, 201 In(3) would have to be calculated
with an absolute error rather smaller than 107", which would
entail carrying at least 14 gignificant digits for that intermediate
value. The calculator does carry 13 significant digits for certain
intermediate calculations of its own, but a 14th digit would cost
more than it's worth.

Level 1C: Complex Level 1

Most complex arithmetic functions cannot guarantee 9 or 10
correct significant digits in each of a result’s real and imaginary
parts separately, although the result will conform to the summary
statement about functions in Level 1 provided f, F, and ¢ are
interpreted as complex numbers. In other words, every complex
function [in Level 1C will produce a calculated complex value
F=(1 +¢)f whose small complex relative error ¢ must satisfy
le] <107, The complex functions in Level 1C are [, [5], 7], [CN],
(LOG), [SIN"],[c05"], [TANT], [SINHT], [COSH"], and [TANH"]. Therefore,
a function like A(z) = In(1 + 2) can be calculated accurately for all 2
by the same program as given above and with the same
explanation.

To understand why a complex result’s real and imaginary parts
might not individually be correct to 9 or 10 significant digits,
consider [x], for example: (a + ib) X (¢ + id) = (ac — bd) + i(ad + bc)
ideally. Try this with a = ¢ =9.999999998, b =9.999999999, and
d = 9.999999997; the exact value of the product’s real part (ac — bd)
should then be

(9.999999998)* — (9.999999999) (9.999999997)
94.999999980000000004 — 99.999999980000000003
=10

which requires that at least 20 significant digits be carried during
the intermediate calculation. The HP-15C carries 13 significant
digits for internal intermediate results, and therefore obtains 0
instead of 10°" for the real part, but this error is negligible
compared to the imaginary part 199.9999999

Appendix Accuracy of Numencal Calculauons 185

184 Appendix. Accuracy of Numencal Calculations

Level 2: Correctly Rounded for Possibly
Perturbed Input

[TRIG)(x) = triglxn/ p)
to within £0.6 units in its 10th significant digit.
This formula has important practical implications:

e Since n/p = 1 — 2.0676... X 1077/ p = 0.9999999999999342...,
the value produced by [TRIG](x) differs from trig(x) by no more
than can be attributed to two perturbations: one in the 10th
significant digit of the output trig(x), and one in the 13th
significant digit of the input x.

Trigonometric Functions of Real Radian Angles

Recall exar.np]e J, which noted that the calculator’s [«] key delivers
an approximation to n correct to 10 significant digits but still
slightly different from m, s0 0 = sin(7) # sin ([x]) for which the
calculator delivers

[SIN]([x]) = -4.100000000 X 107,
This computed value is not quite the same as the true value

sin ([r]) = -4.10206761537356... X 10710,

1l

If x has been calculated and rounded to 10 significant digits,
the error inherited in its 10th significant digit is probably
orders of magnitude bigger than [TRIG]'s second perturbation
in x's 13th significant digit, so this second perturbation can be
ignored unless x is regarded as known or calculated exactly.

iR Y,

Whetber the discrepancy looks small (absolute error less than 2.1
X 1071%) or relatively large (wrong in the fourth significant digit) for
a 10-significant-digit calculator, the discrepancy deserves to be
understood because it foreshadows other errors that look, at first
sight, much more serious.

Consider
10" = 314159265358979.3238462643...
withsin (10"7)=0and
10" X [x]) = 314159265400000
with [SIN](10'[x]) = 0.7990550814, although the true
sin (10" [x]) = -0.78387....

The wrong sign is an error too serious to ignore; it seems to suggest
a del’gcl in the calculator. To understand the error in trigonometric
functions we must pay attention to small differences among m and
two approximations to

true m=3.1415926535897932384626433...
!(ey [r]=3.141592654 (matches 7 to 10 digits)
internal p = 3.141592653590 (matches = to 13 digits)

Then all is explained by the following formula for the calculated

vglue: [SiN])(x) = sin(xn/p) to within +0.6 units in its last (10th)
significant digit.

More generally, if trig(x) is any of the functions sin(x), cos(x), or
tan(x), evaluated in real Radians mode, the HP-15C produces

Every trigonometric identity that does not explicitly involve m
is satisfied to within roundoff in the 10th significant digit of
the calculated values in the identity. For instance,

sin(x) + cos¥(x) = 1, s0 ([SIN](x) + ([COS)(x))* = 1
sin(x)/cos(x) = tan(x), so [SIN)(x)/ (COS)(x) = [TAN](x)

with each calculated result correct to nine significant digits
for all x. Note that [COS)(x) vanishes for no value of x
representable exactly with just 10 significant digits. Andif 2x
can be calculated exactly given x,

sin(2x) = 2sin(x)cos(x), so [SIN](2x) =2 ::l(x)-cos (x)

to nine significant digits. Try the last identity for x = 52174
radians on the HP-156C:

[SIN](2.x) = -0.00001 100815000,
2(8IN](x)[COS](x) = -0.00001 100815000 .

Note the close agreement even though for this x, sin(2x) =
2sin(x)cos(x) = -0.0000110150176... disagrees with [SIN](2x) in
its fourth significant digit. The same identities are satisfied by
[TRIG)(x) values as by trig(x) values even though [TRIG](x) and
trig(x) may disagree.

Despite the two kinds of errors in [TRIG], its computed values
preserve familiar relationships wherever possible:

e Signsymmetry: [cos)(-x) = [coS](x)
[(5IN)(-x) = -[SIN](x)

—-———-—————————__;
U0V UVUVLUVLUVYBLLBLVLUVBLLBLLOVLLLLLLLL

DA 00000000O0O00

Pypap nbea execaneat y b cbarin s al b voaaiion, 187

ﬂ\
gt

Appendix. Accuracy of Numerical Calculations

kward Error Analysis
e Monotonicity: if trig(x) = trig(y), Backward vy

then (TRIG](x) = [TRIG](y)
(provided | x — y| <))
e Limiting inequalities: [SIN](x)/x < 1 forallx #0
; [TAN](x)/x = 1 for 0 <| x| < m/2
-1 <[SIN](x)and[COS](x)< 1

for all x

Until the late 1950's, most computer experts inelined to paranoia in
their assessments of the damage done to numerical computations
by rounding errors. To justify their paranovia, they could cite
published error analyses like the one from which a famous scientist
concluded that matrices as large as 40 X 40 were almost certainly
impaossible to invert numerically in the face of roundoff. However,
by the mid 1960's matrices as large as 100 X 100 were being
inverted routinely, and nowadays cquations with hundreds of
thousands of unknowns are being solved during geodetic

0o
et
v

1
1

{\,
L L

i\

o
--:-—.

What do these properties imply for engineering calculations? You
don’t have to remember them!

In general, engineering calculations will not be affected by the
difference between p and n, because the consequences of that
difference in the formula defining [TRIG](x) above are swamped by
the difference between [r] and = and by ordinary unavoidable
roundoff in x or in trig(x). For engineering purposes, the ratio =/p
= 0.9999999999999342... could be replaced by 1 without visible
effect upon the behavior of

Example 5: Lunar Phases. If the distance between our Earth
and its moon were known accurately, we could calculate the phase
difference between radar signals transmitted to and reflected from
the moon. In this calculation the phase shift introduced by p # r
has less effect than changing the distance between Earth and
moon by as little as the thickness of this page. Moreover, the
calculation of the strength, direction, and rate of change of
radiated signals near the moon or reflected signals near the Earth,
calculations that depend upon the trigonometric identities’
continuing validity, are unaffected by the fact that p # ; they rely
instead upon the fact that p is a constant (independent of x in the
formula for [TRIG](x)), and that constant is very near .

The HP-15C’s keyboard functions that involve p are the
trigonometric functions [SIN], [C0S], and [TAN] for real and complex
arguments; hyperbolic functions [SINH], [COSH], and [TANH] for
complex arguments; complex operations [e¥], (10%], and [¥*]; and
real and complex [®R].

It all seems like much ado about very little. After a blizzard of
formulas and examples, we conclude that the error caused by p # n
is negligible for engineering purposes, so we need not have
bothered to know about it. That is the burden that conscientious
error analysts must bear; if they merely took for granted that small
errors are negligible, they might be wrong.

0o

ANHNONNHNNOD0D N

-

AR
't ¢ & % ® ® ‘® §®§ §¥ § ®§ ®¥ ®§ "®§ _§ _§ N R |

VOOVOUVOVOVLLVLLVLLVLULVLLVLULLLOLLLLYL

calculations worldwide. How can we reconcile these accomplish-
ments with the fact that that famous scientist's mathematical
analysis was quite correct?

We understand better now than then why different formulas to
calculate the same result might differ utterly in their degradation
by rounding errors. For instance, we understand why the normal
equations belonging Lo certain least-squares problems can be
solved only in arithmetic carrying extravagantly high precision;
this i1s what that famous scientist actually proved. We also know
new procedures (one is presented on page 140) that can solve the
same least-squares problems without carrying much more
precision than suffices to represent the data. The new and better
numerical procedures are not obvious, and might never have been
found but for new and better techniques of error analysis by which
we have learned to distinguish formulas that are hypersensitive to
rounding errors from formulas that aren’t. One of the new (in 1957)
techniques is now called “backward error analysis,” and you have
already seen it in action twice: first, it explained why the procedure
that calculates A(x) is accurate enough to dispel the inaccuracy in
example 2; next, it explained why the calculator’s functions
very nearly satis{ly the same identilies as are satisfied by trig
functions even for huge radian arguments x at which [TRIG)(x) and
trig(x) can be very different. The following paragraphs explain
backward error analysis itself in general terms.

Consider some system Fintended to transform an input x into an
output y = f(x). For instance, F could be a signal amplifier, a filter,

a transducer, a control system, a refinery, a country's economy, a
computer program, or a caleulator. The input and output need not
be numbers; they could be sets of numbers or matrices or anything
else quantitative. Were the input x to be contaminated by noise Ax,

188 Appendix. Accuracy of Numerical Calculations

then in consequence the output y + Ay = f(x + Ax) would generally
be contaminated by noise Ay = flx+ Ax)— f(x).

Ax

—{ 1 Fv=mn ®

No Noise

y =f(x + Ax)

Noisy Input

Some transformations f are stable in the presence of input noise;
they keep Ay relatively small as long as Ax is relatively small.
Other transformations f may be unstable in the presence of noise
because certain relatively small input noises Ax cause relatively
huge perturbations Ay in the output. In general, the input noise Ax
will be colored in some way by the intended transformation fon the
way from input to output noise Ay, and no diminution in Ay is
possible without either diminishing ax or changing f. Having
accepted f as a specification for performance or as a goal for
design, we must acquiesce to the way fcolors noise at its input.

The real system F differs from the intended f because of noise or
other discrepancies inside F. Before we can appraise the
consequences of that internal noise we must find a way to
represent it, a notation. The simplest way is to write

F(x)=(f+8f)x)

where the perturbation 6f represents the internal noise in F.

One Small Output Perturbation (Level 1)

We hope the noise term &f is negligible compared with f. When that
hope is fulfilled, we classify F in Level 1 for the purposes of

LIV
VOUL

.

—

;

0

N

L L

IS

nHhHnonno

L R

ybboLOLO

Appendix. Accuracy of Numenical Calculations 189

exposition; this means that the noise internal to F can be explained
as une small addition 6f to the intended output f.

For example, F(x) = [LN](x) is classified in Level 1 because the
dozens of small errors committed by the HP-15C during its
caleulation of F(x) = (f + 8f)(x) amounts to a perturbation &f(x)
smaller than 0.6 in the last (10th) significant digit of the desired
output f(x) = In(x). But #(x)=[SIN](x) is not in Level 1 for radian x
because F(x) can differ too much from f(x) = sin{x); for instance
F(10"(x]) = 0.799... is opposite in sign from f(10"(x]) = —0.784...,
so the equation F(x) = (f+ 6/)(x) can be true only if 6f is sometimes
rather bigger than f, which looks bad.

Real systems more often resemble (SIN] than [LN]. Noise in most real
systems can accumulate occasionally to swamp the desired output,
at least for some inputs, and yet such systems do not necessarily
deserve condemnation. Many a real system F operates reliably
because its internal noise, though sometimes large, never causes
appreciably more harm than might be caused by some tolerably
small perturbation &x to the input signal x. Such systems can be
represented as

F(x)=(f+68f)x+b6x)

where 8f is always small compared with f and x is always smaller
than or comparable with the noise Ax expected to contaminate x.
The two noise terms &f and 6x are hypothetical noises introduced to
explain diverse noise sources actually distributed throughout F.
Some of the noise appears as a tolerably small perturbation 6x to
the input—hence the term “backward error analysis."” Such a
system F, whose noise can be accounted for by two tolerably small
perturbations, is therefore classified into Level 2 for purposes of
exposition.

190 Appendo Accuraey of Nomecoeal Cale alalons

No difference will be perceived at first between Level 1 and Level 2
by readers accustomed to linear systems and small signals because
such systems' errors can be referred indiscriminately to output or
input. However, other more general systems that are digital or
nonlinear do not admit arbitrary reattribution of output noise to
input noise nor vice-versa.,

For example, can all the error in [CO5] be attributed, merely by
writing [COS](x) = cos(x + 6x), to an input perturbation 8x small
compared with the input x? Not when x is very small. For instance,
when x approaches 107 radians, then cos(x) falls very near
0.99999999995 and must then round to either 1 = cos(()) or
0.9999999999 = cos(1.414... X 10™). Therefore [COS)(x) = cos(x + 6x)
ig true only if 6x is allowed to be relatively large, nearly as large as
x when x is very small. If we wish to explain the error in [COS] by
using only relatively small perturbations, we need at least two of
them: one a perturbation sx = (-6.58... X 10""")x smaller than
roundoff in the input; and another in the output comparable with
roundoff there, so that [COS](x) = (cos + deos)(x + 6x) for some
unknown |écos| < (6 X 1071 |cos|.

Like [COS], every system F in Level 2 is characterized by just two
small tolerances—call them ¢ and n—that sum up all you have to
know about that system's internal noise. The tolerance ¢ constrains
a hypothetical output noise, |6f] < ¢|f|, and n constrains a
hypothetical input noise, | 6x| < 5| x|, that might appearin a simple
formula like

Fl)=(f+6)x+bx) for|sf|<c|fl and |sx|< ylx].

The goal of backward error analysis is to ascertain that all the
internal noise of F really can be encompassed by so simple a
formula with satisfactorily small tolerances ¢ and n. At its best,
backward error analysis confirms that the realized value F(x)
scarcely differs from the ideal va lue f(x + 6x) that would have been
produced by an input x + 6x scarcely different from the actual
input x, and gives the word “scarcely” a quantitative meaning (e
and n). But, backward error analysis succeeds only for systems F
designed very carefully to ensure that every internal noise source is
equivalent at worst to a tolerably small input or output
perturbation. First attempts at system design, especially programs
to perform numerical computations, often suffer from internal
noise in a more complicated and disagreeable way illustrated by
the following example.

PO
) L

LOLOL

0

[
I
I
I
I

VLOLVLLOLLO

-0000000000000

e
>
e
e
e
e
£y
(o
c
[
e
c
c
C
=
c
(=
(=
(=
c
(=7

Appendix. Accuracy of Numencal Calculiations 191

Example 6: The Smaller Root of a Quadratic. The two roots x
and y of the quadratic equation ¢ - 2bz + az* = 0 are real whenever
d = b* — ac is nonnegative. Then the root y of smaller magnitude
:an be regarded as a function y = f(a,b,¢) of the quadratic's
coefficients

(b~ dsgn(h))/a ifa#0

(a,b,c)=
flar e (¢/b)/2

otherwise.

Were this formula translated directly in a program Fla, b, ¢)
intended to caleulate fla, b, ¢), then whenever ac is so small
compared with 62 that the computed value of d rounds to b2, that
program could deliver £ = 0 even though f# 0. So drastic an error
unnot be explained by backward error analysis because no
relatively small perturbations to each coefficient a, b, and ¢ could
drive ¢ to zero, as would be necessary to change the smaller root y
into 0. On the other hand, the algebraically equivalent formula

if divisor is nonzero

c/th+ Jd sgn(b)
fla,b,c)=

otherwise

translates into a much more accurate program F whose errors do
no more damage than would a perturbation in the last (10th)
significant digit of ¢. Such a program will be listed later (page 205)
and must be used in those instances, common in engineering, when
the smaller root y is needed accurately despite the fact that the
quadratic’s other unwanted root is relatively large.

Almost all the functions built into the HP-15C have been designed
so that backward error analysis will account for their errors
satisfactorily. The exceptions are [SOLVE], [%], and the statistics
keys [s], and [(3r] which can malfunction in certain
pathological cases. Otherwise, every calculator function F
intended to produce f(x) produces instead a value F(x) no farther
from f(x) than if first x had been perturbed to x + 6x with [6x] = nlx],
then f(x + 8x) were perturbed to (f + 8/)x + 6x) with |ﬁf| < ¢[f]. The
tolerances n and ¢ vary a little from function to function; roughly

speaking,
n=0and < 10" for all functions in Level 1,

7 <10 and e <6 X 107" for other real and complex functions.

192 Appendix: Accuracy of Numerical Calculations

For matrix operations, the magnitudes |éx|, |x|,|6/], and |f] must be
replaced by matrix norms [|6x]|, [|x|l, |6f]l, and [|f]| respectively,
which are explained in section 4 and evaluated using [MATRIX] 7 or
[MATRIX] 8. Then all matrix functions not in Level 1 fall into Level 2
with roughly ;i

n<10"nande< 10 for matrix operations (other than

determinant [MATRIX] 9, [#], and [17x))
for determinant [MATRIX]9, [17x],

and [¥] with a matrix divisor

n<10®nande< 10

where n is the largest dimension of any matrix involved in the
operation.

The implications of successful backward error analysis look simple
only when the input data x comes contaminated by unavoidable
and uncorrelated noise Ax, as is often the case. Then when we wish
to calculate f(x), the best we could hope to get is f(x + Ax), but we
actually get F(x + Ax) = (f+ 6f)(x + Ax + 6x), where|5/| < ¢|f| and
|6x| < nlx].

What we get is scarcely worse than the best we could hope for
provided the tolerances ¢ and n are small enough, particularly if
|ax|is likely to be at least roughly as big as n|x|. Of course, the best
we could hope for may be very bad, especially if f possesses a
singularity closer to x than the tolerances upon x's perturbations
Ax and 6x.

Backward Error Analysis Versus Singularities

The word “singularity” refers to both a special value of the

argument x and to the way f(x) misbehaves as x approaches that
special value. Most commonly, f(x) or its first derivative f'(x) may
become infinite or violently oscillatory as x approaches the
singularity. Sometimes the singularities of In|f| are called
singularities of f, thereby including the zeros of f among its
singularities; this makes sense when the relative accuracy of a
computation of f is at issue, as we shall see. For our purposes the
meaning of “singularity” can be left a little vague.

What we usually want to do with singularities is avoid or
neutralize them. For instance, the function

(1—cosx)/x* ifx#0
c(x)=
1/2 otherwise

=

00
VbLOLOLWL

—-—_—-—_-—_————_——_———_—_

DOONOOOOONNNNOONODOOOODDODD
VOVUVLOLVLUVULVLLVLOVLOVLUVLULVLUVLULULULOLOLOLL

Appendix. Accuracy of Numerical Calculations 193

has no singularity at x = 0 even though its constituents 1 — cos x
and x? (actually, their logarithms) do behave singularly as x
approaches 0. The constituent singularities cause trouble for the
program that calculates ¢(x). Most of the trouble is neutralized by
the choice of a better formula

! 8in (x/2)
c(x)= 2 x/2

1/2 otherwise.

2
) ifx/2+#0

Now the singularity can be avoided entirely by testing whether
x/2=0in the program that calculates ¢(x).

Backward error analysis complicates singularities in a way that is
easiest to illustrate with the function A(x) = In(l + x) that solved
the savings problem in example 2. The procedure used there
calculated u =1 + x (rounded) =1+ x + Ax. Then

ifu=1

Mx)=
otherwise.

In(u) x/(u—1)
This procedure exploits the fact that A(x)/x has a removable
singularity at x = 0, which means that A(x)/ x varies continuously
and approaches 1 as x approaches 0. Therefore, A(x)/ x is relatively
closely approximated by A(x + Ax)/(x + Ax) when|ax|< 109 and
hence

AMx)=x(Mx)/ x)=x(Mx+ Ax)/(x + Ax)) = x(In(u)/(u — 1)),

all calculated accurately because [LN] is in Level 1. What might
happen if [LN] were in Level 2 instead?

If [LN] were in Level 2, then “successful”” backward error analysis

would show that, for arguments u near 1, [LN](u) = In(u + 6u) with

[6u] < 10 Then the procedure above would produce not

x(In(u)/(u— 1)), but

x(In(u+8u)/(u—1)=xMx+ Ax+ 6u)/(x+ dx)

xtAx+ou

=x(Mx +tAx+6u)/(xtAx+du))—
x+Ax

=x(Mx)/ xXl +6u/(x+ Ax))

=AMxNl +éu/(x+ Ax)).

194 Appendix: Accuracy of Numerical Calculations

When |x + Ax|is not much bigger than 107, the last expression can
be utterly different from A(x). Therefore, the procedure that solved
example 2 would fail on machines whose is not in Level I.
There are such machines, and on them the procedure does collapse
for certain otherwise innocuous inputs. Similar failures also occur
on machines that produce (u + 8 u) — | instead of u — 1 because
their (5] function lies in Level 2 instead of Level 1. And those
machines that produce In(u + Su)/(u + &u — 1) instead of
In(u)/(u— 1), because both [LN] and [=] lie in Level 2, would be
doubly vulnerable but for an ill-understood accident that usually
correlates the two backward errors 6u and 6'u in such a way as
causes only half the significant digits of the computed A, instead of
all of them, to be wrong.

Summary to Here

Now that the complexity injected by backward error analysis into
singularities has been exposed, the time has come to summarize, to
simplify, and to consolidate what has been discussed so far.

e Many numerical procedures produce results too wrong to be
justified by any satisfactory error analysis, backward or not.

Some numerical procedures produce results only slightly
worse than would have been obtained by exactly solving a
problem differing only slightly from the given problem. Such
procedures, classified in Level 2 for our purposes, are widely
accepted as satisfactory from the point of view of backward
error analysis.

Procedures in Level 2 can produce results relatively far from
what would have been obtained had no errors atl all been
committed, but large errors can result only for data relatively
near a singularity of the function being computed.

Procedures in Level 1 produce relatively accurate results
regardless of near approach to a singularity. Such procedures
are rare, but preferable if only because their results are easier
to interpret, especially when several variables are involved.

A simple example illustrates all four points.

Example 7: The Angle in a Triangle. The cosine law for
triangles says

F=ptgt- 2pgcos B

POPDHDDDD

9

[
c
c
c
c
c
c
e
&
(=
(=
c
(=
=
c

>0 0 ¢

QLLLLLOLOL

Appendix. Accuracy of Numerical Calculations 195

for the figure shown below. Engineering and scientific calculations
often require that the angle 0 be calculated from given values p, q,
and r for the length of the triangle’s sides. This calculation is
feasible provided0<p<q+r,0<g<p+r,and0<r<p+gq,and
then

0<0=cos((p* + ¢°) —)1/ (2pq)) < 180°;

otherwise, no triangle exists with those side lengths, or else 8 = 0/0
is indeterminate.

q

The foregoing formula for 8 defines a function 0 = f(p,q,r) and also
in a natural way, a program F(p,q,r) intended to calculate the
function. That program is labeled “A" below, with results
F4lp.q,r) tabulated for certain inputs p, g, and r corresponding to
sliver-shaped triangles for which the formula suffers badly from
roundoff. The numerical unreliability of this formula is well known
as is that of the algebraically equivalent but more reliable formula
0=f(p,q,ry=2tan"\/ab/(cs), where s = (ptqgtryl a=s-p,
b=s-q,and c=s -~ r. Another program F(p,q,r) based upon this
better formula is labeled “B" below, with results Fy(p.q,r) for
selected inputs. Apparently Fy is not much more reliable than £,
Most of the poor results could be explained by backward error
analysis if we assume that the calculations yield Fip,q.r) =
fip +ép,q + 8q,r + &r) for unknown but small perturbations
satisfying |6p| < 107|p|, etc. Even if this explanation were true, it
would have perplexing and disagreeable consequences, because the
angles in sliver-shaped triangles can change relatively drastically
when the sides are perturbed relatively slightly; flp,q,r) is
relatively unstable for marginal inputs.

Actually the preceding explanation is false. No backward error
analysis could account for the results tabulated for F, and Fy
under case 1 below unless perturbations ép, g, and 6r were
allowed Lo corrupt the fifth significant digit of the input, changing
I to L.OOOT or 0.9999 . That much is too much noise to tolerate in a
10-digit calculation. A better program by far is F¢, labeled *C” and
explained shortly afterwards.

Appendix Accuracy of Numernical Calculations
196 Appendix. Accuracy of Numerical Calculations

i v : Keystrokes Display
I'he three bottom lines in the table below show results for three -

programs “A”, “B”, and “C" based upon three different formulas

F(p,q,r)all algebraically equivalent to
6=f(p.q,r)=cos ' ((p* + ¢° =)/(2pq)).

Disparate Results from Three Programs Fa.Fg. Fe

Case 1

Case 2

Case 3

GLLLL L

1.
5
1.00005 X 1078
0.
5.73072 X 104
5.72986 X 107

9.999999996
9.999999994
3x10°
0.

Error 0
1.28117x 108

10.
5.000000001
15,
180.
180.
179.9985965

Case 4

Case b

Case 6

0.527864055
9.472135941
9.999999996
Error 0
Error 0
180.

9.999999996
3x10?
9.999999994
48.18968509
Error 0
48.18968510

9.999999999
9.999999999
20.
180.
180.
Error 0

Case 7

Case 8

Case 9

1.00002
1.00002
2.00004
Error 0
180.
180.

3.162277662
23x10°9
3.162277661

90.

70.52877936

64.22853822

3.162277662

15555 X 10°8

3.162277661
90.
89.96318706
B9.96315156

[f)CLEAR
[@(e0(A]
@)

(2]

@)

1:5;

+

E10)1
ENTER
G)&H]
EroG)1
[@EH)
Ero)H)1
2

(sT0)(:)1
(Re]
(Rel)(=]1
%]
(Re)(=]1
(x]

FER)

000-

001-42,21,11
002- 43 M
003- 34
004- 43 M
005- 43 36
006- 43 33
007- 20
008- 34
009- 43 36
010- 4311
011- 40
012- 4333
013- 30
014- 34
015- 36
016- 40
017- 10
018- 43 24
019- 4332
020-42,21,12
021- 44 1
022- 36
023- 4333
024-44.40, 1
025- 4333
026-44.40, 1
027- 2
028-44,10, 1
029- 33
030-45.30. 1
031- 34
032-45.30, 1
033- 20
034- 1
0356- 34

To use a program, key in p q r, run program “A",
“B”, or “C", and wait to see the program’s approximation F to 8 = f.
Only program “C" is reliable.

(Red)(=)1 036-45,30, 1
[ReL)(x]1 037-45,20, 1

OO0 O0DDO00O00O OO0

VQOOLVLVLOLVLLVLLVLOVLOLVLUVLLVLLVLOLVLLVLOLVLLLVLLVLLL

Appendix: Accuracy of Numerical Caleulations Appendix Accuracy of Numenical Calculations

Keystrokes Display

Keystrokes Display

038- 16 [g](TEST] 2 078-43,30, 2
039- 11 079- 1

040- 43 1 080- 4333
081-42,21, .8

(R¢] 041- a3 . :
[x] 042- 20 082- 30
043- 43 32 5 083~ 11
(0[LsLj(c] 044-42,21,13 084- 456 1
(sT0]o 045- 44 © . 085- 1
(Re) 046- 33 086- 20
047- 4310 -' 087- 45 0
[xxy] 048- 34 088- 43 1
[sTo]1 049- 44 1 ' 089- 4320
(sTO)(*]o 050-44,40, 0 090- 10
[xx) 051- 34 091- 34
(s70](+)o 0652-44,40, 0 : 092- 36
=] 053- 30 093- 40
054- 4333 094-
(ST0)(=]1 055-44,30, 1
056- 43 36
057- 36
[REL][*] 1 058-45,40, 1 The results F(p,q,r) are correct to at least nine significant digits.
&) 069- 11 They are obtained from a program “C” that is utterly reliable
though rather longer than the unreliable programs “A” and “B".

060-42, 4, 0
061- 11 The method underlying program “C" is:

062-44,20, 0

063- 43 35 : 1. Ifp<gq,thenswapthem toensurep =gq.

064- 40 2. Calculateb=(p-g)+r,c=(p-ry+qg,ands=(p +r)+gq.

a6h-~ s 3. Calculate

066- 40

067-42, 4, 1

068- 43 33 a= Yq—(p—r) ifr>q=0

069- 43 36 ; : -
Error 0 otherwise (no triangle exists).

070- 4310

071- 22 9 . Caleulate Fp(p,g,r)=2tan ' (v/ab//es).

072- 33

(TEST)2 073-43.30, 2 This procedure delivers F.(p,q,r) = 0 correct to almost nine
074- 1 significant digits, a result surely easier to use and interpret than
075- 34 the results given by the other better-known formulas. But this
076- 22 .8 procedure’s internal workings are hard to explain; indeed, the
077-42,21, .9 procedure may malfunction on some calculators and computers.

I@H

r—=(p-—q) ifgzr=0

HEEEEES
AEES

=<}

200 Appendix: Accuracy of Numerical Calculations

The procedure works impeccably on only certain machines like the
HP-15C, whose subtraction operation is free from avoidable error
and therefore enjoys the following property: Whenever y lies
between x/2 and 2x, the subtraction operation introduces no
roundoff error into the calculated value of x — y. Consequently,
whenever cancellation might leave relatively large errors contami-
nating a, b, or ¢, the pertinent difference (p — q)or(p—r)turns out
to be free from error, and then cancellation turns out to be
advantageous!

Cancellation remains troublesome on those other machines that
calculate (x + 6x) — (y + 8y) instead of x — y even though neither
dx nor 8y amounts to as much as one unit in the last significant
digit carried in x or y respectively. Those machines deliver
Fe(p,q,r)=f(p+ép,q+6q,r+ 6r) with end-figure perturbations
ép, 8q, and ér that always seem negligible from the viewpoint of
backward error analysis, but which can have disconcerting
consequences. For instance, only one of the triples (p.q.r) or
(p+6p,q+8q,r+ér), not both, might constitute the edge lengths
of a feasible triangle, so F» might produce an error message when
it shouldn't, or vice-versa, on those machines.

Backward Error Analysis of Matrix Inversion

The usual measure of the magnitude of a matrix X is a norm ||X|
such as is calculated by either [MATRIX] 7 or [MATRIX] 8; we shall use
the former norm, the row norm

Xl = max) lx,|
J

in what follows. This norm has properties similar to those of the
length of a vector and also the multiplicative property

IXYlI <X ¥l

When the equation Ax = bis solved numerically with a given n X n
matrix A and column vector b, the calculated solution is a column
vector ¢ which satisfies nearly the same equation as does x,
namely

(A +8A)c=Db
with [|5A]| < 109x | A||.

RO A0 B0 B A B0 BA Be B N

o0

R ERY
0

1

=
e
2
&
=
&
c
-5
e
e

1

OVOVLVLVLOVLLVLLVLLVLLVLLVLLVLLVLLVLLLLOLVLLVLLVL

¥

—

0

Appendix: Accuracy of Numernical Calculations 201

Consequently the residual b — Ac = (6A)e is always relatively
small; quite often the residual norm ||b — Acl| is smaller tl'fan
[Ib — Ax|| where X is obtained from the true solution x by rounding
each of its elements to 10 significant digits. Consequently, ¢ can
differ significantly from x only if A is nearly singular, or
equivalently only if |[A™"| is relatively large compared with 1/]|Al];

lIx —ell = A" (b - Ac)
<[|A lsAll llell
<100 [|c]| 70(A)

where o(A) = 1/(|A]l |A']) is the reciprocal of the condition
number and measures how relatively near to A is the nearest
singular matrix S, since

min ||A =S| = o(A) ||A].
dey(S)=0

These relations and some of their consequences are discussed
extensively in section 4.

The calculation of A™' is more complicated. Each column of the
calculated inverse [1/x](A) is the corresponding column of some
(A +8A)7", but each column has its own small 6A. Consequently,
no single small 8A, with ||5A[| < 1091 |A[|, need exist satisfying

A + 8A)" — (7= (A) < 107 | GZ=) (A

roughly. Usually such a 6A exists, but not always. This does not
violate the prior assertion that the matrix operations and
lie in Level 2; they are covered by the second assertion of the
summary on page 194. The accuracy of [1/7x](A) can be described in
terms of the inverses of all matrices A + AA so near A that
laAll < 10%a]|All; the worst among those (A + __\A]" is at least
about as far from A™' in norm as the calculated [17x](A). The figure
below illustrates the situation.

202 Appendix: Accuracy of Numerical Calculations

As A + AA runs through matrices with lAAll at least about as large
as roundoffin JJA]], its inverse (A + AA)"! must roam at least about
as far from A™! as the distance from A"! to the computed [173)(A).
All these excursions are very small unless A is too near a singular
matrix, in which case the matrix should he preconditioned away
from near singularity. (Refer to section 4.)

If among those neighboring matrices A + AA lurk some that are
singular, then many (A + AA)”! and (17x)(A) may differ utterly
from AL However, the residual norm will always be relatively
small:

AGA + aA) T — | o llaA]
IAN A +aay] = Ja]

<107n,

This last inequality remains true when [17x](A) replaces
(A +aA)

If A is far enough from singularity that all

1/[(A + aA) | > 1090 | A) = [laAl,
then also
A" A+ 3a)" _ aAllla +aa)y
A +aAy" = 1 —[laAll A + aA)T
10°n]|A|l KA + aA)!|
T 1-10n)|Al (A + aA) [

This inequality also remains true when [i7x](A) replaces
(A +AA)Y and then everything on the right-hand side can be
calculated, so the error in [i7x)(A) cannot exceed a knowable
amount. In other words, the radius of the dashed ball in the figure
above can be calculated.

The estimates above tend to be pessimistic. However, to show why
nothing much better is true in general, consider the matrix

0.00002 -50,000 50,000.03 -45
50,000 -50,000.03 45

0 0.00002 -50,000.03
0 0 52,000

URLIEL
—j—i
VQOOLY

4

DD

LI B

n

NHNDH NN

CUOLLVLOLOLOLOLOULLO G

o 0
s

Appendix. Accuracy of Numerical Calculations

50,000 50,000 p q
0 0.00002 50,000.03 48,076.98077...
0 0 50,000 48,076.95192...
0 0 0 0.00001923076923...

X'=

Ideally, p = g = 0, but the HP-15C"s approximation to X!, namely
(17x](X), has g = 9,643.269231 instead, a relative error

=0.0964...
-1

nearly 10 percent. On the other hand, if X + AX differs from X only
in its second column where -50,000 and 50,000 are replaced
respectively by -50,000.000002 and 49,999.999998 (filtered in the
11th significant digit), then (X + AX)™' differs significantly from
X! only insofar as p = 0 and ¢ = 0 must be replaced by p =
10,000.00600... and g = 9,615.396154.... Hence,

X' =X + aX)?!|
X

the relative error in (X + AX)! is nearly twice that in (1/x)(X). Do
not try to calculate (X + AX)! directly, but use instead the formula

=0.196... ;

(X—ebD)'=X"4+XTebTX ' /(1 -b7X o),

i T
which is valid for any column vector ¢ and row vector b7, and
specifically for

andb”=[0 0.000002 0 0].

Despile that
X = G7XOl < IX7! = X + ax)7]|
it can be shown that no very small end-figure perturbation §X

exists for which (X + 6X)"' matches (17x](X) to more than five
significant digits in norm.

204 Appendix, Accuracy of Numerical Calculanons

Of course, none of these horrible things could happen if X were not
80 nenr!y singular. Because ||X|| X' > 10" a change in [;(
amounting to lesls than one unitin the 10th aignii'"lcunt digit of || X||
c(.)uld make X singular; such a change might replace one of the
d.lagunul elements 0.00002 of X by zero. Since X is so0 nearl

slrllgular, the accuracy of [17x)(X) in this case rather exceeds wha}l’
might bz:.- expected in general. What makes this example special i

bad scaling; X was obtained from an unexceptional matrix ’

2. -5 5000003 -4.5% 1072
0 5 -5000003 4.5x10°12
0 0 2 -5.000003
0 0 o 5.2

by multiplying each row and each column by a carefully chosen

power of 10, Com pensatory division of th
| ecolumns and
equally unexceptional matrix ik

05 05 p q

%= 0 0.2 0.5000003 0.4807698077...
0 0 0.5 0.4807695192...
0 0 o 0.1923076923...

: =
yielded X1, wuh.p =q =0.The HP-15C calculates (7x)(X) = X!
;);fe;{? that g = 0is replaced byg=96x10"! !, a negligible change.

is illustrates how drastically the perceived quality of computed

results can be altered by scalin i
. : g. (Refer to
information about scaling.) T e

Is Backward Error Analysis a Good Idea?

The u_nly good thing to be said for backward error analysis is that it
explains internal errors in a way that
from having to know about internal det
two tolerances, one u
output noise 6f, the us
noise in

liberates a system’s user
ails of the system. Given
pon the input noise 6x and one upon the
er can analyze the consequences of internal

Flx)=(f+8/)(x + bx)

by studying the noise Propagation properties of the ideal system f

without further refe i i
il elerence to the possibly com plex internal structure

T P e e e— — —

=
G.
c
&
¢
=

] DI D D e e
COVOOLVOVOLVLOLVLOLOLVLLOLOLLLOLLOLYL

OONNONNONNNO G

Appendix Accuracy ol Numenical Calculations 205

But backward error analysis is no panacea; it may explain errors
but not excuse them. Because it complicates computations
involving singularities, we have tried to eliminate the need for it
wherever we could. If we knew how to eliminate the need for
backward error analysis from every function built into the
calculator, and to do so at tolerabie cost, we would do that and
simplify life for everyone. That simplicity would cost too much
speed and memory for today's technology. The next example will
illustrate the trade-offs involved.

Example 6 Continued. The program listed below solves the real
quadratic equation ¢ = 2bz + az* = 0 for real or complex roots.

To use the program, key the real constants into the stack (¢
b [ENTER]a) and run program A",

The roots x and y will appear in the X- and Y-registers. If the roots
are complex, the C annunciator turns on, indicating that Complex
mode has been activated. The program uses labels “A” and “.9"
and the Index register (but none of the other registers 0 to .9);
therefore, the program may readily be called as a subroutine by
other programs. The calling programs (after clearing flag 8 if
necessary) can discover whether roots are real or complex by
testing flag 8, which gets set only if roots are complex.

The roots x and y are so ordered that |x| = |y| except possibly when
|x| and |y| agree to more than nine significant digits. The roots are
as accurate as if the coefficient ¢ had first been perturbed in its 10th
significant digit, the perturbed equation had been solved exactly,
and its roots rounded to 10 significant digits. Consequently, the
computed roots match the given quadratic’s roots to at least five
significant digits. More generally, if the roots x and y agree to n
significant digits for some positive n < 5, then they are correct to at
least 10 — n significant digits unless overflow or underflow occurs.

Keystrokes Display

(o)(P7A)
[T]CLEAR [PRGM)]
[M(LeL)(A]
(ENTER]

(e](Rt]

()

000-
001-42.21,11
002- 36
003- 4333
004- 20
005- 4336

Appendix. Accuracy of Numenical Calculations 207
206 Appendix: Accuracy of Numerical Calculations 4

. 2 1 M 9 3 b4
Keystrokes Display Ifd = 0, then the roots are real numbers x and y calculated by

(xx¥] 006- 34 s=b+/d sgn(b)
007- 4333 x=s/a
(570](1] 008- 4425
()] 009- 4311]

/ #
B] 010- 30 o !fs f
[(a](TEST)1 011-43,30, 1 0 ifs=0.

[GT0).9 012- 22 .9 ‘
013- 16 The s calculation avoids destructive cancellation.

014- 11)
MG 015-42, 4,26 When a = 0 # b, the larger root x, which should be ss, encounters

TEST)2 016-43,30, 2 : division by zero (Error 0) thatl can be cleared by pressing [R¥] three
[Red)(=]0] 017-45,30,25 times to exhibit the smaller root y correctly calculated. But when
[g](7EST)3 018-43,30, 3 all three coefficients vanish, the Error 0 message signals that both
[+ 019-45,40,25 roots are arbitrary.
(@)(TEsT)0 020-43,30, 0 _
021- 10 The results of several cases are summarized below.
022- 4336

[rR%] 023- 43 33
(1] 024- 10 Case 1 Case 2 Case 3 Case 4
025- 43 32 c 3 4 1 654,321
((ceL].9 026-42,21, .9 ;
027- 11 i b 2 0 1 654,322
[Ren)[m 028- 45 25 1 1013 654,323

029- 4333
= 030- 10 Complex Real Real

031- 34 ' : 13
0t2 2x10 0.9999984717
032- 43 36 d
033- 10 0.5 0.9999984717
[IHI] : i As29 ’ Case b Case 6
035- 36
({J(Rex1m] 036- 42 30
46,152,709 12,066,163
037- 16
[I] 038- 42 30 735,246 987,644
039- 4332 11,713 80.841
Real Complex

P
The method uses d = b* — ac. 62.77179203 12.21711755 +i0.001377461
Ifd <0, then the roots are a complex conjugate pair g 62.77179203
(b/a)tiv/-d/a.

ac :al Cale 09
i 7 wix Accuracy of Numencal Calculations 2
208 Appendix. AccuracvofNurnencal(_‘alculalmns Apper

& n »)i la
The last three cases show how severe are the results of perturbing Keystrokes Display
the 10th significant digit of any coefficient of any quadratic whose

5 004- 44 0
roots are nearly coincident. The correct roots for these cases are (sT0]0

(sTo)8 005- 44 8
Cased: 1and 0.9999969434 (x%y] 006- 34

‘nse5: 6277179203 + i8.5375 X 105 (5T0]1 g a4 1
(570)9 008- 44 9
Case 6: 12.21711755 4 §0.001374514 [[sc) 2 009-42, 8, 2
Despite errors in the fifth significant digit of the results, subroutine (f)(teL] 8 010-42.21, .8
“A" suffices for almoat all engineering and scientific applications (JCLEAR 011- 4232
results are correct to nine significant ey [Rci)8 012- 45 8
i g ¢, b, and a representable exactly 3:3_45 ‘1‘; 2;
using only five significant digits; and the computed roots are a1s- 43 34
016- 45 25
017- 43 49
018- 45 9
019-42, 4, 7
020- 34
021- 45 8
022- 4349
023- 33
024- 4349
(RcL) 7 025- 45 7
(8])(A8S] 026- 4316
(RCL)9 027- 45 9
[@ 028- 43 16
EQ 029- 4310
030- 2212
031- 3
[e](rt] 032- 4333
(5708 033- 44 8
(Rcl)7 034- 45 7
(5709 035- 44 9
(9)[A8S) 036- 4316
037- 26
038- 2
039- 0
040- 20
041- 1

042-

043-

)

relationship between inputdata and output results, they might still
prefer roots correct to nine significant digits in all cases.

ol S

VOLY

Programs do exist which, while carrying only 10 significant digits
during arithmetic, will calculate the roots of any quadratic
correctly to at least nine significant digits regardless of how
nearly coincident those roots may be. All such programs calculate
d=b%— g¢ by some trick tantamount to carrying 20 significant
digits whenever 2 and ac nearly cancel, 8o those programs are a
lot longer and slower than the simple subroutine “A" provided
above. Subroutine “B” below, which uses such a trick,* is a very
short program that guarantees nine correct significant digits on a
10-digit calculator. It uges labels “B”, “.7”, and *§" and registers
R, through Ry and the Index register. To use it, key in ¢ [ENTER]) b
a,run subroutine “B”, and wait for results as before,

A |

. =

1

N

Keystrokes Display

[fICLEAR 000-

(N(teL)(B) 001-42,21,12
(sT0)(1] 002- 44 25
[R¢] 003- 33

*Program “B" exploits g tricky property of the (=] and [24] keya whereby certnin
calculations can be carried outto I significant digits before being rounded baek to 10,

COOOVOVOVLOLOLLOLOLW

AL LR) IR L B A TR I A P
B O P s e e —

210 Appendix: Accuracy of Numerical Calculations

Keystrokes

8
(O[taL](B]
[[Fx]s
[Rci]s
(e)=]
(sT0)7
(ReL)(1]

(ReL)7
(e](TEsT]2
(6T0).7

(s])(0EsT)2
(red(Eo
(e][7EST)3

(RcL](*]o
[OGx]1
(¢)(EsT]o

!
(RE0E
i

Display

044- 22 8
045-42.21,12
046-42, 7, 9
047- 45 8
048- 43 11
049- 44 7
050- 4525
051- 45 9
052- 4349
053- 45 7
054-43,30, 2
066- 22 .7
056- 11
067-42, 4,
058-43,30,
069-45,30,
060-43,30,
061-46.40,
062-42, 4,
063-43,30,
064-45,10,
065- 45
066-46,10,25
067- 43 32
068-42,21, .7
069- 16
070- 1
071-45,10,25
072- 36
073- 16
074- 45 o
076- 46 25
076- 10
077- 34
078- 4225
079- 36
080- 4333
081- 4225
0B2- 4332

= =0=0WwWoONOD

T
VWUVOVUVVLULVLOLL

Appendix. Accuracy of Numencal Calculations 211

This program’s accuracy is phenomenal: better than nine
significant digits even for the imaginary parts of nearly
indistinguishable complex roots (as when ¢ = 4,877,163,849 and
b =4,877,262,613 and a = 4,877,161 “379); if the roots are integers,
real or complex, and if a = 1, then the roots are calculated exactly
(a8 when ¢ = 1,219,332,937 X 10", b = 111,111.5, and a = 1). But the
program is costly; it uses more than twice as much memory for
both program and data as does subroutine “A”, and much more
time, to achieve nine significant digits of accuracy instead of five
in a few cases that can hardly ever matter—simply because the
quadratic’s coefficients can hardly ever be calculated exactly. If
any coefficient ¢, b, or a is uncertain by as much as one unit in its
10th significant digit, then subroutine “B" is overkill. Subroutine
“B" is like Grandmother's expensive chinaware, reserved for
special occasions, leaving subroutine “A” for everyday use.

