
"

ENVIRONMENT 13 ENVIRONMENT AL CONSIDERATIONS

• 15 nesting levels of compound swements, iteration contt0l structures, and selection control
SlnlCtures

• 8 nesting levels of conditional inclusion

• 12 pointer, array, and ftmction declarators (in any combinations) modifying an arithmetic, a
5 structure. a union, or an incomplete type in a declaration •

• 31 declarators nested by parentheses within a full declarator

• 32 expres.,ions nested by parentheses within a full expres.,ion

• 31 significant initial characters in an internal identifier or a macro name

• 6 significant initial characters in an external identifier

10 • 511 external identifiers in one translation unit

• 127 identifiers with block scope declared in one block

• 1024 macro identifiers simultaneously defined in one translation unit

• 31 parameters in one function definition

• 31 argwnents in one function call

15 • 31 parameters in one macro definition

20

• 31 arguments in one mac~ invocation

• 509 characters in a logical source line

• 509 characters in a character suing literal or wide string literal (after concatenation)

• 32767 bytes in an object (in a hosted environment only)

• 8 nesting levels for #incl.udad files

• 257 case labels for a switc:li statement (excluding those for any nested switch
statements)

• 127 membets in a single structure or union

• 127 enumeration constants in a single enumeration

25 • 15 levels of nested structme or union definitions in a single struct-declaration-list

2.2.4.l Numerical limits

A conforming implementation shall document all the limits specified in this section. which
shall be specified in the headers <l.i.mits .h> and <:f1oat .h>.

Sizes of integral types <1imits .h>

30 The values given below shall be replaced by constant expressions suitable for use in #if
preproceS&Dg directives. Their implementation-defined values shall be equal or greater in
magnitude. (absolute value) to those shown, with the same sign.

• maximum number of bits for smallest object that is not a bit-field (byte)
CJWl_BIT 8

35 • minimum value for an object of type signed cha:
SCBAR_MIN -127

-~ • maximum value for an object of type signed cha:
scsn_MAX +121

• maximum value for an object of type unsigned cha:
40 tJCllAR. _ MAX 255 •

§2.2.4.1 May 13, 1988
DRAFT

§2.2.4.2

ENVIRONMENT 14 ENVIRONMENTAL CONSIDERATIONS

• minimum value for an object of type cha:
CHAR_ MDI see below

• maximum value for an object of type cha:
CBAR_MAX see below

S • maximum number of byteS in a mulul>yte character, for any supported locale
MB_LBH_MAX - 1

• minimum value for an object of type ahoft int
SBR!'_Hlll -32767

• maximum value for an object of type shoft int
10 SBR!'_M&X +32767

• maximum value for an object of type unsigned shore int
us~_MAX 65535

• minimum value far an object of type int
Dr.l'_MDI -32767

IS • maximum value for an object of type int
IN'!_MAX +32767

• maximum value for an object of type unsigned int
~-MAX 65535

• minimum value for an object of type long int
20 LONG_Mm -2147483647

• maximum value for an object of type long int
LONG_MAX +2147483647

• maximum value for an object of type unsigned long int
'OIDHG_MAX 4294967295

25 If the value of an object of type cha: sign-extends when used in an expression, the value of
OIAR Nm shall be the same as that of SCH.AR MDI and the value of CHAR MAX shall be the
same u that of SCHAR _ MAX. If the value of an object of type char does no;-;ign-extend when
used in an expression. the value of CllAa Mm shall be O and the value of CHAR MAX shall be
the same a., that of tJCBU _MAX. 7 - -

30 Cbaracteristics ot 8oatin1 types <~l.oat . h>

The chatacteristics of floating typeS are defined in tenns of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation's floating-point arithmetic. The following parameters are used to define the
model for each floating-point type:

35 s sign (±1)
b base or radix of exponent representation (an integer> 1)
e exponent (an integer between a minimum e mm and a maximum emu)
p precision (the number of base-b digits in the mantissa)
f1t:. nonnegative integers less than b (the mantissa digits)

40 A normalized floating-point number :r (/1 > 0 if :r ¢ 0) is defined by the following model:8

7. See §3.1.2.5.
8. This model precludes ftoating-poinl represenwions other than sign-magnitude.

§2.2.4.2 May 13, 1988
DRAFT

§2.2.4.2

ENVIRONMENT 15 ENVIRONMENTAL CONSIDERATIONS

Of the values in the <f1oat. h> header, l'L1' IW)IX shall be a constant expression suitable
for use in #if preprocessing directives; all other-values need not be constant expressions. All
except n.1'_RADIX and Fl.~_ROtnmS have separate names for all three floating-point types.

S The floating-point model representation is provided for all values except l'LT_ROONDS.

The rounding mode for floating-point addition is characterized by the value of FLT_ROONDS:

-1 indeterminable
o toward zero
1 to nearest

10 2 toward positive infinity
3 toward negative infinity

All other values for B'LT_ROONDS characterize implementation-defined rounding behavior.

The values given in the following list shall be replaced by implementation-defined expressions
that sball be equal or greater in magnitude (absolute value) to those shown, with the same sign.

15 • radix of exponent representation, b

20

l'L!r_RADIX 2

• number of base-l'L1' _ IW)IX digits in the floating-point mantis~ p

l'L1'_UNT_DIG
DBL_MAN'?_DIG
Lt>BL_MAN'T_DIG

l J {
1 if b is a power of 10

• number of decimal digits of precision, (p - 1) x log10b + 0 otherwise

l'LT_DIG
DBL_DIG
Lt>BL_DIG

6
10
10

25 • minimum negative integer such that l'LT_RADIX raised to that power minus 1 is a
nonnalized floating-point number, e mm

:&'L1'_MIN_EXP
DBL_Mm_EXP
Lt>BL_MIN_ZXP

30 • minimum negative integer such that 10 raised to that power is in the range of normalized

floating-point numbers, r log10b •--1 l
l'L1'_MIN_10_EXP
DBL_Mm_l0_ED
Lt>BL_N?N_l0_EXR

-37
-37
-37

35 • maximum integer such that l'L1' _ RADIX raised to that power minus I is a representable finite
floating-point number, emu

l'L1'_MAX_ZXP
DBL_MAX_EXP
IiDBL_MAX_EXP

40 • maximum integer such that 10 raised to that power is in the range of representable finite

§2.2.4.2

floating-point numbers, [
10810

((1 _ b-P) x b •-) J

May 13, 1988
DRAFT

§2.2.4.2

ENVIRONMENT 16 ENVIRONMENTAL CONSIDERATIONS

B'I.i:_MAX_10_BD
DBI._MAX_lO_BXP
LDBI._MAX_lO_BXP

+37
+37
+37

The values given in the following list shall be replaced by implementation-defined expressions
S with values that shall be equal to or greater than those shown.

• maximum represencable finite floating-point number, (1 - b-P) x b•-

l'I.1'_DX 1B+37
DBI._MU 1B+37
Ll)BL_DX 1B+37

10 The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or smaller than those shown.

• minimum positive floating-point number z such that 1.0 + z ¢ 1.0, b 1-P

B'I.1'_DS%LOR U:-5
DBI._DSILOH lZ-9

15 Ll)BI._DSILON lE-9

• minimum nmmalized positive ftoating-point number, b•--1

n.~_Mm
DBI._MDJ
mm._MDJ

lB-37
lZ-37
lE-37

20 Examples

25

30

The following describes an artificial floating-point representation that meets the minimum
requirements of the Stan~ and the appropriate values in a <float .h> header for type
float:

6
z = s x 16• x I /1,:, x 16-1,:, , -31 ~ e ~ +32

.t•l

n.i:_RADIX
n.i:r_MAN'?_DIG
n.~_DSILON

B'I.1'_Mm_ZD
B'I.~_MIN
n.~_MIN_lO_ZD
n.~_MAX_BD
FI.1'_MAX
J'L~_MAX_lO _ EXR

16
6

9.53674316£-071'
6

-31
2.938735881:-391'

-.38
+32

3.402823471:+381'
+38

35 The following describes floating-point representations that also meet the requirements for
single-precision and double-precision normalized numbers in the IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985),9 and the appropriate values in a
<£loat . h> header for types float and doub.le:

9. The floating-point model in dw standard sums powers of b from zero. so the values of the exponent limilS are
one less than shown here.

§2.2.4.2 May 13. 1988
n~.1i::-r

§2.2.4.2

•

ENVIRONMENT 17 ENVIRONMENTAL CONSIDERATIONS

24
z1 = s x 2• x k ft x 2-.t, ~ 125 S e S +128

.t-1

53
z., =s x 2• x k .h x r. -1021 Se S+l024

lwl

n.~_1UU)%X 2
n.~_DH'l_D%G 24

s n.~_nsn.ox 1.19209290B-07r
n.~_nIG 6
n.~_Hm_BD -125
l'L~_KDI 1.1754943SB-38r
n.~_NIH_10_BD -37

10 l'L~_MAX_ZXP +128
l'L~_DX 3.40282347Z+38F
l'L~_MAX_lO_BD +38
DBL_DN!r_!)%G 53
J)BL_DS%LON 2.2204460492S03131Z-16

IS nm._nIG 15
J)BL_Mm_B:XP -1021
DBL_MIH 2.2250738585O72O16B-3O8
DBL_HDt_lO_EXP -307
DBL_MAX_ZXP +1024

20 J)BL_MAX 1.79769313486231S7B+308
J)BL_MAX_lO_EXP +308

The values shown above for n.~_EPS:ILON and DBL_ZPSILON are appropriate for the
ANSI/IEEE Std 754-1985 default rounding mode (to nearest). Their values may differ for other
rounding modes. •

25 Forward references: conditional inclmion (§3.8.1).

§2.2.4.2 May 13, 1988
ORA~T

§2.2.4.2

2.2. Eznironmental considerations 17

function, even if that function is called within the signal handler.
No such guarantees can be extended to library functions, with the explicit ex­

cepiions of longjmp (§4.6.2.1) and signal (§4.7.1.1), since the library functions
may be arbitrarily interrelated and since some of them have profound effect on the
environment.

Calls to longjmp are problematic, despite the assurances of §4.6.2.1. The signal
could have occurred during the execution of some library function which was in the
process of updating extemal state and/ or static variables.

A second signal for the same handler could occur before the first is processed,
an~ the Standard makes no guarantees as to what happens to the second signal.

2.2.4 Environmental limits

The Committee agreed that the Standard must say something about certain capa­
cities and limitations, but just how to enforce these treaty points was the topic of
considerable debate.

2.2.4.1 Translation limits

The Standard requires that an implementation be able to translate and compile
some program that meets each of the stated limits. This criterion was felt to give
a useful latitude to the implementor in meeting these limits. While a deficient
implementation could probably contrive a program that meets this requirement, yet
still succeed iu being useless, the Committee felt that such ingenuity would probably
require more work than making something useful. The sense of the Committee is
that implementors should not construe the translation limits as the values of hard­
wired parameters, but rather as a set of criteria by which an implementation will
be judged.

Some of the limits chosen represent interesting compromises. The goal was to
allow reasonably large portable programs to be written, without placing excessive
burdens on reasonably small implementations.

The minimum maximum limit of 257 cases in a switch statement allows coding
of lexical routines which can branch on any character (one of at least 256 values) or
on the value EOF.

2.2.4.2 Numerical limits

In addition to the discussion below, see §4.1.4.

Sizes of integral types <limits .h> Such a large body of C code has been
developed for 8-bit byte machines that the integer sizes in such environments must
be considered normative. The prescribed limits are minima: an implementation
on a machine with 9-bit bytes can be conforming, as can an implementation that
defines int to be the same width as long. The negative limits have been chosen to
accommodate ones-complement or sign-magnitude implementations, as well as the

XSJll/88-091

18 Section 2.. ENVIRONMENT

more usual two.complement. The limits for the maxima and minima of unsigned
types are specified as unsigned constants (e.g., 66636u) to avoid surprising widenings
of expressions involving these extrema.

The macro ClWl..BIT makes available the number of bits in a char object. The
Committee saw little ·utility in adding such maaoi for other data types.

Characteristics of floating types <1 loat . h> The characterization of fioating
point follows, with minor changes, that of the FORTRAN standardization commit­
tee (X3J3).1 The Committee chose to follow the FORl'RAN model in some part
out of a concern for FORTRAN-to-C translation, and in large part out of deference
to the FORI'RAN committee's greater experience with fine points of floating point
usage.

Single precision (32-bit) floating point is comidered adequate to support a con­
forming C implementation. Thus the minimum maxima constraining floating types
are extremely permissive. •

The Committee has also endeavored to accommodate the IEEE 754 floating
point standard by not adopting any constraints on floating point which are contrary
to this standard.

1See X3J3 working document S8-101.

LANGUAGE 64 DECLARATIONS

by parentheses.

Implementation limits

The implementation shall allow the specification of types that have at least 12 pointer, array,
and function declarators (in any valid combinations) modifying an arithmeti~. a structure, a union,

S or an incomplete type, either directly or via one or more typedefs.

10

Forward references: type definitions (§3.S.6).

3.S.4.1 Pointer declarators

Semantics

If, in the declaralion u'! D1,,. D1 has the fonn

* IV,.,.,.1:1:-./ist t) •J~-,,,-"J- opt

and the type specified for ident in the declaration "'! D" is "derived-declarator-type-list T,"
then the type specified for ident is ''derived-declarator-type-list type-qualifier-list pointer to T. ''
For each type qualifier in the list. ident is a so-qualified pointer.

For two pointer typeS to be compatible, both shall be identically qualified and both shall be
15 pointt.rs to compatible types.

Examples

The following pair of declarations demonstrates the difference between a ''variable pointer to
a constant value" and a "constant pointer to a variable value."

const int 1"ptr_to_constant;
20 int •const constant_ptr;

The contents of the const int pointed to by ptr _to_ constant shall not be modified. but
ptr_to_constant itself may be changed to point to another const int. Similarly, the
contents of the int pointed to by constant_ptr may be modified, but constant_ptr
itself shall always point to the same location.

25 The declaration of the constant pointer constant _ptr may be clarified by including a
definition for the type "pointer to int."

typedef int *int_ptr;
conat int_ptr constant_ptr;

declares constant_pt: as an object that has type "const-qualified pointer to int ...

30 3.S.4.2 Array declarators

Constraints

The expression that specifies the size of an array shall be an integral constant expression that
ha., a value greater than zero.

Semantics

35 If, in the declaration "'! Dl," Dl has the fonn

D [constant-expression
1
] op

and the type specified for ident in the declaration "'r D" is "derived-declarator-type-list T,"
then the type specified for ide,u is ''derived-declarator-type-list array of r.••60 If the size is not

60. When several ''array of'' specifications are adjacent. a multi-dimensional array is declared.

§3.5.4 May 13, 1988
nRAJ:T

§3.5.4.2

54 Section 3. LANGUAGE

In these declarations the c onat property is associated with the declarator stype, so
x and y are both canst objects.

The Committee considered making conat and volatile storage classes, but this
would have ruled out any number of desirable constructs, such aa conat members
of structures and variable pointers to c onat types.

A cast of a value to a qualified type haa no effect; the qualification (volatile,
say) can have no effect on the access since it has occurred prior to the cast. If it is
necessary to access a non-volatile object using volatile semantics, the technique is
to cast the address of the object to the appropriate pointer-to-qualified type, then
dereference that pointer.

3.5.4 Declarators

The function prototype syntax was adapted from C++. (See §3.3.2.2 and §3.5.4.3)
Some current impleinentations have a limit of six type modifiers (Junction re­

turning, c11Tc&f of, pointer to), the limit used in Ritchie's original compiler. This
limit has been raised to twelve since the original limit has proven i~ufticient in
some cases; in particular, ·it did not allow for FORl'RAN-to-C translation, since
FORI'RAN allows for seven subscripts. (Some users have reported using nine or ten
levels, particularly in machine-generated C code.)

3.S.4.1 Pointer declarators

A pointer declarator may have its own type qualifiers, to specify the attributes of the
pointer itself, as opposed to those of the reference type. The construct is adapted
from C++.

const int * means (variable} pointer to coft8tant int, and int * canst means
constant pointer to (variable) int, just as in C++, from which these constructs
were adopted. {And mutatia mutandis for the other type qualifiers.) A!J with other
aspects of C type declarators, judicious use of typede1 statements can clarify the
code.

3.5.4.2 Array declarators

The concept of composite types (§3.1.2.6) was introduced to provide for the accretion
of information from incomplete declarations, such as array declarations with miss­
ing size, and function declarations with missing prototype (argument declarations).
Type declarators are therefore said to specify compatible types if they agree except
for the fact that one provides less information of this sort than the other.

The declaration of 0-length arrays is invalid, under the general principle of not
providing for 0-length objects. The only common use of this construct has been in
the declaration of dynamically allocated variable-size arrays, such as

struct segment {

3.5. DeclaratiollS

};

short int count;
char c [N];

struct segment * new_sepent(const int length) ;
{

}

struct segment* result;
result• malloc(aizeof segment+ (length-H));
reault->count • length:
ret111"D. result;

55

In such usage, N would be O and (length-H) would be written as length. But this
paradigm works just as well, as written, if N is 1. r (Note, by the by, an alternate 6,+

way of specifying the size of result:

result• malloc(otfsetof(struct segment,c) +length);

This illustrates one of the uses of the oUsetof macro.)j

3.5.4.3 Fmlciion declarators (including prototypes)

The function prototype mechanism is one of the most useful additions to the C lan­
guage. The feature, of course, has precedent in many of the Algol-derived languages
of the past 25 years. The particular form adopted in the Standard is based in large
part upon c++.

Function prototypes provide a powerful translation-time error detection capa­
bility. In traditional C practice without prototypes, it is extremely difficult for the
translator to detect errors (wrong number or type of arguments) in calls to func­
tions declared in another source file. Detection of such errors has either occurred at
runtime, or through the use of auxiliary software tools.

In function calls not in scope of a function prototype, integral arguments have the
integral widening conversions applied and :float arguments are widened to double.
It is thus impossible in such a call to pass an unconverted char or tloat argument.
Function prototypes give the programmer explicit control over the function argu­
ment type conversions, so that the often inappropriate and sometimes inefficient
default widening rules for arguments can be suppressed by the implementation.
Modifications of function interfaces are easier in cases where the actual arguments
are still assignment compatible with the new formal parameter type - only the
function definition and its prototype need to be rewritten in this case; no function
calls need be rewritten.

Allowing an optional identifier to appear in a function prototype serves two
purposes:

• the programmer can associate a meaningful name with each argument position
for documentation purposes, and

X3J11/88-091

~

56 Section 3. LANGUAGE

• a function declarator and a function prototype can use the same syntax. The
consistent syntax makes it easier for new users of C to learn the language. Au­
tomatic generation of function prototype declarators from function definitions
ia also facilitated.

Optimizers can also take advantage of function prototype information. Consider
this example:

extern int compare(conat char• string1,
conat char* string2)

void func2(illt x)
{

}

char• atr1, * str2:
I• ... •I

x • compare(str1, str2)
I• ... •I

The optimizer knows that the pointers passed to compare are not used to assign new
values to any objects that the pointers reference. Hence the optimizer can make less
conservative assumptions about the side efFects of compare than would otherwise be
necessary.

The Standard requires that calls to functions taking a variable number of argu­
ments must occur in the presence of a prototype (using the trailing ellipsis notation
, ...). An implementation may thus assume that all other functions are called with
a fixed argument list, and may therefore use possibly more efficient calling sequences.

3.5.5 Type names

Empty parentheses within a type name are always taken as meaning function with
unspecifie,l arguments and never as (unnecessary) parentheses around the elided
identifier. This specification avoids an ambiguity by fiat.

3.5.6 Type definitions

A typede1 may only be redeclared in an inner block with a declaration that explicitly
contains a type name. This rule avoids the ambiguity about whether to take the
typedef a., the type name or the candidate for redeclaration.

Some implementations of C have allowed type specifiers to be added to a type
defined using typedet. Thus

typedet short int small;
unsigned small x;

would give x the type unsigned short int. The Committee decided that since
this interpretation may be difficult to provide in many implementations, and since

LIBRARY 95 INTRODUCTION

Forward references: diagnostics (§4.2).

4.1.3 Errors <errno . h>
The header <er:no . h> defines several macros, all relating to the reporting of error

conditions.

5 The macros are

Br)0M

D.AHGB

which expand to distinct nomero integral constant expressions; and

arrno

10 which expands to a modifiable lvalue83 that has type int., the value of which is set to a positive
error number by several library functions. It is unspecified .whether er:no is a macro or an
identifier declared with external linkage. If a macro definition is suppressed in order to access an
actual object, or a program defines an external identifier with the name er:no, the behavior is
undefined.

15 The value of errno is zero at program startup, but is never set to zero by any library
function. 84 The value of er:no may be set to nonzero by a library function call whether or not
there is an error, provided the use of er2:no is not documented in the description of the function
in the Standard.

Additional macro definitions, beginning with E and a digit or E and an upper-case Ietter,85 +
20 may also be specified by the implementation. ~

4.1.4 Limits <float. h> and <limits . h>

The headers <f1oat. . h> and <1imits . h> define several macros that expand to various
limits and parameters.

The macros, their meanings, and their minimum magnitudes are listed in §2.2.4.2.

25 4.1.5 Common definitions <stddef. h>

The following typeS and macros are defined in the standard header <5t.ddef . h>. Some are +
also defined in other headers, as noted in their respective sections.

The types are

pt.rc:liff_t.

30 which is the signed integral type of the result of subtracting two pointers;

size_t

which is the unsigned integral type of the result of the sizeof operator; and

wchar_t

which is an integral type whose range of values can represent distinct codes for all members of
35 the largest extended character set specified among the supported locales; the .null character shall

have the code value zero and each member of the basic character set defined in §2.2.1 shall have

83. The macro •%%Do need not be the identifier of an object. It might be a modifiable lvalue resulting from a
function call (for example. *•~o ()).

84. Thus, a program that uses 41%%DO for error checking should set it to zero before a library function call, then
inspect it befOTe a subsequent librmy function call.

8S. See .. future horary directions'" (§4.13.1).

§4.1.2 May 13, 1988
DRAFT

§4..1.5

LIBRARY 96 INTRODUCTION

a code value equal to its value when used as the lone character in an integer character constanL

The maaos are

WU,

which expands to an implementation-defined null pointer constant; and

S offsetof (~, member-designator)

which expands to an integral constant expression that has type siza_t, the value of which is the
offset in byres, to the sttucture member (designated by TMmber-designator), from the beginning
of its structure (designated by rype). The ml!mber-designator shall be such that given • +

static type t;

10 then the e~on, (t .member-designator) evaluates to an address constant. (If the specified
member is a bit-field, the behavior is undefined.)

Forward references: localization (§4.4).

4.1.6 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed
15 descriptions that follow. If an argument to a function has an invalid value (such as a value

outside the domain of the function, or a pointer outside the address space of the program, or a
null pointer), the behavior is undefined. Any function declared in a header may be implemented
as a macro defined in the header, so a library function should not be declared explicitly if its
header is included. Any macro definition of a function can be suppressed locally by enclosing

20 the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason, it
is pennitted to take the address of a library function even if it is also defined as a macro. 86 The
use of #undef to remove any macro definition will also ensure that an actual function is referred
to. Any invocation of a library function that is implemented as a macro will expand to code that

25 evaluates each of its arguments exacdy once, fully protected by parentheses where necessary, so
it is generally safe to use arbitrary expressions as arguments. Likewise, those function-like
macros described in the following sections may be invoked in an expression anywhere a function
with a compatible return type could be called. 87

Provided that a library function can be declared without reference to any type defined in a
30 header, it is also pennissible to declare the function, either explicitly or implicitly, and use it

without including its associated header. If a function that accepts a variable number of arguments
is not declared (explicitly or by including its associated header), the behavior is undefined.

86. This means that an implementation must provide an actual function for each library function. even if it also
provides a macro for that function.

87. Because external identifiers and some macro names beginning with an underscore are reserved. implementations
may provide special semantics for such names. For example. the identifier BOIL'?IN a..bs could be used to
indicate generation of in-line code for the ab• function. Thus. the appropriate header could specify

lda~in• a.ba(z) _B'O'IL'?Ilf_a.ba(z)
for a compiler whose code generator will accept iL

In this manner. a user desiring to guarantee rhat a given library function such as abs will be a genuine
function may write

"tundef ab•

whether the implementation's header provides a macro implementation of abs or a builtin implementation.
The prototype for the function. which precedes and is hidden by any macro definition. is thereby revealed also.

§4.1.5 May 13, 1988 §4.1.6

+

LIBRARY 97 INTRODUCTION

Examples

The function atoi may be used in any of several ways:

• by use of its associated header (possibly generating a macro expansion)

linc1uda <stdlib.b>
5 const char •str;

, •... */
i • atoi(str);

• by use of its associated header (muredly generating a true function reference)

#inc1uda <stdlib.h>
10 #undef atoi

const char *str;
I* ... *I
i m atoi(str);

or

15 #inc1uda <stdlib.b>
const char *str;

_., - I* ... *I
i = (atoi) (str);

• by explicit declaration

20 a:arn int atoi(const char*);
const char *str;

25

§4.1.6

I* ... *I
i = atoi(str);

• by implicit declaration

const char *str;
/* ... */
i = atoi(str);

May 13, 1988
DRAFT

§4.1.6

+

+

+

+

4.1. Introduction 71

The header is usable in an implementation of the Standard in the absence of a
definition of J:ITEISIORS-, and the non-Standard implementation can provide
the appropriate definitions to enable the extra declarations. J

4.1.3 Errors
<errno.h>

.<errno.h> is a header invented to encapsulate the error handling mechanism used
by many of the library routines.1 •

The error reporting macbi»IFT)' centered about the setting of ermo is generally
regarded with tolerance at best. It requires a "pathological coupling" between li­
brary functions and makes use of a static writable memory cell, which interferes
with the construction of shareable libraries. Nevertheless, the Committee preferred
to standardize this existing, however deficient, machinery rather than invent some­
thing more ambitious.

The definition of errno aa an lvalue macro grants implementors the· license to
_ expand it to something like •_errno..addr(), where the function returns a pointer

to the (cunent) modifiable copy of errno .

4.1.4 Limits
<float .h> and <limits .h>

Both <float. h> and <limi ta. h> are inventions. Included in these headers are
various parameters of the execution envuonment which are potentially useful at
compile time, and which are difficult or impossible to determine by other means.

The availability of this information in headers provides a portable way of tun­
ing a program to difrerent environments. Another possible method of determining
some of this information is to evaluate arithmetic expressions in the preprocessing
statements. Requiring that preprocessing always yield the same results as run-time
arithmetic, however, would cause problems for portable compilers (themselves writ­
ten in C) or for cross compilers, which would then be required to implement the
(possibly wildly diff'erent) arithmetic of the target machine on the host machine.
(See §3.4.)

<float.h> makes available to programmers a set of useful quantities for numerical
analysis. (See §2.2.4.2.) This set of quantities has seen widespread wse for such anal­
ysis, in C and in other languages, and was recommended by the numerical analysts
on the Committee. The set was chosen so as not to prejudice an implementation's
selection of floating-point representation.

Moat of the limits in <float . h> are specified to be general double expressions
rather than restricied constant expressions

1In earlier dra.fta of the Standard, e:rrno and related macros were-detined in <■tdde1 .h>. When
the Committee decided. thu the other deiinitions in tlua header were of such general utility tha.t
they should be required nen in freestanding environments, it created <•mo .II>.

X3Jll/88-09l

72 Section 4. LlBRARY

• to allow use of values which cannot readily (or, in some cases, cannot possibly)
be constructed as manifest constants, and

• to allow for run-time selection of floating-point properties, as is possible, for
instance, in IEEE-854 implementations.

4.1.5 Common deftnitiom
<atddef.h>

<atddef. h> is a header inven~ to provide definitions of several types and macros
used widely in conjunction with the library: ptrdiff_t (see §3.3.6), aize_t (see
§3.3.3.4), wchar .t (see §3.1.3.4), and HULL. Including any header that references one
of theee macroe will also define it, an exception to the usual library rule that each
macro or function belongs to exactly one header.

HULL can be defined aa any null pointer coutcant. Thus ~xisting code can retain
definitions of HULL as O or OL, but an implementation may choose to define it as
(void *) O; this latter form of definition is convenient on architectures where the
pointer size(s) do(es) not equal the size of any integer type. It has never been wise
to use NULL in place of an -arbitrary pointer as a function argument, however, since
pointers to different types need not be the same size. The library avoids this problem
by providing special macros for the arguments to signal, the one library function
that might see a null function pointer.

The ot'f setof macro has been added to provide a portable means of determining
t:.+ the offset, in bytes, of a member within its structure. f This capability is useful in

programs, such as are typical in data-base implementations, which declare a large
number of dilferent data structures: it is desirable to provide "generic" routines that
work from descriptions of the structures, rather than from the structure declarations
themselves. 2 J

In many implementations, off aetof could be defined as one of

or

(aize_t)(char •>•CC(a_n.ame•)O)->m_name)

or, where I is some predeclared address (or 0) and A(Z) is defined as ((c:har•)IZ),

(size_t)(1((s_naae•)I->m_name) - A(X))
2Conaider, for ina~ a aet of nod• (structures) which an to be dynamically allocated a.nd

garbage-collected, and which ca.n conlain pointen co ocher auch nodes. A poaible implemencation
is to have the fine field in each node point to a descriptor for that node. The deacripcor includea a.
table of the offseu of tielda which a.re pointen to ocher nod•. A garbage-collector "'mar~ routine
needs no further informauon about the conient of the node (except, of course, where to pnt the
mark). New node typea caD be added to the program without requiring the mark routine to be
rewriiten or even recompiled.

4.Z. Diagnostics <assert. h> 73

It was not feaaible, however, to mandate any single one of these forms as a construct
guaranteed to be portable.

Other implementations may choose to expand this macro as a call to a built-in
function that interrogates the translator's symbol table.

4.1.6 Use of library functions
•

To make usage more uniform for both implementor and programmer, the Standard
requires tha1i every library function (unless specilically noted otherwise) must be
repreaented as an actual function, in case a program wishes to pass its address as
a parameter to another function. On the other hand, every library function is now
a candidate for redefinition, in its associated header, as a macro, provided that the
macro performs a "safe" evaluation of its arguments, i.e., it evaluates each of the
arguments exactly once and parenthesizes them thoroughly, and provided that its
top-level operator is such that the execution of the macro is not interleaved with
other expressions. fj Two exceptions are the macros getc and putc, which may fl-:­
evaluate their arguments in an unsafe manner. (See §4.9.7.5.)

If a program requires that a library facility be implemented as an actual function,
not as a macro, then the macro name, if any, may be erased by using the #undef
preprocessing directive (see §3.8.3).

All library prototypes are specified in terms of the "widened" types: an argu­
ment formerly declared as char is now written as int. This ensures that most
library functions can be called with or without a prototype in scope (see §3.3.2.2),
thus maintaining backwards compatibility with existing, pre-Standard, code. Note,
however, that since functions like print'f and scam use variable-length argument
lists, they must be called in the scope of a prototype.

The Standard contains an example showing how certain library functions may
be "built in" in an implementation that remains conforming.

4.2 Diagnostics
<assert.h>

4.2.1 Program diagnostics

4.2.1.1 The assert macro

Some implementations tolerate an arbitrary scalar expression. as the argument to
assert, but the Committee decided to require correct operation only for int ex­
pressions. For the sake of implementors, no hard and fast format for the output
of a failing assertion is required; but the Standard mandates enough machinery to
replicate the form shown in the footnote.

It can be difficult or impOSBible to make assert a true function, so it is restricted
to macro form only.

X3J11/88-091

LIBRARY 108 MATHEMATICS <math.h>

4.S MATHEMATICS <math.h>

The header <mat.h. h> declares several mathematical functions and defines one macro. The
functions take double-precision argwnents and return double-precision values. 93 Integer
arithmetic t\mctions and conversion functions are discussed later.

5 The maao defined is

mca_vu.
which ~ to a positive doubl• expression. not necessarily representable as a float..

Forward references: integer arithmetic functions (§4.10.6), the at.of function (§4.10.1.1), the
s't%tod function (§4.10.1.4).

10 4.S.1 Treatment of error condidons
The behavior of each of these functions is defined for all representable values of its input

arguments. Each function shall execute as if it were a single operation, without generating any
externally visible exceptions.

For all functions, a domain e"or occurs if an input argument is outside the domain over
15 which the mathematical function is defined. The description of each function lists any required +

domain enors; an implementation may define additional domain errors, provided that such errors +
are consistent with the mathematical definition of the function. 94 On a domain error, the function
returns an implemenration-de~ed value; the value of the macro EDOM is stored in e::no.

Similarly, a rang~ error occurs if the result of the function cannot be represented as a ~
20 double value. If the result overflows (the magnitude of the result is so large that it cannot be

represented in an object of the specified type}, the function returns the value of the macro
ROGB_VAL. with the same sign as the correct value of the function; the value of the macro
ERANGB is stored in er%Do. If the result widertlows (the magnitude of the result is so small
that it cannot be repiesented in an object of the specified type), the function returns zero; whether

25 the integer expression ar=io acquires the value of the macro UJ\NGZ is implementation­
defined.

4.S.2 Trigonometric functions
4.5.2.1 The acos function

Synopsis

30 Ii.Delude <:math.h>
double acos(double z);

Description

The acos function computes the principal value of the arc cosine of z. A domain error
occurs for arguments not in the range (-1, +1].

35 Returns

The acos function returns the arc cosine in the range (0, 1t] radians.

93. Sec .. future library directions'" (§4.13.4).

94. In an implementation that suppons infinities, this allows infinity as an argument to be a domain error if the
mathematical domain of the function does not include infinity.

§4.5 May 13, 1988 §4.5.2.1
T'\ l) .1 CT

LIBRARY 109 MATHEMATICS <math.h>

4.S.2.2 The as~n function

Synopsis

#include <math.h>
dow:»la asin(double z);

S Description

The aain function computes the principal value of the arc sine of z. A domain enor occurs
for arguments not in the range [-1, +1]. •

Returns

The aain function returns the arc sine in the range [-1r/2, +,r/2] radians.

10 4.5.2.3 The atan function

Synopsis

#include <math.h>
double atan(doubla z);

Desaiption

15 The atan function computes the principal value of the arc tangent of z.

Returns

The atan function returns the arc tangent in the range [-'IC/2, +1t/2] radians.

4.S.2.4 The atan2 function

Synopsis

20 #include <math.h>
double atan2(double y, double z);

Description

The atan2 function computes the principal value of the arc tangent of y/~ using the signs
of both arguments to detennine the quadrant of the return value. A domain error occurs if both

25 arguments are zero and y / z cannot be represented.

Returns

The atan2 function returns the arc tangent of y/x, in the range [-1t, +1t] radians.

4.5.2.S The cos function

Synopsii

30 lincluda <:math.h>
double cos(doubl.e z);

Desaiption

The cos function computes the cosine of z (measured • radians). A large magnitude
argument may yield a result with little or no significance.

35 Returns

The cos function returns the cosine value.

§4.5.2.2 May 13, 1988
DRAFT

§4.5.2.5

LIBRARY

4.5.2.6 The au function

Synopsi.1

#incl.uda <math.h>
doubl• sin(double z);

S Desaiption

llO MATHEMATICS <.math.h>

1be sin ftmction computes the sine of z (measured in radians). A large magnitude argument
may yield a result with little or no significance.

Returns

The sin function returns the sine value.

10 4.S.l.7 The tan function

Synopsis

lincluda <math.h>
double tan(doubla z);

Description

15 1be tan __ function returns the tangent of z (measured in radians). A large magnitude
argument may yield a result with little or no significance.

Returns

The tan function returns ·the tangent value.

4.5.3 Hyperbolic functions

20 4.5.3.1 The cosh function

Synopsis

#include <math.h>
double cosh(doubla z);

Description

,I

25 The cosh function computes the hyperbolic cosine of x. A range error occurs if the
magnitude of z is too large.

Returns

The cosh ftmction returns the hyperbolic cosine value.

4.S.3.2 The s~ function

30 Synopsis

#include <math.h>
double sinh(double z);

Description

The si.nh function computes the hyperbolic sine of z. A range error occurs if the magnitude
35 of z is too large.

Returns

The sinh function rerums the hyperbolic sine value.

§4.S.2.6 May 13. 1988
DRAFT

§4.5.3.2

LmRARY

4.5.3.3 The tanh function

Synopsis

#incl.Ude <math.h>
double tanh(double z);

S Description

111

The tanh function computes the hyperbolic tangent of z.

Returns

The tanh function returns the hyperbolic tangent value.

4.5.4 Exponential and logarithmic functions
10 4.5.4.1 The exp function

Synopsis

lincl.uda <math. h>
dow:»le azp(double z);

Description

MATHEMATICS <math.h>

15 The azp function computes the exponential function of z. A range eII01' occurs if the
magnitude of z is too large.

Returns

The ezp function returns the exponential value.

4.5.4.2 The frexp function

20 Synopsis

lincl.ude <math.h>
dow:»l.e f2:azp (doubl.a val.ue, int *ezp);

Description

The f2:ezp fllllction breaks a floating-point number into a nonnalized fraction and an integral
25 power of 2. It stores the integer in the int object pointed to by exp.

Returns

The f 2:ezp function returns the value z, such that z is a doul:)l.e with magnitude in the
inrerval (1/Z 1) or zero, and val.ua equals z times 2 raised to the power *ezp. If val.ue is
zero, both pans of the result are zero.

30 4.5.4.3 The ldexp function

Synopsis

#incl.ude <math.h>
double l.dezp(doubl.e z, int ezp);

Description

35 The ldezp function multiplies a floating-point number by an integral power of 2. A range
error may occur.

Returns

The ldezp fllllction returns the value of z times 2 raised to the power ezp.

§4.5.3.3 May 13, 1988
DRAFT

§4.5.4.3

LmRARY

4.S.4.4 The log function

Synopsis

#include <math.h>
double log(cloubl• z);

5 Description

112 MATHEMATICS <math.h>

The log function computes the natural logarithm of z. A domain error occurs if the
argument is negative. A range emr occurs if the argument is zero and the logarithm of zero
cannot be represented..

Retarns

10 The log function retmns the natural logarithm.

4.S.4.S The logl O function

Synopsis

lincl.uda <math. h>
double loglO(dou.bla z);

15 Description

The loglO function computes the base-ten logarithm of z. A domain eITOr occurs if the
argument is negative. A range error occurs if the argument is zero and the logarithm of zero
cannot be represented.

Returns .I""\
20 The loglO function returns the base-ten logarithm.

4.5.4.6 The mcc.U function

Synopsis

#includa <math.h>
double ~(double value, double *iptr);

25 Description

The modf function breaks the argument val.ua into integral and fractional parts. each of
which has the same sign as the argumenL It stores the integral part as a double in the object
pointed to by iptr.

Returns

30 The ~ function returns the signed fractional pan of val.ua.

4.5.S Power functions

4.5.S.1 The pow function

Synopsn

liDcl.uaa <math.h>
35 double pow(doubl.a z, double y);

Description

The pow function computes z raised to the power y. A domain error occurs if x is negative
and y is not an integer. A domain error occurs if the result cannot be represented when z is zero
and y is less than or equal to zero. A range error may occur.

§4.5.4.4 May 13. 1988
DRAFT

§4.5.5.1

LIBRARY 113 MATHEMATICS <math.h>

Returns

The pow function returns the value of x raised to the power y.

4.S.S.2 The sqrt function

Synopsis

5 linclude <matli.h>
doubl.a scp:t (doubl.a z) ;

Description

The sq= function computes the nonnegative square root of z. A domain effOr occurs if the
argument is negative.

10 Returns

The sqrt function returns the value of the square root

4.5.6 Nearest integer, absolute value, and remainder functions

4.5.6.1 The cei.1 function

Synopsis

15 #include <math.h>
double cail(double z);

Description

~ The ceil. function compu~ the smallest integral value not less than x.

Returns

20 The ceil ftmction returns the smallest integral value not less than _z, expressed as a double.

4.S.6.2 The fabs function

Synopsis

lincl.ude <math.h>
doub.le fabs(doubla z);

25 Description

The fabs function computes the absolute value of a floating-point number x.

Returns

The fabs function returns the absolute value of z.

4.5.6.3 The f1oo: function

30 Synopsis

#include <math.h>
double floor(double x):

Desaiption

The floor fimction computes the largest integral value not greater than x.

35 Returns

The floor function retmns the largest integral value not greater than x, expressed as a
double.

§4.5.5.1 May 13, 1988
DRAFT

§4.5.6.3

LIBRARY

4.S.6.4 The fmod function

Synopsis

#include <math.h>

114

double fmod(doubla z, double y);

5 Description

MATHEMATICS <math.h>

The fmod function computes the floating-point remainder of z/y.

Returns

The f:mod function retmns the value z - i • y, for some intege.r i such that. if y is nonzero,
the result bas the same sign as z and magnitude less than the magnitude of y. If y is zero,

10 whether a domain enor occurs or the ~d function retums zero is implemeptation-defined.

§4.5.6.4 May 13, 1988
DRAFT

§4.5.6.4

78 Section 4 . • LmRARY

4.4.1 Locale control

4.4.1.1 The setlocale function

setlocale provides the mechaniam for controlling loeale-,pecific features of the
library. The category argument allows parts of the library to be localized as neces­
sary without changing the entire locale-specific environment. Specifying the locale
argument as a string gives an implementation maximum flexibility in providing a
set of locales. For instance, an implementation could map the argument string into
the name of a file containing appropriate localization parameters - these files could
then be added and modified without requiring any recompilation of a lo~alizable
program.

4.4.2 Numeric formatting convention inquiry

4.4.'2.l The localec on.v function

The localecon.v function gives a programmer access to information about how
to format numeric quantities (monetary or otherwise). This sort of interface was
considered preferable to defining conversion functions directly: even with a specified
locale, the set of distinct formats that can be constructed from these elements is
large, and the ones desired very application-dependent.

4.5 Mathematics
<math.h>

For historical reasons, the math library is only defined for the fioating type double.
All the names formed by appending f or l to a name in <math.h> are reserved to
allow for the definition of float and long double libraries.

The functions ecvt, fcvt, and gcvt have been dropped since their capability is
available through sprillt1.

Traditionally, HUGLVAL has been defined as a manifest constant that approxi­
mates the largest representable double value. As an approximation to infinity it is
problematic. As a £unction return. value indicating overflow, it can cause trouble if
first assigned to a float before testing, since a float may not necessarily hold all
values representable in a double.

After considering several alternatives, the Committee decided to generalize
HUGE_VAL to a positive double expression, so that it could be expressed as an exter­
nal identifier naming a location initialized precisely with hexadecimal bit pattems.
It can even be a special encoding for machine infinity, on implementations that
support such codes. It need not be representable as a float, however.

Similarly, domain errors in the past were typically indicated by a zero return,
which is not necessarily distinguishable from a valid result. The Committee agreed
to make the return value for domain eriors implementation-defined, so that special
machine codes can be used to advantage. This makes possible an implementation

4.5. Mathematics <math.h> 79

of the math library in accordance with the IEEE P854 proposal on floating point
representation and arithmetic.

4.S.l Treatment of error conditions

Whether underflow should be considered a range error, and cause errno to be set,
is specified as implementation-defined since detection of underflow is inefficient on
some systems.

r The Standard has been crafted to neither require nor preclude any popular t:J.+
implementation of floating point. Thia principle affects the definition of domain
error: an implementation may define extra domain errors to deal with floating-point
arguments such as infinity or "not-a-number" ·J

The Committee considered the adoption of the matherr capability from UNIX
System V. In this feature of that system's math library, any error (such as overflow
or underflow) results in a call from the library function to a user-defined exception
handler named matherr. The Committee rejected this approach for several reasons:

• Thia style is incompatible with popular floating point implementations, such
as IEEE 754 (with 1ts special return codes), or that of VAX/VMS.

• It comlicts with the error-handling style of FORTRAN, thus making it more
di8icult to translate useful bodies of mathematical code from that language
toC.

• It requires the math library to be reentrant (since math routines could be
called from matherr), which may complicate some implementations.

• It introduces a new style of library interface: a user-defined library function
with a library-defined name. Note, by way of comparison, the signal and
exit handling mechanisms, which provide a way of "registering" user-defined
functions.

4.5.2 Trigonometric functions

4.5.2.1 The acos function

4.5.2.2 The asin fonct:ion

4.5.2.3 The atan. function

4.5.2.4 The atan2 function

rThe atan2 function is modelled after FORTRAN's. It is described in terms of ~
arctan ~ for simplicity; the Committee did not wish to complicate the descriptions
by specifying in detail how the determine the appropriate quadrant, since that should
be obvious from normal mathematical convention. atan2(y ,x) is well-defined and

X3Jll/88-091

~

80 Section 4. LlBRARY

finite, even when x is O; the one ambiguity occurs when both arguments are O, be­
cause at that point any value in the range of the function could logically be selected.
Since valid reasons can be advanced for all the dilferent choices that have been in
this situation by various implements, the Standard preserves the implementor's free­
dom to return an arbitrary well-de&ned value such a O, to report a domain error, or
to return an IEEE NaN code. J

,.s.i.s The cos fmactton

4.S.2.8 The sin function

4.5.2.'1 The tan fmlction

4.5.3 Hyperbolic functions

4.5.3.1 The coah nmciion

4.5.3.2 The sinh function

4.5.3.3 The tanh fmlction

4.5.4 Exponential and logarithmic functions

4.5.4.1 The exp function

4.5.4.2 The frexp function

The functions frexp, ldexp, and modf are primitives used by the remainder of the
library. There was some sentiment for dropping them for the same reasons that
ecvt, fcvt, and gcvt were dropped, but their adherents rescued them for general
use.

4.5.4.3 The ldexp function

See §4.5.4.2.

4.5.4.4 The log function

Whether log(0.) is a domain error or a range error is arguable. The choice
in the Standard, ra,age ef'f'or, is for compatibility with IEEE P854. Some such
implementationa would represent the result as -oo, in which case no error is raised.

4.5.4.5 The log10 function

See §4.5.4.4.

4.5.4.6 The mod.f nmction

See §4.5.4.2.

4.6. Non-local jumps <set j mp. h>

4.S.5 Power functions

4.S.5.1 The pow function

'4.5.S.2 The sqrt function

81

IEEE P854, unlike the Standard, requires sqrt (-o.) to return a negatively signed
magnitude-zero result. Thia is an isav.e on impl~entationa that support a neg­
ative floating zero. The Standard specifies that taking the square root of a neg­
ative number (in the mathematical sense: less than 0) is a domain error which
requires the function to return an implemeatatioa-defiaetl value. This rule permits
implementations to support either the IEEE P854 or vendor-specific floating point
representatjons.

4.5.6 Nearest integer, absolute value, and remainder functions

4.5.6.1 The ceil function

4.S.&.2 The faha function

Adding an absolute value operator waa rejected by the Committee. _An implemen­
tation can provide a built-in function for efficiency.

4.S.8.3 The floor function

4.5.8.4 The fmod function

fmod is defined even if the quotient x/y is not representable - the implementation
of this function is properly by scaled subtraction rather than division.

The result of fmod (x. O. 0) is either a domain error or 0.0; the result always lies
between 0.0 and y, so specifying the non-erroneous result as 0.0 simply recognizes
the limit case.

The Committee considered and rejected a proposal to use the remainder oper-
• a.tor I for this function; the operators in general correspond to hardware facilities,

and taod is not supported in hardware on moat machines.

4.6 Non-local jumps
<setjmp.h>

j mpwbu:f musi be an array type for compatibility with existing practice: programs
typically omit the address operator before a j mp-1>111 argument, even though a
pointer to the argument is desired, not the value of the argument itself. Thus, a
scalar or suuct type is unsuitable. Note that a one-element array of the appropriate
type is a valid definition.

set j ap is constrained to be a macro only: in some implementations the infor­
mation necessary to restore context is only available while executing the function
making the call to aetj mp.

X3Jll/88-09l

LIBRARY 117 SIGNAL HANDLING <signal. h>

4.7 SIGNAL HANDLING <signal .h>

The header <signal . h> declares a type and two functions and defines several macros, for
handling various signals (conditions that may be reported during program execution).

The type defined is

S sig_atcmic_t

which is the integral type of an object that can be accessed as an atomic entity, even in the
presence of asynchronous intmupts.

The macros defined are

SlG_l)l'I,

SJ:G_J:GN

which expand to distinct constant expressions that have type compatible with the second
argument to and the return value of the signal function, and whose value compares unequal to
the address of any declarable function; and the following, each of which expands to a positive

15 integral constant expression that is the signal number corresponding to the specified condition:

s J:GABR2 abnormal tenninalion. such as is µutiated by the abort function

SJ:Gl'PB an erroneous arithmetic operation, such as zero divide or an operation resulting in
overflow •

S J:GJ:LL detection of an invalid function image, such as an illegal instruction

20 SJ:GIN'? receipt of an interactive attention signal

SJ:GSBGV an invalid access to storage

SJ:GTDM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit calls
to the raise function. Additional signals and pointers to undecJarable functions, with macro

25 definitions beginning, respectively, with the letters SIG and an upper-case leuer or with SIG_
and an upper-case leuer,97 may also be specified by the implementation. The complete set of
signals. their semantics, and their default handling is implementation-defined; all signal values
shall be positive.

4.7.1 Specify signal handling
30 4.7.1.1 The si.gnal. function

Synopsi1

li.nc1uda <s~gna1.h>
TOid (*signa1(int sig, void (*func) (int))) (int);

Description

35 The signa1 function chooses one of three ways in which receipt of the signal number sig
is to be subsequemJy handled. If the value of func is s IG _ DFL, default handling for that
signal will occur. If the value of func is s IG _ IGN, the signal will be ignored. Otherwise,
func sball point to a function to be called when that signal occurs. Such a function is called a

97. See ufumre hlmuy directions" (§4.13.S). The names of the signal numbers reflect the following tenns
(respectively): abo~ floating-point exception. illegal instruction. interrupt, segmentation violation. and
lel'minalion.

§4.7 May 13, 1988
DRAJ.'T

§4.7.1.1

LIBRARY SIGNAL HANDLING <.signal. h>

signal handlu.

When a signal occurs, if func poinb to a function, first the equivalent of signal (sig,
SIG_Di'I.); is executed or an implementation-defined blocking of the signal is performed. (If
the value of aig is SIGI:r.:r., whether the reset to SIG_Dl'L occurs is implementation-defined.)

5 Next the equivalent of (*~unc) (aig); is executed. The function func may tenninate by
executing a ~tw:n statement or by calling the abort, ezit, or longjmp function. If func
executes a :atw:n s1a1ement and the value of sig was SIGFPB or any other implementation­
defined value cmresponding to a compuWional exception, the behavior is undefined. Otherwise,
the program will resume execution at the point it was interrupted.

10 If the signal occms other lb.an as the result of calling the abort or :aiae function, the
behavior is undefined if the signal handler calls any function in the standard horary other than the
signal function itself or refers to any object with static sterage duration other than by assigning
a value to a static storage dmation variable of type '90latil.e sig_atomic_t. Furthennore,
if such a call to the signal. function result, in a SIG_ZRR return, the value of a::no is

15 inderenninate..

At program startup, the equivalent of

aignal.(aig, SIG_IGH);

may be executed for some signals selected in an implementation-defined manner; the equivalent
of • •

20 signal(aig, SIG_Dl'I.);

is executed for all other signals defined by the implementation.

The implementation shall behave as if no library function calls the signal function.

Returns

If the request can be honored, the signal function returns the value of func for the most
25 recent call to signal. for the specified signal aig. Otherwise, a value of SIG Ell is returned

and a positive value is stored in e:=io. -

Forward references: the abort function (§4.10.4.1).

4.7.2 Send signal

4.7.2.l The :ai.se function

30 Synopsm

lincluda <aignal.h>
int raisa(int sig);

Description

The raise function sends the signal sig to the executing program.

35 Returns

The :aiaa function returns zero if successful, nonzero if unsuccessful.

§4.7.1.1 May 13, 1988 §4.7.2.1

4. 7. Signal Handling <signal. h> 83

longj mp to only one level of signal handling.
The lo:ngj mp function should not be called in an exit handler (i.e., a function

registered with the atexit function (see §4.10.4.2)), since it might jump to some
code which is no longer in scope.

4.'T
•

Signal Handling
<signal.h>

This facility has been retained from the Base Document since the Committee felt
it important to provi4e some standard mechanism for dealing with exceptional pr~
gram conditions. Thus a subset of the signals defined in UNIX were retained in the
Standard, along with the basic mechanisms of declaring signal handlers and (with
adaptations, see §4.7.2.1) raising signals. For a discussion of the problems created
by including signals, see §2.2.3.

The signal machinery contains many misnomers: SIGFPE, SIGILL, and SIGSEGV
have their roots in PDP-11 hardware terminology, but the names are too entrenched
to change. A conforming implementation is not required to field any hardware
interrupts.

The Committee has reserved the space of names beginning with SIG to permit
implementations to add local names to <sign.al. h>. This implies that such names
should not be otherwise us(!(i in a C source file which includes <signal. h>.

4. '1.1 Specify signal handling

4.1.1.l The signal function

When a signal occurs the normal flow of control of a program is interrupted. If a sig•
nal occurs that is being trapped by a signal handler, that handler is invoked. When
it is finished, execution continues at the point at which the signal occurred. This
arrangement could cause problems if the signal handler invokes a library function
that waa being executed at the time of the signal. Since library functions are not
guaranteed to be re-entrant, they should not be called from a signal handler that
returns. {See §2.2.3.) A specific exception to this rule hu been granted for calls
to signal from within the signal handler; otherwise, the handler could not reliably
reset the signal.

The specification that some signals may be effectively set to SIG..IGH instead of
SIGJ>FL u program startup allows programs under UNIX systems to inherit this
effective setting from parent processes.

For performance reasons, UNIX does not reset SIGILL to default handling when
the handler is called (usually to emulate missing instructions). This treatment is
sanctioned by specifying that whether reset occurs for SIGILL is implementation­
defined...

X3Jll/88-091

LIBRARY 128 INPUT/OUTPUT <stdio. h>

Returns

The setl)uf function returns no value.

Forward references: the aetvb~ function (§4.9.5.6).

4.9.S.6 The set~ function

S Synopsis

liDcl.w:!a <stdio.h>
int. s•tvt::nif(l'ILB *st.nam, char *bd, int mode, siza_t siza); t

Description

The s•t~· function may be used after the stream pointed to by st:aam has been
10 assoc:iar.ed with an open file but before any other operation is performed on the stream. The

argument moda determines how st:eam will be buffered, as follows: _IOl'BF causes
input/output to be fully buffaed; _IOI.BB' causes output to be line buffered: _IONBB' causes
input/output to be unbuffered. If buf is not a null pointer, the array it points to may be used
instead of a buffer allocated by the setvbuf function. 1°' The argument size specifies the size

15 of the array. The contents of the array at any time are indeterminate:

Returns

The setvbd function rerums zero on success, or nonzero if an invalid value is given for
mode or if the request cannot be honored.

4.9.6 Formatted input/output functions

~o 4.9.6.1 The fp2::intf function

Synopsis

liDcl.w:!a <stdio .-h>
int fp:iDt:t(FII.3 •st:aam, const char *fo2:mat, ...);

Description

25 The fprint:t function writes output to the stream pointed to by st:eam, under control of
the string pointed to by fozmat that specifies how subsequent arguments are converted for
output If there are insufficient argumencs for the fonnat. the behavior is undefined. If the
fonnat is exhausted while arguments remain, the excess arguments are evaluated (as always) but
are otherwise ignored. The fprin-c:t function returns when the end of the format string is

30 encounteted.

The formal shall be a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of 7.erO or more directives: ordinary multibyte characters (not I},
which are copied unchanged to the output stream; and conversion specifications, each of which
results in fetching zero or more subsequent arguments. Each conversion specification is

35 introduced by the character%. After the,. the following appear in sequence:

• Zero or more flags that modify the meaning of the conversion specification.

• An optional decimal integer specifying a minimum field width.106 If the converted value has
fewer characters than the field width, it will be padded with spaces on the left (or right, if the
left adjustment flag, described later, has been given) to the field width.

1 OS. The buffer must have a lifetime at least as great as the open stream. so the stream should be closed before a
buffer tlw has automatic storage duration is deallocated upon block exiL

l 06. Note that O is taken as a flag. not as the beginning of a field width.

§4.9.5.5 May 13, 1988
DRAFT

§4.9.6.1

LIBRARY 129 INPUT/OUTPUT <stdio. h>

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
z, and X conversions, lhe number of digits to appear after the decimal-point character for e,
B, and f conversions, the maximum nwnber of significant digits for the g and G conversions,
or the maximum number of characters to be written from a string in s conversion. The

5 precision takes the form of a period (.) followed by an optional decimal integer. if the integer
is omitted, it is treated as 7.eJ'O.

• An optional h specifying that a following ct. i, o, u, z, or x conversion specifier applies to a
short int or UDSigned shoR int argument (the argument will have been promoted
accordmg to the integral promotions, and its value shall be convened to short int or

10 unsigned short int before printing); an optional h specifying that a following n
conversion specifier applies to a pointer to a short int argument; an optional l (ell)
specifying that a following cl. i, o, u, z, or x conversion specifier applies to a long int or
unsigned long int argument; an optional l specifying that a following n conversion
specifier applies to a pointer to a long int argwnent; or an optional L specifying that a

15 following e, B, f, g. or G conversion specifier applies to a long doubl.a argument If an
h, 1, or ?. appears with any other conversion specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk * instead of a digit string.
In this case, an int argument supplies the field width or precision. The arguments specifying

20 field width or precision, or both, shall appear (in that order) before the argument (if any) to be
convened. A negative field width argument is • taken as a - flag followed by a positive field
width. A negative precision argutnent is taken as if it were missing.

The flag characters and their meanings are

The result of the conversion will be left-justified within the field.

25 + The result of a signed conversion will always begin with a plus or minus sign.

30

35

40

space If the first character of a signed conversion is not a sign, or if a signed conversion results +
in no characters, a space will be prepended to the resulL If the space and + flags both
appear, the space flag will be ignored ..

0

The result is to be convened to an "alternate fonn." For o conversion, it increases the
precision to force the first digit of the result to be a zero. For z (or X) conversion, a
nonzero result will have Oz (or OX) prepended to iL Fore, B, f, g, and G conversions,
the result will always contain a decimal-point character, even if no digits follow it
(normally, a decimal-point character appears in the result of these conversions only if a
digit follows it). For g and G conversions. trailing zeros will not be removed from the
result For other conversions, the behavior is undefined.

For d, i, o, u, z, X. e, E, f, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
perfonned. H the 0 and - flags both appear, the 0 flag will be ignored. Ford, i, o, u,
z, and x conversions, if a precision is specified, the 0 flag will be ignored. For other
conversions, the behavior is undefined.

The conversion specifiers and their meanings are

d, i, o, u, z, X 1be int argument is converted to signed decimal {d or i), unsigned octal (o),
unsigned decimal (u), or unsigned hexadecimal notation (z or X); the letters
abcdef are used for z conversion and the letters ASCDEF for X conversion.

45 The precision specifies the minimum number of digits to appear. if the value
being convened can be represented in fewer digits, it will be expanded with
leading zerm. The default precision. is 1. The result of converting a zero value
with an explicit precision of zero is no characters.

§4.9.6.1 May 13, 1988
DRAFT

§4.9.6.l

LIBRARY 130 INPUT/OUTPUT <stdio. h>

f

5

The double argument is converted to decimal notation in the style
[-Jddd.ddd, where the number of digits after the decimal-point character is
equal to the precision specification. If the precision is missing, it is taken as 6;
if the precision is explicitly zero, no decimal-point character appears. If a
decimal-point character appears, at least one digit appears before iL The value
is rounded to the appropriate number of digits.

The double argument is convened in the style [-Jd.ddde±dd, where there is
one digit before the decimal-point character (which is nomero if the argument is
nouzeao) and the number of digits after it is equal to the precision; if the
precision is mming. it is taken as 6; if the precision is zero, no decimal-point
cimacrer appears. The value is rounded to the appropriate number of digits.
The ■ conveision specifier will produce a number with z instead of e
int:roducing the exponent. The exponent always contains at least two digits. If
the value is zero, the exponent is zero.

15 g,G The double argwnent is converted in style for a (or in style E in the case of
a G conversion specifier), with the precision specifying the number of significant
digits. If an explicit precision is zero, it is taken as 1. The style used depends
on the value converted; Style a will be used only if the exponent resulting from
such a conversion is les.1 than -4 or greater than or equal to the precision.
Trailing zeros are removed from the fractional portion of the result a decimal­
point character appears only if it is followed by a digiL

20

25

30

35

C

s

p

D

Tiie int arguJDent is converted to an unsigned cha:, and the resulting
character is written.

nie argument shall be a pointer to an array of character type. 107 Characters
from the array are wriuen up to (but not including) a tenninating null character,
if the precision is specified. no more than that many characters are written. If
the precision is not specified or is greater than the size of the array, the army
shall contain a null character.

The argument shall be a pointer to void. The value of the pointer is convened
to a sequence of printable characters, in an implementation-defined manner.

The argument shall be a pointer to an integer into which is written the number
of characters written to the output stream so far by this call to fpr.intf. No
argument is converted.

A I is written. No argument is convened. The complete conversion
specincation shall be H.

If a conversion specincation is invalid, the behavior is widefined. 108

If any argument is. or points to, a union or an aggregate (except for an array of character type
using Is conversion. or a pointer cast to be a pointer to void using Ip conversion). the
behavior is undefined.

40 In no case does a nonexistent or small field width cause truncation of a tir 1 ➔; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion resulL

1 C'f1. No special provisions are made fOT multibyr.e characten.
108. See "future library duections'" (§4.13.6).

§4.9.6.1 May 13. 1988
DRAFT

§4.9.6.1

LIBRARY 131 INPUT/OUTPUT <stdio. h>

Returns

The fpdntf function returns the number of characters transmitted. or a negative value if an
output error occurred.

Environmental limit

5 The minimum value for the maximwn number of characters produced by any single I
conversion shall be 509.

Examples

To print a date and time in the form .. Sunday, July 3, 10:02:• where weekday and month
are pointers to strings:

10 liAc.lude <stdio.h>
~rintf(stdout, "Is, Is Id, l.2d:l.2d\n",

weekday, month, day, how:, min);

To print ,c to five decimal places:

#inc1ude <:math.h>
15 #inc.luda <stdio.h>

~rintf(stdout, "pi= I.Sf\n", 4 * atan(l.0));

4.9.6.2 The £scan£ function

Synopsis

#inc.ludo <stdio.h>
20 int fscan£(FILE *st:eam., const char *fo:mat, ...);

Description

The fsc~ function reads input from the stream pointed to by stz:aam, under control of
the string pointed to by fozmat that speciftes the admissible input sequences and how they are
to be converted for a.uignment. using subsequent arguments as pointers to the objects to receive

25 the converted inpuL If there are insufficient arguments for the fonnat, the behavior is undefined.··
If the fonnat is exhausted while arguments remain, the excess arguments are evaluated (as
always) but are otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: one or more white-space characters; an

30 ordinary multibyte character (not I); or a conversion specification. Each conversion specification
is introduced by the character I. After the I, the following appear in sequence:

• An optional ~ignment-su~ing character *.
• An optional decimal integer that specifies the maximum field width.

• An optional h, 1 (ell) or L indicating the size of the receiving object The conversion
35 specifiers d, i. and n shall be preceded by h if the corresponding argument is a pointer to

short int rather than a pointer to int. or by .1 if it is a pointer to .long int. Similarly,
the conversion specifiers o, ~ and z shall be preceded by h if the corresponding argument is
a pointer to unsigned short int rather than a pointer to unsigned int, or by l if it is
a pointer to unsigned long int. F'mally, the conversion specifiers a, f, and g shall be

40 preceded by l if the c~nding argument is a pointer to double rather than a pointer to
float, or by L if it is a pointer to .long doub.le. If an h, .1, or L appears with any other
conversion specifier. the behavior is undefined.

§4.9.6.1

• A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

May 13, 1988
DRAFT

§4.9.6.2

LIBRARY 132 INPUT/OUTPUT <.stclio . h>

The f .sc~ function executes each directive of the fonnat in tum. If a directive fails, as
detailed below, the f.scanf function returns. Failures are described as input failures (due to the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white space is executed by reading input up to the first non-white•
S space character (which remains unread), or until no more characters can be read.

A directive lbat is an ordinary multibyte character is executed by reading the next characters
of the stream. If one of the chaacters differs &om one comprising the directive, the directive
fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
10 descnoed below for each specifier. A convemon specification is executed in the following steps:

Input whire-space characters (as specified by the i.sspac• function) are skipped, unless the
specification includes a [, c, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An
input item is de.fined a., the longest sequence of input characters (up to any specified maximum

15 field width) which is an initial subsequence of a matching sequence. The first character. if any,
after the input item remains unread. If the length of the input item is zero, the execution of the
directive fails: this condition is a marching failure, unless an error prevented input from the
stream, in which case it is an input failure.

Except in the cue of a I specifier, the input item (or, in the case of a In directive, the count
20 of input characters) is converted to a type appropriate to the conversion specifier. If the input

item is not a matching sequence, the execution of the directive fails: this condition is a matching
failure. Unless assignment suppression was indicated by a *, the result of the conversion is
placed in the object pointed to by the first argument following the foJ:mat argument that has not
already received a conversion resulL If this object does not have an appropriate type, or if the

2S result of the conversion cannot be represented in the space provided, the behavior is undefined.

d

30 i

The following conveni~ speci1iers are valid:

Matches an optionally signed decimal integer, whose fonnat is the sarn~ as expected for
the subject sequence of the strtol function with the value 10 for the base argument.
The corresponding argument shall be a pointer to integer.

Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the .strtol function with the value O for the base argument. The
corresponding argument shall be a pointer to integer.

o Matches an optionally signed octal integer, whose fonnat is the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument.

35 TIie a,rresponding argument shall be a pointer to unsigned integer.

40

u Matches an optionally signed decimal integer, whose fonnat is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base
argumenL The corresponding argument shall be a pointer to unsigned integer.

z Matches an optionally signed hexadecimal integer, whose ""'nnat is the same as expected
for die subject sequence of the strtoul. function with the value 16 for the base
argumenL The corresponding argument shall be a pointer to unsigned integer.

e, f, g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod function. The cOJTesponding argument _
shall be a pointer to ftoating.

45 s Matches a sequence of non-white-space characters.109 The corresponding argument shall
be a pointer to the initial character of an array large enough to accept the sequence and a
tenninaring null character. which will be added automatically.

§4.9.6.2 May 13, 1988
DRAFT

§4.9.6.2

LIBRARY 133 INPUT/OUTPUT <stdio. h>

s

10

15

20

25

[

C

p

n

Mar.ches a nonempty sequence of clwacters109 from a set of expected characters (the
scanset). The corresponding argument shall be a pointer to the initial character of an
army large enough to accept the sequence and a tenninating null character, which will be
added automatically. The conversion specifier includes all subsequent characters in the
foz:mat string, up to and including the matching right bracket (]). The characters
between the brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (....), in which case the scanset contains all characters that do
not appear in the scanlist between the circumflex and the right brackeL As a special
cue, if the conversion &"pecifier begins with [] or [....] , th~ right bracket character is in
the scanlist and the next right bracket character is the mau:hing right bracket that ends
the &"pecification. If a - character is in the scanlist and is not the first, nor the second
where the first character is a , nor the last character, the behavior is implementation­
defined.

Matches a sequence of characters109 of the number &"pecified by the field width (1 if no
field width is present in the directive). ~e corresponding argument shall be a pointer to.
the initial character of an array large enough to accept the sequence. No null character
is added.

Matches an implementation-defined set of sequences, which.should be the same as the
set of sequences that may be produced by the %p conversion of the fpdntf function.
The corresponding argument shall be a pointer to a pointer to void. The interpretation
of the input item is implementation-defined; however, for any input item other than a
value convened earlier during the same program execution, the behavior of the Ip
conversion is undefined.

No input is consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of characters read from the input stream so far by this
call to the f acanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the f scanf f1mction. .

, Matches a single %; no conversion or assignment occurs. The complete conversion +
specification shall be H.

30 If a conversion speci1ication is invalid, the behavior is 1mdefined. 110

The conversion specifiers B, G, and x are also valid and behave the same as, respectively. e, +
~~~ I 

If end-of-file is encountered during input, conversion is tenninated. If end-of-file occurs 
before any ~haracters matching the current directive have been- read (other than leading white 

35 space, where pennitted), execution of the current directive tenninates with an input failure; 
otherwise, unless execution of the cunent directive is tenninated with a matching failure. 
execution of the following directive (if any) is tenninated with an input failure. 

If conversion terminates on a conflicting input character, the offending input character is left 
unread in the input stream. Trailing white space (including new-line characters) is left unread 

40 unless mar.ched by a directive. The success of literal matches and suppressed assignments is not 
directly determinable other than via the In directive. 

109. No special provisions are made for multibyte characters. 
110. See 11future librmy directions .. (§4.13.6). 

§4.9.6.2 May 13, 1988 
DRAFT 

§4.9.6.2 



LIBRARY 134 INPUT/OUTPUT <stdio. h> 

Returns 

The fsc~ function returns the value of the macro 11:01' if an input failure occurs before 
any conversion. Otherwise, the fscanf function returns the number of input items assigned, 
which can be fewer than provided for, or even zero, in the event of an early matching failure. 

5 Examples 

The call: 

#inclw:!a <atdio.h> 
int n, i; f1oat z; cha: Damll[S0]; 
D • fs~(stcliD, "ldlfla", ,1, ,z, Dama); 

10 with the input line: 

25 54.32B-1 thcmpaon 

will assign to II the value 3, to i the value 25, to x the value S.432, and name will contain 
thompson \ 0. Or: 

linclw:!a <stdio.h> 
15 inti; f1oat z; cha: nama[SO]; 

fsc~(stdin, "12dlfl*d 1[01234S6789]", &i, &z, name); 

with input: 

S6789 0123 56a72 

will assign to i the value 56 and to x the value 789.0, will skip 0123, and name will contain 
20 56\0. The next character read from the input stream will be a. 

To accept repeatedly from stdin a quantity,. a unit of measure and an item name: 

lincluda <stdio.h> 
int count; f1oat quant; cha: units[21], item[21]; 
whi1a (!faof(stdin) && !fa::o:(stdin)) { 

25 count =- fscanf (stdin, "lf%20s of 120s 11
, 

) 

Gquant, units, item); 
fscan£(stdin,"l*[A\n]"); 

If the stdin stream contains the following lines: 

30 2 quarts of oi1 
-12.Sdaq:aas Calsius 
lots of luck 
10.0:t.BS of fartiliza: 
100ei:gs of ~•%9Y 

35 the execution of the above example will be equivalent to the following assignments: 

quant :a 2; st:cpy(wu.ts, "Ci",a:ts"); st:cpy(item, "oil."); 
count=- 3; 
quant = -12.8; st:cpy(units, "degrees"); 
count= 2; /* "C" fails to match "o" */ 

40 count = 0; /* "l" fail.s to match "If" */ 

§4.9.6.2 

quant = 10.0; st:cpy(units, "LBS"); st:cpy(item, "fertilize:"); 
count= 3; 
count= O; /* "100e" fails to match "If"*/ 
count= EOI'; 

May'13. 1988 
DRAFT 

§4.9.6.2 



~ 
4.9. Input/Output <stdio. h> 91 

supporting additional file types that do truncate when written to, even when they 
are opened with the same sort of f open. call. Magnetic tape files are an example of 
a file type that must be handled this way. ( On most tape hardware it is impossible 
to write to a tape without destroying immediately following data.) Hence tape files 
are not "binary files" within the meaning of the Standard. A conforming hosted 
implementation must provide ( and document) at least one file type ( on disk, most 
likely) that behaves exactly aa specified in the Standard. 

4.9.5.4. The 1reopen function 

4.9.5.5 The setbuf function 

setbu:f is subsumed by aetvbu1, but haa been retained for compatibility with old 
code. 

4.9.5.6 The aetvbuf fanction 

setvbu:t has been adopted from UNIX System V, both to control the nature of 
stream buffering and to specify the size of 1/0 buffers. An implementation is not 
required to make actual· use of a buffer provided for a stream, so a program must 
never expect the buffer's contents to reflect I/0 operations. Further, the Standard 
does not require that the requested buffering be implemented; it merely mandates a 
standard mechanism for requesting whatever bwfering senices might be provided. 

Although three types o( buffering are defined, an implementation may choose 
to make one or more of them equivalent. For example, a library may choose to 
implement line-bui'ering for binary files as equivalent to unbuffered 1/0 or may 
choose to always implement full-buifering as equivalent to line-buffering. 

The general principle is to provide portable code with a means of requesting the 
most appropriate popular buffering style, but not to require an implementation to 
support these styles. 

4.9.6 Formatted input/output functions 

4.9.6.1 The :fprint1 function 

Use of the L modifier with floating conversions has been added to deal with formatted 
output of the new type long double. 

Note that the U and Ix formats expect a corresponding int argument; llI or 
tlx mus, be aupplied with a long int argument. 

The conversion specification Ip has been added for pointer conversion, since 
the size of a pointer is not necessarily the same as the size of an int. Becat).Se 

an implementation may support more than one size of pointer, the corresponding 
argument is expected to be a ( void *) pointer. 

The 1n format has been added to permit ascertaining the number of characters 
converted up to that point in the current invocation of the formatter. 

X3Jll/88-091 



92 Section 4. LlBRARY 

Some pre-Standard implementations switch formats for ~ at an exponent of -3 
instead of (the Standard's) -4: existing code which requires the format switch at -3 
will have to be changed. 

Some existing implementations provide tJ> and ID aa synonyms or replacements 
for Ud. and llo. The Committee considered the latter notation preferable. 

The Committee has reserved lower cue conversion speciliers for future standard­
ization. 

The use of leading zero in field widths to specify zero padding has been super­
seded by a precision field. The older mechanism haa been retained. 

Some implementations have provided the format lr as a means of indirectly 
passing a variable-length argument list. The functions rlprintt, etc., are considered 
to be a more controlled method of effecting this indirection, so Ir was not adopted 
in the Standard. (See §4.9.6.7.) 

4.9.&.2 The fscw function 

The specilication of facan:f is based in part on these principles: 

• As soon as one specified conversion fails, the whole function invocation fails. 

• One-character pushback is sufficient for the implementation of f sew; 

• If a "flawed field" is detected, no value is stored for the corresponding argu­
ment. 

• The conversions performed by fscan1 are compatible with those performed 
by strtocl and strtol. 

Input pointer conversion with 1.p has been added, although it is obviously risky, 
for symmetry with tprilltt. The %1 format has been added to permit the scanner 
to determine the radix of the number in the input stream; the %11 format has been 
added to make available the number of characters scanned thus far in the current 
invocation of the scanner. 

White space is now defined by the isapace function. (See §4.3.1.9.) 
An implementation must not use the ungetc function to perform the necessary 

one-character pushback. In particular, since the unmatched text is left "unread," 
the file position indicator as reported by the ftell function must be the position 
of the character r~rnaioiog to be read. Furthermore, if the unread characters were 
themselves pushed back via ungetc calls, the pushback in t scam must not affect 
the push-back stack in 1D1getc. A scam call that matches N characters from a 
stream mun leave the stream in the same state as if N consecutive getc calls had 
been issued. 

1 

4.9.6.3 The prillt1 function 

See comments of section §4.9.6.1 above. 

• 



LIBRARY 145 GENERAL UTILITIES <stcllib . h> 

4.10 GENERAL UTD..,ITIES <stdlil>. h> 

The header <stcllib . h> declares four typeS and several functions of general utility, and 
defines several macros.113 

The typeS declared are siza_t and wchar_t (both described in §4.1.~), 

S div_t 

which is a structure type that is the type of the value returned by the cli v function, and 

ldiv_t 

which is a structure type that is the type of the value returned by the 1cli v function. 

The macros defined are HCI.L (described in §4.1.5); 

10 ZXXT_B'.UL'ORE 

and 

BXl:T_SUCCZSS 

which expand to integral expressions that may be used as the argument to the exit function to 
return unsuccessful or successful tennination status, respectively, to the host environment; 

15 RANJ)_MAX 

which expands to an integral constant expression, the value of which is the maximum value 
returned by the rand function; and 

MB_C'IJR_MAX 

which expands to a positive integer expression whose value is the maximum number of bytes in a 
20 multibyte character for the extended character set specified by the current locale (category 

LC_C'l'n'B), and whose value is never greater than MB_LEN_MAX. 

4.10.1 String conversion functions 

The functions atof, atoi, and ato1 need not affect the value of the integer expression 
errno on an error. If the value of the result cannot be represented, the behavior is undefined. 

25 4.10.1.1 The ato:f function 

Synopsis 

#inc1uda <atdlib.h> 
doub1a atof(conat char *nptr); 

Description 

30 The ato:f function convens the initial portion of the stting pointed to by nptr to doubl.e 
representation. Except for the behavior on error. it is equivalent to 

strtod (nptr, (char **) NOLL) 

Returns 

The atof fW1ction remms the convened value. 

35 Forward references: the strtod function (§4.10.1.4). 

113. See .. fumre library directions" (§4.13.7). 

§4.10 May 13. 1988 
DRAFT 

§4.10.1.1 



LIBRARY 146 GENERAL UTILITIES <.stdlib. h> 

4.10.1.2 The at.o~ function 

Synopsw 

#inclw:!a <stcll.il).h> 
int atoi(const char *nptr); 

S Dacription 

The atoi function convens the initial portion of the string pointed to by nptr to int 
representatim. Except fer the behavior on error, it is equivalent to 

(int)atrtol(nptr, (char **)NT.JU., 10) 

Returns 

10 The atoi function relUl'DS the converted value. 

Forward references: the strtol function (§4.10.1.S). 

4.10.1.3 The ato1 function 

Synopsi.1 

linc:luda <stdlib.h> 
15 long int atol(const char *nptr); 

Description 

The atol function converts the initial ponion of the string pointed to by nptr to long 
int represenwion. Except for the behavior on error. it is equivalent to 

strtol(nptr, (char **)NtJLL, 10) 

20 Returns 

The atol function returns the converted value. 

Forward references: the strtol function (§4.10.1.5). 

4.10.1.4 The st.rtod function 

Synopsw 

25 #iDc:l.uda <std.lib.h> 

,I 

double strtod(conat char *nptr, char **endptr); 

Description 

The strtod function converts the initial portion of the saing pointed to by nptr to 
dout,la represenmion. F"irst it decomposes the input string into three pans: an initial. possibly 

30 empty. sequence of white-space characters (as specified by the isspaca function). a subject 
sequence resembling a floating-point constant: and a final string of one or more unrecognized 
characters .. including the terminating null character of the input string. Then it attempts to 
convert the subject sequence to a Boating-point nwnber. and returns the result. 

The expected fonn of the subject sequence is an optional plus or minus sign, then a nonempty 
35 sequence of digi~ optionally containing a decimal-point character, then an optional exponent pan 

as defined in §3.1.3.1. but no floating suffix. The subject sequence is defined as the longest 
subsequence of the input string, starting with the first non-white-space character, that is an initial 
subsequence of a sequence of the expected fonn. The subject sequence contains no characters if 
the input stting is empty or consists entirely of white space, or if the first non-white-space 

40 character is other than a sign, a digit,. Of' a decimal-point character. 

If the subject sequence has the expected fonn. the sequence of characters starting with the 
first digit or the decimal-point character (whichever occurs first) is interpreted as a floating 
constant according to the rules of §3.1.3.1, except that the decimal-point character is used in 

§4.10.1.2 May 13. 1988 
DRAFT 

§4.10.1.4 



LIBRARY 147 GENERAL UTil..ITIES <stdlib. h> 

place of a peri~ and that if neither an exponent part nor a decimal-point character appears, a 
decimal point is assumed to follow the last digit in the string. If the subject sequence begins 
with a minus sign, the value resulting from the conversion is negated. A pointer to the final 
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer. 

5 In other than the "C" locale, additional implementation-defined subject sequence fonns may 
~~~ • 

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

10 Returns

The atrtod function _ returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value would cause overflow, plus or minus
llt1GZ VAL is returned (accotding to the sign of the value), and the value of the macro ER.ANGE
is stored in er2:110. If the correct value would cause underflow, zero is rewmed and the value of

15 the macro Z1\ANGB is stored in er:no.

4.10.1.5 The atxtol function

Synopsis

#include <stdlil:,.h>
long int st:tol(const char *nptr, char **endptr, int base);

20 Description

The strtol function converts the initial portion of the string pointed to by nptr to long
int representation. First it decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace function), a subject
sequence resembling an integer represented in some radix determined by the value of base, and

2S a final string of one or more unrecognized characters, including the tenninating null character of
the input string. 'Then it attempts to conven the subject sequence to an integer, and returns the
resulL

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in §3.1.3.2, optionally preceded by a plus or minus sign, but not including

30 an integer suffix. If the value of base is between 2 and 36, the expected fonn of the subject
sequence is a sequence of letters and digirs representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer suffix. The
letters from a (or A) through z (or Z) are ascribed the values 10 to 35; only letters whose
ascribed values are less than that of base are permitted. If the value of base is 16, the

35 characters Oz or ox may optionally precede the sequence of letters and digits, following the sign
if presenL

The subject sequence is defined as the longest subsequence of the input string, starting with
the first non-white-space character, that is an initial subsequence of a sequence of the expected
fonn. The subject sequence contains no characters if the input string is empty or consists entirely

40 of whita:. :»1J8CC, Cl" if the first non-white-space character is other than a sign or a permissible letter
or digiL

\

If the subject sequence w the expected fonn and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the rules of
§3.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and

45 36, it is used as the base for conversion, ascribing to each letter irs value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is negated. A
pointer to the final string is stored in the object pointed tQ by endptr, provided that endptr is
not a null pointer.

§4.10.1.4 May 13, 1988
DRAFT

§4.10.1.5

4.10. General UWities <stdlib.h>

4.10.1 String conversion functions

4.10.1.1 The ato1 function

97

ato1, atoi, and atol are 111baumed by strtod and strtol, but have been retained
because they are used extasively in existing code.

4.10 .. 1.2 The atoi function

See §4.10.1.1.

4.10.1.3 The atol • fomtion

See §4.10.1.1.

4.10.1.4 The strtod function

strtod and strtol have been adopted (from UNIX System V) because they off'er
more control over the CODVersion process, and because they are required not to
produce UDexpected resul&a on overflow during conversion.

The requirement that errno be set to EDOM when the argument string does not
begin with a valid number string allows easy checking for invalid input.

4.10.1.5 The atrtol function

See §4.10.1.4.

4.10.1.6 The strtoul fonction

strtoul was introduced by the Committee to provide a facility like strtol for
UJlSigned long values. Simply using strtol in such cases could result in overflow
upon conversion.

4.10.2 Pseudo-random sequence generation functions

4.10.2.1 The rand fanciion

The Committee decided that an implementation should be allowed to provide a rand
function which generates die best random sequence possible in that implementation,
and therefore mandated no standard algorithm. It recognized the value, however,
of being able to generate die same pseudo-random sequence in different implemen­
tations, and so it has published as an example in the Standard an algorithm that
generates the same pseudo-random sequence in any conforming implementation,
given the same seed.

X3Jll/88-091

