ENVIRONMENT 13 ENVIRONMENTAL CONSIDERATIONS

* 15 nesting levels of compound statements, iteration control structures, and selection control
structures

* 8 nesting levels of conditional inclusion

* 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic, a
5 structure, a union, or an incomplete type in a declaration

o 31 declarators nested by parentheses within a full declarator
» 32 expressions nested by parentheses within a full expression
« 31 significant initial characters in an internal identifier or a macro name
* 6 significant initial characters in an external identifier
10 < 511 extemnal identifiers in one translation unit
» 127 identifiers with block scope declared in one block
+ 1024 macro identifiers simultaneously defined in one translation unit
* 31 parameters in one function definition
¢ 31 arguments in one function cail
15 « 31 parameters in one macro definition
* 31 arguments in one macro invocation
* 509 characters in a logical source line
* 509 characters in a character string literal or wide string literal (after concatenation)
* 32767 bytes in an object (in a hosted environment only)
20 « 8 nesting levels for #includaed files

* 257 case labels for a switch statement (excluding those for any nested switch
statements)

127 members in a single structure or union
¢ 127 enumeration constants in a single enumeration
25 15 levels of nested structure or union definitions in a single struct-declaration-list
2.2.42 Numerical limits

A conforming implementation shall document all the limits specified in this section, which
shail be specified in the headers <1imits.h> and <£loat.h>.

Sizes of integral types <limits.h>

30 The values given below shall be replaced by constant expressions suitable for use in #if
preprocessing directives. Their implementation-defined values shall be equal or greater in
magnitude. (absolute value) to those shown, with the same sign.

* maximum number of bits for smallest object that is not a bit-field (byte)

CHAR BIT 8
35 e« minimum value for an object of type signed char
SCHAR_MIN -127
* maximum value for an object of type signed chazr
SCHAR_MAX +127 .
* maximum value for an object of type unsigned char
40 UCHAR_MAX 255
§2.24.1 May 13, 1988 §2.2.4.2

DRAFT

ENVIRONMENT 14 ENVIRONMENTAL CONSIDERATIONS

¢ minimum value for an object of type chaz
CHAR MIN see below

+ maximum value for an object of type chaz
CHAR MAX see below

5 e+ maximum number of bytes i in a multibyte characwr for any supported locale
MB_LEN MAX

* minimum value for an object of type short int
SHRT MIN -32767

« maximum value for an object of type shozrt int
10 SHRT_MAX +32767

e maximum value for an object of type unsigned short int
USHRT_MAX 65535

* minimum value for an object of type int
INT_MIN -32767

15 e« maximum value for an object of type int
INT_MAX +32767

* maximum value for an object of type unsigned int
UINT_MAX 65535

« minimum value for an object of type long int
20 LONG MIN -2147483647

» maximum value for an object of type long int
LONG_MAX +2147483647

* maximum value for an cbject of type unsigned long int
ULONG_MAX 4294967295 I

25 If the value of an object of type char sign-extends when used in an expression, the value of
CHAR_MIN shall be the same as that of SCEAR_MIN and the value of CHAR MAX shall be the
same as that of SCHAR MAX. If the value of an object of type char does not sign-extend when
usedmanexpmsxon,thevalueofcnaa MIN shall be 0 and the value of CHAR MAX shall be
the same as that of UCHAR_MAX.’ |

30 Characteristics of floating types <€loat.h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide informaton about an
implementation’s floating-point arithmetic, The following parameters are used to define the

model for each floating-point type:

35 s sign (1)

b base or radix of exponent representation (an integer > 1)

e exponent (an integer between a minimum e ;, and a maximum e p,,)

p precision (the number of base-b digits in the mantissa)

fi nonnegative integers less than b (the mantissa digits)
40 A normalized floating-point number x (f; > 0 if x # 0) is defined by the following model:® |
7. See §3.1.2.5.

8. This model precludes floating-point representations other than sign-magnitude.

§224.2 May 13, 1988 §2.24.2
DRAFT

ENVIRONMENT 15 ENVIRONMENTAL CONSIDERATIONS

P
x=sxb*xY fixb™*, emnSeSen
k=]

Of the values in the <€loat .h> header, FLT_RADIX shall be a constant expression suitable

for use in #i#£ preprocessing directives; all other values need not be constant expressions. All
except FLT _RADIX and FLT_ROUNDS have separate names for all three floating-point types.
The floating-point model representation is provided for all values except FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the value of FLT_ROUNDS:
-1 indeterminable ‘

0 toward zero
1 0 nearest
10 2 toward positive infinity
3 toward negative infinity
All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.
The values given in the following list shall be replaced by implementation-defined expressions
that shall be equal or greater in magnitude (absolute value) to those shown, with the same sign.
15 radix of exponent representation, b
FLT_RADIX 2
* number of base-FLT_RADIX digits in the floating-point mantissa, p
FLT_MANT DIG
DBL_MANT DIG
20 LDBL_MANT DIG
. .) 1 if b is a power of 10
* number of decimal digits of precision, L@ - 1) x logeb _| + 10 otherwise
FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10
25 + minimum negative integer such that FLT_RADIX raised to that power minus 1 is a
normalized floating-point number, e,
FLT_MIN EXP
DBL_MIN_ EXP
LDBL_MIN_EXP
30 « minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers, ’-logm poaa-l ']
FLT MIN 10_EXP -37
DBL_MIN 10_EXP -37
LDBL MIN 10_EXP -37
35 e+ maximum integer such that PLT_RADIX raised to that power minus 1 is a representable finite
floating-point number, € 5.,
FLT_MAX EXP)
DBL_MAX EXP
LDBL MAX EXP
40 - maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, t Iogio((1 = 577) % b“‘")J
§2.24.2 May 13, 1988 ' §2.24.2

DRAFT

ENVIRONMENT v 16 ENVIRONMENTAL CONSIDERATIONS

FLT_MAX_10_EX® +37
DBL_MAX_10_EXP +37
LDBL_MAX_ 10_EXP +37

The values given in the following list shall be replaced by unplememauon-deﬁned expressions
5 with values that shall be equal to or greater than those shown.

* maximum representable finite floating-point number, (1 - 57) x o™

FLT_MAX 1E+37
DBL_MAX 1B+37
LDBL_MAX 18+37

10 The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or smaller than those shown.

* minimum positive floating-point number x such that 1.0 + x # 1.0, 5!~

FLT_EPSILON 1B-5
DBL,_EPSILON 1E-9

15 LDBL_EPSILON 1E-9

« minimum normalized positive floating-point number, b ‘="

FLT_MIN 12-37
DBL,_MIN , 12-37
LDBIL_MIN 12-37

20 Examples

The following describes an artificial floating-point representation that meets the minimum
requirements of the Standard, and the appropriate values in a <£loat.h> header for type
£loat:

6
x=s5x16°x Y fix16*%, -315e<+32
k=l

25 FLT_RADIX 16
FLT_MANT DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DIG 6
FLT_MIN_EXP -31

30 FLT_MIN 2.93873588E-39F
FLT_MIN_10_] -38
FLT_MAX_EXP +32
FLT_MAX . 3.40282347E+38F
FLT_MAX_10_EXP +38

35 The following describes floating-point representations that also meet the requirements for

single-precision and double-precision normalized numbers in the /EEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985), and the appropriate values in a
<£loat .h> header for types £loat and double:

9. The floating-point model in that standard sums powers of & from zero, so the values of the exponent limits are
one less than shown here.

§2.242 May 13, 1988 §2.2.4.2
NRAFT

ENVIRONMENT 17 ENVIRONMENTAL CONSIDERATIONS

24
xy=sx2x Y fix2*, -1255es+128
k=l

53
x=sxX2°x Y fi x2*, -1021 Se S$+1024
kwl

FLT_RADIX 2
FLT_MANT DIG 24
5 FLT _EPSILON 1.19209290E-07F
FLT_DIG 6
FLT_MIN | -125
FLT_MIN 1.1754943SE-38F
FLT_MIN_10_EXP -37
10 FLT_MAX | +128
FLT_MAX 3.40282347E+38F
FLT_MAX 10_EXP +38
DBL_MANT_DIG 53
DBL_EPSILON 2.2204460492503131E~16
15 DBL_DIG 1s
DBL_MIN_] -1021
DBL_ MIN 2.2250738585072016E-308
DBL_MIN_10_EXP -307
DBI,_MAX] : +1024
20 DBL MAX 1.7976931348623157E+308
DBL_MAX_10_EXP +308

The values shown above for FLT_EPSILON and DBL_EPSILON are appropriate for the
ANSI/IEEE Std 754-1985 default rounding mode (to nearest). Their values may differ for other
rounding modes.

25 Forward references: conditional inclusion (§3.8.1).

~

§2.24.2 May 13, 1988 §2.24.2
NDRAFT

2.2. Environmental considerations Y

function, even if that function is called within the signal handler.
No such guarantees can be extended to library functions, with the explicit ex-

ceptions of longjmp (§4.6.2.1) and signal (§4.7.1.1), since the library functions

may be arbitrarily interrelated and since some of them have profound effect on the
environment.

Calls to longjmp are problematic, despite the assurances of §4.6.2.1. The signal
could have occurred during the execution of some library function which was in the
process of updating external state and/or static variables.

A second signal for the same handler could occur before the first is processed,
and the Standard makes no guarantees as to what happens to the second signal.

2.2.4 Environmental limits

The Committee agreed that the Standard must say something about certain capa-

cities and limitations, but just how to enforce these treaty points was the topic of
considerable debate. .

2.2.4.1 Translation limits

The Standard requires that an implementation be able to translate and compile
some program that meets each of the stated limits. This criterion was felt to give
a useful latitude to the implementor in meeting these limits. While a deficient
implementation could probably contrive a program that meets this requirement, yet
still succeed in being useless, the Committee felt that such ingenuity would probably
require more work than making something useful. The sense of the Committee is
that implementors should not construe the translation limits as the values of hard-
wired parameters, but rather as a set of criteria by which an implementation will
be judged.

Some of the limits chosen represent interesting compromises. The goal was to
allow reasonably large portable programs to be written, without placing excessive
burdens on reasonably small implementations.

The minimum maximum limit of 257 cases in a switch statement allows coding

of lexical routines which can branch on any character (one of at least 256 values) or
on the value EOF.

2.2.4.2 Numerical limits
In addition to the discussion below, see §4.1.4.

Sizes of integral types <limits.h> Such a large body of C code has been
developed for 8-bit byte machines that the integer sizes in such environments must
be considered normative. The prescribed limits are minima: an implementation
on a machine with 9-bit bytes can be conforming, as can an implementation that
defines int to be the same width as long. The negative limits have been chosen to
accommodate ones-complement or sign-magnitude implementations, as well as the

X3J11/88-091

18 Section 2., ENVIRONMENT

more usual twos-complement. The limits for the maxima and minima of unsigned
types are specified as unsigned constants (e.g., 86636u) to avoid surprising widenings
of expressions involving these extrema.

The macro CHAR_BIT makes available the number of bits in a char object. The
Committee saw little utility in adding such macros for other data types.

Characteristics of floating types <tloat.h> The characterization of floating
point follows, with minor changes, that of the FORTRAN standardization commit-
tee (X3J3).! The Committee chose to follow the FORTRAN model in some part
out of a concern for FORTRAN-to-C translation, and in large part out of deference
to the FORTRAN committee’s greater experience with fine points of floating point
usage.

Singie precision (32-bit) floating point is considered adequate to support a con-
forming C impiementation. Thus the minimum maxima constraining floating types
are extremely permissive. :

The Committee has also endeavored to accommodate the IEEE 754 floating

point standard by not adopting any constraints on floating point which are contrary
to this standard.

'See X3J3 working document S8-101.

LANGUAGE 64 DECLARATIONS

10

15

20

25

30

35

by parentheses.
Implementation limits -

The implementation shall allow the specification of types that have at least 12 pointer, array,
and function declarators (in any valid combinations) medifying an arithmetic, a structure, a union,
or an incomplete type, either directly or via one or more typedef£s.

Forward references: type definitions (§3.5.6).
3.5.4.1 Pointer declarators
Semantics
If, in the declaration T D1,” D1 has the form
* type-qualifier-list , D
and the type specified for ident in the declaration ‘T D’’ is ‘‘derived-declarator-type-list T,”

then the type specified for ident is *‘derived-declarator-type-list type-qualifier-list pointer to T.”’
For each type qualifier in the list, ident is a so-qualified pointer.

For two pointer types to be compatible, both shall be identically qualified and both shall be
pointers to compatible types.

Examples

The following pair of declarations demonstrates the difference between a *‘variable pointer to
a constant value’* and a *‘constant pointer to a variable value.’’

const int *ptr_to_constant;
int *const constant_ptr:

The contents of the const int pointed to by ptxr_to_constant shall not be modified, but
ptr_to_constant itself may be changed to point to another const int. Similarly, the
contents of the int pointed to by constant_ptr may be modified, but constant_ptz
itself shall aiways point to the same location.

The declaration of the constant pointer constant_ptr may be clarified by including a
definition for the type ‘‘pointer to int.”

typedef int *int ptr;
const int_ptr coanstant _ptr:

declares constant_ptr as an object that has type ‘‘const-qualified pointer to iat."”
3.5.42 Array declarators '
Constraints

The expression that specifies the size of an array shall be an integral constant expression that
has a value greater than zero.

Semantics
If, in the declaration *‘T D1,” D1 has the form
D [conszam-expressianop ‘]
and the type specified for ident in the declaraton ‘‘T D'’ is ‘‘derived-declarator-type-list T,
then the type specified for ident is ‘‘derived-deciarator-type-list array of T.”® If the size is not

60. When several **array of”’ specifications are adjacent, a multi-dimensional array is declared.

§3.54 May 13, 1988 §3.54.2

NPRAFT

54 Section 3. LANGUAGE

In these declarations the const property is associated with the declarator stype, so
x and y are both consat objects.

The Committee considered making const and volatile storage classes, but this
would have ruled out any number of desirable constructs, such as const members
of structures and variable pointers to const types.

A cast of a value to a qualified type has no effect; the qualification (volatile,
say) can have no effect on the access since it has occurred prior to the cast. If it is
necessary to access a non-volatile object using volatile semantics, the technique is

to cast the address of the object to the appropriate pointer-to-qualified type, then
dereference that pointer.

3.5.4 Declarators

The function prototype syntax was adapted from C++. (See §3.3.2.2 and §3.5.4.3)

Some current implementations have a limit of six type modifiers (function re-
turning, array of, pointer to), the limit used in Ritchie’s original compiler. This
limit has been raised to twelve since the original limit has proven insufficient in
some cases; in particular, it did not allow for FORTRAN-to-C translation, since

FORTRAN allows for seven subscripts. (Some users have reported using nine or ten
levels, particularly in machine-generated C code.)

3.5.4.1 Pointer declarators

A pointer declarator may have its own type qualifiers, to specify the attributes of the
pointer itself, as opposed to those of the reference type. The construct is adapted
from C++.

const int * means (variable) pointer to constant int, and int * const means
constant pointer to (variable) int, just as in C++, from which these constructs
were adopted. (And mutatis mutandis for the other type qualifiers.) As with other

aspects of C type declarators, judicious use of typedef statements can clarify the
code.

3.5.4.2 Array declarators

The concept of composite types (§3.1.2.6) was introduced to provide for the accretion
of information from incomplete declarations, such as array declarations with miss-
ing size, and function declarations with missing prototype (argument declarations).
Type declarators are therefore said to specify compatible types if they agree except
for the fact that one provides less information of this sort than the other.

The declaration of O-length arrays is invalid, under the general principle of not
providing for O-length objects. The only common use of this construct has been in
the declaration of dynamically allocated variable-size arrays, such as

struct segment {

3.5. Declarations

short int count;
char c[N];
};

struct segment * new_segment(const int length):
{

struct segment * result;

result = malloc(sizeof segment + (length-N));
result->count = length;

return result;

}

In such usage, N would be 0 and (length-N) would be written as length. But this
paradigm works just as well, as written, if N is 1. r(Noi;e, by the by, an alternate
way of specifying the size of result:

result = malloc(offsetof(struct segment,c) + length);

This illustrates one of the uses of the offsetot macro.),

3.5.4.3 Function declarators (including prototypes)

The function prototype mechanism is one of the most useful additions to the C lan-
guage. The feature, of course, has precedent in many of the Algol-derived languages
of the past 25 years. The particular form adopted in the Standard is based in large
part upon C++.

Function prototypes provide a powerful transiation-time error detection capa-
bility. In traditional C practice without prototypes, it is extremely difficult for the
translator to detect errors (wrong number or type of arguments) in calls to func-
tions declared in another source file. Detection of such errors has either occurred at
runtime, or through the use of auxiliary software tools.

In function calls not in scope of a function prototype, integral arguments have the
integral widening conversions applied and £1oat arguments are widened to double.
It is thus impossible in such a call to pass an unconverted char or float argument.
Function prototypes give the programmer explicit control over the function argu-
ment type conversions, so that the often inappropriate and sometimes inefficient
default widening rules for arguments can be suppressed by the implementation.
Modifications of function interfaces are easier in cases where the actual arguments
are still assignment compatible with the new formal parameter type — only the
function definition and its prototype need to be rewritten in this case; no function
calls need be rewritten.

Allowing an optional identifier to appear in a function prototype serves two
purposes:

¢ the programmer can associate a meaningful name with each argument position
for documentation purposes, and

X3J11/88-091

A+

56 Section 3. LANGUAGE

e a function declarator and a function prototype can use the same syntax. The
consistent syntax makes it easier for new users of C to learn the language. Au-

tomatic generation of function prototype declarators from function definitions
is also facilitated.

Optimizers can also take advantage of function prototype information. Consider
this example:

extern int compare(const char * stringi,
const char * string2) ;

void func2(int x)

{
char * strl, * str2 ;
/% ... =/
x = compare(strl, str2) ;
/= ... %/
}

The optimizer knows that the pointers passed to compare are not used to assign new
values to any objects that the pointers reference. Hence the optimizer can make less
conservative assumptions about the side effects of compare than would otherwise be
necessary.

The Standard requires that calls to functions taking a variable number of argu-
ments must occur in the presence of a prototype (using the trailing ellipsis notation
,--.). An implementation may thus assume that all other functions are called with
a fixed argument list, and may therefore use possibly more efficient calling sequences.

3.5.5 Type names

Empty parentheses within a type name are always taken as meaning function with

unspecified arguments and never as (unnecessary) parentheses around the elided
identifier. This specification avoids an ambiguity by fiat.

3.5.86 Type definitions

A typedef may only be redeclared in an inner block with a declaration that explicitly
contains a type name. This rule avoids the ambiguity about whether to take the
typedet as the type name or the candidate for redeclaration.

Some implementations of C have allowed type specifiers to be added to a type
defined using typedetf. Thus

typedef short int small ;
unsigned small x ;

would give x the type unsigned short int. The Committee decided that since
this interpretation may be difficult to provide in many implementations, and since

LIBRARY 95 INTRODUCTION

10

15

20

30

35

Forward references: diagnostics (§4.2).
4.1.3 Errors <errno.h>

The header <errno.h> defines several macros, all relating to the reporting of error
conditions.

The macros are

EDOM
ERANGE

which expand to distinct nonzero integral constant expressions; and
aerrno

which expands to a modifiable Ivalue®? that has type int, the value of which is set to a positive
error number by several librdry functions. It is unspecified whether errno is a macro or an
identifier declared with extemnal linkage. If a macro definition is suppressed in order to access an
actual object, or a program defines an external identifier with the name erzmno, the behavior is
undefined.

The value of erzno is zero at program startup, but is never set to zero by any library
function.¥ The value of exzno may be set to nonzero by a library function call whether or not
there is an error, provided the use of errno is not documented in the description of the function
in the Standard.

Additional macro definitions, beginning with E and a digit or E and an upper-case letter,’
may also be specified by the implementation.

4.14 Limits <float.h>and <limits.h>

The headers <€loat.h> and <limits.h> define several macros that expand to various
limits and parameters.

The macros, their meanings, and their minimum magnitudes are listed in §2.2.4.2,
4.1.5 Common definitions <stddef.h>

The following types and macros are defined in the standard header <stdde£.h>. Some are
also defined in other headers, as noted in their respective sections.

The types are
ptzdiff t
which is the signed integral type of the result of subtracting two pointers;
' size_t
which is the unsigned integral type of the result of the sizeof operator; and
wchar t

which is an integral type whose range of values can represent distinct codes for all members of
the largest extended character set specified among the supported locales; the .null character shall
have the code value zero and each member of the basic character set defined in §2.2.1 shall have

83. The macro exrzno need not be the identifier of an object. It might be a modifiable lvalue resulting from a
function call (for example, *exxzno ()).

84. Thus, a program that uses axrzmno for error checking should set it to zero before a library function call, then
inspect it before a subsequent library function call.
85. See **future library directions™ (§4.13.1).

§4.1.2 May 13, 1988 §4.1.5

DRAFT

LIBRARY | .96 INTRODUCTION

10

15

20

25

30

a code value equal to its value when used as the lone character in an integer character constant.
The macros are
NULL
which expands to an implementation-defined null pointer constant; and
offsatof (fype, member-designator)

which expands to an integral constant expression that has type siza_t, the value of which is the
offset in bytes, to the structure member (designated by member-designator), from the beginning
of its structure (designated by fype). The member-designator shall be such that given '

statie fHpe t;

then the expression & (t . member-designator) evaluates to an address constant. (If the specified
member is a bit-field, the behavior is undefined.)

Forward references: localization (§4.4).
4.1.6 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow. If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program, or a
null pointer), the behavior is undefined. Any function declared in a header may be implemented
as a macro defined in the header, so a library function should not be declared explicidy if its
header is included. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason, it
is permitted to take the address of a library function even if it is also defined as a macro.?® The
use of #undaef to remove any macro definition will also ensure that an actual function is referred
to. Any invocation of a library function that is implemented as a macro will expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary, so
it is generally safe to use arbitrary expressions as arguments. Likewise, those function-like
macros described in the following sections may be invoked in an expression anywhere a function
with a compatible return type could be called.®’

Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function, either explicitly or implicitly, and use it
without including its associated header. If a function that accepts a variable number of arguments
is not declared (explicitly or by including its associated header), the behavior is undefined.

86. This means that an implementation must provide an actual function for each library function, even if it also
provides a macro for that function.

87. Because external identifiers and some macro names beginning with an underscore are reserved, implementations

may provide special semantics for such names. For example, the identifier _BUILTIN_abs could be used to
indicate generation of in-line code for the abs function. Thus, the appropriate header couid specify

#define abs(x) _BUILTIN_ abs(x)

for a compiler whose code generator will accept it.

In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine
function may write

‘fundef aba

whether the implementation's header provides a macro implementation of abs or a builtin implementation.
The prototype for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

§4.1.5 May 13, 1988 §4.1.6

|
+

LIBRARY 97 INTRODUCTION

Examples
The function atoi may be used in any of several ways:
* by use of its associated header (possibly generating a macro expansion)

#includa <stdlib.h>
5 const char *stz;

I*...%/

i = atol(strx);

* by use of its associated header (assuredly generating a true function reference)

#includa <stdlib.h>
10 fhundef atoi
const char *str; . +
I*...*/
i = atoi(str):

15 #includa <stdlib.h>
const char *str; +
— /*...*/
i = (atoi) (str):;

* by explicit declaration

20 extarn int atoi (const char *); |
const char *stx; |
/*...*/
i = atoi(str):

* by implicit declaration
25 const char *str; +

/*...*/
i = atoi(str):

§4.1.6 May 13, 1988 §4.1.6
DRAFT

4.1. Introduction n

The header is usable in an implementation of the Standard in the absence of a
definition of _EXTENSIONS _, and the non-Standard implementation can provide
the appropriate definitions to enable the extra declarations.

4.1.3 ZErrors
<errno.h>

.<errno.h> is a header invented to encapsulate the error handling mechanism used
by many of the library routines.! -

The error reporting machinery centered about the setting of errno is generally
regarded with tolerance at best. It requires a “pathological coupling” between li-
brary functions and makes use of a static writable memory cell, which interferes
with the construction of shareable libraries. Nevertheless, the Committee preferred
to standardize this existing, however deficient, machinery rather than invent some-
thing more ambitious.

The definition of errno as an lvalue macro grants implementors the license to

. expand it to something like *_errno_addr(), where the function returns a pointer
to the (current) modifiable copy of errno.

4.1.4 Limits
<float.h> and <limits.h>

Both <float.h> and <limits.h> are inventions. Included in these headers are
various parameters of the execution environment which are potentially useful at
compile time, and which are difficult or impossible to determine by other means.
The availability of this information in headers provides a portable way of tun-
ing a program to different environments. Another possible method of determining
some of this information is to evaluate arithmetic expressions in the preprocessing
statements. Requiring that preprocessing always yield the same results as run-time
arithmetic, however, would cause problems for portabie compilers (themselves writ-
ten in C) or for cross compilers, which would then be required to implement the

(possibly wildly different) arithrnetic of the target machine on the host machine.
(See §3.4.)

<float.h> makes available to programmers a set of useful quantities for numerical
analysis. (See §2.2.4.2.) This set of quantities has seen widespread use for such anal-
ysis, in C and in other languages, and was recommended by the numerical analysts
on the Committee. The set was chosen 80 as not to prejudice an implementation’s
selection of floating-point representation.

Most of the limits in <float.h> are specified to be general double expressions
rather than restricted constant expressions

!In earlier drafts of the Standard, errno and reiated macros were-defined in <stddef .bh>. When
the Committee decided that the other definitions in this header were of such general utility that
they should be required even in freestanding enviroments, it created <errmo.b>.

X3J11/88-091

A+

72 Section 4. LIBRARY

e to allow use of values which cannot readily (or, in some cases, cannot possibly)
be constructed as manifest constants, and

e to allow for run-time selection of floating-point properties, as is possible, for
instance, in IEEE-854 implementations. -
4.1.5 Common definitions
<stddef .h>

<gtddef.h> is a header invented to provide definitions of several types and macros
used widely in conjunction with the library: ptrdiff_t (see §3.3.68), size_t (see
§3.3.3.4), wchar._t (see §3.1.3.4), and NULL. Including any header that references one

of these macros will also define it, an exception to the usual library rule that each
macro or function belongs to exactly one header.

NULL can be defined as any null pointer constant. Thus existing code can retain
definitions of NULL as O or OL, but an implementation may choose to define it as
(void »)O; this latter form of definition is convenient on architectures where the
pointer size(s) do(es) not equal the size of any integer type. It has never been wise
to use NULL in place of an arbitrary pointer as a function argument, however, since
pointers to different types need not be the same size. The library avoids this problem

by providing special macros for the arguments to signal, the one library function
that might see a null function pointer.

The offsetof macro has been added to provide a portable means of determining
the offset, in bytes, of a member within its structure. [This capability is useful in
programs, such as are typical in data-base implementations, which declare a large
number of different data structures: it is desirable to provide “generic” routines that

work from descriptions of the structures, rather than from the structure declarations
themselves.?

In many implementations, offsetof could be defined as one of
(size_t)&(((s_nanes*)0)->n_name)
or
(size_t) (char *)&(((s_names*)0)->n_name)
or, where X is some predeclared address (or 0) and A(Z) is defined as ((char*)&Z),

(size_t)(A((s_name*)X->m_name) - A(X))

*Consider, for instancs, a set of nodes (structures) which are to be dynamically allocated and
garbage-collected, and which can contain pointers to other such nodes. A possible implementation
is to have the firat field in each node point to a descriptor for that node. The descriptor includes a
table of the offsets of fields which are pointers to other nodes. A garbage-collector “mark® routine
needs no farther information about the content of the node (except, of course, where to put the

mark). New node types can be added to the program without requiring the mark routine to be
rewritten or even recompiled.

4.2. Diagnostics <assert.h> 73

It was not feasible, however, to mandate any single one of these forms as a construct
guaranteed to be portable.

Other implementations may choose to expand this macro as a call to a built-in
function that interrogates the translator’s symbol table.

4.1.6 Use of library functions

To make usage more uniform for both implementor and programmer, the Standard
requires that every library function (unless specifically noted otherwise) must be
represented as an actual function, in case a program wishes to pass its address as
a parameter to another function. On the other hand, every library function is now
a candidate for redefinition, in its associated header, as a macro, provided that the
macro performs a “safe” evaluation of its arguments, i.e., it evaluates each of the
arguments exactly once and parenthesizes them thoroughly, and provided that its
top-level operator is such that the execution of the macro is not interleaved with
other expressions. | | Two exceptions are the macros getc and putc, which may
evaluate their arguments in an unsafe manner. (See §4.9.7.5.)

If a program requires that a library facility be implemented as an actual function,
not as a macro, then the macro name, if any, may be erased by using the #unde?
preprocessing directive (see §3.8.3).

All library prototypes are specified in terms of the “widened” types: an argu-
ment formerly declared as char is now written as int. This ensures that most
library functions can be called with or without a prototype in scope (see §3.3.2.2),
thus maintaining backwards compatibility with existing, pre-Standard, code. Note,
however, that since functions like printf and scanf use variable-length argument
lists, they must be called in the scope of a prototype.

The Standard contains an example showing how certain library functions may
be “built in” in an implementation that remains conformsng.

4.2 Diagnostics
<assert.h>

4.2.1 Program diagnostics

4.2.1.1 The assert macro

Some implementations tolerate an arbitrary scalar expression as the argument to
assert, but the Committee decided to require correct operation only for int ex-
pressions. For the sake of implementors, no hard and fast format for the output
of a failing assertion is required; but the Standard mandates enough machinery to
replicate the form shown in the footnote.

It can be difficult or impossible to make assert a true function, so it is restricted
to macro form only.

X3J11/88-091

LIBRARY 108 MATHEMATICS <math.h>

10

15

20

30

35

4.5 MATHEMATICS <math.h>

The header <math .h> declares several mathematical functions and defines one macro. The
functions take double-precision arguments and return double-precision values.”® Integer
arithmetic functions and conversion functions are discussed later.

The macro defined is
HUGE_VAL
which expands to a positive double expression, not necessarily representable as a £loat.

Forward references: integer arithmetic functions (§4.10.6), the atof function (§4.10.1.1), the
strtod function (§4.10.1.4).

4.5.1 Treatment of error conditions

The behavior of each of these functions is defined for all representable values of its input
arguments. Each function shall execute as if it were a single operation, without generating any
externally visible exceptions.

For all functions, a domain error occurs if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any required
domain errors; an implementation may define additional domain errors, provided that such errors
are consistent with the mathematical definition of the function.’® On a domain error, the function
returns an implementation-defined value; the value of the macro EDOM is stored in ezzno.

Similarly, a range error occurs if the result of the function cannot be represented as a
double value. If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the macro
HUGE_VAL, with the same sign as the cormrect value of the function; the value of the macro
ERANGE is stored in arzrno. If the result underflows (the magnitude of the result is so small
that it cannot be represented in an object of the specified type), the function returns zero; whether
the integer expression exzrnmo acquires the value of the macro ERANGE is implementation-
defined,

4.5.2 Trigonometric functions
4.5.2.1 The acos function
Synopsis

#includa <math.h>
double acos(double x):

Description

The acos function computes the principal value of the arc cosine of x. A domain error
occurs for arguments not in the range (-1, +1].

Returns

The acos function returns the arc cosine in the range [0,] radians.

93. See *‘furure library directions’* (§:$.l3.4).

94.In an implementation that supports infinities, this allows infinity as an argument to be a domain error if the
mathematical domain of the function does not include infinity.

§4.5

May 13, 1988 §4.5.2.1

nNraAaoT

LIBRARY 109 MATHEMATICS <math.h>

4.5.2.2 The asin function
Synopsis

#includa <math.h>
doublae asin(double x);

Description

The asin function computes the principal value of the arc sine of x. A domain error occurs
for arguments not in the range [~1, +1].
Returns

The asin function returns the arc sine in the range [-n/2, +m/2] radians.

10 4.523 The atan function
Synopsis
#includa <math.h>
double atan (double x);
Description
15 The atan function computes the principal value of the arc tangent of x.
Returns
The atan function returns the arc tangent in the range [-n/2, +n/2] radians.
45.2.4 The atan2 function
Synopsis
20 #include <math.h>
double atan2 (double y, doubla x):
Description
The atan2 function computes the principal value of the arc tangent of y/x, using the signs
of both arguments to determine the quadrant of the retun value. A domain error occurs if both
25 arguments are zero and y/x cannot be represented.
Returns
The atan2 function returns the arc tangent of y/x, in the range [, +r] radians.
4525 The cos function
Synopsis
30 #include <math.h>
double cos (double x);
Description
The cos function computes the cosine of x (measured * radians). A large magnitude
argument may yield a result with little or no significance.
35 Returns
The cos function returns the cosine value.
§4.52.2 May 13, 1988 §4.5.2.5

DRAFT

LIBRARY 110 MATHEMATICS <math.h>

4.5.2.6 The sin function
Synopsis

#include <math.h>
double sin(double x):;

Description

The sin function computes the sine of x (measured in radians). A large magnitude argument
may yield a result with little or no significance.
Returns

The sin function retums the sine value.

10 4.52.7 The tan function
Synopsis
#include <math.h>
doublae tan (doubla x);
Description
15 The tan function returns the tangent of x (measured in radians). A large magnitude
argument may yield a result with lizle or no significance.
Returns
The tan function returns-the tangent value.
4.5.3 Hyperbolic functions
20 4.5.3.1 The cosh function
Synopsis .
#include <math.h>
double cosh(double x);
Description
25 The cosh function computes the hyperbolic cosine of x. A range error occurs if the
magnitude of x is too large.
Returns
The cosh function returns the hyperbolic cosine value.
4532 The sinh function
30 Symnopsis
#include <math.h>
double sinh (double x);
Description
The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude
35 of xis too large.
Returns
The sinh function returns the hyperbolic sine value.
§4.5.26 May 13, 1988 §4.5.3.2

DRAFT

LIBRARY 111 MATHEMATICS <math.h>

10

15

20

25

30

4.5.33 The tanh function
Synopsis

#include <math.h>
double tanh(double x);

Description

The tanh function computes the hyperbolic tangent of =.
Returns

The tanh function returns the hyperbolic tangent value.
4.5.4 Exponential and logarithmic functions
4.5.4.1 The exp function
Synopsis

#include <math.h>
double exp (double x):

Description
The exp function computes the exponential function of x. A range error occurs if the
magnitude of x is too large.
Returns
The exp function returns the exponential value.
4.5.42 The £frexp function
Synopsis

#include <math.h>
double frexp (doubla value, int *exp):

Description

The £zxexp function breaks a floating-point number into a normalized fraction and an integral
power of 2. It stores the integer in the int object pointed to by exp.
Returns

The £rexp function retuns the value x, such that x is a double with magnitude in the
interval [1/2, 1) or zero, and value equals x times 2 raised to the power *exp. If value is
zero, both parts of the resuit are zero.

4.5.43 The ldexp function
Synopsis

#include <math.h>
double ldexp(double x, int exp);

Description
35 The ldexp function muitiplies a floating-point number by an integral power of 2. A range
error may occur.
Returns
The ldexp function returns the value of x times 2 raised to the power exp.
§4.5.3.3 May 13, 1988 §4.54.3

DRAFT

LIBRARY 112 MATHEMATICS <math.h>

4.5.4.4 The log function
Synopsis)

#includa <math.h>
double log(doublae x):;

5 Description
The log function computes the natural logarithm of x. A domain error occurs if the
argument i3 negative. A range emor occurs if the argument is zero and the logarithm of zero
cannot be represented.
Returns
10 The log function returns the natural logarithm,
4.5.45 The loglO function
Synopsis
#includa <math.h>
double logll(doubla x); -
15 Description
The logl0 function computes the base-ten logarithm of x. A domain error occurs if the
argument is negative. A range error occurs if the argument is zero and the logarithm of zero
cannot be represented.
Returns
20 The 1og10 function returns the base-ten logarithm.
4.5.4.6 The mode£ function
Synopsis
#include <math.h>
doubla modf (double wvalue, double *iptr);
25 Description
The mod€ function breaks the argument value into integral and fractional parts, each of
which has the same sign as the argument. [t stores the integral part as a double in the object
pointed to by iptz.
Returns
30 The mod¢£ function returns the signed fractional part of value.
4.5.5 Power functions
4.5.5.1 The pow function
Synopsis
#incluae <math.h>
35 doubla pow(double x, double y):
Description)
The pow function computes x raised to the power y. A domain error occurs if x is negative
and y is not an integer. A domain error occurs if the result cannot be represented when x is zero
and y is less than or equal to zero. A range error may occur.

§4544 May 13, 1988 §4.5.5.1

DRAFT

LIBRARY 113 MATHEMATICS <math.h>

Returns

The pow function returns the value of x raised to the power y.
4.5.52 The sqgrt function
Synopsis

5 #include <math.h>
doubla sqrt (double x);

Description
The sqgrt function computes the nonnegative square root of x. A domain error occurs if the
argument is negative.
10 Returns
The sqzt function returns the value of the square root.
4.5.6 Nearest integer, absolute vaiue, and remainder functions
4.5.6.1 The ceil function
Synopsis

15 #include <math.h>
double ceil (double x);

Description
The ceil function computes the smallest integral value not less than x.
Returns
20 The ceil function returns the smallest integral value not less than x, expressed as a double.
4.5.6.2 The fabs function
Synopsis

#include <math.h>
double fabs (double x):

25 Description
The £abs function computes the absolute value of a floating-point number x.
Returns
The £abs function returns the absolute value of x.
4.5.6.3 The £loor function
30 Synopsis

#include <math.h>
double floor (double x):

Description
The £1loor function computes the largest integral value not greater than x. |
35 Returns

The £loor function returns the largest integral value not greater than x, expressed as a |
double.

§4.5.5.1 May 13, 1988 §4.5.6.3
DRAFT

LIBRARY : 114 MATHEMATICS <math.h>

/A\

4.5.6.4 The £mod function
Synopsis

#includa <math.h>
double fmod(doubla x, double y):

5 Description
The £mod function computes the flcating-point remainder of x/y.
Returns

The £mod function returns the value x - i * y, for some integer i such that, if y is nonzero,
the result has the same sign as x and magnitude less than the magnitude of y. If y is zero,
10 whether a domain error occurs or the £mod function retumns zero is implementation-defined.

§4.5.6.4 May 13, 1988 §4.5.6.4
DRAFT

78 Section 4. LIBRARY

4.4.1 Locale control
4.4.1.1 The setlocale function

setlocale provides the mechanism for controlling locale-specific features of the
library. The category argument allows parts of the library to be localized as neces-
sary without changing the entire locale-specific environment. Specifying the locale
argument as a string gives an implementation maximum flexibility in providing a
set of locales. For instance, an implementation could map the argument string into
the name of a file containing appropriate localization parameters — these files could

then be added and modified without requiring any recompilation of a localizable
program.

4.4.2 Numeric formatting convention inquiry
4.4.2.1 The localeconv function

The localeconv function gives a programmer access to information about how
to format numeric quantities (monetary or otherwise). This sort of interface was
considered preferable to defining conversion functions directly: even with a specified
locale, the set of distinct formats that can be constructed from these elements is
large, and the ones desired very application-dependent.

4.5 Mathematics
<math.h>

For historical reasons, the math library is only defined for the floating type double.
All the names formed by appending £ or 1 to a name in <math.h> are reserved to
allow for the definition of f1loat and long double libraries.

The functions ecvt, fcvt, and gevt have been dropped since their capability is
available through sprintz?.

Traditionally, HUGE_VAL has been defined as a manifest constant that approxi-
mates the largest representable double value. As an approximation to infinity it is
problematic. As a function return value indicating overflow, it can cause trouble if
first assigned to a float before testing, since a £1oat may not necessarily hold all
values representable in a double.

After considering several alternatives, the Committee decided to gemeralize
HUGE_VAL to a positive double expression, so that it could be expressed as an exter-
nal identifier naming a location initialized precisely with hexadecimal bit patterns.
It can even be a special encoding for machine infinity, on implementations that
support such codes. It need not be representable as a £loat, however.

Similarly, domain errors in the past were typically indicated by a zero return,
which is not necessarily distinguishable from a valid resuit. The Committee agreed
to make the return vaiue for domain errors implementation-defined, so that special
machine codes can be used to advantage. This makes possible an implementation

4.5. Mathematics <math.h> 79

of the math library in accordance with the IEEE P854 proposal on floating point
representation and arithmetic.

4.5.1 Treatment of error conditions

Whether underflow should be considered a range error, and cause errno to be set,
is specified as smplementation-defined since detection of underflow is inefficient on
some systems.

[The Standard has been crafted to neither require nor preclude any popular
implementation of floating point. This principle affects the definition of domain
error: an implementation may define extra domain errors to deal with floating-point
arguments such as infinity or “not-a-number” .|

The Committee considered the adoption of the matherr capability from UNIX
System V. In this feature of that system’s math library, any error (such as overflow
or underflow) results in a call from the library function to a user-defined exception
handler named natherr. The Committee rejected this approach for several reasons:

o This style is incompatible with popular floating point implementations, such
as [EEE 754 (with its special return codes), or that of VAX/VMS.

o It conflicts with the error-handling style of FORTRAN, thus making it more

difficult to translate useful bodies of mathematical code from that language
to C. i

e It requires the math library to be reentrant (since math routines could be
called from matherr), which may complicate some implementations.

e [t introduces a new style of library interface: a user-defined library function
with a library-defined name. Note, by way of comparison, the signal and
exit handling mechanisms, which provide a way of “registering” user-defined

functions.
4.5.2 Trigonometric functions
4.5.2.1 The acos function
4.5.2.2 The asin function
4.5.2.3 The atan function
4.5.2.4 The atan2 function

A"'

[The atan?2 function is modelled after FORTRAN’s. It is described in terms of A

arctan £ for simplicity; the Committee did not wish to complicate the descriptions
by specifying in detail how the determine the appropriate quadrant, since that should
be obvious from normal mathematical convention. atan2(y,x) is well-defined and

X3J11/88-091

%0) Section 4. LIBRARY

finite, even when x is O; the one ambiguity occurs when both arguments are 0, be-
cause at that point any value in the range of the function could logically be selected.
Since valid reasons can be advanced for all the different choices that have been in
this situation by various implements, the Standard preserves the implementor’s free-
dom to return an arbitrary well-defined value such a 0, to report a domain error, or

to return an IEEE NaN code.
4.5.2.5 The cos function
4.5.2.8 The sin function
4.5.2.7 The tan function
4.5.3 Hyperbolic functions
4.5.3.1 The cosh function
4.5.3.2 The sinh function
4.5.3.3 The tanh function
4.5.4 Exponential and logarithmic functions
4.5.4.1 The oxp function
4.5.4.2 The frexp function

The functions frexp, 1dexp, and medf are primitives used by the remainder of the
library. There was some sentiment for dropping them for the same reasons that

ecvt, fcvt, and gcvt were dropped, but their adherents rescued them for general
use.

4.5.4.3 The ldexp function
See §4.5.4.2.

4.5.4.4 The log function

Whether 10g(0.) is a domain error or a range error is arguable. The choice
in the Standard, range error, is for compatibility with IEEE P854. Some such
implementations would represent the result as —co, in which case no error is raised.
4.5.4.5 The logi0 function

See §4.5.4.4.

4.5.4.6 The nod? function
See §4.5.4.2.

4.6. Non-local jumps <setjmp.h> 81

4.5.5 Power functions
4.5.5.1 The pov function
4.5.5.2 The sqrt function

IEEE P854, unlike the Standard, requires sqrt(-0.) to return a negatively signed
magnitude-zero result. This is an issue on implementations that support a neg-
ative floating zero. The Standard specifies that taking the square root of a neg-
ative number (in the mathematical sense: less than 0) is a domain error which
requires the function to return an implementation-defined value. This rule permits

implementations to support either the [EEE P854 or vendor-specific floating point
representations.

4.5.8 Nearest integer, absolute value, and remainder functions
4.5.6.1 The ceil function

4.5.6.2 The tabs function

Adding an absolute value operator was rejected by the Committee. An implemen-
tation can provide a built-in function for efficiency.

4.5.6.3 The floor function
4.5.8.4 The fnod function

fmod is defined even if the quotient x/y is not representable — the implementation
of this function is properly by scaled subtraction rather than division.

The result of mod (x,0.0) is either a domain error or 0.0; the result always lies
between 0.0 and y, so specifying the non-erroneous result as 0.0 simply recognizes
the limit case.

The Committee considered and rejected a proposal to use the remainder oper-
ator % for this function; the operators in general correspond to hardware facilities,
and fzod is not supported in hardware on most machines.

4.6 Non-local jumps
<getjmp.h>

japbut mmst be an array type for compatibility with existing practice: programs
typically omit the address operator before a jmp_buf argument, even though a
pointer to the argument is desired, not the value of the argument itself. Thus, a
scalar or struct type is unsuitable. Note that a one-element array of the appropriate
type is a valid definition.

setjmp is constrained to be a macro only: in some implementations the infor-

mation necessary to restore context is only available while executing the function
making the call to setjnp.

X3J11/88-091

LIBRARY 117 SIGNAL HANDLING <signal.h>

10

15

20

30

35

4.7 SIGNAL HANDLING <signal.h>

The header <signal.h> declares a type and two functions and defines several macros, for
handling various signals (conditions that may be reported during program execution).

The type defined is
sig_atomic_t .

which is the integral type of an object that can be accessed as an atomic entity, even in the
presence of asynchronous interrupts.
The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to distinct constant expressions that have type compatible with the second
argument to and the retumn value of the signal function, and whose value compares unequal to
the address of any declarable function; and the following, each of which expands to a positive
integral constant expression that is the signal number corresponding to the specified condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation resulting in
overflow ’

SIGILL detection of an invalid function image, such as an illegal instruction
SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit calls
to the raise function. Additional signals and pointers to undeclarable functions, with macro
definitions beginning, respectively, with the letters SIG and an upper-case letter or with SIG_
and an upper-case lenter,”” may also be specified by the implementation. The complete set of
signals, their semantics, and their default handling is implementation-defined; all signal values
shall be positive.

4.7.1 Specify signal handling
4.7.1.1 The signal function
Synopsis

#include <signal.h>
void (*signal (int sig, void (*func) (int))) (int):

Description
The sigmal function chooses one of three ways in which receipt of the signal number sig
is to be subsequemly handled. If the value of func is SIG_DFL, default handling for that

signal will occur. If the value of func is SIG_IGN, the signal will be ignored. Otherwise,
£uanc shall point to a function to be cailed when that signal occurs. Such a function is called a

97. See ‘‘furure library directions’® (§4.13.5). The names of the signal numbers reflect the following terms
(respectively): abort, floating-point exception, illegal instruction, interrupt, segmentation violation, and
termination.

§4.7

May 13, 1988 §4.7.1.1
DRAFT

LIBRARY . 118 SIGNAL HANDLING <signal.h>

10

15

20

35

signal handler.

When a signal occurs, if £unc points to a function, first the equivalent of signal (sig,
SIG_DFL): is executed or an implementation-defined blocking of the signal is performed. (If
the value of sig is SIGILL, whether the reset to SIG_DFL occurs is implementation-defined.)
Next the equivalent of (*func) (sig); is executed. The function £func may terminate by
executing a return statement or by calling the abozt, exit, or longjmp function. If func
executes a return statement and the value of sig was SIGFPE or any other implementation-
defined value corresponding to a computational exception, the behavior is undefined. Otherwise,
the program will resume execution at the point it was interrupted.

If the signal occurs other than as the result of calling the aboxrt or raise function, the
behavior is undefined if the signal handler calls any function in the standard library other than the
signal function itself or refers to any object with static storage duration other than by assigning
a value to a static stérage duration variable of type volatile sig_atomic_t. Furthermore,
if such a call to the signal function results in a SIG_ERR retum, the value of errno is
indeterminate.

At program startup, the equivalent of

signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; ;li? equivalent
of

signal (sig, SIé_DB'I.) ;
is executed for all other signals defined by the implementation.
The implementation shall behave as if no library function calls the signal function.
Returns

If the request can be honored, the signal function returns the value of func for the most
recent call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned
and a positive value is stored in ezzno.

Forward references: the abort function (§4.10.4.1).
4.72 Send signal

4.72.1 The raise function

Synopsis

#include <signal.h>
int raise(iant sig):

Description
The raise function sends the signal sig to the executing program.
Returns

The raise function returns zero if successful, nonzero if unsuccessful.

§4.7.1.1 May 13, 1988 §4.7.2.1

4.7. Signal Handling <signal.h> | 83

longjmp to only one level of signal handling.

The longjmp function should not be called in an exit handler (i.e., a function
registered with the atexit function (see §4.10.4.2)), since it might jump to some
code which is no longer in scope.

4.7 Signal Handling
* <signal.h>

This facility has been retained from the Base Document since the Committee felt
it important to provide some standard mechanism for dealing with exceptional pro-
gram conditions. Thus a subset of the signals defined in UNIX were retained in the
Standard, along with the basic mechanisms of declaring signal handlers and (with
adaptations, see §4.7.2.1) raising signals. For a discussion of the problems created
by including signals, see §2.2.3.

The signal machinery contains many misnomers: SIGFPE, SIGILL, and SIGSEGV
have their roots in PDP-11 hardware terminology, but the names are too entrenched

to change. A conforming implementation is not required to field any hardware
interrupts.

The Committee has reserved the space of names beginning with SIG to permit
implementations to add local names to <asignal.h>. This implies that such names
should not be otherwise used in a C source file which includes <signal.h>.

4.7.1 Specify signal handling
4.7.1.1 The signal function

When a signal occurs the normal flow of control of a program is interrupted. If a sig-
nal occurs that is being trapped by a signal handler, that handler is invoked. When
it is finished, execution continues at the point at which the signal occurred. This
arrangement could cause problems if the signal handler invokes a library function
that was being executed at the time of the signal. Since library functions are not
guaranteed to be re-entrant, they should not be called from a signal handler that
returns. (See §2.2.3.) A specific exception to this rule has been granted for calls
to signal from within the signal handler; otherwise, the handler could not reliably
reset the signal.

The specification that some signals may be effectively set to SIG_IGN instead of
SIG.DFL at program startup allows programs under UNIX systems to inherit this
effective setting from parent processes.

For performance reasons, UNIX does not reset SIGILL to default handling when
the handler is called (usually to emulate missing instructions). This treatment is

sanctioned by specifying that whether reset occurs for SIGILL is impiementation-
defined.

X3J11/88-091

LIBRARY 128 INPUT/OUTPUT <stdio.h>

10

15

25

35

Returns
The setbu¢f function retuns no value.
Forward references: the setvbuf function (§4.9.5.6).
4.9.5.6 The setvbuf function
Synopsis '

#includa <stdio.h>
int setvbuf (FILE *stream, char *buf, int mode, size_ t size)
Description .

The setvbuf function may be used after the stream pointed to by stzream has been
associated with an open file but before any other operation is performed on the stream. The
argument mode determines how stream will be buffered, as follows: _IOFBF causes
input/output to be fully buffered; _IOLBF causes output to be line buffered; _IONBF causes
input/output to be unbuffered. If buf is not a null pointer, the array it points to may be used

instead of a buffer allocated by the satvbuf function.'® The argument size specifies the size
of the array. The contents of the array at any time are indeterminate.:

Returns

The setvbuf function rerns zero on success, or nonzero if an invalid value is given for
moda or if the request cannot. be honored.

4.9.6 Formatted input/output functions
4.9.6.1 The fpzintf function

Synopsis)

#include <stdio.h>

int fprintf (FILR *stream, const char *format, ...):’
Description

The £printf function writes output to the stream pointed to by stream, under control of
the string pointed to by format that specifies how subsequent arguments are converted for
output. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated (as always) but
are otherwise ignored. The £printf function reurns when the end of the format string is
encountered.

The format shall be a multibyte character sequence, beginning and ending in its initdal shift
state. The format is composed of zero or more directives: ordinary muitibyte characters (not %),
which are copied unchanged to the output stream; and conversion specifications, each of which
results in fetching zero or more subsequent arguments. Each conversion specification is
introduced by the character %. After the %, the following appear in sequence:

¢+ Zero or more flags that modify the meaning of the conversion specification.

* An optional decimal integer specifying a minimum field width.!% If the converted value has
fewer characters than the field width, it will be padded with spaces on the left (or right, if the
left adjustment flag, described later, has been given) to the field width.

105. The buffer must have a lifetime at least as great as the open stream, so the stream should be closed before a
butfer that has automatic storage duration is deallocated upon block exit.

106. Note that 0 is taken as a flag, not as the beginming of a field width.

§495.5 May 13, 1988 §4.9.6.1

DRAFT

f

-

LIBRARY 129 INPUT/QUTPUT <stdio.h>

« An optional precision that gives the minimum number of digits to appear for the d, i, o, u,

10

15

x, and X conversions, the number of digits to appear after the decimal-point character for e,
E, and £ conversions, the maximum number of significant digits for the g and G conversions,
or the maximum number of characters to be written from a string in s conversion. The
precision takes the form of a period (.) followed by an optional decimal integer; if the integer
is omitted, it is treated as zero. :

* An optional h specifying that a following d, i, o, u, %, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will have been promoted
according to the integral promotions, and its value shall be converted to short int or
unsigned short int before printing); an optional h specifying that a following n
conversion specifier applies to a pointer o a short iat argument an optional 1 (ell)
specifying that a following 4, 1, o, u, =, or X conversion specifier applies to a long iat or
unsigned long int argument; an optional 1 specifying that a following n conversion
specifier applies to a pointer to a long iat argument; or an optional L specifying that a
following e, E, £, g, or G conversion specifier applies 10 a long doublae argument. If an
h, 1, or L appears with any other conversion specifier, the behavior is undefined.

* A character that specifies the type of conversion to be applied.
A field width or precision, or both, may be indicated by an asterisk * instead of a digit string.

In this case, an int argument supplies the field width or precision. The arguments specifying

20 field width or precision, or both, shall appear (in that order) before the argument (if any) to be
converted. A negative field width argument is taken as a — flag followed by a positive field
width. A negative precision argument is taken as if it were missing.

The flag characters and their meanings are
The result of the conversion will be left-justified within the field.
The result of a signed conversion will always begin with a plus or minus sign.

space If the first character of a signed conversion is not a sign, or if a signed conversion results

30

35

d

45

§49.6.1

in no characters, a space will be prepended to the result. If the space and + flags both
appear, the space flag will be ignored. .

The result is to be converted to an ‘‘alternate form.”” For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or X) conversion, a
nonzero result will have 0x (or 0X) prepended to it. For e, E, £, g, and G conversions,
the resuit will always contain a decimal-point character, even if no digits follow it
(normally, a decimal-point character appears in the result of these conversions only if a
digit follows it). For g and G conversions, trailing zeros will not be removed from the
result. For other conversions, the behavior is undefined.

For d, i, o, u, x, X, e, E, £ g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and — flags both appear, the 0 flag will be ignored. For 4, i, o, u,
x, and X conversions, if a precision is specified, the 0 flag will be ignored. For other
conversions, the behavior is undefined.

The conversion specifiers and their meanings are

i,0,u,x,X The int argument is converted to signed decimal (d or i), unsigned octal (o),
unsigned decimal (u), or unsigned hexadecimal notation (x or X); the letters
abedef are used for x conversion and the letters ABCDEF for X conversion.
The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with
leading zeros. The default precision.is 1. The result of converting a zero value
with an explicit precision of zero is no characters.

May 13, 1988 §4.9.6.1
DRAFT :

LIBRARY

e B

10

15 g;G

20

30

35

130 INPUT/OUTPUT <stdio.h>

The doubla argument is converted to decimal notation in the style
[—]ddd.ddd, where the number of digits after the decimal-point character is
equal to the precision specification. If the precision is missing, it is taken as 6;
if the precision is explicily zero, no decimal-point character appears. If a
decimal-point character appears, at least one digit appears before it. The value
is rounded to the appropriate number of digits.

The doublae argument is converted in the style [-]d.ddde+dd, where there is
one digit before the decimal-point character (which is nonzero if the argument is
nonzero) and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is zero, no decimal-point
character appears. The value is rounded to the appropriate number of digits.
The B conversion specifier will produce a number with B instead of e
introducing the exponent. The exponent always contains at least two digits. If
the value is zero, the exponent is zero,

The double argument is converted in style £ or a (or in style B in the case of
a G conversion specifier), with the precision specifying the number of significant
digits. If an explicit precision is zero, it is taken as 1. The style used depends
on the value converted; style @ will be used only if the exponent resulting from
such a conversion is less than -4 or greater than or equal to the precision.
Trailing zeros are removed from the fractional portion of the result; a decimal-
point character appears only if it is followed by a digit.

The int argument is converted to an unsigned char, and the resulting
character is written.

The argument shall be a pointer to an array of character type.!”” Characters
from the array are written up to (but not including) a terminating null character;
if the precision is specified, no more than that many characters are written. If
the precision is not specified or is greater than the size of the array, the array
shall contain a null character.

The argument shall be a pointer to void. The value of the pointer is converted
10 a sequence of printable characters, in an implementation-defined manner.

The argument shall be a pointer to an integer into which is written the number
of characters written to the cutput stream so far by this call to £pzrint£. No
argument is converted. ’

A % is written. No argument is converted. The complete conversion
specification shall be ¥%.

If a conversion specification is invalid, the behavior is undefined.'®
If any argument is, or points to, a union or an aggregate (except for an array of character type
using $s conversion, or a pointer cast to be a pointer 0 void using %p conversion), the
behavior is undefined.
40 In no case does a nonexistent or small field width cause truncation of a fir'4; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result

107. No special provisions are made for multibyte characters.
108. See ‘*fuure library directions’® (§4.13.6).

§4.9.6.1

May 13, 1988 §4.9.6.1
DRAFT

1

LIBRARY 131 INPUT/OUTPUT <stdio.h>

Returns

The £print#£ function returns the number of characters transmitted, or a negative value if an
output error occurred.

Environmental limit

5 The minimum value for the maximum number of characters produced by any single
conversion shall be 509.
Examples
To print a date and time in the form ‘‘Sunday, July 3, 10:02,” where weekday and month
are pointers to strings:
10 #include <stdio.h>)
" fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",
weekday, month, day, hour, min);
To print = to five decimal places:
#include <math.h>
15 #include <stdio.h>
fprintf (stdout, "pi = %.5f\a", 4 * atan(1.0)):;
4.9.6.2 The £scanf function
Synopsis
#include <stdio.h>
20 int fscanf (FILE *stream, const char *format, ...):;
Description
The £scang function reads input from the stream pointed to by straam, under control of
the string pointed to by format that specifies the admissible input sequences and how they are
to be converted for assignment, using subsequent arguments as pointers to the objects to receive%
25 the converted input. If there are insufficient arguments for the format, the behavior is undefined.
If the format is exhausted while arguments remain, the excess arguments are evaluated (as
always) but are otherwise ignored.
The format shall be a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: one or more white-space characters; an
30 ordinary multibyte character (not %); or a conversion specification. Each conversion specification
is introduced by the character 8. After the %, the following appear in sequence:
» An optional assignment-suppressing character *.
* An optional decimal integer that specifies the maximum field width.
* An optional h, 1 (ell) or L indicating the size of the receiving object The conversion
35 specifiers d, i, and n shall be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by 1 if it is a pointer to long int. Similarly,
the conversion specifiers o, u, and x shall be preceded by h if the corresponding argument is
a pointer to unsigned short int rather than a pointer to unsigned int, or by 1 if it is
a pointer to unsigned long int. Finally, the conversion specifiers a, £, and g shall be
40 preceded by 1 if the corresponding argument is a pointer 10 double rather than a pointer to
£loat, or by L if it is a pointer t0 long double. If an h, 1, or L appears with any cther
conversion specifier, the behavior is undefined.
* A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.
§496.1 . May 13, 1988 §4.9.6.2

DRAFT

LIBRARY 132 INPUT/OUTPUT <stdio.h>

10

15

40

45

The £scanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the £scang function returns. Failures are described as input failures (due to the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white space is executed by reading input up to the first non-white-
space character (which remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters
of the stream. If one of the characters differs from one comprising the directive, the directive
fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are skipped, unless the
specification includes a [, e, or a specifier.

An input item is read from the stream, unless the specification includes an n specifier. An
input item is defined as the longest sequence of input characters (up to any specified maximum
field width) which is an initial subsequence of a matching sequence. The first character, if any,
after the input item remains unread. If the length of the input item is zero, the execution of the
directive fails: this condition is a matching failure, unless an eror prevented input from the
stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %a directive, the count
of input characters) is converted to a type appropriate to the conversion specifier. If the input
item is not a matching sequence, the execution of the directive fails: this condition is a matching
failure. Unless assignment suppression was indicated by a *, the result of the conversion is
placed in the object pointed to by the first argument following the fozrmat argument that has not
already received a conversion result If this object does not have an appropriate type, or if the
result of the conversion cannot be represented in the space provided, the behavior is undefined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument.
The corresponding argument shail be a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the stztol function with the value O for the base argument. The
cosresponding argument shall be a pointer t0 integer.

o Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 8 for the basae argument.
The comresponding argument shall be a pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

= Matches an optionally signed hexadecimal integer, whose “~rmat is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

a,£,g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod function. The corresponding argument
shail be a pointer to floating.

s Matches a sequence of non-white-space characters.'” The corresponding argument shail
be a pointer to the initial character of an array large enough to accept the sequence and a
terminating null character, which will be added automatically.

§4.9.62 May 13, 1988 §4.9.6.2

DRAFT

LIBRARY 133 INPUT/OUTPUT <stdio.h>

10

15

20

30

35

t Matches a nonempty sequence of characters'® from a set of expected characters (the
scanset). The corresponding argument shall be a pointer to the initial character of an
array large enough 0 accept the sequence and a terminating null character, which will be
added automatically. The conversion specifier includes all subsequent characters in the
format string, up to and including the matching right bracket (]). The characters
between the brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (#), in which case the scanset contains all characters that do
not appear in the scanlist berween the circumflex and the right bracket. As a special
case, if the conversion specifier begins with [] or [~], the right bracket character is in
the scanlist and the next right bracket character is the matching right bracket that ends
the specification. If a = character is in the scanlist and is not the first, nor the second
where the first character is a #, nor the last character, the behavior is implementation-
defined.

c Matches a sequence of characters'® of the number specified by the field width (1 if no
field width is present in the directive). The coresponding argument shall be a pointer to_
the initial character of an array large enough to accept the sequence, No naull character
is added.

P Marches an implementation-defined set of sequences, which.shouid be the same as the
set of sequences that may be produced by the %p conversion of the £print€ function.
The corresponding argument shall be a pointer to a pointer to void. The interpretation
of the input item is implementation-defined; however, for any input item other than a
value converted earfier during the same program execution, the behavior of the %p
conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of characters read from the input stream so far by this
call to the £scanf function. Execution of a %a directive does not increment the
assignment count returned at the completion of execution of the £scanf function.

% Matches a single %; no conversion or assignment occurs. The complete conversion
specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.!'®

The conversion specifiers B, G, and X are also valid and behave the same as, respectively, e,
g,and =,

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been.read (other than leading white
space, where permitted), execution of the current directive terminates with an input failure;
otherwise, unless execution of the current directive is terminated with a matching failure,
execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left
unread in the input stream. Trailing white space (including new-line characters) is left unread
unless matched by a directive. The success of literal matches and suppressed assignments is not
directly determinable other than via the %n directive.

109. No special provisions are made for muitibyte characters.
110. See *‘future library directions’* (§4.13.6).

§4.9.6.2 May 13, 1988 §4.9.6.2

DRAFT

LIBRARY 134 INPUT/OUTPUT <stdio.h>

10

15

35

40

Returns

The £scang function retumns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise, the £scanf function returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early maiching failure,

Examples
The call:

#include <stdio.h>
int n, 4i; float x; char name(50]:
n = fscanf (stdin, "%d%£%s", &1, &x, nama):;

with the input line:
25 54.32B-1 thempson

will assign to n the value 3, to i the value 25, to x the value 5432, and name will contain
thompson\0. Or

#include <stdio.h>
int i; float x; char name[50]:;
£scangf (stdin, "%2d%£3%*d %[0123456789]", &i, &x, nama);

with input:
56789 0123 S56a72

will assign to i the value 56 and to x the value 789.0, will skip 0123, and name will contain
56\0. The next character read from the input stream will be a.

To accept repeatedly from stdin a quantity, a unit of measure and an item name:

#include <stdio.h>
int count; float quant; char units[21], item(21];
while (!feof(stdin) && 'ferror(stdin)) (
count = f£scanf (stdin, "“%£%20s of %20s",
&quant, units, item):
f£scanf (stdin, "$*{~\n]"):
}

If the stdin stream contains the following lines:

2 quarts of oil

-12.8degzeas Calsius

lots of luck

10.0LBS of fartilizer
100ergs of enargy

the execution of the above example will be equivalent to the following assignments:

quant
count
quant
count
count
quant
count
count
count

2; strcpy(units, "quarts"); strepy(item, "oil");
3;

-12.8; strcpy(units, "degrees");

2; /* "C" fails to match "o" */

0; /* "1" fails to match "%£" */

10.0; strzcpy(units, "LBS"); strcpy(item, "fertilizex");
3;

0; /* "100e" fails to match "S$£" */
EOF;

Uuwewanpoaeu

§49.6.2 May 13, 1988 §4.9.6.2

DRAFT

4.9. Input/Output <stdio.h> .91

supporting additional file types that do truncate when written to, even when they
are opened with the same sort of fopen call. Magnetic tape files are an example of
a file type that must be handled this way. (On most tape hardware it is impossible
to write to a tape without destroying immediately following data.) Hence tape files
are not “binary files” within the meaning of the Standard. A conforming hosted
implementation must provide (and document) at least one file type (on disk, most
likely) that behaves exactly as specified in the Standard.

4.9.5.4 The freopen function
4.9.5.5 The setbuf function

getbuf is subsumed By setvbuf, but has been retained for compatibility with old
code.

4.9.5.6 The setvbut function

setvbuf has been adopted from UNIX System V, both to control the nature of
stream buffering and to specify the size of I/O buffers. An implementation is not
required to make actual use of a buffer provided for a stream, so a program must
never expect the buffer’s contents to reflect I/O operations. Further, the Standard
does not require that the requested buffering be implemented; it merely mandates a
standard mechanism for requesting whatever buffering services might be provided.

Although three types of buffering are defined, an implementation may choose
to make one or more of them equivalent. For example, a library may choose to
implement line-buffering for binary files as equivalent to unbuffered I/O or may
choose to always implement full-buffering as equivalent to line-buffering.

The general principle is to provide portable code with a means of requesting the

most appropriate popular buffering style, but not to require an impiementation to
support these styles.

4.9.6 Formatted input/output functions
4.9.6.1 The fprintf function

Use of the L. modifier with floating conversions has been added to deal with formatted
output of the new type long double.

Note that the %X and %x formats expect a corresponding int argument; %1X or
%1x must be supplied with a long int argument.

The conversion specification %p has been added for pointer conversion, since
the size of a pointer is not necessarily the same as the size of an int. Because
an implementation may support more than one size of pointer, the corresponding
argument is expected to be a (void *) pointer.

The %n format has been added to permit ascertaining the number of characters
converted up to that point in the current invocation of the formatter.

X3J11/88-091

92 Section 4. LIBRARY

Some pre-Standard implementations switch formats for %g at an exponent of —3
instead of (the Standard’s) —4: existing code which requires the format switch at —3
will have to be changed.

Some existing implementations provide %D and %0 as synonyms or replacements
for 41d and %lo. The Committee considered the latter notation preferable.

The Committee has reserved lower case conversion specifiers for future standard-
ization.

The use of leading zero in field widths to specify zero padding has been super-
seded by a precision field. The older mechanism has been retained.

Some implementations have provided the format %r as a means of indirectly
passing a variable-length argument list. The functions vfprint?, etc., are considered

to be a more controlled method of effecting this indirection, so %r was not adopted
in the Standard. (See §4.9.6.7.)

4.9.8.2 The fscant function

The specification of £scant is based in part on these principles:
e As soon as one specified conversion fails, the whole function invocation fails.
o One-character pushback is sufficient for the implementation of £scant;

o If a “flawed field” is detected, no value is stored for the corresponding argu-
ment. ;

e The conversions performed by fscant are compatible with those performed
by strtod and strtol.

Input pointer conversion with %p has been added, although it is obviously risky,
for symmetry with fprintf. The %i format has been added to permit the scanner
to determine the radix of the number in the input stream; the %n format has been
added to make available the number of characters scanned thus far in the current
invocation of the scanner.

White space is now defined by the isapace function. (See §4.3.1.9.)

An implementation must not use the ungetc function to perform the necessary
one-character pushback. In particular, since the unmatched text is left “unread,”
the file position indicator as reported by the £tell function must be the position
of the character remaining to be read. Furthermore, if the unread characters were
themselves pushed back via ungetc calls, the pushback in £scanf must not affect
the push-back stack in ungetc. A scanf call that matches N characters from a

stream must leave the stream in the same state as if N consecutive getc calls had
been issued.

4.9.6.3 The printf function

See comments of section §4.9.6.1 above.

LIBRARY 145 GENERAL UTILITIES <stdlib.h>

10

15

20

25

30

35

4.10 GENERAL UTILITIES <stdlib.h>

The header <stdlib.h> declares four types and several functions of general utility, and
defines several macros.'!?

The types declared are size_t and wchax_t (both described in §4.1.5),
div_t _
which is a structure type that is the type of the value returned by the div function, and
ldiv_t
which is a structure type that is the type of the value returned by the ldiv function,
The macros defined are NULL (described in §4.1.5);
EXIT_FAILURE
and
EXIT_SUCCESS

which expand to integral expressions that may be used as the argument to the exit function to
return unsuccessful or successful termination status, respectively, to the host environment;

RAND_MAX

which expands (o an integral constant expression, the value of which is the maximum value
remurneqd by the rand function; and

MB_CUR_MAX

which expands to a positive integer expression whose value is the maximum number of bytes in a
muitibyte character for the extended character set specified by the current locale (category
LC_CTYPE), and whose value is never greater than MB_LEN MAX.

4.10.1 String conversion functions

The functions ato#£, atoi, and atol need not affect the value of the integer expression
erzno on an error. If the value of the result cannot be represented, the behavior is undefined.

4.10.1.1 The atof function
Synopsis

#ineclude <stdlib.h>
double atof (const char *nptr):;

Description

The atof function converts the initial portion of the string pointed to by aptr to double
representation. Except for the behavior on error, it is equivalent to

strtod(nptr, (char **)NULL)
Returns
The atof function retuns the converted value.
Forward references: the strtod function (§4.10.1.4).

113. See ‘“‘future library directions’* (§4.13.7).

§4.10

May 13, 1988 §4.10.1.1
DRAFT

LIBRARY " 146 GENERAL UTILITIES <stdlib.h>

4.10.12 The atoi function
Synopsis

#includa <stdlib.h>
int atod (const char *nptr):

5 Description
The atoi function converts the initial portion of the string pointed to by aptr to int
representation. Except far the behavior on error, it is equivalent to
(int) atztol (nptz, (char **)NULL, 10)
Returns
10 The atoi function returns the converted value.
Forward references: the strtol function (§4.10.1.5).
4.10.13 The atol function
Synopsis
#include <stdlib.h>
15 long int atol(const char *nptz):;
Description

The atol function converts the initial portion of the string pointed to by aptz 10 long

int representation. Except for the behavior on error, it is equivalent to
strtol (nptzr, (char **)NULL, 10)
20 Returns R

The atol function returns the converted value.

Forward references: the stxtol function (§4.10.1.5).
4.10.1.4 The strted function
Synopsis
25 #include <stdlib.h>
doubla strtod(const char *nptr, char **endptr):;
Description

The strtod function converts the initial portion of the string pointed t0 by nptr to

doublae representation. First it decomposes the input string into three parts: an initial, possibly

30 empty, sequence of white-space characters (as specified by the isspaca function), a subject
sequence resembling a floating-point constant; and a final string of one or more unrecognized
characters, including the terminating null character of the input string. Then it atempts to
convert the subject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty

35 sequence of digits optionally containing a decimal-point character, then an optional exponent part
as defined in §3.1.3.1, but no floating suffix. The subject sequence is defined as the longest
subsequence of the input string, starting with the first non-white-space character, that is an initial
subsequence of a sequence of the expected form. The subject sequence contains no characters if
the input string is empty or consists entirely of white space, or if the first non-white-space

40 character is other than a sign, a digit, or a decimal-point character.

If the subject sequence has the expected form, the sequence of characters starting with the
first digit or the decimal-point character (whichever occurs first) is interpreted as a floating
constant according to the rules of §3.1.3.1, except that the decimal-point character is used in

§4.10.1.2 - May 13, 1988 §4.10.1.4

DRAFT

~

LIBRARY 147 GENERAL UTILITIES <stdlib.h>

10

15

20

30

35

40

45

place of a period, and that if neither an exponent part nor a decimal-point character appears, a
decimal point is assumed to follow the last digit in the string. If the subject sequence begins
with a minus sign, the value resulting from the conversion is negated. A pointer to the final
string is stored in the object pointed to by endptz, provided that endptz is not a null pointer.

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted. ‘

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptzr is stored in the object pointed to by endptx, provided that
andptz is not a null pointer.

Returns

The strtod function returns the converted value, if any. If no conversion could be
performed, zero is remmed. If the correct value would cause overflow, plus or minus
HUGE_VAL is returned (according to the sign of the value), and the value of the macro ERANGE
is stored in exzno. If the correct value would cause underflow, zero is returned and the value of
the macro ERANGE is stored in axrzno.

4.10.1.5 The stxtol function
Synopsis

#include <stdlib.h>

long int strtol(const char *mptr, char **endptr, int base);
Description

The strtol function converts the initial portion of the string pointed to by aptr to long

int representation. First it decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace function), a subject
sequence resembling an integer represented in some radix determined by the value of base, and
a final string of one or more unrecognized characters, including the terminating null character of

the input string. Then it attempts to convent the subject sequence to an integer, and returns the
result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in §3.1.3.2, optionally preceded by a plus or minus sign, but not including
an integer suffix. If the value of base is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer suffix. The
letters from a (or A) through z (or Z) are ascribed the values 10 to 35; only letters whose
ascribed values are less than that of base are permitted. If the value of base is 16, the
characters 0x or 0X may optionally precede the sequence of letters and digits, following the sign
if present.

The subject sequence is defined as the longest subsequence of the input string, starting with
the first non-white-space character, that is an initial subsequence of a sequence of the expecied
form. The subject sequence contains no characters if the input string is empty or consists entirely
of white space, or if the first non-white-space character is other than a sign or a permissible letier
or digit.

If the subject sequence has the expected form and the value of base is zero, the sequencé of
characters starting with the first digit is interpreted as an integer constant according to the rules of
§3.1.3.2. If the subject sequence has the expected form and the vaiue of base is between 2 and
36, it is used as the base for conversion, ascribing to each leuter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is negated. A
pointer to the final string is stored in the object pointed to by endptr, provided that endptz is
not a null pointer,

§4.10.1.4 May 13, 1988 §4.10.1.5

DRAFT

4.10. General Utilities <stdlib.h> 97
4.10.1 String conversion functions

4.10.1.1 The atof function

atof, atoi, and atol are subsumed by strtod and strtol, but have been retained
because they are used extensively in existing code.

4.10.1.2 The atoi function
See §4.10.1.1.

4.10.1.3 The atol function
See §4.10.1.1.

4.10.1.4 The strtod function

strtod and strtol have been adopted (from UNIX System V) because they offer
more control over the coaversion process, and because they are required not to
produce unexpected resuits on overflow during conversion.

The requirement that errno be set to EDOM when the argument string does not
begin with a valid number string allows easy checking for invalid input.

4.10.1.5 The strtol fanction
See §4.10.1.4.

4.10.1.6 The strtounl fuanction

strtoul was introduced by the Committee to provide a facility like strtol for

unsigned long values. Simply using strtol in such cases could result in overflow
upon conversion.

4.10.2 Pseudo-random sequence generation functions

4.10.2.1 The rand funetion

The Committee decided that an implementation should be allowed to provide a rand
function which generates the best random sequence possible in that implementation,
and therefore mandated no standard algorithm. It recognized the value, however,
of being able to generate the same pseudo-random sequence in different implemen-
tations, and so it has published as an example in the Standard an algorithm that

generates the same pseudo-random sequence in any conforming implementation,
given the same seed.

X3J11/88-091

