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Abstract - Zasammenfassung 

FORTRAN-SC. A Study of a FORTRAN Extension for Engineering/Scientific Computation with Access 
to ACRITH. A new programming language called FORTRAN-SC is presented which is closely related 
to FORTRAN Bx. FORTRAN-SC is a FORTRAN extension with emphasis on engineering and 
scientific computation. It is particularly suitable for the development of numerical algorithms which 
deliver highly accurate and automatically verified results. The language allows the declaration of 
functions with arbitrary result type, operator overloading and definition, as well as dynamic arrays. It 
provides a large number of predefined numerical data types and operators. Programming experiences 
with the existing compiler have been very encouraging. FORTRAN-SC greatly facilitates programming 
and in particular the use of the ACRITH subroutine library [14], [15]. 

Key words: Programming languages, FORTRAN, compiler, computer arithmetic, numerical com­
putation, verified numerics. 

FORTRAN-SC. Eine FORTRAN-Erweiterung fur naturwissenschaftlich-technisches Rechnen mit Zu­
griff auf ACRITH. FORTRAN-SC ist cine neue Programmiersprache, welche mit FORTRAN 8x eng 
verwandt ist. Es handelt sich um eine FORTRAN-Erweiterung fiir Anwendungen im naturwissen­
schaftlich-technischen Bereich. lnsbesondere eignet sich FOR TRAN-SC fiir die Entwicklung von 
numerischen Algorithmen, welche hochgenaue • und automatisch verifizierte Ergebnisse lief em. Die 
Sprache ermoglicht die Verein barung von Funktionen mit allgemeinem Ergebnistyp, das Oberladen und 
Definieren von Operatoren, sowie dynamische Felder. AuBerdem wird eine groBe Zahl vordefiniener 
numerischer Datentypen und Operatoren zur Verfligung gestellt. Die bisherigen Programmiererfahrun­
gen mit dem existierenden Compiler sind sehr vielversprechend. FORTRAN-SC vereinfacht das 
Programmieren und insbesondere die Benutzung der ACRITH-Unterprogrammbibliothek wesentlich 
(14], [15]. 

1. Introduction 

In electronic computers the elementary arithmetic operations are these days 
generally approximated by floating-point operations of highest accuracy. This is one 
of the essential intentions of the ANSI/IEEE Floating-Point Arithmetic Standard 
754 [S]. This arithmetic standard also requires the four basic arithmetic operations 
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+, - , •, / with directed roundings. A large number of processors is already on the 
market which provide these operations. So far, however, no common programming 
language allows access to these operations. 

On the other hand, there is a noticeable shift from general purpose machines to 
vector processors and parallel computers in scientific computation. These so-called 
super-computers provide additional arithmetic operations such as "multiply and 
add", "accumulate" or "multiply and accumulate" [12]. All of these hardware 
operations should always deliver a result of highest accuracy for all possible 
combinations of data. As far as we know, no processor which fulfills this requirement 
is as yet available. From the point of view of programming, there exists no standard 
language which permits direct access to these operations. 

There is a continuous effort to enhance the power of programming languages. New 
powerful languages like ADA have been designed, and the development of existing 
languages like FORTRAN is constantly in progress. However, since these 
languages still lack a precise definition of the arithmetic, the same program may 
produce different results on different processors. 

During the development of FORTRAN Sx, proposals were made as to how real and 
complex operations with directed roundings, interval and complex interval 
arithmetic, and vector/matrix operations for an these types could be incorporated 
into that language [8], [9]. Many useful concepts which are necessary for their 
realization have been adopted in recent drafts of the proposed FORTRAN 8x 
standard. Such concepts are: derived data types, dynamic arrays, functions with 
arbitrary result type, operator overloading and definition, and modules. 

In this paper, we refer to the programming language described by the latest draft of 
the proposed FORTRAN8x standard simply as FORTRAN8x [4]. 

In 1983, a group of scientists1 worked out the first draft of a programming language 
which is closely related to FORTRAN 8x. In particular, it is a superset of 
FORTRAN 77 [3]. The new language was given the name FORTRAN-SC. In this 
paper, we will give an informal description of this language. We will also make some 
remarks on its current implementation. FORTRAN-SC pursues the same goals as 
PASCAL-SC [10], [17], another programming language for scientific computation 

• which was designed and implemented at the Institute for Applied Mathematics at 
the University of Karlsruhe. 

With respect to scientific computation the newly designed language surpasses 
FORTRAN 8x. For example, FORTRAN-SC provides more than 1000 predefined 
arithmetic operators for all kinds of numerical data types. All of these operators are 
required to deliver a result of at least 1 ulp accuracy. This means that the error is less 
than 1 unit in the last place (1 ulp). In other words, there is no floating-point number 
between the computed and the exact result. Since our interest is mainly directed 
towards scientific computation, several features of FORTRAN 8x which are of 
minor importance for that purpose were not incorporated into FORTRAN-SC. 

1 J. H. Bieber, H. Bohm, G. Bohlcnder, A. T. Gcrlicher, K. Griiner, E. Kaucher, R. Klatte, U. W. 
Kulisch, W. L. Miranker, M. Neap, S. M. Rump, Ch. Ullrich, J. Wolfl'von Gudcnbcrg. 
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In FORTRAN-SC, the mathematical definition of the arithmetic is part of the 
language. This definition includes the vector/matrix operations. The elementary 
arithmetic operations +, - , •, / with directed roundings are axiomatically defined 
and directly accessible in the language. All other arithmetic operations, in particular 
for intervals, are defined according to the rules of semimorphism [18]. 

During the process of implementation, the new language was further developed and 
completed. The compiler consists of a complete front end performing full analysis of 
the source language and· a code generator. To achieve high portability, the code 
generator produces FORTRAN 77 code. The extensive runtime library contains the 
predefined operators and intrinsic functions of FORTRAN-SC. All implemented 
arithmetic operators are accurate to at least 1 ulp. 

Programming experiences in FORTRAN-SC have been very encouraging. As a 
result of the operator notation in expressions for all arithmetic data types, programs 
become clearer and more concise. FORTRAN-SC programs are easy to read, write 

• and understand. 

One of the main goals of the development of FORTRAN-SC was to facilitate the use 
of the ACRITH subroutine library. FORTRAN-SC makes all ACRITH sub­
routines which provide arithmetic operations available as predefined operators. 
Furthermore, the large number of ACRITH mathematical standard functions for 
real, complex, interval and complex interval data may be referenced by their specific 
or generic names in FORTRAN-SC. 

Through the availability of the interval, vector and matrix data types, the use of the 
ACRITH problem solving routines is greatly simplified. It is a common characteris­
tic of all ACRITH routines that whenever they deliver a result, it is verified to be 
correct by the computer. 

The language FORTRAN-SC was developed and implemented in a collaboration of 
the IBM Development Laboratory in Boblingen, Federal Republic of Germany, 
with the Institute for Applied Mathematics at the University of Karlsruhe. 

2. The Language FORTRAN-SC 

In traditional programming languages like FORTRAN, ALGOL or PASCAL, 
each vector/matrix operation such as matrix multiplication or vector addition 
requires an explicit loop construct or a call to an appropriate procedure. The same is 
true for all operations with a non-scalar (or structured) result, e.g. for interval 
arithmetic. To avoid such difficulties, the language FORTRAN-SC provides all 
vector and matrix operations in the commonly used linear spaces (the real and 
complex numbers, real and complex vectors, real and complex matrices as well as all 
the corresponding interval spaces) as predefined operators. All of these operations 
are accessible through their usual operator symbol. Thus, expressions of these types 
can be written in the usual mathematical notation. 

Additionally, a general operator concept is available in FORTRAN-SC. It enables 
the user to define his own operators for old and new data types. Other modern 
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programming languages like ADA and FORTRAN 8x also provide an operator 
concept and the possibility to write non-scalar expressions. Thus, all of these 
languages provide the necessary tools for writing expressions in the common linear 
spaces in mathematical notation. The difference is, however, that FORTRAN-SC 
requires all predefined operators to deliver results of 1 ulp accuracy for all pos­
sible combinations of the data. The implemented runtime library satisfies this 
requirement. 

Moreover, FORTRAN-SC provides means for computing certain classes of vector 
and matrix expressions with 1 ulp accuracy. In contrast, vector/matrix operations 
and expressions evaluated in the traditional manner will not, in general, deliver high 
accuracy. 

It is an essential idea of FORTRAN-SC that the user need not perform an error 
analysis for any basic vector/matrix operation provided by the language. As a 
matter of fact, this should be a natural requirement for any modern programming 
language. Whenever a language provides a higher-dimensional operation by an 
operator symbol, the result should be of 1 ulp accuracy (as required in 
FORTRAN-SC). Otherwise, an error message should be given. 

2. 1. Standard Data Types, Predefined Operators and Functions 

The following scalar data types are available in FORTRAN-SC: 

INTEGER, REAL, DOUBLE REAL, COMPLEX, DOUBLE COMPLEX, 
INTERVAL, DOUBLE INTERVAL, COMPLEX INTERVAL, DOUBLE 
COMPLEX INTERVAL, LOGICAL, CHARACTER. 

For these basic data types, arrays can be declared in the usual manner. For a large 
number of numerical array types, operators are predefined which always deliver 
1 ulp accuracy. This means that the traditional arithmetic operators +, - , *,/are to 
be implemented with the rounding to the nearest machine-representable element. 
The newly introduced arithmetic operators + (, - (, •(,/(and + ), - ), • ), /) are 
to be implel!lented with the monotone downwardly directed and upwardly directed 
rounding, respectively. For real and double real scalar data the latter operations are 
also provided by the ANSI/IEEE Arithmetic Standard 754 [5]. 

Tables 1 and 2 show all predefined arithmetical and relational operators. We use the 
foUowing abbreviations for t~e basic numerical data types: 

R - REAL 
DR - DOUBLE REAL 

C-COMPLEX 
DC - DOUBLE COMPLEX 

I - INTERVAL 
DI - DOUBLE INTERVAL 
CI - COMPLEX INTERVAL 

DCI - DOUBLE COMPLEX INTERVAL 
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Table 1. Predefined arithmetic operators 

right 
INTEGER R I RVEC operand 

DR DI DRVEC 
C CI CVEC 

lef't DC DCI DCVEC 
operand 

1) {+,-} {+,-} {+,-} {+,-} 

INTEGER l A ). n 

R 
DR A A n 
C 
DC 

I r 
DI l -
CI ' DCI 

RVEC 
DRVEC e e a 
CVEC 
DCVEC 

IVEC 
DIVEC {•,/} { •,/) 
CIVEC 
DCIVEC 

RMAT 
DRMAT e e n 
CMAT 
DCMAT 

IMAT 
DIMAT {•./} { •./} 
CIMAT 
DCIMAT 

1) The operators in this row are monadic (i.e. no left operand). 

l : = { +' - , •, /, .. } 
A : = { +' + (, + ), - ' - (, - ), •, •(, • ), /, /(, /), ••) 
fl:={•,•(,•>) 
9 := {•. •<. •>, /, /(, /)} 
'2 : = { +. + (, + ), - ' - (, - ), •. •(, • ) } 
• := { +, -, •, .IS., .CH.} 
{ :={ +, -, •,/,.IS., .CH.} 
r :={ +, -, •,/,.IS., .CH.,••} 

.IS.: Intersection of two intervals 

.CH.: Convex hull of two intervals 

IVEC 
DIVEC 
CIVEC 
DCIVEC 

{+,-} 

{•} 

{•} 

"' 

{•) 
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RMAT IMAT 
DRMAT DIMAT 
CMAT CIMAT 
DCMAT DCIMAT 

{+,-} { +, -} 

n {•} 

n 

{•) 

(1 

"' 
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Table 2. Predefined relational operators 

right 
INTEGER R I RVEC IVEC RMAT IMAT operand 

DR DI DRVEC DIVEC DRMAT DIMAT 
C CI CVEC CIVEC CMAT CIMAT 

left DC DCI DCVEC DCIVEC DCMAT DCIMAT 
operand 

INTEGER tp 'I' E -
R 
DR 'I' . 'I' E -
C 
DC E E E 3 

I 
DI 
CJ A 
DCI 

RVEC 
DRVEC 
CVEC E -
DCVEC 

IVEC 
DIVEC 
CIVEC A 
DCIVEC 

RMAT 
DRMAT 
CMAT E -
DCMAT 

IMAT 
DIMAT 
CIMAT A 
DCIMAT . 

.::= {.IN.} 
E:= {.EQ., .NE.} 
A:= {.EQ., .NE., .SB., .SP., .DJ.} 
'I':= {.EQ., .NE., .LT., .LE., .GT., .GE.} 

.SB.: Subset for two intervals 

.SP.: Superset for two intervals 

.DJ.: Disjoint intervals 

.IN.: Membership of a point in an interval 

The sufrtxes VEC and MAT are abbreviations for one-dimensional and two­
dimensional arrays, respectively. 

Tables 1 and 2 are very compact. For instance, the symbol.O may be substituted by 
any operator li~ted in the set '2. Furthermore, each operator of the set !2 may be 
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applied to all type combinations listed in the corresponding rows and columns. So 
each occurrence of '2 in Table 1 represents 144 ( = 9 * 4 * 4) predefined operators. 

Compared to FORTRAN 77, FORTRAN-SC provides an extended set of ma­
thematical standard functions (see Table 3). All these functions are available for the 
basic data types real, complex, interval and complex interval in single and double 
precision. They can be referenced by their specific or their generic name. 
FORTRAN-SC requires the mathematical standard functions with a point result to 
be accur~te to within 1 ulp. The interval functions must be accurate to within 2 ulps. 
In the implemented runtime library, the actual error bounds are usually only half as 
large. Only in rare cases will the error be slightly greater - but always within the 
prescribed bounds. 

Table 3. Mathematical standard functions 

Function Generic Name 

1 Natural Logarithm LOG 

2 Common Logarithm LOGl0 

3 Exponential EXP 

4 Sine SIN 

s Cosine cos 
6 Tangent TAN 

7 Cotangent COT,COTAN 

8 Arcsine ASIN 

9 Arccosine ACOS 

JO Arctangent ATAN 

11 Arccotangent ACOT 

12 Arctangent (x 1/x2) ATAN2 

13 Hyperbolic Sine SINH 

j4 Hyperbolic Cosine COSH 

15 Hyperbolic Tangent TANH 

16 Hyperbolic Cotangent COTH 

17 Inverse Hyperbolic Sine ARSINH 

18 Inverse Hyperbolic Cosine ARCOSH 

19 Inverse Hyperbolic Tangent ARTANH 

20 Inverse Hyperbolic Cotangent ARCOTH 

21 Square Root SQRT 

22 Square SQR 

23 Absolute Value ABS 

24 Argument of a Complex Number ARG 
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Besides the mathematical standard functions, FORTRAN-SC provides all the 
necessary type transfer functions for conversion between the numerical data types. 
They exist for scalar and array types. 

2 .2. Dynamic Arrays 

As an extension to FORTRAN 77, the concept of dynamic arrays is introduced. This 
greatly extends the capabilities supplied by conventional FORTRAN arrays, called 
static arrays. 

Dynamic arrays provide the user with the capability of allocating or freeing storage 
space for an array during execution of a program. Thus, the same program may be 
used for arrays ofany size without recompilation. Furthermore, storage space can be 
employed economically since only the arrays currently needed have to be kept in 
storage and since they always use exactly the space required in the currei:it problem. 
Also, type compatibility and full storage access security are offered for dynamic 
arrays. Note that the concepts of assumed size arrays and adjustable arrays become 
obsolete. Dynamic arrays offer the same functionality while being much more 
versatile. 

In FORTRAN 77, arrays whose dimensions are unknown a priori are implemented 
via pseudo-dynamic mechanisms. This means that a sufficently large work area 
must be provided by the main program to handle the pseudo-dynamic objects, like 
vectors and matrices. 

These and many other disadvantages are avoided through the use of dynamic 
arrays. We list a few advantages of dynamic arrays: 

storage space used only when needed, 
array size may change during execution, 
no recompilation for arrays of different sizes, 
complete type and index checking, 
no extra arguments for array dimensions, 
no user-defined array workspace, 
no module space for dynamic array storage. 

The DYNAMIC statement is used to declare named array types and/or to declare 
dynamic arrays. 

An array type is characterized by the (scalar) data type of the array elements and the 
number of dimensions of the array. We call this information (i.e. element type and 
number of dimensions) the array form or simply the form of a (dynamic or static) 
array. Note that the $ize of an array is not part of this information. 

An array form can be given a name or several distinct names, each identifying a 
different named array type. The type of a dynamic array may simply be specified as 
an array form, or it may be specified by an array type name. 
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Example: Declaration of named array types and dynamic arrays: 

DYNAMIC/REAL (:)/A, B 
DYNAMIC/VECTOR=REAL (:)/V, W, /MATRIX=COMPLEX (:, :)/ 
DYNAMIC/MATRIX/M, /POLYNOMIAL=REAL (:)/P, Q 
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These statements declare A, B, V, W, P, Q as real one-dimensional dynamic arrays 
and M as a complex two-dimensional dynamic array. Note that VECTOR and 
POLYNOMIAL are two different named array types even though they are used for 
arrays of the same form. Thus, A, V, and Pall have different data types. 

In order to obtain storage space for a dynamic array, an ALLOCATE statement can 
be executed which specifies the index range for each dimension of the array. The 
storage space of a dynamic array is deallocated by a FREE statement. 

Example: Allocation and deallocation of dynamic arrays: 

DYNAMIC/DOUBLEMATRIX=DOUBLE REAL(:,:)/ A, B, C 
READ(•,•) I 
ALLOCATE A, B (I : 2 • I, 10) 

C=A+B 
FREE A 
ALLOCATE A (20, 20) 

An existing (allocated) dynamic array may be reallocated by an ALLOCATE 
statement without prior execution of a FREE statement. Thus, in the above 
example, the FREE statement is optional. In this manner the same array variable 
can be changed in size during execution. Note that its contents are lost when doing 
this. Deallocating a non-allocated array has no effect. 

Furthermore, allocation of a dynamic array occurs automatically when assigning 
the value of an array expression to a non-allocated array (e.g. in the statement 
C=A+B in the example above). 

The storage of a dynamic array which is local to a subprogram is automatically 
released before control returns to the calling program unit unless the array name 
occurs in a SAVE statement. Obviously, a static array may neither be allocated nor 
deallocated. 

Array inquiry functions facilitate the use of static and dynamic arrays. In particular, 
the functions LB and UB provide access to the lower and upper index bounds of an 
array. 

2.3. Array-Valued Functions and User-Defined Operators 

In most programming languages the result of a function has to be a single scalar 
value. In addition, FORTRAN-SC allows functions which return a dynamic array 
as result. Thus, the user is no longer forced to wri~e a subroutine instead of an array­
valued function. 
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This concept allows functions with a result array whose size is unknown to the 
calling program even at the time it is calling the function. In general, only the 
function itself knows the size of its result. It is therefore always the function's 
responsibility to allocate the dynamic result array. Of course, allocation of the result 
may be taken care of by array assignment inside the function (as in the example 
below). 

The type of an array function is defined by declaring the function name like a 
dynamic array. 

Example: 
C This functio~-multiplies the real R with the vector Wand 
C substracts the resulting vector from the vector V. 

FUNCTION RVFUN (R, W, V) 
REAL R 
DYNAMIC /REAL(:)/ V, W, RVFUN 
RVFUN=V-R * W 
END 

In the calling program unit, the function name RVFUN must be declared as a real 
one-dimensional dynamic array in a DYNAMIC statement. In addition, the 
function must be declared to be an external routine. Thus, in the calling unit, the 
function name must appear in an EXTERNAL statement or in an OPERATOR 
statement as the implementing function of a user-defined operator. 

For some applications it may be useful and more convenient to introduce operators. 
In FORTRAN-SC, an operator is defined by an operator symbol or name, the 
number and type(s) of its operand(s) and the implementing function. The 
OPERATOR statement is used to declare such user-defined operators. In this way, 
an external function with one or two arguments can be called as a monadic or dyadic 
operator, respectively. 

In an expression, an operator is uniquely determined by the operator symbol or 
name, by its appearance as a monadic or dyadic operator, and by the type(s) of its 
operand(s). 

Example: Definition and usage of an operator for the dyadic product of two real 
vectors: 

PROGRAM MAIN 
INTEGER DIM 
DYNAMIC /REAL(:)/ A, B, /REAL(:,:)/ C 
OPERATOR .MUL.=DYPROD (REAL(:), REAL(:)) REAL(:,:) 
READ(•,•) DIM 
ALLOCATE A, B (1 : DIM) 

C=A .MUL. B 

END 
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FUNCTION DYPROD (X, Y) 
DYNAMIC /REAL(:)/ X, Y, /REAL(:,:)/ DYPROD 
ALLOCATE DYPROD {LB(X): UB(X), LB(Y): UB(Y)) 
DO 1~ i=LB(X), UB(X) 

DO 19 j=LB(Y), UB(Y) 
19 DYPROD(i,j)=X(i) * Y(j) 

END 
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All standard operator symbols a_nd names may be overloaded and/or redefined in 
this way. In the ~xample above, if the operator symbol • were to be used instead of 
the user-defined operator name .MUL., then the predefined multiplication operator 
for two real vectors (the inner product) would no longer be accessible within the 
program unit MAIN. 

Table 4 summarizes the intrinsic operator symbols and names and displays the 
priorities of all FORTRAN-SC operators. Note that the user is free to invent his own 
operator names (enclosed in periods as in FORTRAN 8x [4]). 

Table 4. Precedence of j11tri11sic and user:.deflned operators 

Priority Operators 

high 12 user-defined monadic operators 
11 •• 
10 • I •< /( •> /) .IS. 
9 monadic+ monadic -
8 + - +( -< +) -) .CH. 
7 II 
6 . LT. . LE . .EQ. . GE . . GT . . NE . .SB . . SP . . DJ . .IN . 
s .NOT. 
4 .AND. 
3 .OR. 
2 . EQV. .NEQV . 

low 1 user-defined dyadic operators 

Overloading or redefining intrinsic operator symbols and names does not change 
their priority. Note that the operator priorities in Table4 are the same as in 
FORTRAN 8x [4]. 

The possibility to introduce different named array types for the same array form 
allows the definition of different operators with the same operator symbol (or name) 
for operands of the same form. 

Example: Replacing the DYNAMIC and the OPERATOR statement in program 
MAIN in the preceding example by 

DYNAMIC /COLUMN=REAL(:)/ A 
DYNAMIC /ROW=REAL(:)/ B, /REAL(:,:)/ C 
OPERATOR•=DYPROD (COLUMN, ROW) REAL(:,:) 
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will have the effect of overloading the operator• for a new type combination. The 
standard multiplication operator for two real one-dimensional arrays (the inner 
product) will then still be accessible. 

2.4. Evaluation of Expressions with High Accuracy 

FORTRAN-SC provides a large number of predefined numerical operators and 
intrinsic functions. Although all of these primitives are highly accurate, expressions 
composed of several such elements do not necessarily yield results of high accuracy. 
However, techniques have been developed to evaluate numerical expressions with 
high and guaranteed accuracy. 

A simple class of such expressions are the so-called dot product expressions. We 
distinguish three kinds which differ in their result form: scalar, vector and matrix dot 
product expressions. Each such expression consists of a sum where the terms are 
single elements of this form or single products which deliver results of this form. 
Examples of such expressions are: 

s 1 + s 2 • s 3 - v 1 • v 2 of scalar form 

v 1 +m 1 • v2-s 1 • v3 of vector form 

ml-m2 • m3+sl • m4 of matrix form 

wheres 1, s2, s3 are scalars, v 1, v2, v3 are vectors and m 1, m2, m3, m4 are matrices 
with matching dimensions. The element types may be REAL, DOUBLE REAL, 
COMPLEX and DOUBLE COMPLEX. 

The language FORTRAN-SC provides a special notation which indicates that a dot 
product expression is to be evaluated with 1 ulp accuracy. To obtain the unrounded 
or correctly rounded result of a dot product expression, the user has to parenthesize 
the expression and precede it by the symbol =ti= which may optionally be followed by 
a symbol for the rounding mode. 

The possible rounding modes for dot product expressions are: 

Symbol Expression form Rounding mode 

•• scalar, vector or matrix nearest 
=II=( scalar, vector or matrix downwards 
:ft:) scalar, vector or matrix upwards 

•• scalar, vector or matrix smallest enclosing interval 

• scalar only exact, no rounding 

In order to be able to store the unrounded result of a dot product expression, 
FORTRAN-SC provides the new data types DOT PRECISION and DOT 
PRECISION COMPLEX. Such results are produced by a dot product expression 
where no rounding is specified (see last row in the table above). The DOT 
PRECISION type$ are scalar data types of restricted accessibility. Variables of-
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these types can only be added, subtracted and compared. They may appear as 
summands within any scalar dot product-expression. A dot precision variable may 
only be assigned a dot precision value of the same type. 

Example: 
DOT PRECISION D 
DYNAMIC /REAL(z)/ X, Y, Z, /REAL(:,:)/ A, B 
REAL R 
INTERVAL V 
READ(•,•) n 
ALLOCATE A (n, n), B (=A), X (n), Y, Z ( = X) 

X= :ff:•(Y-A • X) 
V = =If: :ff: (X • Y - Y • Z + R) 
A= :ff:•(A • B-B • A) 

D= :ff:(~) 
DO 1~ j= 1, n 

D=D+ :fl:(A(j,j) • B(j,j)) 
1~ CONTINUE 

R= :fl:• (D) 
V = :ff: :fl: (D) 

In practice, dot product expressions may contain a large number of terms, making 
an explicit notation very cumbersome. In mathematics the symbol Eis used for 
short. For instance, if Ai, Bi are scalars or vectors or matrices for each i = 1, ... , k, 
then the sum 

i=I 

represents a dot product expression. FORTRAN-SC provides the equivalent 
shorthand notation SUM for this purpose. In the example above, the last six lines 
could be replaced by: 

D = :ff: (SUM (A (j,j) • B (j,j),j = l, n)) 
R =:fl:• (D) 
V = :ff: :ff: (D) 

This shows that a result involving n multiplications and n-1 additions can be 
produced with a single rounding operation. In the last statement the exact dot 
product is rounded to the smallest possible interval enclosing the exact value of the 
expression. Thus, the bounds of the interval V will either be the same or two adjacent 
floating-point numbers. 

Dot product expressions play a key role in numerical analysis. Iterative refinement 
or defect correction methods for linear and nonlinear problems usually lead to dot 
product expressions. Exact evaluation of these expressions eliminates cancellation. 
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Information that has been lost by rounding effects during an initial computation can 
often be recovered by defect correction. Such corrections can deliver results of full 
floating-point accuracy. In principle, there is no limit to the accuracy that can be 
obtained by these. methods. 

3. The Implementation of FORTRAN-SC 

Since 1984, a FORTRAN-SC compiler has been developed for the IBM/370 
architecture. First programming experiences have demonstrated the usefulness and 
effectiveness of the language and the reliability of the implementation. 

The FORTRAN-SC compiler is essentially a 2-pass compiler. Its front end performs 
complete lexical, syntactical and semantical analysis of the source program. In order 
to achieve high portability, the code generator produces FORTRAN77 code. For 
easy debugging, the FORTRAN-SC source code can optionally be merged as 
comments into the generated FORTRAN 77 code. The extensive runtime library 
provides the predefined operators, the intrinsic functions and some auxiliary 
routines (e.g. for array management). Error handling is integrated into every 
routine. 

The guiding principle of FORTRAN-SC is to achieve higher accuracy and more 
reliable results in scientific computation. These ideas had a profound influence on 
both the language and its implementation. Several new concepts (new data types, 
dynamic arrays and dot product expressions) required new compilation techniques. 

As mentioned earlier, FORTRAN-SC is closely related to FORTRAN 8x. In 
particular, it is a superset of FORTRAN 77. In contrast to FORTRAN 77, however, 
the current implementation of FORTRAN-SC does not support statement 
functions and entry statements (use separate routines instead), assumed size arrays 
and adjustable arrays (use dynamic arrays instead). 

On vector machines, many ru~time routines could be vectorized. In particular, the 
speed of array operations which work elementwise could be greatly increased. 
However, special care must be taken because the language FORTRAN-SC requires 
that all predefined operators deliver results of 1 ulp accuracy. 

4. FORTRAN-SC Sample Program 

The following program assumes th~t a function (APPINV) for the computation of 
an approximate inverse of a square matrix exists. After preliminary inversion, the 
solution of the linear system is enclosed in an interval vector by successive interval 
iterations. For details about this method, see [21]. 

Note that in FORTRAN-SC lower case letters are interpreted as upper case and 
that identifiers and_ operator names may be up to 31 characters in length. 
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PROGRAM LINSYS 
C Verified solution of the linear system of equations 
C A-x=b 

DYNAMIC /REAL(:,:)/ A, R, UNIT, IDENTITY 
DYNAMIC /INTERVAL(:,:)/ E 
DYNAMIC /REAL(:)/ B 
DYNAMIC /INTERVAL(:)/ X, Y, Z, 
INTEGER dim, i, j, iter 

C UNIT is an EXTERNAL function which delivers the identity 
C matrix of the given dimension 

EXTERNAL UNIT 

C The following operator declaration overloads the intrinsic operator .IN. 
I C for a new operand type combination (2 interval vectors). 
I OPERATOR .IN.=INCL (INTERVAL(:), INTERVAL(:}) LOGICAL 
I 

OPERATOR .EXPAND.=EXPAND (INTERVAL(:)) INTERVAL(:) 
C APPINV is an EXTERNAL function which delivers an 
C approximate inverse of a real matrix 

OPERATOR .APPROXIMATE INVERSE.= 
& APPINV (REAL(:,:)) REAL(:,:) 

WRITE(•,•) 'Please enter the dimension of the linear system' 
READ(•,•) dim 
ALLOCATE A(dim,dim), B(dim) 
WRITE(•,•) 'Please enter the matrix A' 
READ(•,•) ((A (i,j), j = 1, dim), i = 1, dim) 
WRITE(•,•) 'Please enter the right-hand side B' 
READ(•,•) (B (i), i = 1, dim) 

R=.APPROXIMATE INVERSE. A 
C R . b is an approximate solution of the linear system. 
C Z is a maximally accurate inclusion of R • b. It does not 
C usually include the true solution. 

Z= :ti= =tt=(R • B) 
IDENTITY= UNIT(dim) 

C A maximally accurate inclusion of I - R • A is computed. 
E= :ff: :ff:(IDENTITY-R • A) 
X=Z 

DO 2~ iter= 1, 1~ 
C To obtain a true inclusion, the 
C interval vector Xis slightly inflated. 

Y=.EXPAND. X 
C The following expression contains interval vectors and an 
C interval matrix. 

X=Z+E•Y 
IF (X .IN. Y) GOTO 1, 

2~ CONTINUE 

8 Computing 39/2 
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WRITE(•,•) 'No solution found!" 
STOP 

1~ WRITE(•,•) 'The given matrix is non-singular and the', 
& 'solution of the linear system is contained in:' 

WRITE(•, •)X 
END 

FUNCTION EXPAND (X) 
DYNAMIC /INTERVAL(:)/ X, EXPAND 
INTERVAL IEPS 
INTEGER i 
DATA IEPS"./-1.9D-75, 1.9D-75/ 
ALLOCATE-EXPAND (=X) 

C EXPAND now has the same index bounds as X. 
DO 19 i=LB(X), UB(X) 

EXPAND (i) = X (i) + IEPS 
1~ CONTINUE 

RETURN 
END 

FUNCTION INCL (X, Y) 
C Is X a subset of the interior of Y? 

LOGICAL 1NCL 
DYNAMIC /INTERVAL(:)/ X, Y 
INTEGER i 
INCL=.TRUE. 
DO 1~ i=LB(X), UB(X) 

IF (INF (Y (i)) .GE. INF (X (i)) .OR. 
& SUP(Y(i)) .LE. SUP(X·(i))) THEN 

INCL= .FALSE. • 
RETURN 

END IF 
1~ CONTINUE 

RETURN 
END 

S. Conclusion 

Several modern programming languages provide a large number of basic arithmetic 
operations by their usual mathematical symbol. ADA, FORTRAN 8x and other 
languages appropriate for vector machines provide vector and matrix operations. It 
is certainly the most natural requirement ·that these basic operations be executed 
with highest accuracy for all possible combinations of data. If this is not possible, an 
error message should be given. In FORTRAN-SC, all vector and matrix operations 
deliver a result of at l~st 1 ulp accuracy. 
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Finally, FORTRAN-SC greatly simplifies the use of the ACRITH library. ACRITH 
provides routines for a large number of vector and matrix operations as well as for 
elementary functions. All of these can be accessed by their usual mathematical 
notation in FORTRAN-SC. The availability of additional higher data types as well 
as dynamic arrays and array-valued functions provide additional advantages. The 
problem-solving routines of ACRITH and other libraries may be called with a 
reduced list of parameters. All of these concepts improve the readability of programs 
and facilitate debugging considerably. 
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