
Computi~g 39, 93-110 (1987) Computing
© by Springer-Verlag 1987

FORTRAN-SC
• A St~dy of a FORTRAN Extension for Engineering/Scientific

,:__. ·•·· ... Computation with Access to ACRITH

J. H. Bieber and S. M. Rump, Boblingen
U. Kulisch, M. Metzger, Ch. Ulhich and W. Walter, Karlsruhe

Received June 16, 1987; revised August 7, 1987

Abstract - Zasammenfassung

FORTRAN-SC. A Study of a FORTRAN Extension for Engineering/Scientific Computation with Access
to ACRITH. A new programming language called FORTRAN-SC is presented which is closely related
to FORTRAN Bx. FORTRAN-SC is a FORTRAN extension with emphasis on engineering and
scientific computation. It is particularly suitable for the development of numerical algorithms which
deliver highly accurate and automatically verified results. The language allows the declaration of
functions with arbitrary result type, operator overloading and definition, as well as dynamic arrays. It
provides a large number of predefined numerical data types and operators. Programming experiences
with the existing compiler have been very encouraging. FORTRAN-SC greatly facilitates programming
and in particular the use of the ACRITH subroutine library [14], [15].

Key words: Programming languages, FORTRAN, compiler, computer arithmetic, numerical com­
putation, verified numerics.

FORTRAN-SC. Eine FORTRAN-Erweiterung fur naturwissenschaftlich-technisches Rechnen mit Zu­
griff auf ACRITH. FORTRAN-SC ist cine neue Programmiersprache, welche mit FORTRAN 8x eng
verwandt ist. Es handelt sich um eine FORTRAN-Erweiterung fiir Anwendungen im naturwissen­
schaftlich-technischen Bereich. lnsbesondere eignet sich FOR TRAN-SC fiir die Entwicklung von
numerischen Algorithmen, welche hochgenaue • und automatisch verifizierte Ergebnisse lief em. Die
Sprache ermoglicht die Verein barung von Funktionen mit allgemeinem Ergebnistyp, das Oberladen und
Definieren von Operatoren, sowie dynamische Felder. AuBerdem wird eine groBe Zahl vordefiniener
numerischer Datentypen und Operatoren zur Verfligung gestellt. Die bisherigen Programmiererfahrun­
gen mit dem existierenden Compiler sind sehr vielversprechend. FORTRAN-SC vereinfacht das
Programmieren und insbesondere die Benutzung der ACRITH-Unterprogrammbibliothek wesentlich
(14], [15].

1. Introduction

In electronic computers the elementary arithmetic operations are these days
generally approximated by floating-point operations of highest accuracy. This is one
of the essential intentions of the ANSI/IEEE Floating-Point Arithmetic Standard
754 [S]. This arithmetic standard also requires the four basic arithmetic operations

,.

94 J. H. Bieber, S. M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich and W. Walter:

+, - , •, / with directed roundings. A large number of processors is already on the
market which provide these operations. So far, however, no common programming
language allows access to these operations.

On the other hand, there is a noticeable shift from general purpose machines to
vector processors and parallel computers in scientific computation. These so-called
super-computers provide additional arithmetic operations such as "multiply and
add", "accumulate" or "multiply and accumulate" [12]. All of these hardware
operations should always deliver a result of highest accuracy for all possible
combinations of data. As far as we know, no processor which fulfills this requirement
is as yet available. From the point of view of programming, there exists no standard
language which permits direct access to these operations.

There is a continuous effort to enhance the power of programming languages. New
powerful languages like ADA have been designed, and the development of existing
languages like FORTRAN is constantly in progress. However, since these
languages still lack a precise definition of the arithmetic, the same program may
produce different results on different processors.

During the development of FORTRAN Sx, proposals were made as to how real and
complex operations with directed roundings, interval and complex interval
arithmetic, and vector/matrix operations for an these types could be incorporated
into that language [8], [9]. Many useful concepts which are necessary for their
realization have been adopted in recent drafts of the proposed FORTRAN 8x
standard. Such concepts are: derived data types, dynamic arrays, functions with
arbitrary result type, operator overloading and definition, and modules.

In this paper, we refer to the programming language described by the latest draft of
the proposed FORTRAN8x standard simply as FORTRAN8x [4].

In 1983, a group of scientists1 worked out the first draft of a programming language
which is closely related to FORTRAN 8x. In particular, it is a superset of
FORTRAN 77 [3]. The new language was given the name FORTRAN-SC. In this
paper, we will give an informal description of this language. We will also make some
remarks on its current implementation. FORTRAN-SC pursues the same goals as
PASCAL-SC [10], [17], another programming language for scientific computation

• which was designed and implemented at the Institute for Applied Mathematics at
the University of Karlsruhe.

With respect to scientific computation the newly designed language surpasses
FORTRAN 8x. For example, FORTRAN-SC provides more than 1000 predefined
arithmetic operators for all kinds of numerical data types. All of these operators are
required to deliver a result of at least 1 ulp accuracy. This means that the error is less
than 1 unit in the last place (1 ulp). In other words, there is no floating-point number
between the computed and the exact result. Since our interest is mainly directed
towards scientific computation, several features of FORTRAN 8x which are of
minor importance for that purpose were not incorporated into FORTRAN-SC.

1 J. H. Bieber, H. Bohm, G. Bohlcnder, A. T. Gcrlicher, K. Griiner, E. Kaucher, R. Klatte, U. W.
Kulisch, W. L. Miranker, M. Neap, S. M. Rump, Ch. Ullrich, J. Wolfl'von Gudcnbcrg.

FORTRAN-SC 95

In FORTRAN-SC, the mathematical definition of the arithmetic is part of the
language. This definition includes the vector/matrix operations. The elementary
arithmetic operations +, - , •, / with directed roundings are axiomatically defined
and directly accessible in the language. All other arithmetic operations, in particular
for intervals, are defined according to the rules of semimorphism [18].

During the process of implementation, the new language was further developed and
completed. The compiler consists of a complete front end performing full analysis of
the source language and· a code generator. To achieve high portability, the code
generator produces FORTRAN 77 code. The extensive runtime library contains the
predefined operators and intrinsic functions of FORTRAN-SC. All implemented
arithmetic operators are accurate to at least 1 ulp.

Programming experiences in FORTRAN-SC have been very encouraging. As a
result of the operator notation in expressions for all arithmetic data types, programs
become clearer and more concise. FORTRAN-SC programs are easy to read, write

• and understand.

One of the main goals of the development of FORTRAN-SC was to facilitate the use
of the ACRITH subroutine library. FORTRAN-SC makes all ACRITH sub­
routines which provide arithmetic operations available as predefined operators.
Furthermore, the large number of ACRITH mathematical standard functions for
real, complex, interval and complex interval data may be referenced by their specific
or generic names in FORTRAN-SC.

Through the availability of the interval, vector and matrix data types, the use of the
ACRITH problem solving routines is greatly simplified. It is a common characteris­
tic of all ACRITH routines that whenever they deliver a result, it is verified to be
correct by the computer.

The language FORTRAN-SC was developed and implemented in a collaboration of
the IBM Development Laboratory in Boblingen, Federal Republic of Germany,
with the Institute for Applied Mathematics at the University of Karlsruhe.

2. The Language FORTRAN-SC

In traditional programming languages like FORTRAN, ALGOL or PASCAL,
each vector/matrix operation such as matrix multiplication or vector addition
requires an explicit loop construct or a call to an appropriate procedure. The same is
true for all operations with a non-scalar (or structured) result, e.g. for interval
arithmetic. To avoid such difficulties, the language FORTRAN-SC provides all
vector and matrix operations in the commonly used linear spaces (the real and
complex numbers, real and complex vectors, real and complex matrices as well as all
the corresponding interval spaces) as predefined operators. All of these operations
are accessible through their usual operator symbol. Thus, expressions of these types
can be written in the usual mathematical notation.

Additionally, a general operator concept is available in FORTRAN-SC. It enables
the user to define his own operators for old and new data types. Other modern

96 J. H. Bieber, S. M. Rump. U. Kulisch. M. Metzger. Ch. Ullrich and W. Walter:

programming languages like ADA and FORTRAN 8x also provide an operator
concept and the possibility to write non-scalar expressions. Thus, all of these
languages provide the necessary tools for writing expressions in the common linear
spaces in mathematical notation. The difference is, however, that FORTRAN-SC
requires all predefined operators to deliver results of 1 ulp accuracy for all pos­
sible combinations of the data. The implemented runtime library satisfies this
requirement.

Moreover, FORTRAN-SC provides means for computing certain classes of vector
and matrix expressions with 1 ulp accuracy. In contrast, vector/matrix operations
and expressions evaluated in the traditional manner will not, in general, deliver high
accuracy.

It is an essential idea of FORTRAN-SC that the user need not perform an error
analysis for any basic vector/matrix operation provided by the language. As a
matter of fact, this should be a natural requirement for any modern programming
language. Whenever a language provides a higher-dimensional operation by an
operator symbol, the result should be of 1 ulp accuracy (as required in
FORTRAN-SC). Otherwise, an error message should be given.

2. 1. Standard Data Types, Predefined Operators and Functions

The following scalar data types are available in FORTRAN-SC:

INTEGER, REAL, DOUBLE REAL, COMPLEX, DOUBLE COMPLEX,
INTERVAL, DOUBLE INTERVAL, COMPLEX INTERVAL, DOUBLE
COMPLEX INTERVAL, LOGICAL, CHARACTER.

For these basic data types, arrays can be declared in the usual manner. For a large
number of numerical array types, operators are predefined which always deliver
1 ulp accuracy. This means that the traditional arithmetic operators +, - , *,/are to
be implemented with the rounding to the nearest machine-representable element.
The newly introduced arithmetic operators + (, - (, •(,/(and +), -), •), /) are
to be implel!lented with the monotone downwardly directed and upwardly directed
rounding, respectively. For real and double real scalar data the latter operations are
also provided by the ANSI/IEEE Arithmetic Standard 754 [5].

Tables 1 and 2 show all predefined arithmetical and relational operators. We use the
foUowing abbreviations for t~e basic numerical data types:

R - REAL
DR - DOUBLE REAL

C-COMPLEX
DC - DOUBLE COMPLEX

I - INTERVAL
DI - DOUBLE INTERVAL
CI - COMPLEX INTERVAL

DCI - DOUBLE COMPLEX INTERVAL

FORTRAN-SC

Table 1. Predefined arithmetic operators

right
INTEGER R I RVEC operand

DR DI DRVEC
C CI CVEC

lef't DC DCI DCVEC
operand

1) {+,-} {+,-} {+,-} {+,-}

INTEGER l A). n

R
DR A A n
C
DC

I r
DI l -
CI ' DCI

RVEC
DRVEC e e a
CVEC
DCVEC

IVEC
DIVEC {•,/} { •,/)
CIVEC
DCIVEC

RMAT
DRMAT e e n
CMAT
DCMAT

IMAT
DIMAT {•./} { •./}
CIMAT
DCIMAT

1) The operators in this row are monadic (i.e. no left operand).

l : = { +' - , •, /, .. }
A : = { +' + (, +), - ' - (, -), •, •(, •), /, /(, /), ••)
fl:={•,•(,•>)
9 := {•. •<. •>, /, /(, /)}
'2 : = { +. + (, +), - ' - (, -), •. •(, •) }
• := { +, -, •, .IS., .CH.}
{ :={ +, -, •,/,.IS., .CH.}
r :={ +, -, •,/,.IS., .CH.,••}

.IS.: Intersection of two intervals

.CH.: Convex hull of two intervals

IVEC
DIVEC
CIVEC
DCIVEC

{+,-}

{•}

{•}

"'

{•)

97

RMAT IMAT
DRMAT DIMAT
CMAT CIMAT
DCMAT DCIMAT

{+,-} { +, -}

n {•}

n

{•)

(1

"'

98 J. H. Bieber, S. M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich and W. Walter:

Table 2. Predefined relational operators

right
INTEGER R I RVEC IVEC RMAT IMAT operand

DR DI DRVEC DIVEC DRMAT DIMAT
C CI CVEC CIVEC CMAT CIMAT

left DC DCI DCVEC DCIVEC DCMAT DCIMAT
operand

INTEGER tp 'I' E -
R
DR 'I' . 'I' E -
C
DC E E E 3

I
DI
CJ A
DCI

RVEC
DRVEC
CVEC E -
DCVEC

IVEC
DIVEC
CIVEC A
DCIVEC

RMAT
DRMAT
CMAT E -
DCMAT

IMAT
DIMAT
CIMAT A
DCIMAT .

.::= {.IN.}
E:= {.EQ., .NE.}
A:= {.EQ., .NE., .SB., .SP., .DJ.}
'I':= {.EQ., .NE., .LT., .LE., .GT., .GE.}

.SB.: Subset for two intervals

.SP.: Superset for two intervals

.DJ.: Disjoint intervals

.IN.: Membership of a point in an interval

The sufrtxes VEC and MAT are abbreviations for one-dimensional and two­
dimensional arrays, respectively.

Tables 1 and 2 are very compact. For instance, the symbol.O may be substituted by
any operator li~ted in the set '2. Furthermore, each operator of the set !2 may be

FORTRAN-SC 99

applied to all type combinations listed in the corresponding rows and columns. So
each occurrence of '2 in Table 1 represents 144 (= 9 * 4 * 4) predefined operators.

Compared to FORTRAN 77, FORTRAN-SC provides an extended set of ma­
thematical standard functions (see Table 3). All these functions are available for the
basic data types real, complex, interval and complex interval in single and double
precision. They can be referenced by their specific or their generic name.
FORTRAN-SC requires the mathematical standard functions with a point result to
be accur~te to within 1 ulp. The interval functions must be accurate to within 2 ulps.
In the implemented runtime library, the actual error bounds are usually only half as
large. Only in rare cases will the error be slightly greater - but always within the
prescribed bounds.

Table 3. Mathematical standard functions

Function Generic Name

1 Natural Logarithm LOG

2 Common Logarithm LOGl0

3 Exponential EXP

4 Sine SIN

s Cosine cos
6 Tangent TAN

7 Cotangent COT,COTAN

8 Arcsine ASIN

9 Arccosine ACOS

JO Arctangent ATAN

11 Arccotangent ACOT

12 Arctangent (x 1/x2) ATAN2

13 Hyperbolic Sine SINH

j4 Hyperbolic Cosine COSH

15 Hyperbolic Tangent TANH

16 Hyperbolic Cotangent COTH

17 Inverse Hyperbolic Sine ARSINH

18 Inverse Hyperbolic Cosine ARCOSH

19 Inverse Hyperbolic Tangent ARTANH

20 Inverse Hyperbolic Cotangent ARCOTH

21 Square Root SQRT

22 Square SQR

23 Absolute Value ABS

24 Argument of a Complex Number ARG

100 J. H. Bieber, S. M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich and W. Walter:

Besides the mathematical standard functions, FORTRAN-SC provides all the
necessary type transfer functions for conversion between the numerical data types.
They exist for scalar and array types.

2 .2. Dynamic Arrays

As an extension to FORTRAN 77, the concept of dynamic arrays is introduced. This
greatly extends the capabilities supplied by conventional FORTRAN arrays, called
static arrays.

Dynamic arrays provide the user with the capability of allocating or freeing storage
space for an array during execution of a program. Thus, the same program may be
used for arrays ofany size without recompilation. Furthermore, storage space can be
employed economically since only the arrays currently needed have to be kept in
storage and since they always use exactly the space required in the currei:it problem.
Also, type compatibility and full storage access security are offered for dynamic
arrays. Note that the concepts of assumed size arrays and adjustable arrays become
obsolete. Dynamic arrays offer the same functionality while being much more
versatile.

In FORTRAN 77, arrays whose dimensions are unknown a priori are implemented
via pseudo-dynamic mechanisms. This means that a sufficently large work area
must be provided by the main program to handle the pseudo-dynamic objects, like
vectors and matrices.

These and many other disadvantages are avoided through the use of dynamic
arrays. We list a few advantages of dynamic arrays:

storage space used only when needed,
array size may change during execution,
no recompilation for arrays of different sizes,
complete type and index checking,
no extra arguments for array dimensions,
no user-defined array workspace,
no module space for dynamic array storage.

The DYNAMIC statement is used to declare named array types and/or to declare
dynamic arrays.

An array type is characterized by the (scalar) data type of the array elements and the
number of dimensions of the array. We call this information (i.e. element type and
number of dimensions) the array form or simply the form of a (dynamic or static)
array. Note that the $ize of an array is not part of this information.

An array form can be given a name or several distinct names, each identifying a
different named array type. The type of a dynamic array may simply be specified as
an array form, or it may be specified by an array type name.

FORTRAN-SC

Example: Declaration of named array types and dynamic arrays:

DYNAMIC/REAL (:)/A, B
DYNAMIC/VECTOR=REAL (:)/V, W, /MATRIX=COMPLEX (:, :)/
DYNAMIC/MATRIX/M, /POLYNOMIAL=REAL (:)/P, Q

101

These statements declare A, B, V, W, P, Q as real one-dimensional dynamic arrays
and M as a complex two-dimensional dynamic array. Note that VECTOR and
POLYNOMIAL are two different named array types even though they are used for
arrays of the same form. Thus, A, V, and Pall have different data types.

In order to obtain storage space for a dynamic array, an ALLOCATE statement can
be executed which specifies the index range for each dimension of the array. The
storage space of a dynamic array is deallocated by a FREE statement.

Example: Allocation and deallocation of dynamic arrays:

DYNAMIC/DOUBLEMATRIX=DOUBLE REAL(:,:)/ A, B, C
READ(•,•) I
ALLOCATE A, B (I : 2 • I, 10)

C=A+B
FREE A
ALLOCATE A (20, 20)

An existing (allocated) dynamic array may be reallocated by an ALLOCATE
statement without prior execution of a FREE statement. Thus, in the above
example, the FREE statement is optional. In this manner the same array variable
can be changed in size during execution. Note that its contents are lost when doing
this. Deallocating a non-allocated array has no effect.

Furthermore, allocation of a dynamic array occurs automatically when assigning
the value of an array expression to a non-allocated array (e.g. in the statement
C=A+B in the example above).

The storage of a dynamic array which is local to a subprogram is automatically
released before control returns to the calling program unit unless the array name
occurs in a SAVE statement. Obviously, a static array may neither be allocated nor
deallocated.

Array inquiry functions facilitate the use of static and dynamic arrays. In particular,
the functions LB and UB provide access to the lower and upper index bounds of an
array.

2.3. Array-Valued Functions and User-Defined Operators

In most programming languages the result of a function has to be a single scalar
value. In addition, FORTRAN-SC allows functions which return a dynamic array
as result. Thus, the user is no longer forced to wri~e a subroutine instead of an array­
valued function.

102 J. H. Bleher, S. M. Rump, U. Kulisch, M. Metzger, Ch. UUrich and W. Walter:

This concept allows functions with a result array whose size is unknown to the
calling program even at the time it is calling the function. In general, only the
function itself knows the size of its result. It is therefore always the function's
responsibility to allocate the dynamic result array. Of course, allocation of the result
may be taken care of by array assignment inside the function (as in the example
below).

The type of an array function is defined by declaring the function name like a
dynamic array.

Example:
C This functio~-multiplies the real R with the vector Wand
C substracts the resulting vector from the vector V.

FUNCTION RVFUN (R, W, V)
REAL R
DYNAMIC /REAL(:)/ V, W, RVFUN
RVFUN=V-R * W
END

In the calling program unit, the function name RVFUN must be declared as a real
one-dimensional dynamic array in a DYNAMIC statement. In addition, the
function must be declared to be an external routine. Thus, in the calling unit, the
function name must appear in an EXTERNAL statement or in an OPERATOR
statement as the implementing function of a user-defined operator.

For some applications it may be useful and more convenient to introduce operators.
In FORTRAN-SC, an operator is defined by an operator symbol or name, the
number and type(s) of its operand(s) and the implementing function. The
OPERATOR statement is used to declare such user-defined operators. In this way,
an external function with one or two arguments can be called as a monadic or dyadic
operator, respectively.

In an expression, an operator is uniquely determined by the operator symbol or
name, by its appearance as a monadic or dyadic operator, and by the type(s) of its
operand(s).

Example: Definition and usage of an operator for the dyadic product of two real
vectors:

PROGRAM MAIN
INTEGER DIM
DYNAMIC /REAL(:)/ A, B, /REAL(:,:)/ C
OPERATOR .MUL.=DYPROD (REAL(:), REAL(:)) REAL(:,:)
READ(•,•) DIM
ALLOCATE A, B (1 : DIM)

C=A .MUL. B

END

FORTRAN-SC

FUNCTION DYPROD (X, Y)
DYNAMIC /REAL(:)/ X, Y, /REAL(:,:)/ DYPROD
ALLOCATE DYPROD {LB(X): UB(X), LB(Y): UB(Y))
DO 1~ i=LB(X), UB(X)

DO 19 j=LB(Y), UB(Y)
19 DYPROD(i,j)=X(i) * Y(j)

END

103

All standard operator symbols a_nd names may be overloaded and/or redefined in
this way. In the ~xample above, if the operator symbol • were to be used instead of
the user-defined operator name .MUL., then the predefined multiplication operator
for two real vectors (the inner product) would no longer be accessible within the
program unit MAIN.

Table 4 summarizes the intrinsic operator symbols and names and displays the
priorities of all FORTRAN-SC operators. Note that the user is free to invent his own
operator names (enclosed in periods as in FORTRAN 8x [4]).

Table 4. Precedence of j11tri11sic and user:.deflned operators

Priority Operators

high 12 user-defined monadic operators
11 ••
10 • I •< /(•> /) .IS.
9 monadic+ monadic -
8 + - +(-< +) -) .CH.
7 II
6 . LT. . LE . .EQ. . GE . . GT . . NE . .SB . . SP . . DJ . .IN .
s .NOT.
4 .AND.
3 .OR.
2 . EQV. .NEQV .

low 1 user-defined dyadic operators

Overloading or redefining intrinsic operator symbols and names does not change
their priority. Note that the operator priorities in Table4 are the same as in
FORTRAN 8x [4].

The possibility to introduce different named array types for the same array form
allows the definition of different operators with the same operator symbol (or name)
for operands of the same form.

Example: Replacing the DYNAMIC and the OPERATOR statement in program
MAIN in the preceding example by

DYNAMIC /COLUMN=REAL(:)/ A
DYNAMIC /ROW=REAL(:)/ B, /REAL(:,:)/ C
OPERATOR•=DYPROD (COLUMN, ROW) REAL(:,:)

104 J. H. Bieber, S. M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich and W. Walter:

will have the effect of overloading the operator• for a new type combination. The
standard multiplication operator for two real one-dimensional arrays (the inner
product) will then still be accessible.

2.4. Evaluation of Expressions with High Accuracy

FORTRAN-SC provides a large number of predefined numerical operators and
intrinsic functions. Although all of these primitives are highly accurate, expressions
composed of several such elements do not necessarily yield results of high accuracy.
However, techniques have been developed to evaluate numerical expressions with
high and guaranteed accuracy.

A simple class of such expressions are the so-called dot product expressions. We
distinguish three kinds which differ in their result form: scalar, vector and matrix dot
product expressions. Each such expression consists of a sum where the terms are
single elements of this form or single products which deliver results of this form.
Examples of such expressions are:

s 1 + s 2 • s 3 - v 1 • v 2 of scalar form

v 1 +m 1 • v2-s 1 • v3 of vector form

ml-m2 • m3+sl • m4 of matrix form

wheres 1, s2, s3 are scalars, v 1, v2, v3 are vectors and m 1, m2, m3, m4 are matrices
with matching dimensions. The element types may be REAL, DOUBLE REAL,
COMPLEX and DOUBLE COMPLEX.

The language FORTRAN-SC provides a special notation which indicates that a dot
product expression is to be evaluated with 1 ulp accuracy. To obtain the unrounded
or correctly rounded result of a dot product expression, the user has to parenthesize
the expression and precede it by the symbol =ti= which may optionally be followed by
a symbol for the rounding mode.

The possible rounding modes for dot product expressions are:

Symbol Expression form Rounding mode

•• scalar, vector or matrix nearest
=II=(scalar, vector or matrix downwards
:ft:) scalar, vector or matrix upwards

•• scalar, vector or matrix smallest enclosing interval

• scalar only exact, no rounding

In order to be able to store the unrounded result of a dot product expression,
FORTRAN-SC provides the new data types DOT PRECISION and DOT
PRECISION COMPLEX. Such results are produced by a dot product expression
where no rounding is specified (see last row in the table above). The DOT
PRECISION type$ are scalar data types of restricted accessibility. Variables of-

FORTRAN-SC 105

these types can only be added, subtracted and compared. They may appear as
summands within any scalar dot product-expression. A dot precision variable may
only be assigned a dot precision value of the same type.

Example:
DOT PRECISION D
DYNAMIC /REAL(z)/ X, Y, Z, /REAL(:,:)/ A, B
REAL R
INTERVAL V
READ(•,•) n
ALLOCATE A (n, n), B (=A), X (n), Y, Z (= X)

X= :ff:•(Y-A • X)
V = =If: :ff: (X • Y - Y • Z + R)
A= :ff:•(A • B-B • A)

D= :ff:(~)
DO 1~ j= 1, n

D=D+ :fl:(A(j,j) • B(j,j))
1~ CONTINUE

R= :fl:• (D)
V = :ff: :fl: (D)

In practice, dot product expressions may contain a large number of terms, making
an explicit notation very cumbersome. In mathematics the symbol Eis used for
short. For instance, if Ai, Bi are scalars or vectors or matrices for each i = 1, ... , k,
then the sum

i=I

represents a dot product expression. FORTRAN-SC provides the equivalent
shorthand notation SUM for this purpose. In the example above, the last six lines
could be replaced by:

D = :ff: (SUM (A (j,j) • B (j,j),j = l, n))
R =:fl:• (D)
V = :ff: :ff: (D)

This shows that a result involving n multiplications and n-1 additions can be
produced with a single rounding operation. In the last statement the exact dot
product is rounded to the smallest possible interval enclosing the exact value of the
expression. Thus, the bounds of the interval V will either be the same or two adjacent
floating-point numbers.

Dot product expressions play a key role in numerical analysis. Iterative refinement
or defect correction methods for linear and nonlinear problems usually lead to dot
product expressions. Exact evaluation of these expressions eliminates cancellation.

106 J. H. Bieber, S. M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich and W. Walter:

Information that has been lost by rounding effects during an initial computation can
often be recovered by defect correction. Such corrections can deliver results of full
floating-point accuracy. In principle, there is no limit to the accuracy that can be
obtained by these. methods.

3. The Implementation of FORTRAN-SC

Since 1984, a FORTRAN-SC compiler has been developed for the IBM/370
architecture. First programming experiences have demonstrated the usefulness and
effectiveness of the language and the reliability of the implementation.

The FORTRAN-SC compiler is essentially a 2-pass compiler. Its front end performs
complete lexical, syntactical and semantical analysis of the source program. In order
to achieve high portability, the code generator produces FORTRAN77 code. For
easy debugging, the FORTRAN-SC source code can optionally be merged as
comments into the generated FORTRAN 77 code. The extensive runtime library
provides the predefined operators, the intrinsic functions and some auxiliary
routines (e.g. for array management). Error handling is integrated into every
routine.

The guiding principle of FORTRAN-SC is to achieve higher accuracy and more
reliable results in scientific computation. These ideas had a profound influence on
both the language and its implementation. Several new concepts (new data types,
dynamic arrays and dot product expressions) required new compilation techniques.

As mentioned earlier, FORTRAN-SC is closely related to FORTRAN 8x. In
particular, it is a superset of FORTRAN 77. In contrast to FORTRAN 77, however,
the current implementation of FORTRAN-SC does not support statement
functions and entry statements (use separate routines instead), assumed size arrays
and adjustable arrays (use dynamic arrays instead).

On vector machines, many ru~time routines could be vectorized. In particular, the
speed of array operations which work elementwise could be greatly increased.
However, special care must be taken because the language FORTRAN-SC requires
that all predefined operators deliver results of 1 ulp accuracy.

4. FORTRAN-SC Sample Program

The following program assumes th~t a function (APPINV) for the computation of
an approximate inverse of a square matrix exists. After preliminary inversion, the
solution of the linear system is enclosed in an interval vector by successive interval
iterations. For details about this method, see [21].

Note that in FORTRAN-SC lower case letters are interpreted as upper case and
that identifiers and_ operator names may be up to 31 characters in length.

FORTRAN-SC 107

PROGRAM LINSYS
C Verified solution of the linear system of equations
C A-x=b

DYNAMIC /REAL(:,:)/ A, R, UNIT, IDENTITY
DYNAMIC /INTERVAL(:,:)/ E
DYNAMIC /REAL(:)/ B
DYNAMIC /INTERVAL(:)/ X, Y, Z,
INTEGER dim, i, j, iter

C UNIT is an EXTERNAL function which delivers the identity
C matrix of the given dimension

EXTERNAL UNIT

C The following operator declaration overloads the intrinsic operator .IN.
I C for a new operand type combination (2 interval vectors).
I OPERATOR .IN.=INCL (INTERVAL(:), INTERVAL(:}) LOGICAL
I

OPERATOR .EXPAND.=EXPAND (INTERVAL(:)) INTERVAL(:)
C APPINV is an EXTERNAL function which delivers an
C approximate inverse of a real matrix

OPERATOR .APPROXIMATE INVERSE.=
& APPINV (REAL(:,:)) REAL(:,:)

WRITE(•,•) 'Please enter the dimension of the linear system'
READ(•,•) dim
ALLOCATE A(dim,dim), B(dim)
WRITE(•,•) 'Please enter the matrix A'
READ(•,•) ((A (i,j), j = 1, dim), i = 1, dim)
WRITE(•,•) 'Please enter the right-hand side B'
READ(•,•) (B (i), i = 1, dim)

R=.APPROXIMATE INVERSE. A
C R . b is an approximate solution of the linear system.
C Z is a maximally accurate inclusion of R • b. It does not
C usually include the true solution.

Z= :ti= =tt=(R • B)
IDENTITY= UNIT(dim)

C A maximally accurate inclusion of I - R • A is computed.
E= :ff: :ff:(IDENTITY-R • A)
X=Z

DO 2~ iter= 1, 1~
C To obtain a true inclusion, the
C interval vector Xis slightly inflated.

Y=.EXPAND. X
C The following expression contains interval vectors and an
C interval matrix.

X=Z+E•Y
IF (X .IN. Y) GOTO 1,

2~ CONTINUE

8 Computing 39/2

108 J. H. Bieber, S. M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich and W. Walter:

WRITE(•,•) 'No solution found!"
STOP

1~ WRITE(•,•) 'The given matrix is non-singular and the',
& 'solution of the linear system is contained in:'

WRITE(•, •)X
END

FUNCTION EXPAND (X)
DYNAMIC /INTERVAL(:)/ X, EXPAND
INTERVAL IEPS
INTEGER i
DATA IEPS"./-1.9D-75, 1.9D-75/
ALLOCATE-EXPAND (=X)

C EXPAND now has the same index bounds as X.
DO 19 i=LB(X), UB(X)

EXPAND (i) = X (i) + IEPS
1~ CONTINUE

RETURN
END

FUNCTION INCL (X, Y)
C Is X a subset of the interior of Y?

LOGICAL 1NCL
DYNAMIC /INTERVAL(:)/ X, Y
INTEGER i
INCL=.TRUE.
DO 1~ i=LB(X), UB(X)

IF (INF (Y (i)) .GE. INF (X (i)) .OR.
& SUP(Y(i)) .LE. SUP(X·(i))) THEN

INCL= .FALSE. •
RETURN

END IF
1~ CONTINUE

RETURN
END

S. Conclusion

Several modern programming languages provide a large number of basic arithmetic
operations by their usual mathematical symbol. ADA, FORTRAN 8x and other
languages appropriate for vector machines provide vector and matrix operations. It
is certainly the most natural requirement ·that these basic operations be executed
with highest accuracy for all possible combinations of data. If this is not possible, an
error message should be given. In FORTRAN-SC, all vector and matrix operations
deliver a result of at l~st 1 ulp accuracy.

FORTRAN-SC 109

Finally, FORTRAN-SC greatly simplifies the use of the ACRITH library. ACRITH
provides routines for a large number of vector and matrix operations as well as for
elementary functions. All of these can be accessed by their usual mathematical
notation in FORTRAN-SC. The availability of additional higher data types as well
as dynamic arrays and array-valued functions provide additional advantages. The
problem-solving routines of ACRITH and other libraries may be called with a
reduced list of parameters. All of these concepts improve the readability of programs
and facilitate debugging considerably.

References

[I) Agarwal, R. C., Cooley, J. W., Gustavson, F. G., Shearer,J. B., Slishman, G., Tuckennan, B.: New
Scalar and Vector Elementary Functions for the IBM System/370. IBM Journal of Research and
Deyelopment 30/2, 126-144 (1986).

[2] Alefeld, G., Herzberger, J.: Introduction to Interval Analysis. New York: Academic Press 1983.
(3) American National Standards Institute: American National Standard Programming Language

FORTRAN. ANSI X3.9-1978.
(4] American National Standards Institute: American National Standard Programming Language

FORTRAN. Draft SB, Version 104, ANSI X3.9-198x (1987). .
(SJ American National Standards Institute/ Institute of Electrical & Electronic Engineers: A Standard

for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985, New York (Aug. 198S).
(6) Arithmos (BS 2000) Benutzcrhandbucb. Siemens, U2900-J-Z87-1 (Sept. 1986).
[7] Bohlender, G., Kaucher, E., Klatte, R., Kulisch, U., Miranker, W. L, Ullrich, Ch., Wolff v.

Gudenberg, J.: FORTRAN for Contemporary Numerical Computation. IBM Research Report
RC 8348 (1980). Computing 26, 277-314 (1981).

[8] Bohlender, G., Bohm, H., Gruner, K., Kaucher, E., Klatte, R., Kramer, W.1 Kulisch, U., Rump,
S. M., Ullrich, Ch., Wolffv. Gudenberg, J., Miranker, W. L.: Proposal for Arithmetic Specification
in FORTRAN Bx. Proceedings of the International Conference on: Tools, Methods and
Languages for Scientific and Engineering Computation, Paris 1983, North Holland (1984).

[9} Bohlender, G ., Bohm, H., Braune, K., Gruner, K., Kaucher, E., Kirchner, R., Klatte, R., Kramer,
W., Kulisch, U., Miranker, W. L., Ullrich, Ch., Wolff v. Gudenberg, J.: Application Module:
Scientific Computation for FORTRAN 8x. Modified Proposal for Arithmetic Specification
According to Guidelines of the X3J3-Meetings in:rulsa and Chapel Hill. Report of the Institute for
Applied Mathematics, University of Karlsruhe (March 1983).

(10) Bohlender, G., Rall, L. 8., Ullrich, Ch., Wolff v. Gudenberg, J.: PASCAL-SC: Wirkungsvoll
programmieren, kontrolliert rechnen. Mannheim-Wien-Zurich: Bibliographisches lnstitut -
Wissenschaftsverlag 1986.

(1 I] Braune, K., Kraemer, W.: High-Accuracy Standard Functions for Intervals. Computer Systems:
Perf onnancc and Simulation (Ruschitzka, M., ed.). North-Holland (1986).

(12) Buchholz, W.: The IBM System/370 Vector Architecture. IBM Systems Journal 25/1 (1986).
(13) Gal, S.: Computing Elementary Functions: A New Approach for Achieving High Accuracy and

Good Perf ormancc. IBM Technical Report 88.153 (198S).
(14) IBM High-Accuracy Arithmetic Subroutine Library (ACRITH): General Information Manual,

GC 33-6163-02, 3rd Edition (April 1986).
(15) IBM High-Accurc1cy Arithmetic Subroutine Library (ACRITH): Program Description and User·s

Guide, SC 33-6164-02, 3rd Edition (April 1986).
(16) IBM System/370 RPQ: High-Accuracy Arithmetic. SA22-7093-0 (1984).
(17) Kulisch, U. (ed.): PASCAL-SC: A PASCAL Extension for Scientific Computation. Information

Manual and Floppy Disks, Version IBM PC/AT, Operating System DOS, 8. G. Teubner,
Stuttgart. Chichester: John Wiley & Sons 1987.

(18) Kulisch, U., Mirankcr, W. L.: Computer Arithmetic in Theory and Practice. New York: Academic
Press 1981.

110 FORTRAN-SC

[19] Kulisch, U., Miranker, W. L. (eds.): A New Approach to Scientific Computation. New York:
Academic Press 1983.

[20) Moore, R. E.: Interval Analysis. Englewood Cliffs, N.J.: Prentice Hall 1966.
(21] Rump, S. M.: Solving Algebraic Problems with High Accuracy. In: (19], pp.58-62.

J. H. Bieber and S. M. Rump
Entwicklung und Forschung
IBM Deutschland GmbH.
Scbonaicher Strasse 220
D-7030 Boblingen
Federal Republic of Germany

U. Kuliscb, M. Metzger,
Ch. Ullrich and W. Walter
lnstitut fiir Angewandte Mathematik
Universitit Karlsruhe
Postfach 6980
D-7500 Karlsruhe
Federal Republic of Germany

