
'!

SOl-7W.-\RE-PR.\CTICE A:-..o EXPERIE:'\'CE, \ 0 0L. 18(00). 000-000 (198S)

Compiler Support for Floating-point
Computation •

CHARLES FAR~t:1\1
Computer Science Departmmt, 'Ct1it·ersity of Ca/ifomia, Berkt'iey, &,-keley, Califcm,ia

9-1720. i ·.s.-t

Predictability is a basic requirement for compilers of floating-point code -·-it must be possible
to determine the exact floating-point operations that will be executed for a particular source-.
lev-1 construction. Experience shows that many·compilers fail ·to provide predictability, either

• because of an inadequate understanding of its imponance or from an attempt to produce locally
better code. Predictability can be attained through careful attes;ition to code generation and a
knowledge of the common pitfalls. Most language standards do not completely define the
precision of floating-point operations, and so a good compiler must also make a good choice in
assigning precisions of subexpression computation. Choosing the widest precision that will be
used in the expression usually gives the best trade-off between efficiency and accuracy. Finally,
certain optimizations are particularly useful for floating-point and should be included in a
compiler aimed at scientific computation. But predictability is more important than efficiency;
obtaining incorrect answers fast helps no one.

KEl" \\"OROS Compilers Floating-point arithmetic Optimization

3: };\TRODl:CTIO;\

3-1 Floating-point programs must be carefully_ compiled in order to produce accurate
3~ results. Data accessing primiti\'es, control structures and integer arithmetic are clearly
Jt, defined in most language standards, since most hardware is more or less equi\'alent in
:,-:- the support it offers for these tasks. But floating-point systems \'ary widely, so language
311 standards cannot specify perfectly the semantics of source-le\'el floating-point oper-
:w ations. 1 The implementor is left with the difficult task of deciding what machine-le,·el •
~• operations will result from source-level code.
"' Unfo~tunately, most compiler writers are ill-equipped to handle this task. Compiler
.a: texts and classes rarely address the peculiar problems of floating-point computation,
.aJ and research literature on the topic is ·generally confined to journals read by numerical
""' analysts, not compiler writers. l\lany production-quality compilers that are excellent
.. s in other respects make basic mistakes in their compilation of floating-point, resulting
46 in programs that produce patently absurd results or, worse, reasonable but inaccurate
r. results.
4 An implementation of a large floating-point library is a job for specialists. But gi\'en
.aY such a library, little information is actually needed to produce good floating-point code

0038-0644/88/00000~0S05 .00
© 1988 by John Wiley & Sons, Ltd.

Receit·ed 2-1 Jlarch 198i
Re1.:ised 21 December 1987

so
51

"'
S7

Sb

S9

6(l

61

6f,

67

68

70

71

73

7.S

7S

7i

7tl

79

&I

81

2 C. FARNCl\l r

for current machines. This paper provides the necessary information. l\luch of this
information is specific, and a short paper on the topic cannot possibly address a11 of
the issues; therefore, this paper is a compendium of floating-point concerns. A more
detailed view of the issues invo~,·ed in floating-point computation can be obtained by
learning about the IEEE floating-poin.t standard, 2• 3 a popular system that is fast
becoming the norm on new ~oating-point hardware.

Notational ~onventions
The following conventions are used in this anicle:

1. In general, computer-oriented entities are set in sanserif and mathematical entities
are in italics.

2. When discussing different precisions, the precision of programrhing ,·ariables is
indicated by the first letter of their name: s for single and d for double.

3. A mathematical symbol with the sime name as a programming variable denotes
the mather:natical ,·alue represented by the current bit:pattern of the programming
value.

4. The functions sngl and ~ble round their operands to single or double precision,
respectively. .,

5. The letter s or d o,·er an arithmetic operator indicates that the result of that ~
operator is rounded to the gi\"en precision.

PRODUCE PREDICTABLE CODE

A programmer must be able to predict the floating-point operations that will result
from . a particular source-le,·el construct in order to write good code. Without such '
predictability, guaranteeing error bounds on the output is as difficult as proving the
correctness of a loop without knowing whether it is tested at the top or bottom. Yet
many compilers, .in practice, ,·iolate this basic need for predictability either by accident
or in a quest for 'better' code. This section lists common errors in past compiler:;.

Differing precision in registers and memory
Faulty implementations of common subexpression elimination can lead to trouble if

subexpressions are computed to a higher precision than \'ariables, a co_mmon tendency
in new floating-point chips. Consider the following seq~ence of statements:

s· : = dx.'dy;
d := s - dx/dy;

The compiler may notice, when computing d, that the nlue of s is still lying around
in a register and can be used without loading. This optimization is valuable if the ,·alue
in sand the value in the register are, in fact, the same; but if the ,·a]ue ins is different,
owing to rounding from subexpression precision to storage precision, the substitution
would be incorrect. -~

In addition, common subexpression elimination may notice that dx/cfy is used twice,
and thus store its \'alue in a temporary location for reuse. If the temporary location •
has less precision than ~he register in which the subexpression was.ernluated, the wrong

~

CO:\IPILER Sl'PPORT f'OR FLOATING·POI!'JT CO:\IPl"TATIOS 3

90 value will be used in the computation of d. This example is primarily of interest on
91 older machines; newer machines generally aJlow storage of the widest possible format.

9: Unwanted extra precision
9:, l\Iost languages supporting multiple precisions allow implementations to map more
~ than one source-language precisipn to the same machine precision. Doing so can make
" cenain eodes malfunction and should only be done if the target machine is limited to
"' one precision. In particular, promoting all nriables from single to double is not doing
r. the programmer a favour, e,·en if the particular target machine 'has plenty of memory'.
• Sa\"ing space is not the only reason for using differing precisions; some programs
99 depend on, for instance, double being twice the precision of single, by making use of
11111 the fact that the product ,;,f two single ,·alues can be represented exactly in a double
101 \"3riable. Other programs may require a difference to be either zero or large compared
10:: with round-off error; in these programs, a common practice is to round the difference
M to single precision, flushing ,·alu~s near the double precision rounµ-off ei·ror to zero.
111.: Although few language standards insist that double must ha,·e greater precision than
M single, such has been the ca~P. on ,·irtually all compilers and machines in the past; the
1°" • capability should not be remO\·ed if the target machine easily supports it.

101 Algebl'.aic transformations
trl!i Different source languages ha,·e different restrictions on when algebraic transform­
lOQ ations can be used in e,·aluating expressions. The rules of the language must not be
110 broken unless the transformed code has e.-.:actl,· the same execution semantics as the
111 untransformed code on the target machine, inciuding the signals generated. Often the
11: semantics are different; for example, on some machines, such tri\'ial rules as x•y = y•x
m or 1.0•x = x do not hold. Using associati,·ity or distributi,·ity can often change a result
11.a by changing the order in which rounding occurs; for example

m (10.0E-30 + 10.0E30) - 10.0E30

.... and

ir 10.0E-30 + (10.0E30 - 10.0E30)

Ill\

119

1:,1

1:1

1::

l:J

1:.a

1:.~

1:ti

1:1

128

will yield quite different results. Although many languages allow the compiler to apply
algebraically correct transformations to expressions for optimization . purposes, the
programme·r is usually best sen·ed by lea,·ing the expressions alone.

Regardless of what the language a1lows, the groupings implied by parentheses should
ne,·er be changed. Carefully written code often requires associating operations in a
particular way to ensure, for instance, that o,·erflow does not occur; parentheses are a
clear and concise way of showing the programmer's intent.

Decimal to b_inary conversion
The first requirement of decimal to binary con\"ersion is that identical results should

be obtained regardless of when the com·ersion occurs. Some existing systems yield three
different values for the same decimal constant, depending on whether the con\'ersion is

4 C. FAllNt.:M
1

1:?9 done by the compiler, the assembler or the run-time input libraries; producing these
uo different values is unacceptable.
m Secondly, it is imponant to realize -that decimal to binary conversion under the IEEE
m standard is an important operation in its own right, with the possibility of generating
m signals and being affected by the current rounding mode. Thus, doing the conversion
1;.a at compile time is not always a trh·ial task; for instance, in a system fully supporting
1,~ dynamic_ rounding modes, two different versions of each inexact constant must be
1Jt1 maintained, each with possibly different signals generated on use.
1:,, If run-time signals from com·ersion are not wanted, they can be avoided by using
•~ the panicular language's built-in facility for defining constants as static objects, e.g.,
JJY FORTRAN's DATA statement or Pascal's CONST declarations. Signals generated while
1.w convening these constants can be reported appropriately during compilation. The
JJ1 programmer should also be able to specify rounding. modes for these- static constants.
JJ: Finally, the com·ersion routines themseh-es should not be written without a great
1.i:: deal of thought, as the ob,·ious algorithms are fraught with danger. Reference 4 pro,·ides
1.u efficient and accurate algorithms for these_ com·ersions. ·

1J~ Type checking ,I

l\lany new languages require strong type checking across separately compiled mod•
ules, supported by interfaces that pro,·ide the necessary type information. Compilers ~
for such languages should enforce the strong type checking by including consistency
checks to ensure that the same interfaces were used for separately compiled modules;
a depressingly large .number of current compilers do not do so, usually with the excuse
that 'the linker isn't sman enough·. This excuse is im·alid; a special linker pre-pass
can be written to do the consistency checks, or they can be trh·ially implemented at
run-time by including the test in the initialization code of each module.

l 7nfortunately, most older languages, including FORTRA~, pro,·ide no means for
type checking across separate modules. The resulting problems are by no means limited
to numeric code. but a partic_ular instance occurs quite often due to a property of
certain floating-point formats on the \'AX and IB::\1/Ji0. On these machines, double
precision ,·aJues can be chopped to single precision values by discarding the lower half
of the bit pattern. If a ,·ariable in memory is treated inconsistently as double precision
in some places and single precision in others, the program will usually give plausible
results. In FORTRA~, all parameters are passed by reference; thus, this problem
occurs any time a ~ouble value is passed to a procedure expecting a single value. If
such a program is executed on a machine whose formats do not ha Ye this property,
the program will· malfunction; these bugs are notoriously difficult to find.

Because of the insidious nature of these types of bugs, and their frequent occurrence
in numerical code I as much type checking should be done as possible, regardless of
what the language requires or aUows.

E\.ALUATIO~ PRECISIO!\ OF SUBEXPRESSIO~S

In languages that support multiple floating-point precisions, the arithmetic functions
'·.· s ,,

are typically overloaded, e.g., the symbol + might represent the function + or +

CO)IPILEll Sl'PPORT FOR FLOATI~G-POl="iT CO:\IPl°TATlOS 5

111 depending on the context.• Deciding which function to use is often partially left to
11: the implementor; the choice should be considered carefully. Below, we discuss some
113 alternati\'es.

1so Strict evaluation
1111 l\Iost languages require that the precision used to euluate subexpressions with an
•~ o,·erloaded operator be at least· as wide as the widest operand. Strict e,·aluation uses
1s3 the narrowest precision allowed by the language. For example, the statement d : = d
™ d s

+ s•s would stored + (s x s) in d. This strategy is easy to implement and the most
111~ efficient on machines such as the \"AX, whose machine instructions aJwa,·s vield results
1~ of the same precision as the operands. • • •
11,· Unfortunately. strict e,·aluation is almost ne\"er what the programmer desires when
•~ precisions are mixed within an expression. In the pre,·ious example, the extra precision
,,.~ in the \'ariable d is entirely wasted, as it is swamped by the rounding error introduced
1911 by rounding sXs to single precision. Another example is the e\"a)uation of d := 7.0-'3.0
191 • d; if 7:0'3.0 is e\"aluated to single precision, the·extra precision of d wilJ be d~stroyed. '
19: A common counter to these arguments is that a 'carefu1 programmer' ,,·rites

1q; d : = d + dble(s) _• dble(s)

19-1 to ensure that the necessary precision is carried. These explicit con\"ersions make the
19~ code more portable, but at the expense of programmer effort and program legibility.
1% The intent of o,·erloaded operators is to eliminate dutter: the strict e\·aluation strategy
1i,,7 forces such clutter back in.
111~ Furthermore, u·sing strict enluation does· not eliminate the portability problem,
1Y.. since some compilers use other strategies. Thus, the same argument justifies insisting
~•· that careful programmers should write explicit coercions for eYery expression, to ensure
~-; that the same strategy is used on all machines. A better solution to this p.articular
:?t1: portability problem is to leave the job to the compiler; gi\"en a compiler that makes
~•~ well documented ~ecisions on unspecified portions of the language, it is a worthwhile
~1.1 and relati,·ely inexpensive task to write a source-to•source translator that remo,·es most
:?n~ of the implementation specific code. For example, this tool could easily replace d
~"' d + s•s with d : = d + dble(s)•dble(s).

~1-:> Widest available
:?Ca. An easily implemented altemati,·e to strict e\"aluation uses the widest precision
:?119 supported by hardware as the result precision of all O\"erloade-d operators. In a machint'
2111 where the widest format supported is also the fastest, e.g. many of the new micropro•
i11 cessor floating-point chips, this_ strategy yields both the fastest speed and the most
21~ accurate results . . , ..
17~ • Decimal to binan· conn~rsion c:an al:.-o be considc:rcd as an o\·erloadt'd operator in that thl· precision of thl' con:-tant
J7r, should ideally dc:pend° on the context where it 1s used. \\'ritinl! 0.300 instc:~d of O.J i~ both tc:Ji~~s an~ easy to on~rluok:
r:- it has the further di$ad,·antage that a pro,;ram cannot be upgraJcJ from single." to double prl-c1s1on :nmrly by changing
17:.. th~ ,·ariable dc:cl.aration:-.

216

217

..... -·

., ... -·-

II

9

Ill

II

lJ

2(1

6

Although often ideal, using the widest a,·ailab]e format is troublesome in the following
two cases. On most machines, higher precisions imply execution times. This extra cost
comes both from the need to manipulate extra bits during the computation and from
the need to con\'ert values from one precisjon to another. ·Whether or not the extra
precision is worth the higher execution time depends significantly on the context.
Three simple examples:

1. d := d + s;s
d d d s

• Here, the higher c1>st of evaluating d + (s x s) instead of d + (s x s) is certainly
worth while; otherwise, the extra precision of d is wasted.

2. s := s1 + s2 • (s3 + s4/s5)

Although
d J cl cl

sngl(s I + Si X (s., + S4 / S3))

may be a marginally better \'alue than

s s s s
S1 + Sz X (s3 +. s,. / S5)

it would be har'd to justify ihe added cost.
If the cost is justified,. then the programmer should write

d := s1 + s2 • (s3 + s4's5)

in order to- take ad\'antage of the extra precisfon. The widest needed strategy.
suggested below, uses single if the \'alue is to be stored in s and double if it is
to be stored in d .

3. s : = s 1 + s2.
On a reasonable machine.

d I
sngl(s 1 + s2) = s 1 -r si

here the extra expense is simply wasted.

Since most statements in typical code are of the simple form gh·en in the third example,
the use of the widest a,·ailable precision is often wasted; if the widest precision is
computationally expensi\'e, then this strategy loses much of its appeal..

Secondly, in a system that supports infinitely many precisions, the 'widest a\'ailable'
format is non-existent: Such systems should use the 'widest needed' strategy outlined
below.

Widest needed
Strict e\'aluation eliminates much of the usefulness of o,·erloaded operators by forcing

the programmer to use explicit type con\'ersions whenever a benefit is to be gained from
varying precisions. Using the widest available precision wastes the extra computation in
frequently arising situations. A natural suggestion is to use the widest precision that is
'needed', i.e. that will be used in the local context.

l\Iore precisely, assigning precisions to an expression tree using the widest needed ,---..
strategy can be· described as follows: ' 1

'

CO:\JPJLER SUPPORT FOR FLOATING·POJ~T COMPl"TATIO!'li i

21 1. Assign tentati\'e precisions using the strict enluation strategy, in a bottom-up
~ traversal of the tree.
v 2. Using a top-down tra\·ersal of the tree, check each· O\'erloaded operator. Let the
2.a tentath·e precision of the operator be p,, and the precision expected by the parentt
2S be p,.. Assign the wider of p, and p,. as the precision of the operator.

31 This strategy is superior to strict e\'aluation; if it is more efficient than the widest
,:: . available strategy for a particular target machine, then it should be the default. The
33 effects of the other strategies can be obtained by using explicit coercion functions in
J.a those uncommon cases where they provide better results. Implementing the widest
J.s needed strategy is more difficult than the other strategies, but not terribly so; a
36 modification to a UXIX FORTRA~ compiler to implement the widest needed strategy
31 required about 80 man hours~ in the context of a compiler that was doing optimizations
~ such as in-line expansions. When this strategy is designed into a compiler instead of
JCJ added after the fact, the time needed should decrease .

.au E\IPROYI~G EFFICIE~CY

.a1 The ideal goal of an optimizing compiler is to increase the efficiency of a program
,:: without changing the output it produces. Unfortunately, the fact that floating-point
•J arithmetic is normalJy \'iewed as an approximation to real or complex arithmetic has
"' led some compiler writers to sacrifice semantics for the sake of speed because 'one
.. ~ approximation is as good as another'. But unknown approximations are not as good as
46 known ones; it is possible to pro\·ide tight bounds on the error in many computations
.a, by careful coding that takes into account the differences between floating-point and
48 real arithmetic. Therefore, do what the programmer says.
49 This rule is vitally important; it is broken by several optimizations that are legal under
so se,·eral language standards, but can be painful for the numerical analyst. Reorganizing
s1 expressions to use fewer registers is a wel1 understood and common technique. As
s:: noted above, doing so can introduce anomalies since floating-point arithmetic fails to
~~ honour some common identities. !\!any languages allow arbitrary application of
.s.a algebraic identities, regardless of their applicability to the machine arithmetic, so these
ss optimizations do not fall .. under the heading of 'a\·oid at all costs'; but parentheses, at
~ the very least, should be respected. ;xperienced programmers. do not introduce ,
s1 parentheses without a good reason; inexperienced pr~grammers do not run their
,~ programs often enough for such optimizations to be worth the effort.
"' Other optimization techniques im·oh-e mO\·ing computations, e.g. mO\·ing code out
611 of loops, storing common subexpressions or e,·aluating constant arithmetic at compile
61 time. Floating-point arithmetic can often ha\·e side effects aside from computing a
~ result, e.g. setting flags or trapping.! If code is to be mo,·ed, it is important to ensure
6.1 both that no spurious side-effects are introduced at the new location, and that the
6J correct side-effects occur at the old location.

2f>

:?7 t The result o(the operator will be either used in a context expecting a fixed precision (c,g. assi~mc:nt to a nriablc:
:?8 or as a parameter) or as an operand of an o,·c:rluadcd operator. In the fom1c:r case, the expected precision is defin"•J
29 by the language; in the latter, it is the precision assigned to the parent operator.
78 • .tRc:call that the decimal to binary com·crsion implicit in the appearance of a numeric literal i~ a full-fteJg~d operation
79 under the: IEEE standard, and can generate signals and.or be affected by rounding modl-s.

8 C. FARSt.'M
1

6!- The optimizations listed above are dangerous, but floating-point code presents several
~ opportunities for optimization. The most important ones are listed below.
67 A simple local improvement r-emoves unnecessary coercions. \rhen a cautious pro-
6" grammer has written

tR d : = d + dble(s)~dble(s)

711 and the target machine supports a double precision product of two single precision
11 numbers, there is no need to penalize the programmer with the extra coercions. The
n FORTRA~ standard considers this example so important that it pro,·ides a special
13 function enabling the programmer to perform this optimization at the source leveJ;
'" such a simple peephole optimization should be handled automatically by the compiler.
,s Although it is simple, this optimization is quite important; a multiplication followed
'" by an addition is the most common combination of operations in floating-point code.
a1 A second important optimization deals with vecto·r hardware. Machines with ,·ector
s: instructions cater to numeric processing, and any compiler that fails to \·ectorize loops
~ will fall into disuse. Unfortunately, many compilers ref use to vectorize. any loop with
g.a an embedded IF state .. ment. \·ectorizing many such loops is possible, albeit difficult,
~ on machines with a select ,·ector operation that chooses one of two possible results
86 based on a boolean condition; the select operation can be used for embedded IF ~
r. statements such as

&- if (xii] = 0) then
gq y := 1
9(1 • else
91 y : = sin(x[i])/x[il
9: endif

9~ that are used to remove singularities from certain functions.
~ Branch prediction is another area where great impro\·ement can be gained. l\Iuch of
9~ the branching in floating-point codes exists solely for the purpose of handling excep-
9ti tional cases; the jump only needs to be taken a very small percentage of the time. This
9i situation is ideal__for branch prediction optimizations. Profiling information appears to
9t- be the best way to decide whic~ branch is more likely, but a simpler implementation
99 can pro,·ide a notation for the programmer to make the prediction.
1~, Fina11y, di,·ision is almost always much slower than multiplication. Replacing dfrision
1n1 with multiplication is done by many programmers as a matter of habit; "it is certainly
10:: within the compiler's jurisdiction to replace di,·ision by a constant with multiplication
10:- pro,·ided the reciprocal is exact and the multiplication has identical effects.

10.1 CO~CLUSIO~

10~ Floating-point programs must be faithfully translated if they are to produce meaningful
111ti results. The programmer must be able to predict the operations that will be executed,
w· including all explicit and implicit rounding, in order to make useful statements about
10., the accuracy of the result. To make this prediction possible, the compiler writer must ~
109 often provide details that are missing in the language specification and forego common
110 'optim'izations'.

a

•.

COMPILER st·PPORT FOR FLOATI~G-POIXT CO!\IPt:TATION 9

111 By pro\'iding appropriate support tools, such as a source-to-source translator that
m inserts explicit precision com·ersions and an optimizer intended for floating-point code,
m an implementation can regain some of the portability and speed sacrificed in making a
1u predictable compiler; but e,·en without these tools,' a compiler whose output produces
m correct results slowly is preferable to one that quickly produces misleading numbers.
tu,

117 ACKXOWLEDGE!\IE!IITS

111 This paper is primarily based on the experience of \r. Kahan, transmitted via lectures
119 and personal conversations at the Uni\'ersity of California, Berkeley. Richard James
1:<1 pro,·ided a numerical analyst's wish list of what compiler writers ought to know that
m was useful in selecting key ideas .. Da,·id Hough and the anonymous referees of Softu:are
12: provided helpful comments on the content and organization of earlier drafts of the
1~ paper. The author is supported in part by a U.S. !\SF Graduate Fellowship and the
12.i Defense Advanced Research Projects Agency (DoD), Arpa Order ~o.-4871, monitored
12~ by Space and !\a\'al Warfare Systems Command under Contract X00039-8-I-C-0089.

126 REFERE~CES

1::~ 1. W. Kahan and J. T. Coonen, 'The near onhogonalit~· of syntax, semantics, and diagno$tic:-in numerical
12s progy-amming em·ironments', in The Relatio11sl,ip &1::;ee11 .\'11111e1fral Computatiun .-\ml Pmgmmming
1::9 Languages, l\onh-Holland Publishing Company, 198.?, pp. 103-115.
131• 2. IEEE S,a,,dard i54-l985 for Binary Ffoati11g-J)<Ji111 .~rithmetic, IEEE, 1985. Reprinted in SIGPL-l\',
131 22, (2), 9-25 (198i) 1985.
13: 3. W. G. Cody et al., ·A proposed radix- and word-length-independent standard for floating-point
133 arithmetic'. IEEE .\licro, 4, (4), 86-100 (198-4).
IJ.& 4. Jerome T. Coonen, •Contributions to a proposed standard for binary floating-point arithmetic', PhD
m Thesis. t:ni\·ersit,· of California, Berkele,·. 1984.
1Jt- 5. Robert P. Corbett, 'Enhanced arithmeti; for Fonran', SJGPL-l\', 17, (12), 41-48 (1962).

