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1 Summary 

Many compilers, even for languages 
like FORTRAN, make implementation 
decisions detrimental to high quality 
floating-point code. Suggestions are 
given to make it easier for both nu
merical analysts and naive programmers 
to obtain better object code with less 
programmer effort. Special attention is 
given to supporting the IEEE standard 
for binary floating-point arithmetic. 

2 Introduction 

The particular needs of Boating-point com
putation have received relatively little atten
tion in compiler writing research literature, 
texts, and courses. Language standards of
ten leave the semantics of Boating-point source 
code rather loosely defined, in order to avoid 
conflicts with the myriad hardware implemen
tations. As a result, many compilen imple-
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ment floating-point arithmetic in a haphaz
ard fashion, making poor decisions about what 
machine constructs should result from com
mon source code constructs, what optimiza
tions are (not) worth doing,. and sometimes 
even violating the language standard ( and the 
user's best interests) in a misguided zeal for 
"better" code. 

This paper is a compendium of important 
floating-point issues for compiler writen. It is 
organized into the following sections: 

1. Notational conventions used in this arti
cle. 

2. Common illegalities in current compilers. 

3. Choices in the precision of subexpression 
evaluation. 

4. Common optimizations that aren't worth 
doing and uncommon op·timizations_ that 
are. 

5. Support for library writers. 

6. Gracefully making the fundionality of 
the IEEE Boating-point standards (1) [2] 
available to the programmer. 



3 Notational conventions 

The following conventions are used in this ar
ticle: 

• In general, computer oriented entities 
will be referred to with typewriter ten 
while mathematical entities will be in ital• 
ic,. 

• When discussing di.fl'erent precisions, the 
precision of programming variables will be 
indicated by the first letter o! their name 
(a for single, d for double, and e for ex• 
tended). 

• A mathematical symbol with the same 
. name as a programming variable denotes 
the mathematical value represented by 
the current bit-pattern of the 1,,1ogram• 
ming value. 

both externally and by ( easily disabled) com• 
pile time warning messages. Although this 
is the party line in compiler texts and pub
lished articles, a surprising number of compil
ers don't obey it. Some common examples to 
avoid are listed in this section. 

4.1 Differing precision in regis-
ters and memory 

Faulty implementations of common subexpres
sion elimination can lead to trouble i! subex
pressions are computed to a higher precision 
than variables ( a common tendency in new 
floating-point chips, and also in certain older 
machines such as the GE Honeywell models) . 
Consider the following sequence of statements: 

11 :• dx/dy; 
d :• a - dx/dy; 

• The functions angl and dble round their The following problems can arise here: 
operand to single or double precision, re
spectively. 

• The letter ,, d, or e over an arithmetic 
operator indicates that the result of that 
operator is rounded to the given precision. 

Some examples: 

• After executing s := angl(d), , = 
sngl(d). 

• We will later argue that d : • d + 11•11 
d d • 

should stored+(, x ,) ind. 

4 Bugs ~nd Features 

Most compilers attempt to implement a super• 
set of the standard language to meet the per• 
ceived needs of the intended users. Some ex• 
tensions are certainly worthwhile ( e.g., meet• 
ing the IEEE standard often requires some of 
them), but they should be well documented 

2 

• The compiler may notice, when comput• 
ing d, that the value of s is still lying 
around in a register and can be used with
out loading. This is a valuable optimiza
tion if the value in s and the value in the 
register are, in fact, the same; but if the 
value in I is different (due to rounding 
from subexpression precision to storage 
precision), the substitution would be in
correct. 

• Common subexpression elimination may 
notice that x/y is used twice, and thus 
store its value in a temporary location for 
reuse. If the temporary location has less 
precision than the register in which the 
subexpression was evaluated, 1 the wrong 
value will be used in the computation of 
d. 

1 This is primarily ot interest on older machines; 
newer machines generally allow 1iorage 0£ &he widest 
possible format. 



4.2 Unwanted extra precision 

Most languages supporting multiple precisions 
allow implementations to map more than one 
source language precision to the same machine 
precision. This can make certain codes mal
function and should only be done if the tar
get machine is limited to one precision. In 
particular, promoting all variables from single 
to double is not doing the programmer a fa
vor, even if the particular target machine "has 
plenty of memory". Saving space is not the 
only reason for using differing precisions; some 
programs depend on, e.g., double being twice 
the precision of sillgle, by making use or the 
fact that the product of two sillgle values 
can be represented exactly in a double vari
able. Other codes may require a difference to 
be either zero or large compared with round
off' error; a common way. of achieving this is 
to store a value into a single precision vari
able and do subsequent computation upon it 
in double. Although few language standards 
insist that double must have greater precision 
than s illgle, such has been the case on virtu
ally all compilers and machines in the past; the 
capability should not be removed if the target 
machine easily supports it. 

4.3 Algebraic transformations 

Different source languages have different re
strictions on when algebraic transformations 
can be utilized in evaluating expressions. The 
rules of the l~guage must not be broken 
unless the transformed code has ezactly the 
same execution semantics as the untrans-

• formed code on the target machine, including 
the signals generated. This is often not the 
case: 

• On some machines, such trivial rules as 
z•y • 1•z or 1 . O•z • z do not hold. 
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• Using associativity or distributivity can 
often change a result by changing the or
der in which rounding occurs; !or exam
ple, 

(10.0E-30 + 10.0130) - 10.0E30 
and 

. 10.0E-30 + (10.0130 - 10.0£30) 
will yield quite different results. 

• On all machines, replacing (x•y) • z 
with z • <1•z) will change the situa
tions in which overflow. occurs, too. 

Know what the language allows and what al
gebraic transformations are valid for the target 
machine; then act accordingly. 

Regardless of what the language allows, the • 
ordering implied .by parentheses should never 
be -'tanged. Carefully written code often re
quires a specific execution order to ensure 
that, e.g., overflow does not occur; parenthe-
ses are a clear and concise way of showing the 
programmer's intent. 

4.4 - Decimal to. binary conver-
sion 

Good decimal to binary conversion is very dif
ficult; so difficult, in fact, that it is the only 
function in the IEEE standard where an imple
mentation is allowed to make an error greater 
than 1/2 an ULP.2 J. T. Coonen's thesis [3] 
provides efficient and accurate algorithms for 
these conversions. 

In addition to having a good conversion rou
tine, other more basic requirements must be 
met. Primary among ihese is that the same 
conversion routine be used throughout com
pilation and execution; some existing systems 
yield three different values for the same deci
mal constant, depending on whether the con
version is done by the compiler, the assem-

2 -Unit in the Last Place" - the diff'erence between 
two adjacent representable values. 



bier, or the run time input libraries. Sec
ondly, it ia important to realize that decimal 
to bipary conversion under the IEEE standard 
ia an important operation in its own right, 
with the possibility of generating signals (such 
as inexact) and being aff'ected by the current 
rounding mode. Thus, doing the conv~ion 
at compile timi· ·;s not always a trivial task; 
in a system fully supporting dynamic round
ing modes, two different versions of each in
exact constant m1Uit be maintained, each with 
possibly dift'erent signals generated on use! It 
is currently a subject of debate whether this 
is worthwhile as n default behavior; it ia sug
gested that compilers make it clear what their 
default behavior is, and allow (perhaps ineffi
ciently) for the al: emate behavior. 

H the programmer does not want any signals. 
generated at run time by the conversion, this 
can be handled easily in most languages by us
ing the built in facility for defining constants as 
static objects (e._g~, FORTRAN's D1T.l state
mentor Pascal's COIST declarations). Signals 
generated while converting these constants can 
be reported appropriately during compilation. 
The programmer also should be able to specify 
rounding modes for these static constants. 

4.5 Type~-dlecking 

Many new ·l~ages require strong type 
checking across separately compiled modules, 
supported by interfaces which provide the 
necessary type information. Compilers for 
such languages· should enforce the strong type 
checking by including consistency checks to en
.sure that the same interfaces were used for 
separately compiled modules; a depressingly 
large number of current compilers do not do 
so, usually with the excuse that "the linker 
isn't smart enough". This is not a valid ex
cuse; a special linker pre-pass can be written 
to do the consistency checks, or they can even 
be trivially implemented by generating code to 

do the checks at nm time ( this only costs a.few 
milliseconds at the beginning of execution). 

Unfortunately, most older languages ( no
tably, of course, FORTRAN) provide no 
means for type checking across separate mod
ules. The difficulties this can cause are by no 
means limited to numeric code, but a particu
lar mstaaee occurs quite often due to a prop
erty or certain floating-point formats on the 
VAX3 and mM/370. On these machines, dou
ble precision values can be chopped to single 
precision values by discarding the loweJ' half of 
the bit pattern. Thus, if a variable in memory 
is treated inconsistently as double precision in 
some places and single precision in others, the 
program wm usually give plausible results. In 
FORTRAN, all parameters are passed by ref
erence; thus, this will occur any time a dou
ble value is passed to a procedure expecting 
a single value. H such a program ia executed 
on a machine whose formats do not have this 
property ( e.g., any machine conforming to the 
IEEE binary floating-point standard), the pro
gram will malfunction horribly; these bugs are 
notorio~sly difficult to find. 

Because of the insidious nature of these 
types of bugs, and their frequent occurrence in 
numerical code, we strongly recommend that 
as much type checking be done as possible, re
gardless of what the language requires/allows. 
Intentional violations of type checking (e.g., 
by library writers attempting to implement 
COPYSIGI by bit manipulations) should be 
forced to be made explicit in the code, ei
ther by mechanisms available in the language 
(e.g., UICBECIED_COIYEISIOI in Ada4) or by 
extensions defined by the implementor. These 

• force non-portable code to be visibly flagged 
as such, saving much grief if the software is 
ported in the future. 
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5 Evaluation precision of 
subexpressions 

In languages which support multiple floating
point precisions, the arithmetic (unctions ( +, 
x, cos, etc.) are typically overloaded, e.g., the 
symbol + might represent any of the (unctions 

• " • • h 5 D 0 d +,+,or+ dependmg on t e context. ea -
ing which function to use is often partially left 
to the implementor; the choice should be con
sidered carefully. Below we discuss some alter
natives. A FORTRAN implementation using 
the strategy we recommend is described in a 
paper by Corbett [4]. 

5.1 Strict evaluation 

Most languages require that the precision used 
to evaluate subexpressions with an overloaded 
operator be at least as wide as the widest 
operand. Strict evaluation uses the narrowest 
precision allowed by the language. For exam
ple, the statement 4 :• 4 + 1•1 would store 

' ( • ) • Thi • d. + a x a m 4. s strategy JS easy to 
implement and the most efficient on machines 
such as the VAX whose machine instructions 
always yield results of the same precision as 
the operands. 

Unfortunately, strict evaluation is almost 
never what the programmer desires when pre
cisions are mixed within an expression. In the 
previous example, the extra precision in the 
variable d is entirely wasted, as it is swamped 
by the rounding error intr~duced by round
ing a x a to single precision. Another exam
ple is the evalua~ion of 4 : • 7. o /3. o • d; if' 

5Decimal to binary conveni~n can also be conaid
ercd u an overloaded operator in that the precision 
or the constant should ideally depend on the context 
where it is used. Writing O .3D0 instead or O .3 is both 
tedious and easy to overlook; it bu the further dis
advantage that a program can not be upgraded from 
single to double precision simply by changing the vari
able declarations. 
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7. 0/3. O is evaluated to single precision, the 
extra precision of d will be destroyed. 

A common counter to these arguments is 
that a "caref'ul programmer" ( and, by impli
cation, anyone worth supporting) will write 

d :• d + dble(1) • dble(1) 
to ensure the necessary precision is carried. 
This certainly makes the code more portable, 
but at the expense of programmer eff'ort and· 
program legibility. The intent or overloaded 
operators is to eliminate clutter; the strict 
evaluation strategy forces such clutter back in, 
We counter the portability argument with the 
following observations: 

• Given a compiler that makes well doc
umented decisions on unspecified por
tions of the language, it is a worth
while and relatively inexp,.nsive task 
to write a source to source translator 
that removes most of the implementa
tion specific code. For example, this tool 
~ould easily replace d : • d + 1•1 with 
d :• d + dble(s)•dble(1). 

• Using strict evaluation doesn't elimi
nate the portability. problem, since some 
compilers use other strategies. Thus 
the same argument justifies insisting 
that "careful programmers should write 
d :• d + 11ngl(1•1)"; this implication 
is usually ignored. 

Don't use strict evaluation. 

5.2 Widest available 

An easily implemented alternative to strict 
evaluation uses the widest precision supported 
by hardware as the result precision of all over
loaded operators. In a machine where the 
widest • format supported is also the fastest 
( e.g., many of the new microprocessor loating
point chips) this strategy yields both the 
fastest speed and the most accurate results. 



Although often ideal, using the widest avail
able format is troublesome in the following 
cases: 

• On most machines, hlgher precisions im
ply longer execution times. This extra 
cost comes both from the need to manip
ulate extra bits during the computation 
and from the need to convert values from 
one precision to another. 

Whether or not this execution speed cost 
is worth the benefit due to less round-· 
ing error depends significantly on the pro
gram code. Three simple examples: 

1. cl :• d + a•a 
Here, the higher cost of evaluating 

d d d , 
d. + ( a x a) instead of d. + ( • x a) is 
certainly worthwhile; otherwise, the 
extra precision of cl is wasted. 

2. a :• a1 + a2 • (s3 + a4/sS) 
Although 

may be a marginally better value 
than 

• • • • 
11 + 12 x (13 + 14 / is) 

it would be hard to justify the added 
cost. 
If the cost i1 justified, then the pro
grammer should write 

cl:• at+ a2 • (a3 + a4/sS) 

in order to take ad vantage of the 
extra precision. The widest needed 
strategy, which we suggest below, 
uses single if the value is to be stored 
in • and double if it is to be stored 
ind. 
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3. a :• a1 + •2 
On a reasonable machine, 

here the extra expense is simply 
wasted. 

Since most statements in typical code are 
of the simple form given in the third ex
ample, the use of the widest ayailable pre
cision is often wasted; if the widest pre
cision is computationally expensive, then 
this strategy loses much of its appeal. 

• In a system which supports infinitely 
many precisions, the "widest available" 
format is non-existent. Such systems 
which choose to support overloaded op
erators should use the "widest needed" 
strategy outlined b~low. 

5.3 Widest needed 

Strict evaluation eliminates much of the use
fulness of overloaded operators by forcing the 
programmer to use explicit type conversions 
whenever a benefit is to be gained from vary
ing precisions. Using the widest available pre
cision wastes the extra computation in fre
quently arising situations. A natural sug
gestion is to use the widest precision that is 
"needed", i.e., that will be used in the local 
context. 

More precisely, assigning precisions to an 
expression tree using the widest needed strat
egy can be described as follows: 

1. Assign tentative precisions using the 
• strict ~valuation strategy, in a bottom up 

traversal of the tree. 

2. Using a top down traversal of the tree, 
check each overloaded operator. Let the 
tentative precision of the operator be Pt, 



and the precision expected by the parent6 

be Pc. Assign the wider or Pt and Pc as 
the precision or the operator. 

This strategy is rar superior to strict eval
uation; if it is more efficient than the widest 
available strategy for a particular targei ma
chine, then it should be the default. The ef
fects of the other strategies can be obtained by 
using explicit coercion functions in those un
common cases where they provide better re
sults. hnplementing the widest needed strat
egy is more difficult than the other strategies, 
but not terribly so; a modification to a UNIX7 

FORTRAN compiler to implement the widest 
needed strategy required about 80 man hpurs 
(4) in the context of a compiler that y,as doing 
optimizations such as inline expansions. When 
this ·strategy is designed into a compiler in
stead or added after the fact, the time needed 
should decrease. 

6 Improving efficiency 

The ideal goal of an optimizing compiler is 
to increase the efficiency or a program with
out changing the output it produces. Un
fortunately, the fact that floating-point arith
metic is normally viewed as an approximation 
to real or complex arithmetic has led some 
compiler writen to sacrifice semantics for the 
sake of speed because ''one approximation is 
as good as another". is simply not so; it is 
possible to provide tight bounds on the er-

6The result of the operator will be either used in 
a context expecting a fixed precision (e.g., assignment 
to a variable or u a parameter) or u an operand of 
an·overloaded operator. In the former cue, the ex
pected precision is defined by the language (although 
discovering the expected precision may require more 
croaa-file type checking than is required/facilitated by 
the language definition); in the latter, it is the preci
aion assigned to the parent operator. 

7UNIX is a registered trademark of Bell 
Laboratories. 
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ror in many computations by careful coding 
that takes into account the diff'erences between 
floating-point and real arithmetic. Therefore 
tlo what the programmer ,ay1, not what you 
tAini Ae "want,". 

We believe this rule to be 80 important that 
we begin this section with two optimizations 
that are legal under most language standards, 
but can be painful for the numerical analyst: 

• Reorganizing expressions to use fewer reg
isters is a well understood and com
mon technique. We have already pointed 
.out that doing so can introduce anoma- • 
lies since floating-point arithmetic fails to 
honor some common identities. Many 
languages allow arbitrary appli~tion of 
algebraic identities, regardless of their ap
plicability to the machine arithmetic, 80 

these optimizations do not fall under the 
heading of "avoid at all costs"; but paren
theses, at the very least, should be re
spected. Experienced coders will not in
troduce parentheses without a good rea
son; inexperienced coden will not run 
their programs often enough for such op
timizations to be worth the eft'ort. 

• Many optimization techniques involve 
moving computations, e.g., moving code 
out of loops, storing common subexpres
sions, or evaluating constant arithmetic at 
compile time. Floating-point arithmetic 
can often have side eft'ects aside from com
puting a result, e.g., setting flags and/ or 
trapping. 8 If code is to be moved, it is 
important to ensure both that no spuri
ous side efrects are introduced at the new 
location, and that the correct side eft'ects 
occur at the old location. 

•Remember that the decimal to binary conversion 
implicit in the appearance of a numeric litereil is a lull
Sedged operation under the IEEE standard, and can 
generate signals and/or be aft'ected by rounding mo~es. 



We now list optimizations that are partie11-
larly important in floating-point code. 

• A simple lo~ improvement removes un
necessary coercions. H a cautious p~ 
grammer has written 

d :• d + dble(a)•dbla(a) 
and the targe~ fflP..chine supports a double 
precision proew:1 of two single precision 
numbers, don't penalize the programmer 
with the extracoercions. The FORTRAN 
standard considers th.is functionality im
portant enough .to provide a special func
tion (DPIOD) so that the programmer can 
perform this optimization at the source 
level; such a simple peephole optimization 
should be handled automatically by the 
compiler. 

• Careful instruction scheduling to mini
mize pipeline conflicts is of partie11lar im
portance in the-longer pipelines typically 
used by high speed floating-point units. 

• Machines with ·vector instructions cater 
to numeric processing and any compiler 
which fails to vectorize loops will fall into 
disuse. Unfortunately, many compilers 
refuse to vectorize any loop with an em
bedded IF stateme11t. Many vector ma
chines have a select vector operation 
which chooses on~ of two possible results 
based on a boolean condition; this op
eration is tailored to conditional expres
sions, but in a language without condi
tional expressions an IF statement must 
be used. This happens quite often when 
using functions with removable singulari
ties; consider, e.g., evaluating (sinz)/z in 
a loop: 

if (x[i] • 0) then 
J :• 1 

else 
J :• ain(x[i]) / x[i] 
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endif 

If it is considered too difficult to vector
ize the above, then an extension to the 
language adding a conditional expression 
should be strongly considered. 9 

• Branch prediction is another area where 
grea& improvement can be gained. Much 
of the branching in floating-point codes 
exists solely for the purpose of handling 
exceptional cases; the jump only needs to 
be taken a very small percentage of the . 
time. This situation is ideal for branch 
prediction optimizations. Profiling inf or- · 
mation appears to be the best way to de
cide which branch is more likely, but a 
simpler implementation can provide a no
tation for the programmer to make the 
prediction. 

• Division is almost always much slower 
than multiplication. Replacing division 
with multiplication is done by many pro
grammers as a matter of habit; it is cer
tainly within the compiler's jurisdiction 
to replace division by a constant with 
multiplication provided the reciprocal is 
exact and the multiplication has identical 
effects. 

91& ia common practice in some circles to cre
ate conditional expressions, in languages that al
low coercion of booleans to integers, by exploiting 
the fact that TIVE is often represented by l and 
FALSE by O; the above example would be coded u 
1 :• 1.0-(s[i] • 0) • •ia(z[i])/z[i]•aot(z[i] • 0). 
There exia& compilen that recognize this convention 
u a speciu cue and will skip over the divide by zero 
when z [i] u zero. Such programming practices should 
be discouraged, but implementors with ,trong commit
ments to portability 1hould interpret this construct as 
a conditional expres,ion and pro'!ide suitable warning• 
when booleans are coerced to real values. 



7 Support for library writ-
ers 

A good loating-point library for FORTRAN 
or an IEEE standard implementation is a job 
for specialists. hnplementing a good library 
requires many capabilities that are not avail,. 
able in FORTRAN, nor in many more mod
em languages; e.g., a library tha~ imposes the 
standard function call overhead for the use of 
a short generic function like lBS is not satis
factory. The necessary features are listed be
low, along with a specific example of how they 
might be used in implementing complex arith
metic. 

T .1 Operator overloading 
Adding a new data type, such as double pre
cision complex, can be practically unbearable 
in a language like FORTRAN without com
piler support. No one wants to go through the 
bother of writing 

DOUBLE l(2),B(2),C(2),TEIP(2) 
DCTIIIES(TEIIP,B,C) 
DCPLUS(1,l,TEIP) 

instead of the much clearer 

CORPLEI_DOUBLE l,B,C 
l•l+B•C. 

The arithmetic operators in most languages 
are already overloaded with regard to integer 
and floating-point types, as well as dilfering 
precisions; the clear solution is to make this 
facility available to the library writer and, if 
feasible, to the general programmer. Exam
ples of such facilities can be found in the op
erator functions of C++ or Ada. FORTRAN, 
of course, also needs the capability of defining 
new types. 

Ideally, the implementation of precision 
overloading discussed earlier in the context 
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of subexpression precisions should be • or
thogonal to the data type overloading; e.g., 
4 : 11 4 + 11• 11 should evaluate 11•11 to the 
same precision, regarclless of whether II is real 
or complex. 

T.2 Catching fatal errors 

In some systems, the default behavior for 
a function receiving strange arguments is to 
halt the program and write an error diagnos- • 
tic. H poorly implemented, this can lead to 
bizarre behavior when· library lunctions call 
each other: consider the poor scientific pr~ 
granuner who is using only sines and cosines 
and receives the message "Invalid argument for 
REM". Some usen of loating-point code have, 
quite legitimately, no idea what REM is. 

The best solution here is to allow the caller 
some control over whether a function will ter
minate execution; the· lunction which called 
REM could, if informed of the error, produce 
a more suitable message or perhaps use a dif
ferent method of finding the desired result. 
H the implementation of this more extensive 
handling is considered too expensive, the ter
minating message should at the very least pr~ 
vide a traceback of the library calls that re
sulted in the error, e.g., "Invalid argument for 
REM; REM called by COS called by ... ". 

7.3 lnline functions 
Replacing a function call with the body of the 
function is a rather simple transformation that 
often results in much more efli~ient code. De
ciding when the transformation will be worth
while can be a difficult task, but it is easy ·to 
give-the programmer the ability to specify that 
a given function should be compiled inline. 

We mention inlining here because the func
tions introduced by overloaded operaton are 
often so short that it is clear they should al
ways be expanded mline; thus, the library im-



plementor, at the very least, should have this 
capability. 

7 .4 Specifyi~g structured con-
stants 

Given a new data type such as complex or 
i.D.tenal, it is of course useful to provide 
some syntax for specifying constants of that 
type. The simplesi alternative is to have 
certain function· calls that can build con
stants from their primitive parts, e.g. a func
tion complex Cr ,i) which returns the complex 
number (r, i). Ir the function call can be spec
ified as inline, this facility provides the nec
essary capability without the need for special 
syntax. 

7.5 Specifics for complex arith-
metic 

We now outline how the above functionalities 
can be combined to implement complex arith
metic. Adding interval arithm~tic is similar. 

A good library for complex arithmetic 
should provide: 

as complezCr)+c; doing so is less effi
cient and may be less accurate. 10 Thus, 
the overloading facility must be able to 
handle operands of different base types as 
well as different precisions. Some of these 
functions should be declared inline, de
pending on their simplicity and the rela,. 
tive speed of procedure calls on the target 
machine. 

3. A function complez Cr, i) which returns 
the· value ( r, i); this function can be 
used to designate complex constants, and 
should be declared inline. 

4. Ideally, an imaginarJ date type for rep
resenting values whose real component is 
zero ( this type is analogo11S to the type 
re~l) and a function for converting re
als to imaginaries. The imagi~rJ type 
would not normally be used to declare 
variables, but would rather be the result 
of expressions of the form iota•r, where 
iota is the constant,= ,.;=i.. The new 
type is simply the method by which this 
functionality can be added to the lan
guage without making explicit changes in 
the compiler. • 

1. The ability to declare complex variables, 
with the same choice of precisions enjoyed 8 
by real variables. The record facility pro
vided by most languages is perfectly suit
able; if the language has no records, they 

Merging language 
and IEEE floating-point 
standards 

can be added with appropriate source to 
source translations. 

2. Standard arithmetic function~ for as
sorted mixtures of complex and real ar
guments, overloaded on the appropri
ate symbols. Not all combinations of 
real and complex values should be han
dled by promoting the real to a com
plex. For example, for real r and 
complex c, r+c should not be evaluated 

Ir the IEEE floating-point stanC;lard has been 
implemented in a given system, then compil
ers for the system should naturally make the 
facilities of the standard available to high level 
language programmers. This section describes 

• 0 on an IEEE Standard machine, evaluating 
(z,J) + s as <z,1) + (s,+O) will destroy the sign of 
J if' J is zero. The sign of' zero can be of great impor
tance in complex arithmetic; this is no~ the place to 
fiddle with it. 

10 
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how the language standard and the IEEE stan
dard can be merged in the least painful way. 

Suggestions in this section referring to han
dling of NaNs apply equally well to systems 
that support similar entities ( e.g., the indef
inite operand of a CDC machine, or the re
served operands of a VAX). 

8.1 Precisions 

A compiler should provide source language 
data types for the precisions available on the 
target machine. Mapping source language 
typ.es to the IEEE standard single,. double, and 
extended should be done with the knowledge 
that single is the normal type used for input 
and output, while double and extended are 
normally used only to provide extra precision 
for sensitive calculations; thus the standard 
floating-point type in the language (e.g., real 
in Pascal or non in Ada) should map onto 
single. U a language lacks standard names 
for various precisions, aillgle, double, and 
extuded should be used for the sake of pro
gram portability. 

8.2 Comparisons 

Floating-point comparisons have typically 
been modeled by the function compare (z, J) 
~hich returned one of three values <, >, or 
•. The IEEE standard provides for a fourth 
value, ? or unordered, which is the result if z 
or J is a NaN. This must be handled carefully: 

• The comparisons < and ~ are not op
posites; if z is a NaN, then both z < J 
and x >• J are false. Comparisons are 
often reversed during code generation; if 
this is done carelessly (perhaps at the 
source level or in an intermediate repre
sentation )and x >• J is substituted for 
:not(z < y), then improper code will re
sult. This is only a problem in the sense 

11 

that it provides an easy excuse for making 
a mistake; it should be easy to correctly 
negate comparisons on a machine which 
supports the standard. 

• Many languages-use the symbol <> to rep
resent ¢. This can create confusion: <> 
is often read "le,s than or greater than", 
but in the standard, ((z < y)V(z > y)) is 
not the same as (z ¢ y) when z or y is a 
NaN. Thus <> has two possible meanings. 
The choice should be left as a compiler op
tion, i.e., the programmer should have the 
ability to specify that . <> will mean either 
"less than or greater than" or "not equal", 
to ,help portability of existing code. The 
default meaning should be "less than or 
greater than" for two reasons: 

1. The comparison z ¢ y can be easily 
written Jlot (z•J), but 

has no equally short fonn other than 
z <> J• 

2. The default is safe in the sense that 
users who use x <> J expecting it to 
be interpreted z ¢ y will ~e signaled 
with an invalid operation whenever 
it makes a difl'erence (i.e., !{hen z or• 
y is a NaN). 

A function compare(z,J) returning one of 
four values <, >, •, or ? (without generat
ing signals for NaNs) should be explicitly pro
vided, particularly in languages with case or 
switch statements that can make particularly 
efficient use of such a function. 

8.3 Minor incompatibilities in 
miscellaneous functions 

The papers describing the IEEE standards (1) 
[2] contain many functions, some as part of 



the standard and some only recommended, 
which are slightly different Crom assorted lan
guage standards. These incompatibilities vary 
in their severity, ~d should be handled in dif
ferent ways: 

1. Some difficulties arise because the IEEE 
standard introduces values that were 
unanticipated by the language standard. 
When the incompatibility only aft'ects val
ues outside the domain of the language 
standard, then the IEEE standard should 
be allowed to take precedence. 

2. Some functionalities are provided slightly 
differently in the IEEE and language stan
dards; e.g., most languages define a func
tion IDD(y ,z) such that 

0 S mod(y, x)/x < 1, 

while the standard defines a similar func
tion IEI such that 

lrem(y, x)I S lx/21. 

In these cases, both the language and the 
IEEE standard £unctions should be sup
ported. The library writing support out
lined in the previous section is of great 
value here in moving the burden of sup
porting a plethora of slightly different 
functionalities from the compiler writer to 
a numerical library specialist. 

3. Occasionally the language and IEEE stan
dard stand in direct opposition. A com
piler switch should be available to choose 
which standard will be obeyed at these 
points. 

Some of the common d.iff'erences are listed 
here, along with suggestions on how they 
should be handled. 

zeros and signaling NaNs exist; -z should 
be the value of z with the sign bit re
versed. The language standard can sim
ply be overruled here.11 

2. FORTRAN's SIGI function is identical to 
~OPYSIGI except when the second argu
ment is zero; 

SIGl(1.0,-0.0) • +1.0 
but 

CDPYSIGl(1.0,-0.0) = -1.0. 
Both functions should be supported. 

3. Many· languages specify that, when 
rounding X to an integer, r X, is chosen if 
X is half way between L X J and r X,. In the 
IEEE standard, ties are resolved in favor 
of the even neighbor. Both function~ties 
should be supported. 

4. In APL, 0/0 is defined to be 1, while the 
IEEE standard default value is a NaN. An 
APL compiler should have a switch to de
termine which value results. 

5. Some languages define I • I to be equiv
alent to I = IJT(l) for integer I and real 
I. In such a ~guage, a compiler switch 

• should allow for the IEEE option that the 
fint may signal inexad while the latter 
does not. 

6. A constant such as IAIIEAL is often de
fined to be the largest real number rep
resentable by the floating-point system. 
This should not be set to infinity, but to 
the largest finite value; codes that use it 
usually treat it as a finite value whenever 
it might make a diff'erence. The source 
level constant IIFIIITY should be avail
able !or indicating .infinities. 

ll Unless it alao deals with signed zeros, in which 
1. -z is often defined to be equivalent to case both standards should be supported via a com-

0-z, but this is inappropriate when signed piler awitch. 
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7. There is often difficulty deciding what a 
function should do with a NaN. We will 
give a single example, the 1111 function 
defined in many languages to· return the 
maximum of two values. What should 
1111(5,lal) be? The answer depends 
on the application; sometimes the NaN 
should be ignored and 5 returned, while 
in other cases the NaN should propagate. 
Both functions should be supported. 12 
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