
Compiler support for floating-point computation

Charles Farnum•
Computer Science Department

University of California, Berkeley
Berkeley, California 94 720

famum@renoir.berkeley.edu

August 21, 1987

1 Summary

Many compilers, even for languages
like FORTRAN, make implementation
decisions detrimental to high quality
floating-point code. Suggestions are
given to make it easier for both nu
merical analysts and naive programmers
to obtain better object code with less
programmer effort. Special attention is
given to supporting the IEEE standard
for binary floating-point arithmetic.

2 Introduction

The particular needs of Boating-point com
putation have received relatively little atten
tion in compiler writing research literature,
texts, and courses. Language standards of
ten leave the semantics of Boating-point source
code rather loosely defined, in order to avoid
conflicts with the myriad hardware implemen
tations. As a result, many compilen imple-

•supported in part by an NSF Graduate Fellow
ship. Computer aupport for composing this docu
ment was sponsored by the De!ense Advanced Re
search Projecu Agency (DoD), Arpa Order No. ·'811,
monitored by Space and Naval Warfare Systems Com
mand under Contract N00039-8f.C-0080.

1

ment floating-point arithmetic in a haphaz
ard fashion, making poor decisions about what
machine constructs should result from com
mon source code constructs, what optimiza
tions are (not) worth doing,. and sometimes
even violating the language standard (and the
user's best interests) in a misguided zeal for
"better" code.

This paper is a compendium of important
floating-point issues for compiler writen. It is
organized into the following sections:

1. Notational conventions used in this arti
cle.

2. Common illegalities in current compilers.

3. Choices in the precision of subexpression
evaluation.

4. Common optimizations that aren't worth
doing and uncommon op·timizations_ that
are.

5. Support for library writers.

6. Gracefully making the fundionality of
the IEEE Boating-point standards (1) [2]
available to the programmer.

3 Notational conventions

The following conventions are used in this ar
ticle:

• In general, computer oriented entities
will be referred to with typewriter ten
while mathematical entities will be in ital•
ic,.

• When discussing di.fl'erent precisions, the
precision of programming variables will be
indicated by the first letter o! their name
(a for single, d for double, and e for ex•
tended).

• A mathematical symbol with the same
. name as a programming variable denotes
the mathematical value represented by
the current bit-pattern of the 1,,1ogram•
ming value.

both externally and by (easily disabled) com•
pile time warning messages. Although this
is the party line in compiler texts and pub
lished articles, a surprising number of compil
ers don't obey it. Some common examples to
avoid are listed in this section.

4.1 Differing precision in regis-
ters and memory

Faulty implementations of common subexpres
sion elimination can lead to trouble i! subex
pressions are computed to a higher precision
than variables (a common tendency in new
floating-point chips, and also in certain older
machines such as the GE Honeywell models) .
Consider the following sequence of statements:

11 :• dx/dy;
d :• a - dx/dy;

• The functions angl and dble round their The following problems can arise here:
operand to single or double precision, re
spectively.

• The letter ,, d, or e over an arithmetic
operator indicates that the result of that
operator is rounded to the given precision.

Some examples:

• After executing s := angl(d), , =
sngl(d).

• We will later argue that d : • d + 11•11
d d •

should stored+(, x ,) ind.

4 Bugs ~nd Features

Most compilers attempt to implement a super•
set of the standard language to meet the per•
ceived needs of the intended users. Some ex•
tensions are certainly worthwhile (e.g., meet•
ing the IEEE standard often requires some of
them), but they should be well documented

2

• The compiler may notice, when comput•
ing d, that the value of s is still lying
around in a register and can be used with
out loading. This is a valuable optimiza
tion if the value in s and the value in the
register are, in fact, the same; but if the
value in I is different (due to rounding
from subexpression precision to storage
precision), the substitution would be in
correct.

• Common subexpression elimination may
notice that x/y is used twice, and thus
store its value in a temporary location for
reuse. If the temporary location has less
precision than the register in which the
subexpression was evaluated, 1 the wrong
value will be used in the computation of
d.

1 This is primarily ot interest on older machines;
newer machines generally allow 1iorage 0£ &he widest
possible format.

4.2 Unwanted extra precision

Most languages supporting multiple precisions
allow implementations to map more than one
source language precision to the same machine
precision. This can make certain codes mal
function and should only be done if the tar
get machine is limited to one precision. In
particular, promoting all variables from single
to double is not doing the programmer a fa
vor, even if the particular target machine "has
plenty of memory". Saving space is not the
only reason for using differing precisions; some
programs depend on, e.g., double being twice
the precision of sillgle, by making use or the
fact that the product of two sillgle values
can be represented exactly in a double vari
able. Other codes may require a difference to
be either zero or large compared with round
off' error; a common way. of achieving this is
to store a value into a single precision vari
able and do subsequent computation upon it
in double. Although few language standards
insist that double must have greater precision
than s illgle, such has been the case on virtu
ally all compilers and machines in the past; the
capability should not be removed if the target
machine easily supports it.

4.3 Algebraic transformations

Different source languages have different re
strictions on when algebraic transformations
can be utilized in evaluating expressions. The
rules of the l~guage must not be broken
unless the transformed code has ezactly the
same execution semantics as the untrans-

• formed code on the target machine, including
the signals generated. This is often not the
case:

• On some machines, such trivial rules as
z•y • 1•z or 1 . O•z • z do not hold.

3

• Using associativity or distributivity can
often change a result by changing the or
der in which rounding occurs; !or exam
ple,

(10.0E-30 + 10.0130) - 10.0E30
and

. 10.0E-30 + (10.0130 - 10.0£30)
will yield quite different results.

• On all machines, replacing (x•y) • z
with z • <1•z) will change the situa
tions in which overflow. occurs, too.

Know what the language allows and what al
gebraic transformations are valid for the target
machine; then act accordingly.

Regardless of what the language allows, the •
ordering implied .by parentheses should never
be -'tanged. Carefully written code often re
quires a specific execution order to ensure
that, e.g., overflow does not occur; parenthe-
ses are a clear and concise way of showing the
programmer's intent.

4.4 - Decimal to. binary conver-
sion

Good decimal to binary conversion is very dif
ficult; so difficult, in fact, that it is the only
function in the IEEE standard where an imple
mentation is allowed to make an error greater
than 1/2 an ULP.2 J. T. Coonen's thesis [3]
provides efficient and accurate algorithms for
these conversions.

In addition to having a good conversion rou
tine, other more basic requirements must be
met. Primary among ihese is that the same
conversion routine be used throughout com
pilation and execution; some existing systems
yield three different values for the same deci
mal constant, depending on whether the con
version is done by the compiler, the assem-

2 -Unit in the Last Place" - the diff'erence between
two adjacent representable values.

bier, or the run time input libraries. Sec
ondly, it ia important to realize that decimal
to bipary conversion under the IEEE standard
ia an important operation in its own right,
with the possibility of generating signals (such
as inexact) and being aff'ected by the current
rounding mode. Thus, doing the conv~ion
at compile timi· ·;s not always a trivial task;
in a system fully supporting dynamic round
ing modes, two different versions of each in
exact constant m1Uit be maintained, each with
possibly dift'erent signals generated on use! It
is currently a subject of debate whether this
is worthwhile as n default behavior; it ia sug
gested that compilers make it clear what their
default behavior is, and allow (perhaps ineffi
ciently) for the al: emate behavior.

H the programmer does not want any signals.
generated at run time by the conversion, this
can be handled easily in most languages by us
ing the built in facility for defining constants as
static objects (e._g~, FORTRAN's D1T.l state
mentor Pascal's COIST declarations). Signals
generated while converting these constants can
be reported appropriately during compilation.
The programmer also should be able to specify
rounding modes for these static constants.

4.5 Type~-dlecking

Many new ·l~ages require strong type
checking across separately compiled modules,
supported by interfaces which provide the
necessary type information. Compilers for
such languages· should enforce the strong type
checking by including consistency checks to en
.sure that the same interfaces were used for
separately compiled modules; a depressingly
large number of current compilers do not do
so, usually with the excuse that "the linker
isn't smart enough". This is not a valid ex
cuse; a special linker pre-pass can be written
to do the consistency checks, or they can even
be trivially implemented by generating code to

do the checks at nm time (this only costs a.few
milliseconds at the beginning of execution).

Unfortunately, most older languages (no
tably, of course, FORTRAN) provide no
means for type checking across separate mod
ules. The difficulties this can cause are by no
means limited to numeric code, but a particu
lar mstaaee occurs quite often due to a prop
erty or certain floating-point formats on the
VAX3 and mM/370. On these machines, dou
ble precision values can be chopped to single
precision values by discarding the loweJ' half of
the bit pattern. Thus, if a variable in memory
is treated inconsistently as double precision in
some places and single precision in others, the
program wm usually give plausible results. In
FORTRAN, all parameters are passed by ref
erence; thus, this will occur any time a dou
ble value is passed to a procedure expecting
a single value. H such a program ia executed
on a machine whose formats do not have this
property (e.g., any machine conforming to the
IEEE binary floating-point standard), the pro
gram will malfunction horribly; these bugs are
notorio~sly difficult to find.

Because of the insidious nature of these
types of bugs, and their frequent occurrence in
numerical code, we strongly recommend that
as much type checking be done as possible, re
gardless of what the language requires/allows.
Intentional violations of type checking (e.g.,
by library writers attempting to implement
COPYSIGI by bit manipulations) should be
forced to be made explicit in the code, ei
ther by mechanisms available in the language
(e.g., UICBECIED_COIYEISIOI in Ada4) or by
extensions defined by the implementor. These

• force non-portable code to be visibly flagged
as such, saving much grief if the software is
ported in the future.

4

3 VAX is a registered trademark of Digital Equip
ment Corporation.

t Ada is a registered trademark of the Ada Joint
Program Oflice, U.S. Government.

5 Evaluation precision of
subexpressions

In languages which support multiple floating
point precisions, the arithmetic (unctions (+,
x, cos, etc.) are typically overloaded, e.g., the
symbol + might represent any of the (unctions

• " • • h 5 D 0 d +,+,or+ dependmg on t e context. ea -
ing which function to use is often partially left
to the implementor; the choice should be con
sidered carefully. Below we discuss some alter
natives. A FORTRAN implementation using
the strategy we recommend is described in a
paper by Corbett [4].

5.1 Strict evaluation

Most languages require that the precision used
to evaluate subexpressions with an overloaded
operator be at least as wide as the widest
operand. Strict evaluation uses the narrowest
precision allowed by the language. For exam
ple, the statement 4 :• 4 + 1•1 would store

' (•) • Thi • d. + a x a m 4. s strategy JS easy to
implement and the most efficient on machines
such as the VAX whose machine instructions
always yield results of the same precision as
the operands.

Unfortunately, strict evaluation is almost
never what the programmer desires when pre
cisions are mixed within an expression. In the
previous example, the extra precision in the
variable d is entirely wasted, as it is swamped
by the rounding error intr~duced by round
ing a x a to single precision. Another exam
ple is the evalua~ion of 4 : • 7. o /3. o • d; if'

5Decimal to binary conveni~n can also be conaid
ercd u an overloaded operator in that the precision
or the constant should ideally depend on the context
where it is used. Writing O .3D0 instead or O .3 is both
tedious and easy to overlook; it bu the further dis
advantage that a program can not be upgraded from
single to double precision simply by changing the vari
able declarations.

5

7. 0/3. O is evaluated to single precision, the
extra precision of d will be destroyed.

A common counter to these arguments is
that a "caref'ul programmer" (and, by impli
cation, anyone worth supporting) will write

d :• d + dble(1) • dble(1)
to ensure the necessary precision is carried.
This certainly makes the code more portable,
but at the expense of programmer eff'ort and·
program legibility. The intent or overloaded
operators is to eliminate clutter; the strict
evaluation strategy forces such clutter back in,
We counter the portability argument with the
following observations:

• Given a compiler that makes well doc
umented decisions on unspecified por
tions of the language, it is a worth
while and relatively inexp,.nsive task
to write a source to source translator
that removes most of the implementa
tion specific code. For example, this tool
~ould easily replace d : • d + 1•1 with
d :• d + dble(s)•dble(1).

• Using strict evaluation doesn't elimi
nate the portability. problem, since some
compilers use other strategies. Thus
the same argument justifies insisting
that "careful programmers should write
d :• d + 11ngl(1•1)"; this implication
is usually ignored.

Don't use strict evaluation.

5.2 Widest available

An easily implemented alternative to strict
evaluation uses the widest precision supported
by hardware as the result precision of all over
loaded operators. In a machine where the
widest • format supported is also the fastest
(e.g., many of the new microprocessor loating
point chips) this strategy yields both the
fastest speed and the most accurate results.

Although often ideal, using the widest avail
able format is troublesome in the following
cases:

• On most machines, hlgher precisions im
ply longer execution times. This extra
cost comes both from the need to manip
ulate extra bits during the computation
and from the need to convert values from
one precision to another.

Whether or not this execution speed cost
is worth the benefit due to less round-·
ing error depends significantly on the pro
gram code. Three simple examples:

1. cl :• d + a•a
Here, the higher cost of evaluating

d d d ,
d. + (a x a) instead of d. + (• x a) is
certainly worthwhile; otherwise, the
extra precision of cl is wasted.

2. a :• a1 + a2 • (s3 + a4/sS)
Although

may be a marginally better value
than

• • • •
11 + 12 x (13 + 14 / is)

it would be hard to justify the added
cost.
If the cost i1 justified, then the pro
grammer should write

cl:• at+ a2 • (a3 + a4/sS)

in order to take ad vantage of the
extra precision. The widest needed
strategy, which we suggest below,
uses single if the value is to be stored
in • and double if it is to be stored
ind.

6

3. a :• a1 + •2
On a reasonable machine,

here the extra expense is simply
wasted.

Since most statements in typical code are
of the simple form given in the third ex
ample, the use of the widest ayailable pre
cision is often wasted; if the widest pre
cision is computationally expensive, then
this strategy loses much of its appeal.

• In a system which supports infinitely
many precisions, the "widest available"
format is non-existent. Such systems
which choose to support overloaded op
erators should use the "widest needed"
strategy outlined b~low.

5.3 Widest needed

Strict evaluation eliminates much of the use
fulness of overloaded operators by forcing the
programmer to use explicit type conversions
whenever a benefit is to be gained from vary
ing precisions. Using the widest available pre
cision wastes the extra computation in fre
quently arising situations. A natural sug
gestion is to use the widest precision that is
"needed", i.e., that will be used in the local
context.

More precisely, assigning precisions to an
expression tree using the widest needed strat
egy can be described as follows:

1. Assign tentative precisions using the
• strict ~valuation strategy, in a bottom up

traversal of the tree.

2. Using a top down traversal of the tree,
check each overloaded operator. Let the
tentative precision of the operator be Pt,

and the precision expected by the parent6

be Pc. Assign the wider or Pt and Pc as
the precision or the operator.

This strategy is rar superior to strict eval
uation; if it is more efficient than the widest
available strategy for a particular targei ma
chine, then it should be the default. The ef
fects of the other strategies can be obtained by
using explicit coercion functions in those un
common cases where they provide better re
sults. hnplementing the widest needed strat
egy is more difficult than the other strategies,
but not terribly so; a modification to a UNIX7

FORTRAN compiler to implement the widest
needed strategy required about 80 man hpurs
(4) in the context of a compiler that y,as doing
optimizations such as inline expansions. When
this ·strategy is designed into a compiler in
stead or added after the fact, the time needed
should decrease.

6 Improving efficiency

The ideal goal of an optimizing compiler is
to increase the efficiency or a program with
out changing the output it produces. Un
fortunately, the fact that floating-point arith
metic is normally viewed as an approximation
to real or complex arithmetic has led some
compiler writen to sacrifice semantics for the
sake of speed because ''one approximation is
as good as another". is simply not so; it is
possible to provide tight bounds on the er-

6The result of the operator will be either used in
a context expecting a fixed precision (e.g., assignment
to a variable or u a parameter) or u an operand of
an·overloaded operator. In the former cue, the ex
pected precision is defined by the language (although
discovering the expected precision may require more
croaa-file type checking than is required/facilitated by
the language definition); in the latter, it is the preci
aion assigned to the parent operator.

7UNIX is a registered trademark of Bell
Laboratories.

7

ror in many computations by careful coding
that takes into account the diff'erences between
floating-point and real arithmetic. Therefore
tlo what the programmer ,ay1, not what you
tAini Ae "want,".

We believe this rule to be 80 important that
we begin this section with two optimizations
that are legal under most language standards,
but can be painful for the numerical analyst:

• Reorganizing expressions to use fewer reg
isters is a well understood and com
mon technique. We have already pointed
.out that doing so can introduce anoma- •
lies since floating-point arithmetic fails to
honor some common identities. Many
languages allow arbitrary appli~tion of
algebraic identities, regardless of their ap
plicability to the machine arithmetic, 80

these optimizations do not fall under the
heading of "avoid at all costs"; but paren
theses, at the very least, should be re
spected. Experienced coders will not in
troduce parentheses without a good rea
son; inexperienced coden will not run
their programs often enough for such op
timizations to be worth the eft'ort.

• Many optimization techniques involve
moving computations, e.g., moving code
out of loops, storing common subexpres
sions, or evaluating constant arithmetic at
compile time. Floating-point arithmetic
can often have side eft'ects aside from com
puting a result, e.g., setting flags and/ or
trapping. 8 If code is to be moved, it is
important to ensure both that no spuri
ous side efrects are introduced at the new
location, and that the correct side eft'ects
occur at the old location.

•Remember that the decimal to binary conversion
implicit in the appearance of a numeric litereil is a lull
Sedged operation under the IEEE standard, and can
generate signals and/or be aft'ected by rounding mo~es.

We now list optimizations that are partie11-
larly important in floating-point code.

• A simple lo~ improvement removes un
necessary coercions. H a cautious p~
grammer has written

d :• d + dble(a)•dbla(a)
and the targe~ fflP..chine supports a double
precision proew:1 of two single precision
numbers, don't penalize the programmer
with the extracoercions. The FORTRAN
standard considers th.is functionality im
portant enough .to provide a special func
tion (DPIOD) so that the programmer can
perform this optimization at the source
level; such a simple peephole optimization
should be handled automatically by the
compiler.

• Careful instruction scheduling to mini
mize pipeline conflicts is of partie11lar im
portance in the-longer pipelines typically
used by high speed floating-point units.

• Machines with ·vector instructions cater
to numeric processing and any compiler
which fails to vectorize loops will fall into
disuse. Unfortunately, many compilers
refuse to vectorize any loop with an em
bedded IF stateme11t. Many vector ma
chines have a select vector operation
which chooses on~ of two possible results
based on a boolean condition; this op
eration is tailored to conditional expres
sions, but in a language without condi
tional expressions an IF statement must
be used. This happens quite often when
using functions with removable singulari
ties; consider, e.g., evaluating (sinz)/z in
a loop:

if (x[i] • 0) then
J :• 1

else
J :• ain(x[i]) / x[i]

8

endif

If it is considered too difficult to vector
ize the above, then an extension to the
language adding a conditional expression
should be strongly considered. 9

• Branch prediction is another area where
grea& improvement can be gained. Much
of the branching in floating-point codes
exists solely for the purpose of handling
exceptional cases; the jump only needs to
be taken a very small percentage of the .
time. This situation is ideal for branch
prediction optimizations. Profiling inf or- ·
mation appears to be the best way to de
cide which branch is more likely, but a
simpler implementation can provide a no
tation for the programmer to make the
prediction.

• Division is almost always much slower
than multiplication. Replacing division
with multiplication is done by many pro
grammers as a matter of habit; it is cer
tainly within the compiler's jurisdiction
to replace division by a constant with
multiplication provided the reciprocal is
exact and the multiplication has identical
effects.

91& ia common practice in some circles to cre
ate conditional expressions, in languages that al
low coercion of booleans to integers, by exploiting
the fact that TIVE is often represented by l and
FALSE by O; the above example would be coded u
1 :• 1.0-(s[i] • 0) • •ia(z[i])/z[i]•aot(z[i] • 0).
There exia& compilen that recognize this convention
u a speciu cue and will skip over the divide by zero
when z [i] u zero. Such programming practices should
be discouraged, but implementors with ,trong commit
ments to portability 1hould interpret this construct as
a conditional expres,ion and pro'!ide suitable warning•
when booleans are coerced to real values.

7 Support for library writ-
ers

A good loating-point library for FORTRAN
or an IEEE standard implementation is a job
for specialists. hnplementing a good library
requires many capabilities that are not avail,.
able in FORTRAN, nor in many more mod
em languages; e.g., a library tha~ imposes the
standard function call overhead for the use of
a short generic function like lBS is not satis
factory. The necessary features are listed be
low, along with a specific example of how they
might be used in implementing complex arith
metic.

T .1 Operator overloading
Adding a new data type, such as double pre
cision complex, can be practically unbearable
in a language like FORTRAN without com
piler support. No one wants to go through the
bother of writing

DOUBLE l(2),B(2),C(2),TEIP(2)
DCTIIIES(TEIIP,B,C)
DCPLUS(1,l,TEIP)

instead of the much clearer

CORPLEI_DOUBLE l,B,C
l•l+B•C.

The arithmetic operators in most languages
are already overloaded with regard to integer
and floating-point types, as well as dilfering
precisions; the clear solution is to make this
facility available to the library writer and, if
feasible, to the general programmer. Exam
ples of such facilities can be found in the op
erator functions of C++ or Ada. FORTRAN,
of course, also needs the capability of defining
new types.

Ideally, the implementation of precision
overloading discussed earlier in the context

9

of subexpression precisions should be • or
thogonal to the data type overloading; e.g.,
4 : 11 4 + 11• 11 should evaluate 11•11 to the
same precision, regarclless of whether II is real
or complex.

T.2 Catching fatal errors

In some systems, the default behavior for
a function receiving strange arguments is to
halt the program and write an error diagnos- •
tic. H poorly implemented, this can lead to
bizarre behavior when· library lunctions call
each other: consider the poor scientific pr~
granuner who is using only sines and cosines
and receives the message "Invalid argument for
REM". Some usen of loating-point code have,
quite legitimately, no idea what REM is.

The best solution here is to allow the caller
some control over whether a function will ter
minate execution; the· lunction which called
REM could, if informed of the error, produce
a more suitable message or perhaps use a dif
ferent method of finding the desired result.
H the implementation of this more extensive
handling is considered too expensive, the ter
minating message should at the very least pr~
vide a traceback of the library calls that re
sulted in the error, e.g., "Invalid argument for
REM; REM called by COS called by ... ".

7.3 lnline functions
Replacing a function call with the body of the
function is a rather simple transformation that
often results in much more efli~ient code. De
ciding when the transformation will be worth
while can be a difficult task, but it is easy ·to
give-the programmer the ability to specify that
a given function should be compiled inline.

We mention inlining here because the func
tions introduced by overloaded operaton are
often so short that it is clear they should al
ways be expanded mline; thus, the library im-

plementor, at the very least, should have this
capability.

7 .4 Specifyi~g structured con-
stants

Given a new data type such as complex or
i.D.tenal, it is of course useful to provide
some syntax for specifying constants of that
type. The simplesi alternative is to have
certain function· calls that can build con
stants from their primitive parts, e.g. a func
tion complex Cr ,i) which returns the complex
number (r, i). Ir the function call can be spec
ified as inline, this facility provides the nec
essary capability without the need for special
syntax.

7.5 Specifics for complex arith-
metic

We now outline how the above functionalities
can be combined to implement complex arith
metic. Adding interval arithm~tic is similar.

A good library for complex arithmetic
should provide:

as complezCr)+c; doing so is less effi
cient and may be less accurate. 10 Thus,
the overloading facility must be able to
handle operands of different base types as
well as different precisions. Some of these
functions should be declared inline, de
pending on their simplicity and the rela,.
tive speed of procedure calls on the target
machine.

3. A function complez Cr, i) which returns
the· value (r, i); this function can be
used to designate complex constants, and
should be declared inline.

4. Ideally, an imaginarJ date type for rep
resenting values whose real component is
zero (this type is analogo11S to the type
re~l) and a function for converting re
als to imaginaries. The imagi~rJ type
would not normally be used to declare
variables, but would rather be the result
of expressions of the form iota•r, where
iota is the constant,= ,.;=i.. The new
type is simply the method by which this
functionality can be added to the lan
guage without making explicit changes in
the compiler. •

1. The ability to declare complex variables,
with the same choice of precisions enjoyed 8
by real variables. The record facility pro
vided by most languages is perfectly suit
able; if the language has no records, they

Merging language
and IEEE floating-point
standards

can be added with appropriate source to
source translations.

2. Standard arithmetic function~ for as
sorted mixtures of complex and real ar
guments, overloaded on the appropri
ate symbols. Not all combinations of
real and complex values should be han
dled by promoting the real to a com
plex. For example, for real r and
complex c, r+c should not be evaluated

Ir the IEEE floating-point stanC;lard has been
implemented in a given system, then compil
ers for the system should naturally make the
facilities of the standard available to high level
language programmers. This section describes

• 0 on an IEEE Standard machine, evaluating
(z,J) + s as <z,1) + (s,+O) will destroy the sign of
J if' J is zero. The sign of' zero can be of great impor
tance in complex arithmetic; this is no~ the place to
fiddle with it.

10

a

how the language standard and the IEEE stan
dard can be merged in the least painful way.

Suggestions in this section referring to han
dling of NaNs apply equally well to systems
that support similar entities (e.g., the indef
inite operand of a CDC machine, or the re
served operands of a VAX).

8.1 Precisions

A compiler should provide source language
data types for the precisions available on the
target machine. Mapping source language
typ.es to the IEEE standard single,. double, and
extended should be done with the knowledge
that single is the normal type used for input
and output, while double and extended are
normally used only to provide extra precision
for sensitive calculations; thus the standard
floating-point type in the language (e.g., real
in Pascal or non in Ada) should map onto
single. U a language lacks standard names
for various precisions, aillgle, double, and
extuded should be used for the sake of pro
gram portability.

8.2 Comparisons

Floating-point comparisons have typically
been modeled by the function compare (z, J)
~hich returned one of three values <, >, or
•. The IEEE standard provides for a fourth
value, ? or unordered, which is the result if z
or J is a NaN. This must be handled carefully:

• The comparisons < and ~ are not op
posites; if z is a NaN, then both z < J
and x >• J are false. Comparisons are
often reversed during code generation; if
this is done carelessly (perhaps at the
source level or in an intermediate repre
sentation)and x >• J is substituted for
:not(z < y), then improper code will re
sult. This is only a problem in the sense

11

that it provides an easy excuse for making
a mistake; it should be easy to correctly
negate comparisons on a machine which
supports the standard.

• Many languages-use the symbol <> to rep
resent ¢. This can create confusion: <>
is often read "le,s than or greater than",
but in the standard, ((z < y)V(z > y)) is
not the same as (z ¢ y) when z or y is a
NaN. Thus <> has two possible meanings.
The choice should be left as a compiler op
tion, i.e., the programmer should have the
ability to specify that . <> will mean either
"less than or greater than" or "not equal",
to ,help portability of existing code. The
default meaning should be "less than or
greater than" for two reasons:

1. The comparison z ¢ y can be easily
written Jlot (z•J), but

has no equally short fonn other than
z <> J•

2. The default is safe in the sense that
users who use x <> J expecting it to
be interpreted z ¢ y will ~e signaled
with an invalid operation whenever
it makes a difl'erence (i.e., !{hen z or•
y is a NaN).

A function compare(z,J) returning one of
four values <, >, •, or ? (without generat
ing signals for NaNs) should be explicitly pro
vided, particularly in languages with case or
switch statements that can make particularly
efficient use of such a function.

8.3 Minor incompatibilities in
miscellaneous functions

The papers describing the IEEE standards (1)
[2] contain many functions, some as part of

the standard and some only recommended,
which are slightly different Crom assorted lan
guage standards. These incompatibilities vary
in their severity, ~d should be handled in dif
ferent ways:

1. Some difficulties arise because the IEEE
standard introduces values that were
unanticipated by the language standard.
When the incompatibility only aft'ects val
ues outside the domain of the language
standard, then the IEEE standard should
be allowed to take precedence.

2. Some functionalities are provided slightly
differently in the IEEE and language stan
dards; e.g., most languages define a func
tion IDD(y ,z) such that

0 S mod(y, x)/x < 1,

while the standard defines a similar func
tion IEI such that

lrem(y, x)I S lx/21.

In these cases, both the language and the
IEEE standard £unctions should be sup
ported. The library writing support out
lined in the previous section is of great
value here in moving the burden of sup
porting a plethora of slightly different
functionalities from the compiler writer to
a numerical library specialist.

3. Occasionally the language and IEEE stan
dard stand in direct opposition. A com
piler switch should be available to choose
which standard will be obeyed at these
points.

Some of the common d.iff'erences are listed
here, along with suggestions on how they
should be handled.

zeros and signaling NaNs exist; -z should
be the value of z with the sign bit re
versed. The language standard can sim
ply be overruled here.11

2. FORTRAN's SIGI function is identical to
~OPYSIGI except when the second argu
ment is zero;

SIGl(1.0,-0.0) • +1.0
but

CDPYSIGl(1.0,-0.0) = -1.0.
Both functions should be supported.

3. Many· languages specify that, when
rounding X to an integer, r X, is chosen if
X is half way between L X J and r X,. In the
IEEE standard, ties are resolved in favor
of the even neighbor. Both function~ties
should be supported.

4. In APL, 0/0 is defined to be 1, while the
IEEE standard default value is a NaN. An
APL compiler should have a switch to de
termine which value results.

5. Some languages define I • I to be equiv
alent to I = IJT(l) for integer I and real
I. In such a ~guage, a compiler switch

• should allow for the IEEE option that the
fint may signal inexad while the latter
does not.

6. A constant such as IAIIEAL is often de
fined to be the largest real number rep
resentable by the floating-point system.
This should not be set to infinity, but to
the largest finite value; codes that use it
usually treat it as a finite value whenever
it might make a diff'erence. The source
level constant IIFIIITY should be avail
able !or indicating .infinities.

ll Unless it alao deals with signed zeros, in which
1. -z is often defined to be equivalent to case both standards should be supported via a com-

0-z, but this is inappropriate when signed piler awitch.

12

7. There is often difficulty deciding what a
function should do with a NaN. We will
give a single example, the 1111 function
defined in many languages to· return the
maximum of two values. What should
1111(5,lal) be? The answer depends
on the application; sometimes the NaN
should be ignored and 5 returned, while
in other cases the NaN should propagate.
Both functions should be supported. 12

9 Acknowledgements

This paper is based on lectures given by W.
Kahan at the University of California, Berke
ley during the Fall of 1986; Professor Kahan
has been of great help in tevising the paper.
Richard James' notes for the IEEE P854 work
ing group [5] were useful as a numeric~ ana
lyst' swish list of what compiler writers ought
to know. David Hough provided helpful com
ments on an earlier version of the paper.

References

(l} IEEE standard for binary Boating-point
arithmetic. Reprinted in SIGPLAN,
22(2):9-25, February 1987, 1985.

[2] W. G. Cody et al. A proposed radix
and word-length-independent standard for
floating-point arithmetic. IEEE Micro,
4(4):86-100, -August 1984.

[3] Jerome T. Coonen. Contri6ution, to a
Propoaed Slo.ndard for Binary Floating
Point Arithmetic. PhD thesis, University
of California, Berkeley, 1984.

1 'N amc• f'or all of' these f'undion• are certainly a
problem; work i• being done trying to arrive at 1ome
naming convention•. In the meantime, the dec:i1ion
can be left to the library writer.

13

(4] Robert P. Corbett. Enhanced arithmetic
for Fortran. SIGPLAN, 17(12):41-48, De
cember 1982.

[5] Richard E. James. Dear compiler writer.
July 1985. A list of compiler-related issues
discussed by the P854 Working Group.

