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Abstract 

~ can naively view a Cat1pllter nlmb!r system as a 
pair (P,P) consisting of a finite set P of real 
numbers and a rounding rule P. One such number 
system is a hyperbolic rational nllli:ler &"jstem which 
has as P a finite set of rational nl.lli>ers and as P 
the so-called mediant rounding rule. In this J;Bper 
we demonstrate how one can simulate a hyperbolic 
rational number system in any high level language 
that supports floating point canputation. From 
this simulation we infer that hyperbolic rational 
number systems form viable alternatives to 
traditional binary floating p;,int nmi:>er systems. 
Many properties of hyperbolic rational number 
systems are derived £ran the relationship of their 
rounding rule to the well-developed theory of best 
rational approximation. 

1. Introduction and Smmary 

Qle can naively view a Cat1pllter nl.lli)er system as a 
pair (P,P) consisting of a finite set P of real 
nUli:lers called the machine representable numbers 
and a rounding rule P which maps real nmt>ers into 
machine representable numbers. One of the 
fundamental purposes of the rounding rule P is to 
round the result of intermediate a:mput:ations into 
machine numbers. Thus, if z and y represent 
machine nlmilers, then P(x+y) would be the machine 
mm:>er which represents the a:mputed value of z-t-y. 

For example, a binary floating point nanber systerd 
has as P those nllli)ers in the set 

{ ± (0.C\ ~ .•• '\>2e I'\+ o, L < e < o} 

consisting of signed normalized binar:y fractions of 
bounded length k multiplied by bounded powers of 2 
and as P that rule which chooses P(z) to be the 
value obtained by suitably truncating the 
normalized binary fraction representing z. Note 
that in this nllli>er system some common fractions 
such as l/3, 1/5 and l/10 are not machine nmi>ers. 
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As an alternate number system let us consider a 
hyperbolic rational number system which has as F 
the JUlli)ers in the set 

{ ± p/q I p,q > 0, gcd(p,q)ml, pg< m} 

consisting of signed irreducible fractions of 
bounded conplexity m and as P the mediant roun:ling 
rule. Here the complexity of a fraction p/q is 
defined to be the integer pg. Although the mediant 
rounding rule will be defined in Section 2 we can 
briefly describe the mediant rounded value P(z) of 
z as the nmnber obtained by suitably truncating the 
ordinary continued fraction representing z, thus 
relating the mediant rounding rule to the well 
developed theory of best rational approximation. 
Qie important property of the mediant rounding rule 
is that it is biased towards sinple fractions, that 
is fractions with small axuplexity [MRS0J. 

The main result of this J;Bper is the dem:>nstration 
that hyperbolic rational nunt>er systems, with their 
biased rounding rule, form viable alternatives to 
traditional floating point number systems. To 
support this statement we show ha, one can sinlll.ate 
a hyperbolic rational nlmiler system using the host 
computer's floating p;,int nait>er system. In this 
simulation each fraction J:\lq is represented by the 
host computer• s floating p;,int approximation of p 
divided by q. To study the effectiveness of 
computations performed in hyperbolic rational 
rmd:>er systems we consider a vecy special problem 
frequently studied in n11t1erical linear algebra, the 
inversion of a Hilbert matrix. 

The computation of the inverse of a Hilbert matrix 
is interesting for two reasons. 'Die first reason 
cx,ncerns the fact the inversion of a Hilbert matrix 
is an inherently ill-conditioned problem. 'lberefore 
stable algorithms for computing matrix inverses, 
such as the Gaussian elimination algorithm to be 
described in Section 3, will have difficulty 
producing an accurate estimate of the inverse of a 
Hilbert matrix. The second reason concerns the 
fact that the numbers which arise during the 
computation of the inverse of a Hilbert matrix can 



be descril>ed using siqlle fractions. In Table 1 we 
present formulas describing the order n Silbert 
matrix and its inverse [Ch83, Co39, ftl&7, 008]. 
'l'be ill-conditioning of the Hilbert matrix 
manifests itself in the latge magnitude of sane of 
the entries in the inverse of the Silbert matrix, 
with the condition number of the otder n Bilhart 
matrix growing like exp(3.525n) [To54J. Por 
exanple the order 5 Hilbert matrix 

[ 

l/1 
1/2 

8s ~ 1/3 
1/4 
1/5 

1/2 
1/3 
1/4 
1/5 
1/6 

bas as its inverse [GK78J 

1/3 
1/4 
1/5 
1/6 
1/7 

1/4 
1/5 
1/6 
1/7 
1/8 

1/5 ] 1/6 

~ 
1/9 

-1 r-3: ;:~ -1!:05g ;!= -1::~~ 

1 
Ifs a 1050 -18900 79380 -117600 56700 

-1400 26880 -117600 179200 -88200 
630 -12600 56700 -88200 44100 

Since the base 10 logarithm of the a>ndition rum:,er 
estimates the number of digits of accuracy lost 
during the computation of the inverse of the 
Silbert matrix we expect to lose about 1.53n digits 
of aocuraq when we atteq;,t to caup.rt:e the inverse 
of the order n Hilbert matrix. 

H • LU 

Hilbert 11111trb H • (111,j) 

L • (1 1,j) 

u. (111,j> 

unit lower triangular 1111tr1x 

upper triangular matrix 

-1 ( -1 
L • >.t,j) inverse of L 

D • diag(a 1) . . . diagonal Ntrix 

., ___ 1_ 
i ,j f + j · 1 

), . [J.!...:....W.] 2 r 21 - rn 
t .J (j · 1) ! ( 1 + j · 1 )! ( f - j) I • • • ( 

1 !. j) 

II • rp • 1 )! (j • 1) 112 
t,j (1 + J • l}!(j - 1)1(21 - 2)1 

( t !. J) 

>:1 • (-1)1+j [J.L:...lli.]2 (1 + J - 2)1 ( 
i.J (J • 1)1 (1 - j)!(2i · 2)! ••• f !. j) 

a • (.l)f•lrn + t - 1)! 
1 [(t • 1)1]2(n - f)! 

Table 1: Properties of the Order n Hflbert Matrix 

195 

In Figure 1 we present curves describing the base 
10 logarithm of the candition nm:t>er of tbe Silbert 
matrices and the nmiler of digits af accuracy lost 
when the inverse of the Silbert matrices are 
ccqut:ed using binuy floating point aritmetic and 
sinw.ated hyperbolic rational arithmetic. 'lhese 
computations were performed on a CDC 6600, the 
floating point computations utilize 96 bit 
fractions while the siDw.ated rational canput:ations 
allocates an equivalent number of bits to the 
storage of its fractions. Note that for Silbert 
matrices of orders less than 20 the floating point 
computation shows a steady loss of accuracy as 
predicted by the grapi of the base 10 logarithm of 
the ccndition nmi>er while tbe ocaprable siJllllated 
rational arithmetic canput:ation is exact I Of a>urse 
the fact that rational aritblletic canput:ation am 
be exact is a property of this problem. The 
significant observation is that in our £looting 
mint a1DJJJat1cxa of hyperbolic rational arithmetic 
simple rationals must be approximated by floating 
point numbers inevitably introducing rounding 
error. The cancellation of these errors in 
sd:mequent canput:ations is clearly a property of 
the bias of the rounding rule towards simple 
fractions. '?bis behavior on problems with a 
preference for ~e rational results leads to cur 
characterization of the rounding derived from best 
rational approximation as an •intelligent• 
rounding. With this intelligent rounding we can 
compute inverses of Bill:lert matrices eight orders 
higher with the same underlying 96 bit floating 
point representation on the ax: 6600. 

Of c:ourse one might feel that for problem in which 
sinpe fractioos do not play an inp>rtant role that 
canput:ations performed in a hyperbolic rational 
number system might be significantly less accurate 
than when performed in a floating point number 
system. 'l'o test this hypothesis we oonsidered the 
inversion of scaled Hilbert matrices, Silbert 
natricea which were scaled en the left and right by 
the same diagonal matrix. 'lbis diagcmal. scaling 
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bad the property that the entries of the ac:aled 
Hilbert mtriz were no longer aimple fractions, nor 
were any of the intermediate results that ocaJred 
during the carpitaticn of the inverse of the scaled 
Hilbert matriz. In Pigure 2 we present curves 
describing the maber of digits of accuracy lost 
when the inverses of the scaled Bilbert matrices 
are CCJll1Uted using binaiy floating point aritlmetic 
and simulated hyperbolic rational arithmetic of 
carprable precisian. Note that both ccmputations 
8bOII the usual steady loss of accuracy as predicted 
by the base 10 logaritbn of the condition number, 
with the floating point computation showing a 
slightly greater accuracy than enjoyed by the 
aiJIUlated rational cmpJtaticn. 

Prem these cxmprisons ve feel that rational mar 
systems are viable altematives to the traditional 
floating point number systems currently used by 
lllllllY computers. For CDqmaticms in wbidl siJrple 
fractiana play an important role rational number 
systems can produce potentially exact results, 
vbile for ccqut:ations in which simple fractions 
play no important role rational nmt>er systems can 
enjoy an accuracy caraparable to that enjoyed by 
floating point nmiler systems. 

Let us now turn to a more precise description of 
byperbolic rational number systems and of the 
caEpJtational experiments performed. In Section 2 
we present some properties of hyperbolic raticnal 
number systems, in particular relating these 
properties to the well developed theory of best 
raticnal approxilmtian. In Section 3 we describe 
the computation of the inverse of a Silbert matrix 
and its scaled variant. In section 4 we describe 
bow we simulate computations in a hyperbolic 
ratianal nmi:ler aystan using ccmp1tations performed 
in the host computer's floating point number 
system. 

Figure 2 
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2. Byperbolic Rational Nlllt,er S,yBtems 

A hyperbolic rational number system has as its 
machine representable numbers signed versions of 
the numbers in a hyperbolic chain of rational 
numbers and as its rounding rule the mediant 
rounding rule [Mlt80). In this section we will 
describe both the hyperbolic chain of rational 
numbers and the mediant rounding rule. In the 
paragrapis that follow the letters p and q, as well 
as their derivatives, will denote nonnegative 
integers. 

Recall that a rational nuaber is nerely a n\Zlber 
that can be represented as a ratio of two integers. 
A fraction is just a p1ir of nonnegative integers 
(p,q) whose associated value is the raticmal. nmter 
(:V'q. Without further axment we will represent the 
fraction (p,q) as the rational number p/q. Two 
inp)rtant cor,ceplB related to a single fraction are 
the amcepts of canplezity and irreducibility. We 
say that the complexity of a fraction IV'q is the 
integer pq. 'lhus we will talk about those fractions 
p/q with pq large as complex fractions and those 
fractions 5V'q with pq small as simple fractions. 
We also say that a fractian IV'q is irreducible if 
the greatest cOD1DOn divisor of p and q, written 
gcd(p,q), is unity. 1\10 iup>rtant cxmcepts related 
to pairs of fractions are the concepts of mediant 
and adjacency. If 5V'q and p' /q' are two fractions 
then their mediant, written aed(p/q,p'/q'), is 
defined to be the fraction (ptp')/(qtq'). we also 
~ that two fracticrm i:v'q and p'/q' are adjacent 
if the absolute value of tbe difference p'Q-Pl' is 
unity. Since the properties of the adjacent 
fractions play sudl an iqlortant role in the theor:y 
of best rational approximation we list some of 
these properties in tbe following: 

Observation 1: Let p/q and p' /q' be adjacent 
fractions with wq < p' /q' . -nieri 
a) wq and p'/q' are irreducible, 
b) i:v'q and p'/q' have the same canplexity only when 

IV'q-0/1 and p'/q'•l/0, 
c) p'q • pg'+l a 1/2 + aqrt(l/4 + PJP'q'), 
d) ad (a/q, p• /q') is adjacent to IV'q and p' /q' , 
e) lll!d(i:v'q,p'/q') lies strictly between a/q and 

p'/q', 
f) ad(p/q,p' /q') is irreducible, 
g) lll!d(w'q,p'/q') is more canplex than either wq 

or p'/q', 
h) ad (p/q,p• /q1) is the unique fraction lying 

strictly bet:lleen IV'q and p'/q' of least 
caa:p].exity. 

1'be proofs of many of these observations am be 
found in [BSO, BN&OJ • '.lbe rational number system 
we use bas as its macbine nmd::,ers signed versions 
of tbe fracticns in the set 

{ wq I p,q l: o, gcd(p,q) • 1, PJ ~ ml • 



Note that if ve represent the fracticm 9'q by the 
point (p,q) then we find that the fractions in this 
set all lie under the grapi of the q,perbola ppm. 
Let us therefore agree to call the ordered set 
formed by listing the fractions in this set in 
increasing nmeric order the byperbolic cbain of 
fractions B (m) • Prom elementary nmi:>er tbeoey .
find that the asymptotic cardinality of B(■), for 
luge m, is given by 

6m ln(ID) /w 2 • 

Note that no more than 2+l~(m) bits are needed to 
store the nmerator and denaiinator of any fraction 
in B(m). 

Table 2, whose rows list the merrbers of B (m) for 
■<10, was constructed by using a slight 
generalization of a process attributed to Paref 
[n66] • Start in row O by placing in order the 
fractions zero 0/l and infinity 1/0. 9lell for each 
k>O construct row k of this table by copying down 
in order the fractions in the row k-1, but 
inserting between two conseaitive fractions of row 
k-1 their mediant if the cxepl.exity of that mediant 
is equal to k. A simple proof by induction on the 
rows of this table shows that any two consecutive 
fractions in row k of this table are adjacent and 
their mediant has complexity greater thank. We 
therefore conclude, using observatim lh, that row 
k of this table consists of the meai:>ers of B(k), 
listed in their proper order. ~s leads us to the 
following inductively established: 

!! ____________________________ H{n} ___________________ _ 

0 
0 -

1 

0 

0 

0 
3 -

0 
4 -

1 

0 
5 -

1 

6 

0 

0 
8 -

1 
-
8 

1 
-
5 

1 1 
- -
6 5 

1 1 1 - - -7 6 5 

1 1 1 - - -
7 6 5 

-
2 

1 1 
- -
3 2 

1 1 1 
- - -
4 3 2 

1 1 1 

4 3 2 

1 1 1 2 -4 3 2 3 

1 1 1 2 - - - -
4 3 2 3 

l 1 1 2 - - - -4 3 2 3 

-
0 

-
0 

2 - - -
1 1 0 

2 3 
- - - -1 1 1 0 

2 3 4 
- -
1 1 0 

2 3 4 5 - - - - -1 1 1 1 0 

1 3 2 3 4 5 6 - - - - - - - -1 2 1 1 1 1 1 0 

1 3 2 3 4 5 6 7 - - - - - - -
2 1 1 1 1 1 0 

1 3 2 3 4 5 6 7 8 - - - - - - - -2 1 1 1 1 1 1 0 

011111111213234567891 
9 ------------- - - - - -1987654323121 1 1 1 1 0 

Table 2: Nllllbers of the Hyperbolic Chains 
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Observation 2: Let p/q and p'/q' be consecutive 
fractions in B (II) for ame m>O. 
a) wq and p' /q' are adjacent, 
b) w'q and p'/q' haft distinct cmpl.ezities, 
c) ■ed(w'q,p• /q') bas ~exity greater than m, 
d) aed(9"q,p'/q') bas CaDpl.exity less than 4»-1. 

Recall that our ratiaal m:d>er system bas as its 
rounding rule P the so-called mediant rounding 
rule.~ describe this rule and its ccnnection with 
the theoey of best ratiaal approximation we must 
discuss eome of the results from the theory of 
ordinary continued fractions [B1160, Kh63, NKSO, 
RZ66, Ri81]. 

By repeatedly extracting tbe integer p)rtion of a 
IUIDber and taking the reciprocal of tbe fractional 
remainder one is led quite naturally to the 
representatim 

1 

1 
81+---

82 + ••• 

of a nonnegative namer z as an ordinary continufg 
fraction. &ere the number ai is called the i 
partial quotient of z and re~esents a nonnegative 
integer when i=-0 or a positive integer when i>O. 
b truncated ccntinued fracticns defined by 

1 
pt/CJg • [~rBir•••rak] • ~ + ----

1 
Ai+ 

1 
••• + -

~ 

form important fractional approximations of x 
called the convergent& of z. Pran tbe tbeoey of 
ordinary continued fractions we obtain the 
following: 

Observation 3: The convergents of z admit the 
following properties. 
a) pt/Clar• <8tPJt-l~-2)/(~C.-i~-2) for IQ() if 

one mfineii p_i,'q_2-0/l ini! P_17q_1~l/O, 
b) Consecutive convergent& of z are aa]aoent 

fractions which lie on opposite sides of z, 
c) lz-pJ~ I < 1~_11,_1 I for IQ.O, 
d) If i:vq satisfies toe Inequality 

I z-p/q I < I z-"PJICJJt I for acme IQ.O, then 
Pit<it < pq. 

Rote that cbeervation 3d justifies cur description 
of the convergents of z as best rational 
apprazimaticns of z. 



'!he recursion relation described in cileenation 3a 
leads to the following algorithmically described 
rounding rule. 

Baticml Jlolntlng UgoritllD 
Il1plt: A o:r.negative real nlmiler x to be r0lmded 

and an integer m. 
QJtput:: lWDII>, the best raticnal approximation to 

x with maplexity not ezceeding m. 
1. Yalue-z, lblcM>, O>ld-1, Pnaw-1, QDPO 
2. Wbole-IntegerPortion (Value) 

Pne\i IIJOJ.e~Pold, 01at 11.ole~d 
Valuec-Value-111ole 

3. If PnewfQal ~ m then 
Pold-Pnalf, QolcJi:Oiow, PnclPPnew, ~ 
If value + o then 

Value• I/Value, QJ'lb 2. 
,. 1WJRI) - Pnolf/()low 

We are now in a posi ticn to describe the rounding 
rule P used in our ratianal DllliJer system. Given a 
nonnegative real ftllli)er z we define P(z) to be the 
value of MDII> as detemi.ned by the above ratiOMl 
rounding algorithm. Por negative z we then use the 
rule P(z) • -P(-z). Some of the more important 
properties of this rounding rule are ammarized in 
the folladng [NDO] : 

Observation 4. !he ratianal rounding rule P amdts 
the folladng properties. 
a) If z ~ y then P(z) ~ P(y), 
b) P(-s) • ~P(z), 
c) If z is a meaber of B(II) then P(z) • z. 

If p/q and p' /q' are consecutive ment>ers of B(m) 
t.hen it follows fran observations 4a,c that there 
is a real nlmber y such that P(z)aa,'q men p/q<z<y 
and P(z) ap' /q' when y<zq,' /q'. ~ tbeoey of simple 
continued fractions tells us that this •sp1.itting 
point' of tbe rounding rule P is always the mediant 
of p/q and p' /q' . Por this reason we term the 
rounding rule P the aecliant rounding rule. More 
preciael.y w abtain the follolfing [lltSO] : 

a:.enatiCln 5: let z lie between the consecutive 
mea,ers p/q and p'/q' of B(II) where m>O. If p•/t(' 
is the least caap.ez of a,'q and p' /q' then we have 

{

p/q 
P(z) • p'/q' 

p•/q' 

if z < Ed(p/q,p'/q') 
if z > med(r;vq,p'/q') 
if z - med(w'q,p'/q') 

When p/q is a mes:dler of B(II) the representation of 
a'q as a 0011tinued fracticn allows us to determine 
the neighbors of p/q in B <•> . Iet p/q aibit the 
following repres entaticn 

as a continued fraction with ak 2 2. Then 
(p'+a'p)/(q'+a'q) and (p•+a•p)/(q•+a•q) are the 
neighbors of p/q in B(m) where 

p' /q' - c~,-i,, • • • ,asc-11 , and_ 

p•/q' • [~ ·~, ••• ,8Jt-11 

with a'and a• the largest nonnegative integers for 
which 

(p'+a'p) (q'+a'q) ~ m, and 
(p"+a"p) (q'+a■q) ~ m. 

When numerical calculations are 12r£omed in this 
rational n11d>er system the gap bebleen consecutive 
meab!rs of B(m) affects the propagation of roundoff 
errors. To describe the size of these gaps we 
proceed as follows. let p'/q' be a finite nomero 
fraction in B(a). Then p'/q' is the middle 
fraction in a sequence wq, p' /q', p• /q• of three 
consecutive fractions in B(m) and those real 
numbers which round to p• /q' lie in the interval 
bebfeen aed(p/q,p'/q') and med(p'/q' ,p•/q•). 1be 
relative size of this gap adnits the bounds: 
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1 aed(p'/q' ,p-/q•) - aed(p/q,p'/q') 2 
- < ------------- < -
b p'/q' b 

were b • sqrt (11p'q') • 'lhese bo1.mds inp].y that the 
relative size of the gap associated with a given 
fraction in B(m) is roughly proportional to the 
reciprocal of the square toOt of the camplezity of 
that fraction. Por this reason we say the mediant 
rounding rule is biased towards simple fractions, 
i.e. fractions with llllllll ~ezity. 

3. Bilbert Matrix Inversion 

Hilbert matrices arise quite naturally when one 
considers the least squares approximation of 
continuous functions by polynmials [PK67] • For 
eJall)le, let us SURX>Se that we are asked to find 
the coefficients ~, ;, •.• , en of the polynanial 

2 _ _n-1 
p(x) • ~ + 7' + ~x + ••• + en.,;- • 

of older n which minimizes tbe error 

1 
B • f I f(z) - p(x) 12 

dK 
0 

in the approz:lmticn of a axttinUDUS function f by 
p. Since Bis a differ:entiable function of the 
coefficients of p we find that a necessary 
canditicn that B be minimized is that the partial 
derivatives of B with respect to c1 be zero for 
1•1,2, ... ,n. been conditions can tie succinctly 
vrittl!n as tbe atriz equation 



Be• b 

where 
1 

B•{-} 
i+j-1 

is the order n llilbert matrix, 

where • denotes transpose. Since 

1 
c•ec • r lp<z> 12 

dx 
0 

we infer that the order n Hilbert matrix is a 
symmetric positive definite, and therefore 
nonsingular, matrix. 

Let A be a matrix of order n. In nmerical linear 
algebra the following three step process is 
frequently recxmnended as an algorithm to solve the 
linear system bab [PM67] • 

SOluticn of APb. 
1. caipit:e the triangular factorization A=I.D of A 

using the Gaussian elimination algoritbn (no 
pivoting.) Here Lis a unit lower triangular 
matrix and u is an upper triangular aatriz. 

2. Solve the lower triangular systaD Ir--t> for y 
using the fotward elimination algorithm. 

3. Solve the upper triangular system tJxay for x 
using the backward subatituti011 algorit:JID. 

Wilkinson bas shown that when the effect of 
rouna>ff error is considered the above algorithm 
produces not the exact solution z of Azmb but 
rather the exact solution z• of the linear system 
(A-S) z•:zb, the matriz s accounting for the effect 
of the roundoff error that accumulates during the 
solution algorithm [Wi&S]. iiben the matrix A is a 
synmetric positive definite matrix, e.g. a Hilbert 
matriz, it has been shown that this algoritm is 
stable in the sense that the entries of S have a 
size that is comparable to the size of the error 
wbic:b is incurred when tbe entries of A and b are 
rounded to machine mlli:lers. To asaesa bcw acairate 
an approximatian z• is of z let us foll~ 'l'Ur ing' s 
analysis in wbic:b we qp,ee that S is a matrix of 
randan nl.lli:Jers, the mm:,ers ming uncorrelated but 
having the same_

1
variance. To first order ins we 

find that z■...A SK, and so it follows that 
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lllS error in z 1 1116 size of s 
• - R(A)ll(A-l) -----

lllS size of z n lllS size of A 

where RMS denotes root mean square and, for 
ezaqale, 

R(A) • s:irt(trace(A'A) )/n , 
MS siz.e of z = sqrt (z'z/n) , and 
111S size of S • 91rt(trace(B[S'S]))/n 

where B[.] denotes the expected value function. If 

M(A) = max{ la1 jl } 
i,j , 

then 

1 
- H(A)lf(A-l) ~ n ll(A) M(A-l) • 
n 

Turing sug~sted that the easily cx:q,uted nllltler 
nM(A)ll(A-) be used as a measure of the 
conclitioning of tbe problem of solving Az::b [TU48J. 
We will call this nllliler 'l'Uring' s maximum element 
condition number of A, or simply the condition 
nl.lliler of A. !l>te that this conditicn number is a 
statistical quantity which estinates how an initial 
error in A is amplified into a final error in the 
computed solution of Az:::b [FM&7, Wi65] • 'lherefore, 
the base 10 logarithn of the condition number can 
be viewed as a statistical estimte of the mmber 
of digits of aa:uracy that could be lost during the 
computation of the solution of .Az=b. !l>te that we 
use the maximum element condition number rather 
than other condition numbers since rigorous 
estimates of the ma.xinnn element condition number 
of Hilbert matrices exist [To54]. 

When the identity 

is viewed as a collection of n linear systems, one 
linear system for each column of the order n 
identity matrix I, one arrives at the following 
frequently rec:amended algoritbn for CDlplting the 
inverse of A [ftli7]. 

Inversim Procemre 
1. Cmlpute the triangular factorization A=ID of A 

using the Gaussian elimination algorithm (no 
pivoting.) 

2. Solve, an_f col1a1 by 001111111 basis, tbe linear 
system LL =I for the inverse of L using the 
forward elimination algoritm. 

3. Solve, on_f ~fl.Im by 00l1.1m1 basis, the linear 
system DA =-L for the inverse of A using 
the backward substitution algoritbn. 



Mhen A is a symnetric posit-ive definite matrix, 
e.g. a Bilbert matrix, we know from our previous 
comments tbat this is a stable algorithm for 
0CIIPJting the inverse of A [Wi65] . 'Dlerefore the 
only way tbis algorithm can fail to compute an 
accurate estimate of the inverse of A is fot A to 
be ill-conditioned, i.e. for the condition rum:,er 
of A to be large. 

Several comments must be made before we describe 
the results of our computations on inverting 
Silbert or scaled Silbert matrices. flle first 
comnent concerns bow these computations were 
performed and the second comment concerns the 
errors which are reported. All com.putations were 
performed on a CDC 6600 using tbe University of 
Minnesota• s f'CRmAN 77 compiler. i1lis version of 
the FORTRAN language supports botb single and 
double precision binary floating point cxmputations 
in which 48 and 96 bits respectively are allocated 
to the storage of the nomalized binary fraction. 
To make computations in the hyperbolic rational 
nmb!r system of cxqarable precision we dlose to 
limit the ~ezii of our fractions to be less 
than either 2 or 2 • Fran tbe statements made in 
the previous section we recognize that this choice 
of ccmpl.exities JEanS that approximately 48 or 96 
bits are needed to store botb tbe mmerators and 
denominators of the fractions in the rational 
number system and that the relative size of the 
smallest gaps in both number systems are of 
comparable size. During the computation of the 
inverse of a Hilbert or scaled Hilbert matrix A we 
monitored, using the formulas in Table 1, the 
maxiDln relative error of tbe_ronzero -fntries in 
each ~l the matrices L, u, L , and A and found 
that A was always the matrix which bad the entry 
with largest relative error. Therefore, in the 
figures described below the error we are reporting 
is always the value of 

-1 -1 

!(exact A )1 j-(carpited A >i,jl 
Berr = ~ ' _1 . 

i,J (ezact A ) i,j 

Prom Rerr we computed the number of digits of 
accuracy jgst ~ ~ the base 10 logaritm of 
either 2 Rarr or 2 Rerr depending on which 
precision was used during the cxmputations. 

As stated in the introduction the inversion of a 
Hilbert matriz is interesting for two reuons. 'lbe 
first reasai ccncems the fact that tbe inversion 
of a Hilbert matrix is an inherently 
ill-conditioned problem and the second reason 
concerns tbe fact that the numbers which arise 
during the c:anpitaticn of the inverse of a Silbert 
matrix can be described using only simple 
fractions. In Pigure 3 we illustn.t.e tbeee facts by 
plotting two airves. 'lbe first curve is a plot of 
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the base 10 logarithm of the Turing condition 
number of the Silbert matrices, note tbat this 
curve ascends alnl>st linearly with a slope of about 
1.53 [PM67, Gl(78, '1'054). 1be second curve is a 
plot of the base 10 logarithm of the maximum 
ccmplezity of the fractions which arise during the 
computation of the Silbert matrices, this maximn 
canplexity was computed using a FORTRAN package 
which allows one to perform exact rational 
arit:IIDetic. It is somewhat surprising to observe 
the rather close correlation between the 
statistical condition number and the maximum 
CClllllexity involved in the cxmput:ations. 

Let us now consider the canputation of the inverses 
of Silbert matrices. In Pigure 4 we display the 
growth of the error when the inverses of the 
Silbert matrices are carpited in single and double 
precision in botb the binary floating point and 
simulated hyperbolic rational number systems. 
We emphasize that the results of the rational 
computation in Pigure 4 are derived from a 
siDmlaticn using floating point approzimations and 
floating point arithmetic as a host, and are not 
tbe straigbtfon,ard ezact results of emct rational 
computation. 'lbe netbom>logy of tbe silml.ation is 
described in Sect.ion 4. 
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Several conclusicns am be drawn £ran this figure. 
'Jbe first ccncJ.usiai is that tbe blae 10 logarithm 
of the 001ldl.tion IUllber: is a reasonable estimate of 
the mmi>er of digi ta of accuracy that is lost in 
the floating point computation. The second 
canclusion is tbat the nmber of digits of accuracy 
that is lost in the floating point computation 
&ee1111 not to depend ·significantly en the underlying 
precision of the floating point mm>er system used 
in the cxmputations. Based ai this conclusion our 
later computations involving the inverse of scaled 
Silbert matrices will be done usin3 only dotmle 
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precision arit:hnetic. 'lhe third conclusion is that 
the plot of the naxinun CXlllp].exity of the fractions 
which arise during the carpitation of the inverses 
of the Hilbert matrices allows one to accurately 
estimate at what order Hilbert matrix the 
computations in the rational nmber system fail to 
be exact. It is interesting to note that when the 
computations in the rational number system are 
first inexact the nuntier of digits of accuracy lost 
aR)ears to be approximately one-half of the maxi.nun 
nlmi)er of digits of accuracy possible. This leads 
us to believe that the first number that is 
inaccurately carpited in the rational nunt>er system 
is a number which is rounded to a sin;ue fraction 
since the relative size of the gap which rounds to 
a sin1?le fraction is proportional to the reciprocal 
of the square root of maxim1.ln cmplexity allowed in 
the rational nllli:ler system. 'Dle fourth conclusion 
is that when the numbers which arise during a 
computation can be described by sinple fractions 
the rational number system is likely to produce 
mre accurate answers than the usual floating point 
nt.mt)er system. 

For problems in which sinp].e fractions a:, not play 
an important role one might believe that 
computations performed in a hyperbolic rational 
nuai:ler system might be ~ignificantly less accurate 
than when performed in a floating point number 
system. 'l'o test this hypothesis we considered the 
computation of inverses of scaled versions of 
Hilbert matrices, scaled versions of the form DBD 
where Dis a diagonal matrix and Bis a Hilbert 
matrix. To construct a typical diagonal matrix D 
we first chose a 108 binary digit random nll'lt>er 
scaled t~ lie in the interval ( 0, 1) tfind then took 
as the i diagonal entry of D the i root of that 
random number. Note that if L and O are the 
triafgular factors of the Hilbert matrix B then 
DLD- and DOD are the corresponding triangular 
factors of the scaled Hilbert matrix DBD. In 
Figures 2 and 5 we display the nl.lEi:>er of digits of 
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accuracy lost in the cxmpitation of the inverses of 
the sc:aled Hilbert matrices when the entries of the 
scaled Hilbert matrix were initially rounded so as 
to be machine numbers in the floating point and 
rational nLllt)er systems respectively. Note that for 
each order matrix the nad:>er of digits of accuracy 
lost represents the worst case loss in accuracy 
over a sample of 2s· different scaled Hilbert 
matrices. Fran these figures we conclude that even 
for problems in which si.q>l.e fractions do not play 
an important role a comparable loss in accuracy 
occurs in both the floating point and rational 
number systems, with the computations in the 
floating point number system enjoying a slightly 
greater accuracy. 

4. Hyperbolic Rational Nud:ler System Sinulation 

In our simulation of a hyperbolic rational number 
system we choose to represent the rational nUltt>er 
p/q as the floating point number obtained by 
dividing p by q, and we choose to implement the 
rowicling rule by writing a function subprogram R(x) 
which accepts as input a floating point nllli:>er x 
and returns as output the appropriately signed 
value of RAml> as deteDDined by the floating p,int 
ililplementation of the rational. rounding algorithm 
described in Section 2. 'lbus if the floating point 
nuni:>ers x and x' represent the rational ntmt>ers p/q 
and p'/q' respectively, then we will use the 
floating point value of R(x+x') as the value of the 
rational nmt>er P(p/q+p'/q'). 

In Table 3 we illustrate how one can use this 
function subprogram R(.) to sinulate CXl11pUtations 
in the rational number system by listing the 
algorithm used to solve the linear system Ar-z:b as 
described in Section 3. Note that every floating 
point number is rounded by the function subprogram 
R( .) before it is used in the next catpJtation. We 
eqi1asize that the floating p,int arithmetic of the 
host 0Clllplter is used to simulate the computations 



i;erforne:I in the hyperbolic rational nmt,er system. 
During a sequence of oi;erations the result of one 
operation is rounded using RC.) before it is used 
in the next floating point oi;eration. ntus if sane 
rounding errors have accumulated, but the exact 
result would have been saie simple rational nunber, 
then the bias of mediant rounding towards silrple 
rational numbers can allow the computation to 
produce the correct sinple rational nlllt>er as its 
result [MK79J. 

We would like to stress that our sinulation of the 
hyperbolic nunt>er system is used only to determine 
the potential advantages and disadvantages of using 
this form of rational arithmetic. We do not 
suggest that our sinlllation is efficient, estimates 
of the average running time of R(.) can be obtained 
£ran Knuth's [Kn69] analysis of Euclid's algoritmn. 
An efficient arithmetic unit to realize this 
rational arithmetic has been described in [RM83]. 

For further details on the properties of several 
rational number systems we refer the reader to 
[MK80, MK83, P\184) • 

Input: A . . . the order n coefficient matl'ix, and 

b . . . the Ol'der n inh01110geno11s vector. 

Output: b . . . the order n solution vector x of Ax • b 

Comnent: The values of A and b specified on input are destroyed 

during the calculation. 

Algorithm: 

1. Determine the triangular factorization A • LU of A using the 

Gaussian elimination algorithm (no pivoting). 

1. 1 For k • 1 upto n-1 do 

1.2 For i • k upto n do 

1. 3 a{i .k) • - R{a(f .k)/a{k.k)) 

1.4 For j • k+l upto n do 

1.5 a{i.j) • R{a{i.j)+R(a(f.k)•a(k.J))) 

1.6 Next j 

1. 7 Next i 

1.8 Next k 

2. Solve the lower triangular system Ly • b using the forward 

elimination algorithm. 

2. 1 For i • 2 upto n do 

2.2 S1111 • 0 

2.3 For J • 1 upto i-1 do 

2.4 S1111 • R(Siin+R(a{ i .J )•b(j))) 

2.5 Next J 
2. 6 b( i) • R(b{ i)-S1171) 

2. 7 Next f 

3. Solve the upper triangular system Ux • y using the backward 

elimination algorithm. 

3.1 b(n) • R(b(n)/a(n.n)) 

3.2 For i • n-1 downto 1 do 

3.3 S1171 • 0 

3.4 For j • i+l upto n do 

3.5 S1111 • R(Sum+R(a(i,j)*b(j)}) 

3.6 Next j 

3.7 b(t) • R(R(b(f)-S1111)/a(i.t)) 

3.8 Next t 

Table 3: Algortthln for Solving Ax • b Using Rational Arithmetic 
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