
FORTRAN-SC
FORTRAN for Scientific Computation

Institute for Applied Mathematics

Prof. Dr. U. Kulisch

University of Karlsruhe

Karlsruhe, West-Germany

FORTRAN-SC

FORTRAN for Scientific Computation

FORTRAN is the abbreviation of FORmula TRANslator. Modem numerical
applications require formulas containing vectors, matrices and intervals.
Furthermore, all standard arithmetic operations, especially the vector/matrix
operatQrs, should always deliver a result of highest accuracy. Until now
FORTRAN compilers have been unable to satisfy these requirements. For this
reason, a new language called FORTRAN-SC was developed. FORTRAN-SC is
an extension of FORTRAN 77 intended for engineering and scientific
computation. It is particularly suitable for the development of numerical
algorithms which deliver highly accurate and automatically verified results.

The FORTRAN-SC compiler and runtime system have been developed at the
Institute for Applied Mathematics at the University of Karlsruhe in collaboration
with the IBM Research and Development Laboratory, Boblingen. FORTRAN-SC
is implemented under VM/SP on the IBM system /370 architecture. Extensive
programming experiences have demonstrated the usefulness and effectiveness of
the language and the reliability of the implementation.

The most important new concepts in FORTRAN-SC are:

• vector/matrix operations

• dynamic arrays

• subarrays

• functions with array result

• user-defined operators

• interval arithmetic

• dot product expressions

These concepts are briefly explained and their advantages are highlighted.
Subsequently, their use is illustrated in sample programs for typical applications of
FORTRAN-SC.

Vector /Matrix Operations

The traditional mathematical vector /matrix operations are provided as standard
arithmetical operators. Type conversion functions are also available for vectors
and matrices.
The advantages of vector /matrix operations are:

• "natural", mathematical notation of array expressions
• functions and operators instead of subroutine calls
• DO long sequences of subroutine calls
• Do unnecessary loops and indexing

Dynamic Arrays

The use of vectors and matrices is simplified through dynamic arrays. The size and
the index ranges of dynamic arrays are determined at execution time, not at
compile time. Thus dynamic arrays reduce runtime storage (see examples 2, 3, 4
and 5).
The advantages of dynamic arrays are:

1 memory allocation only as required
• size and index range modifiable during execution
1 no recompilation necessary for problems of varying size
I argument type and index checking
• full compatibility with static arrays

Subarrays

Rows and columns of matrices and in general arbitrary "rectangular" parts of
arrays may be accessed via a special notation for subarrays (see example 3).

Functions with Array Result

In standard FORTRAN a function must have a scalar result. FORTRAN-SC also
allows functions with array result, e.g. the result may be an interval matrix.

User-Defined Operators

The user can declare specific operators on the intrinsic types of FOR1RAN-SC
(see example 5). Moreover, it is possible to declare new data types, e.g.
POLYNOMIAL, and operators for these types. User-defined operators can be
used to mimic the mathematical notation of a problem with operations which are
not predefined. They enhance the readability of complicated expressions.

Intenal Arithmetic

FOR1RAN-SC offers the additional data types IN1ERVAL and COMPLEX
IN1ERV AL which are supported by numerous standard operators and functions.
A special notation for interval constants and interval 1/0 guarantees correct
rounding of decimal data. Arithmetic expressions in higher numerical spaces - e.g.
expressions involving interval matrices - may be written in mathematical notation
using operator symbols like +, -, •, /. Additional operators like .IS. for the
intersection of two intervals or .SB. for the subset relation are available (see
example 1).
The advantages of interval arithmetic are:

• control of rounding errors
• verification of the solution by inclusion of tl.~ exact result
• stability and sensitivity analysis
• treatment of problems with imprecise data

Dot Product Expressions

Dot product expressions are sums of real or complex constants, variables, vectors,
matrices and single products of these. They frequently occur in defect correction
and iterative refinement methods where the eUrnioation of cancellation is crucial.

Dot product expressions can be evaluated without error. Their exact evaluation is
an important tool in many numerical applications. Their result may be stored to
full accuracy in a variable of type DOT PRECISION or rounded to one of the
adjacent floating-point numbers or enclosed in an interval of maximum accuracy
(see example 4).

Easy Access to ACRITII

The ACRilH Subroutine Library (ACRilH is a program product of IBM, refer to
[6], [7] and [8]) is a collection of problem solving routines for standard problems of
numerical analysis, for example:

■ evaluation of arithmetic expressions
■ matrix inversion, linear systems (dense and sparse)
■ eigenvalues, eigenvectors
■ systems of nonlinear equations
■ linear programming
■ evaluation and zeros of polynomials

All ACRilH routines compute verified bounds of high accuracy for the exact
solution. In FOR1RAN-SC, many of these subroutines are accessible as functions.
The argument lists of all functions and subroutines are simplified. The basic

• routines, e.g. for vector /matrix and interval arithmetic, are available as predefined
operators (see example 1).

Additional Features

1 standard functions of high accuracy for all arithmetic types
I standard operators and constants with directed roundings
1 input/output data conversion with controlled rounding of highest accuracy
1 identifiers with up to 31 characters
• lower case letters
• WlilLE and REPEAT loops

List of Sample Programs

The examples demonstrate various concepts of FOR1RAN-SC.

1. Interval Newton Method

• data type IN1ERV AL
• interval operators
• interval standard functions
• REPEAT- UNTIL loop

2. Runge-Kutta Method

•
•
•

dynamic arrays
array operators
functions with array result

3. Gauss Algorithm

• dynamic arrays
• subarrays

4. Trace of a Product Matrix

• dynamic arrays
• subarrays
• dot product expressions
• SUM-notation

5. Boothroyd/Dekker Matrix

•
•

dynamic arrays
operator concept

Well-known algorithms were deliberately chosen so that a brief explanation. of the
mathematical background will suffice. Since the programs are largely self­
explanatory, comments are kept to a minimum. Note that FOR1RAN-SC allows
lower and upper case letters and identifiers with up to 31 characters.

E:;ample 1

Interval Newton Method

An inclusion of a zero of the real-valued function f (x) is computed. It is assumed
that f' (x) is a continuous function on the interval [a,b], where 0 t {f'(x): x E [a,b]}
and f (a) •f (b) < 0. If an inclusion "ii for the zero of such a function f(x) is already
known, a better inclusion "ii+ 1 can usually be computed by the iteration formula:

f(m("it))

f • <"ii> > n "it

where m(X) is some point in the interval X (for example the midpoint).

For this example, the function f (x) = ✓x + (x + 1) • cos x is used.
In FORlRAN-SC, interval expressions are written in mathematical notation.
Generic function names are used for the interval square root and interval sine and
cosine functions. For the mathematical theory see (1].

PROGRAM INEWT
INTERVAL X, Y, F, DERIV, M
LOOICAL CRITER
EXTERNAL F, DERIV, M, CUTER

1 WRITE(*,*) 'Please enter starting interval'
C The interval notation in FORTRAN-SC is (< inf , sup >)

READ (*,*,END= 999) Y

C

IF (CUTER(Y)) 11iEN
REPF.AT

X= y

WRITE(*,*) X

The iteration formula (.IS. is the InterSection operator):
Y= (M(X) - F(M(X))/DERIV(X)) .IS. X

UNTIL (X .F.Q. Y)
El.SE

WRITE(•.•) • Criterion not satisfied'
END IF
ooro 1

999 STOP
END

Example 1

FUNCTION M (X)
C A point close to the midpoint of the interval X is computed ..
C The corresponding point interval is returned.

INTERVAL MI X
M = IVAL(INF(X) + 0.5M(SUP(X)-INF(X)))
END

FUNCTION F (X)
INTERVAL F. X
F = SQRT(X) + (X + 1) • CDS(X)
END

F U N C T I O N D E R I V (X)
C F • (X)

C

INTERVAL DERIV. X
DERIV = 1 / (2 • SQRT(X)) + CDS(X) - (X + 1) • SIN(X)
END

FUNCTION CR IT ER (X)
LOGICAL CRITER
INTERVAL X. F. DERIV
EXTERNAL F. DERIV
CRITER = (0 .IN. F(X)) .AND .. Nor. { 0 .IN. DERIV(X))- ..

. IN. is the relational operator .. element or-'
END

With the starting interval (<2, 3)) the computed inclusions are.

(< 0.2000000E+Ol 0.3000000E+Ol >) z :· • •

(< 0.2000000E+Ol 0.2218138E+01 >) . 1; u

(< 0.2051400E+Ol . 0.2064727E+01 >)
{< 0.2059037E+Ol 0.2059055E+Ol >)
{< 0.2059044E+Ol . 0.2059046E+Ol >)

Example 1

The same algorithm written in FORTRAN 77 using the ACRITII subroutine
hbrary consists of a long list of subroutine calls. Such a program is hard to read,
write and understand. Coding and debugging is very time consuming.

111

C

10

C

C

C

999

PROGRAM INEWT
LOOICAL ~ITER
REAL YLB.YUB,YN,XLB,XUB.DLB,DUB,MIDLB,MIDUB
REAL INTLB.INnJB,MIDPNT
INTEGER IER
CJIARAcrERtESO STRING
CJIARACl'ERM51 STR51
lNTEGER MAXLEN. IOODE I LENG'Jll

WRITE(M,M) • Please enter starting interval'
READ(M,M,END:=999) STRING
convert the interval with correct rounding:
CALL CX>NV(STRING,80,YLB,YUB,YN,IOODE.LENGTH)

IF (CRITER{YLB I YUB}) 1HEN
XLB=YlB
XUB:YUB
Output with interval rounding:
CAlJ... IOUT{YLB,YUB,15,STR51)
IRITE{M,MJ STR51
The above iteration formula:
CALL DERIV(XLB.XUB.DLB.DUB)
MIDLB=MIDPNT(XLB.XUB)
MIDUB=MIDLB
CAlJ... F (MIDLB.MIDUB,INTLB.INTUB)
CALL IDIV {INTLB,INTUB.DLB.DUB,INTLB.INTUB.IER)
001.. ISUB (MIDLB.MIDUB.INTLB.INTIJB,INTLB.INTUB.IER)
Intersection of two intervals:
YUB::MIN (INTUB,XUB)
YLB=MAX (INTLB I XLB)
IF (.Nar. (YLB.EQ.XLB.AND. YUB.EQ.XUB)) OOTO 10

ELSE
WRITE(*,*) • Criterion not satisfied'
ooro 111

END IF

STOP
END

()ENNNNNNNNNNMNNNMNNNMNMNNNMMMNMMNNNMNNNNNNNNNNNMMNMMNNNMNNNNNNNMNNMMNN
C JI I D P N T
C RFSULT IS 11iE MIDPOINT OF 11IE INTERVAL ARGUMENT
()ENMNMNNNNNNNNNMNNNNNMMMNNNNNNNMNNNNNNNNNNNNNNNNMNNNNMNNMNNNMNNMNNNNNN

FUNCTION II ID P NT (XLB,XUB)
RF.AL XI.B,XUB,MIDPNT

JIIDPNT = XLB+O.SM(XUB-XLB)

RE11JRN
END

.•

)

)

Example 1

O0(NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNMNNNM)ENNNMNMNNMMNMMMMMMNMNMNHMN
C F •
C INTERVAL FUNCTION F(X) = SQRT (X) + (X + 1) * CXlS (X)
O(NNNNNNMNNN)ENNNNNNNNNNNMNNNNNNNNNNNNMNNMMNNMNMNMMNMNMMMMMMMMMNMNMMMMM

SUBROUI'INE F ~~8XUB, RESLB,RESUB)
REAL XLB, XUB, , RESU8, RLB, RUB, Cl..B .am
INTEGER IER

CAlL ISQRT (XLB,XUB, Rl.B,RUB}
C.ALL ICXE (XLB,XUB, a.B,aJB)
CAl.L IADD (XLB, XUB, 1. 0, 1. 0. RESLB, RF.SUB, IER)
CALL IMUL (RESLB,RESUB, a.B,aJB, RESLB,RESUB, IER)
CALL IADD (RIB.RUB, RESLB,RESUB, RESLB,RESUB, IER)
RETURN
END

O(NNNMNNNNNMNNMMMNMMMNMMNNNMNNNMMMNMMMMMMMNNNMMNNNNNMNMMMMNMNNMMMMMMMN
CDERIV
C INTERVAL FUNCTION F' (X) = l/(SQRT(X)N2} + CXlS (X) -
C (X + 1) M SIN (X)
C F'(X) IS nlE FIRST DERIVATIVE OF F(X) .
O(NMNMN)(NNMNNNNMNMNNNNNNNMNMNNNNMMMMNMNNMNNNMNNNNNNMNNNNNNNNMMMMMNNNNN

SUBROUI'INE DER IV (XLB,XUB, RFSLB,RESUB)
REAL XLB, XUB. RFSLB, RF.SUB, CLB, ClJB, SLB, SUB, RLB, RUB
INTEGER IER

CALL ICXlS (XLB, XUB. CLB, am)
CALL ISIN (XLB,XUB, SI..B,SUB)
CAIL ISQRT (XLB,XUB, RLB,RUB)
CALL IMUL (RLB,RUB, 2.0,2.0, RLB,RUB, IER)
CALL IDIV (1.0, 1.0, RLB,RUB, RLB,RUB, IER)
CALL IADD (XLB,XUB, 1.0, 1.0, RESLB,RFSUB, IER)
CALL IMUL (RFSLB, RESU8, SLB, SUB, RFSLB, RF.SUB, IER)
CAIL ISUB (a.B, aJB. RESLB, RESU8, RESl.B, RESUB, IER)
CALL IADD (RLB, RUB, RESLB, RF.SUB, RESLB. RESUB, IER)
RETURN
END

O(NNMNNNMNNMNMNNMNMMNNNNNNNNNNNNNNNNNNMNNNNNMNNNMMNNNNNNMMMNMNNNMMMMNN
C CRITER
C GUARANTEES EXISI'F.NCE AND UNIQUENESS OF A ZERO IN nlE INTERVAL X
O(NMNMMNNMNNNNNNNNMNNNMNNMMNNMNNMNMMNNNMNNNNNMNNNNNNNNMNNNNNNNNMMNNMMN

LOGICAL FlJNCfION CR IT ER (XLB,XUB) •
~ XLB, XUB, INTLB, INTUB, YLB. YUB

CAIL F (XLB,XUB,IN11.B,INTUB)
CAIL DER.IV (XLB,XUB,YLB,YUB)
CRITER = INfi..B.LE.0.0 .AND. IN11JB.GE.O.O .AND.

& (YLB.GT .0.0 .OR. YUB.LT .0.0)
RETURN
END

Example2

Runge-Kutta Method ·

The initial-value problem for a system of differential equations is to be solved.

The Runge-Kutta method to solve one differential equation may be written in
FORTRAN 77 in an almost mathematical notation. In FORTRAN-SC it is
possible to use the same notation for a system of differential equations. The
concept of dynamic arrays is used to make the ~ program independent of the
size of the system. Only as much storage as needed is occupied during runtime.

The following system of first-order differential equations

Y' = F(x, Y)

with initial condition Y (Xe,) = YO is considered. H the solution Y is known at a
point x, then Y(x + h) may be computed by:

Kl = h • F(x, Y)
K2 = h • F(x + h/2, Y + Kl/2)
K3 = h • F(x + h/2, Y + K2/2)
K4 = h • F(x + ,h, Y + IO)
Y(x+h) = Y + (Kl + 2•K2 + 2•K3 + K4) / 6

Starting at Xo , an approximate solution can be computed at the points xi = x + i • h.

&

Example2

PROGRAM RUNGE
C

C

The actual size of the problem 1-s determined in routine.INIT
DYNAMIC / REAL(:) / F, Y. Kl, K2, K3, K4

F, Y, Kl, K2, K3, K4 are real vectors
REAL x. h
EXTERNAL F

CAIL INIT(x. Y. h)
NNHNNNNNMMMN
MMMM Classical Runge-Kutta method (10 steps) MMMM
MMMM for a system of first-order differential equations MMMM
MMMM Y' = F(x, Y) MMMM
MMNNMMMMNNNNMNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNN

DO 10 i = 1, 10
Kl= h tt F(x, Y)
K2 = h tt F(x + h / 2, Y +Kl/ 2}
K3 = h tt F(x + h / 2, Y + K2 / 2)
K4 = h tt F(x + h, Y + K3)
Y = Y +(Kl+ 2 tt K2 + 2 * K3 + K4) / 6
X = X + h
WRITE (*,*) 'x=', x, ' Y=(', Y. ')'

10 CX>NTINUE
END

S U B R O U T I N E I N I T (x. Y, h)
NNNNNNNNNNMNNMNNNNtfNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNN
tt (yl) (0)
* Initial values Y(O.O) = (y2) = (1)
M (y3) (1)

M
M
M

NNNMNNNNNNNNNNNtfNNNNNNNNNNNNNNNNNNNNt(NNNNNNNNNNNNNNNNNNNNNN

DYNAMIC / REA'.(:) / Y
REAL x, h

ALLOCATE Y(3)
x=O
h = 0.1
Y(l) = 0
Y(2) = 1
Y(3) = 1
END

F U N C T I O N F (x. Y)
NNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNMNNNNNNNNNHNNNMNNNNNtlNN
M (y2My3)
tt Problem: Y'= F(x.Y) = (-yltty3)
tt (-0.522My1My2)

tf

tf

tf

MNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNtfNNNNNNNNNNNNNNNNN
DYNAMIC / REAL(:) / F, Y
REAL X

ALLOCATE F(=Y)
F(l) = Y(2)ttY(3)
F(2) = -Y(l}NY(3)
F(3) = -0.522MY(l}NY(2)
END

Example3

Gauss Elimination

The system of linear equations A •x = b is to be solved.

This example demonstrates the usage of subarrays. In the i-th step of the Gaussian
algorithm, multiples of the i-th row are subtracted from the rows i + 1, ... , n . In
order to build up a LU-decomposition of the system matrix A, the rows must only
be changed in columns i + 1, ... , n in the i-th step.

i

~
i a(i, 1+1:n) b(i)

! j a(j, i+l :n) b(j)

In the k-th step of backsolving·the triangular system, the trailing part of the k-th
row of A is multiplied by the computed pan of the solution vector x as shown
below:

x(k) = b{k) M

X (

k+l

n)

Example3

PROGRAM GAUSS

DYNAMIC /REAL(: . :)/ A, /REAL(:)/ x, b
C matrix A . vectors x and b

INTEGER 1. J. k. n

WRITE (N,N} 'Enter system dimension n'
READ (N,N) n

ALLOCATE A(n. n). x, b(n)

WRITE {N,N) 'Enter the coefficient matrix A row-wise',
& • and then the right-hand side vector b'

READ {N,M) (A(i,:). i=l.n). b
C A(i,:) is the 1-th row of A

C GA~ elimination with LU-decomposition

00 10 i = 1. n
DO 10 j = 1 + 1. n

A(J.i) = A(j,1) / A(i,i)
A(j.i+l:n) = A(j, i+l:n) - A(j,1) N A(i, 1+1:n)
b(J) = b(j) - A(j,i) N b(i)

10 OlNTINUE

C Backsolving

x(n) = b(n) / A (n.n)
DO 20 k = n-1, 1, -1

x(k) = (·b(k) - A(k, k+l:n) N x(k+l:n)) / A(k,k)
20 CX>NTINUE

WRITE(N,M) 'Approximate solution:•, x

END

Example4

Trace or a Product Matrix

Dot product expressions are sums of real or complex constants, variables, vectors,
matrices and single products of these. A dot product expression which is
parenthesized and prefixed by the symbol# is evaluated without rounding error. H
the exact result is to be stored in a floating-point variable, the #-sign must be
followed by one of the rounding symbols < or > for the directed roundings or* for
the rounding to the nearest floating-point number. A special notation for finite
sums is provided. They are introduced by the keyword SUM. The notation is
similar to implied-DO.

The following FORTRAN-SC program demonstrates the use of this tool. The
trace of a product matrix A• B is computed without evaluating the product matrix
itself. The result will be of maximum accuracy, i.e. it is the best possible floating­
point approximation of the exact solution.

The trace of the product matrix is given by:

n n

l l aij • bji
1=1 J=l

PROGRAM T R A C E

INTEGER 1, j, n
DYNAMIC /OOUBLE REAL(: , :)/ A. B

READ (*,*) n
AU.0CATE A, B (n, n)

·READ (*,*) A, B

IRITE{M,100) #M(SUM(A{t,:) M B(:,1). 1 = 1, n))

100 FORMAT{• The trace or the product matrix is : • ,G20.10)
END

Examplt5

Boothroyd/Dekker Matrix

This program generates a Boothroyd/Dekker matrix [13]. The elements of the nxn
Boothroyd/Dekker matrix are given by

fn+t-1] f n-1] n
d1j = l i-1 • ln-j • i+j-1

These matrices are often used to test inversion algorithms because their inverse is
explicitly known. The i , j-th element of the inverse is

(-l}i+j • dij

In the following FORTRAN-SC program, the user-defined operator .over. is used
to compute the binomial coefficients of two integer values n and k. The name of
the implementing function is "N OVER K".

PROGRAM DEKKER
DYNAMIC /INTEGER(:,:)/ D
INTEGER i . j . n
OPERATOR .over. = N OVER K (INTEGER, INTEGER) INTEGER

WRITE(M,*) • Please enter the dimension of the matrix'
READ (M,*} n
Al.LOCATE D(n, n)

00 10 i = 1. n
00 10 J = 1. n

D(i,j) = ((n+i-1) .over. {1-1)) *
& ((n-1) .over. (n-j)) Mn/ (i+J-1)

10 CX>NTINUE

IX) 20 •j = 1 I n
WRl'rE{M,M) D(j,:)

20 CX>NTINUE
END

INTEGER FtJNCfION N OVER K (n. k)
INTEGER n, k, 1

NOVERK=l
DO 10 i = 1, MIN(k, n-k)

N OVER K = N OVER K * (n-1+1) / 1
10 CX>NTINUE

END

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

(13]

Literature

Alefeld, G., Herzberger, J.: Introduction to Interval Analysis. New York:
Academic Press (1983).

American National Standards Institute: American National Standard
Programming Language FORTRAN. ANSI X3.9-1978 (1978).

American National Standards Institute: American National Standard
Programming Language FORTRAN. Draft S8, Version 104, ANSI X3.9-
198x (1987).

Bieber, J. H., Rump, S. M., Kulisch, U., Metzger, M., Ullrich, Ch., Walter,
W.: FORTRAN-SC: A Study of a FORTRAN Extension for
Engineering/Scientific Computation with Access to ACRITH. Computing
39, pp. 93-110, Springer (1987).

Bohlender, G., Kaucher, E., Klatte, R., Kulisch, U., Miranker, W. L,
Ullrich, Ch., Wolff v. Gudenberg, J.: FORTRAN for ContemJ!orary
Numerical Computation. IBM Research Report RC 8348 (1980).
Computing 26, pp. 277-314 (1981).

IBM Hi~h-Accuracy Arithmetic Subroutine Library (ACRITH). General
Information Manual, GC 33-6163-02, 3rd Edition (April 1986).

IBM Hi~h-Accuracy Arithmetic Subroutine Library (ACRITH). Program
Description and User's Guide, SC 33-6164-02, 3rd Edition (April 1986).

IBM System/370 RPO, High-Accuracy Arithmetic. SA 22-7093-0 (1984).

Kulisch, U. (ed.): PASCAL-SC: A PASCAL Extension for Scientific
Computation. Information Manual and FlOP.PY Disks, Version IBM PC.
Stuttgart: B. G. Teubner; Chichester: John Wlley & Sons (1987).

Kulisch, U., Miranker, W. L: Computer Arithmetic in Theory and Practice.
New York: Academic Press (1981).

Kulisch, U., Miranker, W. L(eds.): A New Approach to Scientific
Computation. New York: Academic Press (1983).

Moore, R. E.: Interval Analysis. Englewood Cliffs, NJ.: Prentice Hall
(1966).

Zunniihl, R., Falk, S.: Matrizen und ihre Anwendungen. Tell 2: Numerische
Methoden. Springer (1984).

