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FORTRAN-SC 

FORTRAN for Scientific Computation 

FORTRAN is the abbreviation of FORmula TRANslator. Modem numerical 
applications require formulas containing vectors, matrices and intervals. 
Furthermore, all standard arithmetic operations, especially the vector/matrix 
operatQrs, should always deliver a result of highest accuracy. Until now 
FORTRAN compilers have been unable to satisfy these requirements. For this 
reason, a new language called FORTRAN-SC was developed. FORTRAN-SC is 
an extension of FORTRAN 77 intended for engineering and scientific 
computation. It is particularly suitable for the development of numerical 
algorithms which deliver highly accurate and automatically verified results. 

The FORTRAN-SC compiler and runtime system have been developed at the 
Institute for Applied Mathematics at the University of Karlsruhe in collaboration 
with the IBM Research and Development Laboratory, Boblingen. FORTRAN-SC 
is implemented under VM/SP on the IBM system /370 architecture. Extensive 
programming experiences have demonstrated the usefulness and effectiveness of 
the language and the reliability of the implementation. 

The most important new concepts in FORTRAN-SC are: 

• vector/matrix operations 

• dynamic arrays 

• subarrays 

• functions with array result 

• user-defined operators 

• interval arithmetic 

• dot product expressions 

These concepts are briefly explained and their advantages are highlighted. 
Subsequently, their use is illustrated in sample programs for typical applications of 
FORTRAN-SC. 



Vector /Matrix Operations 

The traditional mathematical vector /matrix operations are provided as standard 
arithmetical operators. Type conversion functions are also available for vectors 
and matrices. 
The advantages of vector /matrix operations are: 

• "natural", mathematical notation of array expressions 
• functions and operators instead of subroutine calls 
• DO long sequences of subroutine calls 
• Do unnecessary loops and indexing 

Dynamic Arrays 

The use of vectors and matrices is simplified through dynamic arrays. The size and 
the index ranges of dynamic arrays are determined at execution time, not at 
compile time. Thus dynamic arrays reduce runtime storage (see examples 2, 3, 4 
and 5). 
The advantages of dynamic arrays are: 

1 memory allocation only as required 
• size and index range modifiable during execution 
1 no recompilation necessary for problems of varying size 
I argument type and index checking 
• full compatibility with static arrays 

Subarrays 

Rows and columns of matrices and in general arbitrary "rectangular" parts of 
arrays may be accessed via a special notation for subarrays (see example 3). 

Functions with Array Result 

In standard FORTRAN a function must have a scalar result. FORTRAN-SC also 
allows functions with array result, e.g. the result may be an interval matrix. 



User-Defined Operators 

The user can declare specific operators on the intrinsic types of FOR1RAN-SC 
(see example 5). Moreover, it is possible to declare new data types, e.g. 
POLYNOMIAL, and operators for these types. User-defined operators can be 
used to mimic the mathematical notation of a problem with operations which are 
not predefined. They enhance the readability of complicated expressions. 

Intenal Arithmetic 

FOR1RAN-SC offers the additional data types IN1ERVAL and COMPLEX 
IN1ERV AL which are supported by numerous standard operators and functions. 
A special notation for interval constants and interval 1/0 guarantees correct 
rounding of decimal data. Arithmetic expressions in higher numerical spaces - e.g. 
expressions involving interval matrices - may be written in mathematical notation 
using operator symbols like +, -, •, /. Additional operators like .IS. for the 
intersection of two intervals or .SB. for the subset relation are available (see 
example 1). 
The advantages of interval arithmetic are: 

• control of rounding errors 
• verification of the solution by inclusion of tl.~ exact result 
• stability and sensitivity analysis 
• treatment of problems with imprecise data 

Dot Product Expressions 

Dot product expressions are sums of real or complex constants, variables, vectors, 
matrices and single products of these. They frequently occur in defect correction 
and iterative refinement methods where the eUrnioation of cancellation is crucial. 

Dot product expressions can be evaluated without error. Their exact evaluation is 
an important tool in many numerical applications. Their result may be stored to 
full accuracy in a variable of type DOT PRECISION or rounded to one of the 
adjacent floating-point numbers or enclosed in an interval of maximum accuracy 
(see example 4). 



Easy Access to ACRITII 

The ACRilH Subroutine Library (ACRilH is a program product of IBM, refer to 
[6], [7] and [8]) is a collection of problem solving routines for standard problems of 
numerical analysis, for example: 

■ evaluation of arithmetic expressions 
■ matrix inversion, linear systems ( dense and sparse) 
■ eigenvalues, eigenvectors 
■ systems of nonlinear equations 
■ linear programming 
■ evaluation and zeros of polynomials 

All ACRilH routines compute verified bounds of high accuracy for the exact 
solution. In FOR1RAN-SC, many of these subroutines are accessible as functions. 
The argument lists of all functions and subroutines are simplified. The basic 

• routines, e.g. for vector /matrix and interval arithmetic, are available as predefined 
operators (see example 1). 

Additional Features 

1 standard functions of high accuracy for all arithmetic types 
I standard operators and constants with directed roundings 
1 input/output data conversion with controlled rounding of highest accuracy 
1 identifiers with up to 31 characters 
• lower case letters 
• WlilLE and REPEAT loops 



List of Sample Programs 

The examples demonstrate various concepts of FOR1RAN-SC. 

1. Interval Newton Method 

• data type IN1ERV AL 
• interval operators 
• interval standard functions 
• REPEAT- UNTIL loop 

2. Runge-Kutta Method 

• 
• 
• 

dynamic arrays 
array operators 
functions with array result 

3. Gauss Algorithm 

• dynamic arrays 
• subarrays 

4. Trace of a Product Matrix 

• dynamic arrays 
• subarrays 
• dot product expressions 
• SUM-notation 

5. Boothroyd/Dekker Matrix 

• 
• 

dynamic arrays 
operator concept 

Well-known algorithms were deliberately chosen so that a brief explanation. of the 
mathematical background will suffice. Since the programs are largely self­
explanatory, comments are kept to a minimum. Note that FOR1RAN-SC allows 
lower and upper case letters and identifiers with up to 31 characters. 



E:;ample 1 

Interval Newton Method 

An inclusion of a zero of the real-valued function f (x) is computed. It is assumed 
that f' (x) is a continuous function on the interval [a,b], where 0 t {f'(x): x E [a,b]} 
and f (a) •f (b) < 0. If an inclusion "ii for the zero of such a function f(x) is already 
known, a better inclusion "ii+ 1 can usually be computed by the iteration formula: 

f(m("it)) 

f • <"ii> > n "it 

where m(X) is some point in the interval X (for example the midpoint). 

For this example, the function f (x) = ✓x + (x + 1) • cos x is used. 
In FORlRAN-SC, interval expressions are written in mathematical notation. 
Generic function names are used for the interval square root and interval sine and 
cosine functions. For the mathematical theory see (1]. 

PROGRAM INEWT 
INTERVAL X, Y, F, DERIV, M 
LOOICAL CRITER 
EXTERNAL F, DERIV, M, CUTER 

1 WRITE(*,*) 'Please enter starting interval' 
C The interval notation in FORTRAN-SC is ( < inf , sup >) 

READ (*,*,END= 999) Y 

C 

IF ( CUTER(Y) ) 11iEN 
REPF.AT 

X= y 

WRITE(*,*) X 

The iteration formula (.IS. is the InterSection operator): 
Y= ( M(X) - F(M(X))/DERIV(X)) .IS. X 

UNTIL (X .F.Q. Y) 
El.SE 

WRITE(•.•) • Criterion not satisfied' 
END IF 
ooro 1 

999 STOP 
END 



Example 1 

FUNCTION M (X) 
C A point close to the midpoint of the interval X is computed .. 
C The corresponding point interval is returned. 

INTERVAL MI X 
M = IVAL( INF(X) + 0.5M(SUP(X)-INF(X))) 
END 

FUNCTION F (X) 
INTERVAL F. X 
F = SQRT(X) + (X + 1) • CDS(X) 
END 

F U N C T I O N D E R I V (X) 
C F • (X) 

C 

INTERVAL DERIV. X 
DERIV = 1 / (2 • SQRT(X)) + CDS(X) - (X + 1) • SIN(X) 
END 

FUNCTION CR IT ER (X) 
LOGICAL CRITER 
INTERVAL X. F. DERIV 
EXTERNAL F. DERIV 
CRITER = ( 0 .IN. F(X)) .AND .. Nor. { 0 .IN. DERIV(X) )- .. 

. IN. is the relational operator .. element or-' 
END 

With the starting interval (<2, 3)) the computed inclusions are. 

(< 0.2000000E+Ol 0.3000000E+Ol >) z :· • • 

(< 0.2000000E+Ol 0.2218138E+01 >) . 1; u 

(< 0.2051400E+Ol . 0.2064727E+01 >) 
{< 0.2059037E+Ol 0.2059055E+Ol >) 
{< 0.2059044E+Ol . 0.2059046E+Ol >) 



Example 1 

The same algorithm written in FORTRAN 77 using the ACRITII subroutine 
hbrary consists of a long list of subroutine calls. Such a program is hard to read, 
write and understand. Coding and debugging is very time consuming. 

111 

C 

10 

C 

C 

C 

999 

PROGRAM INEWT 
LOOICAL ~ITER 
REAL YLB.YUB,YN,XLB,XUB.DLB,DUB,MIDLB,MIDUB 
REAL INTLB.INnJB,MIDPNT 
INTEGER IER 
CJIARAcrERtESO STRING 
CJIARACl'ERM51 STR51 
lNTEGER MAXLEN. IOODE I LENG'Jll 

WRITE(M,M) • Please enter starting interval' 
READ(M,M,END:=999) STRING 
convert the interval with correct rounding: 
CALL CX>NV(STRING,80,YLB,YUB,YN,IOODE.LENGTH) 

IF ( CRITER{YLB I YUB} ) 1HEN 
XLB=YlB 
XUB:YUB 
Output with interval rounding: 
CAlJ... IOUT{YLB,YUB,15,STR51) 
IRITE{M,MJ STR51 
The above iteration formula: 
CALL DERIV(XLB.XUB.DLB.DUB) 
MIDLB=MIDPNT(XLB.XUB) 
MIDUB=MIDLB 
CAlJ... F (MIDLB.MIDUB,INTLB.INTUB) 
CALL IDIV {INTLB,INTUB.DLB.DUB,INTLB.INTUB.IER) 
001.. ISUB (MIDLB.MIDUB.INTLB.INTIJB,INTLB.INTUB.IER) 
Intersection of two intervals: 
YUB::MIN (INTUB,XUB) 
YLB=MAX ( INTLB I XLB) 
IF ( .Nar. (YLB.EQ.XLB.AND. YUB.EQ.XUB) ) OOTO 10 

ELSE 
WRITE(*,*) • Criterion not satisfied' 
ooro 111 

END IF 

STOP 
END 

()ENNNNNNNNNNMNNNMNNNMNMNNNMMMNMMNNNMNNNNNNNNNNNMMNMMNNNMNNNNNNNMNNMMNN 
C JI I D P N T 
C RFSULT IS 11iE MIDPOINT OF 11IE INTERVAL ARGUMENT 
()ENMNMNNNNNNNNNMNNNNNMMMNNNNNNNMNNNNNNNNNNNNNNNNMNNNNMNNMNNNMNNMNNNNNN 

FUNCTION II ID P NT (XLB,XUB) 
RF.AL XI.B,XUB,MIDPNT 

JIIDPNT = XLB+O.SM(XUB-XLB) 

RE11JRN 
END 

.• 

) 

) 



Example 1 

O0(NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNMNNNM)ENNNMNMNNMMNMMMMMMNMNMNHMN 
C F • 
C INTERVAL FUNCTION F(X) = SQRT (X) + (X + 1) * CXlS (X) 
O(NNNNNNMNNN)ENNNNNNNNNNNMNNNNNNNNNNNNMNNMMNNMNMNMMNMNMMMMMMMMMNMNMMMMM 

SUBROUI'INE F ~~8XUB, RESLB,RESUB) 
REAL XLB, XUB, , RESU8, RLB, RUB, Cl..B .am 
INTEGER IER 

CAlL ISQRT (XLB,XUB, Rl.B,RUB} 
C.ALL ICXE (XLB,XUB, a.B,aJB) 
CAl.L IADD (XLB, XUB, 1. 0, 1. 0. RESLB, RF.SUB, IER) 
CALL IMUL (RESLB,RESUB, a.B,aJB, RESLB,RESUB, IER) 
CALL IADD (RIB.RUB, RESLB,RESUB, RESLB,RESUB, IER) 
RETURN 
END 

O(NNNMNNNNNMNNMMMNMMMNMMNNNMNNNMMMNMMMMMMMNNNMMNNNNNMNMMMMNMNNMMMMMMMN 
CDERIV 
C INTERVAL FUNCTION F' (X) = l/(SQRT(X)N2} + CXlS (X) -
C (X + 1) M SIN (X) 
C F'(X) IS nlE FIRST DERIVATIVE OF F(X) . 
O(NMNMN)(NNMNNNNMNMNNNNNNNMNMNNNNMMMMNMNNMNNNMNNNNNNMNNNNNNNNMMMMMNNNNN 

SUBROUI'INE DER IV (XLB,XUB, RFSLB,RESUB) 
REAL XLB, XUB. RFSLB, RF.SUB, CLB, ClJB, SLB, SUB, RLB, RUB 
INTEGER IER 

CALL ICXlS (XLB, XUB. CLB, am) 
CALL ISIN (XLB,XUB, SI..B,SUB) 
CAIL ISQRT (XLB,XUB, RLB,RUB) 
CALL IMUL (RLB,RUB, 2.0,2.0, RLB,RUB, IER) 
CALL IDIV (1.0, 1.0, RLB,RUB, RLB,RUB, IER) 
CALL IADD (XLB,XUB, 1.0, 1.0, RESLB,RFSUB, IER) 
CALL IMUL (RFSLB, RESU8, SLB, SUB, RFSLB, RF.SUB, IER) 
CAIL ISUB ( a.B, aJB. RESLB, RESU8, RESl.B, RESUB, IER) 
CALL IADD (RLB, RUB, RESLB, RF.SUB, RESLB. RESUB, IER) 
RETURN 
END 

O(NNMNNNMNNMNMNNMNMMNNNNNNNNNNNNNNNNNNMNNNNNMNNNMMNNNNNNMMMNMNNNMMMMNN 
C CRITER 
C GUARANTEES EXISI'F.NCE AND UNIQUENESS OF A ZERO IN nlE INTERVAL X 
O(NMNMMNNMNNNNNNNNMNNNMNNMMNNMNNMNMMNNNMNNNNNMNNNNNNNNMNNNNNNNNMMNNMMN 

LOGICAL FlJNCfION CR IT ER (XLB,XUB) • 
~ XLB, XUB, INTLB, INTUB, YLB. YUB 

CAIL F (XLB,XUB,IN11.B,INTUB) 
CAIL DER.IV (XLB,XUB,YLB,YUB) 
CRITER = INfi..B.LE.0.0 .AND. IN11JB.GE.O.O .AND. 

& (YLB.GT .0.0 .OR. YUB.LT .0.0) 
RETURN 
END 



Example2 

Runge-Kutta Method · 

The initial-value problem for a system of differential equations is to be solved. 

The Runge-Kutta method to solve one differential equation may be written in 
FORTRAN 77 in an almost mathematical notation. In FORTRAN-SC it is 
possible to use the same notation for a system of differential equations. The 
concept of dynamic arrays is used to make the ~ program independent of the 
size of the system. Only as much storage as needed is occupied during runtime. 

The following system of first-order differential equations 

Y' = F(x, Y) 

with initial condition Y (Xe,) = YO is considered. H the solution Y is known at a 
point x, then Y(x + h) may be computed by: 

Kl = h • F(x, Y) 
K2 = h • F(x + h/2, Y + Kl/2) 
K3 = h • F(x + h/2, Y + K2/2) 
K4 = h • F(x + ,h, Y + IO) 
Y(x+h) = Y + (Kl + 2•K2 + 2•K3 + K4) / 6 

Starting at Xo , an approximate solution can be computed at the points xi = x + i • h. 



& 

Example2 

PROGRAM RUNGE 
C 

C 

The actual size of the problem 1-s determined in routine.INIT 
DYNAMIC / REAL(:) / F, Y. Kl, K2, K3, K4 

F, Y, Kl, K2, K3, K4 are real vectors 
REAL x. h 
EXTERNAL F 

CAIL INIT(x. Y. h) 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNMMMN 
MMMM Classical Runge-Kutta method (10 steps) MMMM 
MMMM for a system of first-order differential equations MMMM 
MMMM Y' = F(x, Y) MMMM 
MMNNMMMMNNNNMNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNN 

DO 10 i = 1, 10 
Kl= h tt F(x, Y) 
K2 = h tt F(x + h / 2, Y +Kl/ 2} 
K3 = h tt F(x + h / 2, Y + K2 / 2) 
K4 = h tt F(x + h, Y + K3) 
Y = Y +(Kl+ 2 tt K2 + 2 * K3 + K4) / 6 
X = X + h 
WRITE (*,*) 'x=', x, ' Y=(', Y. ')' 

10 CX>NTINUE 
END 

S U B R O U T I N E I N I T (x. Y, h) 
NNNNNNNNNNMNNMNNNNtfNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNN 
tt ( yl ) ( 0 ) 
* Initial values Y(O.O) = ( y2) = ( 1) 
M ( y3 ) ( 1 ) 

M 
M 
M 

NNNMNNNNNNNNNNNtfNNNNNNNNNNNNNNNNNNNNt(NNNNNNNNNNNNNNNNNNNNNN 

DYNAMIC / REA'.( : ) / Y 
REAL x, h 

ALLOCATE Y(3) 
x=O 
h = 0.1 
Y(l) = 0 
Y(2) = 1 
Y(3) = 1 
END 

F U N C T I O N F (x. Y) 
NNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNMNNNNNNNNNHNNNMNNNNNtlNN 
M ( y2My3 ) 
tt Problem: Y'= F(x.Y) = ( -yltty3) 
tt ( -0.522My1My2 ) 

tf 

tf 

tf 

MNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNtfNNNNNNNNNNNNNNNNN 
DYNAMIC / REAL(: ) / F, Y 
REAL X 

ALLOCATE F(=Y) 
F(l) = Y(2)ttY(3) 
F(2) = -Y(l}NY(3) 
F(3) = -0.522MY(l}NY(2) 
END 



Example3 

Gauss Elimination 

The system of linear equations A •x = b is to be solved. 

This example demonstrates the usage of subarrays. In the i-th step of the Gaussian 
algorithm, multiples of the i-th row are subtracted from the rows i + 1, ... , n . In 
order to build up a LU-decomposition of the system matrix A, the rows must only 
be changed in columns i + 1, ... , n in the i-th step. 

i 

~ 
i a(i, 1+1:n) b(i) 

! j a(j, i+l :n) b(j) 

In the k-th step of backsolving·the triangular system, the trailing part of the k-th 
row of A is multiplied by the computed pan of the solution vector x as shown 
below: 

x(k) = b{k) M 

X ( 

k+l 

n) 



Example3 

PROGRAM GAUSS 

DYNAMIC /REAL(: . : )/ A, /REAL(:)/ x, b 
C matrix A . vectors x and b 

INTEGER 1. J. k. n 

WRITE (N,N} 'Enter system dimension n' 
READ (N,N) n 

ALLOCATE A(n. n). x, b(n) 

WRITE {N,N) 'Enter the coefficient matrix A row-wise', 
& • and then the right-hand side vector b' 

READ {N,M) (A(i,:). i=l.n). b 
C A(i,:) is the 1-th row of A 

C GA~ elimination with LU-decomposition 

00 10 i = 1. n 
DO 10 j = 1 + 1. n 

A(J.i) = A(j,1) / A(i,i) 
A(j.i+l:n) = A(j, i+l:n) - A(j,1) N A(i, 1+1:n) 
b(J) = b(j) - A(j,i) N b(i) 

10 OlNTINUE 

C Backsolving 

x(n) = b(n) / A (n.n) 
DO 20 k = n-1, 1, -1 

x(k) = ( ·b(k) - A(k, k+l:n) N x(k+l:n)) / A(k,k) 
20 CX>NTINUE 

WRITE(N,M) 'Approximate solution:•, x 

END 



Example4 

Trace or a Product Matrix 

Dot product expressions are sums of real or complex constants, variables, vectors, 
matrices and single products of these. A dot product expression which is 
parenthesized and prefixed by the symbol# is evaluated without rounding error. H 
the exact result is to be stored in a floating-point variable, the #-sign must be 
followed by one of the rounding symbols < or > for the directed roundings or* for 
the rounding to the nearest floating-point number. A special notation for finite 
sums is provided. They are introduced by the keyword SUM. The notation is 
similar to implied-DO. 

The following FORTRAN-SC program demonstrates the use of this tool. The 
trace of a product matrix A• B is computed without evaluating the product matrix 
itself. The result will be of maximum accuracy, i.e. it is the best possible floating­
point approximation of the exact solution. 

The trace of the product matrix is given by: 

n n 

l l aij • bji 
1=1 J=l 

PROGRAM T R A C E 

INTEGER 1, j, n 
DYNAMIC /OOUBLE REAL( : , : )/ A. B 

READ (*,*) n 
AU.0CATE A, B (n, n) 

·READ (*,*) A, B 

IRITE{M,100) #M( SUM( A{t,:) M B(:,1). 1 = 1, n)) 

100 FORMAT{• The trace or the product matrix is : • ,G20.10) 
END 



Examplt5 

Boothroyd/Dekker Matrix 

This program generates a Boothroyd/Dekker matrix [13]. The elements of the nxn 
Boothroyd/Dekker matrix are given by 

fn+t-1] f n-1] n 
d1j = l i-1 • ln-j • i+j-1 

These matrices are often used to test inversion algorithms because their inverse is 
explicitly known. The i , j-th element of the inverse is 

(-l}i+j • dij 

In the following FORTRAN-SC program, the user-defined operator .over. is used 
to compute the binomial coefficients of two integer values n and k. The name of 
the implementing function is "N OVER K". 

PROGRAM DEKKER 
DYNAMIC /INTEGER(:,:)/ D 
INTEGER i . j . n 
OPERATOR .over. = N OVER K (INTEGER, INTEGER) INTEGER 

WRITE(M,*) • Please enter the dimension of the matrix' 
READ (M,*} n 
Al.LOCATE D(n, n) 

00 10 i = 1. n 
00 10 J = 1. n 

D(i,j) = ((n+i-1) .over. {1-1)) * 
& ((n-1) .over. (n-j)) Mn/ (i+J-1) 

10 CX>NTINUE 

IX) 20 •j = 1 I n 
WRl'rE{M,M) D(j,:) 

20 CX>NTINUE 
END 

INTEGER FtJNCfION N OVER K (n. k) 
INTEGER n, k, 1 

NOVERK=l 
DO 10 i = 1, MIN(k, n-k) 

N OVER K = N OVER K * (n-1+1) / 1 
10 CX>NTINUE 

END 
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