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Abstract 

Floating-point arithmetic is considered an esoteric subject by many people. This 
is rather surprising, because floating-point is ubiquitous in computer systems. Almost 
every language has a floating-point datatype; computers from PC's to supercomputers 
have floating-point accelerators; most compilers will be called upon to compile floating­
point algorithms from time to time; and virtually every operating system must respond 
to floating-point exceptions such as overflow. This paper presents a tutorial on those 
aspects of floating-point that have a direct impact on designers of computer systems. It 
begins with background on floating-point representation and rounding error, continues 
with a discussion of the IEEE floating-point standard, and concludes with numerous 
examples of how computer system builders can better support floating-point. 

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organiza­
tion]: General-inatruction aet design; D.3.4 [Programming Languages]: Processors­
compilers, optimization; G.1.0 (Numerical Analysis]: General-computer arithmetic, 
error analysis, numerical algorithms (Secondary) D.2.1 [Software Engineering]: 
Requirements/Specifications-languages; D.3.4 [Programming Languages]: Formal Def­
initions and -Theory-semantics; D.4.1 (Operating Systems]: Process Management­
synchronization; 

General Terms: Algoritbms, Design, Languages 
Additional Key Words and Phrases: Denormalized number, exception, ftoating­

point, floating-point standard, gradual underflow, guard digit, Na.N, overflow, relative 
error, rounding error, rouding mode, ulp, underflow • 
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1 Introduction 

Builders of computer systems often need information about floating-point arithmetic. How­
ever I there are remarkably few sources of detailed information about it. One of the few books 
on the subject, Floating-Point Computation by Pat Sterbenz, is long out of print. This paper 
is a tutorial on those aspects of floating-point arithmetic (floating-point hereafter) that have 
a direct connection to systems building. It consists of three loosely connected parts. The 
first (section 2) discusses the implications of using different rounaing strategies for the basic 
operations of addition, subtraction, multiplication and division. It also contains background 
information on the two methods of measuring rounding error, ulps and relative error. The 
second part discusses the IEEE floating-point standard, which is becoming rapidly accepted 
by commercial hardware manufacturers. Included in the IEEE standard is the rounding 
method for basic operations, and so the discussion of the stanqard draws on the material in 
section 2. The third part discusses the connections between floating-point and the design 
of various aspects of computer systems. Topics include instruction set design, optimizing 
compilers and exception handling. 

I have tried to avoid making statements about floating-point without also giving rea­
sons why the statements are true, especially since the justifications involve nothing more 
complicated than elementary calculus. Those explanations that are nof central to the main 
argument have been grouped into a section call~d The Details, so that they can be skipped 
if desired. In particular, the proofs of many of the theorems appear in this section. The 
end of each proof is marked with the I symbol; when a proof is not included, the I appears 
immediately following the statement of the theorem. 

2 Rounding Error 

Squeezing infinitely many real numbers into a finite number of bits requires an approximate 
representation. Although there are infinitely many integers, in most programs the result 
of integer computations can be stored in 32 bits. In contrast, given any fixed number of 
bits, most calculations with real numbers will produce quantities that cannot be exactly 
represented using that many bits. Therefore the result of a floating-point calculation must 
often be rounded in order to fit back into its finite representation. This rounding error 
is the characteristic feature of floating-point computation. Section 2.2 describes how it is 
measured. 

Since most floating-point calculations have rounding error anyway, does it matter if the 
basic arithmetic operations introduce a little bit more rounding error than necessary? That 
question is a main theme throughout this section. Section 2.3 discusses guard digits, a means 
of reducing the error when subtracting two nearby numbers. Guard digits were considered 
sufficiently important by ·IBM that in 1968 it added a guard digit to the double precision 
format in the System/360 architecture (single precision already had a guard digit), and 
retrofitted all existing machines in the field. Two examples are given to illustrate the utility' 
of guard digits. 

The IEEE standard goes further than just requiring the use of a guard digit. It gives an 
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algorithm for addition, subtraction, multiplication, division and square root, and requires 
that implementations produce the same result as that algorithm. Thus when a program is 
moved from one machine to another, the results of the basic operations will be the same in 
every bit if both machines support the IEEE standard. This greatly simplifies the porting 
of programs. Other uses of this precise specification are given in Section 2.5. 

2.1 Floating-point Formats 

Several different representations of real numbers have been proposed, but by far the most 
widely used is the floating-point representation.1 Floating-point representations have a base 
{J (which is always assumed to be even) and a precision p. If /J = 10 and p = 3 then the 
number 0.1 is represented as 1.00 x 10-1. If f3 = 2 and p = 24, then the decimal number 
0.1 cannot be represented exactly but is appr9ximately l.10011001100110011001101 x 2-4. 

In general, a floating-point number will be represented as ±d.dd • • • d x pe, where d.dd • • • d 
is called the significand2 and has p digits. More precisely ±do.di d2 • • • d,-1 x pe represents 
the number 

(1) 

The term floating-point number will be used to mean a real number that can be exactly 
represented in the format under discussion. Two other parameters associated with floating­
point representations are the largest and smallest allowable exponents, emax and emin• Since 

· there are /31' possible significands, and emax - emin + 1 possible exponents, a floating-point 
number can be encoded in pog2(emax - emin + l)l + nog2(/JP)l + 1 bits, where the final + 1 
is for the sign bit. The precise encoding is not important for now. 

There are two reasons why a real number might not be exactly repre~ntable as a floating­
point number. The most common situation is illustrated by the decimal number 0.1. Al­
though it has a finite decimal representation; in .. binary it has an infinite repeating represen­
tation. Thus when /3 = 2, the number 0.1 lies strictly between two floating-point numbers 
and is exactly representable by neither of them. A less common situation is that a real 
number is out of range, that is, its absolute value is larger than (3 x pemax or smaller than 
1.0 x 13em1u. Most of this paper discusses issues due to the first reason. However, numbers 
that are out of range will be discussed in sections 3.2.2 and 3.2.4. 

Floating-point representations are not necessarily unique. For example both 0.01 x 101 

and 1.00x 10-1 represent 0.1. If the leading digit is nonzero (do:/; 0 in equation (1)), then the 
representation is said to be normalized. The floating-point number l.00x 10-1 is normalized, 
while 0.01 x 101 is not. When (3 = 2, p = 3, emin = -1 and emax = 2 there are 16 normalized 
floating-point numbers, as shown in Figure 1. The bold hash marks correspond to numbers 
whose significand is 1.00. Requiring that a floating-point representation be normalized 
makes the representation unique. Unfortunately, this restriction makes it impossible to 
represent zero! A natural way to represent 0 is with 1.0 x pem1u - 1 , since this preserves the fact 

1 Examples of other representations are floating ,l,uh and aigned logarithm (Matula .and Komerup 1985; 
Swartzlander and Alexopoulos 1975). 

2This term was introduced by Forsythe and Moler (1967), and has generally replaced the older term 
ma.ntiua.. 
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0 1 2 3 4 5 6 7 

Figure 1: Normalized numbers when /3 = 2, p = 3, emin = -1, emax = 2. 

that the numerical ordering of nonnegative real numbers corresponds to the lexicographic 
ordering of their floating-point representations.3 When the exponent is stored in a k bit 
field, that means that only 2.t - 1 values are available for use as exponents, since one must 
be reserved to represent O. 

Note that the x in a floating-point number is part of the notation, and different from 
a floating-point multiply operation. The meaning of the x symbol should be clear from 
the context. For example, the expression (2.5 x 10-3) x ( 4.0 x 102), involves only a single 
floating-point multiplication. 

2.2 Relative Error and Ulps 

Since rounding error is inherent in floating-point computation, it is important to have a way 
to measure this error. Consider the floating-point format with /3 = 10 and p = 3, which will 
be used throughout this section. If the result of a floating-point computation is 3.12 x 10-2, 

and the answer when computed to infinite precision is .0314, it is clear that this is in error by 
2 units in the last place. Similarly, if the real number .0314159 is represented as 3.14 x 10-2 , 

then it is in error by .159 units in the last place. In general, if the floating-point number 
d.d • • • d x pe is used to represent z, then it is in error by ld.d .. • d - ( z / pe) lf3P- l units in 
the last place.4 The term ulps will be used as shorthand for "units i~ the last place". If 
the result of a calculation is the floating-point number nearest tC? the correct result, it still 
might be in error by as much as ½ ulp. 

Another way to measure the difference between a floating-point number and the real 
number it is approximating is relative error, which is simply the difference between the 
two numbers· divided by the real number. For example the relative error committed when 
approximating 3.14159 by 3.14 x 10° is .00159/3.14159 ~ .0005. 

To compute the relative error that corresponds to ½ ulp, observe that when a real number 
'P 

is approximated by the closest possible floating-point number d.dd • • • dd xpe, the error can 
'P 

be as large as 0.00 • • -00/3' x pe, where /3' is the digit /3/2. This error is ((/3/2)/3-P) x pe_ 
Since numbers of the form d.dd • • • dd x pe all have the same absolute error, but have values 
that range between pe and /3 x pe, the relative error ranges between ((/3/2){3-P) x pe;pe 

3 This assumes the usual arrangement where the exponent is stored to the left of the significand. 
4 Unless the number z is larger than pemaa+l or smaller than 13em1n. Numbers which are out of range in 

this fashion will not be considered until further· notice. 
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(2) 

In particular, the relative error corresponding to½ ulp can vary by a factor of /3. This factor 
is called the wobble. Setting f = (/3/2){3-P to the largest of the bounds in (2), we can say 
that when a real number is rounded to the closest floating-point number, the relative error 
is always bqunded by t, which is referred to as machine epsilon. 

In the example above, the relative error .was .00159/3.14159 ~ .0005. In order to avoid 
such small numbers, the relative error is normally written as a factor times e, which in this 
case is f = (/3/2)/3-, = 5(10)-3 = .005. Thus the relative error would be expressed as 
(.00159/3.14159)/.005)e ~ 0.k 

To illustrate the difference between ulps and relative error, consider the real number 
:c = 12.35. It is approximated by i = 1.24 x 101 . The error is 0.5 ulps, the relative error is 
0.7e. Next consider the computation Si. The exact value is 8:c = 98.8, while the computed 
value is Si= 9.92 x 101. The error is now 4.0 ulps, but the relative error is still 0.7f. The 
error measured in ulps is 8 times larger, even though the relative error is the same. In 
general, when the base is /3, a fixed relative error expressed in ulps can wobble by a factor of 
up to /3. And conversely, as equation (2) shows, a fixed error of½ ulps results in a relative 
error that can wobble by /3. 

The most natural way to measure rounding error is in ulps. For example rounding to the 
nearest floating-point number corresponds to ½ ulp. However when analyzing the rounding 
error caused by various formulas, relative error is a better measure. A good illustration of 
this is the analysis on page 39. Since f can overestimate the effect of rounding to the nearest 
floating-point number by the wobble factor of /3, error estimates of formulas will be tighter 
on machines with a small /3. 

When only the order of magnitude of rounding error is of interest, ulps and f may be 
used interchangeably, since they differ by at most a factor of (3. For example, when a 
floating-point number is in error by n ulps, that means that the number of contaminated 
digits is logp n. If the relative error in a computation is nf, then 

contaminated digits:::::; log11 n. (3) 

2.3 Guard Digits 

One method of computing the difference between two floating-point numbers is to compute 
the difference exactly and then round it to the nearest floating-point number. This is very 
expensive if the operands differ greatly in size. Assuming p = 3, 2.15 x 1012 - 1.25 x 10-5 

would be calculated as 

% = 2.15 X 1012 

Y = .0000000000000000125 X 1012 

% - Y = 2.1499999999999999875 X 1012 , 

which rounds to 2.15 x 1012. Rather than using all these digits, floating-point hardware 
normally operates on a fixed number of digits. Suppose that the number of digits kept is p, 
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and that when the smaller operand is shifted right, digits are simply discarded ( as opposed 
to rounding). Then 2.15 x 1012 -1.25 x 10-5 becomes 

Z = 2.15 X 1012 

'JI = 0.00 X 1012 

Z - y = 2.15 X 1012 . 

The answer is exactly the same as if the difference had been computed exactly and then 
rounded. Take another example: 10.1 - 9.93. This becomes 

Z = 1.01 X 101 

y = 0.99 X 101 

% - y = .02 X 101• 

The correct answer is .17, so the computed difference is off by 30 ulps and is wrong in every 
digit! How bad can the error be? 

Theorem 1 Using a floating-point fonnat with parameters /3 and p, and computing differ­
ences using p digits, the relative error of the result can be as large as /3 - 1. 

Proof: A relative error of /3 - 1 in the expression z - y occurs when z = 1.00 • • • 0 and 
y = .ee · • • e, where e = /3 - 1. Here y has•p 9-igits (all equal to e). The exact difference 
is z - y = p-,. However, when computing the answer using only p digits, the rightmost 
digit of y gets shifted off, and so the computed difference is p-r,+1. Thus the error is 
p-P - p-p+l = p-P(/3 - 1), and the relative error is p-P(/3-1)//3-P = /3-1. I • 

When /3 = 2, the relative error can be as large as the result, and when /3 = 10, it can be 
9 times larger. Or to put it another way, when /3 = 2 equation (3) shows that the number 
of contaminated digits is log2(1/e) = log2(2P) = p. That is, all of the p digits in the result 
are wrong! 

Suppose that one extra digit is added to guard against this situation (a guard digit). That 
is, the smaller number is truncated top+ 1 digits, and then the result of the subtraction is 
rounded to p digits. With a guard digit, the previous example becomes 

Z = 1.010 X 101 

y = 0.993 X 10 1 

Z - y = .017 X 10 1
, 

and the answer is exact. With a single guard digit, the relative error of the result may be 
greater thane, as in 110 - 8.59. 

Z = 1.10 X 102 

y = .085 X 102 

Z - y :: 1.015 X 102 

This rounds to 102, compared with the correct answer of 101.41, for a relative error of .006, 
which is greater thane= .005. In general, the relative error of the result can be only slightly 
larger than e. More precisely, 
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Theorem 2 // :z: and y are floating-point numbers in a format with parometers fJ and p, 
and if subtraction is done with p + 1 digits (i.e. one guard digit},· then the relative rounding 
error in the result is less than 2e. 

This theorem will be proven in section 5.1. Addition is included in the above theorem 
since :z: and y can be positive or negative. 

2.4 Cancellation 

The last section can be summarized by saying that without a guard digit, the relative error 
committed when subtracting two nearby quantities can be very large. In other words, the 
evaluation of any expression containing a subtraction (or an addition of quantities with 
opposite signs) could result in a relative error so large that all the digits are meaning­
less (Theorem 1). When subtracting nearby quantities, the most significant digits in the 
operands match and cancel each other. There are two kinds of cancellation: catastrophic 
and benign. 

Catastrophic cancellation occurs when tlie operands are subject to rounding errors. For 
example in the quadratic formula, the expression b2 - 4ac occurs. The quantities b2 and 4ac 
are subject to rounding errors since they are the results of floating-point multiplications. 
Suppose that they are rounded to the nearest floating-point number, and sq are accurate 
to within ½ ulp. When they are subtracted, cancellation can cause many of the accurate 
digits to disappear, leaving behind mainly digits contaminated l?Y rounding error. Bence 
the difference might have an error of many ulps. For example, consider b = 3.34, a= 1.22, 
and c = 2.28. The exact value of 62 - 4ac is .0292. But 62 rounds to 11.2 and 4ac rounds 
to 11.1, hence the final answer is .1 which is an error by 70 ulps, even though 11.2 - 11.1 
is exactly equal to .1. The subtraction did not introduce any error, but rather exposed the 
error introduced in the earlier multiplications. 

Benign cancellation occurs when subtracting exactly known quantities. If z and y have 
no rounding error, then by Theorem 2 the difference z - y has a very small relative error 
(less than 2e) if the subtraction is done with a guard digit. 

A formula that exhibits catastrophic cancellation can sometimes be rearranged to elim­
inate the problem. Again consider the quadratic formula 

-b + Jb2 - 4ac -b - J62 - 4ac 
r1 = , r2 = 

2a 2a 
(4) 

When 62 > ac, then 62 - 4ac does not involve a cancellation and Jb2 - 4ac ~ lbl. But the 
other addition (subtraction) in one of the formulas will have a catastr<:>phic cancellation. To 
avoid this, multiply the numerator and denominator of r1 by -b - J62 - 4ac ( and similarly 
for r2) to obtain 

2c 2c 
r1 = ~----;::::::;:::==, r2 = -----;:===· 

-b- vb2 -4ac -b+ vb2 -4ac 
(S) 

This eliminates any cancellation, since if 62 > ac and b > 0, then computing r1 using 
formula ( 4) will involve a cancellation, so use (5) for computing r 1 and ( 4) for r2. On the 
other hand, if b < 0, then use (4) for computing r 1 and (5) for r2. 
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The expression z 2 - y2 is another formula that exhibits catastrophic cancellation. It is 
• more accurate to evaluate it as ( z - y )( z + y). 5 Unlike the quadratic forpiula, this improved 

form still has a subtraction, but it is a benign cancellation of quantities without rounding 
error, not a catastrophic one. By Theorem 2 tbe relative error in z - y is at most 2e. The 
same is true of z + y. Multiplying two quantities with a small relative error results in a 
product with a small relative error (see section 5.1). • 

In order to avoid confusion between exact and computed values, the following notation 
is used. Whereas z - y denotes the exact difference of z and y, z e y denotes the computed 
difference (i.e. with rounding error). Similarly EB, ® and 0 denote computed addition, 
multiplication and division, respectively. All caps indicate the computed value of a function, 
as in LN(z) or SQRT(z). Lower case functions and traditional mathematical notation denote 
their exact values (as in ln(z) and~-

Although (z e y) ® (z EB y) is an excellent approximation to z2 -y2 , the floating-point 
numbers z and y might themselves be approximations to some true quantities z and fl. 
For example, z and y might be exactly known decimal numbers that cannot be expressed 
exactly in binary. In this case even though z e y is a good approximation to z - y, it can 
have a huge relative error compared to the true expression z - fl, and so the advantage of 
(z + y)(z - y) over z2 - y2 is not as dramatic. Since computing (z + y)(z - y) is about 
the same amount of work as computing z 2 -y2, it is clearly the preferred form in this case. 
However in general, replacing a catastrophic cancellation by a benign one is not worthwhile 
if the expense is large, because the input is often (but not always) an approximation. But 
eliminating a cancellation entirely (as in the quadratic formula) is worthwhile even if the 
data is not exact. Throughout this paper, it will be assumed that the floating-point inputs 
to an algorithm are exact, and that the results are computed as accurately as possible. 

The expression z 2 - y2 is more accurate when rewritten as (z - y)(z + y), because a 
catastrophic cancellation is replaced with a benign one. We next present more interesting 
examples of formulas exhibiting catastrophic cancellation that can be rewritten to exhibit 
only benign cancellation. 

The area of a triangle can be expressed directly in terms of the lengths of its sides a, b, 
and c as 

A= Js(s - a)(s - b)(s - c) , wheres= (a+ b + c)/2. (6) 

Suppose the triangle is very flat, that is, a ~ b + c. Then s ~ a and so the term (s - a) 
in equation (6) subtracts two nearby numbers, one of which may have rounding error. For 
example if a = 9.0, b = c = 4.53, then the correct value of sis 9.03 and A is 2.34. Even 
though the computed value of s (9.05) is in error by only 2 ulps, the computed value of A 
is 3.04, an error of 60 ulps. 

There is a way to rewrite formula (6) so that it will return accurate results even for flat 

5 Although the expression (z - y)(z + y) does not cause a catastrophic cancellation, it is slightly less 
accurate than :i:2 -y2 if z > y or :i: < y. In this case (:r - y)(:r + y) has three rounding eITors, but z2 - y2 
has only two, since the rounding eITor committed when computing the smaller of :i:2 and y2 doesn't affect 
the final subtraction. 
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triangles [Kahan 1986]. It is 

A= J(a + (b + c))(c - (a - b~(c + (a - b))(a + (b- cl), 

4
?: b?: c. (

7

) 

If a, b and c don't satisfy a ~ b ~ c, simply rename them before applying (7). It is 
straightforward to check that the right hand sides of (6) and (7) are algebraically identical. 
Using the values of a, b, and c above gives a computed area of 2.35, which is 1 ulp in error 
and much more accurate than the first formula. 

Although formula (7) is much more accurate than ( 6) for this example, it would be nice 
to know how well (7) performs in general. 

Theorem 3 The rounding error incurred when using (7) to compute the area of a triangle 
is at most 11£, provided that subtraction is performed with a guard digit, £ ~ .005, and that 
square roots are computed to within ½ ulp. 

The condition that £ < .005 is met in virtually every actual floating-point system. For 
example when /3 = 2, p ~ 8 ensures that f < .005, and when /3 = 10, p ~ 3 is enough. 

In statements like Theorem 3 that discuss the relative error of an expression, it is un­
derstood that the expression is computed using floating-point arithmetic. In particular, the 
relative error is actually of the expression 

(SQRT(a EB (b EB c)) ® (c e (a e b)) ® (c EB (a e b)) ® (a EB (be c))) 0 4. (8) 

Because of the cumbersome nature of (8), in the statement of theorems we will usually say 
the computed value of E, rather than writing out E with circle notation. 

Error bounds are usually too pessimistic. In the numerical example given above, the 
computed value of (7) is 2.35, compared with a true value of 2.34216, for a relative error 
of 0.7£, which is much less than 11£. The main reason for computing error bounds is not 
to get precise bounds, but rather to verify that the formula doesn't contain any numerical 
problems. 

A final example of an expression that can . be rewritten to use benign cancellation is 
(1 + z)" where z < 1. This expression arises in financial calculations. Consider depositing 
$100 every day into a bank account that earns an annual interest rate of 6%, compounded 
daily. If n = 365 and i = .06, the amount of money accumulated at the end of one year is 
100°+'[j[-1 dollars. If this is computed using /3 = 2 and p = 24, the result is $37615.45 
compared to the exact answer of $37614.05, a discrepancy of $1.40. The reason for the 
problem is easy to see. The expression 1 + i/n involves adding 1 to .0001643836, so the low 
order bits of i/n are lost. This rounding error is amplified when 1 + i/n is raised to the nth 
power. 

The troublesome expression (1 + i/n)" can be rewritten as enln(l+i/n), where now the 
problem is to compute ln(l+z) for small z. One simple approach is to us~ the approximation 
ln(l + z) ~ z, in which case the payment becomes $37617.26, which is off by $3.21, and 
even less accurate than the obvious formula: B.ut tliere is a way to compute ln(l + z) very 
accurately, as Theorem 4 shows [Hewlett-Packard 1982]. This formula yields $37614.07, 
accurate to within two cents! 
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Theorem 4 assumes that LN(z) approximates ln(z) to within ½ ulp. The problem it 
solves is that when :r: is small, LN(l EB :r:) is not close to ln(l + :r:) because 1 EB :r: has lost the 
information in the low order bits of z. That is, the computed value of ln(l + z) is not close 
to its actual value when z < 1. 

Theorem 4 /fln(l + z) is computed using the formula 

for 1 ez = 1 
for 1 EB z :/; 1 

the relative error is at most 5e when O 5 z < ¾, provided subtraction is performed with a 
guard digit, e < 0.1, and In is computed to within ½ ulp. 

This formula will work for any value of z, but is only interesting for z < 1, which is 
where catastrophic cancellation occurs in the naive formulaln(l+z). Although the formula 
may seem mysterious, there is a simple explanation for why it works. Write ln(l + z) as 

z (1°<~+z)) = :r:µ(x). The left hand factor can obviously be computed exactly, but the 

right hand factor µ(x) = ln(l + z)/z will suffer a large rounding error when adding 1 to z. 
Howeverµ is almost constant, since ln(l + :r:) ~ :c. So changing z slightly won't introduce 
much error. In other words, if z ::::: z, computing zµ(z) will be a good approximation to 
:cµ(:c) = ln(l + z). Is there a value of i for which z and z + 1 can be computed accurately? 
There is, namely i = (1 EB z) e 1, because then 1 + z is exactly equal to 1 EB z. 

The results of this section can be summarized by saying that a guard digit guaran­
tees accuracy when nearby precisely known quantities are subtracted (benign cancellation). 
Sometimes a formula that gives inaccurate results can be rewritten to have much higher 
numerical accuracy by using benign cancellation; however, the procedure only works if sub­
traction is performed using a guard digit. The price of a guard digit is not high, because it 
merely requires making the adder one bit wider. For a 54 bit double precision adder, the 
additional cost is less than 2%. For this price, you gain the ability to run many algorithms, 
such as the formula (6) for computing the area of a triangle and the expression ln(l + z). 
Although most modern computers have a guard digit, there are a few (such as Crays) that 
do not. 

2.5 Exactly Rounded Operations 

When floating-point operations are done with a guard digit, they aren't as accurate as if they 
were computed exactly and then rounded to the nearest floating-point number. Operations 
performed in this manner will be called exactly rounded. The example immediately preceding 
Theorem 2 shows that a single guard digit will not always give exactly rounded results. The 
previous section gave several examples of algorithms that require a guard digit in order to 
work properly. This section gives examples of algorithms that require exact rounding. 

So far, the definition of rounding hasn't been mentioned. Rounding is straightforward 
with the exception of how to round halfway cases. Should 12.5 round to 12 or 13? One school 
of thought divides the 10 digits in half, letting {0, 1, 2, 3, 4} round down, and {5, 6, 7,8 1 9} 
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r~und up; thus 12.5 would round to 13. This is how rounding works on Digital Equipment 
Corporation's VAX™ computers. Another school of thought says that since numbers ending 
in 5 are halfway between two possible roundings, they should round down half the time, 
and round up the other half. One way of obtaining this 50% behavior to require that the 
rounded result have its least significant digit be even. Thus 12.5 rounds to 12 rather than 
13, because 2 is even. Which of these methods is best, round up or round to even? Reiser 
and Knuth (1975] offer the following reason for preferring round to even. 

Theorem 5 Let z and y be floating-point numbers, and define zo = z, z1 = (zo e y) EB y, 
... , Zn = (zn-1 e y) EB y. If EB and e are exactly rounded using round to even, then either 
Zn = z for all n, or else Zn = z1 for all n ~ 1. I 

To clarify this result, consider f3 = 10, p = 3 and let x = 1.00, y = -.555. When rounding 
up, the sequence becomes zo6Y = 1.56, z1 = 1.566.555 = 1.01, z1 ey = 1.0lEB.555 = 1.57, 
and each successive value of Zn increases by .01. Under round to even, Zn is always 1.00. 
This example suggests that when using the round up rule, computations can gradually 
drift upwards, whereas the theorem says this cannot happen when using round to even. 
Throughout the rest of this paper, round to even will always be used. 

One appli~ation of exact rounding occurs in multiple precision arithmetic. There are 
two basic approaches to higher precision. One approach represents floating-point numbers 
using a very large significand, which is stored in an array of words, and codes the routines 
for manipulating these numbers in assembly language. The second approach represents 
higher precision floating-point numbers as an array of ordinary floating-point numbers, 
where adding the elements of the array in infinite precision recovers the high precision 
floating-point number. It is this second approach that will be discussed here. The advantage 
of using an array of floating-point numbers is that it can be coded portably in a high level 
language, but it requires exactly rounded arithmetic. 

The key to multiplication in this system is representing a product xy as a sum, where 
each summand has the same precision as z and y. This can be done by splitting z and y. 
Writing z = Zh + z, and y = Yh + y,, the exact product is xy = ZhYh + ZhYl + z1yh + x,y,. 
If x and y have p bit significands, the summands will also have p bit significands provided 
that z,, Zh, Yh, YI can be represented using l,p/2J bits. When pis even it is easy to find 
a splitting. The number zo.z1 ... Zp-1 can be written as the sum of x0 .z1 ... Jr,,2_ 1 and 
0.0 • • • Ozp/2 •.. Zp-1• When pis odd, this simple splitting method won't work. However, 
an extra bit can be gained by using negative numbers. For example, if {3 = 2, p = 5 and 
z = .10111, z can be split as Zh = .11 and z, = -.00001. There is more than one way to 
split a· number. A splitting method that is easy to compute is due to Dekker [1971], but it 
requires more than a single guard digit. .. 

Theorem 6 Let p be the floating-point precision, with the restriction that p is even when 
/J > 2, and assume that floating-point operations are exactly rounded. Then if k = rp/21 
is half the precision {rounded up}, and m = pk + 1, z can be split as x = zh + z1, where 
xh = (m ® x) e (m ® z ex), x, =:,; e zh, and each Xi is representable using [p/2J bits of 
precision. 
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To see how this works in an example, let (3 = 10, p = 4, 6 = 3.476, a = 3.463 and c = 3.479. 
Then 62 - ac rounded to the nearest floating-point number is .03480, while 6 ® b = 12.08, 
a ® c = 12.05 and so the computed value of 62 - ac is .03. This is an error of 480 ulps. 
Using Theorem 6 to write 6 = 3.5 - .024, a = 3.5- .037 and c = 3.5 - .021, then 62 becomes 
3.52 - 2 x 3.5 x .024 + .0242. Each summand is exact, so 62 = 12.25 - .168 + .000576, where 
the sum is left unevaluated at this point. Similarly, ac = 3.52 - (3.5 x .037 -+3.5 x .021) + 
.037 x .021 = 12.25 - .2030 + .000777. Finally, subtracting these two series term by term 
gives an estimate for b2 - ac of O e .0350 e .04685 = .03480, which is identical to the exactly 
rounded result. To show that Theorem 6 really requires exact rounding, consider p = 3, 
(3 = 2, and z = 7. Then m = 5, mz = 35, and m ® z = 32. If subtraction is performed with 
a single guard digit, then (m®z)ez = 28, so Zh = 4 and z, = 3, hence z, not representable 
with [p/2J = 1 bit. 

As a final example of exact rounding, consider dividing m by 10. The result is a floating­
point number that will in general not be equal to m/10. However, when /J = 2, multiplying 
m/10 by 10 will miraculously restore m, provided that exact rounding is being used. Ac­
tually, a more general fact (due to Kahan) is true. The proof is ingenious, but readers not 
interested in such details can skip ahead to section 3. 

Theorem 7 When fJ = 2, i/ m and n are integers with 1ml < 2P- 1 ,. and n has the special 
form n = 2' + 2;, then ( m 0 n) ® n = m, provided that floating-point operations are correctly 
rounded. 

Proof: Scaling by a power of two is harmless, since it changes only the exponent, not the 
significand. If q = m/n, then scale n so that 2P-1 :5 n < 2P, and scale m so that½< q < 1. 
Thus 2P-2 < m < 2P. Since m hasp significant bits, it has at most one bit to the right of 
the binary point. Changing the sign of mis harmless, so assume that q > 0. 

If q = m 0 n, then to prove the theorem requires showing that 

(9) 

T)lat's because m has at most one bit right of the binary point, so nq will round tom. To 
deal with the halfway case when lnq- ml= ¼, note that since the initial unscaled m had 
1ml < 2,-1, its low order bit was 0, and so t!ie low order bit of the scaled mis also 0. Thus 
halfway cases will round to m. -·· 

Suppose that q = .q1q2 •••,and let ij = .q1q2 • • •qpl. To estimate lnq- ml, first compute 
Iii- qi= IN /2P+1 - m/nl, where N is an odd integer. Since n = 2' + 2i and 2P-1 :5 n < 2P, 
it must be that n = 2P-1 + 2k for some k :5 p - 2, and thus 

,.. - I nN - 2P+lm 1-1 (2P-l-k + l)N - 2P+l-km I 
lq-ql - n2P+1 - n2P+1-1: • 

The numerator is an integer, and since N is odd, it is in fact an odd integer. Thus lq- qi 2= 
1/(n2P+l-k). Assume that q < ij (the case q > q is similar). Then nq < m, and 

I~~ nql = m - nq = n(q - q) = n(q - (q- rP-1)) :5 n(2-,-1 - 1/(n2P+l-A:)) 

= (2P-1 + 2A:)2-p-l + rp-l+k = .!. 
4 
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This establishes ( 9) and proves the theorem. I 

The theorem holds true for any base {3, as long as 2i+2i is replaced by pi +pi. However, 
as f3 gets larger, there are fewer and fewer denominators of the form pi + p; . 

We are now in a position to answer the question, "does it matter if the basic arithmetic 
operations introduce a little more rounding error than necessary"? The answer is that it does 
matter, because accurate basic operations enable us to prove that formulas are "correct" in 
the sense that they have a small relative error. Section 2.4 discussed several algorithms that 
require guard digits in order to produce results that are correct in this sense. However, if the 
input to those formulas are numbers representing imprecise measurements, then the bounds 
of Theorems 3 and 4 become less interesting. The reason is that the benign cancellation z-y 
can become catastrophic if z and y are only approximations to some measured quantity. 
But accurate operations are useful even in the face of inexact data, because they enable us 
to establish exact relationships like those discussed in Theorems 6 and 7. These are useful 
even if every floating-point variable is only an approximation to some actual value. 

3 The IEEE Standard 

There are two different IEEE standards for floating-point computation. IEEE 754 is a 
binary standard which requires that /3 = 2, p = 24 for single precision and p = 53 for 
double precision [IEEE 1987]. It also specifies the precise layout of bits in single and double 
precision. IEEE 854 allows either P = 2 or f3 = 10, and unlike 754, does not specify how 
floating-point numbers are encoded into bits [Cody et al. 1984]. It.does not require a 
particular value for p, but instead specifies constraints on the allowable values of p for single 
and double precision. The term IEEE Standard will be used when discussing properties 
common to both standards. 

This section provides a tour of the IEEE standard. Each subsection discusses one aspect 
of the standard and tries to motivate why it was included. It is not the purpose of this paper 
to argue that the IEEE standard is the best possible floating-point standard, but rather to 
accept the standard as given and provide an introduction to its use. For full details consult 
the standards themselves [IEEE 1987; Cody et al. 1984). 

3.1 Formats and Operations 

3.1.1 Base 

It is clear why IEEE 854 allows P = 10. Base ten is how humans exchange and think about 
numbers. Using /3 = 10 is especially appropriate for calculators, where the result of each 
operation is displayed by the calculator in decimal. 

There are several reasons why IEEE 854 requires that if the base is not 10, it must be 2. 
Section 2.2 mentioned one reason: the results of error analyses are much tighter when /3 is 2 
because a rounding error of½ ulp wobbles by a factor of P when computed as a relative error, 
and error analyses are almost always simpler when based on relative error. A related reason 
has to do with the effective precision for large bases. Consider /3 = 16, p = 1 compared to 
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f3 = 2, p = 4. Both systems have 4 bits of significand. Consider the computation of 15/8. 
When f3 = 2, 15 is represented as 1.111 x ~, and 15/8 as 1.111 x 2°. So 15/8 is exact. 
However, when /3 = 16, 15 is represented as F x 16°, where Fis the hexadecimal digit for 
15. But 15/8 is represented as 1 x 16°, which has only one bit correct. In general, base 16 
can lose up to 3 bits, so that a precision of p can have an effective precision as low as 4p - 3 
rather than 4p. 

Since large values of {J have these problems, why did IBM choose /3 = 16 for its sys­
tem/370? Only IBM knows for sure, but there are two possible reasons. The first is increased 
exponent range. Single precision on the system/370 has {J = 16, p = 6. Bence the signif­
icand requires 24 bits. Since this must fit into 32 bits, this leaves 7 bits for the exponent 
and one for the sign bit. Thus the magnitude of representable numbers ranges from about 
16-20 to about 1620 = 228

• To get a similar exponent range when {J = 2 would require 9 
bits of exponent, leaving only 22 bits for the significand. However, it was just pointed out 
that when /3 = 16, the effective precision can be as low as 4p - 3 = 21 bits. Even worse, 
when /3 = 2 it is possible to gain an extra bit of precision (as explained later in this section), 
so the /3 = 2 machine has 23 bits of precision to compare with a range of 21-24 bits for the 
/3 = 16 machine. . 

Another possible explanation for choosing /3 = 16 lfas to do with shifting. When adding 
two floating-point numbers, if their exponents are different, one of the significands will have 
to be shifted to make the radix points line up, slowing down the operation. In the /3 = 16, 
p = 1 system, all the numbers between 1 and 15 have the same exponent, and so no shifting 
is required when adding any of the {12

5
) = 105 possible pairs of distinct numbers from this 

set. However, in the /3 = 2, p = 4 system, these numbers have exponents ranging from Oto 
3, and shifting is required for 70 of the 105 pairs. 

In most modern hardware, the performance gained by avoiding a shift for a subset of 
operands is negligible, and so the small wobble of /3 = 2 makes it the preferable base. An­
other advantage of using /3 = 2 is that there is a way to gain an extra bit of significance.6 

Since floating-point numbers are always normalized, the most significant bit of the signifi­
cand is always 1, and there is no reason .to waste a bit of storage representing it. Formats 
that use this trick are said to have a hidden bit. It was already pointed out in section 2.1 
that this requires a special convention for 0. The method given there was that an exponent 
of emin - 1 and a significand of all zeros represents not 1.0 x 2emin- 1 , but rather 0. 

IEEE 754 single precision is ;encoded in 32 bits using 1 bit for the sign, 8 bits for the 
exponent, and 23 bits for the significand. However it uses a hidden bit, so the significand is 
24 bits (p = 24), even though it is encoded using only 23 bits. 

3.1.2 Precision 

The IEEE standard defines four different precisions: single, double, single-extended, and 
double-extended. In 754, single and double precision correspond roughly to what most 
floating-point hardware provides. Single precision occupies a single 32 bit word, double 
precision two consecutive 32 bit words. Extended precision is a format that offers just a 

6 This appears to have first been published by Goldberg (1967), although Knuth ([1981], page 211) at­
tributes this idea to Konrad Zuse. 
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Parameter Format 
Single Single-Extended Double Double-Extended 

p 24 ~ 32 53 ~64 
emax: +127 ~ +1023 +1023 ~ +16383 
emin -126 S -1022 -1022 S -16382 
Exponent width in bits 8 ~11 11 ~ 15 
Format width in bits 32 >43 64 > 79 

Table 1: IEEE 754 Format Parameters 

little extra precision and exponent range (Table 1). The IEEE standard only specifies a 
lower bound on how many extra bits extended precision provides. The minimum allowable 
double-extended format is sometimes referred to as BO-bit format, even though the table 
shows it using 79 bits. The reason is that hardware implementations of extended precision 
normally don't use a hidden bit, and so would use 80 rather than 79 bits. 7 

The standard p~ts the most emphasis on extended precision, making no recommendation 
concerning double precision, but stronf!;ly recommending that 

Implementations should support the extended format corresponding to the widest 
basic format supported, ... 

One motivation for extended precision comes from calculators, which will often display 
10 digits, but use 13 digits internally. By displaying only 10 of the 13 digits, the calculator 
appears to the user as a "black box" that computes exponentials, cosines, etc. to 10 digits of 
accuracy. However, in order for the calculator to compute functions like exp, log and cos to 
within 10 digits with reasonable efficiency, it needs a few extra digits to work with. It isn't 
hard to find a simple rational expression that approximates log with an error of 500 units 
in the last place. Thus computing with 13 digits gives an answer correct to 10 digits. By 
keeping these extra 3 digits hidden, the calculator presents a simple model to the operator. 

Extended precision in the IEEE standard serves a similar function. It enables libraries to 
efficiently compute quantities to within about½ ulp in single (or double) precision, giving the 
user of those libraries a simple model, namely that each primitive operation, be it a simple 
multiply or an invocation of log, returns a value accurate to within about ½ ulp. However, 
when using extended precision, it is important to make sure that its use is transparent to 
the user. For example, on a calculator, if the internal representation of a displayed value is 
not rounded to the same precision as the display, then the result of further operations will 
depend on the hidden digits and appear unpredi&table to the user. 

To illustrate extended precision further, consider the problem of converting between 
IEEE 754 single precision and decimal. Ideally, single precision numbers will be printed 
with enough digits so that when the decimal number is read back in, the single precision 
number can be recovered. It turns out that 9 decimal d~gits are enough to recover a single 

7 According to Kahan, extended precision has 64 bits of aignificand because that was the widest precision 
acroaa which c:an-y propagation could be done on the Intel 8087 without increasing the cycle time [Kahan 
1988]. . 
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precision binary number (see section 5.2). When converting a decimal number back to its 
unique binary representation, a rounding· error as small as 1 ulp is fatal, because it will 
give the wrong answer. Here is a situation where extended precision is vital for an efficient 
algorithm. When single-extended is available, a very straightforward method exists for 
converting a decimal number to a single precision binary one. First read in the 9 decimal 
digits as an integer N, ignoring the ~ecimal point. From Table 1, p 2= 32, and since 
109 < 232 ~ 4.3 x 109, N can be represented exactly in single-extended. Next find the 
appropriate power 10P necessary to scale N. This will be a combination of the exponent of 
the decimal number, together with the position of the (up until now) ignored decimal point. 
Compute 10IPI. If IPI ~ 13, then this is also represented exactly, because 1013 = 213513, 

and 513 < 232. Finally multiply ( or divide if P < 0) N and lOIPI. If this last operation is 
done exactly, then the closest binary number is recovered. Section 5.2 shows how to do the 
last multiply (or divide) exactly. Thus for IPI ~ 13, the use of the single-exteµded format 
enables 9 digit decimal numbers to be converted to the closest binary number (i.e. exactly 
rounded). If IPI > 13, then single-extended is not enough for the above algorithm to always 
compute the exactly rounded binary equivalent, but Coonen [1984] shows that it is enough 
to guarantee that the conversion of binary to decimal and back will recover the original 
binary number. 

If double precision is supported, then the algorithm above would be run in double pre­
cision rather than single-extended, but to convert double precision to a 17 digit decimal 
number and back would require the double-extended format. 

3.1.3 Exponent 

Since the exponent can be positive or negative, some method must be chosen to represent its 
sign. Two common methods of representing signed numbers are sign-magnitude and two's 
complement. Sign/magnitude is the system used for the sign of the significand in the IEEE 
formats: one bit is used to hold the sign, the rest of the bits represent the magnitude of the 
number. The two's complement representation is often used in· integer arithmetic. In this 
scheme, a number is represented by the smallest nonnegative number that is congruent to 
it modulo 2P. 

The IEEE binary standard doesn't use either of these methods to represel}.t the exponent, 
but instead uses a biased representation. In the case of single precision, where the exponent 
is stored in 8 bits, the bias is 127 (for double precision it is 1023). What this means is that if 
k is the value of the exponent bits interpreted as an unsigned integer, then the exponent of 
the floating-point number is k - 127. This is often called the biased exponent to distinguish 
from the unbiased exponent k. 

Referring to Table 1, single precision has emax = 127 and emin = -126. The reason 
for having lemin I < emax is so that the reciprocal of the smallest number (l/2em1n) will 
not overflow. Although it is true that the reciprocal of the largest number will underflow, 
underflow is usually less serious than overflow. $ection 3.1.1 explained that emin -1 is used 
for representing 0, and section 3.2 will introduce a use for emax + 1. In IEEE single precision, 
this means that the biased exponents range between emin - 1 = -127 and emax: + 1 = 128, 
while the unbiased exponents range between O and 255, which are exactly the nonnegative 
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numbers that can be represented using 8 bits. 

3.1.4 Operations 

The IEEE standard requires that the result of addition, subtraction, multiplication and 
division be exactly rounded. That is, the result must be computed exactly and then rounded 
to the nearest floating-point number {using round to even). Section 2.3 pointed out that 
computing the exact difference or sum of two floating-point numbers can be very expensive 
when their exponents are substantially different. That section introduced guard digits, 
which provide a practical way of computing _differences while guaranteeing that the relative 
error is small. However, computing with a single guard digit will not always give the same 
answer as computing the exact result and then rounding. By introducing a second guard 
digit and a third sticky bit, differences can be computed at only' a little more cost than with 
a single guard digit, but the result is the same as if the difference were computed exactly 
and then rounded [Goldberg 1990]. Thus the standard can be implemented efficiently. 

One reason for completely specifying the results of arithmetic operations is to improve the 
portability of software. When a program is moved between two machines and both support 
IEEE arithmetic, then if any intermediate result differs, it must be because of software bugs, 
not from differences in arithmetic. Another advantage of precise specification is that it 
makes it easier to reason about floating-point. Proofs about floating-point are hard enough, 
without having to deal with multiple cases arising from multiple kinds of arithmetic. Just 
as integer programs can be proven to be correct, so can floating-point programs, although 
what is proven in that case is that the rounding error of the result satisfies certain bounds. 
Theorem 4 is an example of such a proof. These proofs are made much easier when the 
operations being reasoned about are precisely specified. Once an algorithm is proven to be 
correct for IEEE arithmetic, it will work correctly on any machine supporting the IEEE 
standard. 

Brown [1981] has proposed axioms for floating-point that include most of the existing 
floating-point hardware. However, proofs in this system cannot verify the algorithms of 
sections 2.4 and 2.5, which require features not present on all hardware. Furthermore, 
Brown's axioms are more complex than simply defining operations to be performed exactly 
and then rounded. Thus proving theorems from Brown's axioms is usually more difficult 
than proving them assuming operations are exactly rounded. 

There is not complete agreement on what operations a floating-point standard should 
cover. In addition to the basic operations+, -, x and /, the IEEE standard also specifies 
that square root, remainder, and conversion between integer and floating-point be correctly 
rounded. It also requires that conversion between internal formats and decimal be correctly 
rounded (except for very large numbers). Kulisch and Miranker [1986) have proposed adding 
inner product to the list of operations that are precisely specified. They note that when inner 
products are computed in IEEE arithmetic, the final answer can be quite wrong. For example 
sums are a special case of inner products, and the sum ((2 x 10-30 + 1030)- 10-30)-1030 is 
exactly equal to 10-30 , but on a machine with IEEE arithmetic the computed result will be 
-10-30

• It is possible to compute inner products to within 1 ulp with less hardware than 
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it takes to implement a fast multiplier [Kirchner and Kulisch 1987].8 

All the operations mentioned in the standard are required to be exactly rounded ex­
cept conversion between decimal and binary. The reason is that efficient algorithms for 
exactly rounding all the operations are known, except conversion. For conversion, the best 
known efficient algorithms produce results that are slightly worse than ex~ctly rounded ones 
[Coonen 1984]. 

The IEEE standard does not require transcendental functions to be exactly rounded 
because of the table maker1s dilemma. To illustrate, suppose you are making a table of the 
exponential function to 4 places. Then exp(l.626) = 5.0835. Should this be rounded to 5.083 
or 5.084? If exp(l.626) is computed more carefully, it becomes 5.08350. And then 5.083500. 
And then 5.0835000. Since exp is transcendental, this could go on arbitrarily long before 
distinguishing whether exp(l.626) is 5.083500 • • • 0ddd or 5.0834999 • • • 9ddd. Thus it is not 
practical to specify that the precision of transcendental functions be the same as if they were 
computed to infinite precision and then rounded. Another approach would be to specify 
transcendental functions algorithmically. But there does not appear to be a single algorithm 
that works well across all hardware architectures. Rational approximation, CORDIC,9 and 
large tables are three different techniques that are used for computing transcendentals on 
contemporary machines. Each is appropriate for a different class of hardware, and at present 
no single algorithm works acceptably over the wide range of current hardware. 

3.2 Special Quantities 

On some floating-point hardware every bit pattern represents a valid floating-point number. 
The IBM System/370 is an example of this. On the other hand,. the VAX™ reserves some 
bit patterns to represent special numbers called reserved operands. This idea goes back to the 
CDC 6600, which had bit patterns for the special quantities I~DEFINITE and INFINITY. 

The IEEE standard continues in this tradition and has NaNs and infinities (NaN stands 
for Not a Number). Without any special quantities, there is no good way to handle ex­
ceptional situations like taking the square root of a negative number, other than aborting 
computation. Under IBM System/370 FORTRAN, the default action in response to com­
puting the square root of a negative number like -4 results in the printing of an error 
message. Since every bit pattern represents a valid number, the return value of square root 
must be some floating-point number. In the case of System/370 FORTRAN, vT="'4j = 2 is 
returned. In IEEE arithmetic; a NaN is returned in this situation. • 

The IEEE standard specifies the following special values (see Table 2): ±0, denormalized 
ny.mbers, ±oo and NaNs (there is more than one NaN, as explained in the next section). 
These special values are all encoded with exponents of either emax + 1 or emin - 1 (it was 
already pointed out that O has an exponent of.emin - 1). 

8 ~ome arguments against including inner product as one of the basic operations are presented by Kahan 
and LeBlanc (1985]. 

9 CORDIC is an acronym for Coordinate Rotation Digital Computer and is a method of computing 
transcendental functions that uses mostly shifts and adds (i.e., very few multit»lications and divisions) 
(Walther 1971], It is the method used on both the Intel 8087 and the Motorola 68881. 
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Exponent Fraction Represents 
e = emin -1 /=0 ±0 
e = emin -1 /¢0 0./ X 2em1a 

emin ~ e ~ emax - 1./ X 2e 
e = emax + 1 /=0 ±oo 
e = emax + 1 /¢0 NaN 

Table 2: IEEE 754 Special Values 

3.2.1 NaNs 

Traditionally, the computation of 0/0 or v'=I has been treated as an unrecoverable error 
which causes a computation to halt. However, there are examples where it makes sense for 
a computation to continue in such a situation. Consider a subroutine that finds the zeros of 
a function/, say zero(f). Traditionally, zero finders require the user to input an interval 
(a, b] on which the function is defined and over which the zero finder will search. That is, 
the subroutine is called as zero(:f, a, b). A more useful zero finder would.not require the 
user to input this extra information. This more general zero finder is especially appropriate 
for calculators, where it is natural to simply key in a ·function, and awkward to then have 
to specify the domain. However, it is easy to see why most zero finders require a domain. 
The zero finder does its work by probing the function f at various values. If it probed for 
a value outside the domain off, the code for f might well compute 0/0 or yCI, and the 
computation would halt, unnecessarily aborting the zero finding process. 

This problem can be avoided by introducing a special value called NaN, and specifying 
that the computation of expressions like 0/0 and yCI produce NaN, rather than halting. 
A list of some of the situations that can c3:use a NaN are given in Table 3. Then when 
zero(f) probes outside the domain off, the code for :f will return NaN, and the zero finder 
can continue. That is, zero(:f) isn't "punished" for making an incorrect guess. With this 
example in mind, it is easy to see what the result of combining a NaN with an ordinary 
floating-point number should be. Suppose that the final statement of f is return(-b + 
sqrt(d))/(2•a). If d < 0, then f should return a NaN. Since d < 0, sqrt(d)is a NaN, 
and -b + sqrt(d) will be a NaN, if the sum of a NaN and any other number is a NaN. 
Similarly if one operand of a division operation is a NaN, the quotient should be a NaN. 
In general, whenever a NaN participates in a floating-point operation, the result is another 
NaN. 

Another approach to writing a zero solver that doesn't require the user to input a domain 
is to use signals. The zero-finder could install a signal handler for floating-point exceptions. 
Then if :f was evaluated outside its domain and raised an exception, control would be 
returned to the zero solver. The problem with this approach is that every language has a 
different method of handling signals (if it has a method at all), and so it has no hope of 
portability. . • 

In IEEE 754, NaNs are represented as floating-point numbers with the exponent emax + 1 
and nonzero significands. Implementations are free to put system-dependent information 
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Operation NaN produced by 
+ oo + (-oo) 
X 0 X 00 

I 0/0,oo/oo 
REM z REM 0, oo REM y 

✓ ,Ji (when z < 0) 

Table 3: Operations that produce a NaN 

into the significand. Thus there is not a unique NaN, but rather a whole family of NaNs. 
When a NaN and an ordinary floating-point number are combined, the result should be 
the same as the NaN operand. Thus if the result of a long computation is a NaN, the 
system-dependent information in the significand will be the information that was generated 
when the first NaN in the computation was generated. Actually, there is a caveat to the 
last statement. If both operands are NaNs, then the result will be one of those NaNs, but 
it might not be the NaN that was generated first. 

3.2.2 Infinity 

Just as NaNs provide a way to continue a computation when expressions like 0/0 or yCI are 
encountered, infinities provide a way to continue when an overflow occurs. This is much safer 
than simply returning the largest representable number. As an example, consider computing 
J:i:2 + y2 , when /3 = 10, p = 3, and emax = 98. If z = 3 x 1070 and y = 4 x 1070

, then z2 

will overflow, and be replaced by 9.99 x 1098
. Similarly y2

, and z 2 + y2 will each overflow in 
turn, and be replaced by 9.99 x 1098 . So the final result will be J9.99 x 1098 = 3.16 x 1049 , 

which is drastically wrong: the correct answer is 5 x 1070 . In IEEE arithmetic, the result 
of z 2 is oo, as is y2

, z 2 + y2 and J z 2 + y2
. So the final result is oo, which is safer than 

returning an ordinary floating-point number that is nowhere near the correct answer .10 

The division of O by O results in a NaN. However, a nonzero number divided by O returns 
infinity: 1/0 = oo, -1/0 = -oo. The reason for the distinction is this. If f(z) - 0 and 
g(z) - 0 as ,z approaches some limit, then /(z)/g(z) could have any value. For example, 
when /(z) = sinz and g(z) = z, then /(z)/g(z) -1 as z-+ 0, but when /(z) = 1- cosz, 
/(z)/g(z) -+ 0. When thinking of 0/0 as the limiting situation of a quotient of two very 
small numbers, 0/0 could represent anything. Thus in the IEEE standard, 0/0 results in a 
NaN. But when c > 0, and /(z) -+ c, g(z) -+ 0, then /(z)/g(z) -+ ±oo, for any analytic 
functions / and g. If g(z) < 0 for small z, then /(z)/g(z) - -oo, otherwise the limit is 
+oo. So the IEEE standard defines c/0 = ±oo, as long as c -:f: 0. The sign of oo depends 
on the signs of c and 0 in the usual way, so that -10/0 = -oo, ·and -10/ - 0 = +oo. You 
can distinguish between getting oo because of overflow and getting oo because of division 
by zero by checking the status flags (which will be discussed in detail in section 3.3.3). The 
overflow flag will be set in the first case, the division by zero flag in the second. 

1°Fine point: Although the default in IEEE arithmetic is to round overflowed numbers to 00, it is possible 
to change the default (see section 3.3.2). 
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The rule for determining the result of an operation that has infinity as an operand is 
simple: replace infinity with a finite number z and take the limit as z-+- oo. Thus 3/oo = 0, 
because limz--oo 3/z = 0. Similarly 4- oo = -oo, and ,loo= oo. When the limit doesn't 
exist, the result is a NaN, so 00/00 will be a NaN (Table 3 has additional examples). This 
agrees with the reasoning used to conclude that 0/0 should be a NaN. 

When a subexpression evaluates to a NaN, the value of the entire expression is also a 
NaN. In the case of ±oo however, the value of the expression might be an ordinary floating­
point number because of rules like 1/oo = O. Here is a practical example that makes use 
of the rules for infinity arithmetic. Consider computing the function z/(z2 + 1). This is a 
bad formula, because not only will it overflow when z is larger than ,JTJpem.z/2 , but infinity 
arithmetic will give the wrong answer, because it wili yield 0, rather than a number near 
1/z. However, z/(z2 + 1) can be rewritten as 1/(z + z-1). This improved expression will 

. not overflow prematurely and because of infinity arithmetic will have the correct value when 
z = 0: 1/(0 + o-1) = 1/(0 + oo) = 1/oo = 0. Without infinity arithmetic, the expression 
1/(z + z- 1) requires a test for z = 0, which not only adds extra instructions, but may also 
disrupt a pipeline. This example illustrates a general fact, namely that infinity arithmetic 
often avoids the need for special case checking; however, formulas need to be carefully 
inspected to make sure they do not have spurious behavior at infinity (as z/(z2 + 1) did). 

3.2.3 Signed Zero 

Zero is represented by the exponent emin - 1 and a zero significand. Since the sign bit can 
take on two different values, there are two zeros, +0 and -0. If a distinction were made 
when comparing +0 and -0, simple tests like ·if (x = 0) would have very unpredictable 
behavior, depending on the sign of x. Thus the IEEE .standard defines comparison so that 
+0 = -0, rather than -0 < +0. Although it would be possible to always ignore the sign of 
zero, the IEEE standard does not do so. When a multiplication or division involves a signed 
zero, the usual sign rules apply in computing the sign of the answer. Thus 3( +0) = +0, and 
+0/-3 = -0_. If zero did not havef a sign, then the relation 1/(1/z) = z would fail to hold 
when z = ±oo. The reason is that 1/-oo and 1/ +oo both result in 0, and 1/0 results in 
+oo, the sign information having been lost. One way to restore the identity 1/(1/z) = z is 
to only have one kind of infinity, however that would result in the disastrous consequence 
of losing the sign of an overflowed quantity. 

Another example of the use of signed zero concerns underflow and functions that have a 
discontinuity at 0, such as log. In IEEE arithmetic, it is natural to define log O = -oo and 
log z to be a NaN when z < 0. Suppose that z represents a small negative number that has 
underflowed to zero. Thanks to signed zero, :,; will be negative, so log can return a NaN. 
However, if there were no signed zero, the log function could not distinguish an underflowed 
negative number from 0, and would therefore have to return -oo. Another example of a 
function with a discontinuity at zero is the signum function, which returns the sign of a 
number. 

Probably the most interesting use of s~d zero occurs in complex arithmetic. To take a 
simple example, consider the equation y'l/z = 1/vz. This is certainly true when z ~ 0. If 
z = -1, the obvious computation gives .;rr:::T. = v'=I = i and 1/.;:::f. = 1/i = -i. Thus 
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./fTz :f: 1/../i ! The problem can be traced to the fact that square root is multi-valued, 
and there is no way to select the values so that it is continuous in the entire complex plane. 
However, square root is continuous if a branch cut consisting of all negative real numbers 
is excluded from consideration. This leaves the problem of what to do for the negative real 
numbers,, which are of the form -z + iO, where z > 0. Signed zero provides a perfect way 
to resolve this problem. Numbers of the form z + i(+O) have one sign (ifi) and numbers 
of the form z + i(-0) on the other side of the branch c1:1t have the other sign (-i~. In 
fact, the natural formulas for computing ✓ will give these results. . 

Back to ./fTz = 1/../z. If z = -1 = -l+iO, then 1/z = 1/(-l+iO) = (1(-1-i0)]/[(-1+ 
i0)(-1- iO)] = (-1- i0)/((-1)2 - 02) = -1 + i(-0), and so ./fTz = ✓-1 + i(-0) = -i, 
while 1/ ../z = 1/i = -i. Thus IEEE arithmetic preserves this identity for all z. Some more 
sophisticated examples are given by Kahan (1987]. Although distinguishing between +0 
and -0 has advantages, it can occasionally be confusing. For example, signed zero destroys 
the relation z = y ~ 1/z = 1/y, which is false when z = +0 and y = -0. However, the 
IEEE committee decided that the advantages of utilizing the sign of zero outweighed the 
disadvantages. 

3.2.4 Denormalized Nu~bers 

Consider normalized floating-point numbers with /3 = 10, p = 3, and emin = -98. The 
numbers z = 6.87 x 10-97 and y = 6.81 x 10-97 appear to be perfectly ordinary floating­
point numbers, which are more than a factor of 10 larger than the smallest floating-point 
number 1.00 x 10-98 . However, they have a strange property: z e y = 0 even though z # y! 
The reason is that z - y = .06 x 10-97 = 6.0 x 10-99 is too small to be represented as a 
normalized number, and so must be flushed to zero. 

How important is it to preserve the property 

(10) 

It's very easy to imagine writing the code fragment, if (x '# y) then z = 1/(x-y), and 
much later having a program fail due to a spurious division by zero. Tracking down bugs 
like this is frustrating and time consuming. On a more philosophical level, computer sci­
ence textbooks often point out that even though it is currently impractical to prove large 
programs correct, designing programs with the idea of proving them often results in better 
code. For example, introducing invariants is quite useful, even if they aren't going to be 
used as part of a proof. Floating-point code is just like any other code: it helps to have 
provable facts on which to depend. For example, when analyzing formula (6), it was very 
helpful to know that z/2 < y < 2z ~ z e y = z - y. Similarly, knowing that (10) is 
true makes writing reliable floating-point code easier. If it is only true for most numbers, it 
cannot be used to prove anything. 

The IEEE standard uses denormalized11 numbers, which guarantee (10), as well as 
other useful relations. They are the most controversial part of the standard .and probably 
accounted for the long delay in getting 754 approved. Most high performance hardware that 

11 Th~y are called aubnormal in 854, denormal in 754. 
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Figure 2: Flush to Zero compared with Gradual U ndertf ow 

claims to be IEEE compatible does not support denormalized numbers directly, but rather 
traps when consuming or producing denormals, and leaves it to software to simulate the 
IEEE standard.12 The idea behind denormalized numbers goes back to Goldberg [1967] and 
is very simple. When the exponent is emin, the significand does not have to be normalized, 
so that when /3 = 10, p = 3 and emin = -98, 1.00 x 10-9s is no longer the smallest 
floating-point.number, because 0.98 x 10-98 is also a floating-point number. 

There is a small snag when /3 = 2 and a hidden bit is being used, since a number with an 
exponent of emin will always have a significand greater than or equal to 1.0 because of the 
implicit leading bit. The solution is similar to that used to represent 0, and is summarized 
in Table 2. The exponent emin - 1 is used to represent denormals. More formally, if the bits 
in the significand field are bi, b2, •.. , hp-I, and the value of the exponent is e, then when 
e > emin - 1, the number being represented is l .b162 • • • bp-1 x 2e, whereas when e = emin -1, 
the number being represented is 0.b1b2 • • • bp-l x 2e+1. The + 1 in the exponent is needed 
because denormals have an exponent of emin, not emin - 1. 

Recall the example of /3 = 10, p = 3, emin = -98, :r = 6.87 x 10-97 and y = 6.81 x 10-97 

presented at the beginning of this section. With denormals, :r-y doesn't flush to zero but is 
instead represented by the denormalized number .6 x 10-98 • This behavior is called gradual 
underflow. It is easy to verify that (10) always holds when using gradual underflow. 

Figure 2 illustrates denormalized numbers. The top ~umber line in the figure shows 
normalized floating-point numbers. Notice the gap between O and the smallest normalized 
number 1.0 x 13em1°. If the result of a floating-point calculation falls into this gulf, it is flushed 
to ·zero. The bottom number line shows what happens when denormals are added to the set 
of floating-point numbers. The "gulr' is filled in, and when the result of a calculation is less 
than 1.0 x pem1°, it is represented by the nearest denormal. When denormalized numbers 
are added to the number line, the spacing between adjacent floating-point numbers varies 
in a regular way: adjacent spacings are either the same length or differ by a factor of /3. 
Without denormals, the spacing abruptly changes from 13-p+l pemio to 13em1°, which is a 
factor of f3P-l, rather than the orderly change by a factor of /3. Because of this, many 
algorithms that can have large relative error for normalized numbers close to the underflow 

12This is the cause of one of the most troublesome aspects of the standard. Programs that frequently 
widerflow often run noticeably slower on hardware that uses software traps. 
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threshold are well-behaved in this range when gradual underflow is used. 
Without gradual underflow, the simple expression z + y can have a very large relative 

error for normalized inputs, as was seen above for z = 6.87 x 10-97 and y = 6.81 x 10-97
• 

Large relative errors can happen even without cancellation, as the following example shows 
[Demmel 1984]. Consider dividing two complex numbers, a+ ib and c + id. The obvious 
formula 

a + ib ac + bd . be - ad 
c + id = c2 + d2 + 1 

c2 + d2 

suffers from the problem that if either component of the denominator c + id is larger than 
v7Jf3ema-../2 , the formula will overflow, even though the final result may be well within range. 
A better method of computing the quotients is to use Smith's formula 

if ldl < lei 
if ldl ~ lei-

(11) 

Applying Smith's formula to (2 • 10-98 + il0-98)/(4 • 10-98 + i(2 • 10-98)) gives the correct 
answer of 0.5 with gradual underflow. It yields 0.4 with flush to zero, an error of 100 ulps. 
It is typical for denormalized numbers to guarantee error bounds for arguments all the way 
down to 1.0 X 13em1a. 

3.3 Exceptions, Flags· and Trap Handlers 

When an exceptional condition like division by zero or overflow occurs in IEEE arithmetic, 
the default is to deliver a result and continue. Typical of the default results are NaN for 
0/0 and v-I, and oo for 1/0 and overflow. The preceding sections gave examples where 
proceeding from an exception with these default values was the reasonable thing· to do. 
When any exception occurs, a status flag is also set. Implementations of the IEEE standard 
are required to provide users with a way to read and write the status flags. The flags are 
"sticky;' in that once set, they remain set until explicitly cleared. Testing the flags is the 
only way to distinguish 1/0, which is a genuine infinity from an overflow. 

Sometimes continuing execution in the face of exception conditions is not appropriate. 
Section 3.2.2 gave the example of z/(z2 + 1). When z > .../Pf3em .. / 2 , the denominator is 
infinite, resulting in a final answer of 0, which is totally wrong. Although for this formula 
the problem can be solved by rewriting it as 1/(x + x-1 ), rewriting may not always solve 
the problem. The IEEE standard strongly recommends that implementations allow trap 
handlers to be installed. Then when an exception occurs, the trap haQdler is called instead 
of setting the flag. The value returned by the trap handler will be used· as the result of the 
operation. It is the responsibility of the trap ~~ndler to either clear or set the status flag; 
otherwise, the value of the flag is allowed to be undefined. 

The IEEE standard divides exceptions into 5 classes: overflow, underflow, division by 
zero, invalid operation and inexact. There is a separate status flag for ·each class of ex­
ception. The meaning of the first three exceptions is self-evident. Invalid operation covers 
the situations listed in Table 3. The default result of an operation that causes an invalid 
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Exception Result when traps disabled Argument to trap handler 
overflow ±00 or ±Zmax round(z2-0) 
underflow 0, ±2emlD or denormal round(z2°) 
divide by zero ±00 the operands 
invalid NaN the operands 
inexact round(z) round(z) 

Table 4: Exceptions in IEEE 754: z is the exact result of the operation, o = 192 for single 
precision, 1536 for double, and Zmax = 1.11 • • • 11 x 2emax 

exception is to return a NaN, but the converse is not true. When one of the operands to 
an operation is a NaN, the result is a NaN but an invalid exception is not raised unless the 
operation also satisfies one of the conditions in Table 3. 

The inexact exception is raised when the result of a floating-point operation is not exact. 
In the f3 = 101 p = 3 system, 3.5 ® 4.2 = 14.7 is exact, but 3.5 ® 4.3 = 15.0 is not exact 
(since 3.5. 4.3 = 15.05), and raises an inexact exception. Section 5.2 discusses an algorithm 
that uses the inexact exception. A summary of the behavior of all five exceptions is given 
in Table 4. 

There is an implementation issue connected with the fact that the inexact exception is 
raised so often. If floating-point hardware doesn't have flags of its own, but instead interrupts 
the operating system to signal a floating-point exception, the cost of inexact exceptions could 
be prohibitive. This cost can be avoided by having the status flags maintained by software. 
The first time an exception is raised, set the software flag for the appropriate class, and tell 
the floating-point hardware to mask off that class of exceptions. Then a.U further exceptions 
will run without interrupting the operating system. When a user resets that status flag, the 
hardware mask is re-enabled. 

3.3.1 Trap Handlers 

One obvious use for trap handlers is for backward compatibility. Old codes that expect to 
be aborted when exceptions occur can install a trap handler that aborts the process. This 
is especially useful for codes with a loop like do S until (x >= 100). Since comparing a 
NaN to a number with<, S, >,~'or= (but not;=) always returns false, this code will go 
into an infinite loop if x ever becomes a NaN. 

There is a more interesting use for trap handlers that comes up when computing products 
such as Il?::1 z, that could potentially overflow. One solution is to use logarithms, and 
compute exp(E log Zi) instead. The problems with this approach are that it is less accurate, 
and that it costs more than the simple expression n Xi, even if there is no overflow. There 
is another solution using trap handlers called over/underflow counting that avoids both of 
these problems (Sterbenz 1974]. 

The idea is simple. There is a global counter initialized to zero. Whenever the partial 
product Pk = n~=l z; overflows for some k, the trap handler increments the counter by one 
and returns the overflowed quantity with the exponent wrapped around. In IEEE 754 single 
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precision, emax = 127, so if Pl: = 1.45 x 2130 , it will overflow and cause the trap handler 
to be called, which will wrap the exponent back into range; changing Pl: to 1.45 x 2-62 

(see below). Similarly, if PJ: underflows, the counter would be decremented, and negative 
exponent would get wrapped around into a positive one. When all the multiplications are 
done, if the counter is zero then the final product is Pn. If the counter is positive, the product 
overflowed, if the counter is negative it underflowed. If none of the partial products are out 
of range, the trap handler is never called and the computation incurs no extra cost. Even 
if there are over/underflows, the calculation is more accurate than if it had been computed 
with logarithms, because each Pl: was computed from P1:·-1 using a full precision multiply. 
Barnett [1987] discusses a formula where the full accuracy of over/underflow counting turned 
up an error in earlier tables of that formula. 

IEEE 754 specifies that when an overflow or underflow trap handler is called, it is passed 
the wrapped-around result as an argument. The definition of wrapped-around for overflow is 
that the result is computed as if to infinite precision, then divided by 2°, and then rounded 
to the relevant precision. For underflow, the result is multiplied by 2°. The exponent 
o is 192 for single precision and 1536 for double precision. This is why 1.45 x 2130 was 
transformed into 1.45 x 2-62 in the example above. 

3.3.2 Rounding Modes 

In the IEEE standard, rounding occurs whenever an operation has a result that is not exact, 
since (with the exception of binary decimal conversion) each operation is computed exactly 
and then rounded. By default, rounding means round toward nearest. The standard requires 
that three other rounding modes be provided, namely round toward 0, round toward +oo, 
and round toward -oo. When used with the convert to integer operation, round toward 
-oo causes the convert to become the floor function, while round toward +oo is ceiling. 
The rounding mode affects overflow, because when round toward O or round toward -oo 
is in effect, an overflow of positive magnitude causes the default result to be the largest 
representable number, not +oo. Similarly, overflows of negative magnitude will produce the 
largest negative number when round toward +oo or round toward O is in effect. 

One application of rounding modes occurs in interval arithmetic ( another is mentioned 
in section 5-.2). When using interval arithmetic, the sum of two numbers :z: and y is an 
interval ~' z], where i. is x EB y rounded to~ard -oo, and z is :z: ·EB y rounded toward +oo. 
The exact result of the addition is contained within the interval ~, z]. Without rounding 
modes, interval arithmetic is usually implemented by computing! = (:z: EB y)(l - £) and 
z = (z EB y)(l + £), where£ is machine epsilon. This results in overestimates for the size of 
the intervals. Since the result of an operation in interval arithmetic is an interval, in general 
the input to an operation will also be an interval. If two intervals ~, z], and (l, y] are added, 
the result is Lt, z], where&. is~ EB y with the rounding mode set to round toward -oo, and 
z is z EB z with the rounding mode set to round toward +oo. 

When a floating-point calculation is performed using interval arithmetic, the final answer 
is an interval ihat contains the exact result of the calculation. This is not very helpful if 
the interval turns out to be large (as it often does), since the correct answer could be 
anywhere in that interval. Interval arithmetic makes more sense when used in conjunction 
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with a multiple precision floating-point package. The calculation is first performed with 
some precision p. If interval arithmetic suggests that the final ·answer may be inaccurate, 
the computation is redone with higher and higher precisions until the final interval is a 
reasonable size. 

3.3.3 Flags 

The IEEE.standard has a number of flags and modes. As discussed above, there is one status 
flag for each of the five exceptions: underflow, overflow, division by zero, invalid operation 
and inexact. There are four rounding modes: round toward nearest, round toward +oo, 
round toward 0, and round toward -oo. It is strongly recommended that there be an 
enable mode bit for each of the five exceptions. This section gives some simple examples 
of how these modes and flags can be put to good use. A more sophfsticated example is 
discussed in section 5.2. _ .. 

Consider writing a subroutine to compute x", where n is an integer. When n > 0, a 
simple routine like 

PositivePower(x,n) { 

} 

while (n is even) { 
x = x•x; 
n = n/2; 

} 

u = x; 
while (true) { 

n = n/2; 
if (n==O) return u; 
x = x•x; 
if (n is odd) u = u•x; 

} 

will compute z". 
If n < 0, then the most accurate way to compute :c" is not to call PositivePower(1/x, 

-n) but rather 1/PositivePower(x, -n), because the first expression multiplies n quanti­
ties each of which have a rounding error from the division (i.e. 1/z). In the second expression 
these are exact (i.e. z), and the final division commits just one additional rounding error. 
Unfortunately, these is a slight snag in this strategy. If PositivePower(x, -n) underflows, 
then either the underflow trap handler will be called, or else the underflow status flag will • 
be set. This is incorrect, because if z-n underflows, then z" will either overflow or be in 
range.13 But since the IEEE standard gives the user access to all the flags, the subroutine 
can easily correct for this. It simply turns oft' the overflow and underflow trap enable bits 
and saves the overflow and underflow status bits. It then computes 1/PositivePower(x, 

131t can be in range because if x < 1, n < 0 and x-n is just a tiny bit smaller than the underflow threshold 
2emln, then x" =:: 2-emia < 2emax, and so may not overflow, since in all IEEE precisions, -emin < emax• 
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-n). If neither the overflow nor underflow status bit is set, it restores them together with 
the trap enable bits. If one of the status bits is set, it restores the flags and redoes the 
calculation using PositivePover(1/x, -n), which causes the correct exceptions to occur. 

Another exa.J}lple of the use of flags occurs when computing arccos via the formula 
arccos z = 2 arctan ..Jfii. If arctan( oo) evalutes to 71' /2, then arccos( -1) will correctly 

evalute to 2 arctan(oo) = 71', because of infinity arithmetic. However, there is a small snag, 
because the computation of {1 - z)/(1 + z) will cause the divide by zero exception flag 
to be set, even though arccos( -1) is not exceptional. The solution to this problem is 
straightforward. Simply save the value of the divide by zero flag before computing arccos, 
and then restore its old value after the computation. 

4 Systems Aspects 

The design of almost every aspect of a computer system requires knowledge about floating­
point. Computer architectures usually have floating-point instructions, compilers must gen­
erate those floating-point instructions, and the operating system must decide what to do 
when exception conditions are raised for those floating-point instructions. Computer system 
designers rarely get guidance from numerical analysis texts, which are typically aimed at 
users and writers of software, not at computer designers. 

As an example of how plausible design decisions can lead to unexpected behavior, con­
sider the following BASIC program. 

q = 3.0/7.0 
if q = 3.0/7.0 then print "Equal": 

else print "!lot Equa1" 

When compiled and run using Borland 's Turbo Basic on an IBM PC, the program prints 
lot Equal! This example will be analyzed in section 4.2.1. 

Incidentally, some people think that the solution to such anomalies is to never compare 
floating-point numbers for equality, but instead consider them equal if they are within some 
error bound E. This is hardly a cure-all, because it raises as many questions as it answers. 
What should the value of Ebe? If z < 0 and y > 0 are within E, should they really be 
considered to be equal, even though they have different signs? Furthermore, the relation 
defined by this rule, a - b <=> la - bl< E, is not an equivalence relation because a - band 
b - c does not imply that a - c. 

4.1 lnstruction Sets . 
It is quite common for an algorithm to require a short burst of higher precision in order to 
produce accurate results. One example occurs in the quadratic formula (-b±v'b2 - 4ac)/2a. 
As discussed in section 5.1 page 43, when 62 ~ 4ac, rounding error can contaminate up 
to half the. digits in the roots computed with the quadratic formula. By· performing the 
subcalculation of b2 - 4ac in double precision, half the double precision bits of the root are 
lost, which means that all the single precision bits are preserved. • 
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The computation of 62 - 4ac in double precision when each of the quantities a, b, and 
c are in single precision is easy if there is a multiplication instruction that takes two single 
precision numbers and produces a double precision result. In order to produce the exactly 
rounded product of two p-digit numbers, a multiplier needs to generate the entire 2p bits 
of product, although it may throw bits away as it proceeds. Thus, hardware to compute a 
double precision product from single precision operands will normally be only a little more 
expensive than a single precision multiplier, and much cheaper than a double precision 
multiplier. Despite this, modern instruction sets tend to provide only instructions that 
produce a result of the same precision as the operands.14 

If an instruction that combines two single precision operands to produce a double preci­
sion product was only useful for the quadratic formula, it wouldn't be worth adding to an 
instruction set. However, this instruction has many other uses. Consider the problem of 
solving a system of linear equations, 

auz1 + a12z2 + · · · + a1nZn = 61 

a21z1 + a22z2 + · · · + a2nZn = 62 

an1Z1 + an2Z2 + · · · + annZn = 6n, 

which can be written in matrix form as Az = b, where 

( 

au a12 a1n 

-) 
a21 a22 42n 

A= . 

4n1 an2 ann 

Suppose that a solution ~:CI) is computed by some method, perhaps Gaussian elimination. 
There is a simple way to improve the accuracy of the result called iterative improvement. 
First compute 

(12) 

and then solve the system 
Ay=e. (13) 

Note that if z(l) is an exact solution, then e is the zero vector, as is y. In general, the 
computation of e and y will incur rounding error, so Ay ~ e ~ Az(l) - 6 = A(z(l) - z), 

where z is the (unknown) true solution. Then y ~ z(l) - z, so an improved estimate for the 
solution is 

• x< 2> =. z< 1> - y. (14) 

The three steps (12), (13), and (14) can be repeated, replacing z<1> with .x<2>, and z(2) 

with z(3). This argument that z(•+l) is more accurate than z(•) is only informal. For more 
information, see [Golub and Van Loan 1989]. 

14 This is probably because designers like "orthogonal" instruction sets, where the precisions of a floating­
point instruction are independent of the actual operation. Making a special case for multiplication destroys 
this orthogonality. 
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When performing iterative improvement, ( is a vector whose elements are the difference 
• of nearby inexact floating-point numbers, and so can suffer from catastrophic cancellation. 

Thus iterative improvement is not very useful unless { = Az(l) - bis computed in double 
precision. Once again, this is a case of computing the product of two single precision numbers 
(A and xC1>), where the full double precision result is needed. 

To summarize, instructions that multiply two floating-point numbers and return a prod­
uct with twice the precision of the operands make a useful addition to a floating-point 
instruction set. Some of the implications of this for compilers are d4;cussed in the next 
section. 

4.2 Languages and Compilers 

The interaction of compilers and floating-point is discussed in Farnum [1988], and much of 
the discussion in this section is taken from that paper. 

4.2.1 Ambiguity 

Ideally, a language definition should define the semantics of the language precisely enough 
to prove statements about programs. While this is usually true for the integer part of a 
language, language definitions often have a large grey area when it comes to floating-point. 
Perhaps this is due to the fact that many language designers believe that nothing can be 
proven about floating-point, since it entails rounding error. If so, the previous sections have 
demonstrated the fallacy in this reasoning. This section discusses some common grey areas 
in language definitions, including suggestions about how to deal with them. 

Remarkably enough, some languages don't clearly specify that if x is a floating-point 
variable (with say a value of 3.0/10.0), then every occurence of (say) 10.0•x must have 
the same value. For example Ada™, which is based on Brown's model, seems to imply 
that floating-point arithmetic only has to satisfy Brown's axioms, and thus expressions can 
have one of many possible values. Thinking about floating-point in this fuzzy way stands 
in sharp contrast to the IEEE model, where the result of each floating-point operation is 
precisely defined. In the IEEE model, you can prove that (3.0/10.0)•3.0 evalutes to 3 
(Theorem 7). In Brown's model, you cannot. 

Another ambiguity in most language definitions concerns what happens on overflow, 
underflow and other exceptions. The IEEE standard precisely specifies the behavior of 
exceptions, and so languages that use the standard as a model can avoid any ambiguity on 
this point. • 

Another grey area concerns the interpretation of parentheses. Due to roundoff errors, 
the associative laws of algebra do not necessarily hold for floating-point numbers. For 
example, the expression (:x:+y)+z has a totally different answer than x+(y+z) when x = 1030 , 

y = -1030 and z = 1 (it is 1 in the former case, 0.in the latter). The iJnportance of preserving 
parentheses cannot be overemphasized. The algorithms presented in theorems 3, 4 and 6 
all depend on it. For example, in Theorem 6, the formula zh = mz - (mz - z) would 
reduce to Zh = x if it weren't for parentheses, thereby destroying the entire algorithm. A 
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language definition that does not require parentheses to be honored is useless for floating-
point calculations. • 

Subexpression evaluation is imprecisely de~ed in many languages. Suppose that ds is 
double precision, but x and y are single precision. Tli, n in the expression ds + x•y is the 
product performed in single or double precision? Another example: in x + m/n where m 
and n are integers, is the division an integer operation or a floating-point one? There are 
two ways to deal with this problem, neither of which is completely satisfactory. The first 
is to require that all variables in an expression have the same type. This is the simplest 
solution, but has some drawbacks. First of all, languages like Pascal that have subrange 
types allow mixing subrange variables with integer variables, so it is somewhat bizarre to 
prohibit mixing single and double precision variables. Another problem concerns constants. 
In the expression O. 1•x, most languages interpret 0.1 to be a single precision constant. Now 
suppose the programmer decides to change the declaration of all the floating-point variables 
from single to double precision. If 0.1 is still treated as a single precision constant, then 
there will be a compile time error. The programmer will have to hunt down and change 
every floating-point constant. 

The second approach is to allow mixed expressions, in which case rules for subexpression 
evalution must be provided. There are a number of guiding examples. The original defi­
nition of C required that every floating-point expression be computed in double precision 
[Kernighan and Ritchie 1978). This leads to anomalies like the example at the beginning of 
this section. The expression 3. 0/7 . 0 is computed in double precision, but if q is a single­
precision variable, the quotient is rounded to single precision for storage. Since 3/7 is a 
repeating binary fraction, its computed value in double precision is different from its stored 
value in single precision. Thus the comparison q = 3/7 fails. This suggests that computing 
every expression in the highest precision available is not a good rule. 

Another guiding example is inner products. If the inner product has thousands of terms, 
the rounding error in the sum can become substantial. One way to reduce this rounding 
error is to accumulate the sums in double precision ( this will be discussed in more detail 
in section 4.2.3). If d is a double precision variable, and x□ and y □ are single precision 
arrays, then the inner product loop will look like"d = d + x[i] •y[i]. If the multiplication 
is done in single precision, than much of the advantage of double precision accumulation is 
lost, because the product is truncated to single precision just before being added to a double 
precision variable. 

A rule that covers both of the previous two examples is to compute an expression in the 
highest precision of any variable that occurs in that expression. ·Then q = 3.0/7 .0 will be 
computed entirely in single precision 15 and will have the boolean value true, whereas d = 
d + x [i] •y [i] will be computed in double precision, gaining the full advantage of double 
precision accumulation. However, this rule is too simplistic to cover all cases cleanly. If dx 
and dy are double precision variables, the expression y = x + single(dx-dy) contains a 
double precision variable, but performing the sum in double precision would be pointless, 
because both operands are singl~ precision, as is the. re~ult. 

15Tlus assumes the common convention that 3.0 is a single-precision constant, while 3.0D0 is a double 
precision constant 
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A more sophisticated subexpression evaluation rule is as follows. F4rst assign each op­
eration a tentative precision, which is the maximum of the precisions of its operands. This 
assignment has to be carried out from the ieaves to the root of the expression tree. Then 
perform a second pass from the root to the leaves. In this pass, assign to each operation the 
maximum of the tentative precision and the precision expected by the parent. In the case 
of q = 3. 0/7. O, every leaf is single precision, so all the operations are done in single preci­
sion. In the case of d = d + x [i] •y [i] , the tentative precision of the multiply operation 
is single precision, but in the second pass it gets promoted to double precision, because its 
parent operation expects a double precision operand. And in y = x + single(dx-dy), the 
addition is done in single precision. Farnum [1988] presents evidence that this algorithm in 
not difficult to implement. 

The disadvantage of this rule is that the evaluation of a subexpression depends on the 
expression in which it is embedded. This can have some annoying consequences. For exam­
ple, suppose you are debugging a program and want to know the value of a subexpression. 
You can't simply type the subexpression to the debugger and ask it to be evaluated, because 
the value of the subexpression in the program depends on the expression it is embedded 
in. A final comment on subexpressions: since converting decimal constants to binary is an 
operation, the evaluation rule also affects the interpretation of decimal constants. This is 
especially important for constants like 0.1 which are not exactly representable in binary. 

Another potential grey area occurs when a language includes exponentiation as one of 
its built-in operations. Unlike the basic arithmetic operations, the value of exponentiation 
is not always obvious (Kahan and Coonen 1982). If•• is the exponentiation operator, then 
( -3) ••3 certainly has the value -27. However, ( -3. 0) **3. O is problematical. If the ** 
operator checks for integer powers, it would compute (-3.0)••3.0 as -3.03 = -27. On the 
other hand, if the formula z11 = e11 logz is used to define•• for real arguments, then depending 
on the log function, the result could be a NaN (using the natural definition of log(z) = NaN 
when z < 0). If the FORTRAN CLOG function is used however, then the answer will be 
-27, because the ANSI FORTRAN standard defines CLOG(-3.0) to be irlog3 [ANSI 1978]. 
The programming language Ada™ avoids this problem by only defining exponentiation for 
integer powers, while ANSI FORTRAN prohibits raising a negative number to a real power. 

In fact, the FORTRAN standard says that 

Any arithmetic operation whose result is not mathematically defined is prohib­
ited ... 

Unfortunately, with the introduction of ±oo by the IEEE standard, the meaning of not 
mathematically defined is no longer totally clear cut. One definition might be to use the 
method of section 3.2.2. For example, to determine the value of a", consider non-const"'°t 
analytic functions f and g with the property that /(z) ~ a and g(z) ~ b as z ~ 0. 
If /(z)D(z) always approaches the same limit, ·then this should be the value of a". This 
definition would set 200 = oo, which seems quite reasonable. In the case of 1.000

, when 
f(z) = 1 an<;l g(x) = 1/z the limit approaches 1, but when f(x) = 1- z and g(z) = 1/z the 
limit is e. So 1.000 should be a NaN. In the caseoro0 ,·1(z)D(Z) = eD(z)log/(z). Since f and g 
are analytic and take on the value Oat 0, /(z) = a1x1+a2x2+• ••and g(x) = b1x1+b2x2+ .... 
Thus limz-o g(x) log /(x) = limz-o z log(x(a1 + a2x + • • •)) = limz-o x log(a1x) = 0. So 
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/(z)D(:) --t- e0 = 1 for all / and g, which means that o0 = 1.16 Using this definition would 
unambiguously define the exponential function for all arguments, and in particular would 
define (-3.0)••3.0 to be -27. 

4.2.2 The IEEE Standard 

Section 3 discussed many of the features of the IEEE standard. However, the IEEE stan­
dard says nothing about how these features are to be accessed from a programming lan­
guage. Thus there is usually a mismatch between floating-point hardware that supports 
the standard and programming languages like C, Pascal or FORTRAN. Some of the IEEE 
capabilities can be accessed through a library of subroutine calls. For example the IEEE 
standard requires that square root be exactly rounded, and the square root function is often 
implemented directly in hardware. This functionality is easily accessed via a library square 
root routine. However, other aspects of the standard are not so easily implemented as sub­
routines. For example, most computer languages specify at most two floating-point types, 
while the IEEE standard has four different precisions ( although the recommended config­
urations are single plus single-extended or single, double, and double-extended). Infinity 
provides another example. Constants to represent ±oo could be supplied by a subroutine. 
But that might make them unusable in places that require constant expressions, such as the 
initializer of a constant variable. 

A more subtle situation is manipulating the state associated with a computation, where 
the state consists of the rounding modes, trap enable bits, trap handlers and exception flags. 
One approach is to provide subroutines for reading and writing the state. In addition, a 
single call that can atomically set a new value and return the old value is often useful. As 
the examples in section 3.3.3 showed, a very common pattern of modifying IEEE state is 
to change it only within the scope of a block or subroutine. Thus the burden is on the 
programmer to find each exit from the block, and make sure the state is restored. Language 
support for setting the state precisely in the scope of a block would be very useful here. 
Modula-3 is one language that implements this idea for trap handlers [Cardelli et al. 1989]. 

There are a number of minor points that need to be considered when implementing the 
IEEE standard in a language. Since z - z = +0 for all z,17 (+0) - (+0) = +o. However, 
-( +0) = -0, thus -z should not be defined as 0 - z. The introduction of NaNs can be 
confusing, because a NaN is never equal to any other number (including another NaN), so 
:z: = :z: is no longer always true. In fact, the expression z :f; z is the simplest way to test 
for a NaN if the IEEE recommended function Isnan is not provided. Furthermore, NaNs 
are unordered with respect to all other numbers, so z :5 y cannot be defined as not z > y. 
Since the introduction of NaNs causes floating-point numbers to become partially ordered, 
a compare function that returns one of<, =, >, or unordered can make it easier for the 
programmer to deal with comp·arisons. 

Although the JEEE standard defines t~e basic floating-point operations to return a 
.•· 

16The conclusion that o0 = 1 depends on the restriction that / be nonconstant. IC this restriction is 
removed, then letting / be the identically O function gives O as a possible value for lims-o J(:r:)g(s), and so 
o0 would have to be defined to be a NaN. 

17 Unless the rounding mode is round toward -00, in which case :r: - :r: = -0. 
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NaN if any operand is a NaN, this might not always be the best definition for compound 
operations. For example when computing the appropriate scale factor to use in plotting a 
graph, the maximum of a set of values must be computed. In this case it makes sense for 
the max operation to simply ignore N aNs. 

Finally, rounding can be a problem. The IEEE standard defines rounding very precisely, 
and it depends on the current value of the rounding modes. This sometimes conflicts with 
the definition of implicit rounding in type conversions or the explicit round function in 
languages. This means that programs which wish to use IEEE rounding can't use the 
natural language primitives, and conversely the language primitives will be inefficent to 
implement on the ever increasing number of IEEE machines. 

4.2.3 Optimizers 

Compiler texts tend to ignore the subject of floating-point. For example Aho et al. [1986] 
mentions replacing x/2.0 with x•0.5, leading the reader to assume that x/10.0 should 
be replaced by 0 .1•x. However, these two expressions do not have the same semantics 
on a binary machine, because 0.1 cannot be represented exactly in binary. This textbook 
also suggests replacing x•y - x•z by x•(y-z), even though we ha:ve seen that these two 
expressions can have quite different values when y ~ z. Although it does qualify the 
statement that any algebraic identity can be used when optimizing code by noting that 
optimizers should not violate the language definition, it leaves the impression that floating­
point semantics are not very important. Whether or not the language standard specifies that 
parenthesis must be honored, (x+y)+z can have a totally different answer than x+(y+z), as 
discussed above. 

There is a problem closely related to preserving parentheses that is illustrated by the 
following code 

eps = 1; 
do eps = O.S•eps; while (eps + 1 > 1); 

This is designed to give an estimate for machine epsilon. If an optimizing compiler notices 
that eps + 1 > 1 ~ eps > 0, the program will be changed completely. Instead of computing 
the smallest number x such that I EB xis still greater than x (x ~ E ~ 13-P), it will compute 
the largest number z for which z/2 is rounded to O (z ~ 13em1r1 ). Avoiding this kind of 
"optimization" is so important that it is worth presenting one more very useful algorithm 
that is totally ruined by it. 

Many problems, such as numerical integration and the numerical solution of differential 
equations involve computing sums with many terms. Because each addition can potentially 
introduce an error as large as ½ ulp, a sum involving thousands of terms can have quite 
a bit of rounding error. A simple way to correct for this is to store the partial summand 
in a _doµble precision variable and to perform each addition using double precision. If the 
calculation is being done in single precision, performing the sum in double precision is easy 
on most computer systems. However, if the calculation is already being done in double 
precision, doubling the precision is not so simple. One method that is sometimes advocated 
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is to sort the numbers and add them from smallest to largest. However, there is a much 
more efficient method which dramatically improves the accuracy of sums, namely 

Theorem 8 (Kahan Summation Formula) Suppose that Lj:i z; is computed using the 
following algorithm 

S = I[1J; 
C = O; 
for j = 2 to I { 

Y = X[j] - C; 
T = S + Y; 

} 

C = (T - S) - Y; 
S = T; 

Then the computed sum Sis equal to Ez;(l + 6;) + O(Ne2) E lz;I, where 16;1 ~ 2e. 

Using the naive formula Ez;, the computed sum is equal to Ez;(l + 6;) where 16;1 < 
(n-j)e. Comparing this with the error in the Kahan summation formula shows a dramatic 
improvement. Each summand is perturbed by only 2e, instead of perturbations as large as 
ne in the simple formula. Details are in section 5.3·. 

An optimizer that believed floating-point arithmetic obeyed the laws of algebra would 
conclude that C = [T- SJ - Y =· [(S + Y) - S] - Y = 0, rendering the algorithm completely 
useless. These examples can be summarized by saying that optimizers should be extremely 
cautious when applying algebraic identities that hold for the mathematical real numbers to 
expressions involving floating-point variables. 

Another way that optimizers can change the semantics of floating-point code involves 
constants. In the expression 1. 0E-40•x, there is an implicit decimal to binary conversion 
operation that converts the decimal number to a binary constant. Because this constant 
cannot be represented exactly in binary, the inexact exception should be raised. In addition, 
the underflow flag should to be set if the expression is evaluated in single precision. Since 
the constant is inexact, its exact conversion to binary depends on the current value of the 
IEEE rounding modes. Thus an optimizer t~at converts 1. 0E-40 to binary at compile time 
would be changing the semantics of the program. However, constants like 27.5 which are 
exactly representable in the smallest available precision can be safely converted at compile 
time, since they are always exact, cannot raise any exception, and are unaffected by the 
rounding modes. Constants that are intended to be converted at compile time should be 
done with a constant declaration, such as const pi = 3. 14159265. 

Common subexpression elimination is another ·example of an optimization that can 
change floating-point semantics, as illustrated by the following code 

C = A•B; 
RndHode = Up 
D = A•B; 

Although A•B may appear to be a common subexpression, it is not because the rounding 
mode is different at the two evaluation sites. Three final examples: x = x cannot be replaced 
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by the boolean constant true, because it fails when z is a NaN; -z = 0-z fails.for z = +0; 
and z < y is not the opposite of z 2:: y, because NaNs are neither greater than nor less than 
ordinary floating-point numbers. 

Despite these examples, there are useful optimizations that can be done on floating-point 
code. First of all, there are algebraic identities that are valid for floating-point numbers. 
Some examples in IEEE arithmetic are z + y = y + :c, 2 x z = z + z, 1 x z = z, and 
0.5 x z = z/2. However, even these simple identities can fail on a few machines such as CDC 
and Cray supercomputers. Instruction scheduling and inline procedure substitution are two 
other potentially WJeful optimizations.18 AB a final example, consider the expression clx = 
x•y, where x and y are single precision variables, and clx is double precision. On machines 
that have an instruction that multiplies two single precision numbers to produce a double 
precision number, clx = x•y can get mapped to that .instruction, rather than compiled to 
a series of instructions that convert the operands to double and then perform a double to 
double precision multiply. 

Some compiler writers view restrictions which prohibit converting (:c+y)+z to :c+(y+z) 
as irrele.vant, of interest only to programmers who use unportable tricks. Perhaps they have 

. in mind that floating-point numbers model real numbers and should obey the same laws 
that real numbers do. The problem with real number semantics is that they are extremely 
expensive to implement. Every time two n bit numbers are multiplied,- the product will 
have 2n bits. Every time two n bit numbers with widely spaced exponents are added, the 
sum will have 2n bits. An algorithm that involves thousands of operations (such as solving 
a linear system) will soon be operating on huge numbers and be hopelessly slow. The 
implementation of library functions such as sin and cos is even more difficult, because the 
value of these transcendental functions aren't rational numbers. Exact integer arithmetic is 
often provided by lisp systems and is handy for some problems. However exact· floating-point 
arithmetic is rarely useful. 

The fact is that there are useful algorithms (like the Kahan summation formula) which 
exploit the fact that (z + y) + z ;:ft :c + (y + z), and work whenever the bound 

aEBb=(a+b)(l+cS) 

holds (as well as similar bounds for -, x and /). Since these bounds hold for almost 
all commercial hardware, it would be foolish for numerical programmers to ignore such 
algorithms, and it would be irresponsible for compiler writers to destroy these algorithms 
by pretending _that floating-point variables have real number semantics. 

4.3 Exception H~ndling 

The topics discussed up to now have primarily concerned systems implications of accuracy 
and precision. Trap handlers also raise some interesting systems issues. The IEEE standard 
strongly recommends that users be able to specify a trap handler for each of the five classes 
of exceptions, and section 3.3.1 gave some applications of user defined trap handlers. In the 

18The VMS math libraries on the VAX™ use a weak form of inline procedW"e substitution, in that they 
use the inexpensive jwnp to subroutine call rather than the slower CALLS and CALLO instructions. 
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case ofinvalid operation and division by zero exceptions, the handler should be provided with 
the operands, otherw.ise, with the exactly rounded result. Depending on the programming 
language being used, the trap handler might be able to access other variables in the program 
as well. For all exceptions, the trap handler must be able to identify what operation was 
being performed and the precision of its destination. 

The IEEE standard assumes that operations are conceptually serial and that when an 
interrupt occurs, it is possible to identify the operation and its operands. On machines 
which have pipelining or multiple arithmetic units, when an exception occurs, it may not be 
enough to simply have the trap handler examine the program counter. Hardware support 
for identifying exactly which operation trapped may be necessary. 

Another problem is illustrated by the following program fragment. 

X = y•z; 
z = x•w; 
a= b + c; 
d = a/x; 

Suppose the second multiply raises an exception, and the trap handler. wants to use the 
value of a. On hardware that can do an add and multiply in parallel, an optimizer would 
probably move the addition operation ahead of the second multiply, so that the add can 
proceed in parallel with the first multiply. Thus when the second multiply traps, a = b + c 
has already been executed, potentially changing the result of a. It would not be reasonable 
for a compiler to avoid this kind of optimization, because every floating-point operation 
can potentially trap, and thus virtually all instruction scheduling optimizations would be 
eliminated. This problem can be avoided by prohibiting trap handlers from accessing any 
variables of the program directly. Instead, the handler can be given the operands or result 
as an argument. 

But there are still problems. In the fragment 

X = y•z; 
z =a+ b; 

the two instructions might well be executed in parallel. If the multiply traps, its argument 
z could already have been overwritten by the addition, especially since addition is usually 
faster than multiply. Computer systems that support the IEEE standard must provide 

• some way to save the value of z, either in hardware or by having the compiler avoid such a 
situation in the first place. 

W. Kahan has proposed using presubstitution instead of trap handlers to avoid these 
problems. In this method, the user specifies an exception and the value he wants to be 
used as the result when the exception occurs. As an example, suppose that in code for 
computing sin x/x, the user decides that x = 0 is so rare that it would improve performance 
to avoid a test for z = 0, and instead handle this case when a 0/0 trap occurs. Using IEEE 
trap handlers, the user would write a handler that returns a value of 1 and install it before 
computing sin x/x. Using presubstitution, the user would specify that when an invalid 
operation occurs, the value 1 should be used. Kahan calls this presubstitution, because the 
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value to be used must be specified before the exception occurs. When using trap handlers, 
the value to be returned can be computed when the trap occurs. 

The advantage of presubstitution is that it has a straightforward hardware implemen­
tation. As soon as the type of exception has been determined, it can be used to index a 
table which contains the desired result of the operation. Although presubstitution has some 
attractive attributes, the widespread acceptance of the IEEE standard makes it unlikely to 
be widely implemented by hardware manufacturers. 

5 The Details 

A number of claims have been made in this paper concerning properties of floating-point 
arithmetic. We now proceed to show that floating-point is not black magic, but rather is a 
straightforward subject whose claims can be verified mathematically. • 

This section is divided into three parts. The first part presents an introduction to 
error analysis, and provides the details for Section 2. The second part explores binary to 
decimal conversion, filling in some gaps from Section 3. The third part discusses the Kahan 
summation formula, which was used as an example in Section 4. 

5.1 Rounding Error 

In the discussion of rounding error, it was stated that a single guard digit is enough to 
guarantee that addition and subtraction will always be accurate (Theorem 2). We now 
proceed to verify this fact. Theorem 2 has two parts, one for subtraction and one for 
addition. The part for subtraction is 

Theorem 9 If z and y are positive floating-point numbers in a format with parameters f3 
and p, and if subtraction is done with p + 1 digits (i.e. one guard digit}, then the relative 
rounding error in the result is less than ( ~ + 1),8-P = (1 + j )i =:; 2£. 

Proof: Interchange x and y if necessary so that x > y. It is also harmless to scale x and 
y so that z is represented by zo .z1 • • • x,_ 1 x p 0 . If y is represented as y0 .y1 • • • Yp-l, then 
the difference is exact. If y is represented as O.y1 • • • Yp, then the guard digit ensures that the 
computed difference will be the exact difference rounded to a floating-point number, so the 
rounding error is at most £. In general, let y = 0.0 • • • Oyk+1 • •. Yk+p, and jj bey truncated 
to p + 1 digits. Then 

y - fj < (,8 - 1)(/3-p-1 + p-p-2 + ... + 13-p-k). (15} 

4From the definition of guard digit, the computed value of x - y is z - jj rounded to be a 
floating-point number, that is, (x - y) + 6, where the rounding error 6 satisfies 

161 :5 (/3 /2)(3-P. (16} 

The exact difference is x - y, so the error is (x - y) - (z - y + 6) = y- y + 6. There are 
three cases. If x - y ~ 1 then the relative error is bounded by 

I y- f + 61 :s p-P [(/J-1)(/J-1 + .. : + p-k) + fJ/2] < p-P(i + /J/2). (17) 
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Secondly, if x-y < 1, then 6 = 0. Since the smallest that x-y can be is 1.0-0. nn > 
(/3 - 1)(/3-1 + • • • + p-k) (where g = /3 - 1), in this case the relative error is bounded by 

y- fj + 6 < (/3 - l)f3-P(f3-l + · · · + 13-1:) = p-P 
(/3 _ l)(/3-1 + ... + p-k) (/3 _ l)(fj-1 + ... + p-li:) (18) 

The final case is when z - y < 1 but z - y ~ 1. The only way this could happen is if 
x - fi = 1, in which case 6 = 0. But if 6 = 0, then (18) applies, so that again the relative 
error is bounded by p-P < p-P(l + /3/2). I 

When /3 = 2, the bound is exactly 2£, and this bound is achieved for z = 1 + 22-P and 
y = 21-, - 21- 2, in the limit as p ~ oo. When adding numbers of the same sign, a guard 
digit is not necessary to achieve good accuracy, as the following result shows. 

Theorem 10 If x ~ 0 and y ~ 0, then the relative en-or in computing :c + y is at most 2e, 
even if no guard digits are used. 

Proof: The algorithm for addition with k guard digits is similar to that for subtraction. 
If z ~ y, and shift y right until the radix points of z and y are aligned. Discard any digits 
shifted past the p + k position. Compute the sum of these two p + k digit numbers exactly. 
Then round to p digits. _ .. 

We will verify the theorem when no guard digits are used; the general case is similar. 
There is no loss of generality in assuming that z ~ y ~ 0, and that z is scaled to be of 
the form d.d • • • d x p0. First assume there is no carry out. Then the digits shifted off the 
end of y have a value less than p-p+l, and the sum is at least 1, so the relative error is 
less than 13-p+l /1 = 2£. If there is a carry out, then the error from shifting must be added 
to the rounding error of ½f3-P+2 . The sum is at least /J, so the relative error is less than 
(fj-P+l + ½f3-P+2)//J = (1 + /J/2){3-P :$ 2e. I 

It is obvious that combining these two theorems gives Theorem 2. Theorem 2 gives the 
relative error for performing one operation. Comparing the rounding error of z2 - y2 and 
(z + y)(x -y) requires knowing the relative error of multiple operations. The relative error 
of x e y is 61 = [(z 9 y) - (x - y)] /(x - y), which satisfies J61 I 5 2e. Or to write it another 
way 

(19) 

Similarly 
(20) 

Assuming that multiplication is performed by computing the exact product and then round­
ing, the relative error is at most ½ ulp, so 

(21) 

for any floating-point numbers u and v. Putting these three equations together (letting 
u = :c e y and V = X EB y) gives 

(22) 
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So the relative error incurred when computing (z - y)(z + y) is 

• • 2 2 

<., 9 y) ® f" 
2
E& 11> •) (., - 11 ) = (1 + 61)(1 + 62)(1 + 6s) - 1. 

z -y 
(23) 

This relative error is equal to cS1 + cS2 + cSa + 61 cS2 + cS1 cSa + cS2cSs, which is bounded by Se+ 8e2. 
In other words, the maximum relative error is about 5 rounding errors (since f is a small 
number, e2 is almost negligible). 

A similar analysis of ( z® z) e (y® y) cannot result in a small value for the relative error, 
because when two nearby values of z and y are plugged into z 2 - y2 , the relative error will 
usually be quite large. Another way to see· this is to try and duplicate the_ analysis that 
worked on .(z e.y) ® (z E9 y), yielding 

(z ® z) e (y ® y) = [z2(1 + 61) - y2(1 + 62)] (1 + 63) 

= ((z2 - y2)(1 + 61) + (61 - 62)Y2)(1 + 63). 

When z and y are nearby; the error term (61 - 62)y2 can be as large as the result z 2 - y2• 

These computations formally justify our claim that (z - y)(z + y) is more accurate than 
z2 _ 112. 

We next turn to an analysis of the formula for the area of a triangle. In order to 
estimate the maximum error that can occur when computing with (7), the following fact 
will be needed. 

Theorem 11· If subtraction is performed with a guard digit, and y/2 :5 z :5 2y, then z - y 
is computed exactly. 

Proof: Note that if z and y have the same exponent, then certainly x e y is exact. 
Otherwise, from the condition of the theorem, the exponents can differ by at most 1. Scale 
and interchange x and y if necessary so that O :5 y :5 z, and z is represented as z0.z1 • • • Zp-l 

and y as O.y1 • • • Yp. Then the algorithm for computing z e y will compute z - y exactly and 
round to a floating-point number, but if the difference is of the form 0.d1 • • • dp, the difference 
will already be p digits long, and no rounding is necessary. Since z $ 2y, x - y $ y, and 
since y is of the form 0.d1 • • • dp, so is z - y. I 

When /3 > 2, the hypothesis of Theorem 11 cannot be replaced by y//3 $ z :5 {3y; the 
stronger condition y/2 $ z :5 2y is still necessary. The analysis of the error in (z-y)(z+y) 
in the previous section used the fact that the relative error in the basic operations of addition 
and subtraction is small (namely equations (19) and (20)). This is the most common kind of 
error analysis. However, analyzing formula (7) requires something more, namely Theorem 
11, as the following proof will show. 

Theorem 12 If subtraction uses a guard digit, and if a, b and c are the sides of a triangle, 
then the relative en-or in computing (a+ (b + c))(c - (a - b))(c + (a - b))(a + (b - c)) is at 
most 16e, provided E < .005. 
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• Proof: Let's examine the factors one by one. From Theorem 10, be c = (b + c)(l + 61), 
where 61 is the relative error, and l61I S 2£. Then the value of the first factor is (aEB(bEBc)) = 

·(a+ (b E0 c))(l + 62) = (a+ (b + c)(l + 61))(1 + 62), and thus 

(a+ b + c)(l - 2£)2 S (a+ (b + c)(l - 2£)](1 - 2,) :5 a EB (b EB c) 
S (a+ (b + c)(l + 2e)](l + 2e) S (a+ b + c)(l + 2e)2 • 

This means that there is an 111 so that 

(24) 

The next term involves the potentially catastrophic subtraction of c and a e b, because a e b 
may have rounding error. Because a, b and c are the sides .of a triangle, a :5 b + c, and 
·combining this with the ordering c :5 b :5 a gives a S b + c S 26 S 2a. So a - b satisfies the 
conditions of Theorem 11. This means that a - b = a e bis exact, and hence c e (a - b) is 
a harmless subtraction which can be estimated from Theorem 9 to be . 

(c e (a e b)) = (c - (a - ~))(1 + '12), 11121 :5 2£. (25) 

The third ·term is the sum of two exact positive quantities, so 

(c E0 (a e b)) = (c + (a - 6))(1 + 11a), l11al :5 2,. (26) 

Finally, the last term is 

(a EB (be c)) =(a+ (b - c))(l + r,4)2, 11141 :5 2t:, (27) 

using both Theorem 9 and Theorem 10. If multiplication is assumed to be exactly rounded, 
so that x ® y = zy(l + () with 1(1 S t:, then combining (24), (25), (26) and (27) gives 

(a EB (b EB c))(c e (a e b))(c E0 (a 9 b))(a E0 (be c)) 
S (a+ (b + c))(c - (a - b))(c + (a - b))(a + (b - c))E 

where 
E = (1 + 111)2(1 + 112)(1 + 77a)(l + 774)2(1 + (1 )(1 + (2)(1 + (a). 

An upper bound for E is (1 + 2e)6 (1 + t:)3 , which expands out to 1 + 15e + O(t:2 ). Some 
writers simply ignore the O(t:2) term, but it is easy to account for it. Writing (1 + 2£)6(1 + 
t:)3 = 1 + 15e + eR(t:), R(t:) is a polynomial in e with positive coefficients, so it is an 
increasing function of e. Since R(.005) = .505, R(t:) < 1 for all t: < .005, and hence 
E :5 (1 + 2,)6(1 + e)3 < 1 + 16£. To get a lower bound on E, note that 1-15e - eR(f) < E, 
and so when t: < .005, 1 - 16e < (1 - 2e)6 (1 - e)3 . Combining these two bounds yields 
1- 16t: < E < 1 + 16e. Thus the relative error is at most 16t:. I 

Theorem 12 certainly shows that there is no catastrophic cancellation in formula (7). 
So although it isn't necessary in order to show that formula (7) is numerically stable, it is 
satisfying to have a bound for the entire formula, which is what Theorem 3 of section 2.4 
gives. 
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Proof of Theorem 3: Let q = (a+ (b + c))(c - (a - b))(c + (a - b))(a + (b - c)) and 
Q = ( a EB ( 6 EB c)) ® ( c e ( a e b)) ® ( c EB ( a e b)) @ ( a EB (be c)). Then Theorem 12 shows that 
Q = q(l + 6), with 6 :S 16£. It is easy to check that 

1 - .52161 :5 v'f'=W :5 v'f+l6i :5 1 + .52161 (28) 

provided 6 :S .04/(.52)2 :-:::s .15, and since 161 :S 16f :5 16(.005) = .08, 6 does satisfy the 
condition. Thus .,.flJ = Jq(l + 6) = Ji(l + 61), with l61I :S .52161 :S 8.5e. If square roots 
are computed to within½ ulp, then the error when computing :-IQ is (1 + 61)(1 + 62), with 
l62I :Sf. If /3 = 2, then there is no further error committed when dividing by 4. Otherwise, 
one more factor 1 + 63 with 163 1 :5 £ is necessary for the division, and using the method in 
the proof of Theorem 12, the final error bound of (1 + 61)(1 + 62)(1 + 6s) is dominated by 
1 + 64, with 1641, :5 lle. I 

To make the heuristic explanation immediately following the statement of Theorem 4 
precise, the next theorem describes just how closely µ(x) approximates a constant. 

Theorem 13 If µ(x) = ln(l + x)/:c, then for O :5 :c =5 ¾, ½ :S µ(:c) :S 1 and the derivative 
satisfies lµ'(z)I :5 ½-

Proof: Note that µ(x) = 1 - :c/2 + :c2 /3 - • • • is an alternating series with decreasing 
terms, so for :c :5 1, µ(:c) ~ 1- :c/2·~ 1/2. It is even easier to see that because the series 
for µ is alternating, µ(x) :S 1. The Taylor series of µ'(x) is also alternating, and if:,; :S ¾ 
has decreasing terms, so ½ :S µ'(:c) :S -½ + 2:i:/3, so -½ :S µ'(x) :S 0, or lµ'(:c)I :S ½- I 

Proof of Theorem 4: Since the the Taylor series for In 

z2 :,:3 
ln(l + x) = z - -+- - • .. 

2 3 

is an alternating series, 0 < % - ln(l + x) < x2 /2, so the relative error incurred when 
approximating ln(l + z) by:,; is bounded by z/2. If 1 EB z = 1, then lx·I <£,so the relative 
error is bounded by e/2. . 

When 1 EB x :/; 1, define z via 1 EB x = 1 + z. Then since O :S x < 1, ( 1 EB z) e 1 = x. 
If division and logarithms are computed to within ½ ulp, then .the computed value of the 
expression ln(l + z)/((1 + z) - 1) is 

ln(l EB z) ln(l + z) 
(1 EB:,;) el (1 + 61)(1 + 62) = 5: (I+ 61)(1 + 62) = µ(x)(l + 61)(1 + 62), (29) 

where 161 I :5 £ and l62I :Se. To estimate µ(x), use the mean value theorem, which says that 

(30) 

for some e between x and z. From the definition of i:, it follows that Ii: - xi 5 £, and 
combining this with Theorem 13 gives lµ(z)-µ(z)I :5 e/2, or lµ(z)/µ(x)-11 :S £/(21µ(:i:)I) ~ 
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£, which means that µ(x) = µ(z)(1+6s), with l6sl ~£.Finally, multiplying by z introduces 
a final 64, so the computed value of z ln(l + z)/((1 + z) - 1) is 

z In(l + z) 
((l + z)- l) (1 + 61)(1 + 62)(1 + 63)(1 + 64), l6il ~ f. 

It is easy to check that if f < 0.1, then (1+61)(1 +62)(l+63)(l+64) = 1 +6, with 161 $ 5£. 
I 

An interesting example of error analysis using formulas (19), (20) and (21) occurs in the 
quadratic formula (-b ± ../62 - 4ac)/2a. Section 2.4 explained how rewriting the equation 
will eliminate the potential cancellation caused by the ± operation. But there is another 
potential cancellation that can occur when computing d = 62 - 4ac. This one cannot 
.be eliminated by a simple rearrangement of the formula. Roughly speaking, when 62 ~ 
4ac, rounding error can contaminate up to half the digits in the roots computed with the 
quadratic formula. Here is an informal proof ( another approach to estimating the error in 
the quadratic formula appears in Kahan [1972]). 

If 62 ~ 4ac, rounding error can contaminate up to half the digits in the roots computed 
with the quadratic formula (-6 ± ../b2 - 4ac)/2a. 

Proof: Write (6®6)0(4a®c) = (62(1+61)-4ac(1+62))(1+63 ), where l6il $ 2€.19 Using 
d = 62 -4ac, this can be rewritten as (d(l + 61)- 4ac(61 - 62)) (1+6s). To get an estimate 
for the size of this error, ignore second order terms in 6i, in which case the absolute error is 
d(61 + 6s) - 4ac64, where 1641 = 161 - 621 ~ 2e. Since d < 4ac, the first term d(61 + 6s) can 
be ignored. To estimate the second term, use the fact that az2 + bz + c = a(z - r1 )(z - r2), 

so ar1r2 = c. Since 62 ~ 4ac, then r
1 

::::::: r2, so the second error term is 4ac64 ::::::: 4a2 r?6
4

. 

Thus the computed value of v'd. is J d + 4a2rf 64 . The inequality 

p _ q $ ✓ p2 _ q2 $ ✓ p2 + q2 $ p + q 

shows that Jd + 4a2rr64 = .Jd+E, where IEI ~ J4a2rrl64I, so the absolute error in .Jrj,/2a 
is about r1 .Jlj';. Since 64 ~ (3-P, .Jlj;::::::: p-P/2, and thus the absolute error of r1 .J7j'; destroys 
the bottom half of the bits of the roots r1 ::::::: r2. In other words, since tlie calculation of the 
roots involves computing with Jd./2a, and this expression does not have meaningful bits 
in the position corresponding to the lower order half of ri, then the lower order bits of ri 

cannot be meaningful. I 

Finally, we turn to the proof of Theorem 6. It is based on the following fact, which is 
proven in the appendix. 

Theorem 14 Let O < k < p, and set m = /3-k-+:..1, and assume that floating-point operations 
are ezactly rounded. Then (m ® z) e (m ® x e z) is ezactly equal to x rounded top - k 
significant digits. More precisely, z is rounded by taking the significand of z, imagining a 
radix point just left of the k least significant digits and rounding to an integer. 

19 In this informal proof, assume that /3 = 2 so that multiplication by 4 is exact and doesn't require a Oi, 
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Proof of Theorem 6: By Theorem 14, z,a is z rounded top- k = l_p/2J places. 1£ there is 
no carry out, then certainly z1a can be represented with lJ'/2 J significant digits. Suppose 
there is a carry-out. If z = zo.z1 ... z,-1 x 13e, then rounding adds 1 to Zp-J:-1, and the 
only way there can be a carry-out is if Zp-J:-l = /3 - 1, but then the low order digit of z,. 
is 1 + Zi,-1:-l = 0, and so again z,. is representable in lJ'/2J digits. 

To deal with z,, scale z to be an integer satisfying (JP- 1 S z S f3P - 1. Let z = f 1a + z, 
where x,. is the p - k high order digits of z, and x, is the k low order digits. There are 
three cases to consider. If z, < (/J/2)/3.1:- 1 , then rounding z top- k places is the same as 
chopping and z1a = z,., and z1 = z1. Since x, has at most k digits, if pis even, then z, has 

, at most k = rp/21 = l_p/2J digits. Otherwise, /3 = 2 and z, < 2.1:- 1 is representable with 
k-1 S l_p/2J significant bits. The second case is when z, > (/3 /2){3.1:-1 , and then computing 
z,. involves rounding up, so z1a = z1a+/31:, and z, = z-z1a = z-z,.-/3.1: = z,-/3.1:. Once again, 
z, has at most k digits, so is representable with LP /2 J digits. Finally, if z, = (/3 /2) 131:-1, 
then z,. = z,. or z,. +/31: depending on whether there is a round up. So z, is either (/3/2)/3.1:-l 
or (/3/2)/31:- 1 - 131: = -{fie /2, both of which are represented with 1 digit. I 

Theorem 6 gives a way to express the product of two single precision numbers exactly 
as a sum. There is a companion formula for expressing a sum exactly. If lzl 2: IYI then 
z + y = (z EB y) + (z e (z EB y)) EB y [Dekker 1971; Knuth 1981, Theorem C in section 4.2.2]. 
However, when using exactly rounded operations, this formula is only true for /3 = 2, and 
not for /3 = 10 as the example z = .99998, y = .99997 shows. • 

5.2 Binary to Decimal Conversion 

Since single precision has p = 24, and 224 < 108 , you might expect that converting a 
binary number to 8 decimal digits would be sufficient to recover the original binary number. 
However, this is not the case. 

Theorem 15 When a binary IEEE single precision number is converted to the closest eight 
digit decimal number, it is not always possible to uniquely recover the binary number from the 
decimal one. However, if nine decimal digits are used, then converting the decimal number 
to the closest binary number will recover the original floating-point number. 

Proof: Binary single precision numbers lying in the half open interval [103 , 210) = 
[1000, 1024) have 10 bits to the left of the binary point, and 14 bits to the right of the binary 
point. Thus there are (210 - 103)214 = 393, 216 different binary numbers in that interval. 
If decimal numbers are represented with 8 digits, then there are (210 - 103 )104 = 240,000 
decimal numbers in the same interval. There is no way that 240,000 decimal numbers could 
represent 393,216 different binary numbers. So 8 decimal digits are not enough to uniquely 
represent each single precision binary number. 

To show that 9 digits are sufficient, it is enough to show that the spacing between binary 
numbers is always greater than the spacing between decimal numbers. This will ensure that 
for each decimal n·umber N, the interval [N - ½ulp,N + ½ulp] contains at most one binary 
number. Thus each binary number rounds to a unique decimal number which in turn rounds 
to a unique binary number. 
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To show that the spacing between binary numbers is always greater than the spacing 
between decimal numbers, consider an interval [10n, 1on+1]. On this interval, the spacing 
between consecutive decimal numbers is 10Cn+1)-9 . On [10n, 2m], where mis the smallest 
integer so that 10n < 2m, the spacing of binary numbers is 2m-24 , and the spacing gets 
larger further on in the interval. Thus it is enough to check that 1o(n+1)-9 < 2m-24 . But 
in fact, since ion < 2m, then 10(n+1)-9 = 10n 10-8 < 2m 10-8 < 2m2-24 . I 

The same argument applied to double precision shows that 17 decimal digits are required 
to recover a double precision number. 

Binary-decimal conversion also provides another example of the use of flags. Recall from 
section 3.1.2 that to recover a binary number from its decimal expansion, the decimal to 

• binary conversion must be computed exactly. That conversion is performed by multiplying 
the quantities N and 10IPI ( which are both exact if P < 13) in single-extended precision and 
then rounding this to single precision (or dividing if P < O; both cases are similar). Of course 
the computation of N - 10IPI cannot be exact; it is the combined operation round(N -10IPI) 
that must be exact, where the rounding is from single-extended to single precision. To see 
why it might fail to be exact, take the simple case of fJ = 10, p = 2 for single, and p = 3 for 
single-extended. If the product is to be 12.51, then tQis would be rounded to 12.5 as part 
of the single-extended multiply operation. Rounding to single precision would give 12. But 
that answer is not correct, because rounding the product to single precision should give 13. 
The error is due to double rounding. 

By using the IEEE flags, double rounding can be avoided as follows. Save the current 
value of the inexact flag, and then reset it. Set the rounding mode to round-to-zero. Then 
perform the multiplication N • 1 olPI . Store the new value of the inexact flag in ixflag, 
and restore the rounding mode and inexact flag. If ixflag is 0, then: N . lOIPI is exact, 
so round(N • 10IPI) will be correct down to. the last bit. If ixflag is 1, then some digits 
were truncated, since round-to-zero always truncates. The significand of the product will 
look like l .b1 • • • b22b23 • • • b31. A dou hie rounding error may occur if 623 • • • 631 = 10 • • • 0. A 
simple way to account for both cases is to perform a logical OR of ixflag with 631 . Then 
round(N • 10IPI) will be computed correctly in all cases. 

5.3 Errors In Summation 

Section 4.2.3 mentioned the problem of accurately computing very long sums. The simplest 
approach to improving accuracy is to double the precision. To get a rough estimate of how 
much doubling the precision improves the accuracy of a sum, let s 1 = z 1, s2 = s1 EB z2, ... , 

s, = s,-1 EBz,. Then Si= (1 +6,)(s,-1 +z,) where 16,I 5 £, and ignoring second order terms 
in 6, gives 

n n n n n 

Sn= Ez;(l + E61:) =Ex;+ Ex;(E6,:). . .. (31) 
i=l k=j i=l i=l k=j 

The first equality of (31) shows that the computed value of I: x; is the same as if an exact 
summation was performed on perturbed values of x;. The first term z1 is perturbed by m:, 
the last term Zn by only f. The second equality in (31) shows that error term is bounded 
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by ne E lz; I- Doubling the precision has the effect of squaring £. If the sum is being done 
in an IEEE double precision format, 1/£ ~ 1016, so that n£ < 1 for any reasonable value 
of n. Thus doubling the precision takes the maximum perturbation of ne and changes it to 
ne2 < £. Thus the 2£ error bound for the Kahan summation formula (Theorem, 8) is not as 
good as using double precision, even though it is much better than single precision. 

For an intuitive explanation of why the Kahan summation formula works, consider the 
following diagram of the procedure. 

s 

Yi 

T 

T 

-_1 _s_ ...... 

-I Y,a I Yi 

1-Y, l=C 

Each time a summand is added, there is a correction factor C which will be applied on 
the next loop. So first subtract the correction C computed in the previous loop from X;, 
giving the corrected summand Y. Then add this summand to the running sum S. The 
low order bits of Y (namely Yi) are lost in the sum. Next compute the high order bits of 
Y by computing T - S. When Y is subtracted from this, the low order bits of Y will be 
recovered. These are the bits that were lost in the first sum in the diagram. They become 
the correction ·factor for the next loop. A formal proof of Theorem 8, taken from Knuth 
[1981) page 572, appears in the appendix. 

6 Summary 

It is not uncommon for computer system designers to negle~t the parts of a system related 
to floating-point. This is probably due to the fact that floating-point is given very little (if 
any) attention in the computer science curriculum. This in turn has caused the apparently 
widespread belief that floating-point is not a quantifiable subject, and so there is little point 
in fussing over the details of hardware and software that deal with it. 

This paper has demonstrated that it is possible to reason rigorously about floating-
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point. For example, floating-point algorithms involving cancellation can be proven to have 
small relative errors if the underlying hardware has a guard digit, and there is an efficient 
algorithm for binary-decimal conversion that can be proven to be invertible, provided that 
extended precision is supported. The task of constructing relia]?le floating-point software is 
made much easier when the underlying computer system is supportive of floating-point. In 
addition to the two examples just mentioned (guard digits and extended precision), section 
4 of this paper has examples ranging from instruction set design to compiler optimization 
illustrating how to better support floating-point. 

The increasing acceptance of the IEEE floating-point standard means that codes that 
utilize features of the standard are becoming ever more portable. Secti9n 3 gave numerous 
examples illustrating how the features of the IEEE standard can be used in writing practical 
floating-point codes. 
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9 Appendix 

This section contains twp of the more technical proofs that were omitted from the text. 

Theorem 14 Let O < k < p, and set m =pk+ 1, and assume that floating-point operations 
are exactly rounded. Then (m ® x) e (m ® x ex) is exactly equal to x rounded top - k 
significant digits. More precisely, x is rounded by taking the significand of z, imagining a 
radix point just left of the k least significant digits, and rounding to an integer. 

Proof: The proof breaks up into two cases, depending on whether or not the computation 
of mz = pk z + z has a carry-out or not. 

Assume there is no carry out. It is harmless to scale z so that it is an integer. Then the 
computation of mz = z + pkz looks like this: 

aa ... aabb ... bb 
+ aa ... aabb ... bb 

zz zzbb ... bb 

where z has been partitioned into two parts. The low order k digits are marked band the 
high order p - k digits are marked a. To compute m ® z from mz involves rounding off the 
low order k digits ( the ones marked with b) so 

m ® z = mz - z mod(,Bk) + r,Bk. 

The value of r is 1 if .bb •••bis greater than ½ and O otherwise. More precisely 

r = 1 if a.bb • • • b rounds to a+ 1, r = 0 otherwise. 

(32) 

(33) 



51 

Next compute m@ z - z = mz - z mod(.81:) + r/31: - z = pk(z + r) - z mod(/3k). The 
picture below shows the computation of m ® z - z rounded, that is, ( m ® z) e z. The top 
line is 131:(z + r), where Bis the digit that results from adding r to the lowest order digit b. 

aa ... aabb ... bB00 ... 00 
- bb ... bb 

zz zzZ00 ... 00 
-·· 

If .bb . • • b < ½ then r = 0, subtracting causes a borrow from the digit marked B, but the 
difference is rounded up, and so the net effect is that the rounded difference equals the top 
line, which is 131:z. If .bb • • • b > ½ then r = 1, and 1 is subtracted from B because of the 
borrow, so again the result is P"z. Finally consider the case .bb • • • b = ½- ff r = 0 then B 
is even, Z is odd, and the .difference is rounded up, giving ptz. Similarly when r = 1, Bis 
odd, Z is even, the difference is rounded down, so again the difference is P"z. To summarize 

(34) 

Combining equations (32) and (34) gives (m ® z) - (m ® z e z) = z - z mod(/3"1:) + r/3"/:. 
The result of performing this computation is 

r00 ... 00 
+aa ... aabb ... bb 

- bb ... bb 
aa ... aaOO .. . 00 

The rule for computing r, equation (33), is the same as the rule for rounding a••• ab••• b 
top - k places. Thus computing mz - (mz - z) in floating-point arithmetic precision is 
exactly equal to rounding z to p - k places, in the case when z + 131: z does not carry out. 

When z + ff"z does carry out, then J?lZ =pl::,;+ z looks like this: 

aa .. . aabb .. . bb 
+ aa ... aabb ... bb 
zzz zZbb ... bb 

Thus m ® z = mz - z mod(/31:) + w/3k, where w = -Z if Z < /3 /2, but the exact value of 
w is unimportant. Next, m ® z - z = 131c z - z mod(,Bk) + wf3k. In a picture 

aa ... aabb ... bb00 ... 00 
- bb ... bb 
+w 

Rounding giv~ (m®z)ez = [Jl:z+w/3"/: -r/31:, where r = 1 if .bb· • -b >!or if .bb· •· b = ½ 
and bo = 1. Finally, (m@z)- (m®z e z) = mz - z mod(/31:) + wf3k -(/3 z + wf3k - rf3k) = 
z - z mod(/31:) + r/31:. And once again, r = 1 exactly when rounding a ... ab . .. b to p - k 
places involves rounding up. Thus Theorem 14 is proven in all cases. I 

Theorem 8 (Kahan• Summation Formula) Suppose that Ef=1 z; is computed using the 
following algorithm 

S = X[1]; 
C = Of 
for j = 2 to B { 
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} 

Y = X[j] - C; 
T = S + Y; 
C = (T - S) - Y; 
S = T; 

9· APPENDIX 

Then the computed sum S is equal to S = E z; (1 + 6;) + O(N e2) E lz; I, where 16; I 5 2E. 

Proof: First recall how the error estimate for the simple formula E z; went. Introduce 
s1 = z1, Si = (1 + 6i)(s;_1 + z;). Then the computed sum is Sn, which is a sum of terms, 
each of which is an z; multiplied by an expression involving c5; 's. The exact coefficient of 
z 1 is (1 + 62)(1 + 63 ) • • • (1 + 6n), and so by renumbering, the coefficient of z2 must be 
(1 + 63 )(1 + 64 ) • • • (1 + 6n), and so on. The proof of Theorem 8 runs along exactly the same 
lines, only the coefficient of z 1 is more complicated. In detail so = co = 0 and 

Yk = z1: 9Cl:-l = (z1: - Cl:-1)(1 + 111:) 
s1: = s1:-1 EB Yl: = (s1:-1 + y1:)(l + tr1:) 
c1: = (s1: e s1:-1) 9 Y1: = [(s1: - s1:_i)(l + 11:) - Y1:](l + 61:) 

where all the Greek letters are bounded by E. Although the coefficient of z1 in s1: is the 
ultimate expression of interest, in turns out to be easier to compute the coefficient of z 1 in 
s1: - c1: and c1:. When k = 1, 

c1 = (s1 (1 + 11) - Y1)(l + 61) 

= Y1{(l + tr1)(l + 11) - 1)(1 + 6i) 

= Z1 (tr1 + 11+tr111)(1 + <h)(l + 111) 

s1 - c1 = zi((l + ui) - (tr1 + 11 + tr11i)(l + c5i)](l + 111) 

= z1[l - 11 - 0-161 - 0-111 - 6111 - 0-11161]{1 + 11i) 

Calling the coefficients of z1 in these expressions C1: and S1: respectively, then 

C1 = 2e + O(e2
) 

S1 = 1 + 711 - 11 + 4E2 + 0( E3
) 

To get the general formula for S1: and C1:, expand the definitions of s1: and c1c, ignoring all 
terms involving x, with i > 1 to get 

s1: = (s1:-1 + Yt)(l + tr,:) 
= [s1:-1 + (z1c - c1c_i)(l + 111:)]{l + u1:) 

= [(s1c-1 - c1:-1) - 111:c1:-1](l + u1:) 

c1: = ({s1. - s1:-1}(1 + 11:) - y1:](l + 61:) 

= [{((s1:-1 - c1:-1) - 111~c1:_i)(l + tr1:) - s1:-1}(1 + 11:) + c1:.:1(l + 111:))(l + 61:) 

= ({(s1:-1 - c1:_i)u1: -111:c1:-1(l + tr1:) - c1:-d(l + 11:) + c1:-1(l + 111:)](l + 61:) 



= ((s.t-1 - C.t-1)0-.t(l + "Y.t) - c1:-1("Y1: + 11.t(D'.t +'YI:+ D'1:"Y1:)](l + c5i:) 

si: - c,: = ((si:-1 - c1:-1) - '1tC1:-1)(l + 0-1) 

- [(s1:-1 - c1-1)C11:(l + "YI:) - c1:-1("Y1: + 111(u1: + "Yk + un1:)](l + 61:) 

= (s1:-1 - c1:-1)((l + u1) - Ut(l + "Yt)(l + 61:)) 

+ ci:-1(-711:(l + ui:) +("Yi:+ 711:(ui: +"YI:+ U,1:')'1:))(l + 6.1:)) 

= (s1:-1 - c1:-1)(l - u1:("YA: + 61c + "YA:c51:)) 

+ Ci:-1(-771: + "Yl: + '11:("Yk + D'k"Yk) + ("Yk + '11:(D'k +'YI:+ D'A:"YJ:))61:] 
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Since S1c and C1c are only being computed up to order e2 , these formulas can be simplified 
to 

Ct = (0-1: + O(E2))St-1 +(-'Yi:+ O(E2))C1:-1 

S1: = ((1 + 2e2 + O(e3 ))S1:-1 + (2e + O(E2))C,;_1 

Using these formulas gives 

C2 = u2 + O(e2
) 

S2 = 1 + '71 - "Yl + 10£2 + 0( e3

) 

and in general it is easy to check by induction that 

C1: = 0-1: + O(t:2) 

S1: = l+111-;1+(4k+2)t:2 +O(t:3
) 

Finally, what is wanted is the coefficient of z 1 in s1:. To get this value, let Zn+i = 0, let all 
the Greek letters with subscripts of n + 1 equal 0, and compute Sn+t. Then Sn+t = Sn - Cn, 

and the coefficient of z1 in Sn is less than the coefficient in Sn+t, which is Sn = 1 + 111 -
11 + (4n + 2)£2 = 1 + 2E + O(nc2). I 


