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I remember the following exercises from my graduate and early industrial 
days. Those of you who find the exercises set so far by Prof. Kahan to be too 
few, too difficult, or too easy, may find something more to your liking below. 
As in real life, problem statements may be incomplete or contradictory; part of 
the problem is to sort that out. This document is itself an exercise, being the 
first set by me using Jj.TE)X. 

The exercises in Knuth's Chapter 4 contain clues about some of the following; 
so do some of the other handouts. 

1 Floating-Point Implementation 

1.1 Ambiguous Case 

Consider an IEEE 854 single--precision-only implementation in its default round­
to-nearest mode, with p significant digits of radix {3. A normalized unrounded 
digit string representing an infinite-precision value looks like 

[ 71?????? ,\ J l£!;.:..;, 
,., discard 

p to retain 

with 77 > 0. 
The boxed digits represent those that are to be retained in the final result; 

R is the Round digit; additional digits may be temporarily preserved to the 
right of the Round digit, but the rightmost must be a Sticky bit or digit that 
reflects whether additional non-zero digits have already been discarded. The 
Ambiguous Case arises whenever R = 6 = /3/2 and all digits to the right are 
zero. It's of interest because 854 requires that the Ambiguous Case be-rounded 
to even, which requires consulting the least significant retained digit,\ prior to 
rounding and propagating any carry. But if it is known that the Ambiguous Case 
can never arise, then rounding may be conveniently accomplished, regardless of 
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A, by adding half in the last place retained, which is the same as adding 6 in 
the Round digit. 

Ignoring underflow, for which operations E {+,-,*,/,sqrt} and 
radices /J E {2, 10} can the Ambiguous Case never arise? Generalize 
to consider underflow. Generalize to arbitrary integer radices /J > 2. 

1.2 Rounding Carry Out 

Consider a normalized unrounded result as before: 

I pppppppp I R?? ... 

but this time with R ~ 6 and all retained digits p = {J - 1. Whether or not we 
are in the ambiguous case, the correctly rounded result will be 

110000000 I 
with the exponent adjusted to account for the carry out. We would of course 
prefer not to have to check for carry out if it can't arise. 

Ignoring underflow, for which operations E { +, -, *,/,sqrt} and 
radices /J E {2, 10} can Rounding Carry Out never arise? General­
ize as in the previous exercise. 

1.3 Modulus and Remainder 

The names Remainder and Modulus are often applied to certain functions de­
noted generically as rem having definitions like the following for finite :,: and 
finite non-zero y: 

rem(:,:, y) = :,: - y * [:c/y] 

where [:c/y] is defined to be the nearest integral value to :c/y according to some 
rule. "Integral value" is used in the sense of a mathematical integer of unlimited 
magnitude, to emphasize that it need not be representable in an integer or even 
in a floating-point format in a particular computer. The rule by which :c/y is 
rounded to an integral value varies, but by any rounding method 

l:c/y- [:c/y]I < 1 

and among the points:,: - y * n for integral n, rem(:,:, y) must be one of the 
two closest to:,:. Thus we conclude that !rem(~, y)I ~ lzl and lrem(:c, y)I < IYI• 
Prove these statements. 

Where definitions of rem functions differ is in their rules for rounding :,: / y to 
an integral value. Using the symbols mod for the typical mathematician's "mod­
ulo'', arem for the typical arithmetic "remainder", and ieee for the remainder 
function specified in IEEE 854, the associated definitions and properties are 
these: 
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mod(z, y): [z/y] is defined by rounding z/y to the nearest integral value toward 
-oo, so that O::; z/y-[z/y] < 1, mod lies between O and y, and therefore 
mod has the same sign as y. 

arem(z, y): [z/y] is defined by rounding z/y to the nearest integral value toward 
0, so that lz/yl- l[z/y]I < 1, and arem has the same sign as z. 

ieee(z, y): [z/y] is defined by rounding z/y to the nearest integral value, and to 
the even one in the Ambiguous Case, so that -1/2 S z/y - [z/y] S 1/2, 
and the sign of ieee need agree neither with the sign of z nor with the 
sign of y. 

Which of these three is exact? How can the exact ones be com­
puted for any z or y? Starting from known values for mod, arem, or 
ieee, how can you readily compute the other functions? 

2 Error Analysis 

2.1 Complex Division 

Develop a method for computing complex quotients that avoids gratuitous over­
flow; if necessary look up "Smith, Robert Leroy" in the index to Knuth's volume 

• 2. Suppose that the complex and real parts of the numerator and denominator 
are normalized numbers. How does the presence or absence of subnormal 
numbers affect the err9r bound on the result? 

2.2 Loss of Significance in Trigonometric Functions 

The TRIG(BA_LIB) man page in the SVID says 

Both sin and c:os lose accuracy when their argument is far from 
zero. For arguments sufficiently large, these functions return zero 
when there would otherwise be a complete loss of significance. In 
this case a message indicating TLOSS error is printed on the standard 
error output. For less extreme arguments causing partial loss of 
significance, a PLOSS error is generated but no message is printed. 

Perhaps ATT was influenced by Cody and Waite: 

Clearly there is a general erosion of the precision of SIN(X) for 
smaller IX I despite the careful argument reduction just outlined. 
The algorithm presented here suggests an error return before the 
quantum loss of significance in f associated with the threshold on I 
mentioned above. 
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What is the difference between normal roundoff, partial loss of 
significance, and total loss of significance? What mathematical prop­
erties of the sin function do these reflect? Prove that any numerical 
approximation SIi must suffer such catastrophic losses of significance, 
and estimate how large the argument to SIi must be before these oc­
cur. 

2.3 Error Analysis of Polynomial Evaluation on a Cray 

Compute, as accurately as your equipment permits, the positive zero 
of /(x) = xm+xm-1 -1 for·m = 2,3, and 10. Give error bounds on your 
answers. 

You will want to experiment with at least two different methods for comput­
ing error bounds. Start with the ideas in Lecture Notes 6b, in which you want 
to compute 

P; = z • P;-1 + a; 

but instead, on reasonable machines you get a result that can be expressed 

P; = (z • P;-1 • (1- (;-1) .+a;) • (1 - r;-1) . 
or can just as easily be expressed· 

P; = (z • P;-1 • (1- (;-1) + a;)/(1 + i;-1); 

the corresponding formulas on CDC and Cray machines are more complicated: 

P; = z • P;-1 • (1- (;-1) • _(1- A;-1) +a;· (1- r;-1) 

or 

• P; = z • P;-1 • (1- (;-1) • (1- A;-1) + a;/(1 + i;-1). 

All the Greek letters are bounded by the roundoff level: I {(;, r;, i;, A;} l:5 
e; and on CDC and Cray, it's no loss to simplify the analysis by assuming 
0 :5 { (;, 1r;, i;, A;} :5 e: . 

Derive recurrences for computing bounds on I Pm - Pm I / £, based 
on each of these possibilities. The first formula in each pair is more con­
ventional than the second; which leads to better error bounds? Study 
that question experimentally and analytically on both reasonable machines and 
Crays. 
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2.4 Wilkinson's Growth Factor g 

In his classic, Rounding Errors in Algebraic Processes , Wilkinson analyzes the 
Gaussian Elimination process to find that the attempt to solve Az = b results 
in a computed solution z that satisfies (A+ K)z = b. On page 108 he gives an 
error bound for K as well as a bound on the residual II b- Az II- Both bounds 
involve a factor g which is a bound on the largest element encountered in any 
of the reduced matrices during the determination of the factors LU = A. 

Is this g necessary? Can satisfactory error bounds be produced 
which depend only on the dimension n and the roundoff level? 

3 Confusion Rampant 

3.1 Testing Trigonometric Functions 

FCVS is a Fortran test suite designed by the Federal Government. The following 
fragment is from test 12 ofFCVS program 820, intended to test complex cosine: 

COMPLEX AVC, BVC 
REAL R2E(2) 
EQUIVALENCE (AVC, R2E) 

AVC = CCOS(( 3.1416, 0.0) • (-10000.0, 0.0)) 
IF (R2E(1) - ·o.9972SE+OO) fail, 40122, 40121 

40121 IF (R2E(1) - 0.99736E+OO) 40122, 40122, fail 
40122 IF (R2E(2) + 0.S0000E-04) fail, pass, 40120 
40120 IF (R2E(2) - 0.S0000E-04) pass, pass, fail 

What determines whether an implementation will pass or fail this 
test? 

The Government has since disabled this particular test. What should be 
done instead? 

3.2 Iterative Improvement Doesn't Work 

Iterative improvement upon the residual is a key technique for improving ac­
curacy of computed results. It's an underlying principle of the Kulisch and 
Miranker paradigm as well as more traditional error analysis techniques. 

However about 15 years ago a prominent Mathematician sub~tted a paper 
complaining that iterative improvement didn't seem to help much on realistic 
problems. He had tested iterative improvement on a number of examples from 
a book of test matrices for linear algebra software, and had supplemented these 
with a number of random test matrices. In all cases he found that iterative 
improvement might improve the computed result by one or two significant digits 
at most and then didn't seem to do any further good. 
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Was the learned Professor correct? Ifso why is the popular theory 
misleading? If not what was his mistake? 
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