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J/ilrious features of the proposed standard provide an especially 
convenient environment for programming numerical procedures 

such as the familiar elementary functions. 

Applicatio~ of the Proposed IEE~ 754 
Standard fof' Floating-Point Arithinetic 
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The floating-Point Working Group, IEEE.Task 754, 
of ti¥~ IEEE Computer Society's Microprocessor Stan­
dard~ Committee considered several proposals for stan­
dard binary floating-point arithmetic for microproces­
sors. One proposal-called the K~was originally de­
veloped in 1978 by W. Kahan, J. Coonen, and H. S. 
Stone. It evolved as an integration of ideas from various 
computer arithmetic systems, some dating from the 
l~~L . 

Y,pious features of this proposal provide an especially 
convpient environment for programming numerical 
prgpcdures such as the familiar elementary functions. In 
the ~on that follows, we will explain some of these 
advantages. 

The proposed standard (published in this issue) is 
based upon the KCS p_roposal, .ttlch has been described 
elsewhere, and on a guide to implementation and a list of 
applications which have been p11blished. 1•3 The proposal 
describes binary tloating-pojlft· fo~ for single preci­
sion, in 32 bits, with 24 sigtiif'icant 6its and 8 exponent 
bitsi'and for double precision, in 64 bits, with 53 signifi­
cant bits and 11 exponent bits. In addition to normalized 
numbers, +O, and -0, there are representations for de­
normalized numbers that can be created by underflow, 

( + oo, -oo, and Not-a-Numbers, or NaNs, that represent 
various kinds of invalidities. 

Bxt~ded formats are also defmed. Single extended 
'bas at least 32 significant bits and at least 11 exponent 
bits. Double extended has at least 64 significant bits and 
15 exponent bits. Confo~g implementations typically 

'·. 

A preliminary version of this article was prepared for and pracnted at 
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provide one of the following four combinations of preci­
sions: 

• single, 
• single and single extended, 
• single and double, or 
• single, double, and double extended. 

Infinite operands may be handled in affine instead of 
the default projective mode, according to a switch that 
may be set by the programmer. Figure 1 illustrates the 
difference _between the projective and affine modes. 
While the projective mode can be represented as a circle 
closed at 00, the affme mode is represented by a line ex­
tending through the positive numbers to + oo on one side 
and through the negative numbers to - oo on the other. 

Implementations must provide unbiased rounding by 
default as well as directed roundings. 

Computing the elementary functions 

Extended format is the most important aspect of the 
proposed standard for computing elementary functions. 
A conforming implementation that does not support an 
extended format would fmd it unduly costly to provide 
accurate elementary functions for the widest basic for­
mat in that implementation. So, assuming that extended 
format is available, how can it be exploited? 

The idea behind extended format is that it provides a 
few more bits of significance and exponent range over 
the basic format that it extends. In execution time, how­
ever, single extended will usually be almost as fast as 
single and much faster than double, since 32-bit registers 
are likely to be available to accommodate integers. 

With the extra precision and range, it is often possible 
to implement the rust algorithm that comes to mind 
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without worrying about problems from roundoff or in­
termediate overflow or underflow. A single precision 
function should take a single precision argument and 
return a result good to single precision, and should not 
overflow or underflow unless the correct result would 
overflow or underflow. For instance, when evaluating 
elementary functions by rational approximation, com­
putation of the approximation in extended, followed by 
rounding the result to the desired precision, will easily 
produce as accurate a result as any virtuoso algorithm in 
the basic precision. If the extended rational approxima­
tion is comparable in precision to the extended format, 
then the basic precision result will probably be better 
than any basic precision algorithm, even a virtuoso's. 

Trigonometric range reduction 

Consider now the process of reducing arguments of 
trigonometric functions. The easiest way to get a satis­
factory argument reduction is to use an extended preci­
sion value of 2n and an extended precision REM opera­
tion. Existing routines, such as those described by 
Cody, 4.s use double precision to support single or employ 
various coding tricks to simulate the effect of extended 
precision. When angles x are measured in degrees, the 
process is simple. The remainder operation REM may be 
used to compute a reduced angle 

r=xREM 360 

without any error. , will be between -180 and 180 
degrees. The only error in sin(r) will be that due to ap­
proximating sin over a restricted range. 

For large arguments in radians, however, the principal 
source of error is often argument reduction with approx­
imate values of 2n. For instance, suppose we wish to 
compute sin(x) for x = n • 211 + ,. Assume the only error in 
the computed result SIN(x) is due to argument reduction 
with a contaminated value 2n (1 + t:}. Then, 

sin(x) = sin(r) 

but 

SIN(x) = sin (r- 2nnt:) 
= sin (x) cos (2n nt:) 

-cos(x) sin (2n ni) 

Assume that 2n mis small enough that cos(2n m) • I and 
sin (2n nt:) = 2n ni; then, 

sin(x) - SIN(x) =- - 2n nt: cos(x) 

The relative error 

I sin(x) - SIN(x) I • 2n ni cot(x) 
sin(x) 

becomes serious when comparable to the precision de­
sired for sin(x), say 2-•. Thus, 

ltan<x>I < 2• l2n ml 

defines the set of x for which SIN(x) can be contaminated 
by a relative error of 2 -• or more, just due to argument. 
reduction. If the approximation of 2n is to the precision 
2- •, then Iii< 2-• and 

ltan<x>I < 2n.lnl 
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defines a very large set of x indeed. But most careful 
trigonometric argument reduction routines use a value of 
2n of greater precision than that of the desired result. 

Let 2-p be that greater precision, so that Ii i < 2-P and 

2n lnl 
ltan(x)I < 2p-s 

describes the contaminated intervals. A way to visualize 
the effect is to compute the percentage of the argument 
interval [(n- ½) 2n , (n+ ½) 2n) that would result in 
contaminated values of SIN(x): 

n=l n= 10 

p=s 900,o 99Cl!o 
p=s+S l.60Jo lSOJo 
p=s+ 11 0.2Cl!o 211/o 

The table displays that percentage for certain values of n 
and p. In the proposed standard, single extended sup­
porting single couesponds top;;, s+ 8, double extended 
supporting double corresponds top ;;, s + 11, and double 
supporting single corresponds to p = s + 29. 

Exponential. function x' 

The exponential function xY provides another example 
of how extended precision can make the obvious algo­
rithm work well. On a binary machine, xY is typically 
computed, for x > 0, as 

xY = 2lY l012<-") ) 

Figure 1. Abaft, (a) lllultratea the pro:lectlwe modi and (b) 
...,,,....,ta the affine mode. 
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Assume the only error .of importance is the error tin the 
computed value L002(x): 

L002(x)=()o12(X)) (1 +t) 

Then, the computed value 

XY =2c,,LC>Ci1(x» =x' • (x')' 

If the desired precision for the result XY is 2-s_ then we 
consider the computed value to be satisfactory if 

ICx')'-1 I< 2-s 

and for sufficiently small t, the inequality can be re­
placed by 

1/n(x")I IEI < 2-s 

If LOG2(x) was computed so 1£1 < 2-p then x" will be 
satisfactory if 

I ln(x')I < 2P-s 

The following table indicates satisfactory ranges for #. 

p=s e- 1 ... e+ 1 = .37 ... 2.7 
p=s+ 8 e-256... e+256 = 10-111 ... 10+ 111 

p=s+ ll e-~.. e+2048 = 10-888 ••• 10+888 

Even 33 is likely to come out wrong if p=s. 
One might be discouraged that, even with extended 

precision, many values of x' would be erroneous. 
However, for single precision, positive normalized 
numbers lie in the general range 2 - 126 to 2 + 128 so 8 extra 
bits of precision in single extended are sufficient to 
calculate in-range x" satisfactorily to single precision; 
likewise, 11 bits suffice for double extended to calculate 
x" satisfactorily to double precision. 

If extended hardware is not available, there are con­
ventional ways of improving the accuracy of x'. One way 
is to unpack x into the form 

X=2k • / 

for integer k and/ satisfying 2- ½ < / < 2 + ½, and ;y into 
integer and fraction parts 

;y=int(Y)+g 

with lgl <½.Then, by keeping separate sums for the in­
teger and fraction parts of the various terms, it is possible 
to maximize the accuracy of the fraction part of the 
power of 2, ;y log2(x); the cumulative error in that frac­
tion is the sole determinant of the relative accuracy of x'. 

Such methods amount to simulating the effect of ex­
tended precision in software. Extended precision is re­
quired for accurate x'; if it is not provided efficiently by 
extended hardware, it must be provided inefficiently by 
software or by double or quadruple precision hardware. 

The software tricks that simulate extended precision 
are well-known for the familiar elementary functions. 
An important I~on to be drawn from the trigonometric 
and x' examples is that a programmer coding a new, un­
familiar function is likely to rmd that the first algorithm 
that comes to mind is likely to be adequate if its inter­
mediate computations can be performed in extended. 

Quadratic equations 

Nearly equal roots. Lest the unwary be deceived by the 
previous examples, consider as a_ counterexample the 

problem of fmding the roots of the quadratic equation 

ax2+bx+c=0 

Everyone knows the formula 

-b± '1b2 -4ac 
2a 

However, not everyone bas learned that a simpleminded 
application of this formula will not always yield roots 
sood to single precision if only single precision arithmetic 
is used. Will extended save the day? 

Extended exponent range cenainly solves the problem 
of intermediate underflows and overflows. But extended 
precision is not enough to save the algorithm implied by 
the formula above. 

To see why, consider the case when 

lb2-4acl << lb2I, b > 0 

In this case there are two nearly equal roots. Suppose the 
only rounding errors that are made are those in com­
puting b2 and ac. 

If single precision is s bits, the b2 and 4ac terms will 
each have up to 2s significant bits. Because b2 == 4ac, let z 
be the number of leading bits that cancel. Picture the_ 
registers, each s bits in length, as follows: 

b2 

4ac 1. .. 11_. _ _.__.1. I 
b2-4acl O 11. -1! ... f ? ? j 

"-_z../ \2s-pl 

----p~ 

If the computed values of b2 and 4ac are rounded to p 
bits, then after the subtraction the computed value of 
b2 -4ac will have p - z significant bits correct, if p > z, 
and none otherwise. Now 

lb2-4acl ==2-z lb2l 

so 

1 V b2-4ac I :::2<-u2> lbl 
Thus, when V b2-4ac is added to - b, the operands will 
align: 

-b 

\f b2-4ac 

~s~ 
t 1. .. 1 

I ~--1 
'½zs-½i 

Ifp-z>Oandp-z;;,is- ½z, then -b± \/b2-4ac will 
be correct to about a unit in single precision. But if p-z 
> O and p-s < ½z, then the last ½z-(p-s) bits of. 
V b2- 4ac will be wrong: 

½z-(p-s) 
'-· / 

O I l"I ? I 
' A I ½z p-z 
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and the corresponding bits of - b ± v 1,2- 4ac may be from 
incorrect. 

-b+ Vb1 -4ac 
If p < z, then the computed value of b2 -4ac will be 0. 

The uncertain bits in - b ± V b2 - 4ac will be the last 
s- ½z. 

Combining cases, we find that the number of uncer­
tain bits is the minimum of (s-p+ ½z) and (s- ½z;). 
Under the constraints thats< p < 2s- l and 1 < .t < 
2s- 1, we find that the number of uncertain bits in the 
result is maximized when p=z, and that maximum 
number of uncertain bits in -b± V b1 -4ac is s- ½p 
bits. (Note that the case p:;: 2s is not interesting because 
then b1, 4ac, and their computed difference are always 
exact. Likewise, if .t = 2s, then b1 = 4ac exactly, so the 
rounded values will be the same in any precision and the 
computed difference will be zero.) 

Thus, for single precision of 24 bits and extended pre­
cision of 32 bits, it is possible to have as many as 8 incor-
rect bits in the single precision result - b ± V b2 -4ac . 
The proof-by-picture arguments above may be formal­
ized to gain rigor at the cost of clarity, but the essential 
result remains: to compute - b ± v b1 - 4ac correct to 
single precision, b2 -4ac must be computed to double 
precision when the roots are nearly equal. 

A numerical example may lend credence to the preced­
ing analysisL Consider arithmetic with 5 decimal digits 
for single precision and 7 decimal digits for single ex­
tended. Let b=70254, a=35122, and c=35132. Then, 

b2 = 493S6 24S16 
ac = 12339 06104 
4ac = 49356 24416 
b1 - 4ac = 00000 00100 
.t = 7 

v b2 - 4ac = 00000 00010 

resulting in 

X = 10244; 70264. 

If rounding to extended occurs, however, 

b1 = 49356 25000 
ac = 12339 06000 
4ac = 493S6 24000 
b1 -4ac = 00000 01000 

v bl -4ac = 00 00031.623 

with the result 

X = 70222; ·70286. 

The computed results are in error by 22 units in the last 
place of single precision, in accordance with the informal 
estimate derived previously which predicts about • 1 ½ 
digits to be uncertain. 

Thus, extended precision helps but double precision is 
really required to make this algorithm work. A more 
complicated algorithm must be used3 if extended preci­
sion is available and double is not. 

Different magnitudes. There are some algorithms that 
cannot be saved at any reasonable price by extending 
precision. An example is the obvious quadratic algorithm 
again, but this time for the case lb2I >> l4acl , b > 0. 
Here one root is large and may be computed accurately 
using only single precision. The other root is computed 

March 1981 

X= 
2a 

The only rounding error that matters is the one due to the 
subtraction b1 -4ac. Writing this computed value as 
(b1 - 4ac) (1 + i), we compute a value X 

X= 
-b+ \lbl-4ac (1 + V2i) 

2a 

and rmd that 

X-x Vb2-4ac (-b- \lb2 -4ac) 
-- = ½£ -------------

x 4ac 

and 

To get X accurate to single precision requires the error 
less than 2-s so 

but if, for instance, a is near the underflow threshold, c is 
about 1, and b is near the overflow threshold, then the 
small root xis near, but above, the underflow threshold. 
In single precision with s = 24 and the underflow 
threshold about 2- 126, we rmd 

Iii< 2-404 

which implies about 404 bits of precision are required to 
compute b2 - 4ac by the algorithm suggested by the well­
known formula . 

A better solution3•6•7 is to compute the smaller root x5 
from the alternate formula 

Xs = 2cl(-b-Vb2-4ac) 

The moral here is that extended, or even double, preci­
sion cannot save an incurably bad algorithm. Some 
research has been devoted to rmding automatic ways of 
detecting such algorithms. 8 

Signed zeros and Infinities 

Signed infinities may seem more natural than signed 
zeros, but the two are closely related. In the proposal, 
zeros and infmities may represent underflowed or over­
flowed quantities. When computing in the affme mode, 
the rules of the arithmetic preserve many of the relation­
ships that would hold among underflowed or overflowed 
quantities. By selecting afrme mode, the user accepts 
responsibility for determining that such arithmetic is in­
deed valid for his algorithm and data. 

Thus the expression 

1 
1 1 
-+­x y 

yields an invalid result if x= + 0 andy = + 0 in projective 
mode. In affme mode, however, the first expression 
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evaluates to + 0: 

__ +_l __ 1Z + 1 C ..:!:! C + 0 
1 1 ( +m)+( +oo) +oo 

+O + +0 

which is comet if the + 0 values of x and y may be 
thought of as representing positive underflowed quanti­
ties, or if they may be thought of as representing limiting 
values of mo to 1,c attained from the positive direction, 
since 

;~: (+:½) =0 

in the customary mathematical sense of one-sided limits. 
But 

-
1

- + -
1

- i::: (+oo) + (-oo) == invalid 
(+0) (-0) 

eve.,_ in affine mode, in accordance with the fact that 

;~: (+:½) 
does not exist. 

Another application of the signs of zero and infinity is 
in interval arithmetic to denote open and closed inter­
vals. A closed interval includes its endpoints but an open 
interval does not. Thus, 

Machine 
representation: 

[-oo,-OJ 
[-oo,+O] 
[-oo, +oo) 
[-0, +OJ 
[-0, +ooJ 
[+O,+ooJ 

Mathematical 
interval: 

(-oo,O) 
(-oo,OJ 

(-:-oo,+oo) 
[0,0] 

[O, +oo) 
(O,+oo) 

The parentheses indicate an open end and the square 
brackets indicate a closed end. 

Now consider the evaluation of the expression 

1 

1+ x2 
y2 

in interval arithmetic. Suppose we let x represent the set 
of numbers from,, to 1 with the notation x== [l',1], and 
let y = [l',2], where ,, is a positive quantity such tliat ,,2 

underflows to zero. Then ri:::(0,1) and yli:::(0,4), so 
r/y2 =(O,+oo), and 1 +(x2/y2)=(1,+oo), and ~y 

1 
----■:7 == (0,1) 

1+ y2 

The rules of the proposed standard for sisned zeros and 
inrmities will mimic this computation, producing a good 
result: [ +0,1) which is interpreted as (0,1). In a system 
without open intervals about zero, however, x2 will be 
approximated as [0,1) and y2 as [0,4), so r/y2 will 
dcgent:rate into the entire real line as it must represent 
0/0. Then, the rma1 result will also be the entire line. This 

example and a full implementation are discussed in detail 
by Rabinowitz. 9 

The examples given above are intended to demonstrate 
the applicability of the extended precision and zero/in­
finity features of the proposed standard. More examples 
have been given by Kahan and Palmer. 3 

• The reader may well conclude that the proposed stan­
dard Sl)eCifies features that are indeed useful in practical 
programs. Fortunately, other studi~ have indicated that 
the implem~tation cost of the proposal is typically not 
much greater than the cost of less capable traditional sys­
tems of floating-point arithmetic. Some of these studies 
have borne fruit in the form of the Intel 8087 .10 ■ 
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