
70

J/ilrious features of the proposed standard provide an especially
convenient environment for programming numerical procedures

such as the familiar elementary functions.

Applicatio~ of the Proposed IEE~ 754
Standard fof' Floating-Point Arithinetic

111•111 11r111 111·111111•11111r111 111·111111·111 111·11111r111111•111111·111111·11111r11
Ill 1111'1111111'1111111'111111Dl1111'1111111'111111' 11111111111111'11fll'l111111'1111111'111111
111,111.111, Ill .lll,111.111,1!' l~l,111.! 1,, 111.111,111.111, l1ll1 I ,bl.l1l,l1l .l1l,l1I .Ill, Ill 111,11

l)avid Hough
Apple Computer, Inc.

The floating-Point Working Group, IEEE.Task 754,
of ti¥~ IEEE Computer Society's Microprocessor Stan­
dard~ Committee considered several proposals for stan­
dard binary floating-point arithmetic for microproces­
sors. One proposal-called the K~was originally de­
veloped in 1978 by W. Kahan, J. Coonen, and H. S.
Stone. It evolved as an integration of ideas from various
computer arithmetic systems, some dating from the
l~~L .

Y,pious features of this proposal provide an especially
convpient environment for programming numerical
prgpcdures such as the familiar elementary functions. In
the ~on that follows, we will explain some of these
advantages.

The proposed standard (published in this issue) is
based upon the KCS p_roposal, .ttlch has been described
elsewhere, and on a guide to implementation and a list of
applications which have been p11blished. 1•3 The proposal
describes binary tloating-pojlft· fo~ for single preci­
sion, in 32 bits, with 24 sigtiif'icant 6its and 8 exponent
bitsi'and for double precision, in 64 bits, with 53 signifi­
cant bits and 11 exponent bits. In addition to normalized
numbers, +O, and -0, there are representations for de­
normalized numbers that can be created by underflow,

(+ oo, -oo, and Not-a-Numbers, or NaNs, that represent
various kinds of invalidities.

Bxt~ded formats are also defmed. Single extended
'bas at least 32 significant bits and at least 11 exponent
bits. Double extended has at least 64 significant bits and
15 exponent bits. Confo~g implementations typically

'·.

A preliminary version of this article was prepared for and pracnted at
Electro 80 in Boston in May 1980.

provide one of the following four combinations of preci­
sions:

• single,
• single and single extended,
• single and double, or
• single, double, and double extended.

Infinite operands may be handled in affine instead of
the default projective mode, according to a switch that
may be set by the programmer. Figure 1 illustrates the
difference _between the projective and affine modes.
While the projective mode can be represented as a circle
closed at 00, the affme mode is represented by a line ex­
tending through the positive numbers to + oo on one side
and through the negative numbers to - oo on the other.

Implementations must provide unbiased rounding by
default as well as directed roundings.

Computing the elementary functions

Extended format is the most important aspect of the
proposed standard for computing elementary functions.
A conforming implementation that does not support an
extended format would fmd it unduly costly to provide
accurate elementary functions for the widest basic for­
mat in that implementation. So, assuming that extended
format is available, how can it be exploited?

The idea behind extended format is that it provides a
few more bits of significance and exponent range over
the basic format that it extends. In execution time, how­
ever, single extended will usually be almost as fast as
single and much faster than double, since 32-bit registers
are likely to be available to accommodate integers.

With the extra precision and range, it is often possible
to implement the rust algorithm that comes to mind

0018-9162/81/0300-0070S00.75 © 1981 IEEE COMPUTER

=-,--------------------·---· ----· -- ··-- -

without worrying about problems from roundoff or in­
termediate overflow or underflow. A single precision
function should take a single precision argument and
return a result good to single precision, and should not
overflow or underflow unless the correct result would
overflow or underflow. For instance, when evaluating
elementary functions by rational approximation, com­
putation of the approximation in extended, followed by
rounding the result to the desired precision, will easily
produce as accurate a result as any virtuoso algorithm in
the basic precision. If the extended rational approxima­
tion is comparable in precision to the extended format,
then the basic precision result will probably be better
than any basic precision algorithm, even a virtuoso's.

Trigonometric range reduction

Consider now the process of reducing arguments of
trigonometric functions. The easiest way to get a satis­
factory argument reduction is to use an extended preci­
sion value of 2n and an extended precision REM opera­
tion. Existing routines, such as those described by
Cody, 4.s use double precision to support single or employ
various coding tricks to simulate the effect of extended
precision. When angles x are measured in degrees, the
process is simple. The remainder operation REM may be
used to compute a reduced angle

r=xREM 360

without any error. , will be between -180 and 180
degrees. The only error in sin(r) will be that due to ap­
proximating sin over a restricted range.

For large arguments in radians, however, the principal
source of error is often argument reduction with approx­
imate values of 2n. For instance, suppose we wish to
compute sin(x) for x = n • 211 + ,. Assume the only error in
the computed result SIN(x) is due to argument reduction
with a contaminated value 2n (1 + t:}. Then,

sin(x) = sin(r)

but

SIN(x) = sin (r- 2nnt:)
= sin (x) cos (2n nt:)

-cos(x) sin (2n ni)

Assume that 2n mis small enough that cos(2n m) • I and
sin (2n nt:) = 2n ni; then,

sin(x) - SIN(x) =- - 2n nt: cos(x)

The relative error

I sin(x) - SIN(x) I • 2n ni cot(x)
sin(x)

becomes serious when comparable to the precision de­
sired for sin(x), say 2-•. Thus,

ltan<x>I < 2• l2n ml

defines the set of x for which SIN(x) can be contaminated
by a relative error of 2 -• or more, just due to argument.
reduction. If the approximation of 2n is to the precision
2- •, then Iii< 2-• and

ltan<x>I < 2n.lnl

March 1981

defines a very large set of x indeed. But most careful
trigonometric argument reduction routines use a value of
2n of greater precision than that of the desired result.

Let 2-p be that greater precision, so that Ii i < 2-P and

2n lnl
ltan(x)I < 2p-s

describes the contaminated intervals. A way to visualize
the effect is to compute the percentage of the argument
interval [(n- ½) 2n , (n+ ½) 2n) that would result in
contaminated values of SIN(x):

n=l n= 10

p=s 900,o 99Cl!o
p=s+S l.60Jo lSOJo
p=s+ 11 0.2Cl!o 211/o

The table displays that percentage for certain values of n
and p. In the proposed standard, single extended sup­
porting single couesponds top;;, s+ 8, double extended
supporting double corresponds top ;;, s + 11, and double
supporting single corresponds to p = s + 29.

Exponential. function x'

The exponential function xY provides another example
of how extended precision can make the obvious algo­
rithm work well. On a binary machine, xY is typically
computed, for x > 0, as

xY = 2lY l012<-"))

Figure 1. Abaft, (a) lllultratea the pro:lectlwe modi and (b)
...,,,....,ta the affine mode.

71

72

Assume the only error .of importance is the error tin the
computed value L002(x):

L002(x)=()o12(X)) (1 +t)

Then, the computed value

XY =2c,,LC>Ci1(x» =x' • (x')'

If the desired precision for the result XY is 2-s_ then we
consider the computed value to be satisfactory if

ICx')'-1 I< 2-s

and for sufficiently small t, the inequality can be re­
placed by

1/n(x")I IEI < 2-s

If LOG2(x) was computed so 1£1 < 2-p then x" will be
satisfactory if

I ln(x')I < 2P-s

The following table indicates satisfactory ranges for #.

p=s e- 1 ... e+ 1 = .37 ... 2.7
p=s+ 8 e-256... e+256 = 10-111 ... 10+ 111

p=s+ ll e-~.. e+2048 = 10-888 ••• 10+888

Even 33 is likely to come out wrong if p=s.
One might be discouraged that, even with extended

precision, many values of x' would be erroneous.
However, for single precision, positive normalized
numbers lie in the general range 2 - 126 to 2 + 128 so 8 extra
bits of precision in single extended are sufficient to
calculate in-range x" satisfactorily to single precision;
likewise, 11 bits suffice for double extended to calculate
x" satisfactorily to double precision.

If extended hardware is not available, there are con­
ventional ways of improving the accuracy of x'. One way
is to unpack x into the form

X=2k • /

for integer k and/ satisfying 2- ½ < / < 2 + ½, and ;y into
integer and fraction parts

;y=int(Y)+g

with lgl <½.Then, by keeping separate sums for the in­
teger and fraction parts of the various terms, it is possible
to maximize the accuracy of the fraction part of the
power of 2, ;y log2(x); the cumulative error in that frac­
tion is the sole determinant of the relative accuracy of x'.

Such methods amount to simulating the effect of ex­
tended precision in software. Extended precision is re­
quired for accurate x'; if it is not provided efficiently by
extended hardware, it must be provided inefficiently by
software or by double or quadruple precision hardware.

The software tricks that simulate extended precision
are well-known for the familiar elementary functions.
An important I~on to be drawn from the trigonometric
and x' examples is that a programmer coding a new, un­
familiar function is likely to rmd that the first algorithm
that comes to mind is likely to be adequate if its inter­
mediate computations can be performed in extended.

Quadratic equations

Nearly equal roots. Lest the unwary be deceived by the
previous examples, consider as a_ counterexample the

problem of fmding the roots of the quadratic equation

ax2+bx+c=0

Everyone knows the formula

-b± '1b2 -4ac
2a

However, not everyone bas learned that a simpleminded
application of this formula will not always yield roots
sood to single precision if only single precision arithmetic
is used. Will extended save the day?

Extended exponent range cenainly solves the problem
of intermediate underflows and overflows. But extended
precision is not enough to save the algorithm implied by
the formula above.

To see why, consider the case when

lb2-4acl << lb2I, b > 0

In this case there are two nearly equal roots. Suppose the
only rounding errors that are made are those in com­
puting b2 and ac.

If single precision is s bits, the b2 and 4ac terms will
each have up to 2s significant bits. Because b2 == 4ac, let z
be the number of leading bits that cancel. Picture the_
registers, each s bits in length, as follows:

b2

4ac 1. .. 11_. _ _.__.1. I
b2-4acl O 11. -1! ... f ? ? j

"-_z../ \2s-pl

----p~

If the computed values of b2 and 4ac are rounded to p
bits, then after the subtraction the computed value of
b2 -4ac will have p - z significant bits correct, if p > z,
and none otherwise. Now

lb2-4acl ==2-z lb2l

so

1 V b2-4ac I :::2<-u2> lbl
Thus, when V b2-4ac is added to - b, the operands will
align:

-b

\f b2-4ac

~s~
t 1. .. 1

I ~--1
'½zs-½i

Ifp-z>Oandp-z;;,is- ½z, then -b± \/b2-4ac will
be correct to about a unit in single precision. But if p-z
> O and p-s < ½z, then the last ½z-(p-s) bits of.
V b2- 4ac will be wrong:

½z-(p-s)
'-· /

O I l"I ? I
' A I ½z p-z

COMPUTER

and the corresponding bits of - b ± v 1,2- 4ac may be from
incorrect.

-b+ Vb1 -4ac
If p < z, then the computed value of b2 -4ac will be 0.

The uncertain bits in - b ± V b2 - 4ac will be the last
s- ½z.

Combining cases, we find that the number of uncer­
tain bits is the minimum of (s-p+ ½z) and (s- ½z;).
Under the constraints thats< p < 2s- l and 1 < .t <
2s- 1, we find that the number of uncertain bits in the
result is maximized when p=z, and that maximum
number of uncertain bits in -b± V b1 -4ac is s- ½p
bits. (Note that the case p:;: 2s is not interesting because
then b1, 4ac, and their computed difference are always
exact. Likewise, if .t = 2s, then b1 = 4ac exactly, so the
rounded values will be the same in any precision and the
computed difference will be zero.)

Thus, for single precision of 24 bits and extended pre­
cision of 32 bits, it is possible to have as many as 8 incor-
rect bits in the single precision result - b ± V b2 -4ac .
The proof-by-picture arguments above may be formal­
ized to gain rigor at the cost of clarity, but the essential
result remains: to compute - b ± v b1 - 4ac correct to
single precision, b2 -4ac must be computed to double
precision when the roots are nearly equal.

A numerical example may lend credence to the preced­
ing analysisL Consider arithmetic with 5 decimal digits
for single precision and 7 decimal digits for single ex­
tended. Let b=70254, a=35122, and c=35132. Then,

b2 = 493S6 24S16
ac = 12339 06104
4ac = 49356 24416
b1 - 4ac = 00000 00100
.t = 7

v b2 - 4ac = 00000 00010

resulting in

X = 10244; 70264.

If rounding to extended occurs, however,

b1 = 49356 25000
ac = 12339 06000
4ac = 493S6 24000
b1 -4ac = 00000 01000

v bl -4ac = 00 00031.623

with the result

X = 70222; ·70286.

The computed results are in error by 22 units in the last
place of single precision, in accordance with the informal
estimate derived previously which predicts about • 1 ½
digits to be uncertain.

Thus, extended precision helps but double precision is
really required to make this algorithm work. A more
complicated algorithm must be used3 if extended preci­
sion is available and double is not.

Different magnitudes. There are some algorithms that
cannot be saved at any reasonable price by extending
precision. An example is the obvious quadratic algorithm
again, but this time for the case lb2I >> l4acl , b > 0.
Here one root is large and may be computed accurately
using only single precision. The other root is computed

March 1981

X=
2a

The only rounding error that matters is the one due to the
subtraction b1 -4ac. Writing this computed value as
(b1 - 4ac) (1 + i), we compute a value X

X=
-b+ \lbl-4ac (1 + V2i)

2a

and rmd that

X-x Vb2-4ac (-b- \lb2 -4ac)
-- = ½£ -------------

x 4ac

and

To get X accurate to single precision requires the error
less than 2-s so

but if, for instance, a is near the underflow threshold, c is
about 1, and b is near the overflow threshold, then the
small root xis near, but above, the underflow threshold.
In single precision with s = 24 and the underflow
threshold about 2- 126, we rmd

Iii< 2-404

which implies about 404 bits of precision are required to
compute b2 - 4ac by the algorithm suggested by the well­
known formula .

A better solution3•6•7 is to compute the smaller root x5
from the alternate formula

Xs = 2cl(-b-Vb2-4ac)

The moral here is that extended, or even double, preci­
sion cannot save an incurably bad algorithm. Some
research has been devoted to rmding automatic ways of
detecting such algorithms. 8

Signed zeros and Infinities

Signed infinities may seem more natural than signed
zeros, but the two are closely related. In the proposal,
zeros and infmities may represent underflowed or over­
flowed quantities. When computing in the affme mode,
the rules of the arithmetic preserve many of the relation­
ships that would hold among underflowed or overflowed
quantities. By selecting afrme mode, the user accepts
responsibility for determining that such arithmetic is in­
deed valid for his algorithm and data.

Thus the expression

1
1 1
-+­x y

yields an invalid result if x= + 0 andy = + 0 in projective
mode. In affme mode, however, the first expression

74

evaluates to + 0:

__ +_l __ 1Z + 1 C ..:!:! C + 0
1 1 (+m)+(+oo) +oo

+O + +0

which is comet if the + 0 values of x and y may be
thought of as representing positive underflowed quanti­
ties, or if they may be thought of as representing limiting
values of mo to 1,c attained from the positive direction,
since

;~: (+:½) =0

in the customary mathematical sense of one-sided limits.
But

-
1

- + -
1

- i::: (+oo) + (-oo) == invalid
(+0) (-0)

eve.,_ in affine mode, in accordance with the fact that

;~: (+:½)
does not exist.

Another application of the signs of zero and infinity is
in interval arithmetic to denote open and closed inter­
vals. A closed interval includes its endpoints but an open
interval does not. Thus,

Machine
representation:

[-oo,-OJ
[-oo,+O]
[-oo, +oo)
[-0, +OJ
[-0, +ooJ
[+O,+ooJ

Mathematical
interval:

(-oo,O)
(-oo,OJ

(-:-oo,+oo)
[0,0]

[O, +oo)
(O,+oo)

The parentheses indicate an open end and the square
brackets indicate a closed end.

Now consider the evaluation of the expression

1

1+ x2
y2

in interval arithmetic. Suppose we let x represent the set
of numbers from,, to 1 with the notation x== [l',1], and
let y = [l',2], where ,, is a positive quantity such tliat ,,2

underflows to zero. Then ri:::(0,1) and yli:::(0,4), so
r/y2 =(O,+oo), and 1 +(x2/y2)=(1,+oo), and ~y

1
----■:7 == (0,1)

1+ y2

The rules of the proposed standard for sisned zeros and
inrmities will mimic this computation, producing a good
result: [+0,1) which is interpreted as (0,1). In a system
without open intervals about zero, however, x2 will be
approximated as [0,1) and y2 as [0,4), so r/y2 will
dcgent:rate into the entire real line as it must represent
0/0. Then, the rma1 result will also be the entire line. This

example and a full implementation are discussed in detail
by Rabinowitz. 9

The examples given above are intended to demonstrate
the applicability of the extended precision and zero/in­
finity features of the proposed standard. More examples
have been given by Kahan and Palmer. 3

• The reader may well conclude that the proposed stan­
dard Sl)eCifies features that are indeed useful in practical
programs. Fortunately, other studi~ have indicated that
the implem~tation cost of the proposal is typically not
much greater than the cost of less capable traditional sys­
tems of floating-point arithmetic. Some of these studies
have borne fruit in the form of the Intel 8087 .10 ■

References

1. J. Coonen, W. Kahan. J. Palmer, T. Pittman, and D.
Stevenson, "A Proposed Standard for Floating Point
Arithmetic.'' ACM SJGNUM Newsletter, Oct. 1979, pp.
4-12.

2. J. Coonen, "An Implementation Guide to a Proposed
Standard for floating-Point Arithmetic," Computer, Vol.
13, No. l, Jan. 1980, pp. 68-79.

3. W. Kahan and J. Palmer, "On a Proposed Floating Point
Standard," ACM SJGNUM Newsletter, Oct. 1979, pp.
13-21.

4. W. Cody, "Software for the Elementary functions," in
Mathematical Software, John R. Rice, ed., Academic
Press, New York, 1971, pp. 171-185. . .

S. W. Cody and W. Waite, Software Manual/or the Elemen­
tary Functions, Prentice-Hall, Englewood Cliffs, N.J.,
1980.

6. 0. Forsythe, "What is a Satisfactory Quadratic Equation
Solver?" in Constructive Aspects of the Fundamental
Theorem of Algebra, B. Dejon and P. Henrici, eds., John
Wiley & Sons, New York, 1969, pp. 53-61.

7. W. Kahan, Implementation of Algorithms, Computer
Science Technical Report No. 20, University of California,
Berkeley, Calif., 1973.

8. W. Miller and C. Wrathall, Software for Roundoff
Analysis of Matri,x Algorithms, Academic Press, New
York, 1980.

9. H. Rabinowitz, ''Implementation of a More Complete In­
terval Arithmetic," Master's Thesis, University of Cali­
fornia, Berkeley, 1979.

JO. Intel Corp., The 8086 Family User's Manual, Numerics
Supplement, 1980.

Dalid Hough is with Apple Computer,
Inc., in Cupertino, California. Previously,
he was with Tektronix. Hough participates
in the IEEE P7S4 Floating-Point Working

, Group. He is a graduate of Carleton Col-
~ Iese and the University of California.

COMPUTER

