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ABSTRACT 

The proposed C standard suffers numerical shortcomings - many inherited from 
its precursors - in areas of interest to providers of portable mathematical software. I 
comment in detail upon the following aspects of the proposed standard: 

Comment #1, Section 1.1: 
Comment #2, Section 1.1: 
Comment #3, Section 2.2.4.2: 
Comment #4, Section 2.2.4.2: 
Comment #5, Section 3.1.3.1: 
Comment #6, Section 3.2.1.4: 
Comment #7, Section 3.2.1.5: 
Comment #8, Section 3.3.3: 
Comment #9, Section 3.3.4: 
Comment #10, Section 3.4: 
Comment #11, Section 3.5.6: 
Comment #12, Section 4.7: 
Comment #13, Section 4.8: 
Comment #14, Section 4.9.6: 
Comment #15, Section 4.9.6.1: 
Comment #16, Section 4.9.6.1: 
Comment #17, Section 4.9.6.1: 
Comment #18, Section 4.9.6.2: 
Comment #19, Section 4.10.1.4: 
Comment #20, Section 4.10.2: 

anticipate supplemental standards 
manifest the best way 
exclude implementations explicitly 
use "significand" 
bound rounding errors explicitly and uniformly 
round conversions between floating types 
forbid implicit narrowing conversions 
add power operator for integral exponents, or square 
emphasize rounding forced 
defer constant expressions with side effects 
encourage non-zero initialization 
SIGFPE means floating point 
variable argument lists are expensive 
printf/scanf duality for non-model numbers 
display signed zero with printf %+ 
distinguish exact zero with printf %f 
provide useful printf %#g 
scanf requires more than minimal ungetc 
strtod/atof are mathematical functions 
require two random number generators 

Comment #21, Section 2.2.4.2: 
Comment #22, Section 2.2.4.2: 

<fl.oath> has too many names, not enough information 
long double > minimal float 

Comment #23, Section 3.1.3.1: 
Comment #24, Section 3.3.2.2: 
Comment #25, Section 3.5.4.2: 
Comment #26, Section 3.7 .1: 
Comment #27, Section 3.8.8: 
Comment #28, Section 4.5: 
Comment #29, Section 4.13.4: 
Comment #30, Section 4.5.1: 
Appendix #1: 
Appendix #2: 
Appendix #3: 

Preface 

compiler conversion same as run-time 
no implicit declarations 
fix arrays 
standardize Fortran-77 interface 
predefine generalized precision macros 
specific mathematical library functions 
standard functions predefine generic operators 
make numerical exception handling uniform 
A Proposal for Conformant Arrays 
A Proposal for <float.h> 
Why does traditional C treat float the way it does? 

The following comments were submitted to X3Jl 1 as part of its second public review period. 
X3Jl l's subsequent Summaries of the issues and Responses are included. The Summaries and 
Responses are each exactly one paragraph, and may thereby be distinguished from my commentary 
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before and after. Note that each Response has a one-line generic response followed by one or more 
lines of specific response. These are not always self-consistent. 

The third public review period, based upon the document number X3Jl 1/88-090, dated 13 May 
1988, concludes 1 September 1988. 

The following comments are based upon Draft Proposed American National Standard for Infor­
mation Systems - Programming Language C. document number X3Jl 1/88-002, dated 11 January 1988, 
and its accompanying Rationale. The comments are personal opinions of the author, and should neither 
be construed as wholly original nor as representing the position of any organization or other person. A 
number of individuals helped formulate and clarify them; some of their names are listed here and at the 
end. The following, while not necessarily agreeing in every detail, have expressed agreement with the 
main points: 

Greg Astfalk 
Larry Breed 
D. Burton 
W. J. Cody 
Iain Johnstone 
W. Kahan 
Zhishun Alex Liu 
David Mendel 
Jim Meyering 
K-CNg 
Gene Spafford 
Philippe Toint 
Stein Wallace 

cleast!astfalk 
ibmpa!lmb 
phtoint%bnandpl 0.bitnet 
cody@anl-mcs.arpa 
iainj@playfair.stanfordedu 
University of California, Berkeley 
zliu%hobbes@berkeley.edu 
mendel@playfair.stanford.edu 
meyering@cs.utexas.edu 
kcng@sun.com 
spaf@purdue.edu 
phtoint%bnandp10.bitnet 
wallace%nocmi.bitnet 

Some people agreed with the intent of the wider-ranging proposals but felt they were offered too late in 
the standardization effort. To such arguments the best response is that it's never too late to fix prob­
lems because fixing is always cheaper sooner than later, especially in standardization. Many X3Jl 1 
members are anxious to obtain early publication of the standard, but due to several recent controversial 
changes and some aspects of the Draft that might be controversial if their ramifications were more 
widely understood, there is a good chance that yet another complete public review cycle will be 
required. 

Introduction 
C was not particularly designed to facilitate numerical computation. In recent years it has come 

to be increasingly used for implementing portable systems and applications, including numerical ones. 
This is more a tribute to the good judgment embodied in some other aspects of C's design than to its 
numerical facilities: it is easier to get a usable C compiler and library working than a comparable For­
tran compiler and library. Examples of such applications are the SPICE 3B 1 circuit simulation package, 
which is far more flexible and maintainable than its Fortran predecessors, and Alex Liu's elementary 
function test programs, which would have been far more difficult to implement in Fortran. 

In its drafts the ANSI committee has removed some of traditional C's numerical weaknesses, such 
as requiring double-precision expression evaluation and parameter passing, and overspecifying error 
response in the elementary transcendental function library. With a little more effort the remaining 
numerical stumbling blocks could be removed and C would be as convenient for the numerical parts of 
applications as for the other parts. 

Comments follow, approximately in order of increasing significance, complexity, and priority. 
Most of what follows is more a critique of existing C implementations than of the X3Jl l committee's 
work. For the simpler issues, specific Recommendations and wording are provided. In more compli­
cated cases, the principles are exposed rather than the details; details can be worked out for proposals 
accepted in principle. Sometimes, an Alternate Recommendation is provided should the primary 
recommendation be deemed too great a step to take. 
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In much of what follows, "infinity" refers to a floating-point representation that is intended to act 
like mathematical oo, such as is found on CDC and IEEE implementations. Similarly "NaN" refers to 
any kind of non-numeric floating-point representation, including CDC Indefinite, VAX Reserved 
Operand, and IEEE NaN. 

Comment #1, Section 1.1: anticipate supplemental standards 
Certain aspects of the definition of C should be deferred until X3J3 completes its work on Fortran 

8x. These aspects include 
* the environmental inquiries currently defined in 2.2.4.2 for <float.h>; 

• a generalization of the Fortran-77 interface proposed for 3.7.1. 

Since it's desirable in most cases for C to follow rather than lead Fortran in these areas, C stan­
dardization should be deferred until the Fortran work has been tested in practice. 

Many C implementations for personal computers, workstations, and superminicomputers are built 
upon the IEEE 754 standard for binary floating-point arithmetic. Certain aspects of the C environment 
could well be standardized among such implementations, without impacting the many non-IEEE C 
implementations: 

* Definition of the proposed sig_ detail on IEEE implementations; 

• Definition of operators or procedures for IEEE modes and status; 

* Definition of syntax for infinities and NaNs. 

The X3Jl 1 Draft should avoid prejudicing such later work. 

Most X3Jl 1 and X3J3 members suffer various degrees of standardization fatigue, so it would be 
appropriate for another body to develop an informal standard a couple of years after Fortran 8x is final­
ized; that informal standard might be incorporated into a subsequent revision of C. An IEEE Trial-Use 
Standard or Recommended Practice, for instance, may be developed more quickly than a formal ANSI 
Standard. 

X3Jll Summary: Anticipate supplemental C floating-point standards. 

X3Jll Response: The Standard must accommodate a variety of environments. The X3Jl 1 Com­
mittee tries to accommodate existing standards and existing implementations. It is far more difficult to 
anticipate the future directions of other standardization efforts. The Committee believes the floating­
point model provides useful information for a broad class of floating-point applications and is part of 
our charter. 

Comment #2, Section 1.1: manifest the best way 

Section 1.1 of the Rationale mentions certain aspects of C design revered by tradition. Some of 
these could be restated as "Make the best way manifest", meaning that it should be clear what the best 
way to perlorm an intended operation is. This principle has not been faithfully followed in the past: 
which is the best way to increment a: ++a , a++ , a+=l , or a=a+l ? If the answer is different on 
different compilers, then how should portable efficient programs be coded? 

Several of the proposals which follow are attempts to make the best way to perform certain 
operations manifest by making them defined language features, so that any poor performance may be 
justifiably blamed on the compiler and library rather than on the programmer. 

X3Jll Summary: Manifest the "best way". 

X3Jll Response: This was not considered an issue requiring specific action. This particular criti­
cism was non-specific, so no action is possible. 

Comment #3, Section 2.2.4.2: exclude implementations explicitly 

The floating-point model in section 2.2.4.2 is a signed-magnitude one and implicitly excludes cer­
tain other types of floating-point implementations that have existed in the past and might be considered 
again. If this exclusion is intentional it should be explicit; if accidental then substantial modifications 
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are necessary in this section. Note that the Draft unashamedly mandates binary integral types. 

Logarithmic floating point has been implemented in embedded systems at Lockheed and else­
where, and may offer attractive performance again in the future, at least for low precision. The entire 
model of representable numbers is quite different for such floating point, and section 2.2.4.2 would be 
substantially recast to encompass it 

Previous one or two's-complement floating-point implementations shared with complemented 
integer arithmetic the unhappy consequence that negation is not a trivial operation and may overflow or 
otherwise misbehave. Section 2.2.4.2 would require some modifications to accommodate such arith­
metic. Section 3.2.1.3 specifies that "the fractional part is discarded" to convert from floating to 
integral type. Unless complemented floating-point representations are excluded, the Draft's intent won't 
be clear without adding "by rounding toward zero." 

Recommendation: In 2.2.4.2, add "The foregoing signed-magnitude model intentionally excludes 
one's and two's-complement floating-point representations and logarithmic floating-point representa­
tions." 

X3Jll Summary: The floating-point model implicitly excludes certain implementations. 

X3Jll Response: Changes have been made along the lines you suggested A fooblote has been 
added to 2.2.4.2 stating that the floating-point model requires a sign-magnitude model. 

Comment #4, Section 2.2.4.2 and 3.1.3.1: use "significand" 

The term significand was adopted by the IEEE floating-point committees to designate the part of 
a floating-point number that contains its significant digits. Significand is a better term than either 
"mantissa", which refers to the fractional part of a logarithm, or "value part", which implies that the ex­
ponent doesn't contribute to the value of a number. 

Recommendation: Replace "mantissa" and "value part" with "significand" throughout the Draft 
and Rationale. 

X3J11 Summary: Replace "mantissa" and "value part" with "significand". 

X3J11 Response: The Committee believes this is clear enough as is. We believe that the use of 
"mantissa" is synonymous with "significand" and the use of "value part" is unambiguous. 

Comment #5, Section 3.1.3.1 and A.6.3.S: bound rounding errors explicitly and uniformly 

A.6.3.5 mentions that rounding directions are implementation-defined for casts from integers to 
floating-point types and between floating-point types, as are "the properties of floating-point arithmetic11

• 

But in several places, such as 3.1.3.1 and 3.2.1.3, the Draft defines an acceptable floating-point rounding 
method for an unrepresentable unrounded value as choosing one or the other of its two nearest 
representable neighbors. 

If this is a laudable effort to raise the quality of floating-point implementations, excluding almost 
all existing C implementations, that should be stated explicitly. If unintentional the committee must at 
least relax the accuracy requirements in 3.1.3.1 governing decimal-to-binary conversion in the compiler. 

Recommendation: In the preface to chapter 3, add a new paragraph: 

Acceptable floating-point rounding: When an exact floating-point numerical value, whose 
magnitude does not exceed that of the largest finite representable number, is to be rounded 
to a representable floating-point value, then that representable floating-point value shall be 
chosen from the two representable values nearest the exact value in an implementation­
defined manner. Consequently, if the exact value is representable, then the rounded value 
shall be that representable value. This acceptable rounding rule also encompasses floating­
point underflow but not floating-point overflow. Acceptable floating-point roundings 
govern: 
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1 conversions between floating-point types and from integral types to floating-point types, but not 
conversions from floating-point types to integral types; 

2 conversions between ASCII representations and internal floating-point formats by strtod(), scanf(), 
and printf(), or as constants in source code; 

3 operators +-*I including constant expressions evaluated at compile time; 

4 functions fabs(), fmod(), frexp(), ldexp(), modf(), sqrt(), cell(), and floor(). 

Note that of these functions, the correct computed value of fabs(), fmod(), frexp(), rnodf(), cell(), 
and floor() is alway representable if numeric, and ldexp() only rounds in the event of underflow and 
overflow. 

Alternate Recommendation: Permit conversions from floating-point formats to narrower 
floating-point formats, and from integral formats to floating-point formats, to be performed with the 
same sorts of rounding permitted other arithmetic operations, namely those provided by the underlying 
system. Document the digits of accuracy of input and output conversion in dloalh> as suggested 
below in Appendix #2. 

X3J11 Summary: Bound rounding errors explicitly and uniformly. 

X3Jll Response: The Committee believes that this is clear enough as is. We believe that the 
rounding behavior specified in the Standard is correct 

Comment #6, Section 3.2.1.4: round conversions between floating types 

The C Draft requires that conversion of a floating-point value to fit in a floating-point format of 
less precision or exponent range be accomplished by an acceptable rounding operation as defined above; 
acceptable roundings include rounding toward zero. This is all consistent with IEEE arithmetic. But the 
Rationale still asserts that conversions to floating-point format by rounding to nearest would be 

,~ inefficient, because rounding modes would have to be frequently changed, since rounding toward zero is 
required for the conversion of floating-point values to integer formats. This assertion, reflecting an ear­
lier X3Jl 1 draft, is incorrect and misleading and should be removed. 

Actually the efficiency of conversion from floating-point formats to integer formats is not a major 
factor in overall performance of most realistic applications. Even so, better IEEE implementations 
recognize that while dynamic rounding modes are appropriate for most floating-point operations, those 
producing an integral value in integer format (int cast) or an integral value in floating-point format 
(floor()) should not be subject to variation at run time. The implementations provide an additional 
operation beyond those those mandated by the IEEE standard. That additional operation (fintrz on 
Motorola MC68881) converts floating-point values to integers, rounding toward zero regardless of the 
current IEEE rounding mode that governs other floating-point operations. So there need be no 
efficiency lost by requiring, as the Draft does, conversion to integer to round toward zero, even if that 
differs from the rounding mode for operations with floating-point results. 

Recommendation: Change the rationale to read: 

The Standard, unlike the Base Document, does not require rounding to nearest in the double 
to float conversion. Conversions between floating-point types must be rounded according to 
the same acceptable rounding rules applicable to other roundings of floating-point results. 

X3Jll Summary: Remove an incorrect assertion about round conversions between floating types. 

X3J11 Response: The Committee has voted against this idea. There are existing implementations 
where rounding to nearest is inefficient. (The PDP-11 and 8087 families behave this way.) 

Comment #7, Section 3.2.1.5 and A.5: forbid implicit narrowing conversions 

Appendix A.5 mentions a warning for implicit conversions to narrower formats, presumably 
meaning conversions which might be inexact or otherwise exceptional, including conversions between 
floating-point formats, conversions from floating-point to integer formats, and some cases of conversion 
from integer to floating-point format. Better to forbid such implicit conversions outright since the 
implicit roundings so often lead to elusive bugs. Correct existing code that is careless in this respect is 
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easily remedied by explicit casts. 

Note that code like 

float f; 

f = 1.0; 
or 

f = 1; 
results in an implicit narrowing conversion, but is unobjectionable since there is no possibility of 
roundoff error or other side effect. Such code is best thought of as a constant expression, acceptable for 
compile-time evaluation, according to rules proposed above. 

Recommendation: In 3.2.1.5, add: 

Conversions, by assignment or by the usual arithmetic conversions, of values from one 
integral or floating-point type to another integral or floating-point type are not permitted 
except 

1 When the conversion is invoked by an explicit cast operator; 

2 When the destination type can represent all values of the source type; 

3 When the destination type can represent the known source type value to be converted, as in the 
case of conversion of constants or constant expressions such as float f = 1.0, g = 1<<16. 

X3Jll Summary: Forbid implicit narrowing conversions. 

X3Jll Response: The Committee has voted against this idea. We believe that the practice of 
allowing implicit narrowing conversions is widespread existing practice. Explicit prohibition of this 
practice would break too much existing code. 

What about lint? A common response to complaints about implicit conversions and other ques­
tionable programming practices is "lint catches those" - so the compiler need not. A common counter­
response is "lint's not part of the Draft". Both viewpoints might be accommodated by affirming or 
denying, in the Rationale, X3Jll's presumed intent that compilation systems that include a separate 
checking program such as lint need not perform redundant checks in the compiler itself, and that con­
versely, systems that don't provide such a checking program must do it all in the compiler. 

X3Jll Summary: Clarify whether "lint" checking may be separate from compilation. 

X3Jll Response: Quality of implementation is beyond the scope of the Standard. An implemen­
tation is at liberty to provide warnings about implicit narrowing. 

Comment #8, Section 3.3.3: add power operator for integral exponents, or square 

C does not provide a power or exponentiation operator, like Pascal (which however provides a 
squaring operator), but unlike Fortran ** or Basic" . C's original system programming motivation does 
not require such an operator, and C's general approach is that operations that can not be implemented 
in a few machine instructions should be invoked as functions. Based on Fortran experience, this is 
excellent design; it discourages the common Fortran codings "x**0.5" and "x**2.0". Conversely, omit­
ting an easy way to say "x**2" for complicated expressions xis a C oversight that adds gratuitous com­
plexity to code. 

The complexity of general exponentiation to a floating-point power is sufficiently attested by the 
dropping of such an operator from the final MC68881 architecture due to lack of microcode space in 
the initial implementation. Therefore I don't advocate that C add an operator notation for floating-point 
powers (although later I advocate that functions like pow() be made an operator infunctional notation). 
I do advocate that an operator notation for exponentiation to integral powers be added. That some con­
venient syntax be standardized is more important than the specific syntax, and X3Jl 1 is best qualified to 
choose from various alternative candidates such as *", **, "", %%, ->, etc. I'll use *" in the following, 
although anybody who has written x**y or x ** y in old C code, intending x * *y, has probably done 
some other things that won't pass an ANSI C compiler. Even though ANSI C could be defined to 
accept x**y in its old meaning as well as x**y in its new since y must be a pointer in the first case and 
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an integral expression in the second, I doubt that's worthwhile. 
Although the current Draft permits an implementation to optimize its. interpretation. of pow() to 

treat integer exponents differently, would-be implementers of portable efficient mathematical software 
libraries might be disinclined to rely on such local optimizations, providing their own floating *" 
integral functions instead. Thus instead of concentrating their effort upon functions which should never 
be part of a language standard, they divert their energies to providing facilities that languages could 
have easily provided. 

To best correspond to the usage of mathematics and other computer languages, the precedence of 
*"' must be greater than that of a multiplicative or additive operator or unary -. That seems to imply 
that *" has "postfix operator'' precedence. 

Recommendation: Modify 3.3.3 and add a new section 3.3.3.5 defining power operators. 

Syntax: Add to the definitions for postfix-expression: 

power-expression: 
postfix-expression 
postfix-expression *" cast-expression 

unary-expression: 
power-expression 
++ unary-expression 

Constraints: In b *" n, the base expression b must be an integral or floating expression, but 
the exponent expression n must be an integral expression. 

Semantics: If n == 0, then the result is 1 for any b, including O or NaN, cast to the type of 
b. If n > 0, then the result is the usual: the value of b is multiplied together n-1 times. If 
n < 0, then the result in the absence of round-off, overflow, or underflow, would be 1/(b *"' 
(-n)), which is O if bis an integral expression>= 2. Unlike most other operators, but like b 
<< n, the "usual arithmetic conversions" are not made to b and n; the type of the·result is 
always that of b. "x *"' y *" z" has its usual mathematical meaning 11x *" (y *"' z)". 

Section 3.3.16: Add an assignment operator *"=. 

The Rationale should encourage compilers to be clever when n is constant -1, 0, 1, or 2, but not 
so clever with other n that the intermediate results overflow or underflow unnecessarily, as in the 
attempt to compute b •· 7 as (b ""' 8)/b. When n <= -2 for floating-point b, avoid roundoff by com­
puting 1/(b *" -n) and reciprocating, unless the effects of overflow or underflow are best mitigated by 
computing (1/b) *" n instead. The Rationale should also encourage compilers to compute, wherever 
possible, "x * b *" n" by a shift instruction when b is the base of integer arithmetic, and by ldexp(x,n) 
when b is the base of floating-point arithmetic. 

Although it would be convenient to allow b *" -n to be undefined for integer b and n, so that 2 *" 
m or 16 *" m could be implemented by shifts 1 << m or 1 << 4*m which are also undefined form< 0, 
that would mean that programs could not rely on limited identities like b *"' (m-n) = b *" m / b *" n, 
true for non-negative m and n. 

Alternative Recommendation: Add a new section 3.3.3.5 defining a new unary operator square 
in functional notation that computes the square of the value of its argument without re-evaluating its 
argument. 

This alternative takes care of the most common case of *", making manifest the fastest way to 
square an expression, without adding a new operator syntax. 

X3J11 Summary: Add an integral power operator. 

X3Jll Response: The Committee has reaffirmed this decision on more than one occasion. Pro­
posals to add a power operator have been rejected many times. It is possible to treat the function pow 
as a reserved function and thereby perform the operation in-line. This is especially useful when the 
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exponent has integral type. 

Comment #9, Section 3.3.4: emphasize rounding forced 

In many traditional C implementations, it is not easy to force a rounding from double to float to 
occur; the statements 

register double e; 
register float f; 

f = (float) e; 

won't cause any rounding to occur, confounding any program attempting to determine properties of 
floating-point arithmetic or attempting to purify a test argument to a float function. To force the round­
ing, statements like 

OR 

register double e; 
register float f; 
float g; 

g = (float) e; 
f = *(&g); 

register double e; 
register float f; 
volatile float g; 

g = (float) e; 
f = g; 

are needed, at the cost of gratuitous memory operations. "Gratuitous memory operations" don't sound 
like much in a personal computer without floating-point hardware, but in high-performance environ­
ments, stores and loads are often more costly than floating-point operations. 

The Draft appears to implicitly constrain all implementations to respect casts to the extent of 
forcing the value cast to fit in the cast type. Here "casts" include explicit casts such as f = (float) d and 
implicit casts in assignments (f = d) and function value returns (return d). 

This constraint is laudable but perhaps not widely recognized since many existing implementa­
tions follow the tradition and therefore would not be standard-conforming. If this is a potentially con­
tentious issue the sooner it is exposed and dealt with, the better. 

Recommendation: In the Rationale, state explicitly that existing implementations which do not 
always round to fit explicit and implicit casts are NOT conforming. 

Function results in long double registers: Implementations may readily pass all floating-point 
parameters - float, double, and long double - in long double format by virtue of the "as if' principle. 
Furthermore float, double, and long double function results may be returned in long double containers, 
for the same reason, as long as float and double function results have been rounded to their respective 
precisions prior to promoting the rounded result back to long double form. This rounding properly 
occurs in the called function. 

X3Jll Summary: Emphasize that casts force rounding. 

X3Jll Response: Changes have been made along the lines you suggested. Words have been 
added to the Rationale to emphasize that casts require conversions. 
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Comment #10, Section 3.4: defer constant expressions .with side effects 
The C standard committee recognized some of the problems associated with constant expression 

evaluations involving floating point, when it mandated that compile-time constant expression evaluation 
must be at least as accurate as the run-time environment Even so there are occasions when, for clarity, 
one would like to write a constant expression while deferring its evaluation to run time. Thus 

z = -1.0/0.0; 

may be intended to generate an infinity and division-by-zero exception at run time (perhaps within an 
implementation of log). The exception might be lost if the expression were evaluated at compile time; 
some compilers might refuse to compile that expression until it was suitably disguised. Such disguises 
do nothing to improve code readability; the standard should preclude compile-time expression evalua­
tion except in cases free of side effects or when side effects were explicitly ignored. In this context 
compile-time expression evaluation includes statements like 

double z = 1.0e999 ; 
and 

a+= 1.0/3.0; 

which generate exceptions on some run-time systems. Thus expressions like those above would not nor­
mally be evaluated at compile time. 

Most integer expressions involving only small constants could be evaluated at compile time under 
any circumstances, as before. Otherwise expressions may only be evaluated at run time and subject to 
the same sequencing constraints as other executable statements so that, for instance, evaluation of all 
constant expressions at the beginning of program or function execution is impennissible. 

~- Recommendation: Modify 3.4 Description to read: 

In general, constant expressions must be evaluated at run time rather than compile time. 
There are three exceptions: 

1 When the constant expression initializes a variable with the static attribute; 

2 When the language syntax requires an integral constant (footnote 40); 

3 When the constant expression may be evaluated at compile time without any rounding error or 
other numerical exception, and the result is exactly representable in the run-time environment 
(this includes most expressions involving small integer constants); 

Even in these cases, a warning must be issued if the constant expression can't be evaluated 
exactly. 

The "as-if' rule comes to the aid of many implementations, of course; on systems in which 
floating-point expression evaluation produces no side effects, compile-time evaluation is indistinguish­
able from run-time. 

X3Jll Summary: Defer constant expressions with side effects. 

X3Jll Response: Quality of implementation is beyond the scope of the Standard An implemen­
tation is at liberty to defer floating-point constant folding until execution time. 

Comment #11, Section 3.5.6: encourage non-zero initialization 

Like implicit function typing, implicit initialization has been a source of many C bugs. Neo­
phytes, readily, and experienced programmers, sometimes, confuse the situations in which variables may 
be depended on to be initialized to zero with those where they may not, or more commonly don't even 
think about initialization. 

And automatic initialization to zero, a natural integer and floating-point value, is not nearly as 
effective at catching logical errors as initializing memory to 0xffffffff, for instance, on a 2's comple­
ment IEEE machine. 
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Recommendation: In section 3.9, classify programs that depend on implicit initialization to zero 
as obsolete. In section A.5, encourage compilers to detect as warnings as many cases as possible of use 
before definition. As a common extension, encourage compilers to provide means by which use of 
obsolete features generates an error message. 

X3J11 Summary: Deprecate implicit zero initialization. 

X3Jll Response: This proposal conflicts with too much prior art. This would break too much 
existing code and is considered useful by many programmers. 

Comment #12, Section 4.7 and A.6.S.14: SIGFPE means floating point 

SIGFPE implementations often encompass many signals besides its namesake floating-point 
exceptions. The handling possibilities for these other types of signals vary greatly and are mostly 
machine-dependent. But the types of floating-point exceptions are comparatively uniform: operand 
exceptions such as reserved operand, invalid operation, or division by zero, and result exceptions such 
as floating-point overflow, underflow, significance loss, inexact, or integer overflow on conversion from 
a floating-point format. The C standard would best serve the cause of portability by specifying that 
only floating-point exceptions of the general types mentioned may generate SIGFPE. Such a require­
ment does not impact implementations that don't generate any signals or don't generate SIGFPE, but 
does make it more likely that work like that described by David Barnett (david@lll-lcc.arpa) on "A 
Portable Floating-Point Environment" will be widely available via portable SIGFPE handlers without 
disrupting other types of exceptions that properly arise elsewhere. 

Recommendation: Change 4.7 to read: 

SIGFPE a floating-point exception arising from a floating-point instruction, including 
operand exceptions such as reserved operand, invalid operation, or division by zero, and 
result exceptions such as floating-point overflow, underflow, significance loss, inexact, or 
integer overflow on conversion from a floating-point format. Exceptions arising from non­
floating-point instructions, such as integer overflow and integer division by zero, and non­
numerical exceptions arising from floating-point instructions such as illegal instruction or 
address, shall NOT generate SIGFPE. 

SIGARITII an arithmetic exception arising from an operation producing integral results 
from integral operands, such as integer overflow or integer division by zero. Non-numerical 
exceptions such as illegal instruction or address shall NOT generate SIGARITH. 

X3Jll Summary: Reserve SIGFPE for floating-point exceptions only. 

X3J11 Response: This proposal conflicts with too much prior arL Many implementations raise 
floating-point exceptions for a variety of reasons. Exception handling is very implementation depen­
dent. The Committee would like to make signals more portable but the variety of architectures and 
implementations makes that task very difficult. 

Even if only genuine floating-point exceptions generated SIGFPE, most signal handlers would 
probably handle some differently from others. The BSD method for transmitting some detail about the 
signal is to pass an additional argument (int code) although a pointer to a struct whose details are 
machine-dependent would be a better choice. SIG details aren't suitable for standardization but the 
method of transmitting them - by an extra parameter in the signal handler calling sequence - is. 
Despite a comment in A.6.5.14, adding extra parameters does not seem to be permitted by the Draft. 
The intent is to allow subsequent standardization of struct sig_ detail on IEEE machines. 

Recommendation: Add to 4.7: 

<Signal.It> defines an implementation-dependent struct sig_ detail, possibly trivial. 

Add to 4.7.1: 

When a signal occurs, the signal handler is invoked as (*func)(int sig,struct sig_detail 
*psd). When setting up input parameters for (*func), an implementation may pass a null psd 
if there are no details to report. 
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Add to 4.7.2.1: 

int raise(int sig, struct sig_ detail ~d); 
The raise function sends the signal sig to the executing program, accompanied by signal 
details in ~sd, which may be null if there are no details. 

X3Jll Summary: Add an implementation-dependent argument to signal handlers. 

X3Jll Response: The Standard reflects widespread existing practice in this regard. There is no 
prior art for this feature (that is, not for a technically correct approach). Adding this feature would 
break too much existing code. The Committee attempts to codify existing practice whenever possible. 

Some implementations will never detect any floating-point exceptions under any circumstances. 
Then SIG ERR and errno indications could be returned by signal() rather than silently accepting an 
attempt to- specify a SIGFPE handler which can only be invoked by raise(). Alternatively, require 
<signal.h> to contain #define can_ SIG... for each X3Jl 1-standardized SIG that an implementation can 
generate by means other than raise(): 

Recommendation: Add to 4. 7: 

For each standardized exception such as SIGABRT, an implementation's <signal.h> also 
defines macros #define can_ SIGABRT if that signal can arise by other means than raise(). 

X3Jll Summary: Need a way to determine which signals may be produced by means other than 
raise. 

X3Jll Response: A specific proposal is needed before action can be taken. No prior art exists 
for this feature. Many aspects of the signal function are implementation defined. This is due to the 
wide variety of µnplementations in existence, each of which has unique requirements. 

Comment #13, Section 4.8: variable argument lists are expensive 

~. Variable argument lists impose a burden on the Draft far in excess of their value. The principal 
reason they must be standardized is so the printf and scanf families of functions can be specified as part 
of the C run-time library rather than as part of the language. Furthennore the necessity of providing for 
variable argument lists constrains system designers far out of proportion to the benefit; although the 
Draft does not proscribe different calling conventions for variable-argument and fixed-argument func­
tions, most implementations take the conservative course of providing a common calling sequence, for 
backward compatibility if nothing else. A consequence of this is that, for instance, floating-point 
parameters and integer parameters will be passed in the same registers or on the same stack whether 
that is most efficient or not. 

It may not be widely recognized yet that despite X3Jll's efforts to provide backward compatibil­
ity and portability, the Draft requires every ANSI C usage of print/ or scan/ to have in scope an ellip­
sized variable-argument function prototype. Many otherwise legitimate existing programs that don't 
#include <stdio.h> won't work on an implementation which exploits the freedom granted by the Draft 
to pass variable argument lists differently from fixed lists. Consequently many new implementations 
will constrain themselves so that these older programs continue to work. 

Later I recommend that all function invocations be required to have a prototype in scope. If that 
recommendation were adopted then the problems of backward compatibility of printf and scanf would 
be much less pressing. 

X3Jll Summary: Variable argument lists are expensive. 

X3Jll Response: Quality of implementation is beyond the scope of the Standard An implemen­
tation is at liberty to implement printf in such a way that printf will behave correctly without a proto­
type in scope (as you note). However, a simple compile-time switch could provide a faster calling 
sequence for strict ANSI C programs. We also note that many applications make use of printf-like 
error logging functions. 
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Comment #14, Section 4.9.6 and 4.10.1.4: printf/scanf duality for non-model numbers 

The values of .. .MIN DIGITS and ... MAX DIGITS proposed for <fl.oat.h> below constitute a 
specification on printf and scanf; under appropriate-conditions, model numbers are guaranteed to repro­
duce their values under inputloutput and outputlinput sequences. 

Infinities and NaNs should also be printable with printf and scannable with scanf and strtod in the 
same way as numeric tokens. Ideally the C standard should specify the format of acceptable character 
representations for floating-point infinity and NaN. At a minimum, all implementations should recog­
nize "infinity" on input, and convert it to the largest representable magnitude in the target format; all 
implementations should recognize "nan" on input and convert it to a non-numeric symbol if one exists, 
otherwise indicating an error different from that corresponding to a totally unrecognized character 
string. "infinity" and "nan" should be recognized in any combination of upper and lower case. 

Given the reluctance of the IEEE 754 committee to prematurely commit to such specific represen­
tations, the C committee might impose a requirement less demanding, but correspondingly less 
beneficial: non-model numbers and non-numbers, when printf' ed in an output fonnat that accommodates 
.. .MAX DIGITS significant digits for model numbers, should be readable by scanf and strtod with an 
input format that reproduces model numbers. Such an outputlinput sequence should map model 
numbers to themselves, non-model numbers to themselves, and non-numbers to non-numbers. That 
guarantees that output fonnats sufficient to preserve numeric information also preserve non-numeric 
identity. 

The Draft may be interpretable as already requiring the capability described in the preceding 
paragraph. 

Recommendation: Add to the Rationale: 

An implementation that includes infinities or NaNs shall printf them in the usual numeric 
format output fields with appropriate character strings that distinguish them from finite 
numbers. Those character strings must also be readable by strtod and by scanf in the usual 
numeric format input fields and converted into the appropriate internal representation of 
infinity or NaN respectively. -

X3Jll Summary: Require printf/scanf duality for non-model numbers. 

X3Jll Response: Quality of implementation is beyond the scope of the Standard An implemen­
tation can assign meaningful semantics to printing and scanning non-model numbers. We felt it would 
be an undue burden to require all implementations to support non-model numbers. 

Comment #15, Section 4.9.6.1: display signed zero with printf %+ 

Implementations where the sign of zero is meaningful require a method of forcing its display in 
printed output. The simplest would be to amplify the definition of the + modifier of printf output to 
explicitly state that it causes the sign of zero to be displayed 

Recommendation: Add to Rationale: 

Implementations in which the sign of zero is significant shall always display that sign when 
the + modifier is included in a print specification. Implementations in which the zero has 
no sign or zero's sign bit has no significance shall always display a + sign. 

X3Jll Summary: Display signed zero with printf %+. 

X3Jll Response: Quality of implementation is beyond the scope of the Standard. There are 
ANSI standards that forbid displaying a negative zero. The FORTRAN-77 standard does not allow 
displaying negative zero and currently the proposed FORTRAN-8x standard does not allow this. An 
implementation is at liberty to implement this feature. 

Comment #16, Section 4.9.6.1: distinguish exact zero with printf %f 

In debugging problems that are costly or difficult to reproduce, it is helpful to be able to distin­
guish, without changing and rerunning the program, exact zeros from small non-zero numbers that only 
display zero digits in %f or %g format. To this end the specification for %f format should state that the 
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result for exact zero is O followed by n+l spaces, where n is the precision specification, instead of a 
decimal point and n zeros. The intent of the alternative format %#f would be better preserved, how­
ever, if it caused even exact zero to be printed with an explicit decimal and trailing zeros. 

Recommendation: Add to 4.9.6.1 description off format 

If the argument is exactly zero and the # alternate form is not specified, then blanks are 
used in lieu of the decimal-point character and its trailing zeros. 

X3Jll Summary: Display exact zero with printf %f. 

X3J11 Response: Quality of implementation is beyond the scope of the Standard. The Commit­
tee was reluctant to add another special case (there are enough special cases already). An implementa­
tion is at liberty to assign these semantics to printf. 

Comment #17, Section 4.9.6.1: provide useful printf %#g 

Printf supplies %g and %#g conversions. The difference between them is not very interesting. 
What would be more useful is a %#g that exploits available space better than normal %g. 

Recommendation: Replace the# description for g and Gas follows: 

Printf with a %#g specification ignores any precision specification and bases formatting 
decisions solely on the width specification w. If the operand is an exact integer that can be 
printed within a field of width w, then it is printed without a decimal point or trailing zeros. 
Otherwise the operand is printed in the %f format that displays the maximum number of 
significant figures, with the decimal point anywhere within the field, unless 1) the operand 
is large enough that there would be no room for the point within the field, or 2) the operand 
is small enough that it would display more significant figures in a %e format In either of 
these last two cases a %e format is used. 

Except when the value can be represented exactly as an integer, 1) the full field width w is used, 
and 2) a numerical value is never printed without a decimal point More than w characters are used 
only if w is so small and the operand so extreme that a %e representation with one significant figure 
would exceed w characters. 

X3J11 Summary: Provide useful printf %#g. 

X3J11 Response: A specific proposal is needed before action can be taken. The Committee felt 
there was no prior art for this proposal. 

Comment #18, Section 4.9.6.2: scanf requires more than minimal ungetc 

The current Draft finally answers most of the questions about the interaction of ungetc() and 
scanf(). The Draft seems to imply: 

When scanf() processes a co"ect format conversion and reads beyond it, that first character 
beyond the formatted field is guaranteed to have been pushed back to the input stream. 
When scanf() processes an inco"ect format conversion, at most one input character is 
guaranteed to have been pushed back by scanf() - so that any previous characters read and 
subsequently rejected by scanf may have been lost, as in the case of attempting to scan " -
.x" with %f. In either case, after a return from scanf(), ungetc() must be able to accept at 
least one more character of pushback.. Thus if the ungetc() implementation is minimal then 
scanf() must be implemented with some more powerful pushback mechanism. 

Many existing sscanf implementations implement ungetc by writing back characters to the input 
string. This causes problems if that string is in read-only memory. The Draft appears to reject such 
implementations by declaring "const char *s11 and the Rationale should emphasize the point in English. 

X3J11 Summary: Emphasize that fscanf requires more than minimal ungetc. 

X3J11 Response: The Committee has voted against this idea. Your description of the 
scanf/ungetc semantics are correct An implementation is at liberty to implement writable string 
literals. A maximally portable program cannot rely on strings being writable. If strings literals are 
writable then sscanf could be implemented in such a way that no program could tell that a character 
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was actually being written over itself. 

Comment #19, Section 4.10.1.4: strtod/ator are mathematical functions 
From the point of view of exception handling, stttod() and atof() are like the mathematical library 

functions discussed later. Thus if no error handling is specified, the numerical results of underflow or 
overflow or invalidly-formed input strings should be undefined. If error handling is specified, the treat­
ment of underflow and overflow should be like that of multiplication, and the treatment of an invalid 
input string should be like that of 0.0/0.0. 

Recommendation: In 4.10.1.4, remove errno specification for stttod(). 

X3J11 Summary: Remove the errno specification for strtod. 
X3J11 Response: The Standard reflects widespread existing practice in this regard We sympath­

ize with your desire to remove errno, strtod, strtol, and stroul, but there is too much existing practice. 
It should be noted that these functions are different from the math functions in that they are not 
required to execute as a single operation without visible exception. 

There must be a separate implementation strtodl() for long double and there should be a separate 
strtodf() for efficiency. Unfortunately these names exceed six characters; strtof is unused but not strtol! 
Speed of base conversion is relatively important in applications where input/output dominates computa­
tion. 

Recommendation: In 4.10.1.4, reserve stttof() and strtld(). 

X3J11 Summary: Reserve strtof and strtld 

X3J11 Response: The Committee has voted for this idea. The functions strtof and strtld cannot 
be used in a maximally portable program but they are reserved for future use in 4.13.7, FUTURE 
LIBRARY DIRECTIONS. 

atof() is problematic from the point of view of naming - it should have been called atod() - and 
from the point of view of exception handling - it has no universal method to indicate an invalid string 
argument. It offers nothing that can't be efficiently obtained from strtod(). atof() and atol() should be 
dropped from the Draft despite their ubiquity, to encourage new code to be written robustly with 
strtod() and strtol(). Of course, compiler vendors will not need to be told to continue to retain atof() 
and atol() in their libraries indefinitely. 

Recommendation: Footnote atof() and atol() as obsolescent and so list them in 4.13.6. 

X3J11 Summary: Deprecate atof and atol. 

X3J11 Response: The Committee discussed this proposal but decided against it There are situa­
tions where something simple like atol and atof are useful, and they have existed for a long time. 

Comment #20, Section 4.10.2: require two random number generators 
The Rationale makes two valid points about random number generators, that repeatability is 

highly desirable on different implementations, and that different algorithms may be efficient on different 
machines, but the proposed standard fails to draw the obvious inference: two random number generators 
should be mandated, one a specified good algorithm that can be implemented to produce identical 
results with tolerable efficiency on all machines, and another of similar calling sequence that may 
implement any reliable algorithm of maximal efficiency on a particular machine. Where the first algo­
rithm can be implemented very efficiently, the second name may be only a synonym. 

Such duality makes manifest the best way to achieve portability, and the best way to achieve 
efficiency. 

It might be a convenience to provide a standard way to retrieve the current random number gen­
erator seed in order to restart a particular sequence later - a grand() corresponding to srand(). 

Recommendation: Require rand() to return a specific value for a specific argument, by specifying 
an acceptable algorithm. Define frand() which has the same calling sequences as rand() but implements 
a random number generator deemed "best" by the implementer; frandO may be the same as rand(). 
Define srand() and fsrand() to set the current seeds, and grand() and fgrand() to return the current seeds. 
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RAND_ MAX limits rand() but frand() is limited by FRAND _ MAX >= RAND_ MAX. 

I have not followed recent work on portable random number generators and therefore have no 
recommendation for or against the particular random number algorithm currently in the Draft. When 
I've needed such a random number generator I have used the one described by L. Schrage in ACM 
TOMS, 6/79. 

X3Jll Summary: Require two random numbe~ .generators. 

X3Jll Response: This concerns matters beyond the scope of X3Jll. The Committee has dis­
cussed this issue and decided that there are too many implementation-specific details surrounding 
predictable random number generators. 

Comment #21, Section 2.2.4.2: <float.h> bas too many names, not enough information 

The Rationale states that the constants in <float.h> were derived from a similar section of the For­
tran 8x proposal. The C committee may not have been aware that those corresponding Fortran propo­
sals are not universally accepted. Tom MacDonald, the principal instigator of <float.h> in C, has indi­
cated that his intent is not to canonize the specific contents of the current Draft's <float.h> but rather to 
insure that C's floating-point model and inquiries matched Fortran's to the greatest possible extent, to 
promote easy code conversion. Unfortunately C is ahead of Fortran 8x in the standardization process 
and is likely to get even further ahead 

Recommendation: Remove the <float.h> specification from the C Draft for now or indicate its 
tentative status by placing it in the Common Extensions, Future Directions, or Rationale. State a future 
direction goal of providing a C analog of the final Fortran-Bx floating-point characterization. 

A proposal for <float.h> and corresponding Fortran follows in Appendix #2. 

X3Jll Summary: <float.It> has too many names and not enough information. 

X3Jll Response: The Standard must accommodate a variety of architectures. We believe that 
the <float.h> header provides useful information for a broad class of implementations. 

Comment #22, Section 2.2.4.2: long double> minimal float 

The committee recognized the need for three integer types, and in order that they be useful, 
prescribed that implementations providing a minimal short int must also provide a long int of greater 
precisio~. 

The committee also recognized the usefulness of three floating-point types, and specified that dou­
ble have more guaranteed precision than float, but made no corresponding prescription on exponent 
range. Thus all floating-point types may be implemented with the same exponent range, which might 
not exceed that of VAX or IBM 370 double precision. 

Thus an implementation conforming to the current Draft need not even allow an efficient emula­
tion of a common hand-held calculator. This does not facilitate portability. It would be better to 
prescribe 

FLT_DIG 
DBL_DIG 
LDBL DIG 
-FLT MIN 10 EXP - - -
FLT MAX 10 EXP - - -
-DBL_MIN_l0_EXP 
DBL_MAX_l0_EXP 
-LDBL _MIN_ 10 _ EXP 
LDBL_MAX_l0_EXP 

>= 6 
>= 10 
>= DBL DIG 
>= 37 
>= 37 
>= 99 
>= 99 
>= -DBL MIN 10 EXP - - -
>= DBL_MAX_l0_EXP 

As simple as these requirements are - less stringent than IEEE 854' s - they exclude D format, the usual 
VAX double-precision hardware floating point So from the point of view of practical politics, rather 
than for any technical reason, some must be relaxed: 
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-DBL MIN 10 EXP 
DBL MAX-10 -EXP 
-LDBL_MIN_io_EXP 
LDBL MAX 10 EXP - - -

>= 37 
>= 37 
>= 99 
>= 99 

16 

This relaxed requirement implies that existing VAX code written for "double" can continue to execute 
with no performance degradation, but that "long double" must be provided on VAXes by other means 
than D format. 

Recommendation: Change the requirements to: 

-LDBL MIN 10 EXP 
LDBL MAX-10-EXP - - -

>= 99 
>= 99 

X3Jll Summary: Require the long double exponent range to exceed the minimal float exponent 
range. 

X3Jll Response: The Standard must accommodate a variety of architectures. There are many 
floating-point implementations that would be non-conforming if these recommendations were adopted. 
The Committee tries to include as many implementations as possible. 

Comment #23, Section 3.1.3.1: compiler conversion same as run-time 

In the normal situation in which the compile-time and run-time environments are the same, it is 
essential that floating-point constant syntax acceptable to the compiler also be acceptable to strtod() and 
scanf(), and the results of conversion should be identical. This is accomplished automatically if the 
compiler uses strtodQ to convert ascii to binary floating point. 

In principle, compilers should accept at least "infinity" and "nan" in situations where numerical 
floating-point constants are allowed When the target of compilation does not support infinity, a compi­
lation warning and the largest magnitude should be generated. When the target does not support non­
numeric representations such as NaN, Reserved Operand, or Indefinite, a compilation error should be 
generated. 

Recommendation: Wherever a floating-point constant is permitted, a compiler must correctly 
accept any string acceptable to scanf %If. 

The foregoing recommendation may well be unattractive to compiler implementers who envision 
difficulty distinguishing a numeric token "infinity" from another kind of identifier 11infinitx". About the 
same benefit would accrue to programmers, however, if casts from strings to floating-point (and for 
orthogonality, integral) types were permitted. Thus (double) "infinity" will have the same effect as 
strtod("infinity") except that it will be evaluated at compile time, if possible. 

Given the latter feature, the restrictions on compile-time expression evaluation proposed earlier 
could be relaxed: 

a) double x=3.14; could always be evaluated at compile time with any side effects disregarded, but 

b) double x=(double)"3.14"; could only be evaluated at compile time if free of side effects. 

Alternative Recommendation: Allow casts to floating-point or integral types from explicit 
strings. The casts may be evaluated at compile time if free of side effects in the run-time environment. 
Such casts to integral types (type)"string" are equivalent to {type)atol("string") while such casts to 
floating-point types are equivalent to strtof(11string"), strtod("string11

), or strtld("string"). 

X3Jll Summary: Compile-time floating conversion should be the same as at run time. 

X3Jll Response: The Committee has voted for this idea. There is a requirement that any 
compile-time floating-point constant must be converted identically to strtod or scanf. Both these func­
tions refer to the language description of floating-point constants in 3.1.3.1. However there is no 
requirement to support NaNs and infinities. 
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Comment #24, Section 3.3.2.2 and 3.S.4.3: no implicit declarations 
Implicit declarations are a bane of reliable Fortran programming, and C almost uniformly prohi­

bits them, but makes an exception for functions which may be implicitly defined to return integer 
values, and function parameters which may be implicitly defined to be int It would make as much 
sense to treat all undefined variables as implicitly defined ints, on the grounds that reduces the 
programmer's burden of petty tasks. 

The only justification for implicit definitions is ·prior practice. Prior bugs amply justify this sim­
ple change: 

Recommendation: Prohibit implicit function type declarations, implicit function parameter type 
declarations, and invocations of functions with no prototypes or conflicting ones. Because function pro­
totypes must always be in scope at the time of function invocation, remove the rules for implicit 
conversion of char, short, and float parameters. 

The simplification in the Draft is considerable and remarkable. It eliminates knotty questions 
such as whether the following should be, and are, compatible types: 

float f(); 
float g(int); 

The Draft presumably intends that functions declared to return "float" always return a value rounded to 
float precision, and returned in the same way; therefore the foregoing declarations are compatible. 
While "as if' permits returning a float value in a double container, however, that must be done uni­
formly: in an implementation contemplating backward compatibility, f()'s returned value must not be 
placed in a double or float container according to whether f() is declared in old or new style, for then 
the declarations would be incompatible. The Draft or Rationale must speak forcefully to this point so 
that such implementations are clearly not conforming. 

Function prototypes are justifiably regarded by X3Jl 1 as one of its greatest contributions to ANSI 
C relative to previous common practice. While the desire to provide compatibility with previous prac­
tice is laudable in general, in the case of mixed implicit and explicit declarations it leads to questions 
like the foregoing which have no good answer. Better not standardize a poor one. 

Furthermore, older programs which used functions in a consistent way (that passes lint, for 
instance) can be upgraded largely automatically to include the necessary prototypes. Tools to perform 
that conversion will probably be widely available. Vendors who perceive a need for even greater back­
ward compatibility will provide such compatibility in a fonn appropriate to their own previous practice. 

X3Jll Summary: Prohibit implicit declarations. 

X3Jll Response: This proposal would invalidate too much existing source code. In your exam­
ple both declarations float f(); and float g(int); are compatible types. 

Comment #25, Section 3.5.4.2: fix arrays 

I know no C translation that's as clear as the following Fortran code: 

SUBROUTINE MA TMUL(X,LX, Y,L Y ,Z,LZNX,NY,NZ) 
REAL X(LX,*},Y(LY,*),Z(LZ,*) 
DO 11=1,NX 

DO 2J=l,NZ 
SUM=0 

DO 3 K=l,NY 
3 SUM=SUM+X(I,K)*Y(K,J) 
2 Z(IJ)=SUM 
1 CONTINUE 

END 

Code like this is at the heart of most of the major portable Fortran libraries of mathematical software 
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developed over the last twenty years. The declared leading dimensions of X, Y, and Z are not known 
until runtime. 

The closest that C can provide is an illusory equivalence by passing, instead of an array X, a 
dope vector - an array of pointers to X's rows. Creating such a dope vector from an array could be 
facilitated by mandating a variety of library functions. Equivalent functionality can be obtained in trad­
itional C by tteating all arrays as one-dimensional and doing the subscripting "by hand", so that it's 
harder to get right and harder to optimize, either on the caller's side or the callee's. 

The Draft, like traditional C, disallows the equivalent 

void matmul(x,lx,cx, ... ) 
int Ix, ex; 
double x[lx][cx] ; 

unless 1x and ex are known at compile time. GNU CC, however, allows variably-dimensioned arrays to 
be passed as parameters or declared as local variables even more generally; the only requirement seems 
to be that the array bounds be evaluatable on function entry. 

The goal is not to duplicate Fortran's features exactly, but rather to insure that portable linear 
algebra libraries are as easy to create in C as in Fortran. 

The section numberings in the Draft and Rationale are out of synch in the declarations sub­
chapter. 

Recommendation: Adopt GNU-CC's treatment of variably-dimensioned arrays, pennitting array 
dimensions of parameters and automatic variables to be determined at run time when needed. 

A further-reaching scheme to provide conformant arrays is outlined in Appendix #1 below. 

X3Jll Summary: Pennit array dimensions of parameters and autos to be determined at run time. 

X3J11 Response: The Committee discussed this proposal but decided against it. This invention 
would have far-reaching implications such as creating pointers to confonnant arrays and pointer arith­
metic with those pointers. Also, variable argument list processing is more complicated with variably 
dimensioned arrays. 

Comment #26, Section 3.7 .1 and A.6.5.9: standardize Fortran-77 interface 

Even if many of the other suggestions in this document were adopted, there would still be a 
variety of situations in which Fortran numerical code is preferable to C: 

1) when it's already written; 
2) when it uses complex variables; 
3) when it uses multi-dimensioned arrays of varying sizes. 

I don't advocate adding complex data types to C because they are an easy extension in C++, and arrays 
are discussed in another comment. Very limited Fortran interfacing is described as a common exten­
sion, but much more can be done. Standardizing an interface to Fortran-77 would complete the job of 
making C the most useful framework for scientific computation. 

Recommendation: Add a new environmental section 2.2.5 describing <fortran.h>: 

External Fortran-77 FUNCTIONS and SUBROUTINES may be declared in C. <fortran.h> 
defines certain aspects of a Fortran interface in a portable fashion although the aspects 
themselves vary among implementations. Certain simple Fortran types are defined in terms 
of equivalent C types in this fashion: 
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#define INTEGER int 
#define LOGICAL unsigned 
#define REAL float 
#define DOUBLEPRECISION double 
#define FUNCTION 
#define SUBROUTINE void 

Note that the definitions for a particular C implementation are chosen to be appropriate for 
the particular Fortran compiler that C compiler chooses to support. Omitting these 
definitions indicates that a C compiler supports no Fortran compiler. 

Fortran FUNCTION and SUBROUTINE declarations are allowed wherever external C func­
tions may be declared, and consist of the reserved word FORTRAN followed by a function 
type and function name, followed by the parameter declarations. Parameters must be valid 
C types although normally the <fortran.h>-defined macros would be used for clarity. Note 
that the keyword "fortran" entirely in lower case is also defined as equivalent to "FOR­
TRAN" entirely in upper case. The following Fortran-77 subprograms 

INTEGER FUNCTION IFUNC ( A, B ) 
INTEGER A 
DOUBLEPRECISION B 

SUBROUTINE LSUB ( C ) 
LOOICALC 

correspond to the following declarations in a C program 

FORTRAN INTEGER FUNCTION IFUNC ( INTEGER A, DOUBLEPRECISION B) ; 
FORTRAN SUBROUTINE LSUB ( LOGICAL C) ; 

and as an example, on some Unix systems those declarations are equivalent to the following 
conventional C function declarations: 

extern int IFUNC_( int *A, double *B); extern void LSUB_( unsigned *C); 

but the equivalent C types and function names are implementation-defined. 

A C compiler recognizes FORTRAN function invocations in C code and treats them 
according to the conventions of its supported Fortran compiler. Since all parameters to 
FORTRAN functions are pointers, an actual parameter that is not a pointer is copied to a 
temporary and a pointer to the temporary passed instead. Thus an invocation like 

if (IFUNC(a,&b) == 0) ... 

would cause the same external reference as a declared external C function, whose name in 
the Unix example would be IFUNC_. If the parameter a is a pointer to an INTEGER, then 
it is passed directly; if the parameter a can be cast to an INTEGER, then it is so cast, then 
copied to a temporary and a pointer passed to the temporary. The type of b, on the other 
hand, must be DOUBLEPRECISION and its pointer is passed directly. If INTEGER is not 
equivalent to int, then either the return value of IFUNC, of type INTEGER, or the 0, of 
type int, will be converted according to the usual rules prior to the comparison. 

19 
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Note that Fortran-77 CHARACTER types, COMPLEX function values, and EXTERNAL function 
parameters may have no direct correspondents in C and the parameter and function value conventions 
may not even be expressible in C. Unix Fortran compilers derived from f77 are often implemented 
entirely in C but older systems usually implemented Fortran before C. 

Finally, if the FORTRAN reserved word is also allowed in declarations of function parameters, 
then pointers to Fortran functions, whether coded in Fortran or C, can be passed to C functions: 

g( FORTRAN INTEGER FUNCTION F( ... ) ) 

Then g will be compiled to produce suitable code for invoking F. 

The burden on C compilers not wishing to support Fortran is light: 

1 They must provide <fortran.h>, which may be empty. 

2 They must respect the FORTRAN reserved word and FORTRAN function declarations which are 
otherwise legitimate, such as 

FORTRAN int IFUNC_( int *A, double *B) ; 

3 They must convert value to reference parameters in FORTRAN function invocations in the 
manner described above. 

X3J11 Summary: Standardize a FORTRAN-77 interface. 

X3J11 Response: This concerns matters beyond the scope of X3Jll. Attempting this could force 
us to standardize the interface to many languages. 

Comment #27, Section 3.8.8 and 2.2.4.2: predefine generalized precision macros 

The generalized precision proposal in Fortran 8x is complicated and controversial, yet responsive 
to a widely-recognized need among implementers of portable numerical software. The same need is 
most widely felt in the C community as a question like this: what is the most efficient integral type that 
contains all integers in the range [-99999,99999] ? 

Recommendation: To portably declare such types, add the following predefined macros to 3.8.8: 

_int_(p) is evaluated to the name of the smallest signed int type that contains all the 
signed p-digit integers, i. e. the interval [-(lO**p)+l,l0**p-1]. 

_unsigned_ (p) is evaluated to the name of the smallest unsigned int type that contains all 
the p-digit unsigned integers, i. e. the interval [0,lO**p-1]. 

_float_(p,r) is evaluated to the name of the smallest floating-point type that contains all 
the p-digit signed integers without rounding, i. e. all the integers in the interval 
[--(l0**p)+l,l0**p-1], and contains lO**r and 10**-r within its range of positive model 
numbers. 

_INTEGER_(p) is evaluated to the Fortran name of the type corresponding to 
_ int_(p,r), or to INTEGER if no Fortran compiler is supported. 

_REAL_(p,r) is evaluated to the Fortran name of the type corresponding to _float_(p,r), 
or to REAL if no Fortran compiler is supported 

_CO:MPLEX_(p,r) is evaluated to the Fortran name of the complex type whose com­
ponents are _float_(p,r), or to COMPLEX if no Fortran compiler is supported. 

All the precision- and range-dependent macros fail, terminating compilation, if the precision 
or range requirements can't be met by any supported type. 
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,~ Recommendation: In order that the C pre-processor itself may be written portably in C, the C 
run-time library should provide certain corresponding string-valued functions that return the appropriate 
type for a particular implementation, or a null pointer on failure. Add the following in <floath> to 
implement the corresponding cpp macros: 
char * int_(int p); 
char* unsigned_(int p); 
char * float (int p; int r); 
char* INTEGER_(int p); 
char• REAL (int p; int r); 
char* COJMPLEX_(int p; int r); 

X3J11 Summary: Predefine generalized-precision macros. 

X3J11 Response: The Committee discussed this proposal but decided against it The Committee 
has the difficult task of deciding what new ideas can be added to C. We felt this idea has merit but 
could not be included in the Standard. 

Comment #28, Section 4.5: specific mathematical library functions 

Certain functions in the mathematical library have misguided specifications. The general issue of 
how to deal with exceptional conditions is treated later: the following comments apply to specific cases 
in which numerical results and error indications are to be returned. 

Non-model arguments: The introduction should explain that the specifications for these functions 
only apply to model number arguments. There are good examples like MC68881 or 4.3 BSD to follow 
for extending to IEEE non-model numbers, but other architectures are far too various to specify. Here 
and later when I suggest an "undefined" result for various situations I mean "defined by the underlying 
hardware system" where possible, rather than "the C run-time library may implement any capricious 
response whatever''. 

X3Jll Summary: Math function specifications should apply only to model number arguments. 

X3J11 Response: This concerns matters beyond the scope of X3Jl 1. Specifications for non­
model numbers is considered beyond the scope of the Standard. The description applies to model 
numbers only. 

ERANGE: Overflow and underflow are exceptional conditions in the sense that they signal that 
rounding errors have occurred that are "larger than normal" and may not have been properly accounted 
for in the design of the program. The error indication should distinguish between overflow and 
underflow; SVID calls these OVERFLOW and UNDERFLOW. If a numerical result is to be specified 
at all, it should be the same as that for a multiplication or division producing a similar overflowed or 
underflowed value, thereby allowing some uniformity in treatment. 

X3Jll Summary: Distinguish between overflow and underflow. 

X3J11 Response: Quality of implementation is beyond the scope of the Standard The Standard 
makes no requirement for distinguishing between overflow and underflow. 

EDOM: "Domain errorsu include those for which a function of a real variable has no defined 
value or has a singularity; SVID calls these DOMAIN and SING. The error indication should distin­
guish between these cases. NaN is an appropriate return value in the former case, signed infinity in the 
latter; on architectures lacking these, the return value should correspond to 0.0/0.0 and 1.0/0.0. 

X3Jll Summary: Distinguish between NaN and singularity. 

X3J11 Response: Quality of implementation is beyond the scope of the Standard The Standard 
imposes no requirement on the implementation of NaNs. 

EIMP L: "Implementation errors" are a way of indicating shortcomings in a particular implementa­
tion without confusing them with limitations inherent in a particular floating-point format or intrinsic to 
a particular mathematical function. They seem to be common in implementations of fmod and tri­
gonometric functions. If the C standard is to sanction such shortcomings at all, they should be distinc­
tively labeled. 
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X3J11 Summary: Use a distinctive label such as EIMPL for "implementation errors". 

X3J11 Response: This proposal conflicts with too much prior art. The Committee decided 
against adding Enw>L because there is no prior art. 

/mod arguments: z = fmod(x,y) for positive finite x and y is appropriately, uniquely, and exactly 
defined as that z of minimum magnitude which has the same sign as x and differs from x by an integral 
multiple of y. The phrase "integral multiple" is chosen to emphasize that that multiple need not fit in 
an int, a long, or any other storage format, for it need not be explicitly computed. Implementations that 
choose to compute fmod(x,y) by aformula like 

X - y * (int)(x/y) 

should return the Enw>L error indication in cases when the formula does not implement the definition, 
such as when x/y overflows int format. 

The Rationale's wording the implementation of this function is properly by scaled subtraction 
rather than division may shed more darkness than light, being open to easy misinterpretation; the hazar­
dous formula above could be interpreted as a subtraction from x of y scaled by (int)(x/y). 

Recommendation: In the Draft, substitute 

z = fmod(x,y), for finite x and finite nonzero y, is uniquely and exactly defined as that z of 
minimum magnitude which has the same sign as x and differs from x by an integral multi­
ple of y. 

X3J11 Summary: Fix the definition of fmod. 

X3Jll Response: The Committee has voted for this idea. The Standard already defines fmod the 
way you desire. 

Recommendation: In the Rationale, substitute a statement that naive implementations of the for­
mula x - y * (int)(x/y) do not conform; the phrase "integral multiple" emphasizes that the multiple need 
not fit in an int, a long, or any other storage format, for it need not be explicitly computed. Instead, 
fmod can be computed in principle by subtracting ldexp(y,n) from x, for appropriately chosen decreas­
ing n until the remainder is between O and x. 

fmod(x,y), like (x % y), is almost always invoked for a specific constant y like 10, 24, or 1C/2, and 
never for Y==0 except in error. Reasonable-sounding defenses can be given for both fmod(x,0) == x 
and fmod(x,0) == 0 ; the paradox arises because of the division by zero lurking in the background. 
Therefore no prudent programmer would rely on the numerical result of fmod(x,0), so it's best left 
undefined (to allow for a NaN result when available). If an error indication is desired, the appropriate 
one is that for 0.0/0.0 - a domain error. 

Trigonometric arguments: The proper treatment of large trigonometric arguments has long been a 
source of confusion. One satisfactory approach is to always perform a "correctly rounded" argument 
reduction by generating a variable-precision approximation to 1t that is large enough to reduce a particu­
lar argument correctly (4.3 BSD VAX version); another is to reduce all arguments with an approxima­
tion to 1t that is fixed to a precision greater than or equal to the precision of the largest supported 
floating-point format ( 4.3 BSD IEEE version; MC68881 ). 

An unsatisfactory approach is to compute a reduced argument as fmod{x,1t/2) using a defective 
fmod of the type mentioned above. Such algorithms have a catastrophic internal boundary at which 
(int) x/(1t/2) overflows int fonnat; SVID describes such results as "total" or "partial" loss of significance 
but since the real issue is a particular implementation, EIMPL as described above is a more appropriate 
response. The satisfactory algorithms mentioned in the previous paragraph don't contain any such inter­
nal boundary; the fixed-precision 1t algorithm gradually loses accuracy for increasing arguments, but 
that loss is practically undetectable, except by comparison with a variable-precision 1t algorithm, 
because all essential identities and relationships continue to hold for large arguments as well as small. 

The Draft's a large magnitude argument may yield a result with little or no significance not only 
overlooks that such significance loss may occur with rather small arguments such as sin(n * 1t), but 
encompasses algorithms with catastrophic failures at an internal boundary equally with satisfactory 
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fixed-precision algorithms. If exceptional cases are to be detected by the math library functions then 
the former failures should be so detected, but not the latter. SVID mandates that the former be detected 
but misclassifies the occurrence as EDOM rather than EIMPL. 

Recommendation: Remove the sentences about results with little or no significance. Add a state-
ment in the Rationale: 

Trigonometric argument reduction should be performed by a method that causes no catas­
trophic discontinuities in the error of the computed result In particular methods based 
solely on naive application of a formula like 

r = x - (2 * 1t) * (int)(x/(2 * 1t)) 

are not conforming. 

X3Jll Summary: Fix the range reduction specification. 

X3Jll Response: The Committee believes this is clear enough as is. 4.5.1 states that the 
behavior of these functions is defined for all representable values of their input arguments. An imple­
mentation that truncates to int is not Standard confonning. 

Inverse trigonometric argument ranges: The inverse trigonometric functions are mathematically 
multiple-valued and therefore a particular branch needs to be specified for computation. However the 
proposed standard inadvertently goes too far and in effect specifies tight bounds and directions on 
rounding errors at the endpoints of the ranges of acos, asin, atan, and atan2. In contrast, nothing in the 
standard requires that 1+1 be close to 2! 

Appropriate wording for the standard is to refer to the approximate ranges [O,P] or [-P/2,+P/2] 
where P is a machine-representable number whose value is close to 1t but not necessarily the closest 
machine-representable number. Thus the intended branch is made apparent without setting any unreal­
istic expectation that the end points will be correctly rounded to 1t or x/2. The approximate range for 
atan2 is [-P,+P]. 

Recommendation: In the Rationale, explain that the intervals in question are approximate and in­
tended to indicate the proper branch without setting an expectation that the functions will be rounded 
any more accurately at the endpoints of their ranges than elsewhere. 

X3Jll Summary: Clarify ranges of inverse trig functions. 

X3Jll Response: Quality of implementation is beyond the scope of the Standard. The inverse 
trigonometric functions can be implemented this way. 

atan2(0.0,0.0): atan2 is generally used in conversion from rectangular coordinates to the polar 
coordinate argument 8. The 8 associated with the origin is of little consequence, and computing it sel­
dom indicates an error. Conformal mapping applications can treat edges symmetrically if 
atan2(±0.0,±0.0) is allowed to take any of the values ±0 or ±Jt. Such methods aren't available on non­
IEEE machines, so the best choice for the C standard is to restrict the numerical result of atan2(0.0,0.0) 
to the approximate range [-1t,+1t] but otheiwise undefined. On IEEE machines, setting atan2(0,0) to 
NaN would be a mistake in that it would have the consequence that a NaN rather than zero would be 
the result of multiplying any normal complex number in polar coordinates (p,8) by the origin in polar 
coordinates (0.0, NaN). 

X3Jll Summary: Improve atan2(0,0) specification. 

X3Jll Response: This was accepted as an editorial change to the Standard. Your point is 
exactly correct; the January 1988 draft did not correctly reflect the intent of the Committee. It was 
specifically desired to allow implementations the freedom to return a value such as O or NaN instead of 
a domain error for atan2(0,0). It is not clear that representing the ambiguous result as NaN would 
necessarily be a 11mistake11

; atan2 can be used for purposes other than conversion to polar coordinates. 
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What about hypot? Atan2(y,x) and hypot(x,y)=sqrt(x*x+y*y) are complementary components of 
rectangular to polar coordinate conversion and should either both be standardized or neither. 

Recommendation: Standardize hypot(): 

4.5.6.5 The hypot function 

#include <math.h> 
double hypot (double x, double y); 

Description 

The hypot function computes sqrt(x*x+y*y), avoiding however gratuitous intermediate 
underflow and overflow. 

X3Jll Summary: Standardize hypot. 

X3Jll Response: This was considered to be an invention of limited utility. Although this func­
tion has uses, the Committee felt because this function did not exist in the base document and because 
of the limited scope in which it is useful that there was insufficient reason to add it to the Standard. 

log(O.O) and logl0(0.0): The proper interpretation of these values is that of a singularity. No 
overflow or underflow occurs. Since for real variables exp(-«>) == +O, it follows that log(+O) == -«>, 
which can be standardized as -HUGE_ VAL. The Rationale's statement that a range error occurs for 
IEEE 854 compatibility is unaccountable, since IEEE 854 doesn't specify elementary transcendental 
functions like log(); the somewhat related IEEE 854 appendix function logb(0.0) is specified as a singu­
larity (domain error) like -1.0/0.0. The MC68881 flogn instruction, for instance, follows the intent of the 
IEEE committees by returning -«> and signaling singularity (division by zero, a domain error). I 
believe that this case was intended to meet IEEE expectations (domain rather than range error) but was 
overlooked by accident or misunderstanding at the December 1987 ANSI meeting. 

Recommendation: Change the error to domain. 

X3Jll Summary: Make log(O) a domain error. 

X3Jll Response: The Committee discussed this proposal but decided against it. 

pow(0.0,0.0): There are good arguments that pow(x,0.0) should be 1.0 for all x, without any 
exceptional indication; 1.0 is the value most useful, most often. For instance, (x+y)**n computed as a 
sum of terms involving (x**n-j)(y**j), 0 <= j <= n ; this formula readily works as intended if x**O is 1 
regardless of x. Such arguments are not universally accepted, so if the ANSI C committee is 
unprepared to accept them, it would be appropriate for the standard not to specify pow(0.0,0.0). At the 
December 1987 meeting, the Draft was changed to specify a domain error if the result was not 
representable in an implementation. 

X3Jll Summary: Improve pow(O, ... ) specification. 

X3Jll Response: The Committee has voted for this idea. An implementation is at liberty to 
return 1.0 for pow(0,0). 

pow(O.O,negative integral value): 0.0**-l.O is just 1.0/0.0, and if an exception is to be specified it 
should be like that of 1.0/0.0. 

"integral values" in floor() and ceil(): Ambiguous language in Fortran-77's definition of aint() and 
anint(), much like the Draft C standard's definition of ceil() and floor(), has misled some implementers 
into thinking that such functions could be correctly implemented by converting the argument to a long 
or int and then converting back to double. 

Recommendation: Expand the definition of ceil: 

The ceil function returns the smallest integral value in double format greater than or equal 
to x, even though that integral value might not fit in a variable of type int or long. Thus 
ceil(x) == x for all x sufficiently large in magnitude; for IEEE 754 double precision, that 
includes all x such that fabs(x) >= 2**52. 
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X3Jll Summary: Expand the definition of cell. 
X3Jll Response: The Committee believes this is clear enough as is. 4.5.1 states that the 

behavior of these functions is defined for all representable values of their input arguments. An imple­
mentation that truncates to int is not Standard conforming. 

frexp and mod/: The Rationale mentions that these functions almost went the way of ecvt et al. 
Too bad they didn't since frexp and modf are not essential for a mathematical library implementation 
and modf in particular is a source of confusion because· it has been specified in a variety of ways in the 
past The standard's definition of frexp is only appropriate for binary floating point In any case a 
more useful function is int ilogb(double d), defined at least for model numbers so that ilogb(J*b**(e+l­
p)) = e; in other words, ilogb is the exponent of its argument adjusted so that ilogb(l.0) = 0. For flexi­
bility, ilogb(0.0) can be allowed to return any value less than ilogb of the smallest positive represent­
able number. 

Recommendation: Delete frexp and modf from the Draft. 

X3Jll Summary: Delete frexp and modf. 

X3Jll Response: The Committee discussed this proposal but decided against it. frexp has found 
uses in important portability applications; it need not be thought of as a "mathematical" function. 

ldexp might be more useful if its name were more clearly related to its function; scalen() indi­
cates its common use and its relation to the scalb() function defined in the IEEE 754 appendix. The 
standard's definition of ldexp, like frexp, is only appropriate for binary floating point. Is this an 
accident or does it reflect an intent to favor binary floating point? C has always favored binary integer 
arithmetic but has not explicitly inhibited non-binary floating point; the definitions proposed for 
<float.Ii> envision arbitrary floating-point bases. 

Recommendation: Change the definition of ldexp to 

ldexp(double x, int e) computes x*(DBL_RADIX**e) , avoiding explicit exponentiation or 
multiplication. 

X3Jll Summary: Change the definition of ldexp. 

X3Jll Response: The Committee discussed this proposal but decided against it 

The current Draft's ldexp() and frexp() are of no use or interest whatever on machines with 
decimal floating point; scaling by powers of two has no special significance in that case. Floating-point 
scaling by ldexp corresponds most to integer shifting; and is easier to implement in floating-point 
hardware than, for instance, multiplication; it's an atomic MC68881 operation. So the cleanest 
approach is 

Recommendation: Remove 4.5.4.3 and other references to ldexp(). Extend 3.3.7 to permit the 
left-hand expression of « and » to have floating-point type, with the following semantics: the result 
of ((double) x) << e is x*(DBL RADIX**e), and the result of ((double) x) >> e is 
x*(DBL_RADIX**(-e)), with corresponding definitions for float and long double, preferably computed 
efficiently without any explicit exponentiation or multiplication. Unlike the case with integer shifts, 
however, the result is defined for any e, although it may overflow or underflow; the result in those cases 
is defined by the underlying system, just as the result of a multiplication is. 

X3Jll Summary: Delete ldexp in favor of allowing a floating-point value to be shifted. 

X3Jll Response: The Committee discussed this proposal but decided against it. ldexp has found 
uses in important portability applications; it need not be thought of as a "mathematical" function. 

matherr(): X3J11 's conclusions about the SVID function matherr() are right on the mark; too bad 
some of the criteria mentioned in the Rationale weren't applied uniformly to other aspects of C: 

* The style of error handling is redundant on IEEE systems. 

* matherr()-style error handling gets in the way of porting Fortran code to C. 

* 

* 

User-written matherr() might require re-entrant libm. 

A mechanism like signal() would be more flexible 
(but would still imply re-entrant libm). 
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A common initial reaction to matherr() messages on standard error is "how do I get rid of these?" 
Even so the mathe"() mechanism is better than the errno mechanism that ANSI C retained! 

matherr() may have been derived from the best practice for 1970's-vintage mainframes, 
represented by Cody's error handling for his FUNPACK transcendental function package. The IEEE 
854 standard presumably indicates Cody's current thinking on this subject. 

Comment #29, Section 4.13.4: standard functions predefine generic operators 
When Fortran was being invented, both division and square root were commonly implemented as 

subroutines - sometimes rather similar ones. However the first Fortran character set, apparently a subset 
of a commercial typewriter's, had a / character available but not a mathematical square root symbol. 
So Fortran evolved using/ for division and sqrt() for square root, and in this respect has been followed 
by other algebraic languages. But division and square root are both operators, and rather similar in 
some respects - the use of operator or functional notation being a historical accident Other cases are 
similar, such as unary - and fabs(). In many modem hardware implementations sqrt is just an atomic 
operation like division; likewise IEEE arithmetic was designed so that both unary - and fabs() may be 
accomplished by one-bit operations. On an MC68881, all the following C "functions" could be imple­
mented in one or two instructions by disregarding ermo exception reporting requirements: fabs, fmod, 
ldexp, sqrt, exp, log, log 10, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh. 

The point relevant to C is that many of its standard numerical functions should really be thought 
of as operators (designated, like sizeof. with words rather than special typographical symbols) rather 
than external functions (although some might be implemented with invisible external functions). Of 
course, that means that a program can't pass a pointer directly to fabs or sqrt, but nobody laments that 
it is tedious to create a function that performs division in order to create and pass a pointer to it Simi­
larly there is no great loss in requiring anyone wanting to create a pointer to a function that computes 
sqrt to go to the trouble of creating his own function that calls the predefined sqrt, then passing a 
pointer to that function. 

Unlike fully reserved identifiers, operators designated by predefined names should be undefined by 
the compiler upon encountering a programmer-supplied declaration for that name. The compiler should 
issue a warning however at that point since such redeclarations are not generally commendable pro­
gramming practice. In the context of ANSI C, a reasonable alternative would be to prohibit such rede­
clarations that don't specify the parameter type list as quite likely accidental, while silently allowing 
redeclarations that specify the parameter type list since then accidents are far less likely. 

A consequence of generic treatment is that there is no need to reserve additional function names 
fabsf, fabsl, sqrtf, sqrd, etc., as contemplated in section 4.13. It also means that, being generic func­
tions known to the compiler, constant expressions involving them could be evaluated at compile time. 
An additional consequence of generic treatment is that these functions could take an optional extra 
argument which is useful in providing better exception handling, as described later. Finally, providing 
uniform names for numerical operators reduces the effort required to convert numerical code from one 
precision to another. Imagine the cries of distress if the / operator were required to be written /f for 
float operands and /1 for long double. 

Generalized precision: the proposed Fortran 8x standard includes a new facility which allows a 
variable's floating-point precision and exponent range to be declared in a machine-independent way at 
compile time, thereby solving a common problem in portable mathematical software: how can I declare 
variables of a particular precision? For instance, if the equivalent of 10 decimal digits and 2 decimal 
exponent digits are required to simulate a hand-held calculator, there is no direct way to insure that 
such variables are declared in the shortest format (float, double, long double) with the necessary preci­
sion and range. Instead experiments must be performed to determine the appropriate type, then the 
source code changed (at best, perhaps only a few macro definitions must be changed). I hope that For­
tran 8x facility will prove successful in use so that a comparable one may be incorporated in a future C 
standard. Providing such a facility is greatly simplified if the language's standard numerical operators 
and functions are provided by generic operators that derive their types from the types of their operands. 
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What about built-in functions (Section 4.1.6 footnote)? The standard requires implementations to 
provide actual functions for these operators on demand but also allows implementations to define them 
by default as macros and, ultimately, to expand them in-line. Thus an implementation that exploited 
that allowance would be able to obtain some of the advantages of the generic treatment outlined above. 
But the main advantage of in-line treatment is lost since such built-in functions must meet the same 
errno-based exception handling requirements as the corresponding actual functions. 

Algebraic max and min and absolute-magnitude mmax and mmin would also make excellent can­
didates for definition as generic operators. Fortran experience provides ample justification. 

Recommendation: Define all the libm functions, as well as square, max, min, mmax, and mmin 
as generic operators applicable to integral and floating-point types; except that the transcendental func­
tions acos, asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh, exp, log, and loglO apply only to floating­
point types. 

The following less comprehensive alternative restricts operators to those which can be meaning­
fully applied to integral as well as floating-point types, and for which correctly-rounded results can be 
economically obtained, thus excluding transcendental functions and base conversion. 

Alternate Recommendation: Define at least abs, max, min, mmax, mmin, ceil, floor, sqrt, hypot, 
mod, ldexp if << is not extended to floating, and square if a power operator is not defined, as generic 
operators in functional notation operating upon any numerical values. 

X3J11 Summary: Define math and additional functions as generic operators. 

X3J11 Response: This would run counter to the historical "spirit of C". The Committee dis­
cussed this and decided to keep these as explicit functions. 

Comment #30, Section 4.S.l: make numerical exception handling uniform 

The traditional C scheme for exception handling has little to recommend it: there is no guarantee 
that numerical exceptions are even detectable for the most common floating-point operators, yet the 
standard would enforce the unreliable global errno mechanism for the comparatively less frequently 
used elementary transcendental functions. Such an approach promotes tradition rather than safety or 
efficiency. 

The problems associated with errno are mentioned in the Rationale but not universally appreci­
ated, especially by those who think of portability in the context of complete source-code applications 
rather than object libraries of functions destined to be combined with other such libraries from other 
sources. 
A provider of a library of software functions for a general C environment will usually have to get 

along without the benefit of errno since otherwise that library could not run reliably in an appli­
cation which exploits asynchronous signal handlers. Those signal handlers may call functions in some 
other library from a different provider which set and reset errno according to their own needs. Since in 
general the errno implementation may be no more than a single global variable, in the face of asynchro­
nous signal handlers it can't be relied on to contain the value it had in the previous statement. The dis­
cipline that allows errno to be used reliably would have to be applied consistently in an application 
built of components from diverse sources - not too likely. The same synchronization problems arise 
when multiple processors share memory. 

What about mathe"()? SVID requires matherr(), a user-definable function, to be called in every 
situation in which errno would be set to EDOM or ERANGE. Matherr() doesn't provide any more flexi­
bility than errno but concentrates error-handling code in one place. Matherr's fatal shortcoming is that 
only one such global function can exist per application; thus object libraries intended for general appli­
cation can't rely on matherr without excluding other libraries that might want to exploit their own ver­
sions of matherr(). 

A language standard contemplating implementation only on modem systems equipped with IEEE 
arithmetic might require that all floating-point exceptions relating to finite representation (inexact, 

,~ underflow, overflow), singularity (division by zero), and domain violations would be detected and 
treated uniformly whether they arose in atomic hardware operations or software subroutines. Such 
architectures permit efficient exception detection and treatment Although IEEE floating point status 
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flags are often implemented in a global variable that suffers some of the limitations of global errno, the 
IEEE standard permits other implementation methods and, more importantly, returns appropriate numer­
ical values in addition to exception status. 

Values like infinity and NaN are not available on many systems, so errors must be communicated 
by other means than the returned value. Old architectures can't simultaneously accommodate both 
efficiency and safety, however, and a language standard that attempts to accommodate those architec­
tures in both those aspects must pay the price in duplication of facilities. I discern three alternative 
methods for providing such facilities: 

Dual types 
Dual operators 
Specify efficiency, defer safety 

METHOD #1: Dual types. In addition to the native floating-point types, require all implementa­
tions to also provide floating-point types, operations, and functions corresponding to the IEEE 854 stan­
dard for floating-point arithmetic independent of word length or radix. Thus it would be possible to 
write fairly portable safe code on all ANSI C implementations. Even more portable would be to 
require IEEE 754 binary single- and double-precision implementations. In either case such IEEE arith­
metic would have to be implemented in software on systems in which it is not supported by hardware. 

METHOD #2: Dual operators. Instead of requiring dual floating-point types, require generic 
floating-point operators to accept an optional additional argument which is essentially a pointer to a 
local errno. These dual operators allow error status to be associated with specific operations. The 
exception handling requirements would be quite strictly specified for invocations which specify the 
error-reporting pointer, and for efficiency, completely undefined if that pointer is missing. For generic 
operators denoted functionally, the syntactic extension would be modest: 

double sqrt(x,perr) 
double x; 
int *perr; 

*perr is the local errno for this operation. 

For the other operators the additional syntax would be more striking: 

double _div(x,y,perr) 
double x, y; 
int *perr; 

suggests an operator with a functional notation that returns the double quotient x/y with a local error 
indication in *perr. 

This proposal encompasses far less than the previous; it allows the same data types to be operated 
upon by efficient means most of the time and more carefully when necessary. 

METHOD #3: Specify efficiency. defer safety: C++ allows overloading operators and might there­
fore be a more appropriate vehicle than C for the safety-oriented extensions described above. Then the 
C standard should anticipate such extensions by not defining exception handling at all for the mathemat­
ical functions, consistent with its treatment of the common operators. This is my preferred method for 
reasons discussed in the next section. 

Recommendation: Remove all references to EDOM, ERANGE, errno, and exceptional return 
values from the descriptions of the 4.5 functions and the 4.10.1.4 function strtod(). 

X3Jll Summary: Remove exception specifications from the descriptions of the math functions. 

X3Jll Response: This proposal would invalidate too much existing source code. Although you 
are right in recognizing that errno is inadequate, there is too much existing code that would break. 
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What should languages attempt to standardize about floating-point operators and functions? 

Most of what follows has been argued better elsewhere. See, for instance, Kahan and Coonen's 
"The Near Orthogonality of Syntax, Semantics, and Diagnostics in Numerical Programming Environ­
ments," contained in the compendium edited by J. K. Reid, The Relationship between Numerical Com­
putation and Programming Languages, North-Holland 1982. 

Some of the mathematical functions traditionally included with C are overspecified with respect 
to exceptional conditions, in the sense that results have been specified for operations like fmod(x,0.0) 
that are unlikely to arise except in programs that are primarily intended to test compliance with the 
specification, such as the SVID validation suite. A consequence of such an approach is that efficiency in 
the normal case is lost by checking for unlikely exceptions for the purpose of providing unreliable 
exception handling, such as a global ermo. This slight payoff has a disproportionate cost; a modem 
high-performance hardware finod implementation may lose half its performance in checking for excep­
tional arguments and setting ermo. That modem implementation will be safer, too, by returning a NaN 
instead of a numerical result 

Most designers of portable software desire that systems return reasonable results and continue 
when exceptional conditions occur that the designers anticipated; the desirable response for unantici­
pated exceptions might be termination with debugging output Thus my recommendation above that 
exception responses be unspecified is painful but appropriate given the improbability that a C standard 
would specify default exception handling for ordinary operators like* or/. 

The Draft C standard follows other language standards in making no requirement at all on the 
common floating-point operators for any operands, and making no requirement for functions evaluated 
in their non-exceptional domain. One reason for this is that it's easy to specify and test behavior at iso­
lated exceptional points, and difficult to specify and test normal behavior. But it's the "normal" 
behavior which is most refractory to deal with effectively in a portable fashion. Language standardizers 
are usually reluctant to specify anything outside of the control of the compiler and its run-time library, 
despite that imperfections in the hardware or operating system adversely affect the language user's abil­
ity to specify his computation reliably and economically. 

Thus the Draft C standard specifies something about sqrt(-1.0) - EDOM - but nothing about 
sqrt(l.0). An appropriate expectation for sqrt(-1.0) and other exceptional functions is that they should 
not return an unexceptional result and proceed as if nothing had happened. What they should do varies 
among systems: a NaN and a retrospective diagnostic are appropriate on IEEE implementations, a 
Reserved Operand on a VAX, a diagnostic message on some other systems, possibly abnormal process 
termination in closed systems. Any universally-prescribed response is necessarily constrained to the 
capability of the least common denominator of all these systems and so is a poor choice for many. 

Unlike a software vendor, a person who programs for his own use usually uses different 
languages at different times, but typically on only one machine. That user tends to think of the 
floating-point and elementary functions, provided in hardware or coded in assembler by the hardware 
manufacturer, as part of the underlying conceptual machine rather than characteristic of a language 
implementation, and he'd prefer that those aspects be the same in all languages he programs in. So 
from that point of view, the standard C mathematical library specification would do well to follow the 
precept expressed in the Rationale, "many operations are defined to be how the target machine's 
hardware does it." Thus when I suggest an "undefined11 result in various situations I mean "defined by 
the underlying system" where possible, rather than "the C run-time library may implement any capri­
cious response whatever". Of course in many Unix systems the C run-time library and the Unix kernel 
below it are the underlying system, but that situation is hardly universal. 
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Otherwise, what's an appropriate specification for sqrt(l.0)? Here are some possibilities: 

1) sqrt(x) is correctly rounded 
for all finite representable x >= 0 

2) sqrt(x) has error < 1 unit in the last place 
for all finite representable x >= 0 

3) sqrt(x) has error< 1 unit in the last place 
for all model numbers x >= 0 

4) sqrt(x) increases monotonically 
for X >= 0 

5) sqrt is correct for perfect squares, i.e. 
sqrt(x*x) == x for all x = i where O <= i <= 
(int) sqrt(DBL _ RADIX**DBL _ MANT _ DIG); 

30 

Properties 4) and 5) are the most useful, although they are implied by 1), the most stringent 
specification. Mathematical software providers could provide long lists of desirable properties for each 
floating-point operator and library function. 

But some compiler suppliers would object that they can't or won't meet any specific accuracy 
requirement. Furthermore it is fairly difficult to verify compliance to any of these specifications, and 
more difficult for transcendental functions than for rational functions like division or algebraic ones like 
sqrt. 

The IEEE floating-point committees, faced with considerations like these, soon discovered that a 
descriptive standard for floating-point arithmetic, that somehow allowed every existing irregular 
floating-point implementation to claim conformance, would have no useful properties. Instead, in order 
to promote future compatibility and portability, it was necessary to develop a prescriptive standard, not 
necessarily corresponding to any existing implementation, that provides significant usable compatibility 
among new implementations. 

A related issue is whether standardization properly comes before common use or vice-versa. 
Prior to IEEE arithmetic, no floating-point standard existed or was likely to exist that was common to 
more than one manufacturer and its clones. Common usage was only possible after the standard was 
developed. Similarly providers of portable C software are loathe to exploit any idiomatic C feature in a 
particular compiler not canonized by some standard Consequently providers of C compilers have no 
individual incentive to provide such features until standardized Finally, X3Jl l is reluctant to standard­
ize features without a demonstration of "prior art". To exit this tendency to regress toward the mean, 
somebody must lead. 

The ANSI C Rationale acknowledges many difficult issues that arose from conflict between the 
descriptive and prescriptive approaches to standardization, and like many language standards the result 
often tends toward the descriptive. Since the ANSI C committee is unlikely to want to transcend previ­
ous language standards by closely specifying the entire C numerical environment, it should avoid pre­
judicing the issue in any of the ways discussed previously. Then another body may properly build upon 
the ANSI C standard by adding to it, rather than subtracting from it, in order to specify a suitable 
environment for scientific computation. 
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Appendix #1: A Proposal for Conrormant Arrays 

Simply allowing variably-dimensioned arrays as in GNU CC would be just as {un}satisfactory as 
Fortran's facilities. Conformant arrays are a greater change to the language but possibly a smaller 
change to existing implementations. Richard O'Keefe has kindly provided the following outline of a C 
array facility providing better error immunity than Fortran has traditionally provided: 

Conformant arrays in C are much as in ISO Pascal or in Twing, with parameter declarations like 

void matmul(double a[p][q], double b[q][r], double c[p][r]) 
{ 

inti, j, k; 
doublet; 
for (i = p; --i >= 0; ) 

for (j = r; --j >= 0; ) { 
t = 0.0; 
for (k = q; --k >= O; ) t *= a[i][j]*b[j][k]; 

c[i]U] = t; 
} 

} 

If p, q, and r are #defined to be constant expressions, this is already legal, so we need one more thing 
to indicate that p,q,r are being defined here, not used. Consider the following: 

declarator: 
I declarator '[' subscript_spec ')' 

subscript_ spec: 'auto' identifier 
I constant_expression 
I/* empty*/ 

where/* empty */ is only allowed as the first subscript_spec, and auto id is only allowed in a function 
header. To avoid having to specify what happens if auto x appears several times but the arguments 
don't agree with that, make it illegal, so the first suggestion would have to be written 
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void matmul(double a[auto ar][auto ac], /* ar >= p, ac >= q */ 
double b[auto br][auto be], /* br >= q, be >= r */ 
double c[auto cr][auto cc], /* er >= p, cc >= r */ 

{ 

int p, /* 0 <= p <= min(ar,cr) */ 
int q, /* 0 <= q <= min(ac,br) */ 
int r) /* 0 <= r <= min(bc,cc) */ 

int i, j, k; 
doublet; 
for (i = p; --i >= O; ) 

for (j = r; --j >= O; ) { 
t = 0.0; 
for (k = q; --k >= O; ) t *= a[i]fj]*bfj][k]; 
c[i]fj] = t; 

} 
} 

32 

A conformant array may be passed as a parameter to a function provided the function's prototype was 
visible to confirm that a confonnant array parameter was intended. 

The simplest way of treating sizeof is to rule it out: if the description of 'a' involves any auto s, 
you can't apply sizeof to it So given a parameter 

float fred[auto fl][auto f2][10]; 

sizeof fred and sizeof fred[l] would be illegal, but sizeof fred[1][2] and sizeof fred[1][2][3] would be 
legal. 

X3Jll Summary: Support conformant a"ays. 

X3Jll Response: The Committee discussed this proposal but decided against it This invention 
would have far-reaching implications such as creating pointers to conformant arrays and pointer arith­
metic with those pointers. Also, variable argument list processing is more complicated with variably 
dimensioned arrays. 
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Appendix #2: A Proposal for <ftoat.h> 
The discussion that follows indicates the direction that Fortran and C should follow to align their 

floating-point inquiry and manipulation functions in useful fashion. First., the restriction on six charac­
ter external identifiers in C must be removed; a holdover from the earliest Fortran systems, it can't sur­
vive the advent of Fortran 8x, as the identifiers in the following tables demonstrate. 

X3Jll Summary: Remove the 6-character external identifier restriction, which is doomed even 
for FORTRAN. 

X3Jll Response: The Committee has reaffirmed this decision on more than one occasion. This 
has been discussed many times in the past and there is no hope for this limit to be changed, because 
that would invalidate some implementations. 

X3J11 Summary: Improve <float.h>. 

X3J11 Response: The Committee discussed this proposal but decided against it. We believe that 
<float.h> is beneficial for many floating-point applications. 

The proposal that follows is partly built upon a model for floating-point numbers that includes a 
normalized subset of the machine-representable numbers in most implementations. The model numbers 
consist of O and the set of rational numbers 

J * b**(e+l-p) 

where J is an integer satisfying 

b**(p-1) <= abs(J) <= (b**p)-1 

~ and e is an integer satisfying 

emin <= e <= emax 

Thus the model numbers exclude -0, subnonnal numbers, signed infinity, and NaNs on IEEE systems. 
The model number parameters b, p, emin, and emax are used similarly in the IEEE 854 standard, 
although 854 puts no lower bound on abs(J), in order that the fonnula encompass subnormal numbers 
and zero. 

Model numbers represent the least common denominator subset of all popular floating-point 
implementations. W. S. Brown (ACM TOMS 12/81) envisioned further limiting p, emin, and emax to 
exclude representable numbers whose arithmetic participation is unsatisfactory, such as partially 
underflowed results in CDC-6600 descendants and partially overflowed results on Crays. 

The following proposes a set of numerical operators in functional notation. The notation is C but 
the application to Fortran is obvious. Corresponding Fortran 8x draft operators are listed if they exist. 
Numerical operators, rather than functions, are chosen specifically to encourage compile-time evaluation 
for constant operands. Numerical operators, rather than C #defines, are chosen to facilitate generalized 
precision inquiries in which the outcome can't be determined at compile time, which is the way Fortran 
8x's generalized precision sometimes works. If that facility were modified so that it were fully deter­
minate at compile time, then the environmental inquiries could become #defines as envisioned in the 
current X3Jl 1 draft's <float.h>. 

The first set describes environmental inquiries corresponding to C's sizeof; the operands are actu­
ally types, represented by variables declared to be of those types. The type "fp" means any of float, 
double, or long double. 
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Proposed Floating-Point Environmental Inquiry Operators 
Proposed Operator Corresponding Description 

X3J3/S8.104 
Model Number Parameters 

int RADIX(fp x) RADIX Base b 
int SIGNIFICANCE(fp x) DIGITS Precision p 
int MIN_EXPONENT(fp x) MINEXPONENT Minimum exponent emin 
int MAX_ EXPONENT(fp x) MAXEXPONENT Maximum exponent emax 

fp HUGE_ MODEL(fp x) HUGE Largest positive model number 
b**(emax+l) * (1 - b**-p) 

fp HUGE_ REPRESENT ABLE(fp x) Largest positive representable 
number; +oo on IEEE systems 

int EXPONENT _RANGE(fp x) EFFECTIVE_ EXPONENT_ RANGE Largest power P such that 
lO**P and 10**-P are 
in the range 
of positive model numbers 

int EFFECTIVE _PRECISION(fp x) EFFECTIVE_ PRECISION Largest decimal precision 
no more precise than type fp 

int INPUT _PRECISION(fp x) Largest decimal precision 
unchanged by inpu~output 

int OUTPUT_PRECISION(fp x) Smallest decimal precision 
unchanged by outpu~input 

fp PERFORMANCE(fp x) Relative performance of 
floating-point multiplication 

int IEEE_ 754() 1 if conformance claimed 
to ANSI/IEEE Std 754-1985 

int IEEE_ 854() 1 if conformance claimed 
to ANSI/IEEE Std 854-1987 

The following operators allow manipulation of floating-point quantities and thus correspond to 
traditional C's ldexp() and frexp(). 

Proposed Floating-Point Manipulation Operators 
Proposed Operator Corresponding Description 

X3J3/S8.104 
int EXPONENT(fp x) EXPONENT Exponent of model number e+ 1-p 
fp SIGNIFICAND(fp x) FRACTION Significand J*b**(-p) 
int ISNAN(fp x) 1 if x is NaN, else 0 
fp NEXT _MODEL(fp x,y) NEAREST Next model number 

from x in direction y 
fp NEXT_ REPRESENT ABLE(fp x,y) Next representable number 

from x in direction y 
fp SCALE(fp x, int n) SCALE Scaling by power of base 

replacing ldexp(x,n) 
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The following functions (not operators) are required in the C run-time library only to support 
corresponding generalized precision macros in the C preprocessor. 

Proposed Generalized Precision Functions for C 
Proposed Function Corresponding 3.8.8 macro 

char* int_(int p) _int_(p} 
char* unsigned_(int p} _ unsigned _(p} 
char* float_(int p; int r) _float_(p,r) 
char * INTEGER _(int p} _INTEGER_(p) 
char * REAL_ (int p ; int r) _ REAL _(p,r) 
char * COMPLEX (int p ; int r) COMPLEX (p,r} 

The following superfluous operators should be deleted. 

Operators Proposed for Deletion 
Operator Corresponding Description and Reason for Deletion 

X3J3/S8.104 XJJll/88-002 
SETEXPONENT Insert exponent -

easy to perform with SCALE 
TINY FLT MIN Smallest model number -

easy to find from NEXT_MODEL(0.0,1.0) 
EPSaON FLT EPSILON b**(l-p} - easy to compute from formula 

or NEXT_MODEL(l.0,2.0)-1.0 
SPACING absolute spacing between model numbers -

NEXT MODEL(x,HUGE MODEL)-x 
RRSPACING reciprocal of relative spacing - roughly 

x/(NEXT _MODEL(x,HUGE _ MODEL)-x) 
FLT_ROUNDS Rounding method -

too difficult to characterize 
usefully 

PERFORMANCE() is needed in a generalized-precision implementation that supports arbitrary 
precision to indicate when a program has "fallen off the end" of hardware-supported precision into 
much slower software-supported precision. PERFORMANCE(x) is just the ratio of the performance of 
floating-point multiplication for x's type to the performance for Fortran REAL type (float for C's that 
don't support any Fortran compiler). 

IEEE_754, IEEE_854: These operators allow code to portably determine if IEEE arithmetic is im­
plemented, in order to exploit its properties when available, and proceed more cautiously otherwise. 
They are operators (rather than #defines) only for compatibility with the other operators in this section. 

ISNAN() is needed to allow distinguishing floating-point variables containing numerical values 
from those that don't On systems with NaNs, some or all NaNs usually generate exceptions when 
touched by floating-point arithmetic and so may be robustly filtered otherwise only by machine­
dependent bit field manipulations. 

NEXT REPRESENTABLE() and NEXT MODEL() are more generally applicable than constants 
such as EPSILON. Such constants need be determined only once at the start of a computation, so any 
performance difference between a constant and a function evaluation is not significant The 1EEE 754 
interpretation of nextafter(x,y) - the nearest {representable,model} number from x in the direction y - is 
more convenient than Fortran 8x' s, which deduces the direction from the sign of y rather than the rela­
tionship of y to x. 

INPUT _PRECISION and OUTPUT _PRECISION are claims about an implementation's internal 
floating-point format and about the conversion sequences (scanflprintf) and (printflscanf) for model 
numbers. A decimal string of no more than INPUT_PRECISION significant figures, that may be read 
by scanf to produce a model number without overflow or underflow, may then be printf'ed with 
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INPUT_PRECISION significant figures to produce a string of unchanged numerical value, although the 
format may differ. A string of no more than INPUT _PRECISION significant figures will be reproduced 
if printed in the same format, unaltered by the limited internal precision of the variable in which the 
converted value was stored. 

A model number printed with at least OUTPUT _PRECISION significant figures will be repro­
duced unchanged by scanf. Thus printing a numerical value with OUTPUT _PRECISION significant 
figures specifies the internal value unambiguously. 

The mathematical theory underlying conversion between binary and decimal was summarized in 
Sterbenz's Floating-Point Computation, Prentice-Hall, 1974. For IEEE 754 single-precision arithmetic, 
INPUT_PRECISION is 6, OUTPUT_PRECISION is 9, while for double precision, INPUT_PRECISION 
is 15, and OUTPUT_PRECISION is 17. 

Fragments like the following might be used in a test of an implementation's INPUT_PRECISION 
and OUTPUT _PRECISION: 

#include <floath> 

double 
randommodel() 
{ 

* computes a "random" model number chosen from the whole space of 

} 

* model numbers 
*I 

testmax() 
{ 

double 
char 
do { 

dl, d2; 
s1[40], s2[40]; 

dl = randommodel(); 
sprintf(sl, "%*.*e", OUTPUT_PRECISION(dl) + 10, OUTPUT_PRECISION(dl)- 1, di); 
sscanf(s 1, "%If', &d2); 

} 
while (dl == d2); 
printf(" OUTPUT_PRECISION too low!"); 

} 

testmin() 
{ 

} 

double 
char 
do { 

dl, d2; 
s1[40], s2[40]; 

dl = randommodel(); 
sprintf(sl, "%*.*e", INPUT_PRECISION(dl) + 10, INPUT_PRECISION(dl) - 1, dl); 
sscanf(s1, "%If', &d2); 
sprintf(s2, "%*.*e", INPUT_PRECISION(dl) + 10, INPUT_PRECISION(dl) - 1, d2); 

} 
while (strcmp(s 1, s2) == 0); 
printf(" INPUT _PRECISION too high! 11}; 
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How should <float.h> constants be specified, and how many? 
Intellectual economy argues that the number of these constants should be minimized by reliance 

on nextrepresentable and nextmodel. But unless these functions are categorically specified for every 
variety of machine, portable software may be reluctant to rely upon them in lieu of constants. The con­
stants must be very carefully specified - algorithmically perhaps - with a quite likely result that the 
algorithm will be subject to misinterpretation. For instance, the X3Jl 1 Draft specifies FLT_ EPSILON 
as the minimum float x > 0 such that (1.0 + x) != 1.0, namely pow(b,1-p). Given the freedom of 
expression evaluation in C, very much smaller float x than intended will satisfy (1.0 + x) != 1.0 if that 
expression is evaluated in double as C's expression evaluation rules allow. Perhaps what's meant is 
((float)(l.0 + x)) != 1.0. Even that is not pow(b,1-p) when rounding resolves ambiguous cases to even. 
Perhaps what's really meant is that FLT_EPSILON is just pow(b,1-p). But then how do you usefully 
apply that quantity? What started out as a laudable attempt at portability has ended up being a source 
of subtle bugs instead. Thus the EPSILON, SPACING, and RRSPACING of Fortran 8x seem to be 
more trouble than they're worth. 

Instead of EPSILON, an environmental inquiry of equivalent utility to mathematical software 
experts but probably more comprehensible to novices would be fp MAX _JNTEGRAL(fp x) which returns 
the maximum integral value M such that all integral values whose magnitudes do not exceed M are 
representable exactly in the format of x. This is usually b**p. 

FLT_ROUNDS: The variation of floating-point rounding algorithms on non-IEEE machines is too 
great to encapsulate in a simple definition. Better to require applications to fabricate the specific test 
that matters to them, such as 

double eps, oneminus, nextrepresentable(); 

eps = 1.0 - nextrepresentable( 1.0, 0.0) ; 
oneminus = (double)(l.0 - 0.5 * eps) ; 
if (oneminus == 1.0) 

{ looks like some kind of rounding } 
else 

{ looks like some kind of chopping } 

This code depends on the cast in "oneminus = (double) ... " and fails if the indicated rounding does not 
occur as might be the case in some traditionally-minded implementations that might allocate oneminus 
to a long double register. FLT_ ROUNDS might be worth specifying in a form like the following: 

A value of {FLT,DBL,LDBL}_ROUNDS in the following table is a claim about an 
implementation's ari~etic for the conventional floating-point operators: for representable 
(not just model) x and y, whenever computed (x ±*/ y) or x ±*I= y raises no exception 
except possibly IEEE inexact, the computed result is always rounded correctly to a 
representable value: 

FLT_ ROUNDS value Corresponding rounding method 

0 Rounded toward nearest, 
halfway case rounded to even. (IEEE default) 

1 Rounded toward zero. 
2 Rounded toward negative infinity. 
3 Rounded toward positive infinity. 
4 Rounded toward nearest, 

halfway case rounded away from zero. (VAX) 

If {FLT,DBL,LDBL}_ROUNDS is undefined or defined to another value, then no claim 
about the implementation's rounding is to be inferred. 

l~ Note that separate statements for each precision make sense in environments where one precision 
is implemented in fast sloppy hardware and another in slow careful software. No point requiring the 
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software to be as sloppy as the hardware. Note further that including division in the list of correctly­
rounded operators excludes Cray, while including addition and subtraction excludes IBM 370, which 
almost always rounds toward zero. 

Instead of a numerical {FLT,DBL,LDBL}_ROUNDS, it might be more useful to have one or 
more string-valued macros {FLT,DBL,IDBL}_TYPE that defined the type of arithmetic claimed from a 
list of the most common floating-point implementation styles: 

IBM 370 single 

VAXF 

IEEE 754 single 
IEEE 854 single 
Other 

IBM 370 double 
Cray single 
VAXD 
VAXG 
IEEE 754 double 
IEEE 854 double 

IBM 370 extended 
Cray double 

VAXH 
IEEE 754 double-extended 
IEEE 854 double-extended 

Then portability would really be aided - among these common types - by allowing a program to 
confidently know the run-time arithmetic rather than trying to infer it indirectly by ostensibly machine­
independent definitions. 

Appendix #3: Why does traditional C treat float the way it does? 

Although it's well known that floating-point type conversions on a PDP-11 were inconvenient, the 
traditional C float treatment was principally intended to provide robust floating-point programming, with 
an intended side effect of reducing the number of math library functions required: C was designed 
before generic intrinsic Fortran functions were standardized. 

As to robustness, especially when large arrays have to be stored in 32-bit "float" for storage econ­
omy, it's desirable to evaluate expressions involving floats in higher precision; that's what the 
MC68881 and similar processors were designed to do, with better error bounds and no loss in perfor­
mance. But other systems have different properties; if "float" were 32-bit hardware, and 11double" were 
64-bit software, the performance penalty for evaluating in double precision would be enormous com­
pared to the benefit. Much signal processing and graphics computation derives no benefit whatever 
from double precision computation. In modem high-performance hardware, the difference in cost 
between 32 and 64-bit floating-point division, square root, and elementary functions is still at least a 
factor of two. So traditional C evaluation is rather costly to mandate generally. 

Therefore the Draft is correct in not specifying default expression evaluation too closely, so that 
expressions can be evaluated in the narrowest format allowed by the usual conversions OR in any wider 
format, according to a particular implementation's properties. The Draft is also correct in specifying 
that explicit and implicit casts always cause a rounding to the target type if narrower than the type in 
which the expression to be cast was evaluated. 

Even if float expressions were all evaluated in float, there's an unexpected cost in traditional C to 
transmitting float parameters and function results. ANSI C allows floats to be passed directly if the 
parameter list is specified, but traditional C requires shameful lduges in order to implement, for 
instance, an efficient Fortran compiler and library. 

Possibly ANSI C should permit flexibility by defining operators which force other styles of 
evaluation for their operand expressions: 

* 

* 

* 

* 

minimal-ANSI C = traditional Fortran: operation precision is that of more-precise operand 

traditional C: all float operands and operations in double 

widest needed: operation precision is that of most precise operand in entire expression; see papers 
by Corbett in SIGPLAN 17#12 or farnum@renoir.berkeley.edu, "Compiler Support for Floating­
Point Computation." 

widest available: all operands and operations in long double 

In every case, explicit or implicit cast should cause rounding to that type to occur. 
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X3Jll Summary: Why does traditional C treat floating-point the way it does? 

X3J11 Response: A specific proposal is needed before action can be taken. 
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