
Comments on Proposed ANSI C Standard

David Hough - dhough@sun.com

ABSTRACT

The proposed C standard falls short in three aspects critical to providers of port­
able mathematical software. And there are several lesser problems. I recommend:

Comment #1, Section 3.9:
Comment #2, Section 3.9:
Comment #3, Section 1.1: ·
Comment #4, Section 1.1:
Comment #5, Section 2.2.4.2:
Comment #6, Section 2.2.4.2:
Comment #7, Section 3.2.1.4:
Comment #8, Section 3.5.4.2:
Comment #9, Section 3.7.1:

encourage sound practices
disparage hazardous practices
emphasize surprises in rationale
anticipate supplemental standards
use "significand"
postpone <float.h>
round conversions between floating types
allow array parameters to have variable dimensions
remove incorrect rationale comment

Comment #10, Section 4.5:
Comment #11, Section 4.5:

don't overspecify exceptions in mathematical functions
tell more in the rationale

Comment #12, Section 4.5: standardize hypot
Comment #13, Section 4.5.4.6: delete modf
Comment #14, Section 4.7: specify which signals can arise

Preface

The following comments are based upon Draft Proposed American Naiional Standard for Infor­
mation Systems - Programming Language C, document number X3Jll/88-090, dated 13 May 1988, and
its accompanying Rationale. The comments are personal opinions of the author, and should neither be
construed as wholly original nor as representing the position of any organization or other person. A
number of individuals helped formulate and clarify them; some of their names are listed here and at the
end. The following, while not necessarily agreeing in every detail, have expressed agreement with the
main points:

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 2

T. Andrews
W. J. Cody
Stuart Feldman
David Gay
Eric Grosse
W. Kahan
Zhishun Alex Liu
Doug Mcllroy
Jim Meyering
Tom Rowan
Dan Schlitt
Steve Sommars
Gene Spafford
2'.denko Tomasic
Jim Valerio

gatech.edu !uflorida!ki4pv !cdis-1 !tanner
cody@anl-mcs.arpa
sif@bellcore.com
research!dmg
research!ehg
University of California, Berkeley
zliu%hobbes@berkeley.edu
research!doug
meyering@cs.utexas.edu
rowan@cs.utexas.edu
phri!ccnysci!dan
att.arpa!iwtsf!sesv
spaf@purdue.edu
zdenko@csd4.mil w .wisc.edu
verdix!radix!jimv

Introduction
C was not particularly designed to facilitate numerical computation. In recent years it has come

to be increasingly used for implementing portable systems and applications, including numerical ones.
This is more a tribute to the good judgment embodied in some other aspects of C's design than to its
numerical facilities: it is easier to get a usable C compiler and library working than a comparable For­
ttan compiler and library. Examples of such applications are the SPICE .3B 1 circuit simulation package,
which is far more flexible and maintainable than its Fortran predecessors, and Alex Liu' s elementary
function test programs, which would have been far more difficult to implement in Fortran.

In its drafts the ANSI committee has removed some of traditional C's numerical weaknesses, such
as requiring double-precision expression evaluation and parameter passing, and overspecifying error
response in the elementary transcendental function library. With a little more effon the remaining
numerical stumbling blocks could be removed and C would be as convenient for the numerical parts of
applications as for the other pans.

A more extensive version of the following commentary, dated 29 March 1988, was submitted to
X3Jl 1 in conjunction with the second public review period. X3Jl 1 published formal replies to all such
comments on April 22, 1988, as document X3Jl 1/88-083.

The principles guiding the scope of the following commentary for the third public review are as
follows:

• According to X3J11/88-083, X3Jll will not consider adding any substantial new features to the
language, regardless of merit Of the three major recommendations that follow, two reduce the

•

•

•
•

size of the language and one extends it very slightly.

According to X3J11/88-083, X3Jll will not consider any change that renders non-conforming
large numbers of existing C programs. Where appropriate, therefore, I suggest directions for
future evolution rather than requirements to be effective immediately.

Changes in the Draft's Appendices and Rationale are far more likely to be considered than
changes in the Standard itself.

Changes introduced in the third public review draft are especially susceptible to modification .

Eironeous assertions in X3J11/88-083 should be corrected

Comments follow with specific Recommendations containing additional or revised wording. For
brevity, I assume that readers have access to my 29 March commentary.

In general, "infinity" refers to a floating-point representation that is intended to act like mathemat­
ical 00, such as is found on CDC and IEEE implementations. Similarly "NaN" refers to any kind of
non-numeric floating-point representation, including CDC Indefinite, VAX Reserved Operand, and IEEE
NaN.

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 3

Comment #1, Section 3.9, 4.13, and A.6:encourage sound practices
Certain features and practices, not accepted for the current Draft, should be listed as Future Direc­

tions and Common Extensions to encourage implementations and programmers to do the right thing and
to indicate that they might be incorporated into future revisions of the Standard.

Recommendation:
2.2.4.2: long double' s exponent range should satisfy:

-LDBL MIN 10 EXP >= 99
LDBL_MAX=tO=EXP >= 99

3.3: There is a clear need for some method for specifying non-aliasing. The previous draft's
noallas was not the answer. This is a good area for local experimentation. What appears to be
required is a method of specifying "within this scope, the compiler may assume that the pointers {x, y,
z, ... } do not point to the same storage." This will be essential to attain Fortran-like performance on
simple linear algebra problems, even on personal computers, within the lifetime of the first ANSI C
Standard. The exact syntax and semantics are not clear yet, but should become clear before ANSI C
undergoes its next major revision some years hence.

3.4: Constant expressions which would have side effects at run time should be evaluated at run
time rather than compile time if the side effects would not otherwise occur at run time. This includes
inexact floating-point expressions in systems implementing IEEE arithmetic. A method of forcing
compile-time expression evaluation should also be supplied

3.5.6: C needs a syntax for initializing large arrays to the same value corresponding in intent, but
not necessarily in syntax, to Fortran constructs like: •

data xi 100 * 0.0 /

With such a feature automatic initialization of static data to zero is longer required or desirable in C.
Implementations should provide means for detecting assumptions of implicit zero initialization of
storage; an example is a loader option to initialize memory bytes to OxFF (to catch uninitialized
floating-point variables by setting them to NaNs) or to OxAA or OxCC rather than Oto catch uninitial­
ized integer variables. Such initializations also help to identify mistaken references outside of array
bounds, references through badly constructed pointers, and many other forms of software error often
masked by zero-initialized memory. Initialization to O should also be provided as an option. The
default should be undefined so that portable code will not depend on it Empirical and theoretical rea­
sons can be given for not using O as an initializer if at all possible; see, for instance,

%A Eugene H. Spafford
% T Initializing Uninitialized Memory
%R Technical Report GIT-SERC-87/02
%1 Software Engineering Research Center, Georgia Institute of Technology
%C Atlanta, GA
%D 1987

4.9.6.1: Implementations in which the sign of zero is significant should always display that sign
when the + modifier is included in a printf specification. Implementations in which the zero has no
sign or zero's sign bit has no significance should always display a+ sign.

4.9.6.1: If the argument is exactly zero and the # alternate form is not specified, then printf %f
uses blanks in lieu of the decimal-point character and its trailing zeros.

4.10.1.4: If an implementation includes infinities or NaNs, printf %e, %f, or %g should format
them with appropriate character strings that distinguish them from finite numbers. Those character
strings should also be readable by stnod and by scanf in the usual numeric format input fields and con­
verted into the appropriate internal representation of infinity or NaN respectively. Nothing in the fore­
·going requires every implementation to support infinities and NaNs.

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 4

End of recommendation.

Comment #2, Section 3.9 and 4.13: disparage hamrdous practices
Certain historical features and practices, accepted for the Clll'.fent Draft primarily to accommodate

existing code, should be disparaged by listing as Common Warnings, with their removal contemplated
as Future Directions, to encourage implementations to issue warnings for them and to indicate that they
might be dropped from future revisions of the Standard.

3.2.1.5: Use of implicit narrowing type conversions is a hazardous coding practice. Such conver­
sions should be accomplished by explicit casts. Compilers should provide means to detect such conver­
sions.

3.5.6: Reliance on automatic implicit initialization of variables to zero is a hazardous coding prac-
tice. Initializations should be explicit. Compilers should provide means to detect implicit initialization.

4.5: Portable code must not rely on any aspect of errno behavior.

4.7: Implementations should not generate SIGFPE for exceptions other than floating-point.

4.10.1.1: Use of atof and atol is hazardous due to lack of reliable error detection; the hazards can
be avoided with strtod and strtol.

Comment #3, Section 1.1: emphasize surprises in rationale

Certain X3J 11 decisions, revealed in its formal public response to the second public review, may
well surprise some implementers who haven't been following the deliberations extremely closely.
These surprises, together with the already-documented Quiet Changes, should be collected together in
one place in the Rationale.

Recommendation:
2.2.4.2: The sign-magnitude floating-point model intentionally excludes one's and two's­

complement floating-point representations and logarithmic floating-point representations.

3.1.3.1: Conversion of decimal strings to floating-point values at compile time (and hence at run
time as well) is required to be correctly rounded to a nearest representable value, either up or down,
and exactly representable values are required to be converted exactly. For large exponents this require­
ment is quite a bit stricter than what IEEE 854 requires. Many existing C implementations fail to
satisfy this requirement; it is impossible to satisfy unless the implementation uses greater than double
precision during computation - integer or floating-point arithmetic may be used. For instance, the port­
able atof() supplied with System V Release 3 attempts to convert strings to double using only double
arithmetic. For the input string 1.57772181044202309e-30, to be converted to IEEE double precision,
this atof() returns 39BF FFFFFFFFFFFC instead of the correctly-rounded 39BF FFFFFFFFFFFD. The
correct answer would be expressed in the same format as 39BF FFFFFFFFFFFD.06+, and thus must be
rounded to either 39BF FFFFFFFFFFFD or 39BF FFFFFFFFFFFE according to the Draft's
specification.

Furthermore, according to X3Jll 's fonnal response, the compiler must convert constants identi­
cally to strtod or scanf.

3.2.1.3 and 3.2.1.4: Conversion of integral or floating types to less-precise floating types also is
required to be correctly rounded in the sense described above. Some existing C implementations may
not meet these requirements.

3.3: X3Jl 1 has made a major advance by requiring that parentheses be observed when evaluating
expressions. This requirement doesn't leap out of the Draft (although it's mentioned in the Rationale)
and might surprise an implementer more familiar with C's traditions than with the history of X3J 11 's
deliberations.

3.3.4: Casts such as (float) of a double expression must cause conversion to occur.

4.5: Several of the mathematical function specifications are so rigorous that efficient implementa­
tions are impossible on machines lacking guard digits, such as Cr~y, CDC, and ETA.

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 5

4.5.4.3: ldexp and frexp contain a bias against non-binary 8oating-point implementations. In
those implementations, such as mM 370, ldexp and frexp are not free of roundoff.

4.8: Conforming implementations require a prototype in scope for printf. Implementations allow­
ing printf without a prototype in scope may ~uffer reduced performance.

4.8: Unlike 4.3 BSD or System V, X3Jll C permits errno to be set only by the 4.5 math func­
tions and the 4.10 functions ato{fJ} and sttto{d,l,ul}.

4.9.6.2: When scanfO processes a co"ect format conversion and reads beyond it, that first charac­
ter beyond the formatted field is guaranteed to have been pushed back to the input stream. When
scanf() processes an inco"ect format conveision, at most one input character is guaranteed to have been
pushed back by scanfO - so that any previous characters read and subsequently rejected by scanf may
have been lost, as in the case of attempting to scan "-.x" with %f. In either case, after a return from
scanf(), ungetcO must be able to accept at least one more character of pushback. Thus if the ungetc()
implementation is minimal then scanfO must be implemented with some more powerful pushback
mechanism.

Note that the foregoing conclusions, apparendy endorsed by the Committee in its formal response,
me difficult to reconcile with the Rationale's section 4.9.6.2.

4.10: Unlike most other X3J11 identifiers, "stttoul" doesn't fit in six characteis.

End or recommendation.

Comment #4, Section 1.1: anticipate supplemental standards
Cenain aspects of the definition of C should be deferred until X3J3 completes its work on Fortran

Bx, such as the environmental inquiries currently defined in 2.2.4.2 for <float.It>.

Since it's desirable in most cases for C to follow rather than lead Fortran in these areas, C stan­
dardization should be deferred until the Fortran work has been tested in practice.

Many C implementations for peisonal computers, workstations, and supenninicomputers are built
upon the IEEE 754 standard for binary 8oating-point arithmetic. Certain aspects of the C environment
could well be standardized among such implementations, without impacting the many non-IEEE C
implementations:

• Definition of functions for IEEE modes and status;

• Definition of IEEE 754/8S4 Appendix functions.

• Definition of IEEE trapping .

• Definition of syntax for infinities and NaNs .

• A corrected and improved version of the current Draft's <float.h> based upon Fortran-Bx facilities
after the latter stabilize.

The X3Jl 1 Draft should avoid prejudicing such later work. Many of the subsequent recommen­
dations aim to eliminate such prejudice.

Most X3Jl 1 members are weary of the arduous standardization process, so it would be appropri­
ate for another body to develop an informal standard a couple of years after Fortran 8x is finalized; that
informal standard might be incorporated into a subsequent revision of C. An IEEE/CS committee will
probably develop an IEEE Recommended Practice for implementations intending to conform to ANSI C
and IEEE 754 or 854. This may well occur within a year after ANSI C is formalized.

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 6

Comment #5, Section 2.2.4.2 and 3.1.3.1: use "significand"
The term significand was adopted by the IEEE floating-point committees to designate the part of

a floating-point number that contains its significant digits. Significand is a better term than either
"mantissa", which refers to the fractional part of a logarithm, or "value part", which implies that the ex­
ponent doesn't contribute to the value of a number.

Recommendation:
Replace "mantissa" and "value part" with "significand" throughout the Draft and Rationale.

End of recommendation.
The foregoing is consistent with ANSI/IEEE Std 1084-1986, IEEE Standard Glossary of

Mathematics of Computing Terminology; in contrut X3Jl 1 's fonnal response states "we believe that the
use of mantissa is synonymous with significand."

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 7

Comment Mi, Section 2.2.4.2: postpone <float.h>
The Rationale states that the constants in <float.h> were derived from a similar section of the For­

tran 8x proposal. X3J 11 may not have been aware that those corresponding Fortran proposals are not
universally accepted. Parts of those proposals are inherently ambiguous because existing computer
arithmetic is so diverse.

If the intent is t.o define a <float.h> that is ttuly useful and unambiguous then considerable addi­
tional effort is required; I indicated previously the directions that effort should take. From this point of
view <float.h> is not ripe for standaidization. There is certainly no widespread prior art in C.

If the intent is to define a <float.h> that is as close as possible t.o the spirit of whatever Fortran-Bx
adopts, then again the effort should be deferred until Forttan-8x stabilizes; additional major revisions
appear fonhcoming, some of which may affect the numerical environment and inquiries facilities.
Although facilitating translation of Fortran-Bx to C was listed as a goal for <float.h>, the dynamic preci­
sion capabilities in the current Fortran-Bx draft have no analog in C, so attainment of this goal appears
doubtful.

Recommendation:
Remove the <float.h> specification from 2.2.4.2 and mention, as a Common Extension and Future

Direction, a C analog of the final Fortran-Bx floating-point characterization.

End or recommendation.
That X3Jl 1 was willing t.o accept on faith a major invention not yet widely implemented in any

language is in remarkable contrast to its expressed attitude on many less extensive proposals. Here's an
example of the problems. FLT_ EPSILON is defined in 2.2.4.2 as the "minimum positive floating-point
number x such that 1.0+x != 1.0, b**(l-p)". These two expressions are intended to be equivalent.
Consider these 32-bit examples:

Architecture b p min pos X

(l+x) != 1

IBM 370
DEC VAX
IEEE

16 6 16**-5
2 24 2**-24
2 24 2**-24+2**-47

16**-5
2**-23
2**-23

formulas equivalent since 370 usually chops
(1+2**-24) rounds up to (1+2**-23)
(1+2**-24) rounds down to 1

Note that the IEEE FLT_EPSil..ON value mentioned in the Draft's example, 1.19209290e-7, is
b**(l-p), not the minimum positive x, 5.96046519e-8.

If the underlying question is actually "is x negligible compared to y", then it is best asked
directly: "if ((float)(x+y) != y)". The (float) is only necessary on systems that might hold x+y in a
higher-precision temporary.

If the underlying question is "what's the next representable number. from x in the direction y"
then that's rather painful to determine except on IEEE systems that provide the nextafter() function.

If an error analysis is desired so that the underlying question is "what's the least p>O bounding 161
in the equation

computed(x op y) = correct(x op y) • (1 + 6) "

then the answer p is b**(l-p) on IBM 370, b**-p on VAX, and on IEEE, b**-p or b**(l-p) depend­
ing on rounding mode. On Cray, the answer is probably 1.5 • b**(l-p) for multiplication, 6 •
b**(l-p) for division, and is 1.0 for addition and subtraction, due to lack of a guard digit, a lack shared
by CDC, ET A, and older Univac machines. Thus, the current sttucture does not aid in developing port­
able software as was intended, but may in fact lead to additional confusion.

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 8

Comment #7, Section 3.2.1.4: round conversions between floating types
The C Draft requires that conversion of a floating-point value to fit in a floating-point fonnat of

less precision or exponent range be accomplished by an acceptable rounding operation; acceptable
roundings include rounding toward zero. This is all consistent with IEEE arithmetic. But the Rationale
still asserts that "The new IEEE floating point processor chips control floating to integral conversion
with the same mode bits as for double-precision to single-precision conversion; since truncation­
toward-zero is the appropriate setting for C in the former case, it would be expensive to require such
implementations to round to float."

This generalization is quite wrong in general; while possibly true for the first IEEE chip, the Intel
8087, it is not true for most "new"er implementations such as the MC 68881/2, SPARC, Intel 80960,
HP Precision, most Weitek chips, and many others, all of whom have specific instructions for conven­
ing floating-point values to integer fonnat by rounding toward zero without regani to the current round­
ing direction mode governing most floating-point arithmetic. This was of course the intent of the IEEE
754 committee from its earliest drafts although implementations may choose to be inefficient. Jim
Valerio relates:

When the 80387 was being defined, one issue addressed was the request for a FIST (con­
vert to integer) instruction that always truncated rather than rounded according to the
current rounding mode. After careful consideration, the designers concluded that there were
no substantive perfonnance improvements or code savings to be obtained with such a new
instruction, and rejected its inclusion. When discussing this issue with several of the major
suppliers of compilers for the 80387, the representatives of the compiler companies gen­
erally agreed that the perceived efficiencies of a new instruction were illusory, and that
their compilers would generate the mode saving and restoring operations.

Recommendation:
Eliminate the offending sentence from the Rationale.

End or recommendation.
Note that the Draft Standard itself is unobjectionable; only the sentence in the Rationale.

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard

Comment #8, Section 3.5.4.2: allow array parameters to have variable dimensions
I know of no C translation that's as clear as the following Fortran code:

SUBROUTINE MATMUL(X,LX, Y J., Y ,z,LZ,NX,NY ,NZ)
REAL X(LX,•),Y(LY,•),Z(LZ,•)
DO 1 l:sl,NX

002J-t,NZ
SUM=0

003 K=l,NY
3 SUM=SUM+X(l,K)*Y(K,J)
2 Z(IJ)=SUM
1 CONTINUE

END

9

Code like this is at the heart of most of the major portable Fortran libraries of mathematical software
developed over the last twenty years. The declared leading dimensions of X, Y, and Z are not known
until runtime.

The Draft, like traditional C, disallows the equivalent

void matmul(int Ix, int ex, double x[lx][cx])

unless Ix and ex are known at compile time. GNU CC, however, allows variably-dimensioned arrays to
be passed as parameters and, even more generally, to be declared as local variables; the only require­
ment appears to be that the array bounds can be evaluated on function entry .

. ~ The goal is not to duplicate Fortran's features exactly, however, but rather to insure that portable
linear algebra libraries are as easy to create in C as in Fortran. The ability to declare local arrays with
variable dimensions is not as important as the ability to declare array arguments with variable dimen­
sions; the former may present implementation problems in some systems while the latter is simply a
way of changing the interpretation of a pointer. Thus the following is the minimum necessary:

Recommendation:
Permit arrays that are function arguments to be declared with dimensions that are integer expres­

sions which can be evaluated at run time on function entry; that is, the integer expressions can contain
constant.,, other arguments of that function, and globals. Change the section "Constraints" to read:

The expression that specifies the size of an array shall be an integral conditional-expression
that evaluates to greater than zero. Except in the case of an array parameter to a function,
the size shall be a constant expression. The expression that specifies the size of an array
parameter to a function may contain globals and other parameters to that function, as well
as constants, as long as the size evaluates to an integral value when the function is entered.

End or recommendation.
The following formal response by X3Jl 1 appears to be directed to a much more sweeping propo­

sal for conformant arrays, which goes far beyond the need outlined above (and affords corresponding
additional safety):

The Committee discussed this proposal but decided against it This invention would have
far-reaching implications such as creating pointers to confonnant arrays and pointer arith­
metic with those pointers. Also, variable argument list processing is more complicated with
variably dimensioned arrays.

None of these objections apply to the simpler proposal above.

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard

Comment #9, Section 3.7.1: remove incorrect rationale comment
The Rationale states:

Not many implementations can subset the bytes of a double to get a floaL (Even those that
apparently permit simple ttuncation often get the wrong answer on certain negative
numbers.)

10

The second sentence may be omitted. Because the Draft excludes all but sign-magnitude
floating-point representations, implementations that can conven a positive double to a float, rounding
toward zero, by picking up the first half (VAX, IBM 370, maybe Cray) can equally legitimately conven
negative numbers that way.

ansi3 .c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 11

Comment #10, Section 4.S: don't overspecify exceptions in mathematical functions
A nwnber of specific criticisms in my second-review comments dealt with overspecified excep­

tions in the mathematical library. The trend of the X3J 11 drafts has been to reduce the number of con­
straints on exception handling, which is in general a good idea The job should be finished as follows:

•

•

•

•

•

Recommendation:
Revise section 4.5.1 as follows:

4.5.1 Treaunent of exceptions for mathematical functions

The following describes all the 4.S functions, as well as the 4.10.1.4 function strtod.

The behavior of each of these functions is defined below for all unexceptional finite input
arguments producing double results that are unexceptional except possibly for nonnal
roundoff. When only nonnal roundoff affects the result, each function shall execute as if it
were a single operation, without generating any externally visible exceptions due to inter•
mediate steps in its implementation. When some exception renders questionable a com­
puted result, then an implementation will return an appropriate implementation-defined
value and may optionally store in errno the value of the macro EDOM or ERANGE. A
domain error is appropriate if an input argument is outside the domain over which the
corresponding mathematical function is defined. A range error is appropriate if the
mathematical function result is well-defined but too large or too small in magnitude to be
represented as a double value suffering only normal roundoff. The macro HUGE_ VAL
should be defined to be the largest positive double value, finite or infinite, that can result
from range errors corresponding to floating-point overflow. Whether errno is assigned any
value, and which of EDOM or ERANGE is assigned, is implementation-defined and should
not be relied upon in portable. code. Some implementations may compute excessively inac­
curate results for certain well-defined functions because of limitations in the algorithms
chosen; they should so indicate by treating arguments outside the reliable domain of those
algorithms as domain or range errors.

End or recommendation.

There are several points to note about the foregoing:

In one of the IEEE rounding modes intended to support interval arithmetic, the result of positive
floating-point overflow is the largest finite positive number, while the result of negative floating­
point overflow is negative infinity. Thus defining ±HUGE_ VAL to be the result of overflow is
not really appropriate.

In its fonnal response X3Jll says "The description applies to model numbers only." However the
Draft's 4.5.1 states nTbe behavior of these functions is defined for all representable values of its
input arguments." To avoid distinguishing "model" from "representable" numbers here, use "unex­
ceptional finite" .

strtod() is included as a mathematical function, as it should be. It is neither less desirable, nor
more difficult, to conceal internal exceptions in strtod() than in pow().

The current 4.5 has to provide for sensible results, for both IEEE and non-IEEE implementations,
in several special cases such as atan(0,0), log(O), pow(O,O), and finod(x,0). That's no longer
necessary if the double result in exceptional cases is implementation-defined.

Implementations aren't required to set errno since that costs everybody something but portable
software can't rely on iL

There can't be a sensible consistent rule for remembering whether EDOM or ERANGE is
returned, in general, as long as log(O) is specified as ERANGE - defying mathematical usage
and all existing implementations! Better then to avoid all further argwnent by leaving each case
up to each implementation. If log(O) could be construed to be a range error on a system lacking
a representation for infinity, so might log(-1) be construed to be a range error on a system lack­
ing automatic extension to complex arithmetic.

ansi3 .c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 12

• In view of the foregoing, the requirement in 4.1.3 that EDOM and ERANGE evaluate distinctly
seems pointless.

• My previous proposal EIMPL is now encompassed for all functions by allowing EDOM or
ERANGE to be signaled for e.g. large radian arguments to trigonometric functions and fmod.
X3Jl 1 's interpretation "an implementation that truncates to int [at a critical point in trigonometric
argument reduction] is not Standard conforming" excludes all implementations directly derived
from 4.2 BSD or System V.

• The net effect is that a maximally portable application may rely neither on errno (since it's sub­
ject to asynchronous modification) nor on the return value of the function (since appropriate
infinity or NaN return values may not exist in an implementation) and therefore must check func­
tion arguments for suitability.

Recommendation:

Remove or revise specific references to domain or range errors:

atan2: "A domain or range error occurs if both y and x are zero."

cos, sin, tan: Remove statement about large arguments and significance loss. The
significance loss may occur for rather small arguments too. As indicated in my previous
commentary, the entire issue is too complex to encapsulate usefully in a sentence. How
much significance an implementation preserves is a "quality of implementation issue" which
X3Jl 1 usually declines to address. The existing wording doesn't constrain an implementa­
tion in any way, and so should be part of the Rationale if retained.

log, logl0: "A domain or range error occurs if the argument x <= 0.11 In the Rationale,
remove the sentence "The choice in the Standard, range e"or, is for compatibility with
IEEE P8S4." Whatever the merits of range error for log(0), it is definitely not in the spirit
of IEEE 8S4.

pow: 11 A domain or range error occurs if i) x < 0 and y not an integral value, or ii) x == 0
and y <= 0. A range error may occur anyway."

fmod: "A domain or range error occurs if y == 0."

strtod: "A domain or range error occurs if no conversion could be performed. A range
error may occur anyway."

End or recommendation.

Comment #11, Section 4.S: tell more in the rationale

Certain aspects of implementation of mathematical functions have proven to be recurrent sites of
blunders. In a number of instances X3Jl l maintains that the proper interpretation of the Draft implies
certain desirable conclusions. The Rationale should mention these explicitly rather than rely upon
implementers' discernment.

The Rationale's wording "the implementation of this function is properly by scaled subtraction
rather than division" may shed more darkness than light, being open to easy misinterpretation.

Recommendation:

In the Rationale, add

z = fmod(x,y) for finite x and finite non-zero y is uniquely and exactly defined as that z of
minimum magnitude which has the same sign as x and differs from x by an integral multi­
ple of y. The phrase "integral multiple" emphasizes that that multiple need not fit in an int,
a long, or any other storage format, for it need not be explicitly computed. Implementa­
tions that choose to compute fmod(x,y) by aformula like

X - y * (int)(x/y)

are not conforming. Instead, fmod could be computed in principle by subtracting Idexp(y,n)
from x, for appropriately chosen decreasing n until the remainder is between 0 and x,

ansi3 .c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard

although efficiency considerations lead to better implementations.

End of recommendation.

Recommendation:
Add a statement in the Rationale:

Trigonometric argument reduction should be perfonned by a method that causes no catas­
trophic discontinuities in the error of the computed result In particular methods based
solely on naive application of a/ omw.la like

r = x - (2 • JC) • (int)(x/(2 • JC))

are not confonning.

End of recommendation.

13

Note that conforming fmod and trigonometric functions can't be efficiently implemented oncer­
tain mainframes (Cray, CDC, ETA, ...) since lacking a guard digit, they can't even perform correct sub­
traction efficiently.

Recommendation:
Add to the Rationale:

The cell function returns the smallest integral value in double format greater than or equal
to x, even though that integral value might not fit in a variable of type int or long. Thus
ceil(x) == x for all x sufficiently large in magnitude; for IEEE 754 double precision, that
includes all x such that fabs(x) >= 2**52. An implementation that implements ceil(x) as
(double)(int)x for negative x, for instance, is not confonning.

End or recommendation.

Comment #12, Section 4.5: standardize hypot
Recommendation:
Standardize hypot():

4.5.6.S The hypot function

#include <math.h>
double hypot (double x, double y);

Description

The hypot function is intended to compute sqn(x*x+y*y).

In the Rationale, add "some implementations of hypot are especially susceptible to gratui­
tous intermediate underflow and overflow. This must be suppressed for hypot just as for
the other mathematical functions."

End of recommendation.
X3J 11 's previous response on this issue was:

This was considered to be an invention of limited utility. Although this function has uses,
the Committee felt because this function did not exist in the base document and because of
the limited scope in which it is useful that there was insufficient reason to add it to the
Standard.

This response is difficult to understand since hypot has been defined and used for many years in
4.2 BSD and System V. Unlike atan2, which despite another X3Jl 1 assertion is principally associated
with transformations equivalent to rectangular to polar coordinate conversion, hypot appears to be of
greater interest in graphics, robotics, and matrix computations, so much so that several papers have

ansi3.c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 14

been published explaining ways to compute hypot without spurious overflow and underflow (Blue) and
without an explicit sqrt (Moler, Dubrulle).

Comment #13, Section 4.S.4.6: delete modf

X3Jl 1 claims that important portability issues mandate retention of frexp. However no such
claim can be made for modf, since it has been defined and implemented in various incompatible ways.
It provides no essential function.

Recommendation:
Delete modf from the Draft

End or recommendation.

Comment #14, Section 4.7: specify which signals can arise
Some implementations will never detect any exceptions of particular classes (such as floating

point) under any circumstances. This can be exploited if <Signal.h> contains #define can_SIG ... for
each X3J I I-standardized SIG that an implementation can generate by means other than raise():

Recommendation:
Add to 4.7:

For each standardized exception SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and
SIGTERM, an implementation's <Signal.h> also defines macros

#define can SIGABRT
#define can= SIGFPE

for each signal that can arise by means other than raise().

End or recommendation.
This recommenda_tion is repeated because of the perplexing formal response received from X3J 11:

A specific proposal is needed before action can be taken. No prior art exists for this
feature. Many aspects of the signal function are implementation defined. This is due to
the wide variety of implementations in existence, each of which has unique requirements.

ansi3 .c 1.20 88/08/29

D. Hough Comments on Proposed ANSI C Standard 15

Conclusion ~-.. .
The X3Jl L. Rationale acknowledges many difficult issues that arose from conflict between the

descriptive and prescriptive approaches to standardization, and like many language standards the result
often tends toward the descriptive. Since X3Jl 1 is unlikely to want to transcend previous language
standards by closely specifying the entire C numerical environment, it should avoid prejudicing the
issue in any of the ways mentioned above. Then another body, consisting of those knowledgeable

• about numerical issues and those affected by decisions about numerical issues, may properly build upon
the ANSI C standard by adding to it, rather than subtracting from it, in order to define a suitable
environment -for scientific computation.

Acknowledgements
Although they have not expressed agreement with the foregoing recommendations, the following

persons generously contributed detailed criticism of earlier versions of these comments:

ansi3.c 1.20

Greg Astfalk
Nelson Beebe
Larry Breed
John Gilmore
Karl Heuer
Blair Houghton
Iain Johnstone
Earl Killian
Tom MacDonald
David Mendel
K-CNg
Richard O'Keefe
Philippe Toint
Scott Turner
David Wolverton

convex!cleast!astfaJk
Beebe@SCIENCE.UTAH.EDU
ucbvax!ibmpa!lmb
hoptoad!gnu
karl@haddock.isc.com
bph@buengc.bu.edu
iainj@playfair.stanford.edu
ames.arpa!mips !earl
Cray Research
mendel@playfair.stanford.edu
kcng@sun.com
quintus!ok
phtoint%bnandp 1 0.bitnet
husc6.harvard.edu!panda!genrad!mrst!sdti!turner
att.arpa!houxs!daw

88/08/29

