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ABSTRACT 

Adoption of a standard for binary floating 
point arithmetic provides an occasion for 
software implementers of elementary 
transcendental functions e i ther to remedy past 
errors or to heap additional novel indignities 
upon users. 

CHALLENGE 

Historically, mini and micro manufacturers 
(3], following the mainframe pattern (2], 
usually provided car£lessly written, needlessly 
inaccurate software for the "elementary" 
transcendental exponential, logarithmic, and 
trigonometric functions. This software often 
reflected the attitudes and errors existing in 
the machines' basic arithmetic operations for 
addition, subtraction, multiplication, and 
division (8]. This software was cheap to write 
but made debugging users' programs more 
expensive. 

In 1982, however, IEEE Working Group P754 
finished a proposal for a standard for binary 
floating point arithmetic (l]. This standard 
was designed for new micro implementations, but 
it has also been adopted for a new high 
performance mini (9]. The standard specifies 
representable number sets, operations upon them, 
modes which affect the results, and handling of 
exceptions which may arise during computation. 
Except for a few extreme cases, the standard 
categorically specifies results and exceptions, 
allowing no variation among conforming 
implementations. 

The challenge now is to create elementary 
function codes that are as good as the basic 
arithmetic operations defined in the IEEE 
standard. Ideally the result of a call on an 
elementary function would 

return a correctly rounded result, 
observing the current rounding ■odes, 
generating only relevant exceptions, 
without being much slower or larger than 
a careless i■pleaentation. 

Integrated circuits now in production or design 
incorporate complete (11] or partial (10] 
elementary functions. As their cost declines 
these circuits will be incorporated into 
increasing nwabers of aicro systems. In the 
interim, software iapleaentations will 
predoainate; these are the subject of this 
paper. 

l 

CONSTRAINTS 

Codes that guarantee correctly rounded 
transcendental functions will generally lack 
acceptable efficiency. For algebraic functions 
such as square root, a simple test determines 
whether any partial result is exact. But for 
transcendental functions, no theory fixes in 
advance the nU111ber of extra bits that must be 
:omputed in order to guarantee that the final 
answer be correctly rounded ton bits. This 
"table maker's dilemma" antedates even 
mechanical computing devices. But to meet 
function code speed goals, the amount of extra 
precision, if any, is usually fixed in advance. 

The IEEE standard recognizes a less severe 
form of this dilellllDa when it authorizes base 
conversion to be slightly less than perfectly 
rounded if the exponents involved are extremely 
large or small . The known algorithms for 
correctly rounded base conversion require 
progressively larger buffers and execution times 
as exponents increase. These algorithms are too 
costly within current integrated circuit 
technology, so the standard was relaxed to what 
is known to be economically achievable. The 
standard also allows some latitude in the 
settings of the inexact and underflow 
exceptions, so that the exceptions are allowed 
to be set even in some cases that are really 
unexceptional. 

Besides the usual binary floating point 
numbers, the IEEE standard also defines tiny 
denormalized numbers, signed zeros and 
infinities, and not-a-nU111ber symbols (NaNs). In 
many cases the standard specifies special 
treatment for these cases. Elementary functions 
should handle these cases correctly, but to 
conserve code size, algorithms should be chosen 
which minimize the number of tests for unusual 
operands and results. 

Another aspect of the challenge is to 
create codes that act like arithmetic operations 
in generating exceptions. That is, the 
exceptions describe the computed result and not 
intermediate results that may be artifacts of a 
particular algorithm. Host of the problems 
arise fro■ intermediate underflow, overflow, and 
divide by zero exceptions. 
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In fact, the very definition of "divide by 
zero" needs generalization. Log(O) and 
tan(pi/2) are like division by zero since they 
produce an infinite result from a finite 
operand. This result is exact in the sense that 
no overflow occurred and the result would be 
infinity even with unbounded precision and 
range. So the general definition of "divide by 
zero" should be enlarged to "exact infinite 
result from finite operand(s)." 

Typical transcendental functions have 
rational values for only a few rational 
arguments. For all other rational arguments, 
the values are transcendental and can not be 
represented exactly in floating point 
arithmetic. So the inexact flag exception 
should usually be signalled. This is seldom a 
problem; rather the difficulty is not signalling 
inexact in the few cases when the result is 
exact. 

An optional portion of the IEEE standard 
specifies traps that may be defined to occur in 
user programs when an exception occurs. In full 
generality these traps allow user defined 
programs to determine the operation, operands, 
default result, and exceptions generated. 
Encoding and transmitting all this information 
to a user of higher level language is a 
formidable problem on many systems, to the 
extent that such trapping is seldom available 
except to machine language programmers. 
Sometimes halts are provided instead (12). When 
an exception occurs whose halt is enabled, 
control passes to the operating system which 
interrogates the user whether to halt or to 
continue execution with the default result. 
Such a system with halts does not allow user 
programmed response to an exception and can be 
cheaper to implement than IEEE trapping. 

If either traps or halts are provided, the 
challenge to the implementer is to make 
exceptions generated in elementary functions 
like those generated in the arithmetic 
operatipns. This is often complicated when the 
arithmetic is in hardware or machine language 
and the elementary functions are coded in a 
higher level language. 

METHODS 

The intent of the IEEE standard is that 
data be stored in a basic format and that 
computations be performed in an extended format 
if available. But codes may be independently 
characterized as "operand precision" or "extra 
precision." Operand precision codes must 
compute using arithmetic of the same precision 
and range as the arguments and result. Extra 
precision codes have the luxury of additional 
precision and range for intermediate 
computations and consequently rarely need to 
make provision for intermediate unde'rflow and 
overflow, Note that if the arguments and 
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results are in IEEE extended format, a code that 
aust compute in the same IEEE extended format is 
"operand precision. 11 

Thus it would appear desirable to limit 
arguments of elementary functions to basic 
formats and computations within them to extended 
formats. But this conflicts with another 
desirable property, that computations such as 

z :• ezp(x•2-y•2) 
be evaluated in extended format even when x, y, 
and z are in basic format. Such evaluation 
minimizes the effect of rounding error and 
allows computation of valid z even in many cases 
where intermediate results z•2 and y•2 might 
overflow or underflow. 

Elementary function codes require argument 
reduction followed by function evaluation on the 
reduced argument [4]. Host implementers would 
do well to follow Cody (5) even though the 
approximations there are not optimized for IEEE 
arithmetic; for most of the functions, Cody does 
not list approximations accurate to more than 60 
bits. 

Argument reduction requires extra precise 
values of pi/2 and loge(2) for the computations 
of 

r :• remainder( x, pi/2) 
or 

r :• remainder( x, loge(2) ). 
One approach is to generate these constants to 
any arbitrary precision as needed (13); another 
is to use the same approximation for pi/2 or 
loge(2) regardless of the size of the argument. 
The first approach is essential to obtain 
correctly rounded approximations to the exact 
functions but su(fers because the computed 
functions are not quite periodic. The second 
approach precludes correctly rounded computed 
functions but insures their periodicity, even 
though the period differs slightly from the 
period of the exact function. If the second 
approach is used, the constants pi/2 and loge(2) 
should be stored in the widest precision 
available and the remainder operation should 
take place in that precision. Thus Fortran 
SIN(X) and SNGL(DSIN(DBLE(X))) should rarely 
differ, and then only in the least aignificant 
bit of the result, even for large ■ ingle 
precision arguments x. The two results will 
sometimes be totally different if SIN uses a 
single precision approximation to pi/2 and DSIN 
uses a double precision approximation to pi/2. 

What' about cos(pi/2)-0 or 
tan(pi/2)•+infinity? The user's pi/2 may differ 
from that internal to the function code. If the 
internal pi/2 is stored to a certain fixed 
extended precision, and the code is extra 
precision, then an argument which is as close to 
pi/2 as possible will be less accurate than the 
internal pi/2. After remainder, the reduced 
argument will not be exactly zero, so cos will 
be not zero but a small number, and tan will be 



not infinity but a large number. But if the 
code is operand precision, then the argument may 
be the exact same value as the internal pi/2, 
and so will be reduced to exactly zero after 
remainder, with result cos exactly zero and tan 
exactly infinity, with never a rounding error. 
Either way is bound to surprise someone. Naive 
users expect C0S(PI/2) to be zero, especially in 
languages like Basic that provide a name for pi; 
experienced programmers know that pi/2 can not 
be represented exactly so C0S(PI/2) should not 
be exactly zero. 

After argument reduction comes function 
evaluation; Table 1 below suggests forms for 
approximating the key functions on reduced 
arguments. The approximations to g(x) should be 
about as accurate as the precision in which they 
are evaluated. 

As an example, over the limited x interval, 
the essential financial function exp(x)-1 can be 
calculated as 

x + x•2 * g(x) , 
while the familiar exp(x) can be calculated 
accurately as 

1 + x + x·2 * g(x). 
Note that these forms of approximation work well 
for denormalized x without any special 
consideration. For an arbitrary argument x, 
which could be represented as n * loge(2) + r 
for integer n, exp(x) can be computed from the 
expression 

2•n * (1 + r + r•2 * g(r)) 
while representing x as m + f for integer m, 
allows 2•x to be computed from 

s :• f * loge(2), 
2•x :• 2•m * (1 + s + s•2 * g(s) ). 

In what form are these approximating 
functions g(x) expressed? Most often as ratios 
of polynomials, or rational functions; less 
frequently as continued fractions. (4) and (5) 
contain coefficients found by using versions of 
the Remes algorithm (6). The Remes algorithm 
can be adapted to produce new approximations 
providing it is executed in greater precision 
than the intended working precision of the 
elementary function code. In particular, for 
IEEE double extended format with 64 bit 
eignificand1, llemee algorithms have been 
executed in 96 bite of eignificance ueing 
hardware like CDC 6600 double precision or 
eoftware like Brent'• (7). 

Such investigations usually reveal several 
possible approximations. To determine the beat 
it is necessary to compare the approximate 
function value, computed in the intended working 
precision, with much more accurate function 
values computed with greater precision, euch as 
by the llemes algorithm. Errors should be 
measured in units in the last place of the 
function desired - f(x) in Table 1 - computed 
for many points over the x interval. Cody [SJ 
explains many other essential testing details. 

l 

Although extra precision codes can produce 
results that are almost always correctly 
rounded, at least in a limited interval, it ta a 
rare and significant accomplishment to be able 
to make the same claim f~r operand precision 
codes. Consequently it makes little sense to 
attempt to observe the rounding modes when 
computing the function approximation, which 
might as well be computed in the default mode of 
rounding to nearest. Then the very last step of 
an extra precision code can be to restore the 
original rounding mode, and store the extended 
format approximate result in the basic format in 
which it is to be delivered. 

When coding several elementary function 
routines it is helpful to prepare standard 
procedures for entry and exit protocol. The 
entry protocol consists of saving the current 
floating point environment, consisting of 
rounding modes, exceptions, and traps ·or halts, 
then clearing the exceptions and traps and 
restoring the default modes. During the 
subsequent computation, some exceptions may 
arise, but traps are deferred so they can be 
handled in an orderly manner by the exit 
protocol. This protocol consists of noting 
which new exceptions arose within the function 
code, restoring the environment that existed 
previously, then 0Ring in the new exceptions and 
ANDing the new exceptions with the trap bits to 
determine whether a trap should occur. As 
indicated above, the storing of the result in a 
narrower format should be performed in the 
original rounding mode. 

By following some of the previous 
suggestions and coding with care it is possible 
to create extra precision elementary functions 
of a single argument that almost always attain 
the desirable results listed above under 
CHALLENGE for reasonable argument■• It is much 
more difficult to come close to the sue 
standard when functions of two arguments are 
considered such as x•t, x•y, compound interest 
factor, present value of annuity, conversion 
between rectangular and polar coordinates, and 
complex elementary function• of a cocaplex 
variable. Even the definitions of these 
function• are not yet univer1ally accepted in 
ca••• like NaN•o or (-Inf)•(+Inf). One approach 
ia to build the function, of one argument to a 
high etandard, then build the function, of two 
argument• in a straightforward way without 
concern for extreme caeea and esception1. Thia 
may run afoul of many u1era' expectations that 
x•y, for inatance, is as elemental an operation 
as x*y. Getting nearly correct rounding for 
these functions, not to ■ention meaningful 
exceptions, remains an interesting challenge •. 
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To compute: 
f(x) • 

Find approximation to: 
g(x) • 

Over x Interval: 

exp(x)-1 
loge(l+x) 
ain(x) 
cos(x) 
atan(x) 

(exp(x)-1-x)/x'"'2 
(loge(l+x)-x)/x'"'2 
(sin(x)-x)/z"'3 
(cos(x)-1)/x"'2 
(atan(z)-x)/x"'3 

abs(x) <• 0.5*loge(2) 
2·-0.s - 1 <· x <• 2"'0.s - 1 

0 (• X (• pl/4 
0 (• X (• pi/4 

0 <• x <• tan(pi/4) 

Table 1. Approximation Forms for Elementary Transcendental Functions 
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