
' I

ELEMEITTARY FUNCTIONS BASED UPON IEEE ARITHMETIC

David Hough
Apple Computer

PO Box 561
Cupertino, CA 95015

ABSTRACT

Adoption of a standard for binary floating
point arithmetic provides an occasion for
software implementers of elementary
transcendental functions e i ther to remedy past
errors or to heap additional novel indignities
upon users.

CHALLENGE

Historically, mini and micro manufacturers
(3], following the mainframe pattern (2],
usually provided car£lessly written, needlessly
inaccurate software for the "elementary"
transcendental exponential, logarithmic, and
trigonometric functions. This software often
reflected the attitudes and errors existing in
the machines' basic arithmetic operations for
addition, subtraction, multiplication, and
division (8]. This software was cheap to write
but made debugging users' programs more
expensive.

In 1982, however, IEEE Working Group P754
finished a proposal for a standard for binary
floating point arithmetic (l]. This standard
was designed for new micro implementations, but
it has also been adopted for a new high
performance mini (9]. The standard specifies
representable number sets, operations upon them,
modes which affect the results, and handling of
exceptions which may arise during computation.
Except for a few extreme cases, the standard
categorically specifies results and exceptions,
allowing no variation among conforming
implementations.

The challenge now is to create elementary
function codes that are as good as the basic
arithmetic operations defined in the IEEE
standard. Ideally the result of a call on an
elementary function would

return a correctly rounded result,
observing the current rounding ■odes,
generating only relevant exceptions,
without being much slower or larger than
a careless i■pleaentation.

Integrated circuits now in production or design
incorporate complete (11] or partial (10]
elementary functions. As their cost declines
these circuits will be incorporated into
increasing nwabers of aicro systems. In the
interim, software iapleaentations will
predoainate; these are the subject of this
paper.

l

CONSTRAINTS

Codes that guarantee correctly rounded
transcendental functions will generally lack
acceptable efficiency. For algebraic functions
such as square root, a simple test determines
whether any partial result is exact. But for
transcendental functions, no theory fixes in
advance the nU111ber of extra bits that must be
:omputed in order to guarantee that the final
answer be correctly rounded ton bits. This
"table maker's dilemma" antedates even
mechanical computing devices. But to meet
function code speed goals, the amount of extra
precision, if any, is usually fixed in advance.

The IEEE standard recognizes a less severe
form of this dilellllDa when it authorizes base
conversion to be slightly less than perfectly
rounded if the exponents involved are extremely
large or small . The known algorithms for
correctly rounded base conversion require
progressively larger buffers and execution times
as exponents increase. These algorithms are too
costly within current integrated circuit
technology, so the standard was relaxed to what
is known to be economically achievable. The
standard also allows some latitude in the
settings of the inexact and underflow
exceptions, so that the exceptions are allowed
to be set even in some cases that are really
unexceptional.

Besides the usual binary floating point
numbers, the IEEE standard also defines tiny
denormalized numbers, signed zeros and
infinities, and not-a-nU111ber symbols (NaNs). In
many cases the standard specifies special
treatment for these cases. Elementary functions
should handle these cases correctly, but to
conserve code size, algorithms should be chosen
which minimize the number of tests for unusual
operands and results.

Another aspect of the challenge is to
create codes that act like arithmetic operations
in generating exceptions. That is, the
exceptions describe the computed result and not
intermediate results that may be artifacts of a
particular algorithm. Host of the problems
arise fro■ intermediate underflow, overflow, and
divide by zero exceptions.

16/4

In fact, the very definition of "divide by
zero" needs generalization. Log(O) and
tan(pi/2) are like division by zero since they
produce an infinite result from a finite
operand. This result is exact in the sense that
no overflow occurred and the result would be
infinity even with unbounded precision and
range. So the general definition of "divide by
zero" should be enlarged to "exact infinite
result from finite operand(s)."

Typical transcendental functions have
rational values for only a few rational
arguments. For all other rational arguments,
the values are transcendental and can not be
represented exactly in floating point
arithmetic. So the inexact flag exception
should usually be signalled. This is seldom a
problem; rather the difficulty is not signalling
inexact in the few cases when the result is
exact.

An optional portion of the IEEE standard
specifies traps that may be defined to occur in
user programs when an exception occurs. In full
generality these traps allow user defined
programs to determine the operation, operands,
default result, and exceptions generated.
Encoding and transmitting all this information
to a user of higher level language is a
formidable problem on many systems, to the
extent that such trapping is seldom available
except to machine language programmers.
Sometimes halts are provided instead (12). When
an exception occurs whose halt is enabled,
control passes to the operating system which
interrogates the user whether to halt or to
continue execution with the default result.
Such a system with halts does not allow user
programmed response to an exception and can be
cheaper to implement than IEEE trapping.

If either traps or halts are provided, the
challenge to the implementer is to make
exceptions generated in elementary functions
like those generated in the arithmetic
operatipns. This is often complicated when the
arithmetic is in hardware or machine language
and the elementary functions are coded in a
higher level language.

METHODS

The intent of the IEEE standard is that
data be stored in a basic format and that
computations be performed in an extended format
if available. But codes may be independently
characterized as "operand precision" or "extra
precision." Operand precision codes must
compute using arithmetic of the same precision
and range as the arguments and result. Extra
precision codes have the luxury of additional
precision and range for intermediate
computations and consequently rarely need to
make provision for intermediate unde'rflow and
overflow, Note that if the arguments and

16/4 2

results are in IEEE extended format, a code that
aust compute in the same IEEE extended format is
"operand precision. 11

Thus it would appear desirable to limit
arguments of elementary functions to basic
formats and computations within them to extended
formats. But this conflicts with another
desirable property, that computations such as

z :• ezp(x•2-y•2)
be evaluated in extended format even when x, y,
and z are in basic format. Such evaluation
minimizes the effect of rounding error and
allows computation of valid z even in many cases
where intermediate results z•2 and y•2 might
overflow or underflow.

Elementary function codes require argument
reduction followed by function evaluation on the
reduced argument [4]. Host implementers would
do well to follow Cody (5) even though the
approximations there are not optimized for IEEE
arithmetic; for most of the functions, Cody does
not list approximations accurate to more than 60
bits.

Argument reduction requires extra precise
values of pi/2 and loge(2) for the computations
of

r :• remainder(x, pi/2)
or

r :• remainder(x, loge(2)).
One approach is to generate these constants to
any arbitrary precision as needed (13); another
is to use the same approximation for pi/2 or
loge(2) regardless of the size of the argument.
The first approach is essential to obtain
correctly rounded approximations to the exact
functions but su(fers because the computed
functions are not quite periodic. The second
approach precludes correctly rounded computed
functions but insures their periodicity, even
though the period differs slightly from the
period of the exact function. If the second
approach is used, the constants pi/2 and loge(2)
should be stored in the widest precision
available and the remainder operation should
take place in that precision. Thus Fortran
SIN(X) and SNGL(DSIN(DBLE(X))) should rarely
differ, and then only in the least aignificant
bit of the result, even for large ■ ingle
precision arguments x. The two results will
sometimes be totally different if SIN uses a
single precision approximation to pi/2 and DSIN
uses a double precision approximation to pi/2.

What' about cos(pi/2)-0 or
tan(pi/2)•+infinity? The user's pi/2 may differ
from that internal to the function code. If the
internal pi/2 is stored to a certain fixed
extended precision, and the code is extra
precision, then an argument which is as close to
pi/2 as possible will be less accurate than the
internal pi/2. After remainder, the reduced
argument will not be exactly zero, so cos will
be not zero but a small number, and tan will be

not infinity but a large number. But if the
code is operand precision, then the argument may
be the exact same value as the internal pi/2,
and so will be reduced to exactly zero after
remainder, with result cos exactly zero and tan
exactly infinity, with never a rounding error.
Either way is bound to surprise someone. Naive
users expect C0S(PI/2) to be zero, especially in
languages like Basic that provide a name for pi;
experienced programmers know that pi/2 can not
be represented exactly so C0S(PI/2) should not
be exactly zero.

After argument reduction comes function
evaluation; Table 1 below suggests forms for
approximating the key functions on reduced
arguments. The approximations to g(x) should be
about as accurate as the precision in which they
are evaluated.

As an example, over the limited x interval,
the essential financial function exp(x)-1 can be
calculated as

x + x•2 * g(x) ,
while the familiar exp(x) can be calculated
accurately as

1 + x + x·2 * g(x).
Note that these forms of approximation work well
for denormalized x without any special
consideration. For an arbitrary argument x,
which could be represented as n * loge(2) + r
for integer n, exp(x) can be computed from the
expression

2•n * (1 + r + r•2 * g(r))
while representing x as m + f for integer m,
allows 2•x to be computed from

s :• f * loge(2),
2•x :• 2•m * (1 + s + s•2 * g(s)).

In what form are these approximating
functions g(x) expressed? Most often as ratios
of polynomials, or rational functions; less
frequently as continued fractions. (4) and (5)
contain coefficients found by using versions of
the Remes algorithm (6). The Remes algorithm
can be adapted to produce new approximations
providing it is executed in greater precision
than the intended working precision of the
elementary function code. In particular, for
IEEE double extended format with 64 bit
eignificand1, llemee algorithms have been
executed in 96 bite of eignificance ueing
hardware like CDC 6600 double precision or
eoftware like Brent'• (7).

Such investigations usually reveal several
possible approximations. To determine the beat
it is necessary to compare the approximate
function value, computed in the intended working
precision, with much more accurate function
values computed with greater precision, euch as
by the llemes algorithm. Errors should be
measured in units in the last place of the
function desired - f(x) in Table 1 - computed
for many points over the x interval. Cody [SJ
explains many other essential testing details.

l

Although extra precision codes can produce
results that are almost always correctly
rounded, at least in a limited interval, it ta a
rare and significant accomplishment to be able
to make the same claim f~r operand precision
codes. Consequently it makes little sense to
attempt to observe the rounding modes when
computing the function approximation, which
might as well be computed in the default mode of
rounding to nearest. Then the very last step of
an extra precision code can be to restore the
original rounding mode, and store the extended
format approximate result in the basic format in
which it is to be delivered.

When coding several elementary function
routines it is helpful to prepare standard
procedures for entry and exit protocol. The
entry protocol consists of saving the current
floating point environment, consisting of
rounding modes, exceptions, and traps ·or halts,
then clearing the exceptions and traps and
restoring the default modes. During the
subsequent computation, some exceptions may
arise, but traps are deferred so they can be
handled in an orderly manner by the exit
protocol. This protocol consists of noting
which new exceptions arose within the function
code, restoring the environment that existed
previously, then 0Ring in the new exceptions and
ANDing the new exceptions with the trap bits to
determine whether a trap should occur. As
indicated above, the storing of the result in a
narrower format should be performed in the
original rounding mode.

By following some of the previous
suggestions and coding with care it is possible
to create extra precision elementary functions
of a single argument that almost always attain
the desirable results listed above under
CHALLENGE for reasonable argument■• It is much
more difficult to come close to the sue
standard when functions of two arguments are
considered such as x•t, x•y, compound interest
factor, present value of annuity, conversion
between rectangular and polar coordinates, and
complex elementary function• of a cocaplex
variable. Even the definitions of these
function• are not yet univer1ally accepted in
ca••• like NaN•o or (-Inf)•(+Inf). One approach
ia to build the function, of one argument to a
high etandard, then build the function, of two
argument• in a straightforward way without
concern for extreme caeea and esception1. Thia
may run afoul of many u1era' expectations that
x•y, for inatance, is as elemental an operation
as x*y. Getting nearly correct rounding for
these functions, not to ■ention meaningful
exceptions, remains an interesting challenge •.

18/4

To compute:
f(x) •

Find approximation to:
g(x) •

Over x Interval:

exp(x)-1
loge(l+x)
ain(x)
cos(x)
atan(x)

(exp(x)-1-x)/x'"'2
(loge(l+x)-x)/x'"'2
(sin(x)-x)/z"'3
(cos(x)-1)/x"'2
(atan(z)-x)/x"'3

abs(x) <• 0.5*loge(2)
2·-0.s - 1 <· x <• 2"'0.s - 1

0 (• X (• pl/4
0 (• X (• pi/4

0 <• x <• tan(pi/4)

Table 1. Approximation Forms for Elementary Transcendental Functions

REFERENCES

(1) "A Proposed Standard for Binary
Floating Point Arithmetic," Draft 10.0 of IEEE
Task P754, December 2, 1982. Inquiries
concerning the progress of this draft standard
toward official adoption should be addressed to
the IEEE Standards Office, 345 E 47th St, New
York 10017.

(2) w. Cody, "Software for the Elementary
Functions," in J. 'Rice, ed., Mathematical
Software, Academic Press, 1971.

(3) E. Battiste, "Scientific Computations
Using Micro-Computers", !£!i fil!!!!1 Newsletter,
16 (1) 1981.

[4] J. Bart, Computer Approximations,
Wiley, 1968.

[SJ w. Cody and w. Waite, Software Manual
!!!!,~ Elementary Functions, Prentice Harr;---
1980.

(6) w. Cody, w. Fraser, and J. Hart,
"Rational Chebysbev Approximation using Linear
Equations," Numeriache Mathematik, 12 (4) 1968.

16/4 4

(7) R.. Brent, "MP, A Fortran
Multiple-Precision Arithmetic Package," ACM
!fil!!, 4 (1) 1978. -

[8] w. Kahan, Implementation of Algorithms,
NTIS Document DDC AD 769 124, 1973.

(9) G. Taylor, "Arithmetic on the ELXSI
System 6400," in T. R.ao and P. ltornerup, eds.,
Proceedings 6th Symposium _!m Computer
Arithmetic, IEEE Computer Society, 1983.

[10) The 8086 Family ~.!!!™1 Numerics
Supplement, Intel Corporation, number 121586-001
Rev A, 1980.

(11] J. Boney and V. Shahan, "Floating
Point Power for the H68000 Family," in
Mini/Micro Northeast Conference Record,
Electronic Conventions, 1983. ---

[12) Numerics Manual:!~~ Using~
.!Elli I I I Pascal ~ and Elems .!!!!.ll!., part
number 030-0660-A, Apple Computer, 1983.

(13) M. Payne and R.. Banek, "Radian
Reduction for Trigonometric Functions,"~
fil!!!!1 Newsletter, 18 (1) 1983.

