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0 . Introduction. The primordial problems of 
linear algebra are the solution of a system of linear 

. equations 

and the solution of the eigenvalue problem 

for the eigenvalues Xk and corresponding 

eige~vectors ~k of a given matrix A . The nurner

ica: solution of these problems without the aid of an 
electronic computer is a project not to be undertaken 
lightly . For example, using a mechanical desk
calcu:ator to solve five linear equations in five 
unknowns (and check them) takes me nearly an hour, 
and to calculate five eigenvalues and eigenvectors of 
a five-by-five matrix costs me at least an afternoon 
of drudgery. But any of today's electronic computers 
are capable of performing both calculations in less 
than a second. 

Sections 6 to 11 will appear in this Bulletin at a 
later date . 
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The Probability That A Numerical Analysis Problem 
Is Difficult 

By James W. Demmel 

Ab■tract. Numerous problems in numerical analysis, including matrix inversion, eigen
value calculations and polynomial zerofinding, share the following property: The diffi
culty of solving a given problem is large when the distance from that problem to the 
nearest "ill-posed" one is small. For example, the closer a matrix is to the set of non
invertible matrices, the larger its condition number with respect to inversion. We show 
that the sets of ill-posed problems for matrix inversion. eigenproblems, and polynomial 
zerofinding all have a common algebraic and geometric structure which lets us com
pute the probability distribution of the distance from a "random" problem to the set. 
From this probability distribution we derive, for example, the distribution of the con
dition number of a random matrix. We examine the relevance of this theory to the 
analysis and construction of numerical algorithms destined to be run in finite precision 
arithmetic. 

1. Introduction. To investigate the probability that a numerical analysis prob-
lem is difficult , we need to do three things: 

( 1) Choose a measure of difficulty, 
(2) Choose a probability distribution on the set of problems, 
(3) Compute the distribution of the measure of difficulty induced by the distri

bution on the set of problems. 
The measure of difficulty we shall use in this paper is the condition number, which 

measures the sensitivity of the solution to small changes in the problem. For the 
problems we consider in this paper (matrix inversion, polynomial zerofinding and 
eigenvalue calculation), there are well-known condition numbers in the literature of 
which we shall use slightly modified versions to be discussed more fully later. The 
condition number is an appropriate measure of difficulty because it can be used 
to measure tht expected loss of accuracy in the computed solution, or even the 
number of iterations required for an iterative algorithm to converge to a solution. 

The probability distribution on the set of problems for which we will attain 
most of our results will be the ·'uniform distribution" which we define as follows. 
We will identify each problem as a poi.tt in either RN (if it is real) or cN (if 
it is complex). For example, a real n by n matrix A will be considered to be a 
point in Rnl, where each entry of A forms a coordinate in Rnl in the natural way. 
Similarly, a complex nth degTee polynomial can be identified with a point in cn+i 

by using its coefficients as coordinates. On the space R N (or CN) we will take any 
spherically symmetric distribution, i.e. , the induced distribution of the normalized 
problem x/ llxll (II· II is the Euclidean norm) must be uniform on the unit sphere in 
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Compiler Support for Floating-point 
Computation 

CHARLES FAR:'1,;l"l\l 
CCJmputrr Scieua Depnrtmelll, l "11it-enity of Ca/1/omia, Berkt'icy, Rc-1-keley, Califcm1in 

9.r:20. i ·.s--t 

Predictability is a basic requirement for compilers of floating-point code - it must be possible 
to determine the exact ftoating-point operations that will be executed for a particular source• 
le,••1 construction. Experience shows that many compilers fail to provide predictability, either 
because of an inadequate understanding of its imponance or from an attempt to produce locally 
better code. Predictability can be attained through careful attention to code generation and a 
knowledge of the common pitfalls. Most language standards do not completely define the 
precision of ftoating-point operations, and so a good compiler must also make a good choice in 
assigning precisions of subexpression computation. Choosing the widest precision that will be 
used in the expression usually gives the best trade-off between efficiency and accuracy. FinalJy, 
certain optimizations are particularly useful for floating-point and should be included in a 
compiler aimed at scientific computation. But predictability is more imponant than efficiency; 
obtaining incorrect answers fast helps no one. 

J.Er WORD:- Compiler$ Floatsn~•pomr arithmrtic Opt1miza1iun 

.1:: l~TRODCCTIO;\ 

;.i Floating-point programs- must be carefully compiled in order to produce accurate 
3~ results. Data accessing primiti,·es, control structures and integer arithmetic are clearly 
3f. defined in most language standards, since most hardware is more or less equi,·alent in 
,- the support it offors for these tasks. But Aoating-point systems ,·ary widely, so language 
3" standards cannot specify perfectly the semantics of source-le\·el floating-point oper-
~ ations. 1 The implementor is left with the difficult task of deciding what machine-level • 
.,, operations will result from source-le\·el code. 
"' Unfortunately, most compiler writers are ilI-equipped to handle this task. Compiler 
•: texts and classes rarely address the peculiar problems of floating-point computation, 
.aJ and research literature on the topic is generally confined to journals read by numerical 
~ analysts, not compiler writers. l\lany production-quality compilers that are excellent 
•~ in other respects make basic mistakes in their compilation of floating-point, resulting 
Ati in programs that produce patently absurd results or, worse, reasonable but inaccurate 
~ resu1ts. 
"' An implementation of a large floating-point library is a job for specialists. But gi,·en 
.ay such a library, little information is actually needed to produce good floating-point code 
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BOOKS------------ Information Systems------------ (8804-0250] 

G.2 DISCRETE MATHEMATICS 
G.2. 1 Combinatorics 

Combinator/al algorithm• 
See: 8804-0242 (E.3) 

Permutation• and combination• 
See: 8804-0242 [E.3) 

G.3 PROBABILITY AND STATISTICS 
See: 8804-0260 [K.8.2-Computlng equipment managenumtJ 

Statl•tlt:alcomputlng 
See also: 8804-0238 (D.2.9-Software quality auurance (SQA/J 

JOHNSON. MARKE. (Los Alamos National 8804-0248 
Laboratory. Los Alamos, NM) 
Multivariate statistical simulation. 
John Wiley & Sons, Inc., New York, NY. 1987, 
230 pp., $34.95, ISBN 0-471-82290-6. [Wiley series in 
probability and mathematical statistics.] 

This monograph describes an approach to generating con
tinuous multivariate distributions. Typically, the approach 
throughout is to use a transformation of one or two easily 
generated random variables to achieve a new distribution. 
A few parameters provide a mechanism for generating one 
of a family of possibilities. To help choose the correct 
parameter values, the reader is then presented with an 
array of three-dimensional and contour plots for the fami
lies. 

A large number of distributions are described. These 
include the weU known, the less well known, and the rare. 
The multivariate normal and multivariate uniforms are 
examples of the first type. The somewhat less well known or 
rare include the lognormal, logistic, Pareto, Burr, and 
Wishart, to name some of the remaining ones. This work is 
a serious contribution to the field and could be of use to 
those doing Monte-Carlo or discrete event simulations. 

-T. Brown, Flushing, NY 
GENERAL TERMS: ALGORITHMS, THEORY 

G.4 MATHEMATICAL SOFTWARE 

KEMPF, JAMES (Hewlett-Packard Company) 8804-0249 
Numerical software tools in C. 
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987, 
261 pp., $28, ISBN 0-13-627274-6. [Prentice-Hall 
software series.) 

This book is not a book about numerical software, using C 
as the vehicle for presenting examples; rather it is a book 
about C and UNIX, with the presentation tied together by 
the numerical slant of the examples. Twenty percent of the 
book is devoted to an initial chapter on the basics of C. This 
is followed by another 20 percent devoted to a chapter 
using C to write the dot product, matrix addition, and 
Gaussian elimination. Virtually nothing is said about 
numerical issues such as when to use the partial pivoting 
included in the program and what the other choices are. 
Instead, the emphasis is on program structure issues such 
as modularity, orderly development, specification, and 
realization of 1/0 interfaces. 

Chapters 3 and 4, which comprise 30 percent of the 

book, are devoted to numerically related 1/0 issues: 
exchanging data via UNIX pipes and graphics. The slant of 
the book away from high volume numerical computation is 
established by the encouragement to convert double preci
sion numbers to character strings and back again in order 
to pass them between programs. It is suggested that "a 
faster interface is probably more desirable" for large 
applications, but this is not pursued. The graphics chapter 
is fairly extensive and treats such things as clipping and 
windowing as well as curve plotting. Neither perspective 
projection nor contouring for presenting functions of two 
variables is covered. 

The final 30 percent of the book is devoted to one chapter 
on optimization and. one on differential equations. Again 
the emphasis is on program design and structure, and the 
discussion of numerical issues is abridged. You will find the 
word stiff mentioned, but techniques for handling stiff 
differential equations are beyond the scope of this book. 

While this book handles modularity and interfaces fairly 
well, it has a number of peculiarities I tend to associate 
with C programming. I the main program for vector 
optimization, for exampl , the call to the routine that the 
text later identifies as "th heart of the vector optimization 
module" is buried in the ndition of an if statement and 
identified only by the co ent ,. 

error in method occurred .,. 
-H. F. Jordan, Boulder, CO 

GENERAL TERMS: ALGORITHMS, LANGUAGES 

H. Information Systems 

H.O GENERAL 

FLYNN, ROGER R. (Univ. of Pittsburgh. 8804-0250 

Pittsburgh, PA) 
An introduction to information science. 
Marcel Dekker, Inc., New York, NY, 1987, 793 pp., 
$39.75, ISBN 0-8247-7508-2. [Library and information 
science.] 

What topics should be included in a course entitled "Intro
duction to Information Science?" This is not a question 
that has a single answer, for people view information 
science from different perspectives, and the discipline itself 
is changing rapidly. 

Roger Flynn, the book's author, is a professor in the 
Department of Information Science at the University of 
Pittsburgh. He developed the course materials through "a 
lengthy process of selection, trial, and revision.,. The text is 
designed for use in an introductory course at an undergrad
uate level. Information science is equated with answering 
questions, that is, with the activities involved in seeking, 
processing, and using information to solve problems and to 
make decisions. That these activities are complex and that 
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Supercomputing 
for one 
Interactive, high-resolution graphics and vector processing combine 
for the first time in these desk-side units 

In the culture of engineering-where a project's im
portance is often gauged by the computational power 
it requires-supercomputers have something of a 
mystique. Virtually all electrical engineers know 
what supercomputers can do, who makes them, and 
how much they cost. But because of its price tag, 
most EEs will never see a supercomputer, let alone 
use one-there are only 300 or so worldwide. 

But supercomputing no longer necessarily means 
multimillion dollar machines produced by a few 
companies for a tiny technical and scientific elite. Minisupercom
puters have been steadily gaining in popularity since they were 
first introduced a few years ago. Minisuper processing rates range 
from roughly 3 million to 20 million floating-point operations 
per second (megaflops) on the standard Linpack benchmark. 
They offer about one-third, some as much as one-half, the peak 
performance of a typical full-size supercomputer. 

Last month, supercomputing made another great stride toward 
egalitarianism. 1\vo U.S. manufacturers introduced their versions 
of a graphics supercomputer, a new class of machine that inte
grates a portion of the computational power of a supercomputer 
and the interactive, three-dimensional visual capability of a state
of-the-art workstation. 

Graphics supercomputers are parallel, multiprocessor systems. 
They have high-speed integer processors and 64-bit vector proces
sors like those used in supercomputers and minisupers to handle 
calculations that simulate complex physical events. They use the 
Unix operating system and have compilers that automatically 
transform and optimize code written in Fortran or C to exploit 
vector and parallel hardware, with no need for machine-specific 
extensions or assembly language. Supported by high processor
to-memory bus bandwidth and highly interleaved memory, graph
ics supercomputers can sustain more than 6 megaflops on a 100-
by-100 compiled Linpack benchmark, and can peak at 64 
megaflops. (The best technical workstations, like the Sun-4 from 
Sun Microsystems Inc. of Mountain View, Calif., run at no more 
than 1.1 megaflops on the Linpack.) 

Priced between $80 000 and $150 000, these new machines offer 
about one-fourth the performance of a Cray X-MP for no more 
than one-twentieth the price. An EE, for eitample, could use one 
to shrink the design cycle by simulating such complex circuitry 
as a floating-point chip, or by precisely modeling the emission 
pattern of a new antenna. Further, graphics supercomputers make 
it possible to simulate circuits too large-and therefore too 
expensive-to be handled by existing computers. 

As their name suggests, graphics supercomputers also provide 
integral graphics processing so that engineers can express com
putations visually, modify a design interactively, and see the results 
immediately. An engineer might alter some element of the cir-

C Gordon Bell, Glen S. Miranker, and 
Jonathan J. Rubinstein 
Ardent Computer Corp. 

cuit's design and get instant, visual feedback on how 
that change affects the chip's function or output. 
Likewise, modifying the antenna would produce an 
immediate change in the emission pattern shown on 
the computer's monitor. 

Unlike a supercomputer or minisuper, which is 
usually accessed by several users at once, a graphics 
supercomputer can be dedicated to a single user. 
Designed to be interactive, it lets a scientist or en
gineer close in on an optimal design or solution 

through step-by-step refinements. By executing computations 
under the direct control of a single user, it may actually provide 
higher throughput and productivity for the one application than 
would a faster machine that typically runs multiple jobs in a 
noninteractive, or batch, environment. 

Start-ups carry the flag 
The first two full-fledged graphics supercomputers both come 

from start-up companies: Ardent Computer Corp. of Sunnyvale, 
Calif., and Stellar Computer Inc. of Newton, Mass. But they are 
unlikely to have the field to themselves for long. 

On March I, when Ardent was introducing its machine in San 
Francisco, workstation manufacturer Apollo Computer Inc. was 
introducing its Series 10000 Personal Supercomputers in Boston. 
The Ardent and Apollo machines both incorporate from one to 
four reduced instruction-set processors that are said to offer, cor
respondingly, integer processing capabilities from 16 million to 
64 million instructions per second (MIPS). But unlike the Ar
dent and Stellar machines, the Apollo uses proprietary floating
point hardware rather than vector processors, and it will not have 
full three-dimensional graphics capabilities until after it reaches 
market. 

Other workstation manufacturers, like Silicon Graphics Inc. 
and Sun Microsystems Corp., both of Mountain View, Calif., are 
working on machines similar to Apollo's. Hewlett-Packard Co., 

Defining terms 
Backplane: a hardware system for transferring data at very high 
speeds between a computer's circuit boards. 
Llnpack: a package of linear algebra subroutines, widely used 
as a performance benchmark for floating-point performance; 
as a benchmark, the 100-by-100 Unpack solves a system of 
100 equations with 100 unknowns. 
Port: a read or write channel to a memory or register file. 
Vector. an ordered sequence of numbers often used to repre
sent physical characteristics or quantities in a simulation. 
Vector processor, vector unit: a high-speed processing unit 
designed to perform simultaneous operations on vectors. 
Vlrtual memory: a technique using both hardware and soft• 
ware that permits storage of programs and data outside a com• 
puter's main memory. In a multiuser machine, virtual memo
ry also protects data and code when several programs are 
running at once. 
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image information in a standard format, regardless of the charac
teristics of the actual scanner. Brotz did not think it would work 
and ''Warnock promptly labeled it ~dy's Stupid Input Device.'" 

Still, Brotz thought it might be helpful for generating test pat
terns, and when he implemented it, '~t turned out that Andy's 
Stupid Input Device was the lowest common denominator and 
all the special-case code could disappear." Problems arise only 
when the image data has been compressed for transmission or 
storage; the programmer then has to insert a routine to decom
press the data before it is handed to the image algorithm. 

Another improvement involved performance profiling-run
ning various tests to see what frequently used functions slowed 
down operation. Floating-point routines were the chief culprits 
because they are computationally intensive. So the team took some 
of the algorithms for the common operations, such as breaking 
curves into vectors and drawing outlines, and rewrote them in 
less flexible fixed-point arithmetic. Now only when fixed-point 
arithmetic would be too imprecise does the interpreter call the 
floating-point routine. 

"So with no loss of generality," says Edward Th.ft, Adobe sen
ior computer scientist, ''we were handling 99 percent of the cases 
five times faster than we were before." 

To improve the other 1 percent, Belleville sent one of his en- ~ 
gineers over from Apple-Jerome Coonen, a recognized expert , 
in floating point. He optimized the algorithms so, Tuft says, / 
"whereas formerly an algorithm required six multiplies, four di- ~ 
vides, and three square roots, now it only required three multi- 1 

plies, four divides, and some approximation of a square root." 7 
Throughout the design of PostScript, speed was regularly trad- • 

ed off to ensure that any image would print. The group reasoned 
that if they built in all this functionality, they could eventually 
.improve the performance; but if they left out functions, they might 
never be able to add them back in. 
, However, says Putman, sometimes they had doubts. So they 

designed a version of PostScript that spat out information as fast 
as the laser moved across the page. The expense of the frame buffer 
was eliminated-along with the ability to print pages too com
plicated for the software to process in time. 

Adobe calldd this implementation Subscript, but dropped it 
after six months. As Taft says, "If you're trying to promote a stan
dard, there is nothing worse thaa issuing a subset of the stan
dard. It means that all of the applications are going to be target
ed to the lowest common denominator." 

Debugging throughout the project was strenuous because the 
Adobe team was ''terrified of putting all this code out on ROMs," 
Brotz says "We came from the school of thought that software 
is soft. So if you have problems, you just have another release. 
But Apple was telling us, 'Hey, we always ship our system in ROM, 
why can't you?"' 

In January of 1985 the Apple LaserWriter was introduced, vir
tually bug-free. In 1984, Adobe signed licensing agreements with 
QMS Inc., Linotype, and Dataproducts Corp. Today, even 
Hewlett-Packard Co., whose PCL page description language was 
one of PostScript's earliest competitors, is among the 23 compa
nies offering PostScript interpreters for their printers. 

Cheap pays off 
Although the Adobe group made some key technical break

throughs, three other components were necessary to make Post
Script a runaway success not just in low-volume professional pub
lishing but in the high-volume office environment. 

As noted earlier, one was a cheap laser printer. When Adobe 
was founded, the cheapest cost around $10 000. It also weighed 
as much as a desk, so that it had to be serviced on site and sold 
through a distributor, not on a cash-and-carry basis. Then Canon 
Inc., of Tokyo, Japan, introduced the Canon LBP-CX desktop 
laser printer, which, moreover, printed beautifully. "If it had been 
poor xerography," says Paxton, "it wouldn't have mattered how 
good our technology was." 

Also on the horizon was a bit-map-based personal computer-
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the Apple Macintosh. All previous low-cost personal computers 
had used character graphics, for which daisy-wheel printers made 
more sense. 

The third piece of luck was the decline in the price of memory 
chips. "We started this development on an uneconomic basis," 
Warnock says. "The LaserWriter's first controller needed forty
eight 256K ORAM chips, which up to December of 1984 cost 
about $30 each. That meant Apple would have had to sell that 
machine for about $10 000-but its computer cost $2400." 

But, with Belleville's and Jobs's strong support, the Adobe team 
bet that the memory prices would drop. "Sure," says Paxton, ''the 
projections were that the RAM prices were going to drop, but 
you had to have a very strong stomach to be able to go up to the 
wall and pray that the door was going to open." 

Warnock comments, "Most companies will only deal with 
present-day technology and known costs. The brilliance of Steve 
Jobs is that he will say, 'There will be this chip coming out at 
that price point at that time, and I will design my prod¥ct to use 
it.'" And indeed, when the LaserWriter was announced in Janu
ary of 1985, 256K RAMs cost about $4 each and the printer could 
be priced at $6995. 

Today, some 40 companies have announced their equipment 
is compatible with PostScript and that their interpreters run faster 
and cost less than Adobe's version. They cannot offer the same 
font library, but they say they have fonts and font algorithms as 
good as Adobe's. At this writing, however, none of these compa
nies had apparently shipped a PostScript clone to a customer, 
and they reportedly have found it harder to replicate Adobe's work 
than they had anticipated. 

When they do finally ship, and if they can interpret 80 or 90 
percent of PostScript programs, Adobe is resigned to facing "good 
old-fashioned American competition," says Geschke. The com
pany has no patents to defend, only copyrights and trade secrets, 
so if other companies can reproduce Adobe's technology, it has· 
no legal recourse. ''The most we can do is to continue to improve 
our technology," Geschke says. 

What's NeXT? 
Adobe's latest technical breakthrough, demonstrated in San 

Francisco in January, is a version of PostScript that controls im
ages on a computer screen as well as on a printed page. Called 
Display PostScript, this product is the first to provide device
independent graphics for computer screens. 

Display PostScript, like the original PostScript printer protocol, 
had a nudge from Jobs. His new company,· NeXT Inc., Palo Alto, 
Calif., worked with Adobe to develop it, and it will be the graph
ics standard for all NeXT's computers. Digital Equipment has 
already licensed Display PostScript for its DEC Windows work
station architecture. If other major companies follow, Adobe 
could be well on the way to setting its second standard. 

To pr<1be further 
Everything a programmer or user might want to know about 

the PostScript language is provided in "PostScript Language 
Tutorial and Cookbook" and "PostScript Language Reference 
Manual," both written by Adobe Systems Inc. and published by 
Addison Wesley Publishing Co. (New York, 1985). In addition, 
Adobe periodically publishes a newsletter, "Colophon," with 
programming tips and news about PostScript products. For a free 
subscription, write to Colophon, Adobe Systems Inc., 1870 Em
barcadero Rd., Palo Alto, Calif. 94303. 

Interpress, the page description language from Xerox Corp. 's 
Palo Alto Research Center (PARC) that preceded PostScript in· 
the laboratory but followed it in the marketplace, is described 
in the June 1986 issue of IEEE's magazine, Computer (pp. 72-77). 
For more information on Xerox PARC, see "Inside the PARC: 
the 'information architects,'" Spectrum, October 1985, p.62. 

"Window on PostScript" in MacWeek, Feb. 2, 1988, pp.28-29, 
contains a discussion of competitors' attempts to clone the 
language. ♦ 

Perry-'PoltScrip&' prints anythiq: a case history 
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The IBM System/370 Vector Architecture: Design 
Considerations 

ANDRIS PADEGS, SENIOR MEMBER, IEEE, BRIAN B. MOORE, RONALD M. SMITH, AND 

WERNERBUCHHOLZ,~uow,IEEE 

Abstract-This paper reviews the considentlons that shaped 
the architecture of the IBM System/370 Vector Fadlity. It 
summarizes the architectunl requirements, decisions, and inno
vations, and it gives the rationale for the choices that were made. 
Issues related to vector function, performance, compatibility, 
migration, and integntion with the rest of the System/370 
architecture are covered. 

Index Terms-Arithmetic, arny processors, chaining, com
puter architecture, engineering/scientific applications, IBM 3090, 
processor design, supercomputers, System/370, vectors. 

I. INTRODUCTION 

SUPERCOMPUTERS and attached processors provide 
familiar forms of vector computing (Fig. 1). Early 

supercomputers like the CDC Cyber 200 Model 205 (1] and 
the Cray-I (2) combined vector instructions with a powerful 
scalar CPU, using a specialized, high-bandwidth main-storage 
interface to raise the performance of the vector unit. Newer 
supercomputers (the Cray X-MP [3], Fujitsu VP200 [4], 
Hitachi S810/20 (5), and NEC SX-2 [6]) have continued on 
this path. Attached processors like the FPS 164 [7] and the 
IBM 3838 [8] offer an optional vector capability for scalar 
systems. 1 They are special-purpose ''number crunchers'' 
which typically receive programs and data from the host CPU, 
compute independently of other host operations, and return the 
results to the host. Transfers between host main storage and 
the attached processors occur at channel speeds. Supercompu
ters deliver extremely high system performance at prices in 
the $10-22 million range, while individual attached processors 
have more modest prices. An intermediate approach to vector 
computing, that of providing an optional, integrated vector 
capability with a general-purpose scalar system, was adopted 
for the IBM 3090 Vector Facility (Fig. 2). 

This paper describes the considerations that shaped the 
architecture of the 3090 Vector Facility. The term architecture 
is used here to denote the attributes of a system as seen by the 
programmer, that is, the conceptual structure and functional 
behavior, as distinct from the organization of the data flow and 

Manuscript received May 15, 1986; revised November 25, 1986. 
The authors are with the Data Systems Division, mM Corporation, 

Poughkeepsie, NY 12602. 
IEEE Log Number 8717220. 
1 Common vector computer terminology is used here. A scalar is a single 

floating-point or binary value. A vector is an ordered collection of scalars. 
Scalar instructions (e.g., the System/370 floating-point instructions) are 
executed by a scalar CPU. A vector unit executes vector instructions. Vector 
computer concepts are presented in (25). 

Kain Storage 

Specialized, 
High-Bandwidth 
Interface for 
Vector Performance 

Scalar and Vector 
Instruction 
hecution 

Supen:oaputer 

Vector-Computing Capacity 

Attacbod Processors 

Fig. 1. Two familiar forms of vector computing. 

Main Storage 

Scalar 
Instruction 
Execution 

Vector Elements 

Vector 
Inatruction11 

Vector 
Instruction 
Execution 

Scalar Scalar Vector 
Registers Registers 

Values 

3090 CPU Optional 
Vector Facility 

Fig. 2. mM 3090 CPU with vector facility. 

controls, the logical design, and the physical implementation. 
The vector architecture continues the tradition, started with 
System/360, that architecture and implementation should be 
separated, and that one need not imply the other. Thus, 
although the immediate motivation was to satisfy the require
ments of the 3090 Vector Facility, the vector architecture was 
designed with the possibility in mind of implementation in 
machines of both higher and lower cost and performance. 

00l8-9340/88/0500-0509$01.00 © 1988 IEEE 
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Systolic Super Summation 
PETER R. CAPPELLO, MEMBER, IEEE, AND Wll.LARD L. MIR.ANKER 

Abstract-A principal limitation in accuracy for scientific 
computation performed with floating-point arithmetic may be 
traced to the computation of repeated sums, such as those which 
arise in inner products. We propose the design of a systolic super 
summer, a ceUular piece of hardware for the high throughput 
performance of repeated sums of floating-point numbers. The 
apparatus receives pipelined inputs of streams of summands from 
one or many sources (say as a coprocessor unit in a supercompu
ter). The floating-point summands are converted into a fixed
point form by a sieve-like pipelined cellular packet-switching 
device with signal combining. The emerging fixed-point numbers 
are then summed in a corresponding network of extremely long 
acumulators (i.e., super accumulators). At the cell level, the 
design uses a synchronous model of VLSI. The amount of time 
the apparatus needs to compute an entire sum depends on the 
•aloes of the summands; at this architectural level, the design is 
asynchronous. The throughput per unit area of hardware ap
proaches that of a tree network, but without the long wire and 
signal propagation delay that are intrinsic to tree networks. 

Index Terms-Floating-point arithmetic, inner product, scien
tific computation, systolic array, VLSI. 

I. INTRODUCTION 

A. The Inner Product 

FLOATING-POINT arithmetic is fundamental to scientific 
computation. The four basic floating-point operations EB, 

8, I&], (ZJ have been part of the arithmetic units of digital 
computers since the 1950's. Today no processor intended for 
scientific or engineering applications can fail to offer high
performance floating-point arithmetic in some form (intrinsic 
hardware, coprocessor hardware, microcoded implementa
tion, etc.). 

As an approximation to the exact arithmetic operations + , 
- , x , / performed on pairs of real numbers, the floating
point operations 1±1, 8, 1&1, IZ1 when performed on pairs of 
floating-point numbers deliver results which are accurate to 
the last figure of precision in the computer. Of course, this is 
predicated on a proper implementation of both a rounding 
operator D and of floating-point arithmetic on the computer 
[l], [2]. However, when floating point operations are com
bined, even for a computation as elementary as a 1±1 b 1±1 c, 
the relative error of the result may be as large in magnitude as 
the greatest floating-point number representable in the com
puter [3]. In addition to the reals, scientific computation 
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employs the so-called higher data types of computation such as 
complex (numbers), vectors and matrices of real and complex, 
as well as intervals over all of these. The basic operations for 
such data types involve expressions such as a 1±1 b 1±1 c. 
Indeed these basic operations involve inner products El of n
tuples of floating-point numbers. Thus, even with the best 
possible implementation of the floating-point operations EB, 
El, l&1, (Z), a computer will frequently deliver poor results 
for the basic operations of scientific computation. 

A new theory of floating-point arithmetic [1] has shown one 
way out of this limitation to accuracy in scientific computa
tion. Basically by including a fifth floating-point operation 0 , 
called the inner product, to the conventional four floating
point operations, the full computer accuracy available in 
floating-point operations on pairs of reals can be provided for 
all floating-point operations on all of the higher data types of 
scientific computation. In this sense, the result of such 
operations are the data types closest' to the ideal full precision 
results. 

Giventwovectorsx = (x1, • • ·,xN)andy = (y1, • • ·,YN) 
of floating-point numbers, the operation El is defined by x El 
Y = □o;fa I X; x Y;). That is, x El y is that floating-point 
number which would be obtained by first computing tfa I X; x 
y; in exact arithmetic and then rounding the sum once. We may 
say that x El y is that floating-point number which represents 
the exact inner product Ifa 1 X; x y1 with an accurracy 
equivalent to the loss of information represented by a single 
rounding operation. 

Such an operation can be simulated by iterative algorithms 
(1, ch. 6). Parallel versions of these algorithms also have been 
studied [4]. A hardware unit has also been devised for a higher 
performance implementation [5). This particular hardware 
implementation involves a so-called long accumulator. This 
latter approach has been more or less implemented, by means 
of microcoded assists, in a commerically available processor 
(the IBM 4361). The IBM 4361 offers the fifth floating-point 
operation El. 

A normalized floating-point number x (in sign-magnitude 
representation) is a real number x in the form x = am b~. 
Here a E { + , - } is the sign of the number (sign (x)), m is 
the mantissa (mant (x)), b is the base of the number system in 
use, and e is the exponent (exp (x)). b is an integer greater 
than unity. The exponent is an integer between two fixed 
integer bounds el, e2, and 11sually, el s O s e2. The 
mantissa mis of the form m = t:,. 1 d[iJb-i. The d[i] are the 
digits of the mantissa numbered in decreasing order of 
significance. They have the properties d[i] E {0, 1, • • ·, b -
1} for all; = 1(1)/ and d[l] ¢ 0. Without the condition, d[l] 
¢ 0, floating-point numbers are called denormalized. The set 
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Programming in VS Fortran 
on the IBM 3090 for 

Maximum Vector 
Performance 

T he IBM 3090 - a high
performance, general-purpose 
computer-when enhanced by 

the Vector Facility and the VS Fortran 
Compiler Version 2 with vectorization 
capabilities becomes a powerful tool for 
large-scale scientific and engineering com
putations. This article illustrates program
ming techniques necessary for high 
performance on the 3090 and demon
strates that VS Fortran programs can 
achieve near maximum execution rates. 
The ideas behind these techniques apply to 
other vector processors as well. Implemen
tation, however, may differ significantly 
depending on machine organization. 

The IBM Engineering and Scientific 
Subroutine Library (ESSL)1 is a collec
tion of high-performance mathematical 
subroutines coded primarily in assembly 
language using state-of-the-an algorithms 
tailored to the 3090 Vector Facility. Exe
cution rates delivered by most ESSL rou
tines can be nearly equalled by 
programming similarly efficient 
algorithms in Fonran and compiling with 
the VS Fortran Version 2 compiler.2 

Fortran program efficiency has practi
cal imponance. When Fortran programs 
perform inefficiently, programmers must 
resort to special subroutine libraries or 

June 1988 

Bowen Liu and Nelson Strother 

IBM Research Division 

General programming 
techniques for 

hierarchical storage 
management can 

improve 3090 CPU 
performance up to 

three times and 
elapsed time perfor
mance up to twenty 

times for some vector 
codes. 

assembly language programming for high 
performance. These solutions are not 
completely satisfactory. Efficient subrou
tine libraries, although useful, lack suffi
cient flexibility; efficient subroutines to 
perform the desired computation may not 
exist. Assembly language programs 
require too much effort to develop, main-

0018-9162/88/0600-0065SOUlO©l988 IEEE 

tain, and modify. Thus, the extent to 
which the execution power of a computer 
is realized for scientific and engineering 
applications often depends on Fortran 
program efficiency and hence the ability of 
the Fortran compiler to generate optimal 
object codes. 

Any attempt to achieve high perfor
mance on a computer must consider its 
architecture. We review relevant features 
of the 3090 architecture in the next section. 
An optimal program on the 3090 Vector 
Facility must make efficient use of a hier
archical storage system and take advan
tage of the compound vector instructions. 
The key programming techniques for 
managing the storage hierarchy are loop 
sectioning, loop distribution, and data 
compaction. The sections ''Vector regis
ter reuse," "Cache reuse," and "Virtual 
memory, storage format, and page reuse'' 
show how these techniques can lead to effi
cient use of the vector registers, the high
speed cache, and the virtual memory sys
tem, respectively. The compound vector 
instructions are discussed in the section 
"The Multiply-And-Add compound 
instruction." 

Previous work has developed3
"
7 and 

implemented8 some of these program
ming techniques and demonstrated their 
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Efficient and Portable 
Combined Random Number 
Generators 

PIERRE L'ECUYER 

ABSTRACT: In this paper we present an efficient way to 
combine two or more Multiplicative Linear Congruential 
Generators (MLCGs) and propose several new generators. 
The individual MLCGs, making up the proposed combined 
generators, satisfy stringent theoretical criteria for the 
quality of the sequence they produce (based on the Spectral 
Test) and are easy to implement in a portable way. The 
proposed simple combination method is new and produces a 
generator whose period is the least common multiple of the 
individual periods. Each proposed generator has been 
submitted to a comprehensive battery of statistical tests. We 
also describe portable implementations, using 16-bit or 
32-bit integer arithmetic. The proposed generators have 
most of the beneficial properties of MLCGs. For example, 
each generator can be split into many independent 
generators and it is easy to skip a long subsequence of 
numbers without doing the work of generating them all. 

1. INTRODUCTION 
Random number generators are used in many areas 
including computer simulation, Monte-Carlo tech
niques in numerical analysis, test problem generation 
for the performance evaluation of computer algorithms, 
statistical sampling, and so on. Despite the large 
amount of theoretical research already done on this 
subject, many of the generators currently in use, espe
cially those on the microcomputers, are seriously 
flawed (15). Even some recently proposed (3, 20] or 
evaluated (6, 7) generators have a very weak theoreti
cal justification. The aim of this paper is to propose an 
efficient way to combine two or more random number 
generators to obtain a new, hopefully better one. 

·'e 1988 ACM 0001•0782/88/0600-0742 St.SO 
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All practical "random number" generators on com
puters are actually simple deterministic computer pro
grams producing a periodic sequence of numbers that 
should look "apparently random." A generator is de
fined by a finite state space S. a function f: S ~Sand an 
initial state s0 called the seed. The state of the generator 
evolves according to the recursion 

i = 1, 2, 3, ... (1) 

and the cu"ent state Si at stage i is usually transformed 
into a real value be•ween O and 1, according to 

where g: S ~ (0, 1). The period of the generator is the 
smallest positive integer p such that 

Si+p = Si for all i >,, 

for some integer ,, ~ 0. 

(2) 

(3) 

It is well accepted [2, 11] that to obtain a good gener
ator, the choice off and g should be based on a firm 
theoretical ground, and before being used for practical 
applications, the generator should be submitted to a 
comprehensive set of statistical tests. A good implemen
tation of the generator should be reasonably fast, porta
ble. and use few computer memory words (2, 19). 

The most commonly employed generator today is the 
Lehmer linear congruential generator (LCG), for which 

f(s) =(as+ c) MOD m; g{s) = s/m; (4) 

where the modulus m and the multiplier a < m are posi
tive integers; and the constant c <mis a nonnegative 
integer. One usually chooses c = 0, in which case the 
generator is called multiplicative linear congruential gen
erator (MLCG) and its state space is S = 11, 2, ... , m - lj. 
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Integer Multipliccition and Division on the HP 
Precision Architecture 

DANIEL J ~ MAGEN HEIMER. MEMBER. IEEE, LIZ PETERS, KARL W. PETTIS, AND DAN ZURAS 

Abstract-In recent years, many architectural design efforts 
have focused on maximizing performance for frequently exe
cuted, simple instructions. Although these efforts have ·resulted in 
machines with better average price/performance ratios, certain 
complex operations and, thus, certain classes of programs which 
heavily depend on these operations may suffer _by comparison. 
Integer. multiplication and division are such complex operations. 
This paper describes how a small set of primitive instructions 
combined with careful frequency analysis and dever program
ming allows the ~ewlett-Packard Precision Architecture Integer 
multiplication and division implementation to provide adequate 
performance at lltde or no bant-~,are cost. 

Index Terms-Addition chains, Booth encoding, code genera
tion and optimization, computer architecture, division al
gorithms, JIP Precision Architecture, multiplication algorithms, 
RISC (reduced instruction set computers). 

I. INTRooucnoN 

MANY recent general purpose machine architectures 
(e.g., [19], [16]) have been designed around one 

fundameQtai tenet: by concentrating effort oil a few frequently 
executed, simple instructions, average performance can be 
increased and at the same time hardware costs can be reduced. 
Many published papers [7], [15] contain instruction distribu
tions ordered by frequency. The literature largely agrees that 
well-designed memory access instructions and low-overhead 
branches (both conditional and unconditional) are crucial to 
any machine design. Arithmetic, Boolean, and procedure call 
operations are also important. 

• Further dowu the list, near the bottom, are the more 
complex instruction classes: floating point, decimal, large 
block moves, and integer multiplication and division. Does the 
relative infrequency of these instructions imply that their 
implementation is unimportant? Hardly. Machine architects 
must avoid the tendency to either overdesign these-which 
results in costly additional (and largely unnecessary) hardware 
or increased cycle time; or to underdesign them, in which case 
the instructions become weak points awaiting exercise and 
abuse by programs and benchmarks which depend on reason
able performance for these functions. The analysis and work 
which allowed these tendencies to be avoided for the imple
mentation of integer multiplication and division in the 
Hewlett-Packard Precision Architecture arc the subject of this 
paper. 

:,.1;11111.scripl n:cciwJ Oc1t1hcr 15. I\.IS7; rl·vi.scd Man.:h ll-i. 19S:-i. 
The :111thors arc with lkwku-l'ad,:ml Company. Cupertino. CA 95014. 
IEEE Log Numllt'.r SS~ISO<i. 

11. OVERVIEW 

Uses <Ji Multiplication and Division 1 

Most programs use multiplication and/or _division ~ny 
times, either directly or ind_irectly. Almost all high-level 
languages directly support these operations with an explicit 
operator (e.g.,"*" and"/") and almost all support constructs 
that implicitly require multiplication or division. For example, 
in C, accessing a two-dimensional array of structures 

a= structureA [x][y] .b 

requires two impliait multiplications, namely 

((x * Ymax) + y) • sizeof(structureA) 

(where Ymax is the declared upper bound of the seoond 
dimension) while 

diff = structureB_p 1 - structureB_p2 

requires a division for the implied operation 

(structureB_p 1 - structureB_p2)/sizeof(stru~tureB). 

Languages such as Fortran, where matrix ranks can be passed 
as parameters, may have large numbers of implicit multiplica
tions-by variables. 

Clever compilers can reduce the number of multiplications 
in a program by using a technique called "strength reduc
tion.'• Strength reduction is the practice of replacing multipli
cations by additions and additions by increments wherever 
possible, since they are less costly than multiplications. For 
example, 

for (i=O; i< 10; i=i+ 1) 

j=j+i * 15. 

In this simple example, the multiplication by 15 can be 
replaced by an addition of 15, since the multiplication results 
form an arithmetic progression. 

In many cases, primarily if the induction variable is used in 
both a subscript expression and a nonsubscript expression. this 
optimization is difficult or impossible to perform. Further
more, optimizations may be inadvertently defeated by the use 
of a global variable as a loop counter or by careless use of 
goto's. Since programmers are not always aware of these 

1 F~ir th~ r('111:1ind\."~ ol IIK' 1.:.,1. thl' r\."fcrl"ll,'\.".S 111111ultipli~·:111,1n and J1\i,i11n -~ 
ar\." ol th\." 1111cgcr vanl'IY. • 
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