
NUMERICAL LINEAR ALGEBRA

W. Kahan

Table of Contents

The Solution of Linear Equations
0. Introduction.
1, The Time Needed to Solve Linear Equations .
2. The Time Needed to Solve a Linear System with a

Band Matrix.
3. Iterative Methods for Solving Linear Systems.
~- Errors in the Solution of Linear Systems.
5. Pivoting and Equilibration.

The Solution of the Symmetric Eigenproblem •
6. The General Eigenproblem and the QR Method.
7. Iterative Methods for Symmetric Eigenproblems.
8. The Reduction to Tri-diagonal form.
9. Eigenvalues of a Tri-diagonal Matrix.

10, Eigenvectors of a Tri-diagonal Matrix.
11, Errors in the Solution of an Eigenproblem.

0 . Introduction. The primordial problems of
linear algebra are the solution of a system of linear

. equations

and the solution of the eigenvalue problem

for the eigenvalues Xk and corresponding

eige~vectors ~k of a given matrix A . The nurner

ica: solution of these problems without the aid of an
electronic computer is a project not to be undertaken
lightly . For example, using a mechanical desk
calcu:ator to solve five linear equations in five
unknowns (and check them) takes me nearly an hour,
and to calculate five eigenvalues and eigenvectors of
a five-by-five matrix costs me at least an afternoon
of drudgery. But any of today's electronic computers
are capable of performing both calculations in less
than a second.

Sections 6 to 11 will appear in this Bulletin at a
later date .

.. L- - } (,/l/Y'J ,1(flz-l'l1.JL<kUL_, @J:Lr>£< W_lf~ /~ 757

y, '?1 n- u1 !f~Lt

MATHEMATICS or COMPt:TATIO:-1
VOLt:ME 50. :-lt:MBER 182
APRIL 1988. PAGES 449- 480

The Probability That A Numerical Analysis Problem
Is Difficult

By James W. Demmel

Ab■tract. Numerous problems in numerical analysis, including matrix inversion, eigen
value calculations and polynomial zerofinding, share the following property: The diffi
culty of solving a given problem is large when the distance from that problem to the
nearest "ill-posed" one is small. For example, the closer a matrix is to the set of non
invertible matrices, the larger its condition number with respect to inversion. We show
that the sets of ill-posed problems for matrix inversion. eigenproblems, and polynomial
zerofinding all have a common algebraic and geometric structure which lets us com
pute the probability distribution of the distance from a "random" problem to the set.
From this probability distribution we derive, for example, the distribution of the con
dition number of a random matrix. We examine the relevance of this theory to the
analysis and construction of numerical algorithms destined to be run in finite precision
arithmetic.

1. Introduction. To investigate the probability that a numerical analysis prob-
lem is difficult , we need to do three things:

(1) Choose a measure of difficulty,
(2) Choose a probability distribution on the set of problems,
(3) Compute the distribution of the measure of difficulty induced by the distri

bution on the set of problems.
The measure of difficulty we shall use in this paper is the condition number, which

measures the sensitivity of the solution to small changes in the problem. For the
problems we consider in this paper (matrix inversion, polynomial zerofinding and
eigenvalue calculation), there are well-known condition numbers in the literature of
which we shall use slightly modified versions to be discussed more fully later. The
condition number is an appropriate measure of difficulty because it can be used
to measure tht expected loss of accuracy in the computed solution, or even the
number of iterations required for an iterative algorithm to converge to a solution.

The probability distribution on the set of problems for which we will attain
most of our results will be the ·'uniform distribution" which we define as follows.
We will identify each problem as a poi.tt in either RN (if it is real) or cN (if
it is complex). For example, a real n by n matrix A will be considered to be a
point in Rnl, where each entry of A forms a coordinate in Rnl in the natural way.
Similarly, a complex nth degTee polynomial can be identified with a point in cn+i

by using its coefficients as coordinates. On the space R N (or CN) we will take any
spherically symmetric distribution, i.e. , the induced distribution of the normalized
problem x/ llxll (II· II is the Euclidean norm) must be uniform on the unit sphere in

Received May 4, 1987; revised August 18, 1987.
1980 Mathematic3 SubJect C/a3nfication (1985 Re!Mion). Primary 15Al2, 53C65. 60D05.
Parts of this paper appeared previously under the title "The Geometry of Ill-Conditioning,""

in The Journal of (.'om plertty. Vol. 111. pgs. 201- 229. 1987. Copyright © 1987 Academic Press.
Inc. Reprinted by permission of the publisher.

449

©1988 American ~ a.thematic a.l Society
0025•5718/88 Si.00 + S.25 p•r ;,age

SOl-7°\\".\RE-PR.\CTJCE . .\~D EXPERIE~CE. \"OL. 18(00). 000-000 l 198S>

Compiler Support for Floating-point
Computation

CHARLES FAR:'1,;l"l\l
CCJmputrr Scieua Depnrtmelll, l "11it-enity of Ca/1/omia, Berkt'icy, Rc-1-keley, Califcm1in

9.r:20. i ·.s--t

Predictability is a basic requirement for compilers of floating-point code - it must be possible
to determine the exact ftoating-point operations that will be executed for a particular source•
le,••1 construction. Experience shows that many compilers fail to provide predictability, either
because of an inadequate understanding of its imponance or from an attempt to produce locally
better code. Predictability can be attained through careful attention to code generation and a
knowledge of the common pitfalls. Most language standards do not completely define the
precision of ftoating-point operations, and so a good compiler must also make a good choice in
assigning precisions of subexpression computation. Choosing the widest precision that will be
used in the expression usually gives the best trade-off between efficiency and accuracy. FinalJy,
certain optimizations are particularly useful for floating-point and should be included in a
compiler aimed at scientific computation. But predictability is more imponant than efficiency;
obtaining incorrect answers fast helps no one.

J.Er WORD:- Compiler$ Floatsn~•pomr arithmrtic Opt1miza1iun

.1:: l~TRODCCTIO;\

;.i Floating-point programs- must be carefully compiled in order to produce accurate
3~ results. Data accessing primiti,·es, control structures and integer arithmetic are clearly
3f. defined in most language standards, since most hardware is more or less equi,·alent in
,- the support it offors for these tasks. But Aoating-point systems ,·ary widely, so language
3" standards cannot specify perfectly the semantics of source-le\·el floating-point oper-
~ ations. 1 The implementor is left with the difficult task of deciding what machine-level •
.,, operations will result from source-le\·el code.
"' Unfortunately, most compiler writers are ilI-equipped to handle this task. Compiler
•: texts and classes rarely address the peculiar problems of floating-point computation,
.aJ and research literature on the topic is generally confined to journals read by numerical
~ analysts, not compiler writers. l\lany production-quality compilers that are excellent
•~ in other respects make basic mistakes in their compilation of floating-point, resulting
Ati in programs that produce patently absurd results or, worse, reasonable but inaccurate
~ resu1ts.
"' An implementation of a large floating-point library is a job for specialists. But gi,·en
.ay such a library, little information is actually needed to produce good floating-point code

0038--0644'88/000000-00S05.00
© 1988 by John Wiley & Sons, Ltd.

Receii-ed 2-1 .\larch 1987
Ret·1sed 21 December 198i

'7,
l

BOOKS------------ Information Systems------------ (8804-0250]

G.2 DISCRETE MATHEMATICS
G.2. 1 Combinatorics

Combinator/al algorithm•
See: 8804-0242 (E.3)

Permutation• and combination•
See: 8804-0242 [E.3)

G.3 PROBABILITY AND STATISTICS
See: 8804-0260 [K.8.2-Computlng equipment managenumtJ

Statl•tlt:alcomputlng
See also: 8804-0238 (D.2.9-Software quality auurance (SQA/J

JOHNSON. MARKE. (Los Alamos National 8804-0248
Laboratory. Los Alamos, NM)
Multivariate statistical simulation.
John Wiley & Sons, Inc., New York, NY. 1987,
230 pp., $34.95, ISBN 0-471-82290-6. [Wiley series in
probability and mathematical statistics.]

This monograph describes an approach to generating con
tinuous multivariate distributions. Typically, the approach
throughout is to use a transformation of one or two easily
generated random variables to achieve a new distribution.
A few parameters provide a mechanism for generating one
of a family of possibilities. To help choose the correct
parameter values, the reader is then presented with an
array of three-dimensional and contour plots for the fami
lies.

A large number of distributions are described. These
include the weU known, the less well known, and the rare.
The multivariate normal and multivariate uniforms are
examples of the first type. The somewhat less well known or
rare include the lognormal, logistic, Pareto, Burr, and
Wishart, to name some of the remaining ones. This work is
a serious contribution to the field and could be of use to
those doing Monte-Carlo or discrete event simulations.

-T. Brown, Flushing, NY
GENERAL TERMS: ALGORITHMS, THEORY

G.4 MATHEMATICAL SOFTWARE

KEMPF, JAMES (Hewlett-Packard Company) 8804-0249
Numerical software tools in C.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987,
261 pp., $28, ISBN 0-13-627274-6. [Prentice-Hall
software series.)

This book is not a book about numerical software, using C
as the vehicle for presenting examples; rather it is a book
about C and UNIX, with the presentation tied together by
the numerical slant of the examples. Twenty percent of the
book is devoted to an initial chapter on the basics of C. This
is followed by another 20 percent devoted to a chapter
using C to write the dot product, matrix addition, and
Gaussian elimination. Virtually nothing is said about
numerical issues such as when to use the partial pivoting
included in the program and what the other choices are.
Instead, the emphasis is on program structure issues such
as modularity, orderly development, specification, and
realization of 1/0 interfaces.

Chapters 3 and 4, which comprise 30 percent of the

book, are devoted to numerically related 1/0 issues:
exchanging data via UNIX pipes and graphics. The slant of
the book away from high volume numerical computation is
established by the encouragement to convert double preci
sion numbers to character strings and back again in order
to pass them between programs. It is suggested that "a
faster interface is probably more desirable" for large
applications, but this is not pursued. The graphics chapter
is fairly extensive and treats such things as clipping and
windowing as well as curve plotting. Neither perspective
projection nor contouring for presenting functions of two
variables is covered.

The final 30 percent of the book is devoted to one chapter
on optimization and. one on differential equations. Again
the emphasis is on program design and structure, and the
discussion of numerical issues is abridged. You will find the
word stiff mentioned, but techniques for handling stiff
differential equations are beyond the scope of this book.

While this book handles modularity and interfaces fairly
well, it has a number of peculiarities I tend to associate
with C programming. I the main program for vector
optimization, for exampl , the call to the routine that the
text later identifies as "th heart of the vector optimization
module" is buried in the ndition of an if statement and
identified only by the co ent ,.

error in method occurred .,.
-H. F. Jordan, Boulder, CO

GENERAL TERMS: ALGORITHMS, LANGUAGES

H. Information Systems

H.O GENERAL

FLYNN, ROGER R. (Univ. of Pittsburgh. 8804-0250

Pittsburgh, PA)
An introduction to information science.
Marcel Dekker, Inc., New York, NY, 1987, 793 pp.,
$39.75, ISBN 0-8247-7508-2. [Library and information
science.]

What topics should be included in a course entitled "Intro
duction to Information Science?" This is not a question
that has a single answer, for people view information
science from different perspectives, and the discipline itself
is changing rapidly.

Roger Flynn, the book's author, is a professor in the
Department of Information Science at the University of
Pittsburgh. He developed the course materials through "a
lengthy process of selection, trial, and revision.,. The text is
designed for use in an introductory course at an undergrad
uate level. Information science is equated with answering
questions, that is, with the activities involved in seeking,
processing, and using information to solve problems and to
make decisions. That these activities are complex and that

Computing Reviews • April 1988 205

Supercomputing
for one
Interactive, high-resolution graphics and vector processing combine
for the first time in these desk-side units

In the culture of engineering-where a project's im
portance is often gauged by the computational power
it requires-supercomputers have something of a
mystique. Virtually all electrical engineers know
what supercomputers can do, who makes them, and
how much they cost. But because of its price tag,
most EEs will never see a supercomputer, let alone
use one-there are only 300 or so worldwide.

But supercomputing no longer necessarily means
multimillion dollar machines produced by a few
companies for a tiny technical and scientific elite. Minisupercom
puters have been steadily gaining in popularity since they were
first introduced a few years ago. Minisuper processing rates range
from roughly 3 million to 20 million floating-point operations
per second (megaflops) on the standard Linpack benchmark.
They offer about one-third, some as much as one-half, the peak
performance of a typical full-size supercomputer.

Last month, supercomputing made another great stride toward
egalitarianism. 1\vo U.S. manufacturers introduced their versions
of a graphics supercomputer, a new class of machine that inte
grates a portion of the computational power of a supercomputer
and the interactive, three-dimensional visual capability of a state
of-the-art workstation.

Graphics supercomputers are parallel, multiprocessor systems.
They have high-speed integer processors and 64-bit vector proces
sors like those used in supercomputers and minisupers to handle
calculations that simulate complex physical events. They use the
Unix operating system and have compilers that automatically
transform and optimize code written in Fortran or C to exploit
vector and parallel hardware, with no need for machine-specific
extensions or assembly language. Supported by high processor
to-memory bus bandwidth and highly interleaved memory, graph
ics supercomputers can sustain more than 6 megaflops on a 100-
by-100 compiled Linpack benchmark, and can peak at 64
megaflops. (The best technical workstations, like the Sun-4 from
Sun Microsystems Inc. of Mountain View, Calif., run at no more
than 1.1 megaflops on the Linpack.)

Priced between $80 000 and $150 000, these new machines offer
about one-fourth the performance of a Cray X-MP for no more
than one-twentieth the price. An EE, for eitample, could use one
to shrink the design cycle by simulating such complex circuitry
as a floating-point chip, or by precisely modeling the emission
pattern of a new antenna. Further, graphics supercomputers make
it possible to simulate circuits too large-and therefore too
expensive-to be handled by existing computers.

As their name suggests, graphics supercomputers also provide
integral graphics processing so that engineers can express com
putations visually, modify a design interactively, and see the results
immediately. An engineer might alter some element of the cir-

C Gordon Bell, Glen S. Miranker, and
Jonathan J. Rubinstein
Ardent Computer Corp.

cuit's design and get instant, visual feedback on how
that change affects the chip's function or output.
Likewise, modifying the antenna would produce an
immediate change in the emission pattern shown on
the computer's monitor.

Unlike a supercomputer or minisuper, which is
usually accessed by several users at once, a graphics
supercomputer can be dedicated to a single user.
Designed to be interactive, it lets a scientist or en
gineer close in on an optimal design or solution

through step-by-step refinements. By executing computations
under the direct control of a single user, it may actually provide
higher throughput and productivity for the one application than
would a faster machine that typically runs multiple jobs in a
noninteractive, or batch, environment.

Start-ups carry the flag
The first two full-fledged graphics supercomputers both come

from start-up companies: Ardent Computer Corp. of Sunnyvale,
Calif., and Stellar Computer Inc. of Newton, Mass. But they are
unlikely to have the field to themselves for long.

On March I, when Ardent was introducing its machine in San
Francisco, workstation manufacturer Apollo Computer Inc. was
introducing its Series 10000 Personal Supercomputers in Boston.
The Ardent and Apollo machines both incorporate from one to
four reduced instruction-set processors that are said to offer, cor
respondingly, integer processing capabilities from 16 million to
64 million instructions per second (MIPS). But unlike the Ar
dent and Stellar machines, the Apollo uses proprietary floating
point hardware rather than vector processors, and it will not have
full three-dimensional graphics capabilities until after it reaches
market.

Other workstation manufacturers, like Silicon Graphics Inc.
and Sun Microsystems Corp., both of Mountain View, Calif., are
working on machines similar to Apollo's. Hewlett-Packard Co.,

Defining terms
Backplane: a hardware system for transferring data at very high
speeds between a computer's circuit boards.
Llnpack: a package of linear algebra subroutines, widely used
as a performance benchmark for floating-point performance;
as a benchmark, the 100-by-100 Unpack solves a system of
100 equations with 100 unknowns.
Port: a read or write channel to a memory or register file.
Vector. an ordered sequence of numbers often used to repre
sent physical characteristics or quantities in a simulation.
Vector processor, vector unit: a high-speed processing unit
designed to perform simultaneous operations on vectors.
Vlrtual memory: a technique using both hardware and soft•
ware that permits storage of programs and data outside a com•
puter's main memory. In a multiuser machine, virtual memo
ry also protects data and code when several programs are
running at once.

46 0018-923S/ 88/ 0400-0046Sl.00© 1988 IEEE IEEE SPECTRUM APRIL 1988

i
I
I

~

i

image information in a standard format, regardless of the charac
teristics of the actual scanner. Brotz did not think it would work
and ''Warnock promptly labeled it ~dy's Stupid Input Device.'"

Still, Brotz thought it might be helpful for generating test pat
terns, and when he implemented it, '~t turned out that Andy's
Stupid Input Device was the lowest common denominator and
all the special-case code could disappear." Problems arise only
when the image data has been compressed for transmission or
storage; the programmer then has to insert a routine to decom
press the data before it is handed to the image algorithm.

Another improvement involved performance profiling-run
ning various tests to see what frequently used functions slowed
down operation. Floating-point routines were the chief culprits
because they are computationally intensive. So the team took some
of the algorithms for the common operations, such as breaking
curves into vectors and drawing outlines, and rewrote them in
less flexible fixed-point arithmetic. Now only when fixed-point
arithmetic would be too imprecise does the interpreter call the
floating-point routine.

"So with no loss of generality," says Edward Th.ft, Adobe sen
ior computer scientist, ''we were handling 99 percent of the cases
five times faster than we were before."

To improve the other 1 percent, Belleville sent one of his en- ~
gineers over from Apple-Jerome Coonen, a recognized expert ,
in floating point. He optimized the algorithms so, Tuft says, /
"whereas formerly an algorithm required six multiplies, four di- ~
vides, and three square roots, now it only required three multi- 1

plies, four divides, and some approximation of a square root." 7
Throughout the design of PostScript, speed was regularly trad- •

ed off to ensure that any image would print. The group reasoned
that if they built in all this functionality, they could eventually
.improve the performance; but if they left out functions, they might
never be able to add them back in.
, However, says Putman, sometimes they had doubts. So they

designed a version of PostScript that spat out information as fast
as the laser moved across the page. The expense of the frame buffer
was eliminated-along with the ability to print pages too com
plicated for the software to process in time.

Adobe calldd this implementation Subscript, but dropped it
after six months. As Taft says, "If you're trying to promote a stan
dard, there is nothing worse thaa issuing a subset of the stan
dard. It means that all of the applications are going to be target
ed to the lowest common denominator."

Debugging throughout the project was strenuous because the
Adobe team was ''terrified of putting all this code out on ROMs,"
Brotz says "We came from the school of thought that software
is soft. So if you have problems, you just have another release.
But Apple was telling us, 'Hey, we always ship our system in ROM,
why can't you?"'

In January of 1985 the Apple LaserWriter was introduced, vir
tually bug-free. In 1984, Adobe signed licensing agreements with
QMS Inc., Linotype, and Dataproducts Corp. Today, even
Hewlett-Packard Co., whose PCL page description language was
one of PostScript's earliest competitors, is among the 23 compa
nies offering PostScript interpreters for their printers.

Cheap pays off
Although the Adobe group made some key technical break

throughs, three other components were necessary to make Post
Script a runaway success not just in low-volume professional pub
lishing but in the high-volume office environment.

As noted earlier, one was a cheap laser printer. When Adobe
was founded, the cheapest cost around $10 000. It also weighed
as much as a desk, so that it had to be serviced on site and sold
through a distributor, not on a cash-and-carry basis. Then Canon
Inc., of Tokyo, Japan, introduced the Canon LBP-CX desktop
laser printer, which, moreover, printed beautifully. "If it had been
poor xerography," says Paxton, "it wouldn't have mattered how
good our technology was."

Also on the horizon was a bit-map-based personal computer-

46 I lj r; <.;(_
' . -

the Apple Macintosh. All previous low-cost personal computers
had used character graphics, for which daisy-wheel printers made
more sense.

The third piece of luck was the decline in the price of memory
chips. "We started this development on an uneconomic basis,"
Warnock says. "The LaserWriter's first controller needed forty
eight 256K ORAM chips, which up to December of 1984 cost
about $30 each. That meant Apple would have had to sell that
machine for about $10 000-but its computer cost $2400."

But, with Belleville's and Jobs's strong support, the Adobe team
bet that the memory prices would drop. "Sure," says Paxton, ''the
projections were that the RAM prices were going to drop, but
you had to have a very strong stomach to be able to go up to the
wall and pray that the door was going to open."

Warnock comments, "Most companies will only deal with
present-day technology and known costs. The brilliance of Steve
Jobs is that he will say, 'There will be this chip coming out at
that price point at that time, and I will design my prod¥ct to use
it.'" And indeed, when the LaserWriter was announced in Janu
ary of 1985, 256K RAMs cost about $4 each and the printer could
be priced at $6995.

Today, some 40 companies have announced their equipment
is compatible with PostScript and that their interpreters run faster
and cost less than Adobe's version. They cannot offer the same
font library, but they say they have fonts and font algorithms as
good as Adobe's. At this writing, however, none of these compa
nies had apparently shipped a PostScript clone to a customer,
and they reportedly have found it harder to replicate Adobe's work
than they had anticipated.

When they do finally ship, and if they can interpret 80 or 90
percent of PostScript programs, Adobe is resigned to facing "good
old-fashioned American competition," says Geschke. The com
pany has no patents to defend, only copyrights and trade secrets,
so if other companies can reproduce Adobe's technology, it has·
no legal recourse. ''The most we can do is to continue to improve
our technology," Geschke says.

What's NeXT?
Adobe's latest technical breakthrough, demonstrated in San

Francisco in January, is a version of PostScript that controls im
ages on a computer screen as well as on a printed page. Called
Display PostScript, this product is the first to provide device
independent graphics for computer screens.

Display PostScript, like the original PostScript printer protocol,
had a nudge from Jobs. His new company,· NeXT Inc., Palo Alto,
Calif., worked with Adobe to develop it, and it will be the graph
ics standard for all NeXT's computers. Digital Equipment has
already licensed Display PostScript for its DEC Windows work
station architecture. If other major companies follow, Adobe
could be well on the way to setting its second standard.

To pr<1be further
Everything a programmer or user might want to know about

the PostScript language is provided in "PostScript Language
Tutorial and Cookbook" and "PostScript Language Reference
Manual," both written by Adobe Systems Inc. and published by
Addison Wesley Publishing Co. (New York, 1985). In addition,
Adobe periodically publishes a newsletter, "Colophon," with
programming tips and news about PostScript products. For a free
subscription, write to Colophon, Adobe Systems Inc., 1870 Em
barcadero Rd., Palo Alto, Calif. 94303.

Interpress, the page description language from Xerox Corp. 's
Palo Alto Research Center (PARC) that preceded PostScript in·
the laboratory but followed it in the marketplace, is described
in the June 1986 issue of IEEE's magazine, Computer (pp. 72-77).
For more information on Xerox PARC, see "Inside the PARC:
the 'information architects,'" Spectrum, October 1985, p.62.

"Window on PostScript" in MacWeek, Feb. 2, 1988, pp.28-29,
contains a discussion of competitors' attempts to clone the
language. ♦

Perry-'PoltScrip&' prints anythiq: a case history

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. S, MAY 1988 509

The IBM System/370 Vector Architecture: Design
Considerations

ANDRIS PADEGS, SENIOR MEMBER, IEEE, BRIAN B. MOORE, RONALD M. SMITH, AND

WERNERBUCHHOLZ,~uow,IEEE

Abstract-This paper reviews the considentlons that shaped
the architecture of the IBM System/370 Vector Fadlity. It
summarizes the architectunl requirements, decisions, and inno
vations, and it gives the rationale for the choices that were made.
Issues related to vector function, performance, compatibility,
migration, and integntion with the rest of the System/370
architecture are covered.

Index Terms-Arithmetic, arny processors, chaining, com
puter architecture, engineering/scientific applications, IBM 3090,
processor design, supercomputers, System/370, vectors.

I. INTRODUCTION

SUPERCOMPUTERS and attached processors provide
familiar forms of vector computing (Fig. 1). Early

supercomputers like the CDC Cyber 200 Model 205 (1] and
the Cray-I (2) combined vector instructions with a powerful
scalar CPU, using a specialized, high-bandwidth main-storage
interface to raise the performance of the vector unit. Newer
supercomputers (the Cray X-MP [3], Fujitsu VP200 [4],
Hitachi S810/20 (5), and NEC SX-2 [6]) have continued on
this path. Attached processors like the FPS 164 [7] and the
IBM 3838 [8] offer an optional vector capability for scalar
systems. 1 They are special-purpose ''number crunchers''
which typically receive programs and data from the host CPU,
compute independently of other host operations, and return the
results to the host. Transfers between host main storage and
the attached processors occur at channel speeds. Supercompu
ters deliver extremely high system performance at prices in
the $10-22 million range, while individual attached processors
have more modest prices. An intermediate approach to vector
computing, that of providing an optional, integrated vector
capability with a general-purpose scalar system, was adopted
for the IBM 3090 Vector Facility (Fig. 2).

This paper describes the considerations that shaped the
architecture of the 3090 Vector Facility. The term architecture
is used here to denote the attributes of a system as seen by the
programmer, that is, the conceptual structure and functional
behavior, as distinct from the organization of the data flow and

Manuscript received May 15, 1986; revised November 25, 1986.
The authors are with the Data Systems Division, mM Corporation,

Poughkeepsie, NY 12602.
IEEE Log Number 8717220.
1 Common vector computer terminology is used here. A scalar is a single

floating-point or binary value. A vector is an ordered collection of scalars.
Scalar instructions (e.g., the System/370 floating-point instructions) are
executed by a scalar CPU. A vector unit executes vector instructions. Vector
computer concepts are presented in (25).

Kain Storage

Specialized,
High-Bandwidth
Interface for
Vector Performance

Scalar and Vector
Instruction
hecution

Supen:oaputer

Vector-Computing Capacity

Attacbod Processors

Fig. 1. Two familiar forms of vector computing.

Main Storage

Scalar
Instruction
Execution

Vector Elements

Vector
Inatruction11

Vector
Instruction
Execution

Scalar Scalar Vector
Registers Registers

Values

3090 CPU Optional
Vector Facility

Fig. 2. mM 3090 CPU with vector facility.

controls, the logical design, and the physical implementation.
The vector architecture continues the tradition, started with
System/360, that architecture and implementation should be
separated, and that one need not imply the other. Thus,
although the immediate motivation was to satisfy the require
ments of the 3090 Vector Facility, the vector architecture was
designed with the possibility in mind of implementation in
machines of both higher and lower cost and performance.

00l8-9340/88/0500-0509$01.00 © 1988 IEEE

IEEE TRANSACllONS ON COMPUTERS. VOL 37. NO. 6. JUNE 1988 657

Systolic Super Summation
PETER R. CAPPELLO, MEMBER, IEEE, AND Wll.LARD L. MIR.ANKER

Abstract-A principal limitation in accuracy for scientific
computation performed with floating-point arithmetic may be
traced to the computation of repeated sums, such as those which
arise in inner products. We propose the design of a systolic super
summer, a ceUular piece of hardware for the high throughput
performance of repeated sums of floating-point numbers. The
apparatus receives pipelined inputs of streams of summands from
one or many sources (say as a coprocessor unit in a supercompu
ter). The floating-point summands are converted into a fixed
point form by a sieve-like pipelined cellular packet-switching
device with signal combining. The emerging fixed-point numbers
are then summed in a corresponding network of extremely long
acumulators (i.e., super accumulators). At the cell level, the
design uses a synchronous model of VLSI. The amount of time
the apparatus needs to compute an entire sum depends on the
•aloes of the summands; at this architectural level, the design is
asynchronous. The throughput per unit area of hardware ap
proaches that of a tree network, but without the long wire and
signal propagation delay that are intrinsic to tree networks.

Index Terms-Floating-point arithmetic, inner product, scien
tific computation, systolic array, VLSI.

I. INTRODUCTION

A. The Inner Product

FLOATING-POINT arithmetic is fundamental to scientific
computation. The four basic floating-point operations EB,

8, I&], (ZJ have been part of the arithmetic units of digital
computers since the 1950's. Today no processor intended for
scientific or engineering applications can fail to offer high
performance floating-point arithmetic in some form (intrinsic
hardware, coprocessor hardware, microcoded implementa
tion, etc.).

As an approximation to the exact arithmetic operations + ,
- , x , / performed on pairs of real numbers, the floating
point operations 1±1, 8, 1&1, IZ1 when performed on pairs of
floating-point numbers deliver results which are accurate to
the last figure of precision in the computer. Of course, this is
predicated on a proper implementation of both a rounding
operator D and of floating-point arithmetic on the computer
[l], [2]. However, when floating point operations are com
bined, even for a computation as elementary as a 1±1 b 1±1 c,
the relative error of the result may be as large in magnitude as
the greatest floating-point number representable in the com
puter [3]. In addition to the reals, scientific computation

Manuscript received May 14, 1986; revised April 8. 1987. This work was
supported in pan by the National Science Foundation under Grant ECS-
8307955.

P.R. Cappello is with the Department of Computer Science, Univenity of
California, Santa Barbara, 93106.

W. L. Miranker is with mM Thomas J. Watson Research Center,
Yorktown Heights. NY 10598.

IEEE Log Number 8717693.

employs the so-called higher data types of computation such as
complex (numbers), vectors and matrices of real and complex,
as well as intervals over all of these. The basic operations for
such data types involve expressions such as a 1±1 b 1±1 c.
Indeed these basic operations involve inner products El of n
tuples of floating-point numbers. Thus, even with the best
possible implementation of the floating-point operations EB,
El, l&1, (Z), a computer will frequently deliver poor results
for the basic operations of scientific computation.

A new theory of floating-point arithmetic [1] has shown one
way out of this limitation to accuracy in scientific computa
tion. Basically by including a fifth floating-point operation 0 ,
called the inner product, to the conventional four floating
point operations, the full computer accuracy available in
floating-point operations on pairs of reals can be provided for
all floating-point operations on all of the higher data types of
scientific computation. In this sense, the result of such
operations are the data types closest' to the ideal full precision
results.

Giventwovectorsx = (x1, • • ·,xN)andy = (y1, • • ·,YN)
of floating-point numbers, the operation El is defined by x El
Y = □o;fa I X; x Y;). That is, x El y is that floating-point
number which would be obtained by first computing tfa I X; x
y; in exact arithmetic and then rounding the sum once. We may
say that x El y is that floating-point number which represents
the exact inner product Ifa 1 X; x y1 with an accurracy
equivalent to the loss of information represented by a single
rounding operation.

Such an operation can be simulated by iterative algorithms
(1, ch. 6). Parallel versions of these algorithms also have been
studied [4]. A hardware unit has also been devised for a higher
performance implementation [5). This particular hardware
implementation involves a so-called long accumulator. This
latter approach has been more or less implemented, by means
of microcoded assists, in a commerically available processor
(the IBM 4361). The IBM 4361 offers the fifth floating-point
operation El.

A normalized floating-point number x (in sign-magnitude
representation) is a real number x in the form x = am b~.
Here a E { + , - } is the sign of the number (sign (x)), m is
the mantissa (mant (x)), b is the base of the number system in
use, and e is the exponent (exp (x)). b is an integer greater
than unity. The exponent is an integer between two fixed
integer bounds el, e2, and 11sually, el s O s e2. The
mantissa mis of the form m = t:,. 1 d[iJb-i. The d[i] are the
digits of the mantissa numbered in decreasing order of
significance. They have the properties d[i] E {0, 1, • • ·, b -
1} for all; = 1(1)/ and d[l] ¢ 0. Without the condition, d[l]
¢ 0, floating-point numbers are called denormalized. The set

0018-9340/88/0600--0657$01.00 © 1988 IEEE

Programming in VS Fortran
on the IBM 3090 for

Maximum Vector
Performance

T he IBM 3090 - a high
performance, general-purpose
computer-when enhanced by

the Vector Facility and the VS Fortran
Compiler Version 2 with vectorization
capabilities becomes a powerful tool for
large-scale scientific and engineering com
putations. This article illustrates program
ming techniques necessary for high
performance on the 3090 and demon
strates that VS Fortran programs can
achieve near maximum execution rates.
The ideas behind these techniques apply to
other vector processors as well. Implemen
tation, however, may differ significantly
depending on machine organization.

The IBM Engineering and Scientific
Subroutine Library (ESSL)1 is a collec
tion of high-performance mathematical
subroutines coded primarily in assembly
language using state-of-the-an algorithms
tailored to the 3090 Vector Facility. Exe
cution rates delivered by most ESSL rou
tines can be nearly equalled by
programming similarly efficient
algorithms in Fonran and compiling with
the VS Fortran Version 2 compiler.2

Fortran program efficiency has practi
cal imponance. When Fortran programs
perform inefficiently, programmers must
resort to special subroutine libraries or

June 1988

Bowen Liu and Nelson Strother

IBM Research Division

General programming
techniques for

hierarchical storage
management can

improve 3090 CPU
performance up to

three times and
elapsed time perfor
mance up to twenty

times for some vector
codes.

assembly language programming for high
performance. These solutions are not
completely satisfactory. Efficient subrou
tine libraries, although useful, lack suffi
cient flexibility; efficient subroutines to
perform the desired computation may not
exist. Assembly language programs
require too much effort to develop, main-

0018-9162/88/0600-0065SOUlO©l988 IEEE

tain, and modify. Thus, the extent to
which the execution power of a computer
is realized for scientific and engineering
applications often depends on Fortran
program efficiency and hence the ability of
the Fortran compiler to generate optimal
object codes.

Any attempt to achieve high perfor
mance on a computer must consider its
architecture. We review relevant features
of the 3090 architecture in the next section.
An optimal program on the 3090 Vector
Facility must make efficient use of a hier
archical storage system and take advan
tage of the compound vector instructions.
The key programming techniques for
managing the storage hierarchy are loop
sectioning, loop distribution, and data
compaction. The sections ''Vector regis
ter reuse," "Cache reuse," and "Virtual
memory, storage format, and page reuse''
show how these techniques can lead to effi
cient use of the vector registers, the high
speed cache, and the virtual memory sys
tem, respectively. The compound vector
instructions are discussed in the section
"The Multiply-And-Add compound
instruction."

Previous work has developed3
"
7 and

implemented8 some of these program
ming techniques and demonstrated their

65

742

RESEARCH CONTRIBUTIONS

Simulation
Modeling
and Statistical
Computing

Richard E. Nance
Editor

Efficient and Portable
Combined Random Number
Generators

PIERRE L'ECUYER

ABSTRACT: In this paper we present an efficient way to
combine two or more Multiplicative Linear Congruential
Generators (MLCGs) and propose several new generators.
The individual MLCGs, making up the proposed combined
generators, satisfy stringent theoretical criteria for the
quality of the sequence they produce (based on the Spectral
Test) and are easy to implement in a portable way. The
proposed simple combination method is new and produces a
generator whose period is the least common multiple of the
individual periods. Each proposed generator has been
submitted to a comprehensive battery of statistical tests. We
also describe portable implementations, using 16-bit or
32-bit integer arithmetic. The proposed generators have
most of the beneficial properties of MLCGs. For example,
each generator can be split into many independent
generators and it is easy to skip a long subsequence of
numbers without doing the work of generating them all.

1. INTRODUCTION
Random number generators are used in many areas
including computer simulation, Monte-Carlo tech
niques in numerical analysis, test problem generation
for the performance evaluation of computer algorithms,
statistical sampling, and so on. Despite the large
amount of theoretical research already done on this
subject, many of the generators currently in use, espe
cially those on the microcomputers, are seriously
flawed (15). Even some recently proposed (3, 20] or
evaluated (6, 7) generators have a very weak theoreti
cal justification. The aim of this paper is to propose an
efficient way to combine two or more random number
generators to obtain a new, hopefully better one.

·'e 1988 ACM 0001•0782/88/0600-0742 St.SO

Communications of the ACM

All practical "random number" generators on com
puters are actually simple deterministic computer pro
grams producing a periodic sequence of numbers that
should look "apparently random." A generator is de
fined by a finite state space S. a function f: S ~Sand an
initial state s0 called the seed. The state of the generator
evolves according to the recursion

i = 1, 2, 3, ... (1)

and the cu"ent state Si at stage i is usually transformed
into a real value be•ween O and 1, according to

where g: S ~ (0, 1). The period of the generator is the
smallest positive integer p such that

Si+p = Si for all i >,,

for some integer ,, ~ 0.

(2)

(3)

It is well accepted [2, 11] that to obtain a good gener
ator, the choice off and g should be based on a firm
theoretical ground, and before being used for practical
applications, the generator should be submitted to a
comprehensive set of statistical tests. A good implemen
tation of the generator should be reasonably fast, porta
ble. and use few computer memory words (2, 19).

The most commonly employed generator today is the
Lehmer linear congruential generator (LCG), for which

f(s) =(as+ c) MOD m; g{s) = s/m; (4)

where the modulus m and the multiplier a < m are posi
tive integers; and the constant c <mis a nonnegative
integer. One usually chooses c = 0, in which case the
generator is called multiplicative linear congruential gen
erator (MLCG) and its state space is S = 11, 2, ... , m - lj.

June 1988 Volume 31 Number 6

;.
a

h
r
f,
h
t.
b
C
s
0

0

f,
r.
s
a
l:
C

C

t
g
c;

r

980 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 8, AUGUST 1988

Integer Multipliccition and Division on the HP
Precision Architecture

DANIEL J ~ MAGEN HEIMER. MEMBER. IEEE, LIZ PETERS, KARL W. PETTIS, AND DAN ZURAS

Abstract-In recent years, many architectural design efforts
have focused on maximizing performance for frequently exe
cuted, simple instructions. Although these efforts have ·resulted in
machines with better average price/performance ratios, certain
complex operations and, thus, certain classes of programs which
heavily depend on these operations may suffer _by comparison.
Integer. multiplication and division are such complex operations.
This paper describes how a small set of primitive instructions
combined with careful frequency analysis and dever program
ming allows the ~ewlett-Packard Precision Architecture Integer
multiplication and division implementation to provide adequate
performance at lltde or no bant-~,are cost.

Index Terms-Addition chains, Booth encoding, code genera
tion and optimization, computer architecture, division al
gorithms, JIP Precision Architecture, multiplication algorithms,
RISC (reduced instruction set computers).

I. INTRooucnoN

MANY recent general purpose machine architectures
(e.g., [19], [16]) have been designed around one

fundameQtai tenet: by concentrating effort oil a few frequently
executed, simple instructions, average performance can be
increased and at the same time hardware costs can be reduced.
Many published papers [7], [15] contain instruction distribu
tions ordered by frequency. The literature largely agrees that
well-designed memory access instructions and low-overhead
branches (both conditional and unconditional) are crucial to
any machine design. Arithmetic, Boolean, and procedure call
operations are also important.

• Further dowu the list, near the bottom, are the more
complex instruction classes: floating point, decimal, large
block moves, and integer multiplication and division. Does the
relative infrequency of these instructions imply that their
implementation is unimportant? Hardly. Machine architects
must avoid the tendency to either overdesign these-which
results in costly additional (and largely unnecessary) hardware
or increased cycle time; or to underdesign them, in which case
the instructions become weak points awaiting exercise and
abuse by programs and benchmarks which depend on reason
able performance for these functions. The analysis and work
which allowed these tendencies to be avoided for the imple
mentation of integer multiplication and division in the
Hewlett-Packard Precision Architecture arc the subject of this
paper.

:,.1;11111.scripl n:cciwJ Oc1t1hcr 15. I\.IS7; rl·vi.scd Man.:h ll-i. 19S:-i.
The :111thors arc with lkwku-l'ad,:ml Company. Cupertino. CA 95014.
IEEE Log Numllt'.r SS~ISO<i.

11. OVERVIEW

Uses <Ji Multiplication and Division 1

Most programs use multiplication and/or _division ~ny
times, either directly or ind_irectly. Almost all high-level
languages directly support these operations with an explicit
operator (e.g.,"*" and"/") and almost all support constructs
that implicitly require multiplication or division. For example,
in C, accessing a two-dimensional array of structures

a= structureA [x][y] .b

requires two impliait multiplications, namely

((x * Ymax) + y) • sizeof(structureA)

(where Ymax is the declared upper bound of the seoond
dimension) while

diff = structureB_p 1 - structureB_p2

requires a division for the implied operation

(structureB_p 1 - structureB_p2)/sizeof(stru~tureB).

Languages such as Fortran, where matrix ranks can be passed
as parameters, may have large numbers of implicit multiplica
tions-by variables.

Clever compilers can reduce the number of multiplications
in a program by using a technique called "strength reduc
tion.'• Strength reduction is the practice of replacing multipli
cations by additions and additions by increments wherever
possible, since they are less costly than multiplications. For
example,

for (i=O; i< 10; i=i+ 1)

j=j+i * 15.

In this simple example, the multiplication by 15 can be
replaced by an addition of 15, since the multiplication results
form an arithmetic progression.

In many cases, primarily if the induction variable is used in
both a subscript expression and a nonsubscript expression. this
optimization is difficult or impossible to perform. Further
more, optimizations may be inadvertently defeated by the use
of a global variable as a loop counter or by careless use of
goto's. Since programmers are not always aware of these

1 F~ir th~ r('111:1ind\."~ ol IIK' 1.:.,1. thl' r\."fcrl"ll,'\.".S 111111ultipli~·:111,1n and J1\i,i11n -~
ar\." ol th\." 1111cgcr vanl'IY. •

00 l 8-9340/88/0800-0980S0 l .00 © 1988 IEEE

