## Twenty Challenges for Computerized Symbolic Algebra Systems

A factorial identity:

O. Simplify  $(x^2)((x-1)!)^2 - (x!)^2$ . DERIVE gets O at once. MACSYMA requires that MINFACTORIAL be in force to get it. MATHEMATICA has first to be told that x! = x (x-1)!.

A Jump:

- 1. Simplify  $A(x) := \arctan(x) + \arctan(1/x)$  to  $sign(Re(x)) \pi/2$ . DERIVE gets  $sign(x) \pi/2$ , correct only for real x. Like most systems, MATHEMATICA leaves A(x) unsimplified.
- 2. Before simplifying A(x) above, differentiate it to get a rational expression, and simplify that. Like most systems, DERIVE and MATHEMATICA simplify dA(x)/dx to 0 without noticing that this is wrong when  $x^2 < 0$ .

Sundsa

- 3. Simplify  $\psi(x)\psi(y) = \psi(x|y)$  when x and y are real or complex. DERIVE leaves it alone, which is correct, unless either x or y is nonnegative, in which case DERIVE gets 0, which is correct then. MATHEMATICA gets 0 regardless of the puzzlement caused when |x| = y = -1.
- 4. Simplify  $\sqrt{(\sqrt{(p^4+1)} + 1)}\sqrt{(\sqrt{(p^4+1)} 1)} p^2$  to 0 for real p. DERIVE gets it. but MACSYMA and MATHEMATICA can't.
- 5. Evaluate  $\int f'(x+1)/(x-1) dx$ , assuming real variables. DERIVE gets a correct ( even for x < 1) result  $(x-1)f'(x+1)/(x-1) 2 \ln((f'(x+1)/(x-1)) 1)f'(x-1))$ ; but then DERIVE cannot simplify its derivative  $f'(x,x) = \frac{1}{2} \int f'(x+1)/(x+1) f'(x+1) f'(x+1$
- 6. Simplify  $\cosh(\sqrt{(-z)}) \cos(\sqrt{z})$  to 0 for all complex z, but not  $\sinh(\sqrt{(-z)}) z\sin(\sqrt{z})$ . (  $z = \sqrt{-1}$ ) DERIVE can't do the first. The second vanishes only if  $Arg(z) \le 0$ , but some systems "simplify" it to 0 for all z.

Two limits:

7. 
$$H(x) = \frac{\ln(x-a)}{(a-b)(a-c)} + \frac{\ln(x-b)}{(b-c)(b-a)} + \frac{\ln(x-c)}{(c-a)(c-b)}$$

=  $\int dx/((x-a)(x-b)(x-c))$ .

Evaluate lim H(x) as x  $\to$   $\pm \omega$ . The right answer is 0. DERIVE gets it. and so does MACSYMA after the TLIMIT command. NATHEMATICA gets the expression

command. NATHEMATICA gets the expression <u>INFINITY + INFINITY + INFINITY</u> (a-b)(a-c) (b-c)(b-a) (c-a)(c-b)

at first, and then simplifies it to 0, which is an instance of the right answer for the wrong reason. I wonder what MATHEMATICA does with the limit of  $k(x) = 2(c-b) \ln(x-a) + (a-c) \ln(x^2-2bx+b^2) + 2(b-a) \ln(x-c)$ . DERIVE gets  $\lim k(+\infty) = 0$  and  $\lim k(+\infty) = 2(c-a) \ln(x - c)$ .

## Integrals:

Symbolic Algebra systems tend to compute  $\int x^{N-1} dx = x^N/N$ with perhaps a warning about N = 0, usually without. We would all be better served by  $\int x^{N-1} dx = (x^N - 1)/N$  with recourse to l'Hopital's Rule for 0/0 when N=0.

- Evaluate the indefinite integral  $W(z) := S(z^4 - 3z^2 + 6) dz/(z^6 - 5z^4 + 5z^2 + 4)$ =  $\arctan((2z^2+1)(z^2-3)z/(z^6-3z^4+2z^2+2)) + 3 \arctan z$ , and then the definite integral  $W(2) - W(-2) = 5\pi/2$ . DERIVE and MATHEMATICA can't find it at all. It is easy to bungle. And DERIVE can't make  $6 \arctan(1/2) - 2 \arctan(9/13) = \pi/2$ .
- Evaluate symbolically the definite integral  $\frac{1}{4} dx/((x+1)(x+2)(x+3) + 1/100000) = 0.08494...$ DERIVE gets it; my version of MATHEMATICA doesn't.
- 10. Evaluate the indefinite integral  $S(x^2 + 2x + 1) dx/(x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 2)$ or its algebraic equivalent form  $\int (x+1)^2 dx/((x+1)^6 + 1)$ . The right answer is  $\arctan((x+1)^3)/3$ . Also try the definite integral  $\{1 \dots dx = (\pi/12) - \arctan(1/8)/8 = 0.22034\dots \}$ DERIVE handles the second form but not the first.
- 11. Evaluate for real x and z the double integrals  $\S$  (  $\S \Xi_{\varpi} \ \lor \ dt/(t^2+v^2)$  ) dy and  $\S \Xi_{\varpi}$  (  $\S \Xi \ \lor \ dv/(t^2+v^2)$  ) dt . DERIVE gets  $(|z| - |x|)\pi$  correctly for both. MATHEMATICA gets both wrong and different. MACSYMA asks questions.
- 12. Evaluate for nonnegative  $\times$  the double integral  $V(x) := S1 S2 r^2 \sin(t) dt dr/\sqrt{(x^2 + r^2 - 2x r \cos(t))}$ . This is the negative of the gravitational potential exerted by a homogeneous solid sphere at a distance x from its center. MATHEMATICA gets it wrong. DERIVE gets correctly V(x) = ((2-x)(1+x)[1-x] - (2+x)(1-x)[1+x])/(6x) $= 1 - x^2/3$ if  $0 \le x \le 1$ , = 2/(3x)if  $x \geq 1$ .
- 13. Evaluate for real x the integrals  $S_{\pi}^{\pi} dt/(1 - x/exp(zt))$  (  $z^2 = -1$  ) and  $S_{\pi}^{\pi}$  (1 - x cos(t)) dt/(1 + x<sup>2</sup> - 2x cos(t)) . DERIVE gets correctly  $\pi - \pi \operatorname{sign}((x+1)/(x-1))$ . MATHEMATICA gets 0 unless x has a numerical value. MACSYMA asks a blizzard of questions about x , some of them irrelevant but difficult; if answers are inconsistent it puts out an utterly wrong result  $4\pi$ .

Improper Integrals:

14. Many systems compute  $\int L_1 dx/x^2 = -2$  with no warning. And a system that tries to detect improper integrals can fail. For example let  $E(x) := e^x - x^e$ , so  $E'(x) = e^x - ex^{e^x}$  and  $E''(x) = e^x - e(e-1)x^{e-2}$ . Try to compute  $\int S E'(x) dx/E(x)^{N+1}$  and  $\int S E''(x) dx/E'(x)^{N+1}$  to see whether their impropriety will be detected when N>0 .

Simple inequalities:

15. Suppose  $x_1 > 0$  and that  $x_{n+1} = |x_n| - x_{n-1}$  for n > 0. ( Cf. M. Brown (1985) Amer. Math. Monthly v. 92, p. 218. ) Deduce that  $x_0 = x_0$  and  $x_{10} = x_1$ . The proof can be broken into cases according as xo/x1 lies in one of the intervals into which the real axis is broken by the values -2, -1, -1/2, 0, 1/2, 1, 2. How few such breaks does your system need? DERIVE gets by with breaks at 0 and 1.

Inverses of even complex functions:

16. Simplify  $(\operatorname{arccosh}(z))^2 + (\operatorname{arccos}(z))^2$  to 0. Many systems can't do it. Old versions of MACSYMA have a faulty definition for arccosh; newer versions use ATRIGHSWITCH.

A derivative:

17. Simplify  $(d/dx)^n \cos(n \arccos(x))$ ; it should be  $2^{n-1}n^{-1}$ . DERIVE gets it for small integers in if  $-1 \le x \le 1$  . The general case requires either an unobvious induction or recognition of Tchebysheff polynomials.

Graph plotting:

- 18. This is the second line of defence against improper integrals, so graphs with bumps should excite curiosity. Many systems limit themselves to the harware floating-point when plotting. This can mislead spectators when S(x) := |B + x| - B is plotted over, say,  $0 \le x \le 7$  for extremely big values B. say  $B = 2^{53}$  or  $2^{56}$ . Is S(x) really a step function?
- 19. Expressions so simple as  $y(x) := 1 + x^2 + \ln(|1 3(x-1)|)/80$  plotted over 0 < x < 2, roughly, have bumps that can hide from view when the plotter scatters points too sparingly to be sure of placing one near the bump. Vary the end-points of the plotting interval a little to see a spike come and go.



