
• I 

.. ... 
• I 

7094-II SYSTEM SUPPORT FOR NUMERICAL ANALYSIS 

w .. Kahan 
Department of Computer Science 

University of Toronto 

Draft of first half: Aug. 1966 



' , .' 

. . . 

Abstract 

7094-II System Support for Numerical Anaiys:s 

W. Kahan, Un1vers1ty of Toronto 

This is the first half of a progress report on tbe author's 

efforts to improve the performance of IBSYS 1n the following areas 

of FORTRAN IV programming: 

1. Error-traces and diagnostic messages to locate and explain 

flaws found while executing FORTRAN programs. 

2~ Post-mortem facilities via the FORTRAN IV statement 

IF (KICKED(OFF)) .. o 

3. A consistent, sane and flexible treatment of over/underflow 

and related phenomena. 

:: 

~. Digit manipulation (llke rounding) via FORTRAN bu1lt-1n function: 

5. The erad1c-at.1on of anomalies in the compiler ( IBFTC) and 

the FORTRAN library (IBLIB). 

6~ The expansion of the FORTRAN library to include reliable 

and convenient subprograms for the solution of standard 

numerical problems like systems of linear equations, 

polynomial equations, 

eigenproblems, 

minimax approximation, 

fitting data by least squares, 

systems of ordinary differential equations, 

etc. 

Items l to 5 are herein regarded as essential prerequisites to the 

accomplishment of item 6 in such a way that users of these subprograms 

need not supplement their own competency in mathematics, science, 

engineering or the humanities by a hyperfine proficiency at both numer1ca: 

analys16 and the debugg1ng of systems programs. Each cf the six 



\ . 

l 

- 2 -

areas wili be discussed in a correspondingly numbered section of 

this report, which begins by introducing the motivations for and 

the constraints upon the author's efforts. Sections l to 3 follow; 

section 4 to 6 will be issued separately later. 



t 

- 3 -

Introduction 
~ 

For as long as electronic computers have been in use (since 1949 

at the University or Toronto), there has existed a steadfast policy 

to widen the range of intellectual disciplines that might benefit 

from the machine. That policy is partly responsible for a decline 

in the numerical sophistication or users which has yet to be compensated 

by an increased sophistication in the programs they can use. 

Despite intensive attempts to educate them in the arts or computation, 

too many new users attribute to the numerical library subprograms the 

1nfallib111ty of a mathematical proof. They shall be disillusioned. 

To what extent can their disillusionment be written off as part of 

their education? To what extent can their dissatisfaction be traced 

to shoddy computing systems? There is room for improvement in both 

the quality of education and the quality or computer performance. But 

you cannot teach an old dog new tricks, and you cannot teach a new 

dog very much. Therefore the bulk of the improvement must and can 

come in the performance of computer systems. 

The performance of IBM's IBSYS on the 7094-II has left a lot or 

room for improvement. The improvements listed here were motivated 

almost entirely by the inadequacies uncovered during the author's 
researches into numerical methods. The object of the researches was 

to produce working programs about which might be proved something 

simple and useful to a numerically unsophisticated but otherwise 

intelligent and educated user. As a by-product or these researches, 

the following vague generalities have emerged: 



- LI -

-Computation costs most when its result 1s net known to be 

right nor wrong, because it costs so much to find out what is 

wrong and why. Costs can be cut by a small amount of self

doubt applied early. 

-Whether or not the purpose of computing be "insight", its 

most dependable benefit is hindsight~ Programmers dislike 

forgoing this benefit through lack or foresight. 

-Errors, anomalies and arbitrary restrictions hurt most when 

they are too rare to remember but not rare enough to ignore. 

These generalities have influenced the many decisions on questions 

of detail which arose during the work on the system. A more decisive 

influence was exerted by three constraints: 

First, it was deemed essential that programs be capable of 

conve~sion to whatever machine might replace the 7094-II, and so it 

was decided that all numerical subprograms be written in a language 

like FORTRAN or ALGOL, except where efficient coding was so obviously 

machine depenaent that the assembly language MAP was used~ I chose 

FORTRAN IV in preference to ALGOL. I would rather fight than 

switch. I am still fighting with the latest version (13) of the 

IBFTC compiler to incorporate all the modifications which I had 

introduced into the previous version, and further modifications·to correc 

newly discovered deficiencies. 

Second, since no one had anticipated a need to rewr1~e IBSYS 

or IBFTC in 1ts entirety, no resources were allocated fer such a 

task. The~efore, IBSYS and IBFTC have been modified as little as 

p~ss~b~e, !nstead of being replaced. The modifications have cost 

about three man-years of work all told, much of which has been 

disslpated 1n the transfer of the modifications from version 12 to 

version 13 of IBSYS. 



- 5 -

Third, but most important, is our decision that the Toronto 

version of IBSYS remain compatible with the standard IBM IBSYS. 

Consequently, any FORTRAN IV program, even if it be in the form of 

a binary object-program deck, which has been designed for and runs 

correctly on a 7094 under standard IBM IBSYS with a hundred or so storage 

locations to spare runs at least as well under our modified system. 

If the program be recompiled with no other modification then the 

user .may benefit from our improved diagnostics, especially where 

division by zero is concerned. Most of the users of our 7094-II 

are unaware of any departure from standard. But programs which run 

well on our system sometimes fail mysteriously at other 7094 

installations. 

In this report an attempt will be made to discriminate between 

IBM's standard IBSYS and our modified IBSYS by referring to theirs 

in the past tense whenever it differs from ours. Further details 

about IBM's IBSYS can be obtained from their manuals: 

C28-6248 

C28-6389 

C28-6390 

(IBSYS monitor) 

(IBJOB; loader and library) 

(IBFTC FORTRAN compiler) 

Further details about our modified system can be found in 

"The Programmers' Reference Manual" 2nd ed. 

obtainable from 

The Secre~ary, Institute of Computer Science, 

University of Toronto, 

Toronto 5, Ontario, 

Canada. 

and hencefcrth6 referred to as the PRM. Program listings are obtainable 
f 

tvOif requested by name. 



t 

- 6 -

Acknowledgement· 

The author is deeply grateful for the patient assistance 

rendered by several IBM personnel, both in Toronto and elsewhere, 

who went out of their way, and sometimes out on a limb, to help with 

this work. Particular thanks go to J. Leppik, G. Howard and J. Bell 

for their help with the monitor, the compiler and the revised SAVE 

pseudo-op~ Thanks go as well to colleagues in the Department and 

in the Institute of Computer Science for their encouragement over 

several years, and for their help with policy decisions about 

kick-off and diagnostic procedures. 

Some of the work reported here was supported by the National 

Research Council of Canada. 



t 
"· 

- 1 -

1. Error-Traces and Diagnostic Messages· 

It may seem peculiar that a Numerical Analyst be preoccupied 

with the System Programmer's traditional responsibility for error-

traces, diagnostics and post-mortem information. But let us watch 

the Numerical Analyst at work. Much of his computer time is 

dissipated by the diagnostics and post-mortems which he receives 

while trying to discover why his algorithms do not work as well 

as he had hoped. From time to time he hands one of his subprograms 

on to some other user numerically less sophisticated than himself, 

and in so doing he tacitly shares with the Systems Programmers some 

responsibility for issuing diagnostics. His program may produce 

diagnostic messages for different reasons than merely to signal 

its own collapse. Diagnostics may be the only "correct" answers 

that the program can deliver in response to problems outside the 

intended domain of its applicability, especially when the prograrr,'s 

domain cannot easily be defined other than by attempting to execute 

the program. For example, a hopelessly ill conditioned linear system 

A X = b 

is most easily identified when a sound linear-equation-solver fails 

to solve the system for x but exhibits instead a near linear 

dependence d in the left hand side A; i.e. 

II A d II / ( 11 A II u g_ II ) + 0 

The Numerical Analyst's subprogram ought to pass on this kind or 

diagn~stic information in a form easily interpreted either by the 

user's ~alling program or by the_ user personally1 

The later form of diagnostic is usually a message printed 

amidst the user's output and is often the consequence of an error 

or oversight- The crucial question is 

"Where was this error. commi t_ted ?" 



l 

- 8 -

but no computer program can answer this quest1oli. T1· .. e best 'that can 

be done automat1cally is to answer the question 

"Where did the program first encoun-cer some anomalous consequence 

of the error?" 

The answer takes the form of·an Error-Trace. Under IBM's IBJOB 

this would be provided by library subprogram .FXEM., the FORTRAN 

execution Error Monitor. Let us examine an error-trace typical of 

those produced by IBM's .FXEM .. For example, suppose line 2 of 

the user's main program MAIN called a subprogram SUBl in whose 

line 25 was a call to SUB2 in whose line 17 was a reference to 

SQRT(-4~0)o When this reference was executed, the SQRT program 

would detect the inappropriately negative argument and call .FXEM. 

(say in line 31) to produce an error-trace and diagnostic message. 

IBM's error-trace would look like this: 

ERR0R TRACE CALLS IN REVERSE IRDER 

CALLING IFN GR ABSG>LUTE 
RGUTINE LINE NG> L"CATI0N 

SQRT 31 17621 
SUB2 17 14513 
SUBl 25 07762 
MAIN 2 05413 

The names in the first column are the deck-names assigned by the user 

to his subprograms {or else, 1n our modified system, assigned by 

default by the system). The line numbers or "Internal Formula 

Numbers" in the second column refer to numbers printed in the programs' 

source listings, and can be exploited by the FORTRAN IV programmer 

withou't recourse to storage maps. For this reason, the third column 

of absolute octal core locations is of secondary value to the FORTRAN 

prograr.-~e~. It is a great convenience that he can ignore this column 

and dispense with storage maps most of the time. 



- 9 -

The com~~eteness of ~he error-trace shown above 1s one of its 

{ most valuable features, Compllcated programs can contain several 

refe~ences to the SQRT subroutine, and it 1s vital that the pa~h of 

control to the invalid reference be laid out explicitly. The complete 

error-trace is even more valuable when languages which permit recursive 

procedures are used. If a user were instead provided with only the 

reference to SQRT {or only to SQRT and SUB2) 1n the error-trace 

above, he might waste a lot of time checking through all of his calls 

to SUB2 in an attempt to uncover the faulty one. 

IBM's .FXEM. would print out a two-line diagnostic message 

and provide a means to exercise options regarding kick-off or continued 

execution following the diagnostic and error-trace. But .FXEM. 

suffered from two defects. 

One, the easiest to remedy, was that .FXEM. could be called only 

from a MA? assembly language program. We fixed this by providing 

a program called UNCLE; any programmer can kick himself off 

(and prod~ce an error-trace plus post-mortem debugging output) 

by executing 

CALL UNCLE 

He ca~ offer users of his program a lim1t~d range of kick-off-or

continue options by writing 

CALL UNCLE (N) 

with a sultably chosen integer expression N. He can supply one or 

two diagnostic messages too by writing 

CALL UNCLE (N,Message) or 

CALL UNCLE (N,Message 1, Message 2) 



.: 

t 

- 10 -

The messages ~an be inserted literally as Hollerith strings or they 

can be referenced as arrays cf alphanumeric data. In the latter 

case, rudimentary binary-to-BCD conversion facilities are available 

to perm1t 1nteger valued variables like indices or error-codes 

to be inserted into the diagnostic without first reserving core 

storage for the panoply of FORTRAN input/output subprograms. 

This last is an important consideration when program overlay 

1s required during execution. (For more details about UNCLE, 

consult the PRM.) 

.FXEM's second defect was that it could cope only with what 

I call "scheduled errors" ; these are errors each of which is discovere 

in a subprogram which, when 1t calls .FXEM. to produce an error

trace, can supply whatever linking information is needed by .FXEM. 

to start the error-trace. For example SQRT(-4.0) is a scheduled 

error because SQRT is called in a standard way. But when unschedulec 

errors like over/underflow, division by zero, running overtime, ••• , 

were detected they would "trap", 1.e~ cause interrupts which transferre 

control to appropriate subprograms without carrying the standard· 

linking information that made an error-trace possible. Consequently, 

tr.ie dlagnostics for unscheduled errors answered the question "where?" 

with an absc,lute octal core location, but could not answer the questic 

"How did I get there?" 

That IBSYS' s standard linking sequence c_ontained a partial 

answer to the last question was widely recognized. The first 

effort to extract a full answer was made by G. Wiederhold and G.D. 

Johnson at Berkeley (Univ. of California) in 1963. Their work 

has appeared in SHARE SSD 121 of May 21/64 and SDA' s· 3066-7. A 

similar scheme was devised by J. Leppik, G. Howard and the £Uthor 

at Toronto in 1964. Our scheme differs from the!rs mainly in that 

ours is simpler to use, slightly less flexible, and fully compatible 

with the standard IBM system. 



- ll -

The first step ~n both scheme$ 1s to revise the standard 

SAVE pseudo-operat1on by wh1ch subprograms are expected to save and 

restore index registers, control linkages, etc. When IBM's SAVE 

was executed upon entry to a subprogram SUB, it used to save 

in a cell called SYSL~C the pointer to the statement 

CALL SUB 

but no subsequent use was made of SYSLQC. We have added two 

instruct1ons to SAVE whose effect is to store the same pointer, 

during the RETURN from SUB to the instructions following 

CALL SUB 

1n such a way that the contents of SYSL@C show whether SUB 

has just been entered or has just returned. This modification 

has no effect upon the way IBM's .FXEM. behaves for scheduled 

errors .. 

Next, I rewrote .FXEM. so that it can be called from a trap

handling program. Such a CALL is distinguished from other standard 

CALLS by the absence of certain otherwise expected linking informatic 

the lack of which forces .FXEM. into a new mode of action which 

examines SYSL0C to produce the first line of the error-trace. 

The behaviour of the new .FXEM. is best illustrated by an 

example. Suppose that SUB2 in the example above contains, besides 

SQRT(-4.0), a division which, when executed, turns out to be a d1v1sior 

of zero by zero. The result 1s the following diagnostic (in which 

the contents of the second line depend upon an option selected by 

the user): 



l 

- 12 -

0.0/0.0 ERR@R AT 14506 

RESULTS IN 0.0 or EXECUTI0N TERMINATED 

ERR0R-TRACE WITH CALLS IN REVERSE 0RDER C0DE 25 

CALL IS IN AT IFN 0R ABS0LUTE 
DECK NAMED LINE NG>. LQCATI0N 

SUB2 17+ 14513 
SUBl 25 07762 
MAIN 2 05413 

The important change shows up in the+ sign after the line 

no. 17. This means that the announced anomaly was detected during 

or after (in time) the execution of line no. 17 of SUB2, but 

before any subsequent CALL was executed. Since SUB2 has a call to 

SQRT 1n line 17 at location 14513 (er. the previous error-trace), 

and the 0.0/0.0 occurred five words ahead of this location in the 

program, it seems like~y that the program was executing a loop, 

perhaps a D0-loop, which contains the offending division just a line 

or two in the listing ahead of the square root; and this loop was 

executed at least once before the divisor vanished~ 

The detective work 1n the last sentence is not typical; usually 

the error can be located by the most superficial 1nspect1on. But 

the need for any detective work at all 1s an unfortunate consequence 

of the way IBM's FORTRAN IV compiler works. Instead of identifying 

every line in the symbolic listing with a line number that .FXEM. 

could deduce at execution time (for example, by locating a dummy 

instruction 

TIX IDt O, LKDR 

&~ the beginning of the coding emitted by the compiler for line 

~c. I~ of the FORTRAN subprogram whose linkage ~nformat1on can be 

found at LKDR), the compiler assigns a .useable line number only 

when a CALL 1s generated~ Since an implicit CALL !s generated for 

all r~ferences to FUNCTION subroutines, as well as for most 



t 
- .i3 -

exponentiations of the form x••J and X**Y, for input/output, 

for complex multiplication and d1v1s1on, and for a computed 

G0 T0ln1 , n2 , •.. , nm), I, there are few programs whose listed 

line numbers are toosparse for a successful interpretation of the 

error-trace. And, at worst, the unscheduled error is located to 

within one s~bprogram. 

.:: 

The C0DE 25 at the head of the error-trace tells the programmer 

how to exercise h1s option to define 0.0/0.0 1n one of two ways; 

either 

0.0/0.0 • 0.0 and continue execution, or 

0.0/0.0 = EXECUTI0N TERMINATEDo 

For example, the first opt1on is the result of executing 

CALL KIKGPT (25, 1) 

while the second results from 

CALL KIKGPT (25,0) • 

The reader is referred to the PRM for precise details about available 

options and how to exercise them conveniently~ What follows is a 

condensation. 

The PRM contains a table of error codes and messages (cf. 

F'lg. 25 and the section "Subroutine Library Error Messages" in 

IBM's IBJOB manual, Form C28-6389-l) which describes for each code 

its error condition, the options available, and which option is 

ass·l.lmed by the system in default of a request to .the contrary. 

The default option is usually to provide a message and then continue 

execution in some reasonable way. 

I belleve that, taken together with the other diagnostic 

facilities 1n our system, our surprisingly simple set of options 

covers almost all circumstances satisfactorily. For serious errors 

we assign posltive codes, like +25 for O&O/O;O, to signify that 

the allowed options are 



l 

- l'-t -

+l) Give a message and error-trace, and then continue reasonab:y 

or 

+O) Give a message and error-trace, and then terminate execution 

(Some errors, like 

00 T0 (1, 2, 3), 4 

are so serious that option +l is denied.) For milder errors we 

assign negative codes, like -13 for SQRT (-4.0), which s"ignify 

that the allowed options are 

-1) Give a message and error-trace, and then continue reasonably 

or 

-0) Give no message nor error-trace; just continue reasonably. 

The meaning of "continue reasonably" is discussed later in 

this report. For now it suffices to give a few examples: 



l 

- .L, -

Error Cvndition and "Reasonable" ResEonse Code 

SQRT(-X) = - SQRT(X) -13 
L0G(-A) = LG>G ( ABS ( A ) ) -10 
O.O**O = 1.0 3 

O**O = 1.0 1 
o.o••o.o = 1.0 + 6 
0.0/0.0 = o.o +25 

*Footnote: We allow programmers to write LGG(X) or 

ALGG (X) interchangeably as they please 

rather than penalize them for the venial 

sin of omitting the A. 

* 

Programmers, particularly writers of library subprograms, can 

easily provide other kinds of optional responses to error conditions 

detected by their own subprograms because the status of the option-

1nd1cator (a blnary digit) associated with any error-code number 

~ 

can be sensed and stored as well as change via KIK0PT. A complicated 

program may have several error-codes assigned to it, but thls causes 

no problems because 280 codes are available. Programmers are free 

to use error-codes as flags or flip-flops in a way comparable to the 

use of sense-switches and sense-lights on the elder slower machines. 

A comment is required to explain that ·1ast .FXEM. option 

-0 which, in effect, allows .FXEM.'s activity to be suppressed 

entirely when the error is a mild one with a negative code. Some 

of these errors are better described as differences of opinion 

about the most apt definitlon of a function or an expression, as in 

the cases of o••o = 1 and o.o••o = 1.0 (cf. the Taylor series 
00 

!:arxr at x =0.0)o In these cases the warning messages serve only 
0 

to remind users that my definitions are not universally accepted in 

the computing world. If he is satisfied to do things my way, he can 

tarn the message off. If he prefers another way, he can easily change 

the relevant program to hls own specifications with the aid of the 

documentation which we supply. 



l 

- lb -
Olher· e1rors ~1th n~~~tive codes some:imes represen~ m~nor 

oversighis; an example is 

L9G(-X) = L0G(ABS(X)) , code - 10. 

For reasons discussed later, our policy 1s tc try not to terminate 

execution because of such an oversight. Rather, 1t seems better 

to continue and find out what else the programmer overlooked. We 

do not encourage programmers to exploit system side-effects to save 

the bother of a sign-test or _some such simple ins~ruction. We do 

not regard the -0 option as one which should be employed in prcduct!ot 

or library programs to correct oversights, except possibly tempo~arily 

because th1s type of hidden coding is so ·difficult to remember 

when late-hatching bugs are being sought. 

To implement the new .FXEM. and error-trace required several 

man-months of work, most of which was spent tracking down anomalies. 

For example, several input/output programs supplied as part of earlier 

versions of FORTRAN IV were found to use non-standard subprogram 

linkages, and these had to be repaired to allow even the old ~FXEM. 

r.o produce meaningful error-traces before they ·were further modl~ied 

to work with the new .FXEM .. Every library progra~ had to be exam1ne 

here we reaped an unexpected reward when we discovered that the new 

.FXEM. makes possible a shorte~ and faster subprogram linkage to 

certain library programs like SQRT, SIN, .ces, L0G, EXP, complex 

multiply, complex divide, A**J, and others~ 

But one large job remains. The FORTRAN compiler must be modif1E 

tc generate standard CALLs to Arithmetic Statement Functions which 

at ~he present, as compiled by IBM's FORTRAN IV v. 13, use non

sta~dard CALLs 1n order to save about 7 microseconds per CALL. (One 

div~s~o~ cos~s 8.4 microseconds.) Consequen~ly both IBM's ~FXEM. and 

ours prcduce error-traces which skip, sometimes confusingly, over 

references ~o Arithmetic Statement Functions. 



t • 

- 17 -

2. f_,. ·.:--Mc:-~em Facilities 

We prefer to think of kick-off as an act of desperation on the 

part of a subprogram, and therefore try not to terminate execution 

unless it 1s overwhelmingly probable that continued execution will 

be an utter waste. There is little risk that errors like SQRT(-4.0) 

will be repeated millions of times to no good purpose, because the 

monitor imposes the user's own limit upon the total number of lines 

of printed output, thereby protecting him from a million lines of 

SQRT's diagnostic and error-trace. Furthermore, progra'TlIIlers who are 

especially sensitive to a waste of their computer time allotment can 

use statements like 

IF (CL®CK (TSTART) .GT. TMAX) CALL UNCLE 

to kick themselves off when the elapsed time since 

TSTART = CL0CK (0.0) 

exceeds TMAX, at a cost of 70 microseconds per execution. (One 

square root costs 64 microseconds.) 

But sometimes kick-off is the only reasonable response to an 

error. This response gives rise to a class of programmer who has 

only one diagnostic and error-trace to show for his several seconds 

(or minutes) of computer time. It 1s uncharitable to advise him 

that he should have exercized enough foresight to provide intermediate 

output as insurance against such an event. Besides, he may reply 

"I thought I had debugged that program." 

We doubt the wisdom of the widespread tendency to inundate 

eve~y user who 1s kicked off with a complete dump of storage willy

n~lly. Th1s could drown him in octal data which he is unlikely to 

be able ~o read. It is a costly way to educate students. 



C 

- 18 -

The ideal solut1on woul~ be to display conveniently J~s~ those 

variables which have figured in the events leading up to the debacle. 

Our- solution 1s not ideal, but it is simple and flexible. It iE an 

improved version ·or our PMORT described in Comm. A.C .. M .. 7 (196Lt) 

p. 15. We allow the programmer to write into his FORTRAN IV 

program a statement of the form 

IF (KICKED(eFF)) < any executable statemen~ > 

~ the next executable statement> 

with the expectation that, because the value of the logical function 

KICKED lS always TRUE~, his program will merely execute <the 

nex~ exec~table statement~ . But 1f and when h1s program is k1cked 

O r.r-
.J. J. ' the monitor will give h1m the diagnostic and error-trace that 

he deserves and then, after over-writing <the next executable 

statement~ with CALL EXIT, will execute <any executab:e statement>. 

e g. 1: IF~KICKE~(iFF)) WRITE(~.~) 

caases the desired information to be written o~t if and only after 

the progr~~ has been kicked off. The programmer can choose a F@RMAT 

to sui~ hiiliself er, if mere ccnvenient, he can use the simple un
formatted output provided by the NAMELIST feature of FORTRAN IV; or 

he can CALL DUMP and be drowned. 

e.g .. 2: IF(K~CKED(©FF)) CALL ... 
G® TGl •• 11 

or 

causes the desired transfer or con·trol to take place after kick-off, 

and thus perm~ts a user to store valuable data on magnetic tapes 

and ask the operator to save them. Or he can call a complicated 

q1agnost1c program of his own, or he can try again to solve his 

p~oblem by some method other than the one which failed. The monitor 

w~ll allow, say, 20 seconds and 300 printed lines of computer activity 

af~cr the flrst kick off. Of course, any second kick-off is f1nal 



- 19 -

despite further IF (KICKEC{0FF)) .. r!quests. Because the user has 
e 

recourse to KICKED, writers of library and systems programs are under 

less pressure when they have to decide whether an anomalous condition 

should terminate execution or just produce a warning~ 

Programmers are encouraged to use KIC~ED as often as they 

like in both FORTRAN and MAP assembly language programs, and 

they can leave these KICKED statements in production programs as 

insurance against the remote possibility that an undiscovered bug 

may terminate execution in a cloud of mystery, Each executed 

reference to KICKED consumes less than 14 microseconds (less than 

two division times) so KICKED can be used in fairly tight loops 

without seriously wasting time~ The monitor will respond at kick

off only to the last executed reference to KICKED= 

An important limitation upon KICKED was imposed by the absence 

of any block structure in FORTRAN comparable to that in ALGOL, 

and by the way that indexing is optimized in FORTRAN. This limitatic 

exists because, whenever kick-off occurs in some subprogram remote 

from the one containing the KICKED statement and then control 

1s passed to <any executable statement> after the IF(KICKED(OFF)), 

no attempt is made to restore index registers to the state they were 

in when KICKED was called nor to re-set tapes to their former 

positions .. More important, ther~ is no way to reproduce the 

effect of those 1nstruct1ons which may have been placed in "optimum" 

positions ahead of the call to KICKED in order to initialize index 

reg!sters and addresses as efficiently as possible from the point of 

view of the normal sequence of control. For example, if kick-off 

occurs during the computation of FCN in the sequence 



- 20 -

D0 3 J =- 1, lu 
A(l, J) ~ J - 1 

D0 3 I= l, J 
IF (KICKED(GFF)) WRITE(~ .. ) I, J, B(I), B(J), (A(K,J), K=l,J) 

3 A(~+ l,J) c FCN(B(I), B(J), A(I + 1, J)) + A (I, J) 

there is no way at kick-off time to move the numbers I and J from 

storage 1nto the appropriate cells and index registers for the refer

ences to B(I), B(J), A(K, J) and "K = 1, J" following the call to 

KICKED. 

A second limitation shows up when program overlay takes place; 

there 1s no simple way to detect whether <any executable statement> 

in the IF (KICKED(®FF)) statement has been partially overlaid, or 

whether 1t refers to data which has been overlaid. Consequently 

we lnserted an 1nstruct1on in .L®VRY, the overlay handling 

subprogram, whlch causes the monitor to forget the last reference 

to KICKED whenever overlay occurs. We take no pride in this 

expedient. 

Any programmer who 1s aware of these two limitations can 

easily code around them~ Simple suggestions are contained in the 

PRM~ Indeed, the limitations are so easy to circumvent that programmer 

sometimes forget to do so, and for th1s reason we have included a 

warning message like the one in the following example: 

0,0/0.0 ERR@R AT 14506 
EXECUTI@N TERMINATED.· 

ERR@R-TRACE WITH CALLS IN REVERSE G>RDER 

CALL IS IN AT IFN GR ABSQLUTE 
DECK NAMED LINE NG>. LG>CATIG)N 

SUB2 17+ 14513 

SUBl 25 07762 

MAIN 2 05413 

C0DE 25 



l 

EXECUTING IFN/LI&E Ne. 2 ~F '$U31' AFTER PR0GRAM WAS 
KICKED 0FF. FRiM N0W GK IN 'SUBl', THE VALUE 0? A SUB
SCRIPTED VARIABLE WITH VARIABLE SUBSCRIPT, 0R THE EXE
CUTI@N GF A C~MPUTED 'G@ T®' 0R 'DG' STATEMENT WITH 
VARIABLE PARAMETER, MAY BE INC0RRECT UNLESS THE RELEVANT 
INDEX IS RESET. SEE THE PR©GRAMMERS' REFERENCE MANUAL. 

This message is more formidable than necessary. It would be 

unnecessary altogether if the IF(KICKED(iFF)) statement were imple

mented in a language, like ALGOL, with a block structure. Then kick-of 

within a block would cause control to be transferred to the last 

KICKED reference, if any, executed in the same block but not in a • 

deeper sub-block. 

One other complication would arise were the IF(KICKED(®FF)) 

statement to be implemented within a compiler which contained a 

M~NIT0R statement. Such a statement is exemplified by 

M9NITQR X, Y(*), Z(*, 3), PR0G, n 

which would cause output of the following kind to be generated: 

Whenever the variable Xis changed, write out its new value; 
I 

X -= 14 . 2 71·4 3 4 

Whenever.the array Y is changed, indicate which element too; 

Y (2) = .74131042 E - 18 • 

Whenever the third column of array Z is cha~ged, say so; 

Z(l3,3) = 0.0 

Whenever the subprogram PR@G 1s called, write out its arguments; 

CALL PR@G (13, 27.42i493, 

Y(l) = 1.4012362 

Y(2) = .74131042 E -18 

Y(3) = 0.0 • 

y ) WITH 

!F PROG is a function, write out its value too; 

PR@G (13, 2i421493, Y) = 1.7014 E38 WITH 

Y(l) = etc. 



- 22 

Whenever s~atement n is executed, &ay sc. If ~~is is a logical 

IF statement, tell what heppened. 

The M®NIT9R facility as described above has been implemen~ed 

at least partially in several compilers; unfortunately, ours is not 

one of them. The problem 1s to deal with the statement 

IF (KICKED(GFF)) MQNITGR ·•~··• J 

for which the nicest solution would be a retroactive display of, 

say, the last 300 lines ·of output which would have been produced if 

that M9NIT9R statement had not been bypassed. Some compilers 

already have a feature of this kind; ~he author envies their users~ 

Now is a good time to compare the error-options needed by the 

programmer with those available to him. He may want to assign to a 

specified anomal~, like 0.0**0 , one of the following four 

consequences: 

-0) Re-interpret the request 1n a way judged to be appropriate 

for the majority of users (say o.o••o =· 1.0) and continue 

with no message nor error-trace. 

1) Re-interpret the request as above, and put out a message 

and error-trace tc tell the programmer what happened and 

where, and then continue exec1.1tion. 

+0) Put out a message and error-tra.ce to explain where and 

why execution was terminated, and then grant any post-mortem 

request that may have been made via 

IF (KICKED(iFF) ... • 

2) 1ransfer control to a location designated 1n advance by the 

programmer where he may cope with the anomaly as he pleases, 

provided the necessary information is easily accessible to 

him .. 



l 

- 23 -

Our system offers at ~east two of the first three options fJr 

most error conditions. The last option is dangerous in FORTRAN for 

the reasons cited while discussing the limitations of KICKED, unless 

it is handled carefully. The following discussion explains how some 

of our library programs offer option 2). 

Consider for example our least squares library subroutine LSTSQ 

which, given a rectangular M x N matrix X and a column vector~, 

attempts to find that coefficient vector c which minimizes the sum 

of squares 

S = (~ - X.£) T (l_ - X.£) = Zi-Cy 1 zj xij c j ) 
2 

• 

A solution c always exists and satisfies the normal equations 

x-rx cs xT~ 

LSTSQ tries to solve these equations (1n double precision, because 

that is the fastest adequate method on a 7094) for c and the 

corresponding minimum value of Sand, if requested, the inverse 

matrix 

V = (XTX)-1 

But if the columns of X are nearly linearly dependent, in the sense 

that there exists a perturbation 6X of the order of a few units in 

the last place of X such that the columns of (X+ bX) are linearly 

dependent, then the solution c is not well defined and LSTSQ 

produces one of two things instead of c: 

0) If the user wrote 

CALL LSTSQ (X, M, N, Y, C, S) or 

CALL LSTSQ (X, M, N, Y, C, S, V) 

then he has made no provision for the possibility that X 

be nearly singular, so he receives a suitable diagnostic 

and error-trace and 1s kicked off. 



- 24 -

l) If the use~ wrote 

CALL LSTSQ (X, M, N, Y, C, S, $n) or 

CALL LSTSQ (X, M, N, Y, C, S, V, $n) 

where n is an integer standing for a statement number, 

LSTSQ returns control to statement number n in the user's 

calling program, and diagnostic information is made 

available in V (or elsewhere if V was not requested) 

which permits the calling program to identify the linear 

dependence relatively easily and change X appropriatelyo 

(Usually the calling program just decreases N.) LSTSQ 

does not put out any messages in this case. 

The foregoing description is somewhat simplified; details can 

be found in the PRM. The interesting feature is not so much the use 

of a FORTRAN IV error return $n as the fact that this error return 

is optional. The option is available because one of the first 

statements executed within LSTSQ is 

CALL ARGCNT (I,J) 

which counts the arguments supplied in the CALL to LSTSQt I is the 

n~~ber of arguments exclusive of error returns, and J is the number 

oi error returns. The error options described above are numbered 

C and l according to the value of J. Similarly, LSTSQ determines 

whether the user wants V = (XTX)-1 or not according as I a 7 or 

6 respectively~ Any ether values of I or J indicate an error, like 

a period between the integers Mand N instead of a comma, which 1& 

serious enough to terminate execution with an appropriate diagnostico 

The use cf varlable length argwnent lists lends a certain elegant 

s~rr.?lic:ty tc several of our library programs, and we hope that this 

fcatu~e wi:: be incorporated in the programming languages of the future. 



- 25 

The simplicity with which the error retur~ scheme can be im~:emented 

makes it efficient and satisfactory for a wide range of applications, 

but there are two important areas where the scheme is unsatisfactory. 

One consists of those difficulties caused by a small lack of foresight 

and rec~gnized immediately with the slight assistance to hindsight 

provided by a diagnostico Many of the error conditions mentioned above, 

like L9G(X) when L~G(ABS(X)) was intended, fall into this category. 

So do many input/output problems. It suffices here to say that a lot 

more could be said for the desirability and convenience or subprograms 

like KIK®PT which allow the programmer to revise temporarily 

the execution of h1s program at each or several spots without having 

to insert a small exp~icit change at each spot. 

The second area where error returns have proved unsatisfactory 

covers Over/Underflow, a ubi~uitous phenomenon to which the next 

section of this report is devoted. 



l 

- 26 -

Over/Underflow 

Overflow and Underflow are what take place in the arithmetic 

registers of a computer whenever an attempt is made to calculate 

numbers outside the normal range. On the 7094, overflow occurs 

whenever the magnitude of the result of a floating point arithmetic 

operation equals or exceeds 

underflow occurs whenever the magnitude ~snot exactly zero and 

is smaller than 
0 

Special provision must be made to cope with over/underflow in a 

way which does not produce misleading results. 

It is sometimes argued that overflow is an error for which 

the penalty should be 

EXECUTI0N TERMINATED 

but this penalty would place an intolerable burden upon even the 

most expert numerical analyst. He is often unable to predict in 

advance what the range of numbers will be in complicated calcula

tionss especially where exponentials, polynom;als and rational 

functions or high degree, or spaces or. high dimensionality are 

concerned. For example, if P(x,y) is a polynomial in x of 

degree 10 whose coefficients are wild functions of y, then 

the desired solution x s X(y) of the equation P(x,y) c O may 

be well-defined and reasonable even though it is inaccessible 

unless the polynomial-zero-finding subprogram is allowed to pursue 

a flexible scaling strategy in response to over/underflows, if any, 

which occur during the computation of P(x,y} . Overflows should 

not force kick-off; if worst comes to worst, a program can kick 

itself off by executing, say, 



- 27 -

IF(0VFL0W) CALL UNCLE(O,22H INESCAPABLE 0VERFL0Wo) 

An opposite attitude of laissez-faire is reflected in the 

designs of those machines whoae hardware automatically replace 

an overflowed magnitude by a special digit pattern representing 

oo and then plunge on. Such a scheme might well include, say, 

a to replace an underflowed magnitude and .e- to indicate an 

indeterminate value. These symbols might obey rules like the 

following: 

i) Whenever an arithmetic operation generates :!:. oo , g 

• 

or -S- , a corresponding flag is raised to indicate to the 

program that overflow, underflow or lost significance respec

tively has occurred. If requested by the programmer in 

advance, a message can be printed out for his information. 

ii) Any arithmetic operation with -8- as an operand generates ♦ 

as a result. ½ ia also generated by the· following expressions: 

oo-co, oo/co) o/o, 0/Q, Q/0, 9/9, 00• o, 00• Q and x/Q • 

iii) If x ~ (l unit in the last place of the overflow threshold) 

then oo- x = ~ ; otherwise OO:!:. x = 00 • 

If {l unit in the last place of x) S (the underflow threshold) 

then x :!:. g = -8- ; otherwise x :!:. 9 ~ 

If x ~ 1 then x * oo a: oo * aign(x) 

Similar rules hold tor x/oo , cx,/x, x * 9 

x/0 == oo* sign(x) unless x -== 0 or e • 

otherwise x * ex> a:: -8- . 

and 9/x . 

iv) The number O can be generated·only by direct assignment or 

as th·e result of x-x with x -, Q nor oo • The symbol 9 , 

which stands for the set of all numbers smaller in magnitude 

than the underflow threshold, can be generated only by direct 

assignment or by an underflow as indicated above. During 



l 

- 28 -

comparisons the symbol G simultan.eously satisfies 

"lo Q , 0 and 

x > Q if and only if x > 0 too. 

Rules like the foregoing are formidable, and have not been 

implemented in any hardware known to the author (who would not 

expect to find them in any machine except possibly one with 

interval-arithmetic built into the hardware). But no other less 

elaborate rules are known to be foolproof. For example, the CDC 

. 6600's hardware follows similar rules whose most obvious difference 

is the lack of any distinction whatever between underflow to Q 

and the number O. A comparable deficiency is to be found at 

those IBM installations where, to escape a plethora of insigni

ficant underflow messages, all underflow messages are suppressed 

by many users most of the time. The following segment of FORTRAN 

coding shows whJt can happen when this is done. Here A, B, C, 

D and X are all positive normalized floating point numbers. (not 

special symbols nor zero). 

Y = (A*X+Bj/(C*X+D) 
Z = (A+B/X)/(C+D/X) 
W = Y/Z 
WRITE (. •• ) W 
• • 0 • • • • • • • • • • • 

Output: W c l.98 

In the absence of any indications of over/underflow, how is this 

phenomenon to be explained? The only thing unnatural about this 

example is the WRITE statement; W is more likely to have 

remained "ou~ of sight, out of mind" • 

The replacement of underflowed numbers by zero with no· 

indication to program nor programmer is a clearly ~satisfactory 

practiceo And even when an indication or over/underflow is given, 



- 29 -

there is ample reason to protest against the destruction by 

hardware (as on the IBM )60 and CDC 6600) rather than software of 

information which could o~herwise be of significance to the 

programmer; this is discuaaed in more detail below in connection 

with the Unnormalized Mode and the Counting Mode or treating over/ 

underflow. But, to be fair, it muat be acknowledged that most 

programmers would be satisfied moat or the time by the provision 

of representations for + oo , - a, , 9 and ♦ obeying rules like 

i) to iv) above. 

What more might a numerical analyst demand? From time to 

time he will want to generate and use numbers which lie beyond 

the over/underflow thresholds. And certainly no programmer wants 

to be forced to check for over/underflow after (much less before) 

the execution of each arithmetic instruction in his program, and 

to decide each time upon an appropriate course of action. He 

will prefer to choose one of the several modes of execution 

provided for him by the system, with the understanding that while 

the program is being executed in his chosen mode each over/underflow 

will be treated according to the rules tabulated for that mode. 

Rules i) to iv) above could define one such mode. The programmer 

should be allowed to change modes between one line of his program 

and the next. Ideally, he should be allowed, if he wants, to define 

his own mode by specifying in detail just what rules are to be 

obeyed for each type of arithmetic operation. Finally, although 

the programmer who is ignorant of the problems of over/underflow 

must be warned when they occur, care must be taken not to drown 

him in a cascade or over/underflow messages, especially when they 

are obviously irrelevant. (An example of an obviously irrelevant 

underflow is remainder underflow after a floating point division 



30 -

1n a FORTRAN program, which always aiscards the remainder~) 

l An attempt has been made to serve as many of these needs as 

can be served in a FORTRAN context by means of a substantial 

extension of the service supplied by IBM via their subprogram 

oFPTRP in IBJOB o This program exploits the fact that whenever 

a floating point over/underflow occurs the 7094 "traps"; it 

interrupts itself and transfers control to a designated core 

location after setting up an indicator word (cell 0) to describe 

what caused the trap and where. This floating point trap, FPT, 

takes precedence over all others in the machine; and when it 

occurs the registers in the machine contain the over/underflowed· 

result unaltered, so that no significant information is losto A 

hardware option can be purchase~ (RPQ 880291) which includes 

improper-divisions like 1/0 in the scope of the FPT o 

I rewrote .FPTRP in a way which, while maintaining com

patibility, increased its speed and augmented its capabilities 

so that programs can easily choose and change to any one 9f five 

modes of execution. The Standard Modes treat over/underflow very 

much as IBM did, the main difference being tbat now underflow 

sets up an indicator the same way as does overflow~ The Unnormalized 

Modes exploit unnormalized arithmetic to permit underflow to 

occur "gently" without setting up distracting indicators or 

messageso The Silent Modes set indicators to indicate over/ 

underflow.to the program but put out almost no messages for ~he 

programmer; cascades of over/underflows in the Silent Modes do 

not slow programs dowr! appreciablyo The Printing Modee set 

indicators £or the program and also report each inaicated over/ 

underflow) as it occurs> in a printed message for the programmer, 

thus helping him to debug his programo The Counting Mode allows 



! 

l 
certain kinds of computations to be carried out with no risk of 

over/underflow because the allowed range of magnitudes i& extended 

to include numbers like 

These five modes are discuaaed below in appropriately titled 

subsections of this report. The laat two aubsectiona discuss 

improper divisions and simulated oTer/undertlows. 



- 32 -

The Standard Silent Mode 

This is the mode in which the system operates by default 

in the absence or requests for some other mode 0 Whenever a 

floating point arithmetic operation overflows, its result is replaced 

by the largest possible magnitude (1.7014 x 1038 ) with the same 

~ign, and this event is recorded by setting 0VFLGW = oTRUEo 

Whenever a result underflows it is replaced by zero with the same 

sign, and this event is recorded by setting UNFL0W c oTRUE. . 

The indicators 0VFL®W and UNFL0W are logical variables which 

can easily be sensed, stored and/or reset to oFALSEo in several 

ways described in the PRM. In particular, the declarations 

L0GICAL 0VFL0W 
C0MM0N /0VFL0W/0VFJ./JW 

permit statements like 

IF (GVFLGW) o••• 
GVFLG.lW = .FALSEo 

and 

~o be executed without was~ing time on subprogram linkages in 

short loopso 

This mode is called Silent because each ~var/underflow sets 

i~s ind~cator without disturbing the programmer's output with any 

diagnostic messageo However, just after his program's execution 

is termina~ed (either normally or by kick-off) a message is produced 

to draw the programmer's attention to any over/underflows that_ 

escaped the attention of his program; more about this latero 

In the Standard Silent Mode, each over/underflow costs 15 to 30 

microseconds; ioe. two to four division timeso 



The Standard Printing Mode 

This mode differs from the previous mode only in that each 

over/underflow, as it occurs, inserts a message into the programmer's 

output to answer the following questions: 

What happened, overflow or underflow? 

Which machine regiatera are involved; AC, MQ or both? 

What arithmetic operation was attempted; +, - , *, /, 
double-precision, •.. ,? (An_octal operation

code is_given here.) 

What change was made in the affected register(s)? 

Where is the instruction whose execution caused this 

over/underflow? (An octal core address is given 

here.) 

Where in the source-program did all this happen? 

(An error-trace is given here by our version 

or .FXEM. • ) 

We also considered writing out the operands whose sum, product 

or quotient had over/underflowed, but the cost of doing so seemed 

more than the information was worth. This point deserves recon

sideration. Anyway, the error-trace usually points to within a 

few lines of the site of the over/underflow in a FORTRAN program. 

The over/underflow handling subprogram .FPTRP can be switched 

in 40 microseconds from a Silent Mode to the corresponding Printing 

Mode via the statement 

CALL NFPTST(M) 

with a positive integer expression M. When this statement is 

executed, an internal counter N is set to M and oFPTRP is 

caused to operate in a Printing Mode until M over/underflow 



- 34 -

messages have been put out. N is decreased by l each time a 
I 
\ message is put out, and when N becomes O an extra message 

N0W 0VER/UNDERFL0W MESSAGES ARE IN ABEYANCE 

is produced and the Mode is awitched back to Silent
0 

CALL NFPTST(O) 

switches the Mode back to Sile~t without any extra messageo 

In accordance with current good practice, the FORTRAN 

programmer is allowed easily to senae, aave, set and/or reset the 

message-counter N as well as the indicators 0VFL0W and UNFL9W. 

Details may be found in the PRM. But programmers are advised not 

to set the latter two logical variables to .TRUE. directly in a 

FORTRAN program; instead they are advised to force an over/underflow 

like 
DUMMY= (l.7E38)**2 • 

This is done because, whenever over/underflow occurs, .FPTRP 

stores the current contents of SYSL0C into the appropriate 

indicator to make it oTRUEo o Later, when the program's execution 

is finished, the monitor looks at each indicator to see whether it 

is .TRUE. , and if so then that indicator is interpreted as a 

pointer in roughly the same fashion as .FIEMo interprets SYSLGC 

when providing the first line of the error-trace immediately after 

an over/underflow in the rrinting Mode. Consequently, the 

programmer's output finishes, whenever appropriate and possible, 

with a message like 

LAST UNREQUITED 0VERFLGW WAS IN GR AFTER 
LINE 17 GF DECK SUB2 . 

LAST UNREQUITED UNDERFL0W WAS IN A SUBPRQGRAM CALLED IN 
LINE 24 GF DECK SUBl . 

Often the programmer can deduce from the information given here 

that the over/underflows did no harm; then, since the messages have 



0 

- 35 -

not tainted his formatted output, he is free to cut them off and 

\ publish the rest. 

If program overlay has intervened between the last unnoticed 

over/underflow and program termination, or if the indicators 

0VFL0W and UNFL0W were aet to .TRUE. in a naive way, then the 

post-execution message may describe the desired deck-name and line 

number as UNKNGWN o 

It is especially important to unde·rst·and that the word 

"UNREQUITED" means that the program did not respond to the over/ 

underflows and then reset the indicators to .FALSE .. The 

programmer may also have received several printed messages to 

notify h!!!! of each over/underflow that ll ignored. 

I see now that we could have supplied, at little extra cost, 

post-execution warnings more like this: 

3943 ~VERFLGWS WENT UNREQUITED BY THE PRGGRAM BETWEEN 
LINE 17 GF DECK SUB2 

AND A SUBPR0GRAM CALLED IN LINE 64 0F DECK SUBl 0 

Such a message can be more useful in deciding whether or not 

to ignore the over/underflowso Also, the counts of overflows 

and:underflows could be used by any programmer who, for reasons 

unclear to me, wished to terminate his program's execution after 

a specified number of overflows had occurred. Another improvement 

would be to allow a negative Yalue tor M in 

CALL NFPTST(M) 

to signify that -M overflow messages are to be allowed wpile all 

underflow messages are to be suppresse.d. Most of these improve

ments have been incorporated into the ~daptation of our scheme for 

the Burroughs B55OO written by Mr. Michael Do Green at Stanford 

University in 1966, and I expect to put them into our system soono 



- 36 -

The Treatment of Underflow 

Some programmers have good reasons to want to be informed 

·about underflowo They may want to avoid consequent loss of precision 

or subsequent division by zero. But most programmers whom I asked 

said they preferred that underflowed numbers be replaced by zero 

without their attention being d1atracted by the event 0 This 

attitude was justified at a time when most over/underflow messages 

reported DMQ UNDERFL0W" during an addition, subtraction, multi

plication or double~precision divisiono This message signified 

that the double-length result of those operations in the AC-MQ 

register was small enough to cause the characteristic of the less 

significant word in the MQ to underflow even though the more 

significant word was correcto Since the less significant word is 

entirely ignored in single-precision FORTRAN expressions, and since 

the double-precision hardware of the 7094 ignores the characteristic 

of the less significant word in double-precision expressions, I 

decided that oFPTRP should simply ignore MQ underflow after 

those operations where it was obviously irrelevan~! This decision's 

first consequence was a welcome reduction in the number of messages 

and complaints, especially where iterative calculations with residuals 

tending to zero were concerned. The second consequence was that 

certain old 7090 programs, which had performed double-precision 

arithmetic by simulating the 7094'• double-precision hardware. 

ran into·spurious overflow troubles and required revision so that 

they would use instead of simulate our machine's hardware~ For

tunately~ any user who insists upon running a 7090 program 

unchanged upon our 7094 can do so in safety by merely changing two 

well-marked instr~ctions in .FPTRP 0 The second instruction 

* The 27 significant bits in the MQ are !l£l igncred nor cleared when 
• the characteristic of the MQ underflows, so no accuracy is losto 



- 37 -

is needed to force appropriate action when remainders underflow 

( after division; otherwise they would be ignored tooo 

It is not good enough that the system ignores obviously 

irrelevant underflows. Many irrelevant underflows are not obviously 

irrelevant. Consider, for example, a segment of a typical matrix 

handling program which computes 

0 

The usual rule 1 which replaces each underflowed sum or product 

by zero, is satisfactory except when b and all the products 

a.x. are so close to the underflow threshold that the usual rule 
i 1 

produces a significantly wrong value for r o If all underflows 

are reported 1 how can the rare significant reports be distinguished 

from the common ignorable ones? If no underflows are reported 1 

how can the rare incorrect values of r be distinguished from the 

common correct ones? The easiest way I know to cope with these 

questions is to use our Unnormalized Modes: 



( 

- 38 -

The Unnormalized Silent Mode and the Unnormalized Prin~-ing Mode 

These two modes differ from one another in just one respect; 

the Printing Mode reports overflows in the way described under the 

Standard Printing Mode above. The two Unnormalized Modes differ 

from their corresponding Standard Modes only in the way they treat 

underflowo A number~ which in a Standard Mode would have under

flowed to zero and set UNFL0W • .TRUE. , is in an Unnormalized 

Mode replaced by its closest unnormalized approximation and UNFL0W 

is unchangedQ For example, consider a decima: machine whose 

underflow threshold is .10000000 x 10-38 
0 In a S~andard Mode, 

.15743219 x 10-40 would underflow to zero, but in an Unnormalized 

Mode it is replaced by 000157432 x 10-38 o A number must now 

drop below 000000001 x 10-38 before it is silently replaced by 

zero. 

In the Unnormalized Modes the range of non zero floating point 

numbers representable in the 7094 is extended downward from 2-129 

to 2-155 in single precision and 2-182 in double precisiono 

This allows underflow to take place more gently, and improves the 

accuracy of certain resultso But these benefits are secondary; 

the primary justification for the Unnormalized Modes is that th~y 

ease the task of deciding 1 in certain cases, whether a result is 

right or wrongo 

For example, consider the following FORTRAN program to compute 

N 
r == b - l: a1x. 

l l. 
• 

{In accordance with good computing practice, and because it costs 

almost nothing extra to do so on our 7094-II, the products of the 

single-precision numbers ai and xi are accumulated to double 



- 39 -

precision before r is rounded (not truncated) to single precision~) 

C 

C 

D0UBLE PRECISION D 
DIMENSIGN A(o.o), X(ooo) 
D == -B 
ENTER THE UNN0RMALIZED M9DEo 

CALL FPTUN 
D0 l Icl,N 

1 D == A{I)*X(I) + D 
RESTGRE THE STANDARD M0DE. 

CALL FPTST 
R = O.O - RND(D) 

-(14 MICR0SECo) 

(13 MICR0SEC.) 

The last statement rounds D to single precision, changes 

sign, and adds zero before storing the result in R. If the 

rounded value of D is a non zero unnormalized number, then the 

normalization that always follows addition will cause an underflow 

which, in the Standard Mode, will set R = O.O and UNFLGW = .TRUE .. 

But if RND(D) is a normalized number then adding zero will not 

change anything. Consequently, R is correct as it stands, 

despite the possible underflows of intermediate results, with ~he 

following exceptions: 

- If GVFLGW or UNFLGW is oTRUEo , R is wrong. 

- If severe cancellation bas taken place in statement 1, 

R may be badly contaminated by double-precision truncation 

errors~ This possibility is independent of over/undertlow, 

and is irrelevant it B, A and X are each uncertain by a 

unit in their respective last places. 

- If R = o.o then it may be further contaminated by an 

error of 2=156 , although this isirrelevant if B is 

non zero and uncer~ain by a unit in its last placeo But 



- 40 -

if B; o.o then all the products A(I)*X{I) might have 

underflowed to zero silently. 

There are very few applications where any but the first exception 

is relevant, _and that one ia caught by the ayatem. The absence 

or over/underflow tests in the inner loop permits calculations in 

the normal range to proceed with no noticeable loss or apeedo 

The Unnormalized Modes may be used in single precision, 

double precision and complex arithmetic at the ~oat ot 42 micro

seconds per underflow. These modes would be much more useful on 

a 7094 but for a quirk in the hardware which forces the "normalized" 

product of two non zero unnormalized numbers to be zero on certain 

occasions. The Unnormalized Modes are best suited to those 

machines, like the Burroughs BSS00 1 which handle unnormalized 

operands without serious anomalieso But, because of the peculiar 

behaviour of our machine, the Unnormalized Modes are ao beset by 

restrictions (for which aee the PRM) that the author and a few of 

his students are perhaps the only programmers who use thamo We 

find them valuable for computations with matrices, power series, 

and numerical quadrature. 



- 41 -

The Counting Mode 

This mode deals with over/underflow in a way which permits 

programmers to save all the significant digits which are lost by 

the other modes, and is specially usetul for evaluating expressions 

like 

when q is likely to be a reasonable number even though its partial 

products and quotients are afflicted with over/underflowo The 

execution or 
CALL FPTCT(J} 

where J is the name of an integer variable, switches .FPTRP in 

14 microseconds to the Counting Mode and designates cell J to act 

as a leftward extension for the 8-bit characteristics of the AC 

and MQ registers. Henceforth, ·over/underflows are counted in J. 

Whenever an arithmetic operation overflows its result is divided by 

2256 and J is increased by 1. Whenever an arithmetic operation 

underflows its result is multiplied by 2256 and J is decreased 

by lo 

For exa~ple, the FORTRAN statements 

CALL FPTCT(J) 
J - 0 
X = (A+B)*{C+D)*(E/F)/G 

produce a pair (J,X) whose values really satisfy 

(A+B){C+D)(E/F)/G a 22S6J X 0 

In effect, the missing binary digits in X's characteristic have 

been added to J while X's other significant binary digits have 

remained unchanged. 



( 

- 42 -

FORTRAN programmers who use the Counting Mode must be reasonably 

familiar with the workings of the compiler so that they will not try 

to evaluate expressions like 

A/(B+C) nor A*B+C nor A**B 

in one FORTRAN statement. 

The following example shows how the Counting Mode is used to 

evaluate N 

q = rr (a.+b.)/(c1+d.) l i i i 

for large N with no over/underflow tests inside the D® loops, 

although each over/underfl9w does cost 35 microsecondso 

1 

2 

J = 0 
PAB = lo 
PCD = lo 
CALL FPTCT(J) 

DS 1 I=l,N 

Initialize Over/Underflow Counter, 
Numerator, and 
Denominator. 

Switch to Counting Modeo 

PCD=RND(PCD*RND(C(I)+D(I))) 
IF(PCD oEQ. 0.0) 00 T0 3 • 0 0 

Compute Denominator using 
Rounded Arithmetic. 
because Denominator vanished. 
Reverse meaning or Counter. J = -J 

D0 2 I=l,N 
PAB=RND{PAB*RND(A(I)+B(I))) 

Q = PAB/PCD 
Compute Numerator. 

CALL FPTST Switch back to Standard Mode. 
IF (Q oEQ. O.O} 

IF ( J) 4, 5, 3 
JmO • •.• because Numerator vanished. 

3 •••• .Q has Overflowed, because J > 0 or Denominator-= O. 0 

4 
5 

Q has Underflowed, because J < 0 • 
.•. Q is correct as it stands, because J a:: 0 0 

Whatever value J may have, and provided the denominator PCD 

i.., ... ._,u zero, the stored value Q is related to the desired value 

q by 

ii, 

!!. 



t 

- ... J .... 

0 

The Counting Mode works for both single and double precision 

arithmetic, and is indispensable tor computing determinants and 

certain ratios of factorials, but I have not yet figured out how to 

make a Complex Counting Mode work with comparable elegance on our 

machine. However, the next example is one where our Counting 

Mode is useful in a complex arithmetic calculation. 

Suppose the complex array Z(I} is given and we seek K such 

that 
CABS(Z(K)) ~ max CABS(Z(I)) • lSISN 

{Here CABS(Z) = lzf in FORTRAN IV.) To avoid the square roots, 

we may prefer to calculate only squared magnitudes, thereby 

exploiting the equivalence between the statements 

(i) 

and 
{ii) 0 

But the squared magnitudes may over/underflow despite that the 

magnitudes / a + ib/ and { u + iv( are well within the machine's 

range. The following program exploits the equivalence between (ii) 

above and 

(a-u)(a+u) > (v-b)(v+b} (111) 

and then copes with over/underflows via the Counting Mode. N 

is assumed to exceed 1. 



( 

C 

C@MPLEX Z(. 0.), C, W 
DIMENSI0N ABC(2), UVW(2) 

- 44 -

EQUIVALENCE (C,ABC,A),(B,ABC(2)),(W,UVW,U),(V,UVW(2)) 
This EQUIVALENCE makes caa+ib and w=u+iv 

0 

CALL FPTCT(J) 
Kml Initialize current maximum. 
C=Z(l) 
D0 5 Im2,N 

J=O 
W=Z(l) 
XL= (A-U)*(A+U) 
J= -J 
IR= (V-B)•(V+B) 
IF(XR oEQ. o. oOR. XL .EQ. Oo) G0 T0 3 
IF(J) 2, 3, l 

C J>O means fXRf should exceed lxLf, so ignore XL o 

l IF(XR) 5• 5, 4 
C J<O means lxLI should exceed JxRI, so ignore XR o 

2 IF(XL) 4, 5, 5 
C J=O means XL and XR are directly comparableo 

3 IF(XL ouE~ XR) GO TO 5 
4 K=I 

C=W 
5 C9NTINUE 

CALL FPTST 

Update current maximum whenever 
W>C 0 

Now C = Z(K) is the largest in magnitude of the values Z(I) o 

Some minor refinements can be introduced to reduce the influence 

of roundoff in critical cases or near equality, but they do not 

change the relative speed and simplicity exhibited by this program 

when compared with alternatives. (For more details, aee our library 

program CMAXA in the PRM.) 

An attempt was made to extend the idea of FPTCT to cope with 

·integer oYerflows; i.e. we wanted to allow the FORTRAN programmer 

to designate a cell which would act as a leftward extension of the 



- 45 -

( integer accumulator in the same way as J in FPTCT(J) acts as a 

leftward extension of the floating point accumulator's characteristico 

However, this scheme would tirat have required certain moditicatione 

to the 7094 to permit trapping on fixed point overflow, and then the 

FORTRAN IV compiler would have had to be extensively rewritten. A . , 

frustrating teature-ot the present compiler _is that it renders 

certain integer overflows undetectable! Consequently, FORTRAN 

programs which manipulate large 1ntegers are very much complicated 

by the need tor frequent overflow teats in advance of arithmetic 

operations. The same complication afflicts ALGOL and any other 

programming language I know; it is the price we must pay tor a lapse 

in communication among the architects, implementors and users of a 

programming language. 

A similar lapse has frustrated attempts so tar to implement the 

Unnormalized and Counting Modes upon some other machines. The B5500 

discards one of the digits in the characteristic of an over/under

flowed result, thereby preventing any analysis from determining 

whether the result over/underflowed by a little or by a loto The 

IBM 360 series wantonly destroys everything, including the sign of an 
4 

overflowed result. The CDC 6600 has its own fixed ideas about over/ 

underflowo The tendency of other high-performance machines, like 

the IBM 360/91, to suffer from imprecise interrupt■ implies that 

those machines will have to deal with OTer/undertlow entirely in 

their hardware. Thia in turn implies that their treatment of over/ 

_1mderflow will be intolerable unless numerical analysts act soon to 

laz down reasonable guidelines for machine designers to follow. 



-· 46 -

!mproper Divisions 

On a 7094 with divide-check-trap hardware, improper divisions 
do not turn on the divide-check indicator. Instead they trap to 
.FPTRP which, in our system, responds as illustrated belowo 

lo0/0_._~---= lo 7~14 x 1038 
and Qy~r~~ow occ~~-•-

Any floating point division (single precision, double precision, 

or complex) of a non zero number by zero is treated as a 

quotient overflow and sets 8VFL0W c .TRUE. 0 No provision 

has been made to distinguish such divisions by zero from other 

quotient overflows (except in the Counting Mode, where a message 

can be producedj because both events almost always have the 

same causes and consequences. Besides, the programmer can easily 

{and should) test directly whether a divisor is zero or not. 

Each division by zero consumes more than thrice as much time 

as any other overflow. 

1/0 = Kickoff unless otherwise has been requested. 
-·· --·------·· ... . 

Fixea point integer division by zero is almost certainly a 

drastic error in a FORTRAN program. In ALGOL the issue might 

not be so clear. 

Oo0/0.0 = Kickoff unless otherwise has been requested. 

Floating point division or zero by zero ie a symptom of a 

serious £law in the analysis behind a program. 

Unnormalized D~visi'?~--~¥.~ick or~~lesa othe~•e has been request~-~

Floating point division by an unnormalized number causes a 

trap ~unless the quotient produced by the hardware happens to 

be correctio This is a symptom or certain programming errors 

like 



l 

- J+7 -

reference to a variable whose value has not previously 

been set, 

ALGG(3) instead ot . ALGlG() .O), 

a torgotten EQUIVALENCE (A,I) , 

reference to A(l3) when DIMEHSI9N A(6) , or 

a significant ·underflow in an Unnorm&lized Modeo 

After the new .FPTRP was installed, .failures began to show 

up in programs which bad previously been allowed to proceed silently 

with a zero quotient for each improper division. A few programmers 

protested that they liked the old ways better, but they seem to 

represent a lunatic fringe_ 8.Dlong programmers as a wboleo The author 

is under the impression that the new oFPTRP's treatment of improper 

divisions is more widely appreciated than all his other w~rks put 

together; actually the credit should be shared wi~h R. Jones and 

J. Belli who found a way to simulate the divide-check-trap hardware 

on a ?CS~ ~~~no~~ that equipment. (The equip~ent is soon to be 

inswal~ed~ anQ with it will come some system simplification.) 

Howeveri the most important contribution made by the new 

.FPT~P is that a programmer who has to cope with a complicated 

numerical problem can still write whatever program first comes into 

his mind, just a~ he did beforeo And now he will rest assured that, 

ahoul~ hi~ algo~ithm be rrus~rated by over/underflowi he lr-ll find 

o~~ wha~ h~??etGci andj perhaps, be able to cope wi~h his difficulty 

by s~=~:y ~;~co~~r.g a small part o! his progr&JL instead 0£ 

:~:-.::----_::..;.;:;:_~- C.t:Y:.f.~ng a deeper mathematical analysis of his problemo 

'.:'!"'~c r"c·n· ~ ?":r:r.:· strengthens the programmer ts mos't valuable tool 1 



{ 

- 48 -

Simula~ed Over/Underflow in library Programs 

The concept of over/underflow ia normally associated with the 

elementary arithmetic operations, but it takes no imagination to 

extend the concept from simple functions ot· I like 

A+X, A*X, A/I, X**2 

to more complicated functions like 

L0G(X) , EXP(I) , C0T(X) J • 0 0 0 

:n general~ it seems reasonable to associate overflow with the 

following behaviour: 

as x ➔ x~ (x
0 

may be .± 00), r(x) ➔ .± oo 0 

as x ➔ 0+ log(x) ➔ -CD ; 

➔ , \ ~ as x +oo , exp\x, """'?' +a> o 

And underflow might just as reasonably be associated with this 

behaviour: 

as x ➔ too ~ f(x) ➔ 0 o 

But we should not like ~o associate underflow with the value 

log (l}=O o In other words, underflow occurs only when the value or 

the function f(x} is not zero though closer to zero than the 

underflow thresholdo 

Here are some examples to illustrate how our functions behave 

in FORTRAN: 

L0G(O.O) t!:. -1~7014 E38 and QVFL0W is set • 
,..0rr:' • 0 0) :& ±107014 0VFLGW \.I' ... \~ • 0 

~X?{3000 o; ~ 107014 E38 0VFLGW T 

zx? ::--,;oco G •• = OoO UNFLGW 
• - -· i .. 0) a!: ,:tl. 7014 E3 8 0VF·L0W I =•.J ;, ,J •' ;;:.-:- ~ ~) 0 0 

,"' u,...•..r.:: -3 0) ~ 107014 E38 0VFL0W V ~ • c. • • 
• ,.. -. · • 25' :. - .. Uv v ; ::..: :.r- \ - J c; -OoO UNFLG>W 

! 



Ct 49 -

The last example is interesting because the IBM program signals 

overflow during the computation; we avoid overflow by computing 

(1./100)**25 instead of 1./(100.**25) o The previous two examples 

should not be confused with 

0**(-3) •Kickoff, code 25 

the distinction is consistent with the rules fGr improper divisions. 

Finally, no underflows occur when L0G(lo0) c OoO or when 

SINPI (X) -= sin ff' X vanishes tor integer values or X o 

I have rewritten several of the elementary func~ion subprograms 

in the IBLIB library to ensure that their over/underflow behaviour 

is consonant with the foregoing. When necessary, over/underflow is 

simulated; this merely means that a transfer to .FPTRP is forced 

in such a way that the FPT indicator word (eel~ O; contains just 

the information needed for the desired meesage from oFPTRP" The 

simplest way to do this in a FORTRAN program is to square a very 

large or very smal~ numbero or course 1 .FPTRP must be operating 

in one of i-:s Standard Mocies to allow such simulated over/underflows 

to produce their intended effectso If the Printing Mode is in usej 

as it should be while a program is being debugged, then the error

trace points to the function which caused the apparent over/underflow; 

otherwi&e the post-execution message may sometimes iden~ify ~hat 

£unction. A& far as I can see, no vital information is los~ by 

thu6 failing ~o ttiscrimina~e between the simulated over/underflows 

and the otherso The user's view of the library programs becomes less 

clu-:-ce:-eed by their various demands for valid argumentso And the 

sy~~ew gain~ severa: storage loca~ions vaca~ed by superfluo~s 

However; some programmers claim that one desirable capability 

has been losto For example, they would prefer to be able to write 



.... 50-=-

CA~L ~IK0PT (9:0j 

in thei~ main program whenever they want references ~o L0G(X) in 

all their subprograms ,;o cause kickoff when X = 0 0 0 0 My scheme 

requires that each appearance of L0G(X) be preceded by something 

like 
IF (X oEQo OoOJ CALL UNCLE(9,18H LQG(X=OoO) ERRGR) 0 

I think that programs written the second way are easier to read and 

to debug; but anyone who wants to live dangerously can easily change 

the library programs to suit himself because their listings are 

usually amply supplied with commentso 

A more penetrating criticism of my scheme is ~ha~ i~ denies too 

many users the valuable education obtained by reading certain IBM 

diagnos~icso For example~ increasingly many or our users have ~oo 

little familiari~y wi~h the rate of growth of exp(x) to appreciate 

that exp{88~0297i exceeds the overflow threshold. Our university 

used to include a professor whose first assignment to freshman 

physics students was ~o plot a graph or exp(x; for O ~ x S 10 ~ 

His a~titude might well serve as an example for the socially acceptable 

computer Eys~ems of the near future, 

The ex~ension of a comprehensive treatment of over/underflow 

over the entire library of numerical subprograms is an enormous task 

prodigiously demanding of atten~ion to detail. Here is a simple 

example of a typical detailo The CABS function computes the 

absolute value of a complex variable using the formulae 

I . 
'8. T I 

I 
ibi . -= I a I ,/1 + if la)> lbJ 

= I b j ,/1 + ( a/b ) 
2 



l 

- 51 -

For simplicity assume the former case. Then underflow will occur 

during the computation of l + (b/a) 2 whenever (b/a) 2 is non 

zero but smaller than the underflow threshold. This underflow is 

irrelevant, so our CABS program suppresses ito Had the program 

been written in FORTRAN the suppression would have been accomplished 

by computing l + (b/a) 2 in the Unnormalized Modeo Similar but 

more complicated considerations affect the.division or one complex 

number by anothero 

The task of taming over/underflow in the library i~ not yet 

completed; there are several relatively rarely used programs that 

remain to be revised. Is this project worth its price? Who should 

say? Our users can no longer offer a qualified opinion because 

so few of ~hem are now aware of the issues$ and even ~hose few hardly 

ever have trouble dealing with over/underflow nowadayso 




