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A MORE COMPLETE INTERVAL ARITHMETIC 

Abstract 

So far, all published schemes for Interval Arithmetic 

(see references) have prohibited division by any interval

number containing zero. This prohibition is inconvenient 

and unnecessary; we propose to avoid it by adjoining what we 

call exterior intervals to the usual interior intervals of 

Interval Arithmetic, thereby obtaining a number system which 

resembles the extended real numbers closed at m 

1. Notation 

Lower case italics a,b,a, ... are used for real 

numbers, lower case Greek a,S,y, ... for extended real 

numbers, upper case A,B,c, ... for interval-numbers. 

The real numbers are identified in the usual way with 

the points on a straight line. The set n of extended real 

numbers is ·obtained from the reals by adding the symbol m 

just as the projective line is obtained by adding a point at 

m to close the ordinary straight line. Arithmetic 

operations upon extended real numbers have the usual 

identification with geometrical operations upon points in 

the projective line (cf. Coxeter (1949) ch.11) subject to 

certain reservations concerning the indefinite forms 0/0, 

=±=, =/= and m•0 whose values we shall later define to be 

the interval-nwnber n consisting of the whole projective 

line. Although this assignment may occasionally waste 
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information, it cannot be misleading*. 

IntervaZ-numbers are by definition non-empty subsets of 

the extended real numbers corresponding to intervals on the 

projective line. We distinguish ezterior intervals, which 

contain ~ in their interior, from intericr intervals, which 

do not; a further distinction concerns finite interior 

* However, implementing ordinary arithmetic with extended 

real numbers correctly on a computer with finite word-length 

is~ complicated business. I know of no such implementation 

in hardware that is not misleading, despite occasional 

mistaken advertisements to the contrary. For example, 

consider Control Data's 6000 series of computers; when they 

execute the FORTRAN sequence 

X = 2.0••1069 

y = 4.0*X 

z = Y - 2.0•(X+X) 

T = ( ((Y-X) - x) - x] - X 

u = 1.0/T 

they produce correctly x = 21069 
I Y = m and 

Z = indeterminate, but misleadingly T = = with overfZow.and 

u = 0.0 with overfZow. See CDC's reference manual (1967) 

pp.3-15 to 3-20. 
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intervals which neither contain nor touch the point at ® 

We shall write [a,8] for ctosed intervals which include 

both end-points a and 8 ; we shall write ]a,S[ for 

open intervals which include neither end-point; we shall also 

allow intervals ]a,S] and [a,S[ which include that end-
• 

point next to one bracket but not the other. Only closed 

finite interior intervals are discussed in Moore's book 

(1966). Our scheme too can be restricted formally to just 

the closed intervals, thereby simplifying its implementation 

on some computers (see §5.i ); although such a restriction 

may occasionally waste information when an end-point is· 

included tnat we might have preferred to exclude, the 

restriction need never be misleading. 

Here is how the symbol strings [a, Sl , ] a, S] , [a, B [ 

and ]a,8[ shall be interpreted as interval nwnbers for all 

extended real a and S Represent the projective line 

as a circle so oriented that, as the real number x increases 

from a to b > a , the point x moves counter clockwise. 

When a; 8 , the string [a,S] represents the closed 

interval described by moving on the circle from a to S 

counter clockwise; reversing the first or the second bracket 

merely causes the adjacent a or S respectively to be 

deleted from the interval. When a= S certain almost 

arbitrary conventions are invoked; 

[a, a] - a ; 

[a,a[ - all extended reals except a ; 



] a, a] - n - all extended reals ; 

l a,a [ - the empty set. 

Here are some examples. 

XE. [-1,1] <=> -1 s ~ s 1 

;E.[1,-1] <=> ; = 00 or ; s -1 or E; ~ 1 

;E.(1,-1( <=> E; = 00 or ; < -1 or ; ?! 1 

X€ [l,00 [ <=> X ~ 1 

x::] 00 ,l <=> X s 1 

;€ [1,1 [ <=> ; ~ 1 

XE. [00,00 [ for all real X 

Finally, just a~ then-tuple is 

identified with a point in an n-dimensional extended real 

space, so shall {X 1 ;X2; ... ;X) be identified with the n 

region(s) in that space where each coordinate E; . t;.X. 
'Z, '2, 

every x. 
'2, 

is an interior interval, that region is just a 

(possibly infinite) parallelepiped. 

When 

Now one purpose of Interval Arithmetic can be explained. 

Ideally, a numerical computation free of error can be regarded 

as a mapping ~ from a space of data-points (a;B;y; ... ) 

into a space of resuits (;;n;t; ... ) Rounding errors and 

other uncertainties distort this mapping, thereby generating 

misinformation to the extent that the differences between 

computed results and ideal results are unknown. Interval 

Arithmetic purports to eliminate misinformation, at the cost 

of extra computation and some loss of information, by providing 
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rigorously jus~ifiable estimates for the results. An Interval 

Arithmetic computation can be regarded as a mapping M 

from regions (A;B;r; ... J in data-space to regions (:;H;Z; ... J 

in result space, so related to .ld. that ~ maps each point 

(a;B;Y; ... J in (A;B;r; ... J into a point (;;n;t; ... J 

contained in (:;-H;Z; ... J Given .ld. , there are several 

easy routines for deriving a related M 

the most naively derived M approximates 

, and often enough 

.ld. adequately for 

practical purpos_es. However, the problem of precision in 

conventional arithmetic has its analogue in Interval 

Arithmetic - to obtain from ~ an M whose result-regions 

are not too much bigger than necessary. 

2. Arithmetic 

Although our main objective is to extend the rules of 

rational arithmetic from real variables to extended real 

variables and then to interval-variables, it turns out to be 

more convenient first to deal with an intermediate system 

consisting of the extended reals in n and n itself; here 

n is an interval-number consisting of all the extended 

reals

+ I 

n and 

In this intermediate system, the arithmetic operators 

I 

co 

• and / are defined to act upon the symbols 

in the following natural ways: 

(i) Any arithmetic operation ~ith n as an operand 

reproduces n 
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(ii) 0/0 - co+co - co-co - co/co - 0 •co - m•O - n 

(iii) +00 - -co - ;•00 - co•; - cio+x - x+co - co/x - ;/0 - CIO 

for all extended reals ; ~ 0 and X F CIO . 
(iv) x/00 - 0 for all X ~ co . 

The foregoing definitions yield a closed system in which 

the commutative and associative laws remain as valid as for 

real variables, but there are two important failures. 

Canceiz~tion: If (a•;)/(S•;) ~ a/S then (a•;)/(S•;) = n 
if (a-;) - CS-;), a-S then (a-;) - (S-;) = n 

Distribution: If a•;+ B•;, (a+S)•; then a•~+ S•; = n 

if a/;+ Bis, (a+B)/; t&1en a/;+ Bl;= n 

These failures imply that the value assigned to a rational 

expression involving extended real variables may change if the 

distributive or cancellation law is invoked before the 

expression is evaluated. Fortunately, the value cannot vary 

arbitrarily; it turns out that a rational expression cannot 

have more than two values in our system, and cannot have two 

values unless one of them is n The other is just that 

value which would be assigned to the expression if it were 

regarded as a rational function of real variables, with the 

symbol co denoting a limit for a variable, or a pole of the 

function. Unfortunately, information can be lost in our 

system whenever an expression must be assigned the value n 
no matter how it is reordered despite that it deserves a 

better value. For example, 
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yields the value Q no matter how it is reordered when 

x = y = 0 , even though its limit as x ~ O and y ~ O is 

0 , as can be seen by rearranging it to read 

(This expression could be evaluated more precisely if we 

introduced the square function into our system thus; 

and otherwise t 2 = ;•t 

doing so foreshadows the interval arithmetic to come.) 

The distinction between rational express.~ns 

f(~1;;2; ... ;~) in n extended real variables and rational n 

functions f(x 1;x 2; ••• ;xn) in n real variables is an 

important distinction which should not be allowed to escape 

into the ambiguities of our notation. The expressions must 

be evaluat~d by rules, familiar to compiler-writers, which 

do not allow parentheses to be removed by the distributive 

laws nor, in practical implementations, the associative laws. 

The functions are representable in infinitely many ways by 

different expressions, all equivalent by the laws of rational 

algebra for all argwnents except possibly on a subset of 

dimension less than n Two different expressions 

representing the same function can differ only where one of 

the expressions evaluates to n in our intermediate extended 

system. However, as exemplified above, a function may be 
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continuous in the topology of the projective line (in which 

m is an allowed limit-point) at some argument without there 

being any way to express that function as an expression whose 

evaluation in our system yields the correct limiting value 

instead of just n This limitation can be partly 

circumvented by a further extension of the system to include 

all interval-nµmbers. 

Having specified how the arithmetic operators + 

and / shall act upon degenerate intervals a= [a,a] and 

upon Q , we are ready to define interval arithmetic for 

I 
. 

more general intervals. Our definition is like Moore's (1966, 

p.8); if * is one of the operators +, • or / , we 

define 

A•B = U a•S over a£A and 6£B 

to obtain the interval-valued sum, difference, product or 

quotient of two interval-numbers A and B Unlike Moore's 

definition, ours covers all interval-numbers A and B 

Here are some examples: 

(0,1] + [1,2] = [1,3] , [3,3.1] - ]0,0.1( = ]2.9,3.1[ , 

]-4,-1]•[-6,5[ = ]-20,24( , -(-1,2) = (-l)•[-1,2] = [-1,-1]•[-l,2] 

= [-2,1] , 

(-1,1]/[-3,-1/21 = [-2,2l, [-3,-1/21/[-1,l] = [1/2,-1/21 

[1,2] - [1,2] = [-1,1] , [2,1) - [2,1] = )m,m] = O 

)0,l]/]0,1] = ]0,=[ , (0,1]/[0,l] = 0 , 

1/(1 + 2/[-1,1() = 1/(1 + ]2,-2]) = 1/)3,-1] = [-1,1/3[ 

(-1,l[/([-1,1( + 2) = (-1,1(/[l,3[ = [-1,1( 

I 
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Evidently the commutative and associative laws remain 

applicable to interval expressions, but not the cancellation 

or distributive laws. Instead we have 

Sub-distributivity: A•(B+C) ~ A•B + A•C 

(B+C)/A ~ B/A + C/A 

Sub-canceZZation: (A•B)/(C•B) 2 A/C 

(A-B)-(C-B) ~ A-C 

In general, most rules by which parentheses may be 

manipulated without changing the value of a real expression 

are inapplicable to interval expressions, to which a host of 

weaker rules are applicable instead. For example, 

x•(B+C) = x•B + x•C for all real x 

A • (B+C) = A• B + A• C if B • C c: ] 0, 00 [ /h ,,,,J 61!> ff A ; 

(A-x) - (C-x) = A-C for all real x 

Furthermore, there are theorems about interval arithmetic 

that are not needed for real arithmetic; an example is 

Inclusion-monotonicity: If A~ X and B ~ Y then 

A•B 5 X•Y for any operation * in the set {+, , 0 , /} • 

Whereas the real nwnbers are totaZZy ordered (x < y or x = y 

or x .> y) , the interval-numbers are at best partly ordered; 

we can write A> B only when some real x exists such that 

A~ ]x,m[ and B ~ ]m,x[ , and A~B whenever A~ [x,m[ 
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and B ~ )m,x] *· This ordering cannot apply to exterior 

intervals, nor to m 

The foregoing differences between real arithmetic and 

our interval arithmetic are common to all other proposed 

schemes for interval arithmetic. In fact, everything that 

can be done with other brandstof interval arithmetic can be 

done with ours, and sometimes more simply in our scheme 

because it has been designed to admit fewer exceptions. What 

follows is intended to support the foregoing claims by 

indicating roughly the extent to which the scheme described 

by Moore (1966) is a subset of ours. But formal proofs for 

our theorems and other claims have been omitted to save 

space, thereby increasing the risk that our mistakes may have 

escaped detection. 

3. Functions 

Consider first then-th power function n 
a, 

positive integers n The familiar definition 

for 

* Note that At A unless A is degenerate; here the 

symbol "~ 11 is not the same as 11
~

11 which is used in works 

on partially ordered sets to stand for 

Cf. Birkhoff (1967) Lattiae theory p.l. 

II > or = II 

t Exce~t the scneme of Chartres (1966), who computes a non-

void subset rather than a superset of the range of an expression. 
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(n times) 

could be used for intervals as well as extended reals, but 

a more useful definition for intervals is 

Now we find that , with equality only in 

certain special cases like A~ 0 ; and in an example used 

earlier we find· that evaluating the expression 

for X = Y = 0 yields the desired limiting value 0 when 

(X/Y) 2 is evaluated as n2 = [0,=] instead of just 

yielding n when n2 is degraded to n•n = n 

More generally, consider any function 

defined over some domain in extended real n-space. If that 

domain includes the region , we shall 

represent the range of $ over that region by 

over t. €.X. 
1, 1, 

On the 

other hand, if $ is a rational function of its argu..~ents, 

then it is representable over almost all of its domain by each 

of infinitely many rational expressions in those arguments; 

to each such rational expression $(t 1 ;t2 ; ••• ;;nJ corresponds 

an interval expression denoted by ~(X1;X2; ... ;XnJ and 

obtained from $ by formally substituting 

t . Evidently 
1, 

R$(X1;X2; ... ;Xn) ~ ~(X1;X2; ... ;Xn) 

x. 
1, 

in place of 
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A persistent technical problem in interval arithmetic 

is to find an expression for $ which will turn the last 

s into an = Sometimes this problem is soluble; for 

example consider ~(;) = ;/(;+2) = 1/(1 + 2/;) and observe 

that R$([-1,1[) = t([-1,1() for the second expression but 

not for the first. (This example is worked out above.) The 

same is true·for another example, 

which has been treated by Moore (1966, pp.28 and 45-7) in two 

other ways for both of which R$ ~ ~ at some arguments X1 

and X2 Sometimes the exterior interval-numbers in our 

system permit us to find expressions $ for which R$ = ¢ 

more easily than in other forms of interval arithmetic. But 

in general the computation of R$ requires the location of 

maxima and minima, and hence the solution of polynomial 

equations when $ is rational, as well as the evaluation of 

limits or bounds for indefinite forms. 

Interval arithmetic can .be made easier via the 

provision of interval functions like those provided for 

ASA-standard F0RTRAN (1964) , ALGeL 60 (1963), and.Triplex 

ALG®L (Apostolatos et al. (1968) ). In general, we want 
• 

R$(X;Y; ... ) for functions $(E;;n; ... J like 

abs(E;) , sign(;) , sin(E;) , sqrt(;) , exp(;) n , E; ' • • • • 

Of course, attention must be paid to infinite values like 



cotan(O) = = , indefinite forms like o0 = JO,=[ , and 

undefined values like sgrt(-4) ; but in general the 

definitions of interval-functions like 
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y 
Rabs (X) , Rsign (X) , Rsin (X) , Rsgrt (X) , Rexp (X) , X , ••• 

should be obvious. Provided those definitions are understood, 

the following theorem can be proved, qeneralizing a statement 

of Moore (1966, p.11) 

Theorem: If f(x 1;x2; ... ;x J is an arithmetic expression in n 

F0RTRAN or an unconditional arithmetic expression in 

ALG0L, and if each variable 

that expression, then 

x. 
'Z, 

appears only once in 

for all intervals contained in f's domain, 

except possibly when n appears during F's 

evaluation. Here F is the interval expression obtained 

from f by replacing each real variable x. 
'Z, 

by the 

corresponding interval-number x. 
'Z, 

and each real function 

by its corresponding interval-function. 

decreasing function of and throughout 

(X 1 ;X2 ; ••• ;Xn) when xk = Xk+l = ••• - Xn , and we define 

expressions 

g(=1;=2; ••• ;=k) - f(=1;=2; ••• ;=k;=k; ••• ;=kJ , 

G(X1;X2; ... ;Xk) - F(X1;X2; .•. ;Xk;Xk; ..• ;Xk) ~ 
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then Rg(X1;X2; .•. ;Xk) = G(X1;X2; ... ;Xk) 

when n appears during G's evaluation. 

except possibly 

Otherwise, if a function g(x) = f(x;x) is monotonically 

increasing although f(x;y) is not, the best way to compute 

Rg(X) for X = [a,b] will be via Rg(XJ = [J(~) , g(b)] ~ G(X) 

Here are some examples to illustrate the theorem and its 

corollary. First let 

f(a;b;a;d;x;y;a) = (ax 2 +by+ a)/(d - z) ; 

Rf([0,1];[1,2];3;[4,S];[O,l];[O,l],[O,l]J = [3/5,2] = F( •.• ). 

Then let g(a;b;a;d;x) = f(a;b;a;d;x;x;x) = (ax 2 +bx+ a)/(d-x) ; 

Rg ( [ 0 , 1] ; [ 1, 2] ; 3; [ 4 , 5] ; [ 0 , 1] J = [ 3 / 5, 2] = G ( . .. ) too. 

For our second example consider four expressions 

representing g(x) = g(l;-2;1;2;x) , namely 

g1(x) - (x 2 -2~+1)/(2-x) 

g3(x) - (x-1) 2 /(2-x) 

and let X = [-1,1] 

G2(X) = [-2, 4] => G1 (X) 

= Rg(X) 
' 

= 

g2(x) - (x(x-2)+1)/(2-x) 

g4(x) - l/((1/(x-1)-1/2) 2 

Y - [l/2,3/2] We find 

[-1,4] => G3(X) = [ 0, 4] ::> G4(X) 

G1 (Y) = (-7/2,9/2] => G2 ( Y) = (-5/2,3/2] => Gs(Y) = G♦ (Y) 

= Rg (Y) . 

1/4) ; 

= [0,4/3] 

= [0,1/2] 

(G4 can be evaluated in our scheme, but not in anyone else's.) 

More generally, let F(X 1 ; ••• ;Xn) be obtained by 

substituting x. 
'2, 

for x. 
'2, 

in some arithmetic expression 
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f(x1; ... ;x J whose variables x. may appear arbitrarily n 'Z, 

often. Sometimes the following theorems help to 

approximate Rf 

Theorem: If X. ~ Y. for each i = l,2, ... ,n then 
'Z, 'Z, 

Theorem: If for each i = 1,2, ... ,n we have x. = u. x .. 

where the X .. need not be disjoint, then 
'Z,J 

'Z, J 'Z,J 

Rf(X1;X2; • • • ;X ) 5 u .F(Xl .;X2 .; • • • ;X .j c F(X1;X2;. •. ;X ) . 
n J J J nJ - n 

The difference between Rf and U.F can be made 
J 

arbitrarily small when F is continuous throughout 

(X1;X2; ... ;X J by diminishing the sizes of the subintervals n 

X .. ; this can be.proved with the aid of notions introduced 
'Z,J 

in the next section. Here we have tried to convey some 

feeling for the combinatorial approach to the computation of 

Rf via symbolic rearrangement of expressions before 

evaluation. Moore (1966, ch.6) offers several other interesting 

ideas in this area, but the area remains largely terPa inaognita. 

Further work is needed also on a problem peculiar to our 

scheme - the occasional intrusion of n The appearance of 

this symbol during an expression's evaluation is usually 

symptomatic of a loss of information that can be recovered only 

by analytical means appropriate to real but not complex 

variables. For example consider ~(t;nJ = l/(;2 + n2) ; 
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evidently Ref>( [l, 00 ]; [l,co] J = [0,1/2] : cl>( [l,cn); [l, 00 ] J = n , 

whereas R<f>([l,00[; [1,m[J = ]0,1/2] = cl>([l,co[;[l,co[J The 

difference between these two evaluations is related to the 

fact that <f>(;;nJ has a limit as ; + 00 and n + 00 through 

real values, but not when ; and n are allowed to pass 

.through complex values. Resorting to open intervals is not 

always a cure, but often helps. At first sight one might be 

tempted to 11 cure 11 the problem by distinguishing·among +00 , 

- 00 and 00 ; but this distinction soon leads to further 

distinctions among 0+, 0- and 0 as in 

lim exp(l/.r) = +00 

.r+0+ 
lim exp(l/x) = a+ 
.r-+-0-

from which distinctions follow others and yet other complications, 

even to the point of jeopardizing the last two theorems. For 

simplicity's sake we shall not discuss such a "cure 11 here 

(but cf. § 5. i ) . 

4. Metric Notions 

To provide a context in which convergence, continuity and 

approximation can be discussed, we shall introduce metrics or 

distance functions d(;;n) The discussion here is very 

superficial because we are merely generalizing slightly certain 

notions explored in detail by Moore (1966, ch.4). 

A metric d(t;n) is a real valued function satisfying the 

usual four rules (Dieudonne (1960, p.27) ) 



0 s d(;;t) = d(t;;) s d(;;n) + d(n;t) 

and if d(;;,J = O then ; =, 
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The familiar choice d(x;y) = lx-yl is sometimes inconvenient 

for the extended reals*; instead we can define d(;;nJ by 

means of our identification of n with a circle. Let the 

circle be drawn on a·plane or a sphere and let d(;;nJ be the 

distance between ; and n measured perhaps along the 

circle, or across the surface, or through space. Distance 

functions d(,;n) like these, which are continuous as ~ ➔ ~ 

and n ➔ ~ independently, are appropriate when convergence to 

co is at issue. One suitable c~oice is the chordal metric 

d(:c;y) - I x-yl 

for which d(l/,;l/~) = d(;;~J ; cf. caratheodory (1958, §86). 

* Although this d can be imposed upon the extended reals by 

defining d(x;co) = +co and d(co;co) = 0 , doing so requires that 

+co be distinguished from -co and ~ (cf. sections 3 and S. i) 

and consequently accentuates the topological distinction between 

co and the reals. Also, the least inconvenient definition for 

the width of an interval turns out to be ~([a,b]J = b - a 

which assigns useful negative widths to exterior intervals but 

useless infinite width to [x,co] 



We also need a measure for the width of an interval; 

one natural measure is 

w(Z) : 1 d(r;.;r;. + dz;) over z;e Z • 
'.:I 

For example, using the chordal metric we find that 

w([x,y]) = arctan y - arctan x if x s y 

= n - arctan x + arctan y if x > y 

w([x,=]) = n/2 - arctan x 

And a natural* extension of any chosen d(';~) to cover 

intervals is Hausdorff's (Dieudonne (1960, p.58, ex.3) 

d(=.;Z) - max{ sup inf d(;;z;J , sup inf d(;;z;J} , 
;e'E. z;e Z z;ez ;E: 

which is easily computed using only the end-points of -
z and their types, interior or exterior. Since w and 

and 

d 

make no distinction between open and closed intervals ( e.g. 

d(=.;Z) = 0 implies only that and z have the same 

closure), metric considerations are customarily confined to 

closed intervals. 

our definitions preserve many familiar theorems. For 

·example: 

* There are other natural extensions1 see Eggleston (1958, p.60) 

or Rudin (1953, p.195). But Hausdorff's coincides with Moore's 

(1966, pp.15-16) when d(x;y) = lx-yf is extended to finite 

interior intervals, and preserves Moore's Lemmas 4.1 and 4.2. 



If A~ B then w(A) s w(B) , 

and d(;;A) ~ d(;;B) for all ;4A 

and w(B) s w(A) + 2e implies d(A;BJ s e 

and d(A;BJ s e implies w(B) s w(AJ + ne 

19. 

The constant n is appropriate for the chordal metric d ; 

more generally n should be replaced by 

2/inf max{d(a;SJ/w([a,8]J 
a~S 

I d(a;B)/w([B,a]J} 

The foregoing definitions provide a terminology with 

which to discuss how well one interval-number approximates 

another, and to introduce an Interval Analysis analogous to 

Real Analysis with continuous or integrable functions. An 

interval-valued function ~(Z1;Z2; ... J of interval-variables 

whenever for every E > 0 there is a o > O such that 

that domain which satisfy d(X.;Y.) < o 
~ ~ 

for i = 1,2, ... 

In particular, a rational interval-expression w (involving 

only the arithmetic operators +, - , • , / and n-th 

powers for integers n ~ 0 ) can fail to be continuous in a 

domain (A1;A2; ... ) in the chordal metric d only when n 

appears during the evaluation of t(A1;A2; ... ) • Consequently, 

many of the complications associated in §3 with the eztensions 

of extended real functions f(t 1;t2; ... J to interval-functions 

t(Z 1 ;Z 2 ; ••• J can be avoided, at least for the purposes of 

exposition, by limiting attention to the restrictions of 
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rational expressions t to rational functions 

$(t1;t2; ... J = t(~1;t2; ... ) . The continuity of t is then 

sufficient (but not necessary) to assure the continuity of $ 

Consult the book Intervai AnaZysis by R.E. Moore (1966, 

ch.4 and 6-9) for an extensive treatment of the subject. 

s. Implementation Problems 

These fall into four areas with which we shall deal in 
turn; 

i) Representation, 

ii) Approximation, 

iii) Diagnostics, 

iv) Compilability. 

Instead of solutions to these problems, we offer 

suggestions and opinions. 

i) Representation: The two binary digits required to 

indicate which of an interval-number's endpoints belong to it 

may be inconvenient to manipulate on some machines, in which 

case manipulation can be confined to the subset of closed 

interval nwnbers [a,81 without much loss of information. 

Some of this information is recoverable on most machines which 

represent nwnbers with a sign-magnitude format, because these 

machines usually preserve a distinction between +O and -0 

and between +~ and -~ . Consequently, all pairs {a,S} 
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can be identified with closed interval-numbers [ex, 8] except 

for the following eight reassignments; 

[a, +co] - [a,co] I [ex, -co] - [a,co [ I l +co, Bl - ]co,S] I 

[-co, B] - [co,8] I [a,+0] - [a, 0 [ I [a,-0] - [a, O] I 

[+0,8] - (0, 8] I (-0,8] - l O, Sl . 
Whenever an arithmetic operation involving one of these eight 

produces some other unclosed interval-number, that interval

number should be closed to cover its end-points; the consequent· 

loss of information will be no worse than is attributable to 

roundoff. (See below under Approximation.) The eight 

reassignments sometimes help programme::-s to suppress Q 

The symbols n and 00 can be represented on most 

machines by certain unnormalized floating point zeros or by 

some other improper floating point numbers. Care should be 

taken not to represent 00 in a way which might be confused with 

an overflow. (See below under ii and iii.) 

Occasionally one may prefer to represent an interval-

number [a, b] by some pair of numbers other than a and b 

a plausible choice is (a+b)/2 and (b-a)/2 (cf. Nickel (1966), 

Chartres (1966), Dwyer (1941, ch.2) ) , corresponding to an 

approximator and its uncertainty respectively. What motivates 

such a choice is that the uncertainty is expected to amount at 

most to a tiny fraction of the approximator and therefore can 

be represented with a.lower relative precision without 

appreciably degrading the scheme; therefore computer storage can be 
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saved by assigning shorter words to uncertainties than to the 

more precise approximators. However, to distinguish between 

[l0- 30 ,10 30 ] and [0,10 30 ] both approximator and uncertainty 

must be represented equally precisely, and th~re are 

applications of Interval Arithmetic where that distinction is 

important. These applications concern the estimation of the 

range of a function representing, say, some engineering design 

that is intended to perform correctly in a wirle range of 

enviromnents. The environments are represented by interval

numbers given as data; the performance will be encompassed 

within the interval-numbers produced by the computation. The 

widths of the intervals may well be substantial; the ratios 

unaertainty/approximator are of far less concern than that the 

intervals be not much wider than necessary. My interest in these 

applications is such that I prefer to represent [a,b] via 

the pair {a,b} rather than via {(a+b)/2 , (b-a)/2} 

ii) Approximation: Roundoff need not vitiate the definitions 

given in §2 of the arithmetic operators + - • I I and / 

provided they are approximated in a way which is interpretable 

as a loss of precision or of information rather than as a 

source of misinformation. The appropriate way is via what we 

shall call outer approximation. 

Just as the real numbe·rs normally representable in a 

computer constitute a subset of the rationals, so must the 

interval-numbers normally representable in a computer constitute 
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a subset; call them the stoPabZe interval-numbers.· We shall 

call a storable interval-nwnber C' an outeP appro~imation to 

C whenever C' ~ c and d(C';C) is sufficiently small. How 

small is sufficiently small, and which metric is d , are 

important questions which will not be discussed here. Interval 

Arithmetic is properly implemented on a computer when, for 

every ar~thmetic operator * in {+ I - , • , I } , every 

instruction-sequence intended to compute C = A*B produces at 

worst an outer approximation C' ; similar statements should 

be applicable to all the elementary functions like Rexp, Rsin , 

AB, ... which are provided in that implementation. When 

properly implemented, Interval Arithmetic will lose information 

to the extent that its outer approximations are too big, and 

to that extent may generate excessive pessimism, but cannot 

generate misinformation. 

The associative law is an inevitable casualty of 

roundoff since, for example, 10- 35 + (10 35 - 10 35 ) produces 

10- 35 whereas (10- 35 + 10 35 ) - 10 35 produces O in ordinary 

arithmetic with fewer than 71 decimals. Ideally 

commutativity, monotonicity and sign-symmetry should be 

preserved wherever appropriate; this will be so when every 

operator is approximated ideally, the ideal outer approximation 

C' to c being the narrowest storable interval of the same 

type (interior, exterior, open, closed) as C which contains 

c Current floating point hardware design does not always 

help the implementor achieve the ideal. Rarely can he avoid 

approximating 2 + 2 by (3.999 ... 99, 4.ooo ... 01] without 
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programming a host of tedious test·s to ensure that 

1 + [0,10- 39 ] is properly approximated by (1, 1.000 ... 0l] 

and 1 - [ 0 , 1 o- 39 ] by [ 0 . 9 9 9 ... 9 9 , 1] . I think an 

ideal implementation is worth whatever it costs. 

Arithmetic expressions which underflow or overflow can 

be approximated with the aid of O or = respectively. For 

example, if 10- 100 and 0.999 ... 99xl0 99 are the smallest 

and largest real numbers normally representable in the machine, 

then 10- 200 might be approximated by ]O , 10-100 ( and 

10 200 by ]0.999 ... 99xl0 99 , = [ Thus would overflow join 

division by zero as the only way~ to generate ~ in our 

scheme. Some different ways to treat underflow and overflow 

usefully have been described by Kahan (1966, pp.26-51). 

iii) Diagnostics: The appearance of n during a calculatio~ 

is usually but not always symptomatic of a mistake. Every 

implementation of Interval Arithmetic should permit a program 

to test whether n has appeared recently and to respond in 

whatever way the programmer has provided. In default of such 

a provision, the program's execution should be int~rrupted, if 

not suspended, as soon as n appears, and information should 

be printed out to help the programmer discover why n appeared. 

The programmer's response to that information will be either 

to identify and correct a mistake, or to recognize a function 

whose evaluation requires further analysis at some critical 

points. Sometimes the simplest way to estimate the range of 
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a complicated function is to compute several formally 

equivalent interval expressions of that function and then 

select the narrowest. Therefore the appearance of n is not 

always a disaster. 

Similar cousiderations apply to ove.:flu'..J, "1.nderflow and 

the ap~earance of 00 : fortunately these ev~nts can have 

serious consequences only if they later caus~ tn n to 

aI,Jpear, and that ~, will not go unnoticeu. The main reason 

for interrupting a program's execution (ol, "-~ if the programmer 

has asked for such interruptions) in respun~~ to such events 

is that these events are often followed by ~-•s whose causes 

might otherwise remain obscure. 

There are two classes of systems programmers to whom the 

implementation of Interval Arithmetic should not be entrusted; 

tuose wnose rigid moralities exclude any ·tolerr.lnce for , >ther 

men• s mistakes, and those who indulgently make provisiu.1 for 

every possible vice. The author's Tao to Enlightenment through 

Hindsignt, wnich uses post-execution reminders, simple options, 

and messages in English or F0RTRAN but not 0ctal, is described 

in Kahan (1966). 

i.v) Compi 'Labi Zity: Interval Arithmetic is more aptly to be 

regarded as supplementing than supplanting ordinary real 

arithmetic. This point of view is supported by the excellent 

results which Hansen (1968 and references cited therein) has 

obtained: he uses Interval Arithmetic to refine ordinary 
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arithmetic calculations and guarantee their validity. K. Nickel, 

N. Apostolatos et. al. (1967) have gone so far as to propose 

an extension of ALG0L 60 to cover their brand, called Triplex

ALG0L 60, of Interval Arithmetic. We propose here to outline 

a comparable extension of ASA standard F0RTRAN. 

Interval-nwnbers can be represented by pairs of real 

nwnbers (see i_above) just like complex numbers, so adding a 

type INTERVAL need not complicate the indexing or input/output 

facilities of the compiler. Scanning INTERVAL-arithmetic 

statements should be no more complicated than scanning D0UBLE 

PRECISI0N or C0MPLEX statements since the latter two types 

involve subroutines for at least some of their elementary 

arithlnetic operations (certainly for C0MPLEX multiplication and 

division) whereas INTERVAL arithmetic uses subroutines for all 

operations. Mixing REAL and INTERVAL arithmetic is just like 

mixing REAL and COMPLEX arithmetic. The relational operators 

.GT. , .GE. , .EQ. , ... (for >, ~ , = , ... ) will have 

to call subroutines if they are allowed to appear between 

INTERVAL expressions*. Transfer functions analogous to REAL, 

AIMAG and ceMPLEX will be needed to facilitate ordinary 

arithmetic with the end-points of INTERVAL variables, and other 

* I cannot understand why ASA standard F0RTRAN (1964, p.598) 

forbids .EQ. to appear between two C®MPLEX expressions, nor 

why the·assignment C0MPLEX = REAL is forbidden (ibid., p.600). 

Slips like these give FeRTRAN a bad reputation. 
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subroutines will be needed for . INSIDE. , UNI€>i.J (of two or 

more overlapping intervals), RABS, REXP, RL0G and similar 

functions. For each of a few plausible choices d(A;h) , 

it will be necessary to provide DIST and WIDTH functions 

comparable to CABS. • 

Interval Ari tnmetic will remain unknowll t ,"> most of its 

potential -beneficiaries until it is comfortab.i. ". embedd~d in 

some of the widely used algorithmic languages. Int~rva) 

Arithmetic's full potential will remain unkncwn to all t i u~· 

until it is embedded in a language which, like F0RMAC ( ~-~~ 

Tobey et al. (1967)), offers both symbolic and numerJ '

arithmetic capabilities, because the outstanding prol>J ti• , ul 

Interval Arithmetic are more mathematical (a]':J'-Lrc1, a, •• 11:y:.J:, 

and ~eumetry) than computational. 

6. Applications 

Interval Arithmetic's most obvious applicati011 JS v, 

those nwnerical problems whose solutions can be implemcntt::d •.11 

a computer program with no iterations nor oft-repeated loops. 

Ex~ples include the computation of engineering design 

parameters and performance from cook-book formulae, the fitting 

of simple curves to modest nwnbers of observations, and the 

transformation of geometrical information from one coordinate 

system into another. These problems have solutions which may 
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be identified with the computation of several functions 

f.(x1;x2; ... ;x) of a modest number n of variables x. 
1- n J 

The people who wish to solve such problems may be expert 

enough in their chosen fields, but are usually unacquainted 

with the tricks of error analysis, and therefore unable to 

assess the accuracy of their computations even when they want 

to. By usin~ Interval Arithmetic to compute almost any naive 

expression for they may be sure that no 

numerical instability can mislead them. Narrow intervals F. 
1, 

are acceptable without reservation. If the computed intervals 

F. are too wide, there are two possible explanations. First, 
1, 

the width may be due merel~ to an expression for F. 
1, 

which 

is too naive, corresponding to what might otherwise be called 

"a nwnerically unstable calculation"; the remedy here is 

fauna by consulting a numerical analyst. Secondly, the width 

may reflect the fact that some f. are discontinuous or at 
1, 

least violently varying functions of some 

is symptomatic of an ill-posed problem. 

x.; such behaviour 
J 

In other words, if 

wide intervals occur they signify a need for more analysis; if 

no wide intervals occur then we are all, experts and novices 

alike, relieved of tedious and superfluous analysis. That is 

wnat machines are for. 

If the expressions for F. 
1, 

are aptly chosen (apt choices 

are sometimes not obvious, sometimes impossible) then they may 

be used to study the consequences of varying various input 

parameters x. 
J 

across suitable intervals x. 
J 

, as was mentioned 
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in §5.i. When combined with interactive computing facilities, 

this application of Interval Arithmetic can significantly 

bnorten the searcn for flaws in engineering designs. 

Interval Arithmetic is also useful in conjunction with 

ordinary arithmetic for solving a set of n equations 

i'-:(~1;x2; ... ;xn) = 0 , not so much for finding a solution as 

for proving that a solution has been found. We shall illustrate 

tnis ~oint by describing a relatively simple technique; better 

techniques are described by Hansen (1968). 

Let us write i(~) for the column vector whose n 

components are fi(x 1 ;x 2 ; ••• ;xn) , and 4 fr;r the Jacobian 

matrix of i's first partial derivatives. Wt· .:.JSsurnc that 

f_( ~) and 4 ( x) are represented by real ex1.,re!~sio.i-,~. to which 

correspond continuous interval expressions F ( .~·) ar,d F ( X) 
~r -

We also assume that some approximation }le, is giv1.;n c.Ar,d known 

to be "fairly close" to the true solution z of f{~J = O 

The computation proceeds in two phases. First is the 

improvement of ]lo by Newton's iteration, ideally 

in wnicn interval arithmetic is used only to help decide when 

to stop the iteration. The second phase uses interval arithmetic 

in an essential way to bound the error in the last iterate. 

Because Newton's iteration converges so rapidly (quadratically) 

in the absence of pathology, we shall attempt to approximate z 

as accurately as roundoff permits even though that accuracy may 
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exceed our needs. 

Given com~ute, as accurately as roundoff permits, 

the values of i(~n) and a matrix G to 
-'n 

approximate f.:,:(1Ln,J- 1 ; no interval arithmetic is needed here. 

Also let be an n-vector of intervals obtained from 

by smearing each element of 1i.n two units in its last place: 

Yn is the narrowest storable interval-vector containing ~n 

in its interior. Compute F(:t) 
- -n 

to obtain a bound for the 

variation of £(~n) attributable to uncertainty due to 

roundoff plus small perturbations in ~n Sometimes that 

bound can oe computed more accura~ely and/ or efficiently by 

means other than Interval Arithmetic1 e.g. see Kahan and Farkas 

(1963), Smith (1967a, pp.70-90, or 1967b), or Adams (1967) if 

£'s components are all polynomials. The final result's 

accuracy depends crucially upon how precisely £(~n) and 

RL"( Y J can be estimated. -n 

Normally the iteration would proceed to Y-n+l - ~n - ~•Lrz 
where ln is the computed approximation to f(~J However, 

the iteration ought to be stopped when 1Ln is as close to 2 

is likely to be. We choose to stop as soon as 

1 when this criterion is satisfied there is practically 

no way to distinguish 1Ln from 2 

2 E. :t 

(Note that that criterion 

is certainly satisfied when 
- -n 

, but does not imply 2 E. :t 
- -n 

Will the criterion ever be satisfied? In general this is a 

difficult question to answer precisely; the answer turns out 

. ) 



31. 

to be Yes provided ~o lies within a neighbourhood of z 

wherein f.a:(x) varies not too widely and is not too ill

conditioned. 

Having stopped at ~ - ~n , we enter the second phase 

of the computation to provide a bound for ~ - ~ We do so 

with the aid of what is intended to be a contraction mappina 

h(~) when x lies in the neighbourhood of z and ~ (cf. 

Collatz (1966, p.213) ) . Let 

where G - G is the best available approximation to -n 
We shall verify later (next footnote) whether G 

is nonsingular; if so, each of h's fixed points ~ = h{;;J 

is a solution of Since h is continuous, 

any interval-vector Z which contains Rh(Z) must contain at 

least one of h's fixed points (ibid. pp.450-6). Our task now 

is to exhibit such a Z , and preferably a narrow one. 

Let us first apply the mean value theorem to write 

where I is the nxn identity matrix and Q(~) is the 

matrix whose elements are 

qij(~) = lk gik :x. fk(~ + (~ - 1:1)ek) 
J 

for some unknown ek(xJ£]0,l[ • As ~ ➔ ~ , 

Q(~J ➔ G•l.a:(~) and, since G ~ 4r~;- 1 
, we should expect 

I - Q(~) to be small of the order of roundoff plus O(~ - ~) 
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This expectation can be put to the test over any interval f 

containing ~ ; use Interval Arithmetic to compute the interval 

matrix 

As long as for some small a< 1 we may be sure* 

that h(x) is a contraction mapping over xeZ ; in fact we 

I so 

allf.1 - ~2 II for every ~1 and f.2 in 

Provided a is small enough (depending upon the norm used) the 

inte.rval-ari thmetic analogue of hJ ~) , namely 

will also contract the width of each X c Z Unfortunately, 

H(XJ cannot be proved to lie in Z without assuming more than 

has been assumed so far. 

* Almost any matrix norm, say 
11 { s • . } II = max . l . I s • . I , w i 11 

1,J '2, J '2-J 

serve adequately unless the equations i,(~)= 0 are "ill 

equilibrated", which possibility will not be considered here. 

Every real matrix AeF (Z) 
--3: -

satisfies s a < 1 

11S(fJII s a< 1 , whence it soon follows that 

II G- 1 
- Al S 

IIG - A- 1 11 s 

a IJG-1 II 
a IIA-1 II 

s a IJAII /(1 - a) 

s a ·IJGII /(1 - a) 

and 

Therefore G is 

nonsingular, and so h's fixed points z really do satisfy 

if 
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and that 

£E..F(!) = F(Ii.J , let us choose fo = Ii. - G•f(f) and compute 

!1 = H(fo) • Evidently Ii. - G•F(Ii.J £ fonf 1 because 

so f 1 has some points 

in common with !o Moreover, can extend beyond fo 

only when ~(fDJ•(f0 - Ii.> , which should be much smaller than 

(fo - li_) , • is wider than the gap between fo = Ii. - Q•f ( Y) and 

Provided F(Ii.) is sufficiently small, no such 

extension will occur, and we shall have fo ~ f1 , so ~Ef1 

However, if !o '!1 then we can replace fo by fo u !1 and 

test again whether t'? H ( f o J ~ !o ; this usually works. ~l -
Once we find some z ;, H (f) , we have proved that 

z = h ( !_) for some !_ERb_( f) ~ !J_(f) Unfortunately there is 

no guarantee that such a Z can be found. For example, if 

corresponding to calculations with ten decimals, then no 

mechanical way exists to decide whether f(x) vanishes or not 

in (-1/4 , 1/4) Most of the complications in the 

discussion above are caused by not knowing whether [(~) has 

a zero near ~ or not. Hansen (1968) assumes that an 

interval is )mown which contains a zero of i , and consequently 

his argwnents are simpler than ours. 

Here is an example to illustrate what usually happens. 

The example is taken from Moore (1966, p.68). 

+ (x2
2 

-
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Computation is done in four-decimal floating point starting 

(
0 7] __ (-.

0
02] I with ~o = • • We find l(~o) 

0.7 

(

(-.0204 I 
Q f !(Yo)= _ 

[-2xl0 1t , 
I 

= (.3571 .5] 
~o 

.3571 -.5 

(

(-4 , = 10- .. 
[-2, 

Jl = Ill I G = (
.3536. .s] 
.3536 -.s 

[

[.7068 I .7074]] 
Zo = , 
- [.7068 . 7074] 

( 

(-10 , 4] (-4 , 4]] 
S(fo) = I - G•F (Zo) = 10-1+ . 

- - -x - [- 4 , 4] [-10, 4] 

(

[O , .7072]1 ([-42 , 42]1 
Z1 = B(fo) = 'IL+ 10- .. + 10- 8 

~ 
[O , .7072] [-42 , 42] 

(

[.7071 , .7072]1 
Therefore z exists and lies in 

[. 7071 , .7072] 

4]] • 
2] 

I 

!o . 



7. Application to a Differential Equation 

We seek to calculate the solution y(t) of 

• d Y = dt y{t) = f(t;y(t)) , y(to) = yo , 

35. 

given nwnerical values for to and y 0 and an expression 

f(t;y) amenable to symbolic partial differentiation. A 

problem of long standing has been to compute rigorous bounds 

for the error in.the approximation to y(t 1 ) when t 1 is 

suostantially greater than to The outstanding contribution 

made by Moore (1965a and b, 1966) to the resolution of this 

problem with the aid of Interval Arithmetic is perhaps the 

most potent reason for the current interest in both Interval 

Arithmetic and computable error bounds. 

Here we shall attack the problem via a classical 

differ~ntial ine~1Rli~y (see Birkhoff and Rota (1959, §11) or 

S z ar ski ( 19 6 5 , p . 7 ) ) ; 

if z(t 0 ) ~ y 0 and z(t) ~ f(t;z(t)) for t ~ to 

then z(t) ~ y(t) too. 

Our method, chosen for simplicity, is quite different from 

Moore's. 

Given 2 0 ~ yo , we attempt to choose storable numbers 

• •• 
20 t 20 

satisfies 

h > 0 

and 20 -· such that 

• 2(t) ~ f(t;2(t)) over to st s to+h for some 

Success will yield an upper bound a(t) ~ y(t) for 
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t E: [to., to+h] An independent lower bound is to be computed 

in a similar way. Then to+h is renamed to and we continue 

the advance towards t1 If* we reach t1 , we shall have 

rigorous upper and lower bounds for y(t1J 

Let us use abbreviations L - t - to and 

g(t) = f(t;2(t)) Despite that g depends upon values 
. . . -· 
20 , 20 and 20 which are not yet known, g is a symbolically 

differentiable expression; 

• • g = f tt + 2f ty 

I 

• 
2 + 

(f = y 

fyy 

a . I ay f ( t, y ) y= 2 ( t) , etc. ) 

•2 
fy 

•• 2 + 2 I 

• • • • •2 • 3 g = f ttt + 3f tty 2 + 3f tyy 2 + fyyy 2 + 3(fty+fyy 
••• + f 20 . y 

• We note that numerical values will be computable for go 

•• ••• 

• 
2 

-
•• 
9o= g (to) and the function g (t) as soon as values have 

been assigned to • •• 
2 O , 2 O 

••• and 20 respectively, but 

go = f(~;.20) is known now. 

•• 
) 2 

• g 

Next let us examine s (t) - 2 (t) - f (t; 2 (t)) 

that 

we find 

• s(t) = 2(to + LJ - g(to + LJ 

= (io-go) + L(B•o-go) + Li(i•,_•go)/2 + L3•g•(to +L8J/6 

.. 

(to) I 

* There is some risk that the differential equation may possess 

a singularity which might intervene before t1 is reached, but 

this risk is common to all numerical methods and will not be 

considered here. 
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for some unknown 8(t) £ ]0,1( Our task is so to choose 

• •• • •• h > 0 , zo , zo and zo that Rs([to,to+h] ~ 0 , in 

which case we shall have z(t) ~ y(t) in [t 0 ,t 0+h] And 

if Rs is not too big, z(t) should not be too much bigger 

than y(t) 

The first step is to choose a tolerance e > 0 ; our 

intention is to keep Rs~ [0,2e] , so e should be chosen 

small to produce a tight upper bound z On the other 

hand, the smaller is e , the smaller must ~ be kept to. 

keep Rs~ [0,2e] , and hence the greater must be the time 

required for the computation to reach t = t 1 If e is 

too small, roundoff alone may force h = 0 ; therefore e 

should always substantially exceed the uncertainty in f(t;z) 

contributed by roundoff alone. Certainly e must exceed 

w(F(To;Z 0 )) , where F is the interval-arithmetic 

expression for f and To and Zo are the narrowest interv~L 

numbers containing respectively to and 2 0 in their 

interiors. Increased values of e will permit increased 
1/3 

values of h roughly proportional to e while e is still 

small. There is no simple way to choose e optimally in 

general, but an adequate choice is hardly ever difficult, and 

given that hmin is the minimal acceptable value for h we 

may set e = w( F([to,to+h] ; ZoJ ) as a last resort . .... 
The choice of e can affect the precision and the cost 

of our bounds, but not their vaZidity. 
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Having chosen e , compute in turn 

. . 
20 7 go+ e , and •• • •• 

20 ~ go 

the approximations here are due solely to roundoff during 

ordinary arithmetic evaluations of the formulas above for 
• g , g and •• 

g The symbols •• • •• 
, 20 , 20 stand for 

nwnbers represented precisely in storage, and they define 

our upper bound 2(tJ precisely. Certainly z(t) ~ y(tJ in 

some t- interval [t 0 ,t 0 +h] because s(tJ ~ 0 in that 

t-interval provided h is small enough. Our next step is to 

find out in how wide an interval [t 0 ,t 0 +h] the condition 

Os s(t) s ~e remains valid, though we do so by using Interval 

Arithmetic to over-estimate Rs([t 0,t 0+h]) 

Use interval-arithmetic expressions for g and its 

derivatives to compute the interval-numbers 

Go= G(to) Go= G(to) and •• •• Go= G(to) 

from the formulae given above. The widths of these interval

nwnbers should be of the order of roundoff because there is no 

other reason for their uncertainty, and of course we should 

find that the interval-numbers 

• 
20 - Go - e , • • J. 

20 - Cio , ... . . 
20 - Go 

are all very tiny. We sha~l also need an interval-expression 

••• for G(to+H) where H is an interval-number of the form 

H = [ 0, h] Such an expression is provided by the formula ... 
g , though not uniquely; sometimes adequately large steps h 
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can be taken only after an expression for 
... 
g has been 

rearranged to yield a -· G(to+HJ which is not orders of 

magnitude wider than ·-Rg(to+H) . Finally assemble 

S(to+HJ ( (H•(f(to+H)/6 ••• 
- fo) /2) •H + •• 

- GO) )-H - + (z o ( Z O + 
• • + (2 O - Go) I 

of which we may be sure that Rs(t 0 +H) s S(t 0 +H) 

For any H = [O,h] ~ 0 there are now three possibilities: 

i) S(to+H) c [0,2e] and w(S)/e is not very tiny; such an 

H provides an acceptable step from to to t 0+h 

ii) S(to+H) ~ [0,2e] but w(S)/e << l ; such an H is too 

narrow, and might profitably be replaced by, say, 

( 0 . 7 e I w ( S J ) 1h • H 

iii) S(to+HJ i [0,2e] ; such an H is too wide and should 

be cut down to, say, ( 0. 7 e/w ( s J) 1/ 3 • H 

Provided e > w(G 0 ) H = (0,0] is too narrow; H = [0, 00 ( 

is too wide except in trivial cases. By virtue of S's 

inclusion-monotonicity and continuity near H = [0,0] some 

acceptable H must exist. A plausible first guess at H is 

whatever step was used to reach to ; another plausible guess 

The precise manner by which an 

acceptable H is found cannot be a vital issue first because 

H does not have to be chosen accurately (just not too wide!) 

and second because any unacceptable guess can be improved via 

ii) and iii) above. The way H is found may affect the cost 

of our computed bounds, but not their precision nor vaZidity. 
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How precise are the bounds? We consider a hypothetical 

example drawn from Moore (1966, p.126), who drew it from 

Henrici (1962, p.85-6). Suppose f(t;y) = -l6ty 

to = -.75 , t1 = +.75 , Yo > 0 We choose a tolerance 

e(t;y) . 16 e: with some like 10- 7 for IBM 7094, . y e: an 

on which each arithmetic operation is accurate to about 8 

decimal dig i t·s. Because It I < 1 for this problem, that 

tolerance e substantially exceeds the uncertainty 

introduced into f by roundoff. We assume too that z 0 is 

stored to double-precision, and that z(t 0+hJ is computed by 

first calculating h(i 0 + h(i 0 + h~o/3)/2) in single 

precision with forced upward rounding of each arithmetic 

operation, and secondly adding that result to zo in double 

precision with an upward rounding. Wherever 20 has been 

used above to compute 20 •• , Z O , the value of 20 

rounded to single precision may be used instead. Wherever 

zo appears during the interval-arithmetic calculation of 

S(to+B) it should be replaced by the narrowest single-

precision interval-number Zo containing zo Without this 

appeal to one double-precise addition, the computed values of 

z(t) would drift up excessively by one unit in the last place 

after each t-step h , and several thousand steps could be 
-tkov :.c,,,. ,t 

taken. (Actually, a few aunaEed steps are sufficient.) 

The computed values of z(t) can now be approximated 

adequately by solving the differential inequality 
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0 s i - f(t;z) s 2e ,. z(toJ = 20 

in closed form with f(t;2J = -l6t2 and e = 16 E 2 and 

20 = (l+o)yo for some positive 6 < 2x1O-e We find 

that 

1 + o s 2 ( t J I b ( 1. J ~ ( 1 + cS ) exp ( 16 £ ( t - t o ) ) 

which shows· that 2 ( t J approximates y ( t) to within a few 

hundred units in t' • s last (8th) place. Si.nc.! 

y(tJ = c•exp(-8t 2 , for some constant c > O , we observe 

that the width of the interval separating y from 2 will 

decrease as t increases toward t 1 = +.75 This 

observation contrasts strongly with the results p~oduced by 

Moore's first method (1965a, and 1966, ch.1O-12) because the 

widths of his interval-estimates for y cannot decrease 

(ibid. p.132). 

The method described above is capable of generalization; 

we could use other !unctions z(tJ than cubic polynomials, 

other tolerances e than stepwise constants. But the crucial 

generalization to systems of differential equations is a step 

beyond the scope of these notes. Some idea of the role played 

by geometry in such a generalization can be inferred from the 

work of Moore (1965b, and 1966, ch.13), Guderley and Valentine 

(1967), and Kahan (1966', 1967). These notes will conclude 

with some indication of what goes wrong with a naive approach. 

Let us consider two differential equations 
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. 
Yi= fi(y1;y2) , and suppose nothing more is known about 

y ,,· ( 0) than that y . ( 0) £ Y . ( O) = [ a . , b . ] • It seems 
~ ~ ~ ~ ~ 

natural to approximate each yi(t) by an interval- valued 

function Y.(t) = [x.(t) , 2.(tJ] • Provided y. £ Y. for 
~ ~ ~ ~ ~ 

all t > O we find that, for example, 

min f 1 • ( y 1 ; n 2 ) s y 1 s max f 1 ( y 1 ; n 2 ) • 
n2 f Y2 n2 e: Y2 

These inequalities resemble the classical differential inequality 

mentioned above, and lead to a natural generalization: 

If y.{O) e: [x.{o) , 2.(0)] and 
~ ~ ~ 

X1 s R f1{x1; [x2,22]J , 

21 ~ R f1(21; [x2,22]J 

and 

for all t > 0 , then too. 

This theorem suggests that 11 the best" bounds for will be 

obtained from the maximal solutions x. and minimal solutions 
~ 

a. of the differential inequal~ties; the only things wrong 
~ 

with the suggestion are the words "the best". 

Then the desired, the maximal, and the minimal solutions satisfy 

• :!1 
f 

Yl = -y2 , = -22 , 21 = -x2 , 
, 

= • Y2 Yl , X2 = X1 , 22 = 21 . 
The y-equations represent uniform rigid rotation of the 

( y 1 ; y 2 J -plane. If at t = 0 the point (y1;y2) lies in some 
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rectangle (Y1;Y2J , then for all t > 0 the point (y1;y2J 

will lie in the image of that rectangle under rotation; the 

dimensions of the rectangle do not change, only its position 

and orientation. The theorem says that the rotating 

rectangle lies in another rectangle ([z1,21] 1 [z2,22]J 

for all t 1 this larger rectangle's position changes too, 

but its side~ stay parallel to the coordinate axes and 

lengthen like multiples of exp(tJ as t increases (unless 

the rectangle started as a point). In fact, we verify 

immediately that 

w.(t) = 2.(t) - z.(tJ = w.(OJ cosh(tJ + w3 .(OJ sinh(tJ 
i i i i -i 

These results are substantially the same as obtained by 

Moore (1965a, and 1966, p.128) from his first method. The 

bounds produced by his second method {1965b, and 1966, ch.13) 

grow less quickly, but still exponentially too fast. Only 

Kahan (1967).claims to produce bounds which do not grow 

exponentially too fast, and then only when the bounds are 

small enough that uncertainties are propagated in a way 

adequately approximated by the linearized variational equations 
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ERRATA 

W. Kahan 
6818 

After nor 1nput/outvwt" aid "unless we iemand outer 
approximation during binary-lecimal conversionw. 

A similar expedient is proposed by Richard J. Hanson 
in •Interval Arithmetic as a Closed Arithmetic System 
on a Cau1r12i-er~., JFl 31h Tech. Memo. 197, 4 June, 1968; 
bovrever he does not allcr111 for exterior intervals. 

Change each Z to Z0 • 


