
)

)

I
-I

INFORMATION PROCESSING 71 -NORTH-HOLLAND PUBUSIIING C'OMPANY (1972)

A Sl)RVEY OF ERROR A~AL YSIS

W.KAHAN
Computer Science Departmelll. U11irrrsill· of Cali/ornill,

Berkeley, California 9-17W, L'SA

Rounding error is just one kind of enor. and an easier kind lo ~;iJyzc than some others. Error and uncertainty
in data is a more important kind, and not so easy to estimate nor anal)·zc; here is where error analysts are cunently
busiest. The most refractory kind of error is attributable to flH.-s in the de~n of computer systems, both hardware
and software, caused primarily by misconceptions about the other kind~ of error. These flaws should not be blamed
entirely upon those systems' designers, who must contend with .arbnrar)· directives from on high and conflicting ad
v.ice from their customers; .. Who shall decide when doctors disagree'? ..

I. INTRODUCTION

A horse, a rider, a battle, a crown; that they all
might be Jost for want of a nail is plausible though
unlikely. How likely is anything important t.:> be
lost because of a rounding error? Before we answer
this question, we might consider the inhabitants of
a far northern city who are persuaded that their
harsh arctic climate is really very healthy because
they see so few sick people walking their streets.
W'ill our logic be any better than theirs'?

There is a natural analogy between illness and
numerical inaccuracy. Germs and rounding errors
are small, numerous, and best combatted by sani
tary precautions which, alas, are all too frequently
neglected, not so much because of their intrinsic
difficulty or expense as because of indifference or
ignorance. When that neglect breeds mischief, the
doctor is called. Now the analogy breaks down;
germs are more persistent than rounding errors.
Among the achievements of the past generation of
enor analysts is their capacity to deal with roundoff
in a comparatively routine way that medical practi
tioners could only envy. Of the vaiious kinds of
enors that confront error analysts. rounding errors
are among the easier kinds to deal with theoretically.
10 let us deal with them first.

.. A litrlt neglect ma_v breed mischief ...
for want of a nail the shoe was lost:
for want of a shoe the horse was lost;
tllld for want of a hone the rider was lost. "

bom Poor Richard's Almanac
Benjamin Franklin

2. E~MPLE OF ROUNDOFF ANALYSIS

Here is an example, solving the quadratic equation

Axl -2.Bx+C=0,

to illustrate the routine by which a mathematician
may dispose of roundoff. This example has been
chosen because its analysis is relatively short but
otherwise typical of small algebraic problems. The
first formula that comes to lfiind,

is well known to be a poor way to compute the
roots R.,, and R _ whenever one root is very much
smaller in magnitude than the other; see fig. l,
which shows such a calculation done in 4-significant
decimal floating-point arithmetic.

Because the computed value of R_ is quite wrong,
we might describe the computation as .. unstable";
this is a correct conclusion from wrong reasoning.
as we shall see. We might also be tempted to con
demn the last subtraction for ··Josing·· three signifi
cant decimals, though that subtraction has been

1

•

W. Kahan. A survey or mo, aulyril

B • SB. '18• . c - 10.oa;

Uae 4-signi.fi.cant-decima% fflUndad fZoatir_.g point ari:t"11etia;

set D • B
2 !fc • ~1s1., 1.oos,u • 91s1 ... 1.oos ~ 9'1!16.;

r1w JtOOta Q'S ."li. • (B t. ./6.tlA. ~01'•

./6 + t'S?f>6. • 98.??uu ... ~ 18.11;

R+ ~ (98.?8 +S8.1?}/A ~ 191.61.1002 • 191J.us, ... !' 19?1.

(R+ • lS?l .1111 •••); ..
R ;. .(SB.18•98.11JIA • .01.000l.1002 • .09980011, ..• t .09980

- • . •,j· .

lR .. - .oso1s~n .• • J.

F~ 1. An unstable calculation.

c... m SOLVE AAxuz -a•sAZ +c. o.
D • BAA2-AAC
IF(D .LE. O.) GO TO l

C... REAL DISTINC'I ROO'J'S RP AND BM 'llHER D > D.
S • B + SIG/I(SQRT(D J. BJ
RP• SIA
RN• CIS
GO 20 •••

C. • • COMPLEX OR COiNCIDERT IJOOTS RR t. I .aI J/IIElt D i O.
l RR• BIA

RI • SQRT(-D)/A ·
•.••

Fig. 2. A stable algorithm.

B • 41.IS. C • 41.19

uau,g 4-ai.gni.fiaant-deci.ma.Z J"OU11ded floating-point arithmetic in

the program of Fi.guH 2;

Set D. • a2 -AC• 2251.sou - 2251.uu io 2252. - 2251. • 1.000;

• S.-t S • B +}fi!' 41. 45 + 1. 000 • 48. 4S; the roota azt•

R+ • SIA fa l.f?l9uu ••• !r 1!020 (R+ • 1.000)

and

R_ • CIS ~ .9181uu !' .9781 .

Fig. 3. Poor results from a stable propamf

1215

,.

I

I
i

1216 Num~rical Mathematics

Appro::ir.ia:a aotutio~ of az2 - 2~ + c • O;

d • {!hl+IJ 1J - ac(1+1,12J}{1 + a};

Mien d >.O •stimate real eisti~ci JtOOts r+ and r_;

• • {lbl + (1+pJ/iI}t1+aJl;;n(b}; (sgn(OJ = 1J

P.,. ~ (1+5 1Js/a;

P_ • (1+52)c/s; go·to •..•

lt'hen d ! 0 estimau co,,pte= 01' o~i.ncider.t J"OOtS rp ± U'i;

P
7

• (l+5J)b/c.;

zo i • (l+5 ,, { (J+p} .Q}; c..

Rounding errors: a for add~ a ftn' subtn:iot~ l1 for muZtipZ!{~

6 for di11ide~ p for square root.

Fig. 4. Representation of rounding errors in fig. 2.

perfonned precisely and no more deserves condem•
nation than does any other bearer of ill tidings. The
subtraction merely reveals an error half of which
was committed a. the beginning when B2 =
= 9757.4884 was rounded to 9757.

A stable f. o.-tran-like program to solve the qua
dratic is displayed in fig. :! ; when applied to the
coefficientsA, B. C of fig. 1 itproduced the-roots
correct ro within one ulp. (An-ulp is a-Unit in the
Last Place quoted.) Although in fig. 3 this program
appears to lose half the figures carried, yet I insist
that the program deserves to be called Hstable0

;

the loss of figures could be charged against the data
A, B, C if these coefficients were all uncertain by
as much as ten ulps, for then they would specify
an ill-conditioned problem whose solution is uncer
tain more because of its own data's uncertainty
than because of my program's roundoff. To prove
this, to exculpate my program, I submit the fol
lowing analysis.

3. REPRESENTATION OF ROUNDOFF

The letters.A, B, C, ... are intended to be the names
of reai variables but the Fortran compiler interprets
them as the names of cells in which are stored the
values of real variables we shall call a.b.c, ... respec
tively. The variables A and a arc not the same. though
generally intend~d to approximate each other. A
Fortran statement intended to compute, say, a quo
tient

R=S/A

causes instead the computation of, say,

r=(l+f>)s/a

where the variable t, represents the contribution to
r due to roundoff. For example, whens/a~
1.0l97as3 ... is rounded tor= 1.020 then t, =

.fr·-: ..J/a)/{ s/a):::.: 0.OOP2 l.-. .,; usµ~lly the_ only infor
mation...about ~ that is used in an error arui.lysis is

an a priori bound; in this case the assertion

161 < 0.0005

is valid independently of s and a :I= 0. More generally,
to every arithmetic operation performed on a spe
cific machine corresponds a data-injependent bound
which reflects the worst error that could possibly
occur during that operation (in the absence of over/
underflow). Customarily we assume that each float
ing point arithmetic operator # such as +, - ,
•, /, ../, decimal-binary conversion, ... has, for every
precision (word-length) pre-assigned to the cell
called R, its own data-independent bound e# for
the relative error committed when the Fortran-state
ment

R.:S#A

causes a new value, obtained by adjusting s#a, to
be stored in cell R. Whether the adjustment is by
rounding or chopping is a minor issue to be dis
cussed 13tcr; here rounding has been assumed.
Whether£# is a bound for l{r- s#a)/(s#a)I 01

l{r - i#a)/ri is a matter of convenience for the an-

,

, ... :,•Jl'rl~ W. K~h.:~. A AIIW_v of"'"' onal.1·n1

A etiahtty uz-or.g aotu~ion t~ a aliJh!ly ~Nmg probZ...

Sat a = a, b E b., a E c(l+}! }/(1+u) in the pePt&a-bad
2 J

- 2 qw:zdzoatic c: - 2b: + c • 0;

If d ! O the_ roots r,. t tr i of ti;~ pi!rt-.trbed quadratic

czre appro:rimated oZoae1.y Ilia tr.e co--:r:,:,•d uaZusa;

r,. • (1+6J)r I"' l"i • (2+64 }(1+~).'ll+u1)(l+a)l' i. •

If tl > 0 the roots j:± of the ,,.. .. :-~~!"cd quadratic ••

"f'Pl'o:imated 01.Dsety by the ccr.:;,utcd ~aZ~••

,.+ • (l+8)(1+o.)(l~1,r+, ,._ • r_(1+62){l+lJ1)l{lZ+8)(1+o.}(1+}1~)}

whette 8 = (s/(l+c)sgn(b))/(lbl + ~::-a3J .. l

p,'{1+'1J1)(l+c) + (lJ1+c+i11:,J/{1 + l(l+lJ7}(1KJ)}
- ---------~;=:::;::;==;::;:::;---:__--

1 + lblltl+u1Jtl+vJ/d

Fig. 5. Assimilation of rounding errors in fig. 4.

121?

alyst (and confusion for the student). Wheth•r
the customary assumptions can be validated for
any particular computer syst-em is one of the ma
jor issues to be discussed later. The arithmetic in
fig. 3 is done in such a way that E# = .0005 holds

Let us ass:in this confusing profusion of Greek letters
with th~ following question:

. for every operator. Finally, complicated Fortran
statement like

are interpreted as abbreviations for sequences of
simpler statements like •

The ways in which" a Fortran compiler might intre>
duce these invisible temporary variables is another
major issue to be discussed later; here we assume
each such variable ·to be, like all the others, restricted
to 4 significant decimals.

Fig. 4 shows the relation between the program or
fig. 1 and the values actually taken in storage by the
variables a, b,c,... . Each of the Greek letters in fig. 4
represents a rounding error about which we assume
only that it is smaller in magpitude than E = .000S.

Do there exist coefficients a: '/J, c, differing from
a. h, c respectively by at most a few ulps, whose
quadratic equation

1l:x2 - 211:x + ? = 0

has roots F;. differing from the computed values
r.,. respectively by at most a few ulps?

Yes~ there are many such coefficients l li, c; so
many that a novice might have trouble finding any!
One set is displayed in fig. S, in which the coefficients'
pcrturh:nion is confined to two rounding errors in
c. while each root's perturbation amounts to five
or fewer rounding; i.e., ignoring e2 terms, .

le-cl $:?elcl, lr-.71 :5 5£17 i for r +• r _. r,. r; .

In efftct. the program's first two rounding errors
ha,·e been carried backward to c while the rest have
been carried forward to the roots. We may compute

_{aC'(l +,i2)}bl 22S1 b2
~-{ ., = 2252 - =47.3690322. •• ,

b·(J + ll1)}a a

whkh Jiflcrs from the given value c = 47.39 by
about ~ ulps, and then verify that the roots~ =
1.01 '>7K .• and P-_ = . 977691 ... of the perturbed
equ:ataon ax2 - 2bx + ~ = O differ from fig. J's

1218

computed values'+ = J .0:?O and,_ = .9781 by
less than 4 ulps. •

4. A SLIGHTLY WRONG SOLUTION TO A
SUGHTL Y WRONG PROBLEM

Do not be deceived by the last few computations,
however small they make the errors seem to be.
They do not say how close the computed roots 't:
are to the ••true•• roots of ··the·• quadratic equation;
we have not yet identified the ·•true0 roots because
we hav~not yet identified "the'" quadratic equation.
Let that equation be

Ax2 - 2Bx + C = 0,

with coefficients A, B, C that are approximated by
the variables a, b, c represented in storage. The va!
ues of A, B, C may be unknown but, if the calcula•
tion is worth doing at all, we must have bounds for
them; for example, suppose the inequalities

lA-al/lal < JOE, IB-bl/lbl ~ l OE,

IC-cl/lcl < l OE

say all that is known about A, B. C These inequali•
ties imply that the true roots R+ are uncenain by
at least (actually much more than) a factor of about
(1 + 20.EJ because to two sets of coefficients satis-

fying the foregoing inequalities, say

I I-2c
I I The •!laded region

la the uncertainty
cau•ed by roundoff
and attriblaicld &o
data

The intended coefficients A, B, C arc at the point C
The stored coefficients a. b, care in the inner square.
'lbe perturbed coefficients a, b. c are in the outer rectangle.

Numeriml Mathemar,,,

A' • (J + I0f)a. B' = b, C' = (1 - 10£Jr.

A"•(I - lOe)a. B"=b. C"'=(J +JOe)c.

correspond roots satisfying·

so either (R:/R;) or (R ~/R:) differs from 1 at
least as much as (1 - l 0€)/(1 + 1 0eJ does. Com•
p3red with these relative uncertainties of JOE in
the coefficients A. B, C and consequently at least
20£ in the roots R+ , the additional relative un
certainties of 2E int" and Se in T+ added by round
off in fig. 2·s program seem unobjectionable. See
fig. 6.

Thus do we render the following verdict: The
program in fig. 2 is not guilty of objectionable
rounding error; the wrong answers in fig. 3 are
scarcely more wrong than they deserve to be. But
those answers remain wrong nonetheless! Is this
. ? • -.progress.

S. APP.EAL TO PERTURBATION THEORY

We have made progress. Even if the intended

coefficients A, B, Care not uncertain, but precisely
equal to the stored values a, b, c,• the foregoing anal-

• This is assumed true foi the remainder of this section.

TIie •malleat diagonal
of thi• figure la
btne1' than 20£ .

Each polnl tn thlt1
•pace rrpr""'•n111 thf'
root• ol • quadrallc
equaUon who"'" ~m
ct.nta ~re r.rr"Hnted
by a point 1n Ibo apace
above

'-------------.space Of roots <r.,r >

nae roots Rs of the intended equation (A.B,C) are at the
point R. The roo1s of th.: stored equation (a,b,c) are in the
inner lozcnp:. The roots ,~ of the perturbed equation
Co,b,c) arc in the mid~e lozenge. The computed approx
imations,~ are in the l)Utcr lozenie.

Fig. 6. Pictorial a~milition of rounding errors in fagure ,. A slightly wrong solution t" a slightiy wrong pr,;,blem.

::•. r.alum, -4 suri~Y of mo, arralvril 1219

, , 1, 1s hclpf ul because it allows the error made during
:!'Ir c:omputation to be summarized in a way that
IH'l"S subsequent analysis from the messy details of
rh~ program and the computer's hardware. Here is
the: summary:

The computed "roots•• rare close to actual roots,.

(i.e., lr-P'l/lrl ~ Se\

of a perturbed quadratic equation a-2 - 2bx + ~ 2

0 whose coefficients a, b. c are close to the given
values a. b. c

• (i.e., llt-cl/lcl ~ 2e).

All that is left of the program and its rounding errors
is the pair of values(Se,2e) and the following question:

How much can the roots of a quadratic equation
change when the last coefficient of the quadratic
is changed by at most a little?
This question submits to conventional perturbation
analyses. For example, we may regard each root R
of a 2 - 2bx + c = 0 as a function of c and compute
the derivative

whence the bound l&-1 = le-cl <2elcl implies that
the error IARI = IR-1'1 caused by changing c to c
is bounded by

.:. IAcl < elcl 2elR.,.R _ I
IAR.,.I-:- 21aR+ - bl - laR+ - bl = IR+ - R_ I

if e2 terms are ignored. These bounds are almost
rigorous; by applying results from Smith (I] or
Bl>rsch-Supan (2] we may verify the first few for
mulae in fig. 7, which provide rigorous a posteriori
bounds for IM f. These bounds do not assume any•
thing about the so~rce of the approximations; why
don't we just use these bounds and skip the foregoing
rounding error analysis? There ue three reasons
why.

First, a rounding error analysis, even if not entirely
rigorous, indicates how likely are the computed values
to repay the cost of their computation. Without that
analysis we must wait until after the computation to
discover whether it was worthwhile; could we perhaps •

An " fH.Jllcriori bound r o, roots:

let r+ ~d ,_ be given approximations to the roou of

P(:) s : 2 - 2b:/a + c/o • 0.

If r + • r _ then e:ich of the two regions

in the :-rlanc ~ontains one of the roots of P(:) • O unless
thuY: r~gfons ovcrl;ap. in which l!ase their union contains both
roots. If r + = r _ • r the region

cont:uns both roots. (Here the prime means derivative.)

An a priori bound r or roots:

If the roots o(a-2 - lbx + c = 0 are R •• and the roots of
a 2

- lbx + c(l +,-) c O are ; t.. then th; rcla live differences
6: s- I - r:IR: are bounded by

Fig. 7. Bounds for perturbed roots.

get a better answer sooner by repeatedly invoking a •
random number generator until its output satisfies ac•
ceptable a posteriori bounds?

Secondly, a posteriori bounds frequently cost at
least about :is mu~h as the computation they are in
tended to validate. and more if no advantage is taken
of what might reasonably be inferred about the role
of roundoff in that computation. Furthermore, the
computation of bounds is another computation sus
ceptible to rounding errors. For example, when the
expression (A •Z-2.•B)•Z + C is computed using the
coefficients A. B, C and 4-significant decimal rounded
arithmetic of fig. 3, it vanishes for Z = .9860, for
Z = 1.011, and for several other 4-significant decimal
values between them, despite the fact that the intended·
quadralic should vanish only twice (i.e., at
Z = .997-i,422 and Z = 1.0). Evidently, the a
posteriori bounds of fig. 7 cannot be applied to the
computed values of P(r ~> unless either those values
are computed more precisely (is double-precision
arithmetic obviously good enough?), or else those
values arc reconciled with roundoff. The quadratic
expression above is approximated in storage by a
computed value

1220 ~ Kizhon, A survey of error analysis Num~rical Mathematics

in which the Greek letters represent. as before. round
ing errors bounded by E; by means discussed in Adams
(3] we·may compute that roundoff contributes
roughly as much uncertainty as if the value 47.39 of
C were uncertain by about two ulp~. Consequently,
after four-digit calculations provide estimates
(0.02 :!: 0.0:?)/4 7 .51 for both values of P(r ~), the best
inference from fig. 7 places both desired roots' real
parts somewhere between 0.938 and 1.06, and
imaginary parts between ±0.04; these bounds are not
worth th,e effort to compute them•.

Cheaper bounds can be achieved by doing more
analysis first and then less computation. For example,
from •

we may conclude via fig. 7 that the desired roots lie
in the union of the two regions

tz-r :1: I~ Setr :1: I + 4elc/al/ {Ir+ -r _,..:se1r +1-Selr J} ,

whjch place real parts between 0.921 and 1.08,
hnaginary between ± .06. These cheap bounds are
poor too, but better bounds are nearby ..

1\ third reason for nut skipping the analysis of
roundoff is that it provides better bounds. Aware
that a perturbed quadratic ax2 - 2bx + c exists, we
may invoke the a priori bound in fig. 7; its proof fol
lows lines laid down by Ostrowski([➔]. Appendix B).
After inf erring IR= -r:t I/ Ir :t I $ v'1Te and recalling
'1':1:-i'~Vf1 1 $ SE we deduce that ead1 desired root
R:1: lies in a circle

(ignoring E'2 terms). Despite the fact that these circles
overlap, each contains one root. Consequently, if both
roots are real

0.943 <R_ < 1.02 and 0.985 <R+ < 1.06

whereas if they are a complex conjugate pair
R<J. =R, :t iR;

• A more delicate analysis shows that. for the values A, B, C •
under discussion here. 1'2 a: a 1 • e112 = 0. whence improv~d
estimates for P(r1) arc t0.0ls0.01)147.Sl. and 0.948. 1.05
and :t0.02 for the roots· bounds. But only a well-imple
mented Interval Arithmetic program is capable of such
delicacy.

• 0.~8S < Rr < 1.0:? and -0.03 < R; < 0.03 .

TI1ough better than before: these bounds are still
-three times wider than they could be.
• l11e foregoing few paragraphs are not intended to
disparage a posteriori error b~unds; these bounds are
invaluable for validating results of long calculations.
and for sensitivity analyses. For example, if our coef
ficients A, B, Care uncertain by, say, S ulps each then

• P(r1) must be uncertain by ro\lghly ±0.15/47.SJ and
the desired roots must be unce.rtain to an extent not

• grossly overestimated via fig. 7, namely

But when A, B, Care known precisely the a posteriori
techniques m:iy be hampered by a restriction to arith
m~tic no more precise than was used to compute the
approximations under test; their bounds may be no
better than if A, B, C were uncertain by about an ulp
each.

In our example the limitations of 4-digit arithmetic
can be circumvented hy an old trick; observe that the
substitution x = l +)' changes 47.5 Ix2 - 2 X 47 .45x
+47.39 into a new quadratic 47.Sly2 + 2 X 0.06y
+ 0 whose coefficients happen to be computable

• precisely with-4-digit arithmetie.-We·sltaH return to • ·
this trick later.

6. HASlY JUDGEMENTS

.. The Purpose of Computing is
• Insight, not Numbers. "(1962)
•-n,e purpose of computing num!Jen
b not yet in right, "(1970)

ll.W .Hamming

At this point the tired reader may be tempted to
draw from th~ foregoing mass of arithmetic some
wrong conclusions:

1. Error analysts are nit-pickers who delight in
finding last-figure errors in ·other error analysts' cal
culations, and don't do much else. This may be true,
but it is not the right conclusion.

2. Since error analysts cannot solve a problem as
given. but must first imagine it to have been altered
by an ulp or two here and there, they cannot legiti•
matcly protest when the arithmetic unit of an elec
tronic computer prJduces results no more wrong than
if every operand were first perturbed by an ulp.
That this is quite wrong will be apparent later.

W. Kal-,11n. A zun,ey of er.or 11nalyri! 1221

.~. A rrincipal source of error in numerical ,compu•
uiuu1 is cancellation. which should therefore be
ju,ilf~J or circumvented whenever possible. This is
,, rung too because cancellation ~annot create error
J~spitc contrary appearances in ligs. I anJ 3; more
,,wr. artful cancellation can help diminish error, as we
shall see.

TI1c correct conclusion is this:
Error analysl!s, especially those conc..-emed with

roundoff. are so tedious. so mud1 nastier than the cal·
culations they are intended to validate, and so fre
quently unrewarding. 1hat they should not be in
flicted inconsiderately by one man upon another.

Why, then. inflict such an analysis upon the reader?
My motive now is the same as it was when I re

ported [S) on modifii:ations to the IBSYS operating
system on the University of Toronto ·s IBM 7094-11
and their impact upon a library of numerical sub•
programs:

" ... users of these subprogranfs need not supple
ment their own competency in mathematics,
science. engineering or the humanities by a hyper
fine proficiency at both numerical analysis and the
debugging of systems programs ... "

.. For as long as electronic computers have been •
in use (since 1949 at the University of Toronto),
there has existed a steadfast policy to widen the
range of intellectual disciplines that might benefit
from the machine. That policy is partly respon-
sible for a decline in the numerical sophistication
of users. a decline which has yet to be compensated
by an increased sophistication in the programs they
can use. Despite intensive attempts to educate
them in the arts of computation, too many new
users attribute to the numerical library subprograms
the infallibility of a mathematical proof. They shall
be disillusioned. To what extent can their disillu
sionment be written off as part of their education?
To what extent can their dissatsfaction be traced
to shoddy computing systems? There is room for
improvement in both tl_1e quality of education and
the quality of computer performance. But you
cannot teach an old dog new tricks, and you can•
not teach a new dog very much. Therefore the bulk
of the improvement must and can come in the
performance of computer systems."
From a numerical analyst's point of view computer

systems have improved mainly in speed and storage
capacity since those words were written, but have de
teriorated in several othet respects. Of course, there
ilr~ exceptions. For example, the elementary function
iubroutine library• supplied for Fortran on IBM

System/3t0 :r.~chiHes by HironJo Kuki of i.he Uni•
vcrsaty of Chh:a~o is .i triumph "f ~rsistent diligence
over tht nastinc=ss of hexadecimal ari th me tic, but ac•
cordin~ h> Cody (6) tht high quality of that library
is at~ pi,al of ..:urrcnt commen:ial prat.:tice. Furtber
murc th.:sc subprograms. like other packages of
sd~ntitkally ori~nted subprograms Jistributed
variua)ly by computer systems• manufacturers, user
organilatiuns like SHAR~. software firms, universi
ties and other major researd1 centers. tend to be
cluSc!ly tuned to some specific m3chine or operating
syst.:m and go out of tune when moved. The same is
true of s"me of the ostensibly machine-independent
pru~rams published in various journals .of computing
and numerical analysis. The fault rarely lies in those
programs as published; more often it lies in a com
puter system described as ··compatible with XXX
(ex'-'l.!Pt for YYY)". Wherever the fauit may lie, the
result is the same; tl1e computer user is obliged to
learn more about the details of the programs and of
his .:omputer system than he had intended.

\Vl1at would happen to our society if everybody
who wished to use a telephone, a television set, a car,
a detergent. a plastic toy or a computer were obliged
first to learn at least a little about how it was mt 'e
and how it works internally, and then to test it him
self for hazards and other surprises?

An environ·men t in which a computer program can
operate reliably on any of several computer systems
can be achieved partly by a measure of sJandardiza
tion, but mostly requires that attention to detail
which. by eliminating anomalies and arbitrary restric
tions. promotes economy of thought. The assertion
that a program is machine-independent and reliable
is worthless if it is not susceptible to both analytical
and experimental verification. Here is where error
analysis .:an make its contribution, not so much by
proviJmg error bounds for specific numerical proce
dures as by providing a rationale which, when com
bined with an harmonious computing environment,
assures that such bounds will be found without exor
bitant intellectual effort.

Computer systems. hardware and software, are not
coming into ham1ony with the rationale of error
analysis. I shall support this contention with examples. • TI1e examples are contrived; they are artificial because
the complications of real computations tend to dis•

• Some of these programs are described in IBM System/360
Fortran IV Library Subprograms. Form Cl8~596, and
others in Kuki and Ascoly (7).

!

'

- -.: .

1222 W. Kah4n, A IU'11r)' of mor onaly1l1 Nu~ril:ol Math~nuzti~s

tract attention from the roots of disharmony. They
are designed to show why error analysis on today's
computer systems is turning into necromancy. If
they help hardware and software designers learn a
~ttle more about error analysis, and if error analysts
learn a little more about hardware and software, and
if we collaborate, we can re<stablish enor analysis as
a humdrum scientific activity from which most com~
puter users may safely be spared.

• 7. BACK TO TI-IE QUADRATIC ..

We saw that fig. 2's program approximates. to
within a few ulps, the roots of a quadratic equation
whose coefficients match the given coefficients to
within a few ulps. From this we inferred, without
further reference to that program, that the com-
puted roots match the ••true., roots to at least about
half as many significant figures as were carried during·
.the computation. Since a program which loses half the
rigures carried seems less than exemplary. we are led
to three questions:

1. Is the error analysis realistic?
2. If so, can the program be improved?

. • 3. If so, is the improvement worth its cost?
We shall see that the answers are respectively:

1. Yes.
2. Yes, on most computers.
3. Yes, on some computers. in some dialects of

Fortran.
That the error analysis is realistic follows from

the sharpness of the assertions in fig. 7; Smith [l]
bas shown the a posteriori bounds there to be pessi
mistic by factors not much larger than:?, and the
a priori bound's inequality becomes equality when
1' > 0 and'+ = ,_. Hence it follows that. however
many figures the program may carry. examples like
°f Jg. 3 must exist for which half the figures are lost.
1he loss can be traced to those rounding errors µ 1
and Ill in figs. 4 and 5 which are interpretable as per•
turbing the coefficient c. Were those perturbations ll;
with 1µ11 < E replaced by smaller lll;I < £2, whence
the new perturbed ·coefficient c would satisfy
le-cl < 2e2 lcl. the a priori bound in fig. 7 would lead
to new bounds like

IR:t-,:tlllr:tl <"2Je+ 3.6e

instead of the previous ../ITE + Se. In other words,
roots accurate to nr:arly sin~e precision could be ob
tained by evaluating tt:.e products It•.=-,_ lf'dA•Cand

subtracting them in double•pre~ision before rounding
•• the result to a single•precision Din fig. 2.

Despite the fact that the hardware of many computers
provides easy access to the precise double-length pro•
duct of two single•precision numbers, today's pro
gramming languages tend to obstruct that access; and
future hardware designs could respond to its conse-·
quent disuse by eliminating it. For example, in the
older dialects of Fortran IV on the IBM 7094
(IBSYS versions up to 12) we could get what we
wanted by replacing

in fig. 2 by

DOUBLE PRECISION DD
DD=B•B
D= DD-A•C

The old compilers recognized a double-precision cor.
text in which truncation of B•B and A •C to single•
precision did not occur. Today's compilers obstinately
truncate, thereby producing a result no better than if
DD were merely a single•precision variable. To achieve
what we want now we must write

D = DBLE(B)u2 • DBLE(A)•DBLE(C) ;

which appends zeros to the right of A, B,.and C's
values and goes through lhe wasted motion of two
full double-precision multiplications.

While at the University of Toronto, I circum
vented this foolishness by adding a built•in function
DSIC to our Fortran compiler, thereby permitting
simply

to yield the desired result. DSIC accepted simple
sums and products of single•precision variables and
produced their doubly-precise evaluation. This func
tion found wide application, especially for doubly
precise accumulation of scalar products of single•
precision vectors. and rendered many matrix handling
programs m<'re nearly transparent by freeing them
both from ~·•r.hine•hmguage subroutines intended to
accomplish the same effect and from subtle errors
induced by arbitrary and easily forgotten implicit
parsing rules. DSIC was very fast on the 7094's
Fortran IV version 12 since no superfluous in•
structions were generated; some of this speed w2s lost
during the transition to version 13.

1223

PRir.RAII! !=ILLY <INP11T' UUTPUT' TTY'i~T t tAFtl~ iT\·aun
X : l .~ + 3/2
Y : I .P + C3/2)
lfRITE Cl,1> 7., Y
F'>1t'II\T(l9X, •I .a + 312 : • ,n. 2.,x.• I.A + (3/2) : •• ,~.2 ,I>
$TOP
U)

BEGI• r.xEC~TlfJI SILLY

1.1 ♦- 3/2 : 2.~11 1.c, + (3/2) : 2.l'tl

. STOP • SlLLY
>

Fig. 8. Never underestimate the_ power of parentheses.

Th~ issues at stake here go beyond convenience
and efficiency; they ~ear upon our ability to say
what we mean or mean what we say when we use
programming languages. For example*. in PL/I we
fmd

25 + 1/3 = 5.333... with FIXEDOVERFLOW,
but

25 + 01/3 = 25.333

One of the Fortran dialects used on CDC 6000-class
machines allows mixed-mode integer and real arith•
metic to give the results shown in fig. 8, which was
taken off a terminal connected to Berkeley's 6400.
Some compilers cause different values to be assigned
to

Y = X + 3.14159 and Z = X + 3.1415900000,

whereupon· arithmetic comes to depend not upop the
values of numbers but upon accidents of notation, as
if we could divine something more than its value from
a number by looking at the way it is written.

Despite the ascendancy of computers, mankind will
continue to hold that

3.14159 = 3.141S900000:;: 3.1415900000 ...

= 314159/100000,

and none of these· digit strings is correctly a substitute
for the transcendental ,r = 3.14.1S9 2653S ... or for the
interval (3.141S8 5, 3.14159 SJ or for the integer l,
nor can the unique rational number they represent be

• This example is drawn from p. 231 of IBM Syitem/360
Operating System PL/l(FJ L11n,u111e Be/erena M1111Mol,
File 4S360-29, GC28-8201·3.

represented by a single binary floating point number
in a computer. Of course approximation is necessary,
but when one number in hand must be approximated
by another the approximation should ideally depend
upon the value of the first number and upon the con
text in which the second will be used, not upon how
many digits are alleged to be 0 s~gnificant". These
notions have been explained lucidly by De Lury (40)
and are realized in Algol on at least some com-
puters (e.g., Burroughs B5500).

In a properly designed computing environment,
both digit strin~s 3.141S9 and 3.1415900900 should
be converted to the same binary approximation in
otherwise indistinguishable contexts; whether they
are approximated to single- or to double-precision
should depend only upon that context. Similarly,
whether the computed value of A •C will be retained
in double-precision or rounded to single-precision
should depend upon the context in which it appears
and not upon the ostensibly single-precision formats
of A and C. whose values may, like 3.0, be in no way
imprecise. We should have the option to round
A •C's value to single-precision by writing, say,

as I used to do at 'Ioronto. Then the language de
signer can choose any convenient and simple conven
tions whereby implicit RNDs or CHOPs ·or DS/Cs may
be understood to be compiled into any ·expression in
appropriate places; e.g., when we write simply

we may read

D = CIIOP(CHOP(B•B)-CH(?P(A-C)).

I

1224 W. Kolum. A sura•ey of error Qflll('~•sis Numerical Mathematics

And if we dislike what we read we may write instead

and read

to which now corresponds a computed value ,.
If= (1+a)(b2-ac) with lal < f .

This last equation is not quite accurate. It would
be true (if DSJC were implemenicd tJ1ere) on IBM
System/360 machines now that they retain a guard
digit for double length arithmetic. But the 7094, like
most other computers. does not retain such a guard
digit, and consequently may discard prematurely the
last few digits of the smaller of two double-precision
numbers being subtracted. though the difference will
not then be in error by more. than if instead the
larger number were first altered by one ulp of double
precision. This corresponds to computing (1.0-
0.9999 9999) using "eig.,t significant figure arith
metic"' in one of the following ways:

(lib/BM 7094.
double precision)

1.0000000
-0.999 9999 I

0.000 0001-10-1

(lilc~ CDC 6400,
sing/~ precision)

t.000 0000
-0.999 9999 9

0.000 0000 1- 0

Doing arithmetic this way is sometimes excused by
the argument, which we shall demolish later. that
nobody can say exactly what the last di~it of a high
precision number ought to be. so nobody should care
if it is altered a little.

It appears that the value computed for D above
will satisfy

with

(The factors 2 are appropriate for the 7094, a binary
machine, with E = 2-26 for chopped arithmetic.) The.
final result does not seem to deteriorate much; we get

for the relative error in the computed roots. How
ever. when the comput~d roots are complex with
relatively tiny imaginary parts we may wonder
whether those tiny numbers are accurate to nearly
full single precision. They are; this does not follow
from the inequalities for µ 1 and µ2 given above but
can be proved laboriously to be true for every major
North American computer with double•precision
hardware; the reader is urged to try to prove this
claim for his own computer.
• We are now almost in a position to which every
conscientious error an:ilyst aspires from time to time.
We have a program which will solve a familiar prob
lem accurately, at a cost (on decent computer sys
tems) which is scarcely more than minimal. without
having to inflict upon our program's users any more
of our error analysis than the following simple state
ment:

Given the single precision coefficients A, B, C of
the quadratic equation Ax2 - '2Bx + C = O. the pro
gram computes the roots correct in every respect to
within a few (10 on an IBM 7094) units in the last
place quoted, except for over/underflow.

8. OVER/UNDERFLOW

Oh, the little more, and how much it is!
And the little less. and what worlds away!

By tht Fire-side
Robert Browning

/vJ earlier report [S) describes modifications done
to the IBSYS operating system, on the IBM 7094-II
at the University of Toronto. which were designed to
shield ordinary computer users from the nuisance of
those over/underflows whic!l could reasonably be sup
pressed, circumvented or ignored automatically by a
well dt$igned computer system. After the modifica
tions were introduced, most over/underflows became
invisible to users, pr~vably exerting no adverse effect
upon d1eir computations, and the persistent over/
underflows were rendered relatively easy for each
user to locate and cure as he pleased. I have the im
pression that over/underflow became far less of a
nuisance on Toronto's IBM 7094, despite its normal*

• The modifi.~tions included rrovision for ceruin kinds of
Fortran cal~ulations to be carried out efficiently and
conveniendy with mapitudes as extreme as 10.0 .. (d0• • 1:
but these were rarely used.

W. K11hon, A a,n~• of error onolyri1

11,m1r,.:r rang" of 1 o-38 to 10+38. than it is now on
tkrl,,.dl!y·s CDC 6400 with a far wider range of
llr~94 to Io+ 322. The reader may form his own im•

1,r.:s)iun by c~mparinµ what he must do on his com•
put.:r with what we used to do on the 7094 to cope
\\ ith over/underflow when solving quadratic equa-
tions. 1:,

Our object is to replace the phrase ··ex,·ept for
m·,•r/ii11ZlerJlmv .. above by this statement:
. Owrllow is reported if and only if a result must •

overflow. and similarly for underflow, a."'ld over/
underflow in one result does not degrade the ac•
curacy of the other.
A program matching these specifkations is surprising
ly u~fol. 'Quadratics with exorbi.t:int:_,. large ·or small
coefficients arise. for exampl~. when solvir.g large
dimensional determin3llt~ equations by certaiD
iterative methods. and the fact that those coefficients
may easily be re-sc:iled to reasonable magnitudes is
no excuse for not doing so in the program which
solves the quadratic. Failure to re-scale the coefficients
can lead to over/underflow during the computati~n of
Din fig. 2. and hence give no solution or else a wrong
one. Furthermore, occasions arise when one seeks a
distinguished root of a quadratic whose coefficients
d~pend upon a parameter in such a way that the un
wanted root tends to zero or infinity; this is why we
do not want over/underflow in one root to contami
nate the other.

Here is one of the algorithms that work. First dis•
pose of the possibilities a= 0 or c = 0. Then choose Ii
to be a power of the radix (2 on the 7094) such that
neither a/h nor c/h overiunderflows and yet
l(a/h Xe/Ii)I lies relatively close to 1, say between ¼
and 4. {The best choice for his not worth discussing
here.) We used to compute h in various ways, some
times by tricky machine-dependent integer-arithmetic
manipulations of a and c, sometimes by logical bit- .
manipulations, but always by means available through

our version of the Fortran compiler. Next cc,mpute
a =a/h. c: = cih and i, = b/h. lf i, or J"i;; b2 - ~cover•
flows. suppress that overflow mdication and produce
r + ~ h/(~a) and!-* (~d/b as roots of ax2 - 1bx
+ c = 0. If b or· bl underflows. suppress that under•
lfow indication and replace b by 1.cm and continue.
Otherwise. ~ompute the roots as usual using a. b, c
in pla~c uf a, b. c. Remember that J must be com.,
putrJ with a double precision subtra~tion. Each root
will he computed as a final quotient in which no
over;unJerllow can occur unless it is very nearly un•
avoidable and must be reported.

TI1e only loose end in the foregoing algorithm is
• how to d1oose h,'~hich we shall leave loose with the

observation that I, can generally be constructed
easily anJ quickly in Fortran and in machine
language. but not so quickly in Algol. We must also
suppress irrelevant over/underflow signals, and enable
the relevant ones; here is where the advantages of the
7094 system became apparent. because they involved
few explicit tests and almost no loss of time. One
complete program to solve a quadratic properly took
ltss than ::?0% longer to execute than did a naive
program based upon fig. 2.

TI1e algorithm is expensive to implement on a COC
6400 for sever~ reasons. First. the machine gets con•
fused when asked whether a number is zero or not
(see fig. 9) because it sometimes tests only the first
12 instead of the first 13 bits of a floating number
(see CDC's 6400/6500/6600 Computer Systems
Referen~e Manum. Pub. no. 60100000, rev. A (1969),
pp. 3-18). Secondly, the machine sets underflowed .
numbers to zero without any warning indication;
this i:auses problems like that in fig. 10 where the
value of Y differs from 1.0 by rather more than could
be attributed to 11 rounding errors. 1hirdly, many
tests are required. one after each arithmetic opera•
tion susceptible to overflow. in order to avoid being
kicked off the machine for attempting to use arith•

PRDGRA" NAUGHT <lNPUT,OUTPUT,TTYOUT,TAPEl:TTYOUT)
z = o.~ •• ,.,,

•
I
•

ZZ : Z+l
lF< Z .HE. O •• AND. Z•IOO •• Ea. O •• AND.

Z/0.01 .Ea. o. > WRlTE<l,I> Z, ZZ
roR~AT(44H Z .NE. o. BUl Z•IOO.: z,0.01: o • . AND , /
• PRlNTlNG YIELDS Z: •• IPEl2.4, •, Z+Z: •• 1PEl2.4 >

STOP
END

BEGIN EXECUTlOI IAUCIIT
Z .IE. o. BUT Z•I00. : Z/0.01 : O. AID

• PRlNTlNG YIELDS Z : o. • , Z+Z : i.131'•294
STOP NAUGHT

Fig. 9. Is Z r.ero or nauttht?

l

1226 It'. Kohlln, A run~,· of nro, onol_vsis Nummml Mathematics

PROGRAl'I WHY <1 NPllT ,OUTPUT. TTYOUT ;TAPEl:ttyoun
Z : 2.ouc2 .. ,0 • 48)
'C : 1.D/Z
A : C..C
It: A*J0.0.•9
D: A+8
X : <B+D)/A

Y: C 0•7.+B>t<C•X+D> ,,c U+B,X)/CC+D/X))
IF(A.GT.O • • A:J:>. 8.GT.o •• AND. c.Gt.o •• AND.

• D.GT.O • • AND. x.~T.o •• AND. Y .GT. 2.,,,
• > VR1T£ CJ,1> Y

I FORl'IAT< ,x, •WHY DOES Y: •• r1,.11, • t• >
STOP
£1D

BEGIN t:KECUTlOR VHY
WY DOES Y: 2.9999999987, 1

STOP .VHY •

Ffa. 10. Why is Y so far from 1.0?

metically a previously overflowed result. The machine
can also operate in a mode which allows continued
operation upon "infinities" and '"indefinites", but
this liberal mode is rarely used and caMot be in
voked nor repealed from within a Fortran pro-
gram. The reason why the liberal mode is rarely used
may be that any rules for manipulating the symbols
oo (infinity) and~ (inde fini tc) must be potentially
misleading: the following example compares what
should be expected with what the 6400 actually com
putes.

Exp~cted Obie111ed
Pto,,am •muts ?dues

X• 2.0 .. 1069 21069 21069-

yc4,o·•x 21011 -Z a Y-2.0•(X+X) 0 ,
T • (((Y-X)-X)-X)-X 0 or-& •!
u- 1.on •or-& O!
V•X/Y ¼ or-& O!

Finally, CDC"s Fortran compilers have nothing
equivalent to DSIC, and one must use DBLE ineffi-
ciently instead. •

If numbers like 10300 were sinful and numbers
• like 10-JOO obviously negligible, the design of the

6400 would make sense. But why draw the lines
there instead of at J0 150 and 10-150? If over/under-.

• flow is so obvious a mistake, why does it happen to
experienced professionals like Fettis and Caslin [8]?

Integer overflow reveals another notorious defect
·in most compiler designs .. as Korfhage (9) could
testify. On the CDC 6400 the defect is enshrined in
ha~dware which gives no indication of integer over
flow. In fig. 11, obtained from our 6400, every arith
metic expression is computed correctly, but J is in•
correctJy compared with K because J-K overflows.
Fig. 12 has two programs which differ only in that*

D02 N= l,L, l

has been replaced by

INCREM= l

DO 2 N = l, L, INCREM .

The myste_rious_ diagnostic tells the programmer that
-he has abused the computer, but· does not "tell how.
It turns out that a division by zero occurred in the
first program's statement 2. All can be explained by
the observation that integer arithmetic in CDC's
Fortran is carried out sometimes modulo 217 - l,

• The terminal symboJs .. ,1" could be deleied without alter
ing the results.

PRDGRAfll GOOF CllPUt.OUTPUT,nvout,TAPEl:ttYOUT)
J : ~•40

•

DO 11 L : 11 18 •
11 . l : l+l

J: l + 3
I: •i
lF(J .GT. 0 .AND. I .LT. 0 .AID. J-11 .EQ. a

• .AID. J .LT. X > WRITE (1,l)
I fGRftAT<• lfKY 15 0 c (1♦3) c •1 c O T•>

STOP
EID

8EGJI EXECUTION 600F
WY IS O c <1+3> c -1 c .o 7

STOP GOOF

Fig. 11. lntegen out of order.

,
I

1,0 .,1t'd Papen .

C
C
C

I

W. Kahan, A a,,.ey of ~m,, 11Mlyrl1

PffOGRA" PUDDLE <INPUT, OUTPUT, TTYOUT, TAPE1:TTYOUT>
TO CQIIPUT£ THE lNFlNITE SUPI OF r./(1 + N••.U FOR N: 11 2, 3,•••
CORRlCT TO 10 FlGUkES, JUST ADD THE FIRST JOOO~O TERl'IS AND AN
EULER-MACLAURIN CORRECTION.

EPS : O. I•• 1O
L: 3.0ISQRTCEPS>
WRITE CJ, 1> L
FOR~ATC3X1 1IH TM£ SUPI OF, IT, 24H TERPIS NICI+ N••J> JS>
SUII : o.
DO 2 I : 1, L, I

Elf: N
2 SUPI : SUN + EN/C 1.0. + Efl••3 >

WRITE <l,3) SUN
I FORMAT(IJX, F 16.12., I)

SUPI: SUM+ laO/EI
WRITE <1 1 4> SIDI .

~ FORl'IATC3X1 21H tHE JIFlNJ·TE SUII JS / JX,FJS.12)
STOP
END

.BEGIN £1.ECUTlON PUDDLE
1liE SU" OF 300000 TERMS I/Cl+ N••3> IS

·USER CPU ARITH-ERR0R
11 DETECTED BY l'ITR I fl. : 0074S, ..

PROGRAM FIDDLE <INPUT, OUTPUT, TTYOUT, TAPEI:TTYOUT>
C TO COMPUTE THE INFINITE SUl'I OF NICI+ 111 .. J) FOR N: I, 2, 3, •••
C COBRECT TO 10 FIGURES, JUST ADD TH£ flRST JOOOQO TERMS AND AN
C EllLER-HACLAURl~ CORRECTION•

EPS : o. 1••10
L : 3 .01SQRTCEPS>
WRJTE <1, I> L
FORfllAT(37.,11H tKE SUl'I or, ?7, 24H TERMS I/Cl+ N••J> IS)
SUM: o.
lNCRDI : I
DO 2 I : I, L, IIICREII

EN : I
2 SUPI: SUl'I + EN/CI.O + ENt•J>

WRITE Cl,3). SUl'I
a· FORPIATC IJX, F16. l21 /)

SU": SUfll + J.O/EN
WRITE <1,4) SU,.

4 FORl':AT<3X,2IH THE INFINITE SUM JS / 3X,F16.12>
STOP
EID

BEGIN IXECUTlOI FJDDL£
1ME SUPI or !00000 TERNS N /(I + N••.S) IS

•• I 1164060.l830

11(£ INFINITE SUPI JS
f • I 11609.S 7163

SJOP fJDDLE
►

Fig. 12. What did the rust program DO wrong?

sometimes modulo 248 , and sometimes modulo 9. A HORROR STORY
259 - 1, depending upon the whims of the compiler.

Incidentally, although the series has been summed
using 48 significant bit (about 14 decimal) arithmetic,
the two 13-decimal·numbers printed out have been
contaminated by roundoff in their last 4 digits; the
correc~ values are 1.1116 4060 4896 and
l .l 116 4393 BiJO respectively.

•• ... lo maJ fabbro biasima lo ferro ... "
(... the bad blacksmith blames the iron ...)

Convivio I xi
Dante Alighieri

1227

I hope the reader will not think that I think com
puters are conspiring against me alone; that would be
a paranoid delusion. •

Mr. Z. was despondent when I first saw him. A
graduate student of aeronautical engineering, he was
trying to augment boundary layer flow past wings in

1228 W. Kahan. A rurv~y of ~rror ona(,•sis Numericol Mathemor1n

a way whkh mi~1t 1.'llhJn"l! their lift at low speeds. If
his idea worked. his reward ...,-ould be a Ph.D. thesis
and a job with :i lo~al lirm J~i.i~ning STOL aircraft.
He was testing his 1J"·a un ,,ur unm:rsit)··s computer.·.
then an IBM 7090. b} solvin~ numcric-,.dly a compli
cated system of differential ~quations. finally pro•.
ducing a graph I rom "tud1 he 1.-uuld read Success or
Failure. He had just reaJ Failure.

Fig. 13. Mr. Z. •s ,r:aphs: It is thc.1:r:aph he Hoped toge~. S is
the graph produi.:ed by Sm~h.··rn:,.:ision ~omputation, D is- the

graph prod1.u:" J by Uuublc•pr.:dsion computation.

Fig. 13 is a simplified pkture of his program's out
put. The close agreement between iingle- and double
precision results, an,.r their disagreement with his ex
pectations, seemed to prove conclusively that he '11ould

. look for a new thesis topic. .
At that time I was testing an ~ntended replacement

for IBM's single precision lo!!arithm subroutine. Of
course, I had proved mathematically that my new sub
routine was preferable to IB~rs in every way, but a
vestige of self-doubt indu~cd me to re-run several
users' programs with my logarithm substituted for
IBM's. Mr. Z.'s program was one of those re-run, and
one of very few whose results were altered appreciably
by the substitution. His a;raph S moved to position H.
I was alarmed because I haJ expected my improved
subroutine to produi:c sinpk-precision results closer
to double-precision. not further away; and Mr. z. was
surprised because he had no explkit reierence to
logarithms in his Fortran prot?ram. We soon dis•
covered where a logarithm lurked in his program; it
was in a sub-routine which I have simplified and listed
in fag. 14.

Here is an outline of Mr. Z. •s error analysis or his
program to compute 1-,X.G)= xGtX>l<X-1) for •
X> 0. He establish~d lirst that G(X) was well-be
haved; O < G(X) <$and ld 101? G(X)/d log XI< 2.
Next he checked that the computed value g(x} dif
fered from G{.T) b)· at most an ulp or two: g(x) =

C
,:
C
C

• H'NCTION f(X.G)
Given a function G(X) well-behaved for all X > 0.
this FUNCTION subroutine computes
F<X.G) = xG,X)/(X-1) correctly to within a kw
ulps.

I IF CX .LE. 0.0) Complain "FCX,G) undefined for X < 1,•·

2 If (X .EQ. 1.0) F:: EXP(G(X))
3 U: (X .NE. 1.0) F s: X .. (G(X)/(X-1.0))

RETURN
END

Fig. 14. Mr. Z.'s subroutine.

C (I +-y)G(x) for some tiny relative error-.,. Then he
verified that defining

F(l ,G) = lim F(x,G) = exp (G(l))
x-1

made F(X,G) continuous for all X > 0, and bounded
(1 <F<exp (I)<2.72) and, most important,
ldlogF(X.G(X))/dlogXI < 3. Now he knew that
F(X.G(X)) was a •·well-conditioned" function ~f X in
the sense that relatively small variations in the argu•
ment X could not cause much larger relative varia•
tions in F. Specifically, whenever the value x stored
in the cell called X was a good approximation to the •
intended value X, then the value F(x.G(x)) would
closely approximate F(X,G(X)). All that remained
was to show that roundoff during the computation of
what was intended to be F(X,G(X)) would produce a
computed value/ relatively close to F(x.G(x)).

He observed that writing (X-1.0) caused (1-o)
(x-1) to be computed, with a representing a rounding
error smaller than 1 ulp of (x-1). Similarly, the ex
pression G(X)/(X-1.0) would introduce another
rounding error 6 into the computed quotient, pro
ducing

y = (1-8:w(x)/ {(l-a)(x-1)}

-= .. (1 ~)(1 +-y)G(x)/ {(1-a)(x-1)}

-= (l+r,)G(x)/(x-1), say,

where '1 represents an accumulated error, due to round
off, of at most a few ulps. Now he made his first mis•
take; he assumed that writing X••Y in Fortran
would produce a computed value (l+p)x.V in which p
represents anpther error, due to.roundoff, of at most
I few ulps. Had d1at assumption been true, his con
dusion, that the computed value

t
l
t r

' W. Kahan. A r:uvty of mor onalym 122~

f= (l+p)x-" = i H-p)F(x,G(x))1+,i

matched F(x.G(x)) and hence F(X.G(X)) to within a
f~w ulps. would have been correct. His second mis•
take was to test his pmgr3m on only 31 values of X dis
tributed uniformly between X = 0.~ and X = :?.O and
on about as mapy values of X outside that interval,
these tests could not reveal his first mistake. •

Why was his assumption about X••Y wrong? It
would have been correct for a log•log slide rule. but
at that time our 7090 obtained x .. v by computing
EXP(Y•ALOG(X)). and the logarithm program then
(as on many other computers now) produced not logx
but (I+).) log {(l+~)x} with~ and leach representing
errors of about two ulps. The ei:ror l was introduced
through the familiar formula • •

logx = log((l+z)/(1-z))-½ log 2 with

puted on the 7094 for x slightly less than 1 . the hard
ware first discarded x·s last f 54th) bit and then did
the subtraction. The resulting value f approximated
not F. as desired. but F112 or Fl/3 or Fl/4 or ... de•
pending upon x's last few bits. Mr. z. cured this prob•
1cm by substituting the expression ((X-0.S)-0.S) for
(X-t .0) in his program. whkh is nQw ntachine-inde-

•pen.dent .:ind runs correctly on any computer system
with res1~ctable exponential and logarithm sub
routines.

Was Mr. Z. clever or just lucky? How often are
engineers baffled by subtly wrong computations.
thwarted in otherwise exemplary endeavours, and
unable to uncover what went wrong? And how often·
is an engineer who expresses doubts about the com•
puting system he must use regarded as if he were
Dante's bad blacksmith?

z = (2x-v'2)1 (2x+v2), 10. PAUSE FOR THOUGHT

because the value stored for "2 was rounded and
also: was rounded. The end result was to compute
f =:- F1+t/log:x instead of F, and this result was ve~·
wrong whenever x differed from 1 by only a few
ulps.

My new logarithm subroutine• took care to keep •
l = o, caused __ x .. v Job~ approximated by (l+p)xY
as expected. and allowed Mr. Z.'s program to give •
the results he desired in single-precision. But why
were his double-precision results different? At first
we thought the double•precision DLOG program con
ta4led a flaw too, but it turned out to be unexcep
tionable. Then IBM issued a revision to the double•
precision package on the 7090 which made graph D
go away; new graphs computed in both single• and
double-precision confirmed Mr. Z.'s hopes and he was
~~-~a~~- •

A few months later the 7090 was replaced by a
7094 with built-in double-precision hardware, and
graph D came back. We soon discovered that the
double-precision subtraction hardware on the 7094
lacked a guard bit which the 7090's latest softwaie
had pre~rved. Consequently, when x -1 was com-

• This program was distributed to other IBM 7090/7094
users via the SHARE organjzation in June 1964; the rele
vant SDA numbers are 3190, 3191 and 3192. Logarithm
and expoaenWll subroutines of comparable qualitY, coded
by Hirondo Kuki. arc now part of· the f onran libraries
distributed with IBM 7094 and System/360 machines; -
also Kuki and Ascoly l 7) and references cited therein, and
(20).

G'f"
Mr. Z. 's program in fig. 14 has been aetticized on

several grounds. It is alleged that. since X must be
uncertain by an ulp or two, the difference (X-1.0)
can contain no significant figures when Xis very
close to 1.0, and this is why the program deserves to
fail. Similarly, the expression (X. EQ. 1.0) is sinful.
But such an argument has two flaws.

First, there is little significance in the number of
"correct'' significant figures in a- calculation's inter•
mediate results. Matrix calculations frequently gen- .
erate intermediate results among which are numbers
agreeing in not one figure with what would have been
generated in the abse~ce of roundoff, but the answer
at the end is correct! Another example is provided by
solving the differential equation

ay - 2by + cy = 0, given y(0) = Yo and y(O) = .Yo ,

(y=dy/dt) in terms of the roots r :1: of the quadratic

ax2 -2bx+c~0.

If the roots are real and distinct the solution is
: -.•

(
• sinhut) y(t) = Yo coshut+(~0-t010) -. -u - exp ut

where u = (r + -r _)/2 and u = (r .f+r _)/2; if the roots are
coincident at r the solution is

.J

1230 W. Kohan. A"'"'~>' of~"°' 01111/ysis Numerical Mathematics

1f the roots, 1 = v ~ iw arc complex b:ow we sec the advantage in a subprogram which
computes accurately the root~ of a quadratic equation
as given even when its coefficients are uncertain to an () (

. (• sin wt) Y t = Yo cos wt+ y0-uy0)--;- exput.
•. extent which may compromise half the figures in the

roots. Besides shielding its user from unproductive
thoupit. such a subprogram will prese~e relationships
implied by possible correlations among the errors in
the coefficients; such a subprogram cannot be the
weakest link in a chain of subprograms.

For modest• values oft the soJutibn_v(t) is a well
behaved function of a.band c even though the inter
mediate results. namely the roots r 't. may be ex
tremely sensitive to small changes in those coeffi•
cients, as we have seen. But the roots do not vary
capricio~sly. If we were to alter .irbitrarily those The second flaw in the allegation criticized above

appears when the allegation is cited in support of
certain hardware designs, like the CDC 6400's, which
neglect to cany guard digits for addition and subtrac•
lion. We have seen what happened to the expression
(J.0-0.9999 9999); now look at figs. ISa and 15b,
which were produced by our 6400 using binary float•
ing point arithmetic with '"48 significant bits". As/
runs from l to I 00, something bizarre happens for

· digits of ihe computed roots which differ from what
would have been obtained in the absence of round-
off, as we could if we regarded those digits as "wrong.,,

. we would do as much dama!!e to the value of y(t)
computed from those altered roots as if instead we
had altered the same number of tenninal digits in the
coefficients; in other words. we could capriciously
squander half the digits carried. If those ""insignifi
cant., digits are carried in the usual .way, the value of
y(t) computed from them will be quite satisfactory.

2 < J < 48 and/= 97, despite the fact that arithmetic
on the machine is provably monotonic.

• This restriction is imposed because
The problem revealed in figs. 1 Sa and 1 Sb could

be solved in any one of four ways. First, change the
compiler to effect a floating point comparison

lim y(t) ,_
may be.a violently discontinuous function of a, b, c, Yo
andj,o.

(X .EQ. Y) by using only integer arithmetic manipula•
tions; but this would occasionally malfunction when
X and Y are very different (recall fig. 11) and would

PROGRAN NAUGHTY (1NPUT,OUT~UT,TTYOUT,TAP£1:TTYOUT)
X: O.~
f : (" • 0.5••~B> + X
DO 2 J : 1, 100
X : X-2.0
Y: X• F
lF< X .EQ. Y .AND. <X-1.> .IE. <Y-1.>) WRIT£ <1,1) 1

I fOR~ATC• WHEN 1: •• 13, •, X .EQ. Y BUT X•l .NE. Y-1 •>
2 CONTINUE

STOP
PD

1£811 EXECUTION
WEN I : 2 ,
WEN J : ~ ,
lfKEN I : '4 ,
WEN J: 5,
VHEN l: &,
WEN I : , ,

~- l: ~ •
.,,,,,-- VHEN J: 42,

WEN l : .U ,
VKEN l : -1.\ ,
IIKEN 1: 4S,
VHEN J: °'',
WEIi J : 41 ,
lfHEN J : 48 ,
WEN I: 91 ,

ltOP IAUGHTY
•

IAUGKTY
X .EQ. Y
X .tQ. Y
X .EQ. Y
X .EQ. Y
X .EQ. Y
X .EQ. y
X .EQ. Y
X .EQ. Y
• Q.
X ... _. I

X .EQ. Y
X .EQ. Y
X .EQ. Y
X .EQ. Y
X .EQ. Y
X .EQ. Y

.11£. Y• I

.If£. Y• I
• .. ! • Y-1
.NE. Y• I
.NE. Y• l
.NE. Y•l

"'• 1 .1£.
.IIE. Y• I
.11£. Y• 1

X• l .1£. Y• l
X•l .NE. Y·l
x-a .11£. v- 1
X• 1 .IIE. Y• 1
X•l .r;t. Y• l
X•I el£. Y•l

': '

Fi,. lSa. How can I determine ~·hc:n X • Y but X - I • Y - 1?

I

\

'

'
,,..,;rtd Popm W. Kahan . .A. JUl"P~J' of mar analyr/1 . 1231

Pt!Dcr:~. tU.UGHTY <UPL'T ,OUTPUT. nvout. TAPE t:tTyCUT)
r. = o.5
F : <X • 0 • ~ ._ 4l' > + X
DO 2 I : I, 100
,c: X•~.O
Y : x•F

I
2

ro}~!r~- .LEw!:. ·::•~·./~i!•! :er: !le!·~)Bu~·u:.!, (!l¾! ~-I .,
co:,rnuE

STOP'
END

EEGJ N EXtCUTION NAUGHTY
"mEN
WHEr.
\'HEN
WHEN
\IHF.f.l
WHEN
\'HEU

2 •
3 •

" .
~ .
6 •
7 •
e • ti,HEr> _:.,,,~-~

1 .Lt. Y
'1. .LE. Y
Y. .LE. Y
X .LE. Y
Y. .LE. Y
Y. .LE. Y
1. .LE. Y
Y. .LE. Y

.....
\Jr.Et•
\:if[N
~HEk
W.EtJ
WHEfl
~HEN
WHEH
Wt'F.H

stnP
>

41 ,
42 , Y.

: 43 >'.
= u Y.
: 45 1.
= 4l\)'.
= 0 Y.
: 4t , Y.
= !17 ' '1.
HAU Gr.TY

LE. Y

C:UT
BUT
EUT
&UT
E:UT
f,UT

.Cat. Y•I

.GT. Y• I

.GT. y .. I

.GT. Y• 1

.ct. Y• I

.<.;t • y .. I

.ear. v-1

.t.T .
• • Y-1

.GT• Y• l

.Gt. Y-1

.GT. Y-1

.GT. Y- I

.GT. y .. I

.GT. Y-1

.(.it. Y• l

.GT. Y- I

Fig. lSb. How can/ determine when X < Y but X - 1 > Y - l?

occasionally allow division by zero in statement 3 of
fig. 14. Second, change the compiler to perform addi
tions and subtractiOfls pr-0perly; this would require
five instructions* instead of the two now executed, at
a cost of perhaps doubling their execution time. Third,
change the hardware so that the pseudo-round~g RX
instructions (which are rarely used now) will normalize
before rounding, and then alter some software to allow
advantage to be taken of this change; this could cost a
few million dollars if done for all CDC 6000 series
machines, but the problem would then be completely
eliminated.

The fourth possibility is to change the way we
think about numbers. Instead of basing numerical
analysis upon fewer than a dozen axioms, we could

• Cunently X1 c X~ - X3 is computed via the scquenC!CJ.

FXl X2-X3 or
NXl Xl

which I would replace 1,y

FXl X2-X3
NXl X1

.. DXO X2-X3
NXO XO
RXl Xl+XO

RXl X2-X3
NXl Xl

ad.opt a new "number" system like that suggested by
van Wijngaarden. with 32 axioms which, if not cate•
gorical, appeano be at least cortsistent. But if the
test of a scientific advance is the extent to which it
permits us to know more while obliging us to remem
ber less, such a new number system is not an advance.

Perhaps certain computer systems could be classi
fied as dangerously addictive hallucinatory drugs, and
compulsorily labelled:

66Waming. It Has Been Determined That This
Computer Is Dangerous To Your Mental Health."

If the reader runs programs on one of those com
puters he will not be thankful for the foregoing ex
pose. When one of his programs fails mysteriously be
cause of a misplaced comma in a FORMAT statement,
and when he has failed to find that flaw or any other
he can imagine, he may tum to these pages to see
whether one of the rare anomalies revealed above has
caused his trouble. How long will he spend on that
wild goose chase?

'\

1232 W. Kahan, A "'"'")' of tm>r ono{i•sis Numerical Morhemotics

11. MORE St:RI· .tlSES

.. Thin~!I :arc ~ldl,ru "h.tt they ~-cm,
Skim milk mJ"lucr.td~, ;a) cream."

H.ltl.S.Pi11a/01"
Gilbert and Sul11,·;m

Rounding error analysi~ may be full of surprises.
but it is void of maj\,r the~,rcms. There seem to be
deep reasons wh} this must be so, reasons which I
propose to sketch tll>W.

Many an error analyst has tried and failed to prove
theorems of the form:

"To compute XXX ..:orrcct to single-precision re
quires that YYY be computed using ZZZ-precision
arithmetic."'
Perhaps the foihm: is m~vitablc. for there is some pos
sibility that mad1ine-imJc:pcndcnt Fortran sub-
routines could be writtc:n tu ,,erform arbitrarily high
precision floating p,,int arithmetic without using any
but REAL variables~ ~c lxkker I IO J. We shall examine
a special simple exampk uf that notion.

Let us try to evalu:nl! S.v = ~·{XJ where N is very
large (N;;,-106) and ead1 ,\"J is computable to nearly
full single-precision as a fun~ti,>n of J and of SJ-l •
Such a problem arises m the course of solving ordinary
differential equations by t.lis~rct~ methods. The pro
gram

S=O.
DO 9 J = 1.N

9 S= S+ X(J)

actually computes

$n = ~~(l+~;l-"; with l~;I < (l+E)"+l-j - 1 .

Take E = 10-6 (as on. say.18~1 System/360 machines)
and n = N = 106 hl sec what ~l,cs wrong here; the loss
of accuracy could ~ WOIM' than in tJae second program
of fig. 12. A bctt1.~r pru~ram i) obtained by prefacing

DOUBLE PREC'ISIO~ S

to that above. dum~by rr1,la.:m!! f by roughly e2 and
introdudn~ littk m,,tl" ma-:crt.1inty to sn than is in·
herited from an Uth:"•rtJmt~ uf .1 few uJps in each
x• = (l+x;l.\j- \\hl•n c.•J .. ·h 1~,! <Ilk.say.But what if
clouble•prcdsll,n i) u11J\J1IJhl"• (ur if f represents
double•pm:isiun. anJ t11pk·1'h"l.•tsiun is unavailable)?
Can we still .:ompuu s,, = ~i U + t, }.\"j in such a way

that the quotient lt;f El is bounded independently of
; and" cx~cpt for factors like (l+E2)n?

The answer depcn<ls upon whether single-precision
addition uses a guard digit or not. If it does, the fol
lowing annotated program works:

.• 9

S= o.
c= o.
D09J = 1.N

Y ~ C + X(J)
T • S+Y
C • (S-T)"!"Y
S=T

10 aQ

c0 eo
Forj c 1,2, ...• n in turn

Yj a <xrci-1)(1 +rijl

lj s (fj-l+)'j)Cl+-r;)

Cj !!!! ((SJ-1-s;)(J+o;)+.,•;)O~j)

SUM = S+C (slightb· better than S)
• In + Cn :: ~7 Cl •t;>x;

Pr_o'lided h7jl < E, lril < £. lo;I < E and l'Y;I < E, it may
be shown that

1 + E; = (1+'1j) {l-o/0{(~+1-Jje2}.

• I published this program (unannotated) in 1965 [I l].
A similar program has been presented by Babuska
[12}, and a more complicated one by M¢ller [13] is
further discussed by Knuth (14}. pp. 201-4. from
a different point of view. Similarly motivated algo
rithms continue to be developed~ see Thompson (15).

When the program above was first published it was
accompanied by a warning not to use it on machines
that chopped or rounded before normalizing. as does
our CDC 6400. The warning was issued with systems
of differential equations in mind. but another poten
tial application denied to that program on our machine
was discovered unwittingly by van Reeken (16], who
wished to compute running averages

.AN =SN/N

= SN-1 + (XN-SN-1)IN

from the last formula. He claimed that "addition
using Kahan·s trick will give an error-free answe("
even on machines which truncate before normalizing.
He was almost right; fig. 16 exhibits an extremely rare
counter-example which he could not reasonably have
been expected to uncover in his tests.

n,_ere is a theorem by Viten'ko ll 7) which almost
implies that uur ob.icctive, to bound It/El ind~pen
dently of j and II except for terms O(ne2 _). is impos
sible on those ma~hines which respond, as do those
which chop first and normalize later, to the statement

' I

I

\

B=C+D

C
C
C
C
C
C

C
C

C

C

PROGRAM RUHGLE <lU~UT.OUTPUT.TTVOUT,TAPEl:TTYOUT>
THIS PROGRAl'1 COl'l,,UTES THE AVEf?A~ A or· lOOOOOO VALUES ,c<t:> •
EACH flETlr.EEN o.~ uo I-~ • IN TWO DJ HERENT WAYS. ONl or THOSE
WAYS USES, I NSTEAO OF DOU&LE PfiF.C ·~·nu. A TRICK lilHlCH ALWAYS
WOUKS ON SCX-,E ~CHU.ES ANO ALl'itST ALiiiAYS WOnKS ON ALL OTHERS.
A RARE SET Of V~LUES X<N> fOk WHICH THE TRICK FAILS 0~ THE
CDC UOO JS COMPUTED BY THIS PRDGRAl'1. •

DOUBLE PRECISION S
REAL U
E: 0,~••48
F: 2~0•£
THE FOPEGOING CONSTANTS ARE CHARACTERISTIC OF

THE CDC 6400 •
C : o.o
Z : <1.0-F>+E • = o.o
s = o.o
A: O.0
DO I L : l, 10
DO -' It : l, 100000
00 I J : •• I

II: 1+1.0
CCIIPUTE XU> •

·x = t •
1 F < L • EQ.. I • AHO. k • EQ. I > GO TO 2
lF< J .EQ. I > X: l.o+F•<N•I.O>
1ft J ,EQ. 2 > X : 1.0-F•I
lFC J .LT. 3 > GO TO 2

X : < 1. ~ Fi- N)+E• N
lF<.<<Y.•A)/N+C)+A .GT. A> GO TO 2
X: X+E
GO TO I

NOV X 15 DETERMINED. NEXT UPDATE THE AVERAGE A •
2 DA : <Y.•A)/N + C

T: A+~
C : <A•T> + DA
A: T
s = s+x

3 CONTINUE
AV : Sit,
WR lTE < I , 9 > N, AV, A

9 FORMAT< 2X,•N :•,F9.0,5Y.,•AV :•,Fl9.l~,5X,*A :•,FJt.15 I
• * NO. OF ITE,.S•,sx,•TRUE AV£RAG£•,llX,..CCIIPUTED AVERAGE•>

STOP
END

BEGIN EXECUTION
II : 1000000.
NO. OF lTEPIS

BUNGLE
AV: .,9999999e22l636

TRUE AVERA GE

A: .,,,,,,,,,,,,,,,
COPIPUTED AVERAGE

STOP BUNGLE ..
Fig. 16. An egregious average.

C= (S-T)+ Y

by computing b = (1 +-y)c + (1 +6)d with I-YI< e and
161 < E. Viten'ko showed that the best that could be
done when, say, N = 8 was to compute the expression

with

F=O

1233

IF(SIGN(l.,Y) .EQ. SIGN(l .,S)) F = (0.46•T-T)
+T

which, in general, would allow l~;/el to grow as fast as
log2 N. But his hypotheses do not take account of all
that is known about -, and 6. Consequently, the pro
gram annotated above may be made to work on all
major North AIJlerican comp.uters with floating point
hardware by replacing the statement

C = ((S-&)-(T-:F))+ Y

This is not the place to explain why the modified
program works on all such machines, nor why the
magic number 0.46 was chosen. Rather, the reader
should observe that programs may work, on some

• machines, far better than he can prove. Next consider

I
f

f

1234

a programmer faced with the task of 1>roducing a
program which works well and c.:an be proved to work
well. He also fa~cs a dilemma; should he try to prove
that a simple program on hand works well. or should
he write another more complicated program more
amenable to proof? On some machines the dilemma
is acute.

That tricky prosr:ims like those above contain sur
prises is not surprisins, but sometimes surprises are
well hidden. For instance. consider the solution of a
cubic 'equation

If its coefficients arc in error by as much as one ulp
its roots may be accurate to only ½-precision, as is
exemplified by

x3 - 3x2 + 3x - (1-e)= 0

whose roots are the three values of 1 + el/3. Any
algorithm for solving a cubic will encounter roundoff
which can, in pan at least. be regarded as perturbing
·the coefficients; sec Wilkinson l i 8 J . Al~hough he
definitely does not say so. readins his book might
give the impression that triple-precision arithmetic will
be needed to get the roots to single-precision. Of.
course the critical cubics. those with three nearly .
coincident roots, can be transformed. by a linear sub
stitution which moves the origin nearer to the roots,
into a less delicate condition; but G.W.Stewart [19)
shows that the usual way of effecting such a trans
formation does not avoid the damaging perturbations.
Nevertheless, my 1968 notes [:?OJ contain a different
form of the transformation which avoids the worst
of the perturbations;

when

b0 sa0 b1 ea0c+a1 b2 =a1c+a2 b3.=a2c+a3

b2 = b1c+ b2 b3 = b2c+b3

Given single-precision coefficients a; and a suitable
single:precision c. this transformation is to be carried
out using double-precision arithmetic. The choice of
c can be effected in an innocent machine-independent
fashion. The final result is a program which accepts

Num~rical Mathematic-s

sinple-predsion coefficients, uses double-precision
arithmcth:. and produces roots correct to nearly sin~k
precision. as if triple-precision arithmetic had been

• used. The program works on all major North
American machines; to prove that it works, one must
acknowledge that catastropic cancellation can be a
good thing.

l:?. ESCAPE FROM ROUNDING ERROR ANALYSIS

There are three ways to escape rounding error anal
ysis without abandoning computation. One is to use
multi-precision arithmetic so precise that errors arc
Hobviously" negligible if they occur at all. A second
way is to use well implemented Interval Arithmetic.
Since Moore (21), Hansen [2:!], Nickel (~3]. I [:!OJ

·and others have written extensively about Interval
Arithmetic, little is left to say about it here beyond
this; no other development in computer systems
would assist engineers and others like them to do
numerical computations more safely then would .
the appearance of Interval Arithmetic as universally
accessible in Fortran as are double-precision and
complex arithmetic. For example, by using 4-signifi
cant decimal Interval Arithmetic we obtain almost
effortlessly the estimates

R+ e [.9987, 1.0201 , R_ e [.9781, .9988]

for the roots of fig. 3's quadratic provided those roots
are real, and

·R, e (.9987, .9988) , R; e [o, 0.0210s]

for the roots R, :: R; if they are complex. More im
portant, if all we know about the coefficients is, say,

A e (47.46,47.56), BE (47.40,47.50),
....

ce [47.3~ .47.44)

then the inferences

R+ e (:97S6, l.071] , R_ E (.931S, 1.001] or

R, E (.9966, 1.001] , R; E (0~ 0.06990]

(which arc ne~r}y unimprovable) come more economi
cally, by far, from a direct application of Interval
Arithmetic than from any other scheme. The fact that
Interval Arithmetic can be abused, and then will give

,
/tffitcd J'apm W. Kahan, A ~n;ey uf rrrr,r 01111/ys,1 1235

I

I
. wrei.chedly pestimi~tic error.bounds, is no excuse to

• Jen} its use to the computer using· public. I suspect
that lnterv.11 Arithmeti~ is still so little used mainly
because deficiencies in some current floating point
hardware designs metamorphose into embarrassing
inefficiencies when lnter\'al Arithmetic is imple
mented. Even so. Interval Arithmetic tends to be
cheaper than the human labour it" supplants.

The third way to escape is to realize that there
are other kinds of errors than rounding errors. Errors
in data and errors in intcntionnl approxim.1tions to
mathematical relationships cannot be dispelled by the
means described above, and are therefore the pre
ferred preoccupation of error :malysts. I shall give two
examples drawn from my own work.

13. TRAJECTORY PROBLEMS

.. , shot an arrow in the air,
It fell to earth, I know not where."

The Arrow and the Soni
Lontzfellow

Consider a system of n ordinary differential equa
tions

j = f(.y,t) + r(t), y(0) =Yo+ w0

in which uncertainties are represented by n-vectors
r(r) and w0 about which we know only bounds like

n0 > llw0 II and p(t);;. llr(t)II for t > o. •

Our object is to compute a bound

n(t) > lly(t)-z(t)II

for the difference between the uncertain solution
vector y(t) and the unperturbe.d solution z(t) of

z = f (z,t) , . z(O) = Yo .

The source of the uncertainty r(t) is not important
here. It could arise from the numerical method used •

\\ to solve y(tf s differential equation, with z(t) repre:
senting what the numerical method pro4uces (see
N.F.Stewart (241). Alternatively,r(t) could repre- .
sent unknown but bounded perturbing forces acting

\ •. upon a physical system y(t) whose unper~urbed mo-

\
~

tioh wuuld oe z(t) . .'dost likely both sources of error
\\,1ulJ ~ontribute to r(i), as they would to w0.

Over the past century several methods have been
·propo5'?d for computing n(r): signific3nt contribu•
tions have been made recently by Moore (21) and
Kril~kcberg [~5 J. But all methods described so far
share ;m outstanding defect; they tend to produce a
funcriun 11(1) which grows. 3S t ➔ 00• exponentially
faster than lly(t)-z(t)II can grow. even when the.dif
ferential equation is linear, and in most cases even
when it is linear with '-'Onstant coefficients chosen in
an unlucky way (see L.W.Jackson [:?6, 27)) .. There
is one exception.

In I 9661 proposed [:?8] that e·llipsoids be used
to·proJu~e !}(t). The idea was to compute a positive
definite n X n matrix A(t), the solution 9f an auxiliary
system of differential equations solved simultaneously
with :(r)"s equation, which would represent an ellip
soi_d A(t) as follows:

x EA if and only if x'A-1.x < I .

A(t)'s differential equation was to be so chosen that
y(t) - :(t) E A(t) for all t ~ 0. The scheme will be de
scribed below simply for linear differential equations
although it works on non-linear equations too, until
A{r) becomes so large as to grow spuriously and
unavoidably too fast~

Let w(t) = y(t) :-- :(t), and assume

,v = Jw + v , w(0) = w0

where J(t) is a known n X n matrix but no more is
known about v(r) and w0 than two ellipsoids V(t)
and Ao such that

Wo E Ao and u(t) E V(t) for t > 0 .

In other words we assume ppsitive definite matrices
Ao and Vlf) are given such that w<>-401 wo < I and·
u'v-1 u < I for all t > 0. For example, given pl> u'u
for all t > 0 we should set V = p·2. Now let W(t)
denote the .. reachable set"' of all solutions w(t) ob
tained by letting w0 and v(t) range over the sets Ao.
and V(t) respectively. In general W(t) is not an ellip
soid; we seek A(t) 2 W(t) for all t > 0.
THEOREM. If A(t) satisfies•

A >JA +AJ' +1A + Yh, A(0)>A0

• Writinl! .. X > Y" for symmetric malrices·means that X - Y
~s positive semi-definite; .x'(X-Y).x > 0 for all z.

1236 W. Kahan. A 11111•~.v of ~rm, onalysis Num~rit:111 Matl1cm11tics

for any 1(1) > 0 and for all t > 0 then A(t) repre
sents an ellipsoid A(t) ~ W(t).

To ~pply this theorem we might replace its first
two;., signs by= signs and solve the resulting differen
tial equation numerkally for A(t) simultaneously
with the calculation of. say,z(r). provided we knew
how to choose 1(1). There are many reasonable choices
available. For example sec the following.
Corollary. If Vis constant and A (0) =A O = 0 and
J(t) is bounded for all t ~ 0 and A= JA + AJ' + -yA
+ Y/1 with 1(1) = 1/t then W(t) ~ A(I) ~ A(/jW(t)
where "A(t)/vl+t is bounded for all t _. 0.

In other words, here is a case where the error
bound cannot over~stimate the possible error by
more than a bounded multiple of ../1 +r. There are
many other cases of considerable practical importance
where 1(1) can so be chosen that the error bound will
never grow arbitrarily larger than the possible error.
For example, if w·s differential equations are the
variational equations for the equations of motion of
a satellite in orbit about a lumpy central body whose
gravitational field deviates slightly from the inverse
square law in an unknown but bounded way, or if
the equations of motion concern a pendulum swing•
ing·in a draft of gas of unknown but small and
bounded density and velocity. -r(r) can easily so be
chosen that the ellipsl>id A(r t will grow at the same
rate as the reachable set W(r) for all t > 0 until A(t)..
becomes so large that nonlinearities in the equations
of motion dominate its growth. Cakulations. some
performed with the aid of .s particularJy convenient
program written by Gabe) [~9 J to solve differential
equations automatically on the 7094. have borne out
these claims. Details must app~ar elsewhere.

14. ILL-POSED PROBLEMS

My object all sublime -
I shall achieve in time -
To let the punishment til the crime.

'Mikado
W .$.Gilbert

Among the most perplexing numerical computa
tions are those whose results. thou~ intended to
mimic an Qstensibly well-hehavecJ physical configura
tion, tum out ill-behavtd. Are they ill-beh3\'ed merely
because the numerical ~omputation was perfom1ed
ineptly? Or is the physkal system not so well-behaved
as was presumed? Or dots its mathematical model

-contain a flaw,not a mistake. which condemns every
strai(?f1t-forward numerical ~thod to confusi·Jn? This
last possibility c3n arise in two·ways. On the one
hand. intermediate variables may have been intro-

··duccd which are occasionally redundant, thereby al
lowing partly arbitrary and possibly unbounded
numerical values to intrude enormous rounding
cnors into the computation. On the other hand. the
physical system may obey precisely laws which can
only be approximated numerically: the small errors so
introduced may then correspond to physically im
possible perturbations with physically impossible con
sequences.

To what extent can the foregoing three questions
be resolved by numerical means alone without des
cending to numerological augury? We wish not to
re-formulate a new mathematical model unless we
have to, and then not until we know what is wrong
with the old model. We hope to avoid the kind of
deft and inspired analysis exemplified by, say, Dorr
(30) and Babu~ka (31], since that may well lie
beyond our talents.

Error analysis offers a resolution based upon two •
notions. First, the uncertainty attributed to data is
itself a datum. Secondly, when experimental obser
vations are subjected to computational processing,
the program becomes a part of the experimental ap•
paratus, and subject t~ the -same--sGientific~riteria
concerning the reproducibility of meaningful results
in·the face of ostensibly negligible variations. These
notions will be illustrated by application to a simple
linear least squares problem.

Given an m X n matrix F with m > n, and an m•
vector g, we seek that n-vector x which minimizes
llg-Fxll; when the minimizing .-c is not unique (i.e.,
when the columns of Fare linearly dependent) we
further stipulate that. say. llxll should be minimized.
The vector norm used here is 11:11 = '1i'z. and we
shall use the natural matrix norm IIZII = max.llZzll/llzll

• although any other orthogonally invariant mitrix
norm could ~ adapted to our purposes. The minimiz•
ing vector x turns '-ut to be ft g where the pseudo
inverse Ft js uniquely defined formally by the familiar
equations

FF1F=F. FtFFt =Ft, (F1F)' =·FiF,

(FFt)' = FFt .

When Fhas full col.;~.m-rank n. Ft= (F'Ft 1F'.
The literature abounds with methods for comput•

ing f1 and Ft g. Some of the best are explained by

t
!

i

I
I .,,,, .. / r.pm W. KJthan, A .,,,.,,. of em,r ""!f.•lh Ill?

i ,,\;;ub :mJ hfa collab\irators: see tbe several refer- The foregoing :pparatus is th~ justifi~ation for the
.-: ~·u,..:~. C1!rtai•1 cases when Fis of full ran'k but badly following assertions.

,li-..:,,nJitioned (llf~t llllF11 is huge) are discussed nicely TI1e lirst step is to exhibit F = PAQ where f and Q
tw Gauts~hi [3:?.33) and by Wilson l34 J. Another arc orthll!?Onal matrices (PP=Q'Q=QQ'=J) and
~;,.:dal case in whid1 we s~~k to choose ~, subject to A= diag llPi ,c,;1 , 9n): this can be done by methods
a t!ivi:n constraint 'Y ~ 11.lgli. to nearly minimize mentioned above. Nl!xt compare the tolerance(/, with
i/~· t,+~g)II whl!n Fis baJly ill-conditioned is dis- the singular values <l>j• lf (/, < ¢,, then for all ll~FII < tp

cu~s\!<l by M~ller l35) and mcntiom:d by Golub and •
Kahan·(36j. But nobody has considered what to do·. ll(F+.:lF)tn < 1/((/,n-'1>)
when Fis uncertain. although this matter is touched
obliquely by G.W.Stewart (:?4) and by Pereyra (37).

We shall consider the implications of uncertainty in
F for the computation of Ft. Specifically, given a
tolerance t;, > 0 such that all F + llF with ll4fll <;
must be regarded as indistinguishable for practical
purposes. what sho~d be done wl~en (F+4F)t is
found to vary violently discontinuously as AF ranges
over the allowed set?

First some apparatus is needed. Let the 11 singular
values of F be denoted in order-1>y

These may be computed at modest cost by methods
described in Golub l38] and in Golub and Reinsch
[39 J. Note that the singular values of Ft are the re
ordered numbers <t>J: where t;,t = l/9, except ot = O.
According to Mirsky ([41 J , theorem 2) for
k = I, 2, ... ,n

t;,k = min !IA.FIi over rank (F+AF) < k.

Consequently no singular value of F + AF can differ
from the correspondingly numbered singular value of
F by more than ll4FII; and just as t;,1 = IIFII so is

UFt II= 1 /min IIAFII over rank (F+AF) < rank (F).

Finally, the following little known but easily verified
and useful formula,

Et - Ff = -Ft(E-F)Et

+ (1-£1' FXE-F)'Et'Et + Ff Ff'(E-F)'(l-EEt),

has as a. corollary

<JsllE-FII max(U£fH,11FfU)2.

and

thus, we have a bound for the change in Ft caused
when Fis changed by no more in norm than the
tolerance,;.

The interesting case occurs when 'Pk ► '1> > ¢k+i
for some k < 11; this means that among the matrices
F + ~Fwith ll~FII < <I> are some of rank k, k + I, ...
and"· Every time F+ ~Fchanges rank,(F+AF)t
jumps infinitely violently. Clearly the least squares
problem is now ill-posed because a matrix F + AF in
distinguishable from F has only k linearly independent
columns. TI1e la-;t 11 - k rows of Q exhibit the inde
pendent linear combinations of the columns of F
which ·nearly vanish. As F + ~F runs through matrices
of minimal rank k with ll~FII <; <:>, (F+AFt varies
continuously and differs by no more than
0(ct>+9k+l)/('1>k-'1>)2 in norm from a computable
distinguisl1ed choice

The corresponding x = (F+AF)t g has the property
that it, like (F+!F), is a continuous function of the
data F and g for variations small compared with
f/>k - <P- Finally, llg-Fxll may be rather larger than
minimal. but if so it cannot be reduced without re•
placing x by a drastically larger ~ector x which must
change violently when Fis changed negligibly. In
other words, (F+AF)t reveals something about the
data F, g which is independent of allegedly negligible
(smaller than q,) variations in the data. In this respect,
an iU-postd problem has been replaced usefully by ·a
well-posed one, and by numerical means alone. When
neither condition q, ~ 'Pn nor 'Pk ► 4> > 4'k+1 is satis•
fied, i.e., when(/, is not much smaller than the next
larger singular value, the given least squares problem
must be rEgarded as int1insically ill-posed in a way
that will not yield to numerical methods alone.

I

...

1238

ACKNOWLEDCEME"7S

W. Kohan, A a,n•~y of~"'" onolysis Nume,iml Mathem11tic-s

This paper is distilled from a fraction of the works
of so many people that. were J to try to acknowledge
as many as could be named in these pages. I could
only injure more of ihem by omission. Better so to
injure almost all. Besides. their names are familiar to
anyone who reads the journals of numerical analysis
and computing. But I am indebted for many acts of
kindness to G.E.Forsythc. to A.S.HousehoJder, to
JJI.Wilkinson, to my former colleagues and teachers
at the University of Toronto. Canada. and to my
colleagues now at the University of California at
Berkeley.

The work described here has been supported in
part by grants from the Nationat Research Council
of Canada and from the U.S. Office of Naval Research.

REFERENCES

(1) B.T.Smith, Error bounds for z~ros of a polynomial
based upon Gerschgorin's theorem, JACM 17 (1970)
661-674 . •

(2] W.Borsch-Supan. Rc:siducnabschiltzun~ fiir Polynom•
Nullsttllen mittcls La1?rangc-lnterpolation, Numer.
Math. \4 (1970) 287-296.

(3) D.A.Adams, A stoppinp criterion for polynomial root
finding. Comm. ACM JO t 1967> 655-658.

(4) A.M. Ostrowski, Solution of Equations and Systems of
Equations, 2nd ed. Acad. Press. New York (1966).

(SJ W.Kahil.R, 7094•11 System suprort for numerical analysis.
SHARE Secretarial Distribution SSD-159, item C4537
(166), (An amended version is reprinted in my 1968
notes.).

(6) W.J.Cody,Jr., Software for the elementary functions,
presented :it the ~bthem.atii:;d Software S)'mposium at
Purdue Universit)· (April 1970).

(7) ff.Kuti and J.Ascol)'. Fortran extended-precision
library, IBM Syst. J. IO (1971) 39-61.

(8) H.E.Fettis and J.C.C.aslin. Errata an tabks of toroidal
. • harmonics. M:lth. of Comp. lS (J 971) 40S--408.
(9) R.R.Korfhagc, On a scqueni:c.- of pram~ numbers, Bull.

Amer. Math. Soc. 70 (196-1) 34 J -34i. retracted on
p. 747.

I 10) T .J.Dekker, A 0oatinJ•point technique for extending
tile availaf>le precision. rcrort MR J 18/70. Mathe
matisch Centrum. Amstc.-rd.am tl970>

(11) W.Kahan. Furth~r rcm:uks on n:duci~ truncation
• enors. Comm. ACM 8 t l %S • 40.
(12) I.Babulka. Numerk.al !U.abilitr in mathematical analysis.

in: Proc. lFIP Conp-css (l968hol. I. AJJf.MoucU. cd, •
(North-Holland, Amstercbm).

(13) O.M"llcr, Qua~i.doubk-r-rci.:1s1on in floatintt poin, addi
tion. BIT 5 (1965) 37-50 .and 251 ~255.

(14) D.E.Knuth. The Art of Computer Programming. vol. 2
(1969) Semi-numerical Algorithms, Addison-Wesley,
Massachusetts.

(151 R.J.Thompson, Improving round-off in Ri:nl!c-1..:utta
computations with Gill's method. Comm. ACM 13
(1970) 739-740.

(16) A.J.viU1 Rc:ckcn, Dcalini with Neely'salE?orithms. letter
to the ed., Comm. ACM 11 (1968) 149-150.

(17) I.V.Vitcn1co. Optimum al!!orithms for adding and
. Jnultiplyin, on computers with :i floating point, VSSR
Computational Math. and Math. Physics 8, :ttS (1968)
183-195.

(18) J.H.Wilkinson. Rounding eaors in algcbr.iic processes,
Nati Phys. Lab. Notes on Applic~ Science, no. 32
U963) HMSO. London. •

J19) G.W.Stcw:irt Ill. On the continuity or the generalized
inverse, SIAM J. Appl. Math. l7 (1969) 33-4S.
G.W.Stcwart Ill. Error analysis of the algorithm for
shifting the zeros of a pol)'nomial b)• synthetic division,
Math. or Comp. 25 (1971) 13S-139.

(20) W.Kahan. Enor in numerical computation. part of the
notes for summer course :6818, Numerical Analysis.
University of Michigan Engineering Summer Conferences.
Ann Arbor, Michigan (1968).

(21) R.E.Moore, Interval Analysis (Prentice-Hall, New Jersey
1969).

(22) E.R.Hansen, ed., Topics in Interval Analysis, (Oxford
U.P .. London, 1969).

(23) K.Nickel, Error-bounds and computer arithmetic (1969)
54-62. in: Information Processing 1968. Proc. IFIP
Congress 1968, vol. 1, AJ.H.MorreU ed. (North-Holland,
Amsterdam).

(24 J N.F.Stewart, Certain equivalent requirements of ap
pro~imate solutions of x = f(t.x), SIAM J. Numer. Anal.
7 (1970) 256-270.

(25) F.Kriickebcrg. Ordinary differential equations.(1969)
91...;97, in: E.R.Hansen 's Topics in Interval Analysis.

(26) L.W.Jackson, A comp.irison of ellipsoid.11 and interval
arithmetic error bounds, abstract alone in SIAM Rev.
l1 (1969) 114.

(27) L.W.Jackson. Automatic error anaJysis for the solution
of ordinary differential equation,. Ph.D. Thesis/Tech.
Rep. no. 28 (1971) Computer Science Dept., Univ. of
Toronto.

(28) W.Kahan, A computable error-bound for systems of
ordinary differential equations. abstract alone in SIAM
Rev. 8 (1966) S(8-S69.

(29) G.F.Gabel, A predictor-corrector mt!thod using: divided
differences, M.Sc. Thesis/Tech. Report No. 5, Com
puter Science Dept .• Univ. of Toronto (1968».

(30J F.W.Dorr, An example of ilJ-a,nditioning in the
numerical solution of singular perturbation problems,
Math. of Comp. 2S (1971) 271-283.

(31) l.&bulka. Numerical stability in problems in linear
algebra, Tech. Note BN-663, Inst. Fluid Dynamics and
Appl. Math., Univ. of Maryland, College Pk., Md.
20742 (1970).

(32) W.Gauuchi. Construction of Gauss-Qiristoffel qua
drature formulas, Math. of Comp. 22 (1968) 251-270.

(33) W.Gautschi. On the construction of Gaussian quadrature
nales from moditioo-moments, Math. of Comp. 24
(1970) 245-260.

(34) M.Waync Wilson. Discrete least squares and qu:idrature
formulas, Math. of Comp. 24 (1970) 271-282.

i
I

/:a•ited Papers W. Kal,11n, A sun·c.v of error analysis 1239

(35J K.Millt:r. Le:ist squ:arcs methuds ru1·ill-pmed rroblc:ms
wuh J r11:M:ribcJ buund. SlAM J . .M.ath. An.al. l 0970)
52 -74.

[3.61 G.11.Gulub and W.K.1h.1n. C-akul:itin~ the ~in~ul.u values_
and pscudo-inver~ of a matri.,. J. SIAM Numer. Anal.
(8) 2 (1965) 205-224: •
G.H.Golub and J.H.\\'ilkinson. Note on th~ iterative re
finement of lc:ist squares solutions. Numcrischc Math.
9 (1966) J39-148.

l 3 7 I V .Pcreyr:i. Stability of Jl!ner.i.1 s)·stc:ms orlincar equa
tions, Aequationcs Math. 2 (1969) 194-l06.

[381 G.11.Gulub. La:ast squ.ares. Sm~ul.ar v.alucs and matri.-<
Jl'Pr••:\in_1.1uuns. Aplill-.u:c Matcmatik)· 13 (1968) 44-51.
li.11.liJlub. Matri.\ d~'-"ompo,iuons and st.atistk:al c:alc:u•
btsons. in: St:atistical Computation Acad. Press. New
Yori.: (1969) 36~:-397. . .

(391 (;.11.(;,,lub and C.Rcin~h. SinJular v.tlue dc1.-omposi
tmn .and least squarc:s ~lutions. Numc:r. M:ith. 14
l 1970) 403-420.

[-101 O.U.lklur)'. Computations with :ipproximatc num
b~rs. The Mathem;a tks Tc;u:hcr SI (195 8) S 21-5 30.

[41 J L.Mirsky. Symmetric gauge functions and unitarily
inv:ariant norms. Quart. J. Math. (2nd series) 11 (1960)
50-59.

•

...

• • I

i
I ,.

