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Can these functions be difficult to compute? Apparently they are 
difficult enough to program that one major player in the computing 
world charges a stiff fee for use of the company's program~. On a 
machine that does not conform to IEEE standard 754 or 854 for 
floating-point arithmetic, or on a machine that does conform but 
whose compiler doesn't, computing these functions can be an 
interesting challenge. The challenge must be met without using 
INTEGER arithmetic because the computer may well lack an INTEGER 
data-type as wide as its widest REAL (floating-point> type. And 
an assembly-language program is no good because it cannot be moved 
to any other computer, with the rest of the software in which it 
is embedded, by mere recompilation. The challenge must be met 
with a program written in a higher-level compiled language which, 
like C, lacks these intrinsic functions. 

The trouble with the IEEE standards 754 and 854 is that they 
require capabilities that may well be provided by hardware and yet 
be inaccessible from a higher-level language for lack of standard 
names for those capabilities. Here is an algorithm to compute 
floor(x) and ceil(x) quickly on a standard-conforming machine; 
see whether you can program it in your favorite language: 

Save the rounding-direction mode; 
Set that mode to Round to +oo for 

Round to -oo for 
ceil, 
floor 

Round (Convert) x to an integer value; 
Restore the former rounding-direction mode. 

If we must compute floor and ceil using only the rudimentary 
rational operations and comparisons available in all higher-level 
languages, and do so in a way that recompiles and runs correctly 
on all commercially significant computers, this simple problem 
grows into a monster. We have to exploit properties common to all 
floating-point arithmetics, regardless of how they are rounded; 
such properties are not obvious. Here are the ones we need: 

The REAL Constant A. 
All sufficiently large floating-point numbers are integers. C In 
fact, all sufficiently large floating-point numbers are even 
integers; taking this to the limit suggests that oo is an even 
integer too, or nearly enough so for government work.) Therefore 
each computer has its constant A= 1000 ... 000, the smallest REAL 
number such that every REAL x 2 A must be an integer too. A 
varies from machine to machine, but it can be computed in a way 
to be discussed later. 
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A has several exploitable properties. First, the consecutive 
integers A, A+t, A+2, ... , 2A constitute all the REAL numbers 
between /\ and 2A inc 1 usi ve, whereas A - t /2 is one of the REAL 
numbers lying between A and A-1 . Any attempt to compute a non­
integer real value - between A and 2A must encounter at least 
one rounding error; if the value ~ is rounded Just once to x , 
as might occur when - is the result of a single add operation, 
then we can expect to find Ix - I; I < t on al 1 cornmerci ally 
significant machines. < This error bound might not be valid for 
other operations like subtract or multiply or divide on certain 
machines, for instance on CRAYs; fortunately, we rely only on 
the accuracy of add.> Certain floating-point operations always 
execute exactly on all commercially significant machines. If x 
is REAL and 1 i es in the interval A ~ x ~ 2A then x - A wi 11 be 
exact, and if t ~ x < 2A then x - t must be e>~act, and so 
must x + t if x has an integer value. Comparison < x<y, x=y 
and x>y > and Negation < -x) are assumed exact too despite that 
compilers on CDC Cybers have been known to violate the first 
assumption; such a violation seems more like a bug than a feature 
to be encouraged. 

Computing floor and ceil . 
Here is an algorithm to compute REAL floor<x> and ceil Cx) for 
any REAL x ; it uses one REAL scratch variable y. 

If x < O then return floor<x> := -ceil(-x) and 
ceil <x> := -floor(-x) . 

If x 2 A then return floor (x) := cei 1 (H > := x • 

Now O ~ >t < I\ • 
y :=(A+ x> - A; an integer, and Ix - YI< 1 . 
If x = y then return f 1 oor (>d := cei 1 (x > := x 

else if x < y then return floor<x> := y-1 and *** 
ceil<x> := y *** 

else return floor(;-:) := y and ceil (>:) := y+t . 
End. The two statements marked *** are not necessary on 

CRAYs nor IBM 370s because their adds are chopped. 

This algorithm can be thwarted if the scratch variable y resides 
in a register carrying more precision than REAL variables like x 
for which A was determined, so make sure that x, y and A are 
declared to have t.he widest REAL type supported by the hardware. 
If the compiler pays no attention to parentheses, separate the 
statement II y := (A + >: > - A II into two statements. 

What should be 
The following 
cornpi 1 ers but 
A few changes 
u x = y II to 

" If O < >t 

done on a CDC Cyber if Comparison is suspect? 
suggestions are offered not to legitimize defective 
to permit programmers generally to get on with life: 
suffice. Change II x > A II to II x-A/2 ,2: A/2 11 

" >: - 0.5 = y - 0.5 " , and insert a statement 
and x-0.5 < 0.5 then return floor(x) := 0 and 

cei 1 <x > " 
and a comment II Now >t = 0 or t < x ~- A . " in p 1 ace of 
of the comment II Now O ~; __ >t s_ /\ 11 These changes do no hann 
to other computers except for a loss of speed and perspicuity. If 
the Cyber txx's compiler emits chopped FX instead of pseudo­
rounded RX floating-point operations, then the two statements 
marked *** can be omitted. 
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What is /\? 
The value of A should be determined once for each compiler on 
each machine, rather than every time floor or ceil is invoked. 
A table of values for various machines' floating-point hardwares 
is supplied below. However, a program cannot be expected to read 
that table; if the program is to be completely portable at the 
cost solely of recompilation, without the need for knowledgeable 
intervention to supply a plethora of installation-time parameters, 
then the program must somehow compute A once and save it for 
subsequent reuse. In fact, such a computation may be the only 
way to defend against mistaken values of A supplied either by 
faulty Decimal-to-Binary conversion programs, or by people who 
claim to be knowledge.able but aren't knowledgeable enough. 11 A 
little knowledge is a dangerous thing; ..... " 

Two ways to compute ~ are presented here so that they may be 
compared for consistency; discrepancies call urgently for human 
intervention. For instance, computers have been built whose 
every REAL number is represented by its sign and the logarithm 
of its magnitude; since at most five consecutive integers can be 
represented exactly as REALs on such a machine, the operations 
floor and ceil become dubious. Other computer arithmetics have 
been proposed (but not yet built into any North American machine 
as far as I know> that divide each REAL word in memory into two 
variable-width fields for exponent and significant digits; these 
require that A be chosen in a way that takes account of internal 
registers used by the compiler but inaccessible to the programmer. 
Both of these unusual arithmetics will generate discrepant results 
from the two programs below. Were A determined just once, as 
in the program MACHAR provided by W. J. Cody and W. Waite in 
their Software Manual for the Elementary Functions ( Prentice­
Hall. 1980). no warning could emerge. 

TABLE OF VALUES OF /\ FDR A FEW MACHINES 

Machine 

IBM 370 

DEC VAX 

CDC Cyber 
CRAY 

Format 

REAL*4 
REAL*8 
REAL*16 

REAL*4 <F> 
REAL*8 (G) 
REAL*B <D> 
REAL*16 <H> 

REAL 60 bit 
REAL 64 bit 

A 

--------------------------------
t 6~ = 1048576. 
1613 = 4503599627370496. 
1627 = 324518553658426726783156020576256 

22:s = 8388608. 
2=-2 = 4503599627370496. 
2ss = 36028797018963968. 
2' 12 = 5192296858534827628530496329220096 

247 = 140737488355328. 
247 = 140737488355328. 

IEEE 754 SINGLE 22:s = 8388608. 
DOUBLE 2~ 2 = 4503599627370496. 
EXTENDED 80 bit 2•3 = 1152921504606846976. 

A■ong the 1achines that have these three for■ats are those that use the Notorola 68881, 
e.g. the SUN 111 and Apple Nacintosb, or the Intel 8087/80287/803B7, e. g. IBN's 
PC, XT, AT but not RT, or the ATlT iE32106. The HP Spectru■ series EXTENDED for■at 
has the sa■e A as the DEC VAX H for1at. Floating-point chips ■ade by National, AND, 
TI, WEITEK and BIT support at ■ost the SINGLE and DOUBLE for■ats in, e.g., IBN's RT-PC. 
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One way to compute /\ = 1000 ..• 000 is to compute the arithmetic's 
radix B = 10 first; this means two on binary machines, eight 
on octal, ten on decimal and sixteen on hexadecimal machines. 
Then /\ = s~-• where P is the number of significant B-digits 
carried. ,The algorithm offered here is derived from one of Mike 
Malcolm's ( Comm. ACM v. 15, 1972 > but modified in a way that 
has worked, in the author's PARANOIA program, on a wide range 
of machines except perhaps only the Cyber 2xx series ( with 64-
bit words> and its ETA cousins with certain compilers. 

One:= REAL(t) ; Two:= One+ One; Zero:= One - One 
Mone:= -One; 
If ( One=Zero or One*One+Mone¢Zero or One-Two¢Mone > then 

print "Now who's paranoid?" and Quit. 
w :=One; 
Do { w := w + w ; u := I ( (w+One) - w> - One I 

} until u +Mone! Zero; 
Now w = 2k is just big enough that I ((w+t)-w)-1 I 11 . 

u :=One; 
Do { B := (w + u> - w; u := u + u 

} until B >Zero; Now B is the Radix. 
If B < Two then print "A logarithmic machine!" and Quit. 
w :=One; 
Do { /\ : = w 

l· unti 1 
; w := B*w; 
u ~One; 

u : = 
Now 

(w + One) - w 
/\ is known. 

The second way to compute /\, and to corroborate the first, is 
also drawn from the author's PARANOIA program described in BYTE 
10 #2 (Feb. 1985, pp. 223-235) by R. Karpinski. The idea is to 
find out fast how t.O differs from the next larger REAL number; 
that difference should be 1/1\ unless the widths of the fields of 
a floating-point number vary with its magnitude . 

Four 
.. _ 

Two + Two . Three 
.. _ 

Two . - !I .. -
V 

.. _ Four/Three - One . .- !I 

w 
.. _ 

I .- ( <v+v) - One) + V I 
If w = Zer-o then 

print "Ternary arithmetic? 
Do r e .. _ 

w . w 
.. _ 

( < He>: D*w*w + ~ .. - !I .. -
} unti 1 ( w 2:. e or w = Zero 

If l\*e :;i! One then print "I\ may 

+ One; HexD := Four*Four 
vis very near 1/3. 
w = 3*ferror in 4/31 

Not in the USA I II and Quit. 
w/Two) + One) - One 

) ; Now e = 1/A 
be wrong!" and Stop. 

Both algorithms above can be ruined by compilers that disregard 
parentheses; for such compilers, break statements in such a way 
as will force the desired order of evaluation. Both algorithms 
are designed to determine /\ correctly even if intermediate 
expressions are evaluated in registers with more 'precision than 
REAL variables have in memory, but then only if parentheses are 
honored by the compiler. 

Epilogue 
The pr-oblem of computing floor- and ceil in a completely portable 
way without reliance upon someone else's proprietary softwar-e nor 
upon manually inserted constants nor upon unreliable compilers nor­
upon idiosyncratic hardware is not a problem invented just for the 
classr-oom. The problem was presented to the author- by a colleague 
(Prof. John Ousterhout) in all seriousness. But it is still an 
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unreasonable problem; applications programmers should not have to 
solve it over and over again. We ought to be able to depend upon 
a library of mathematical functions supplied with each machine by 
its maker and used consistently by all compilers of all languages 
for that machine. The SANE Standard Apple Numerical Environment 
described in Standard Apple Numeric Environment -for All ,.,a,:intosh 
and Apple II Computers < Addison-Wesley, 1986, with a new 
edition to appear immenently > is a good example of what we all 
need. The DEC VAX VMS Fortran library would be another good 
example were it freely available to users of UNIX on VAXes too. 
Such a library would supply computer users with a rich collection 
of mathematical functions that would, ideally, be accessible in 
all languages and available on all computers, though the precise 
values of those functions might have to vary a little from machine 
to machine even if all th~ir arithmetics conformed to a standard 
like IEEE 754. For a readable description of that standard see 
"A Proposed Radix- and Word-length-independent Standard for 
Floating-point Arithmetic" by W. J. Cody et al. in the IEEE 
magazine MICRO for Aug. 1984, pp. 86-100. An earlier paper by 
the author and J. T. Coenen, "The Near Orthogonality of Syn ta~<. 
Semantics, and Diagnostics in Numerical Programming Environments" 
in THE RELATIONSHIP BETUEEN NUMERICAL COMPUTATION AND PROGRAMMING 
LANGUAGES edited by J. K. Reid <North-Holland, 1982), advocated 
a computing environment throughout which a universal library of 
mathematical functions could more easily be disseminated despite 
persistent variance in the semantics of computer arithmetic. 

To reach the desired state of affairs we need a standard for the 
names and specifications for the functions in that library. Silly 
naming inconsistencies among languages will have to persist just 
for the sake of compatibility with prior practice; an example is 
BASIC's use of SQR for what everyone else calls ·SQRT < ¥Cx) > 
while Pascal uses SQR for x2 , the inverse of SQRT. Such a 
standard should not be left to language enthusiasts alone because 
they will give too much weight to implementation problems that 
they are ill equipped to handle, too little weight to the needs 
of applications programmers. For similar reasons, most machine 
manufacturers are not eligible. Producers and users of portable 
numerical software must preponderate. 

Now, who shall bell the cat? 
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