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ABSTRACT 
Zero has a usable sign bit on some computers, but not on 

others. This accident of computer arithmetic influences the 
definition and use of familiar complex elementary functions like 
..J, arctan and arccosh whose domains are the whole complex plane 
with a slit or two drawn in it. The Principal Values of those 
functions are defined in terms of the logarithm function from 
which they inherit discontinuities across the slit (s). These 
discontinuities are crucial for applications to conformal maps 
with corners. The behaviour of those functions on their slits 
can be read off illllllediately from defining Principal Expressions 
introduced in this paper for use by analysts. Also introduced 
herein are programs that implement the functions fairly accu­
rately despite roundoff and other numerical exigencies. Except 
at logarithmic branch points, those functions can all be conti­
nuous up to and onto their boundary slits when zero has a sign 
that behaves as specified by IEEE standards for floating-point 
arithmetic; but those functions must be discontinuous on one 
side of each slit when zero is unsigned. Thus does the sign of 
zero lay down a trail from computer hardware through programming 
language compilers, run-time support libraries and applications 
programmers to, finally, mathematical analysts. 

I. INTRODUCTION 

Conventions dictate the ways nine familiar multiple-valued 

complex elementary functions, namely 

.../, in, arcsin, arccos, arctan, arcsinh, arccosh, arctanh, uJ 
z ' 

shall be represented by single-valued functions called "Principal 

Values". These single-valued functions are defined and analytic 
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throughout the complex plane except for discontinuities across 

certain straight lines called "slits" so situated as to maximize 

the reign of continuity, conserving as many as possible of the 

properties of these functions' familiar real restrictions to apt 

segments of the real axis. There can be no dispute about where 

to put the slits; their locations are deducible. However, Princi­

pal Values have too often been left ambiguous on the slits, 

causing confusion and controversy insofar as computer progranuners 

have had to agree upon their definitions. This paper's thesis 

is that most of that ambiguity can and should be resolved; how­

ever, on computers that conform to the IEEE standards 754 and 

p854 for floating-point arithemetic the ambiguity should not be 

eliminated entirely because, paradoxically, what is left of it 

usually makes programs work better. 

What has to be ambiguous is the sign of zero. In the past, 

most people and computers would assign no sign to zero except 

under duress, and then they would treat the sign as + rather 

than For example, the real function 

signum(x) := +l if x > 0 

:= 0 if X = 0 

-I if x < 0 

illustrates the traditional noncommittal attitude 

sign, whereas the Fortran function 

sign(l.0,x) :=+I .O if X ;;,, 0 

:= -1. 0 if X < 0 

must behave as if zero had a + sign in order that 

toward zero's 

this function 

and its first argument have the same magnitude. Just as 

sign ( l . 0, x) is continuous at x 0+, i.e. as x approaches zero 

from the right, so can each principal value above be continuous 

as its slit is reached from one side but not from the other. 

Sides can be chosen in a consistent way among all the elementary 

complex functions, as they have been chosen for the implementa­

tions built into the Hewlett-Packard hp-15C calculator that will 

be used to illustrate this approach. 
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The IEEE standards 754 and p854 take a different approach. 

They prescribe representations for both +O and -0 but do not 

distinguish between them during ordinary arithmetic operations, 

so the ambiguity is benign. Rather than think of + 0 and -0 as 

distinct numerical values, think of their sign bit as an auxili­

ary variable that conveys one bit of information (or misinforma­

tion) about any numerical variable that takes on O as its value. 

Usually this information is irrelevant; the value of 3 + x is no 

different for x := +O than for x := -0, and the same goes for 

the functions signum(x) and sign(y ,x) mentioned above. How­

ever, a few extraordinary arithmetic operations are affected by 

zero's sign; for example I/ (+0) += but I/ (-0) =-co .. To re­

tain its usefulness, the sign bit must propagate through certain 

arithmetic operations according to rules derived from continuity 

considerations; for instance (-3)(+0) = -0, (-0)/(-5) =+0, 

(-0) - (+O) = -0, etc. These rules are specified in the IEEE 

standards along with the one rule that had to be chosen arbitra­

rily: 

s -s := +0 for every string s representing a finite real number. 

Consequently when t=s, but 0¢t¢=, then s-t and t-s 

both produce + 0 instead of opposite signs. (That is why, in 

IEEE style arithmetic, s- t and -(t-s) are numerically equal 

but not necessarily indistinguishable.) Implementations of ele­

mentary transcendental functions like sin(z) and tan(z) and 

their inverses and hyperbolic analogs, though not specified by 

the IEEE standards, are expected to follow similar rules; if 

f(O) = 0 < f 1 (0), then the implementation of f(z) is expected 

to reproduce the sign of z as well as its value at z = ±0 .. 

That does happen in several libraries of elementary transcenden­

tal functions; for instance, it happens on the Motorola 68881 

Floating-Point Coprocessor, on Apple computers in their Standard 

Apple Numerical Environment, in Intel's Common Elementary Function 

Libraries for the i8087 and i80287 floating-point coprocessors, 



in analogous libraries now supplied with the Sun III, with the 

ELXSI 6400 and with the IBM PC/RT, and in the C Math Library 

currently distributed with 4.3 BSD UNIX for machines that con­

form to IEEE 754. With a few unintentional exceptions, it 

happens also on the hp-71R,hand-held computer, whose arithmetic 

was designed to conform to IEEE p854. 

If a programmer does not find these rules helpful, or if 

he does not know about them, he can ignore them and, as has been 

necessary in the past, insert explicit tests for zero in his pro­

gram wherever he must cope with a discontinuity at zero. On the 

other hand, if the standards' rules happen to produce the desired 

results without such tests, the tests may be omitted leaving the 

programs simpler in appearance though perhaps more subtle. This 

is just what happens to programs that implement or use the 

elementary functions named above, as will become evident below. 

2. WHERE TO PUT THE SLITS 

Each of our nine elementary complex functions f(z) has a 

slit or slits that bound a region, called the principal domain, 

inside which f(z) has a principal value that is single valued 

and analytic (representable locally by power series), though it 

must be discontinuous across the slit(s). That principal value 

is an extension, with maximal principal domain, of a real elemen­

tary function f(x) analytic at every interior point of its 

domain, which is a segment of the real x-axis. To conserve the 

power series' validity, points strictly inside that segment must 

also lie strictly inside the principal domain; therefore the 

slit(s) cannot intersect the segment's interior. Let z* =x-iy 

denote the complex conjugate of z =x + iy; the power series for 

f(x) satisfy the identity f(z*) = f(z)* within some complex 

neighbourhood of the segment's interior, so the identity should 

persevere throughout the principal domain's interior too. 

Consequently complex conjugation must map the slit(s) to itself/ 

themselves. The slit(s) of an odd function f(z) == - f(-z) 

must be invariant under reflection in the origin z = 0. Finally, 

the slit(s) must begin and end at branch-points: these are 

singularities around which some branch of the function cannot be 

represented by a Taylor nor Laurent series expansion. A slit can 

end at a branch point at infinity. 

Consequently the slit for v', in and zw turns out to be 

the negative real axis. Then the slits for arcsin, arccos and 

arctanh turn out to be those parts of the real axis not between 

-I and +I; similarly those parts of the imaginary axis not be­

tween -i and +i serve as slits for arctan and arcsinh. The 

slit for arccosh, the only slit with a finite branch-point (-1) 

inside it, must be drawn along the real axis where z ~+I . None 

of this is controversial, although a few other writers have at 

times drawn the slits elsewhere either for a special purpose or 

by mistake; other tastes can be accommodated by substitutions 

sometimes so simple as writing, say, tn(-1)-tn(-J/z) in place 

of tn(z) to draw its slit along (and just under) the positive 

real axis instead of the negative real axis. 

3. WHY DO SL ITS MATTER ? 

A computer program that includes complex arithmetic opera­

tions must be a product of a deductive process. One stage in 

that process might have been a model formulated in terms of ana­

lytic expressions that constrain physically meaningful variables 

without telling explicitly how to compute them. From those 

expressions somebody had to deduce other complex analytic expres­

sions that the computer will evaluate to solve the given physical 

problem. The deductive process entails transformations among 

which some may resemble algebraic manipulations of real expres­

sions, but with a crucial difference: 

Certain transformations, generally val id for real 
expressions, are valid for complex expressions only 
while their variables remain within suitable regions 
in the complex plane. 

Moreover, those regions of validity can depend disconcertingly 



upon the computer that wi 11 be used to evaluate the expres­

sions in question. For example, simplifying the expression 

..J(z/ (z I)) ,I( l / (z - I)) to ..J(z) I (z I) seems legitimate in so 

far as they both describe the same complex function, one that is 

continuous everywhere except for a pole at z = I and a jump­

discontinuity along the negative real axis z < 0. And when those 

two expressions are evaluated upon a variety of computers includ­

ing the ELXSI 6400, the Sun III, the IBM PC/RT• the IBM PC/ AT, 

PC/XT and PC using i80287 or· i8087, and the hp-71B, they 

agree everywhere within a rounding error or two. But when the 

same expressions are evaluated upon a different collection of 

computers including CRAYs, the IBM 370 family, the DEC VAX 

line, and the hp-lSC, those expressions take opposite signs 

along the negative real axis! An experience like this could 

undermine one's faith in some computers. 

What deserves to be undermined is blind faith in the power 

of Algebra. We should not believe that the equivalence class of 

expressions that all describe the same complex analytic function 

can be recognized by algebraic means alone, not even if rela­

tively uncomplicated expressions are the only ones considered. 

To locate the domain upon which two analytic expressions take 

equal values generally requires a combination of algebraic, 

analytical and topological techniques. The paradigm is familiar 

to complex analysts, but it will be sunnnarized here for the sake 

of other readers, using the two expressions given above for 

concrete illustration. 

How to decide where two analytic expressions describe 

the same function. 

l. Locate the singularities of each constituent subexpression 
of the given expressions. 

The singularities of an analytic function are the boundary 

points of its domain of analyticity. These will consist of poles, 

branch-points and slits in this paper; but more generally they 

would include certain contours of integration, boundaries of 

In general, singularities can be 

the singularities are obviously 
regions of convergence, etc. 

hard to find; in our examples 

h 1 t Z - I the branch-point z = 0, and respective slits t e po e a - , 
o < 

2 
< I , 2 < I and z < O whereon the quantities under square 

root signs are negative real. 

2. T ken together the singularities partition the complex 
p~ane into a c~llection of disjoint connected compo?ents. 
Inside each such component locate. a smatt aont1,7:uum 
upon which the equivalence o: th 7 give~ two expressions 
can be decided; that decision is valid throughout the 
component's interior. 
The "small continuum" might be a small disk inside which 

both expressions are represented by the same Taylor series; or 
• arc wi'thi'n which both expressions take it could be a curvilinear 

d 1 by the laws of real algebra. 
values that can be prove equa 
Other possibilities exist; some will be suggested by whatever 

motivated the attempt to prove that the given expressions are 

In Our example, the two express ions are easily 
equivalent. 

on that part of the real axis where z > l, which proven equal 

1 . · 'de the one connected component into which the happens to ie insi 
slits along the rest of the real axis divide the complex plane. 

• 1 t everywhere in Therefore the two expressions must be equiva en 
'bl for real z < l • the complex plane except possi Y 

3. The singularities constitute loci in the plane upon 
which the processes in steps I and_ 2 above _can be 
repeated, finally leaving isolated sin~ular points to 
be handled individually. End of paradigm. 

1 th Sl it along z < I is partitioned into In our examp e, e 

two connected components by the branch-point at z = O • Each 
Whether the two expres-

has to be handled separately. component 
t depend upon the defini­

sions are equivalent on a component mus 
.1~ on i'ts slit where z < 0; there diverse tion of complex v~ 

That is what this paper is about. 
computers appear to disagree. 

Programmers who compose complex analytic 
More generally, 

• elementary functions listed at this 
expressions out of the nine 

to verify whether their expressions 
paper's beginning will have 



deliver the functions that they intend to compute. In principle, 

that verification could proceed without prior agreements about 

the functions' values on their slits if instead analysts and pro­

grammers were obliged to supply an explicit expression to handle 

every boundary situation as they intend. Such a policy seems 

inconsiderate (not to say unconscionable) considering how hard 

some singutarities are to find, and how easy to overlook; but 

that policy is not entirely heartless since verifying correctness 

along a boundary costs the intellect nearly as much as writing 

down a statement of intent about that boundary. The trouble with 

those statements is that they generally contain inequalities and 

tests and diverse cases, and as they accumulate they burden 

proofs and programs with a dangerously enlarged capture cross­

section for errors. And almost all of those statements become 

superfluous in programs after we agree upon reasonable defini­

tions for the functions in question on their slits. 

For instance, in our example above we had to discover 

whether the two expressions agreed on an interval O < z < I that 

lies strictly inside the dom~in of the desired function's analy­

ticity, not on its boundary. That interval turns out to be a 

removable singularity, and it does remove itself from all the 

computers mentioned above because they evaluate both expressions 

correctly on that interval; diverse computers disagree only on 

the boundary where the desired function is discontinuous. Per­

haps that's just luck. (Unlucky examples do exist and one will 

be presented later.) Let us accept good luck with gratitude 

whenever it simplifies our programs. 

Complex analytic expressions that involve slits and other 

singularities are intrinsically complicated, and they get more 

complicated when rounding errors are taken into account. Our 

objective cannot be to make complicated things simple but rather, 

by choosing reasonable values for our nine elementary functions 

on their slits, to make them no worse than necessary. 

4. PRINCIPAL VALUES ON THE SLITS, IEEE STYLE 

Since all the slits in question lie on either the real or 

the imaginary axis, every point z on a slit is represented in 

at least two ways, at least once with a +0 and at least once 

with a -0 for whichever of the real and imaginary parts of z 

vanishes. Benignly, ambiguity in z at a discontinuity of f(z) 

permits f(z) to be defined formally continuously, except possi­

bly at the ends of some slits, by continuation from inside the 

principal domain. This continuity goes beyond mere formality. 

By analytic continuation, the domain of each of our nine elemen­

tary functions f(z) extends until it fills out a Riemann 

Surface; think of this surface as a multiple covering wrapped 

like a bandage around the Riemann Sphere and mapped onto it 

continuously by f. To construct f's principal domain, cut the 

bandage along the slit(s) and discard all but one layer covering 

the sphere. That layer is a closed surface mapped by f con­

tinuously onto a subset of the sphere, The shadow of that layer 

projected down upon the sphere is the principal domain; it con­

sists of the whole sphere, but with slit(s) covered twice, That 

is why we wish to represent slits ambiguously. 

Here are some illustrative examples, the first of a real 

function that is recommended for any implementation of IEEE 

standard 754 or p854. 

copysign(x, y) == ±x where the sign bit is that of y , so } 

copysign (1,+0) =+I =lim copysign(l, y) at y = 0+, and (4. I) 

copysign(J,-0) -I = lim copysign ( I , y) at y = 0-. 

v(-l+iO) =+O+i=lim,/(-1 +iy) at y= O+; 

v(-1 -iO) =+0 -i = lim,/(-1 +iy) at y = C-. 

} (4. 2) 

Consequently, v(z*) =v(z)* for every z, and .J(I /z) = I /y(z) too. 

These identities persist within roundoff provided the programs 

used for square root and reciprocal are those, supplied in this 

paper, that would have been chosen anyway for their efficiency 

and accuracy. 
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arccos (2 + iO) = +0 - i arccosh(2) l 
= lim arccos(2 + iy) at y 0+ ; 

arccos(2 - i0) = +0 + i arccosh(2) 

lim arccos ( 2 +iy) at y = 0- . 

(4. 3) 

An implementation of arccos that preserves full accuracy in the 

imaginary part of arccos (2 + i y) when I y I is very tiny can be 

expected to get its sign right when y = ± 0 too without extra 

tests in the code; such a program is supplied later in this 

paper. 

But the foregoing examples make it all seem too simple. 

The next example presents a more balanced picture. 

Let function a(x) := .,/(x 2 -1) for real x with x 2 > I, 

and let b(x) := a(x) for real x > I; note that b(x) is not 

yet defined when x < I • The principal values of the complex 

extensions of a and b following the principles enunciated 

above turn out to be 

a(z) = v'(z 2 - 1) = a(-z), and 

b(z) v'(z-1).,/(z+ 1) =-b(-z). 

Both a and b are defined throughout the complex plane and both 

have a slit on the real axis running from I to + l , but a has 

another slit that runs along the entire imaginary axis separat­

ing the right half-plane where a b from the left half-plane 

where a=-b. The functions are different because generally 

v'(i;) v'(n) v'(i; n) 

v'( I; n) 

= ± v'( I; n) 

when larg(I;) + arg(n) I < 1T 

when larg(O + arg(n) I> 1r 

(hard to say which) when I; n < 0. 

Both functions a and b are continuous up to and onto ambiguous 

boundary points in IEEE style arithmetic, as described above, 

only if that arithmetic is implemented carefully; in particular, 

the expression z + I should not be replaced by the ostensibly 

equivalent z + ( I + i0) lest the sign of zero in the imaginary 

part of z be reversed wrongly. (Generally, mixed-mode arith­

metic combining real and complex variables should be performed 
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directly, not by first coercing the real to complex, lest the 

sign of zero be rendered uninformative; the same goes for com­

binations of pure imaginary quantities with complex variables. 

And doing arithmetic directly this way saves execution time that 

would otherwise be squandered manipulating zeros.) When z is 

near ± I the expression a(z) nearly vanishes and loses its rela­

tive accuracy to roundoff. Although this loss could be avoided 

by rewriting a (z) := v' ((z - l) (z + I)) , doing so would obscure 

the discontinuity on the imaginary axis in a cloud of roundoff 

which obliterates Re (z) whenever it is very tiny compared with 

I as well as when it is ±0. 

Also obscure is what happens at the ends of some slits. 

Take for example tn(z)=tn(p)+ i6, where p= lzl and 6=arg(z) 

are the polar coordinates of z = x + iy and satisfy 

x = p cos 6 , y = p sin 6 , p > 0 and -1r < 6 < 1r 

Evidently p := +.,/(x 2 + y 2 ), and when O < p < +co then 

e := 2 arctan (y/(p+x)) if x > O, or 

:=2arctan((p-x)/y) if x<0. 

At the end of the slit where z = x = y p = 0 (and in(p) = -co) 

the value of e may seem arbitrary, but in fact it must cohere 

with other almost arbitrary choices concerning division by zero 

and arithmetic with infinity. A reasonable choice is to inter­

pose the reassignment 

if p = 0 then x := copysign (I, x) 

between the computations of p and 6 above. More about that 

later. 

The foregoing examples provide an unsettling glimpse of 

the complexities that have daunted implementers of compilers and 

run-time libraries who would otherwise extend to complex arith­

metic the facilities they have supplied for real floating-point 

computation. These complexities are attributable to failures, 

in complex floating-point arithmetic, of familiar relationships 

like algebraic identities that we have come to take for granted 

in the arena of real variables. Three classes of failures can 



be discerned: 

(i) The domain of an analytic expression can enclose singu­
larities that have no counterparts inside the domain 
of its real restriction. That 1.·s _..,_ f 
/ 

2 w11y, or example, , ( z - I) c# ,/(z l) v(z + l) . 
(ii) • Rounding errors can o~scure the singularities. That is 

(iii) 

why, for exa~ple, v~z --· l) = v( (z I) (z + I)) fails so 
badly when either z = I very nearly or when z2 < o 
very nearly. To avoid this problem, the programmer may 
have to decompose complex arithmetic expressions into 
separate computations of real and imaginary parts 
there~y forgoing some of the advantages of a comp;ct 
notation, 

~arele~s.handlin~ can turn infinity or the sign of zero 
into m1.s1nformat1on that subsequently disappears leaving 
behind oi:i-ly a plausible but incorrect result. That is 
why compilers must not transform z - I into z - ( J + iO) • 
as we have seen above, nor -(-x x 2) into x + x2 , as 
we shall see below, lest a subsequent logarithm or square 
r~ot produce a nonzero imaginary part whose sign is oppo­
site to what was intended. 

The first two classes are hazards to all kinds of arith­

metic; only the third kind of failure is peculiar to IEEE style 

arithmetic with its signed zero. Yet all three kinds must be 

linked together esoterically because the third kin~ is not 

usually found in an ap 11· t • P ca ions program unless that program 
suffers also from the second ki'nd. Th 1· k • • e in is fragile, easily 

broken if the rational operations or elementary functions, from 

which applications programs are composed, contain either of the 

last two kinds of failures, Therefore, implementers of compilers 

and run-time libraries bear a heavy burden of attention to detail 

if applications progrannners are to realize the full benefit of the 

IEEE style of complex arithmetic. That benefit deserves some 

discussion here if only to reassure implementers that their 

assiduity will be appreciated. 

The first benefit that users of IEEE style complex arith­

metic notice is that familiar identities tend to be preserved 

more often than when other styles of arithmetic are used. 

The mechanism that preserves identities can be revealed by an 

investigation of an analytic function f(z) whose domain is slit 

along some segment of the real or imaginary axis; say the real 

axis. When z = x + iy crosses the slit, f(z) jumps discontin­

uously as y reverses sign although f(z) is continuous as z 

approaches one side of the slit or the other. Consequently the 

two limits 

f(x+iO):= limf(x+iy) as y ➔ O+ and 

f(x - iO) := limf(x + iy) as y ➔ 0-

both exist, but they are different when x has a real value 

inside the slit. Ideally, a subroutine P(z) programmed to 

compute f(z) should match these values; F(x±iO)=f(x± iO) 

respectively should be satisfied within a small tolerance for 

roundoff. This normally happens in IEEE style arithmetic as a 

by-product of whatever steps have been taken to ensure that 

F(x + iy) = f(x + iy), within a similarly small tolerance, for 

all sufficiently small but nonzero !YI• To generate a discon­

tinuity, the subroutine F must contain constructions similar to 

copysign (• • • ,y) or arctan(l/y) possibly with "y" replaced by 

some other expression that either vanishes or tends to infinity 

as y ➔ O. That expression cannot normally be a sum or difference 

like arctan(y-1) +-rr/4 or exp(y) 1 that vanishes by cancella­

tion, because roundoff can give such expressions values (typic­

ally 0) that have the wrong sign when IYI is tiny enough. 

Instead, to preserve accuracy when IYI is tiny, that expression 

must normally be a real product or quotient involving a power of 

y or sin(y) or some other built-in function that vanishes with 

y and therefore should inherit its sign at y = ± 0, Thus does 

careful implementation of compiler and library combine with care­

ful applications programming to yield correct behaviour on and 

near the slit. And if two such carefully programmed subroutines 

F(z), though based upon different formulas, agree within roundoff 

everywhere near the slit, then the foregoing reasoning implies 

that normally they have to agree on the slit too; this is the 

way IEEE style arithmetic preserves identities like v(z*) = (vz)* 



and v( 1/z) = lh/z that would have to fail on slits if zero had -' 
no sign. 

Of course, applications progranuners generally have things 

more important than the preservation of identities on their 

minds. Figure I shows a more typical and realistic example. 

Here f(z) :=l+z
2

+zv(l+z 2 )+fo(z 2 +zv(l+z 2 )), and we con­

strue the, equation I;; := f(z) as a conformal map, from the plane 

of z = x + iy to the plane of I;;= I;;+ in, that maps the right half­

plane x> + 0 onto the space occupied by a liquid that is forced 

by high pressure to Jet into a slot. The walls of the slot, 

where I:: < 0 and n = ±TI, should be the images of those parts of 

the imaginary axis z 2 < - I lying beyond ± i. The free surf aces 

of the jet, curving forward from I;; = ±i'IT and then back to 

l,; = - co ±iTI/2, should be the image of that segment of the 

imaginary axis -1 < < 0 between ±i. 

liquid flow 

---Wall------------,i1t 
air 1 

-------------------
- liquid jet -

- ------------------

_;,,. 

--... 

I ,, 

' ' 

- liquid flow 

air I 
---Wall------------'-i1t _______ ) 

liquid flow 

.;-plane 

·" I 
, 1 

I 
I 

0~ 
I 
I 
I 

air 

1

-i 

z-planc 

FIG. 1 Conformal map I;; :=f(z) of half-plane 
to jet with free boundary 

liquid 

+--

liquid 

The picture of f(z) should be symmetrical about the real 

axis because f(z*) = f(z) *. As z runs up the imaginary axis, 

with x = +0 and y running from -co through -I toward -0 and 

then from + 0 through + I toward +co, its image I;;= f(z) should 

run from left to right along the lower wall and back along the 

lower free boundary of the jet, then from left to right along 

the jet's.upper free boundary and back along the upper wall. 

This is just what happens when f(z) is plotted from a one-line 

program on the hp-71 B calculator, which implements the proposed 

IEEE standard p854. But when f(z) is progratmned onto the hp-

15C, whose zero is unsigned, the lower wall disappears, Its pre­

image, the lower part of the imaginary axis where zli < -I, is 

mapped during the computation of f(z) into the slit that belongs 

to v and in; the upper part z/i > gets mapped onto the same 

slit. For lack of a signed zero, that slit gets attached to a side 

that is right for the upper wall but wrong for the lower wall, 

thereby throwing the pre-image of the lower wall away into a tiny 

segment of the upper wall. To put the lower wall back, x must be 

increased from O to a tiny positive value while y runs from -oo 

to-I. (How tiny should x be? That's a nontrivial question.) 

The misbehaviour revealed in the foregoing example f(z) 

may appear to be deserved because f(z) has slits on the imagin­

ary axis z 2 <-1 beyond ± i, Should mapping a slit to the wrong 

place be blamed upon the discontinuity there rather than upon 

arithmetic with an unsigned zero? No. Arithmetic with an un­

signed zero can also cause other programs to misbehave similarly 

at places where the functions being implemented are otherwise 

well behaved. For example consider a(z) := z-iv(iz + \ )v( iz - I), 

whose slit lies in the imaginary axis l<z 2 <0 between ±i. Now 

I;; := a(z) maps the slit z plane onto the I;; plane outside the 

circle jl.;j;;,, l; vertical lines in the z plane map to stream 

lines in the vertical flow of a fluid around the circle, Imple­

menting a(z), the programmer notices that he can reduce two 

expensive square roots to one by rewriting 

a(z) := z + v(z 2 + \) copysign(l, Re(z)). 

The two expressions for a(z) match everywhere in IEEE style 

arithmetic; but when zero has only one sign, say +, the second 

expression maps the lower part of the imaginary axis, where 

z/i < -1, into the inside instead of the outside of the circle, 



although a(z) should be continuous there. 

The ease with which IEEE style arithmetic handled the 

important singularities near z = ±i in the examples above should 

not be allowed to persuade the reader that all singularities can 

be dispatched so easily. The singularities f(O) and f(oo) and 

the overflows near z = 00 would have to be handled in the usual 

ways if they did not lie so far off the left-hand side of the 

picture that nobody cares. Another kind of singularity that did 

not matter here, but might matter elsewhere, insinuated weasel 

words like "not usually", "tends to be" and "normally" into the 

earlier discussion of sums and differences that normally vanish 

by cancellation. Sums and differences can vanish without cancel~· 

lation if they combine terms that have already vanished; an 

example is h(x) :=x+x 2 when x=O. Evaluating h(±O) in IEEE 

style real arithemetic yields +O instead of ± 0 respectively, 

losing the sign of zero, h(x) has other troubles: it signals 

Underflow when x is very tiny, suffers inaccuracy when x is 

very near -1, and becomes Invalid at x=-oo. Simply rewriting 

h(x) :=x(I +x) dispels all these troubles, but is slightly less 

accurate for very tiny !xi than is h(x) :=-(-x - x2) • which 

preserves accuracy and the sign of zero for all tiny real x. 

Complex arithmetic complicates this situation. Both expressions 
2 

z+z and z(l+z) produce zeros with the wrong sign for Im(h(z)) 

on various segments of the real z-axis; to get the correct sign 

and better accuracy requires an expression like 

h(x+iy) :== x(l+x)-y 2 +2iy(x+D.5) 

regardless of arithmetic style. For similar reasons, the 

expression for f(z) used above for the conformal map would 

have to be rewritten if the interesting part of its domain were 

the left instead of right half-plane. 

IEEE style complex arithmetic appears to burden the imple­

menters of compilers and run-time libraries with a host of 

complicated details that need rarely bother the user if they are 

dispatched properly; and then familiar identities will persist, 

despite roundoff, more often than in other styles of arithmetic. 

This thought would comfort us more if the aberrations were 

easier to uncover. Locating potential aberrations remains an 

onerous task for an applications programmer, regardless of the 

style of arithmetic; however that style can affect the locus of 

aberration fundamentally. In IEEE style arithmetic, a program­

med implementation of a complex analytic function can take 

aberrant boundary values, different from what would be produced 

by continuation from the interior, because of roundoff or similar 

phenomena. In arithmetic without a signed zero, such an aberra­

tion can be caused as well by an unfortunate choice of analytic 

expression, though the programmer has implemented it faithfully. 

The fact that an analytic expression determines the values of an 

analytic function correctly inside its domain is no reason to 

expect the boundary values to be determined correctly too when 

zero is unsigned. 

5. PRINCIPAL VALUES ON THE SLITS, hp-JSC STYLE 

Of course, the hp-15C is not the only machine with an 

• DEC VAX I J model is similar but lacks so far a unsigned zero; a 

careful software implementation of some of the functions under 

discussion - in time that lack will be remedied. Many other 

machines, the IBM 370 series among them, have a signed zero in 

their hardware but no provision for propagating its sign in a 

coherent and useful way, so they are customarily programmed as 

if zero were unsigned. All these machines discourage attempts 

to distinguish one side of a slit from the other on the slit 

itself. 

What we have to do is attach each slit to one of its sides 

in accordance with some reasonable rule, thereby obtaining a 

principal value which is continuous up to the slit from that 

side but not from the other. In other words, we have to assign 

a sign to zero on each slit and then compute the same principal 



value as would have been computed using IEEE-style arithmetic. 

The assignment cannot be arbitrary; for instance we cannot 

change sides in the middle of the slit lest a gratuitous singu­

larity be insinuated by the change. On the other hand, some 

degree of arbitrariness is obligatory. For instance, the two 
functi~ns 

b(z) := v(z-1) v(z+ I) and -b(-z) 

are indistinguishable everywhere except in the slit -1 < z < I 

across which they are discontinuous, but in hp-l5C style arith- J­

metic one function must be continuous onto the top of the slit 

and the other onto the bottom. Evidently no general rule attach­

ing a slit to one of its sides can depend solely upon the slit's 

shape nor solely upon the function's values off the slit. And 

yet, paradoxically, the hp-I 5C appears to follow just such a 
rule, namely 

Counteri-CloakuJise Continuity (CCC) : 

Attach each slit to whichever side is approached when 
the finite branch-point at its end is circled counter­
clockwise. 

Thus when z is real and negative CCC defines vz = iv !z I 
and R.n (z) = R.n I z I + i1r. Actually CCC is merely a mnemonic summary 

of the implications, for the nine functions that are the subject 

of this note, of the following more general convention applica­
ble also to b(z) above, as CCC is not. 

The Pr>incipal Expr>ession: 

Assign to each elementary function in question not 
merely a Principal Value but also a Pr>incipal Expries­
sion in terms of 9:n(z) and vz, using the simplest 
formula that manifests its behaviour at finite 
branch-points without gratuitous singularities 
elsewhere. 

What makes this convention effective is a canonical asso-

ciation between the archetypal branch-points of 9-n(z) and vz 

on the one hand, and on the other any isolated branch-point at 

the end of a slit belonging to any other elementary function. 
For example, 

a.rcsin(z) 'fr/2 (power series in 1-z)y( 1-z) for z near I, 

arccosh (z~ 9,n(2z) - (power series in I /z) when I z I is huge, 

) ( • • I z) for z near I. arctanh(z) =-0.5 9,n(l-z + power series in -

In each case the power series is determined uniquely. In general, 

if f3 is a finite branch-point at the end of a slit belonging to 

one of our nine unc ions • f t • f(z), and if the function is analytic 

inside some circular disk lz- SI< p except on the slit, then 

f(z) can be represented inside that slit disk by one of the for­

mulas 

f(z) = P(z-f3)+p(z-S)v((z-S)/c) , or 

f(z) P(z-S)+p(z-S)R-n ((z-6)/c), or 

f(z) = P ( some nonintegral power of v( (z - S) /c)) , 

where c=lim(S-z)/!S-zl as z-+S along the slit, so lal=t 

and (z-S)/c < O in the slit, and P(t) and p(t) are represent­

able by power series around t= O. Given S and f and its slit, 

a and p and p are aanoniaal (determined uniquely). Formulas 

slightly more general than these, but still essentially unique, 

cope with more general elementary functions or with isolated 

branch-points at 00 • 

The dominant terms Of these Canonical formulas provide 

approximations useful near branch-points, and are therefore pre­

cious to analysts and programmers who have to exploit or compen­

sate for singularities, so these formulas should not be violated 

unnecessarily on the slits. Programs that handle singularities 

• h h additional burden of treating are complicated enough wit out t e 

• sli'ts that need no special care so long as pro-specially those 

grams remain as valid on the slits as off them near their ends. 

Predict from Principal Expressions how their Then programmers can 

programs will behave on slits. The Principal Expressions for all 

nine of our elementary functions are determined by convention 

and tabulated nearby. For other functions the choice of Principal 

• f l't ept when a slit Expression is forced by the choice o sis exc 

contains just two singularities, both finite branch points at its 



ends'. In the exceptional case the Principal Expression tells 

which side of that slit is attached to it, For instance, the 

Fortran programmer can define the 

COMPLEX FUNCTION B(Z) = CSQRT(Z- I.O)*CSQRT(Z + 1.0) 

when he wishes to attach its slit to its upper side, and invoke 

-B (-Z) when he wishes to attach the slit to its lower side. 

Another e~ample has two definitions 

arccot(z) := arctan(l/z) and arccot(z) ::a 1r/2-arctan(z) 

that are both widely used though they differ by 1T in the left 

half-plane. The first has one slit on the imaginary axis 

-I < z 2 < 0 between z = ±i. The second has two slits on the 

imaginary axis z2 <-I beyond z = ±i. But arctan(l/z) is not 

a Principal Expression for arccot(z) because it has a gratui­

tous singularity at z= 0 where its slit changes sides. Acor­

rect Principal Expression for the first definition of arccot (z) 

is either H,n ((z-i)/(z+i))/2 or fo((z+i)/(z-i))/(2i) 

according to whether its slit be attached respectively to the 

left half-plane or to the right; except on the slit, these Prin­

cipal Expressions are equal and satisfy arccot (-z) = -arccot (z). ,, 

Whichever one be chosen, the other is -arccot (-z), Similarly 

for ±arccoth(±z) :=fo((z+ 1)/(z-1))/2. 

Table 1 

Conventional Principal Expressions for Elementary Functions: 

-1T..;;; arg(z) < 1T; and -1T < arg(z) if O has just one sign. 

fo(z) := in( I z I) + i arg(z) 

zw::exp(win(z)) (and zO= I, Ow=O if Re(w)>O) 

v'(z) == zl/2 

arctanh(z) :=(in(l+z)-in(l-z))/2 =-arctanh(-z) 

arctan(z) := arctanh ( iz) Ii = -arctan(-z) 

arcsinh(z) := ln(z +v' (I+ ) ) = -arcsinh(-z) 

arcsin(z) := arcsinh(iz)/i = -arcsin(-z) 

arccos(z) :=2tn(v'((l+z)/2)+iv'((l-z)/2))/i = 1r/2-arcsin(z) 

arccosh(z) :=2 in(v'((z+ 1)/2) + v'((z-1)/2)) 

In general the definitions of Principal Expressions can 

and should be honoured in all styles of arithmetic, though they 

must be implemented carefully if they are to survive roundoff. 

Careful implementations of our nine elementary functions will be 

presented later in this paper. But some familiar identities 

satisfied in IEEE style arithmetic must be violated when O is 

unsigned no matter how the slits be attached. For instance, no 

elementary function f in the table except arctan and arcsinh 

can satisfy f(z*) = f(z)* when z lies in a slit in the real 

axis, Similarly, 

in(l/z) = -fo(z) and v'(l/z) = 1/v'(z) 

must be violated at z = l and therefore everywhere in the slit 

z < O. Other familiar identities violated only in a slit include 

arctanh(z) = in( (I+ z) I ( 1-z) )/2 , violated when z > I • 

arctan(z)=itn((i+z)/(i-z))/2, violated when iz <-1 • and 

arccos(z)=2arctan(v'((l-z)/(l+z))), violated when z <-I. 

Other writers have put forward different formulas as defi­

nitions for our nine elementary functions. Comparing various 

definitions, and choosing among them, is a tedious business 

prone to error. Some ostensibly different definitions, like 

arccosh(z) = in(z+v'(z-l)v'(z+I)), 

give the same results as ours, 

arccosh(z) = in(z +v'(z 2 -1)) 

Some are quite wrong, as are 

and arccos(z) = tn(z+v'(z 2 - 1))/i, 

because their slits are in the wrong places. Some are different 

on only part of a slit, as is 

arccosh(z) = -fo(z - v' (z- I) v' (z + I)) 

which is continuous from below that part of the slit where z <-I 

and therefore violates the canonical formula around infinity, 

Some are very close to ours; for instance, a proposal to intro­

duce complex functions into APL recommended the formula 

arccosh(z) = in(z+ (z+ l)v'((z-1)/(z+I))) 

which yields the same principal value as our formula except for 

a gratuitous removable singularity at z = -1. The same proposal 

advocated 



arctan(z) = -itn((I +iz)v'(l/(z2+ J))} 

because its range matches that of arcsin(z), though no reason 

was given why the ranges should match (but see below), and 

because it was alleged that the CCC rule should be reversed 

around a branch point at which the function is infinite, though 

doing so would introduce anomalies in the relation between tn 

and v', t~ereby vitiating the formula being advocated. Another 
well-known formula 

arctan(z) = i tn,(v'((i+z)/(i-z))) 

is continuous one way around one branch-point and the opposite 

way around the other, thereby violating arctan(-z) =-arctan(z) 

on the slits. Our formula given earlier, which is equivalent to 

arctan(z) = i(tn(l -iz)-tn(J +iz))/2, 

follows the CCC rule and seems simplest, but it does violat~ 
two cherished formulas 

arcsin(z) = arctan(z/v'(l-z 2)) and 

arccos(z) =2 arctan(v'((l-z)/(1 +z))) 

on the slit, These formulas are satisfied almost everywhere by 

the APL proposal's definition of arctan mentioned above, the 

except ions arccos (-1) and arcs in(± I) arising because, like 

zero, 1/0 has no sign and therefore arctan(l/0) has to be 

either undefined or chosen arbitrarily from {±1r/2}. Rather 

than debate the merits of cherished formulas satisfied every­

where except at some finite branch-points versus canonical formu­

las satisfied around every finite branch-point, we choose what 

seem to be the more perspicuous definitions. For similar reasons, 

our formula above for arctanh seems preferable to the APL 
proposal's 

arctanh(z) = 2n((I +z),/(1/(1 z 2 ))). 

Regardless of whether our Principal Expressions really are 

preferable to someone else's, and regardless of the style of 

arithmetic, good reasons exist to seek universal agreement upon 

a set of Principal Expressions to define Principal Values for 

familiar elementary functions. The first to benefit from such 

an agreement would be analysts, who would suffer less confusion 

when reading each other's results. More importantly, programmers 

would make fewer mistakes, and find them sooner, when implement­

ing conformal maps from complex analytic expressions. Although 

those benefits might follow from any kind of agreement, Principal 

Expressions offer the further advantage that they introduce no 

unnecessary singularities. That advantage goes beyond mere parsi­

mony, because control of singularities is the essence of the 

subject. 

Programs that involve singularities are especially diffi­

cult to debug because so many programmers tend to think more like 

algebraists than like analysts or geometers. Unaccustomed to 

manipulating inequalities, they have trouble locating the slits 

that are implicit in complex expressions that contain any of our 

nine elementary functions. Instead, too many programmers are 

inclined to test complex expressions in the same way as they 

often test real expressions, by evaluating them at a handful of 

trial arguments to see whether the results agree with prior 

expectations. Because this test strategy usually works for real 

analytic expressions, programmers mostly ignore warnings that it 

is unreliable; what else should we expect in a society where 

drunk driving is still regarded widely as a mere peaaadillo? But 

this strategy is truly a dangerous way to test complex analytic 

expressions of conformal maps with corners because those maps are 

notoroious for mapping tiny regions into huge ones. When a tiny 

region like that is missed by a scattering of trial arguments, 

the test can be quite deceptive. The next example illustrates 

the point. 

Let g(z) :=2arccosh(I +2z/3)-arccosh(5/3-(8/3)/(z+4)), 

and construe the equation 7; := g(z) as a conformal map of the 

z-plane, slit along the negative real axis z < O, onto a slotted 

strip in the plane of l;=E,;+in. The strip lies where lnl <: 21r, 

and the slot within it lies where E,; < 0 and lnl < Tr. The bound­

ary of the slotted strip is the image of both sides of the slit 



in IEEE style arithmetic; with an unsigned zero the slit maps 

onto only that part of the boundary in the upper half-plane. 

d ~e 

-~•[r-- _---i,._a 

Tear-drop 

l ...... 

-4.5 • -4 / -3 
••• 4 

c*-+--

d* 

(-plane z -plane 

FIG. 2 Conformal map r;; :=g(z) of slit plane to slotted strip 

The cost of computing g(z) comes mostly from two loga­

rithms entailed by two calls upon arccosh. Two logari thrns can 

be reduced to one by means of a page or so of algebraic manipu­

lation starting from the Principal Expression tabulated for 

arccosh above; the result is a pPoof that 

Without Principal Expressions, one might resort instead to for­
mulas like 

Arccosh(z) 

or to identities like 

Arccosh(z) ±Arccosh(i';) =Arccosh(zr;; ±v'((z 2 - J)(r;: 2 - J))) , 

with results that are hard • to predict. A possible outcome is 
the expression 

q(z) := 2arccosh(2(z+3),/((z+3)/(27(z+4)))) 

which matches the desired g(z) everywhere in the z-plane except 

in a small tear-drop shaped region situated symmetrically about 

the segment -4. 5 < z < -3 on the real axis. The tear-drop's 

boundary is the locus in the plane of z = x + iy whereon the 

argumen~ of arccosh in q(z) takes values on the slit between 

O and -1; the boundary's equation is 

y2 + (x+3)2 (2x+9)/(2x+5) = 0 for -4.5 <;x<;-3, 

Whereas r;; = g (z) maps the tear-drop onto two half-strips in the 

left-half of the r;;-plane, r;; =q(z) maps the tear-drop into two 

half-strips in the right half-plane. Indeed, q(z) = -g(z) in 

the tear-drop except, if zero is unsigned, q(z) = -g(z)* for 

-4.5 < z - . s 1 < 4 I • t 1 ikely that a few trial evaluations will 

reveal the difference between q(z) and g(z)? 

The examples presented in this paper may give the impres­

sion that an analyst will benefit far less than a programmer 

from Principal Expressions because their benefits seem meagre 

unless slits run along straight lines. Moreover a signed zero 

seems useless. except when slits lie in the real and imaginary 

axes. True; but not the whole truth. Despite that applications 

of elementary functions frequently relocate their slits to non­

standard places, the functions so constructed have to be communi­

cated to humans and to computers in terms of combinations of the 

standard elementary functions with which we are all acquainted. 

For instance, let e(z) be an analytic extension of arcsin(z) 

from the upper half-plane across its slits z 2 > I into the lower 

± I half-plane, where we relocate the slits to run down from 

along some paths to -ioo. Can e(z) be expressed in terms of 

arcsin(z)? Yes, In the upper half-plane or between the new 

slits, e(z) := arcsin(z), Elsewhere we define s := copysign(l, 

Im(z)) and calculate 

e(z) := s arcsin(z) + copysign( (l -s)-rr/2, Re(z)) , 

which is continuous across the old slits in IEEE style arithme­

tic. If Q is unsigned, the last expression must be replaced by 

something somewhat more complicated. 

Readers who recoil from tedious labour may rather acquiesce 

to all the foregoing assertions than verify any of them per­

sonally, despite that such assertions are notoriously rife with 



mistakes. Yet, lest the pleasures of analysis be eschewn alto­

gether, the writer tenders some simple exercises for the reader's ,, 

amusement; in each group the object is to discover the whole 
domain, including boundary, wherein one 

Exeraises: Where are ThJo Expressions 

Group I: 'l/(z 2 -1), 'l/(z-1)'1/(z+I), 

expression equals another, 

in the Same Group Equal ? 

-v'(I -z) '1/(-1 -z), 

i'l/(1-z)'l/(l+z). 

Group 2: 'l/(z-1)/'l/z, '1/(1-1/z), 'l/(z2-z)/z, 

'1/(x(x - I) -y 2 + 2 iy (x- I /2))/2 
Group 3: 'l/(z)/'l/(z-1), 'l/(z/(z-1)). 

Group 

Group 

Group 

Group 

Group 

4: 

5: 

6: 

7: 

8: 

2arctanh(z), R.n((l+z)/(1-z)), arcsinh(2z/(J-z 2 )). 

cos ( n arc cos (z) ) , cosh ( n arccosh (z) ) , for integers n. 

arctan(z) + arctan(I /z) , rr/2, -rr/2 , 

arccosh(z) , arccosh(2z 2 - 1)/2, 2 arcsinh('I/( (.z-1 )/2) l, 
i arccos(z), 

arccosh(z) -arccosh (-z), i1T, -irr. 

The answers may depend upon whether arithmetic is per-
formed in hp-I SC style or in IEEE style, the difference appear­

ing only when a slit lies in the real or the imaginary axis. 

6. SUMMARY 

Two different styles of arithmetic induce two different 

mental attitudes towards the connection between analytic expres­
sions and analytic functions, 

IEEE style arithmetic encourages the extension by contin­

uity of every complex analytic function from the interior of its 

domain to the boundary, including both sides of slits that are 

distinguishable with the aid of a signed ± 0. Consequently, two 

expressions that represent the same function everywhere inside 

its domain are likely to match everywhere on the boundary too; 

most exceptions are correlated with roundoff problems. 

Arithmetic with an unsigned O permits continuous extension 

to one side of a slit but not to both, Consequently, two expres­

sions th~t represent the same function everywhere inside its 

domain often take different values on the boundary. Choosing 

among such expressions is tantamount to choosing among boundary 

values for what is otherwise the same function. Our nine elemen­

tary functions are among those defined by Principal Expressions 

determined along with their Principal Values by convention, 

Other complex functions have to be defined on and inside bounda­

ries by apt compositions of Principal Expressions, or else by 

ad hoe assi·gnments on boundaries. 

Regardless of the style of arithmetic, analytic expressions 

provide at best a statement of intent, at worst wishful thinking 

about complex analytic functions. Implementations faithful to 

the expressions despite roundoff and over/underflow must overcome 

nontrivial technical challenges. 

7. IMPLEMENTATION NOTES 

Six inverse trigonometric and hyperbolic functions are de­

fined in terms of in and 'I/ by Principal Expressions tabulated 

above in such a way as might appear to provide one-line programs 

to compute those functions in, say, Fortran. Unfortunately, round­

off can cause such programs to lose their relative accuracy near 

their zeros or poles; and overflow can occur for large arguments 

even though the desired function has an unexceptionable value, 

Programs to compute complex elementary functions robustly and 

fairly accurately are surprisingly complicated, so much so as to 

justify supplying them in this paper. Actually, we supply algo­

rithms that can be converted into programs on various machines 

by being adapted to the peculiarities of diverse programming 

languages and computing environments, 

Certain Environmental Constants that characterize impor­

tant attributes of computer arithmetic may be specified precisely 

when that arithmetic conforms to IEEE 754 or p854; otherwise 

they might be slightly vague: 



Q := Overflow threshold= Nextafter(+co, 0) 

E := Roundoff threshold= 1,0- Nextafter (1,0, 0) 

>..-Underflow threshold= 4(1-E)/n in IEEE 754 

Smallest possible no. = Nextafter(O.O, I) 2E>. 
in IEEE 754, 

Here N_,extafter is a function specified in the appendix to IEEE 

754; it perturbs its first argument by one ulp (one Unit in 

its Last 'Place) towards the second. That appendix also includes 

copysign, which was described early in this paper, and two func­

tions scalb and logb that will be used later. Let 6 be the 

arithmetic's radix, 2 for IEEE 754, or 2 or 10 for p854. For 

any floating-point x and integer N, scalb (x , N) := SN x compu­

ted without first computing SN, so Over/Underflow is signalled 

only if the final value deserves it, Logb(NaN) is NaN, which 

stands for "Not a Number" and is produced by invalid operations 

like 0/0, Oco, co/00 and 00-00; logb (±oo) := +oo; logb(O) := -oo 

with Divide-by-Zero signalled; and if A< !xi < 00 then logb(x) 

is an integer such that I< lscalb(x, -logb(x)}I < 6, The same 

may be true when O < Jx! <A, but early implementations may in­

stead yield logb(x) := logb(>.) in that case. Like the proce­

dures I dexp and fr exp in the C library, scalb and logb are 

practically indispensible for scaling and for computing loga­

rithms and exponentials. 

Certain details, particularly those that pertain to oo 

and NaN, are peculiar to IEEE style arithmetic. Otherwise the 

algorithms presented here for various complex elementary trans­

cendental functions, though designed for IEEE style arithmetic, 

can be used with other reasonably rounded binary floating-point 
arithmetics to get comparable results, Our algorithms assume 
either that zero always has a + sign, or else that its sign 
obeys the rules specified by IEEE 754 and p854. Those stan-
dards also specify rules for + 00 and -00 and for NaN. Predi-
cates like X=y • X <;, y and x < y are all false; but X"F-Y 
and x ]> y are true when either or both of x and y are NaN. 

• N N d c i't Both infinities Algebraic operations upon a a repro u e . 

and NaN~ can be produced by our algorithms, and both wi 11 be 

accepted as inputs to them. 

The IEEE standards prescribe responses to five kinds of 

exceptions: 

Invalid Operation, ();Jerflow, Divide-by-Zero, 

Underflow, Inexact . 

Each kind has its fla,g, to be raised to signal that its kind of 

exception has occurred; each kind produces a defauit ?'esuZt, 

respectively 

NaN, + ... , + ... , gradual underflow, rounded result. 

Gradual underfZow approximates any value between ±), with an 

error smaller than €A instead of flushing it to zero. Neither 

this feature nor flags figure as much as they could and should 

in our algorithms. In environments that conform fully to IEEE 

754, as does the Standard Apple Numerical Environment (SANE) on 

Apple computers, robust exception-handling complicates programs 

much less than ours have been complicated by our desire to pro­

vide algorithms adaptable also to machines that do not conform 

to the si.:andards, Most of our algorithms can be adapted to such 

machines by merely excising references to features that those 

• a statement like "If machines do not support. For instance, 

x = 00 then • • •" will be deleted for machines that have no infi­

nity; however, some obvious precaution against division by zero 

may have to be inserted elsewhere instead. Machines that flush 

underflows to zero instead of underflowing gradually may produce 

less accurate results when they approach the underflow thres­

holds ±),. 

Our algorithms would be simpler, some much simpler, if every 

arithmetic operation accepted and produced intermediate results 

of wider range and precision than our algorithms are normally 

expected to accept or produce. Such a situation arises when the 

transcendental functions are intended for a higher-level language 

like Fortran that supports only Single- and Double- precision 



variables, but the implementer has access to another wider 

format like IEEE 754's Extended format. That is implemented in 

floating-point coprocessor chips such as the Intel i8087 and 

i80287 used in the IBM PC, PC/XT and PC/ AT, the Motorola fi888 I 

used in a host of 68000-based workstations, the Western Electric 

32106, ,and also in Apple's SANE. But no such Extended format 

is provided by the National Semiconductor 32081 used in the IBM 

PC/RT, nor by the Weitek 1164/1165 chips used in the Sun III 

among others, nor by the NCUBE multi processor array, nor by 

Fairchild's Clipper; for their sakes we use devious formulas 

to preserve accuracy and avoid spurious overflows. 

In the programs below, !3,p,0,s, t, u. v,x,y, l; and n 

denote real variables; w :=u+iv, z ==x+iy and l,; :=l;+in de­

note complex variables; and a star denotes not multiplication 

but complex conjugation: z*=x-iy, Mixed-mode arithmetic upon 

one real and one complex variable is presumed N(Yf to be per­

formed by coercing the real to complex, but rather in a way that 

avoids unnecessary hazards like 000 or 00- «> by avoiding unneces­

sary real operations: 

S+z := <S+x) +iy, Sz ==Sx+iSy, z/S :=x/S+iy/S; but 

S/z:=Sl(x+(y/x)y)-i(JJ/x)(Sl(x+(y/x)y)) if IYI < !xi, 
:=(x/y)(Sl(y+(x/y)x))-iS/(y+(x/y)x) if )xi< IYI, 

with due attention to spurious over/underflows and zeros and 

infinities. 

Ideally, the operators Re and Im, that select the Real 

and Imaginary parts respectively, should be interpreted in a way 

that avoids unnecessary computation of the unwanted part when­

ever possible, For instance, Re (wz) should be evaluated by 

computing only ux-vy, without evaluating Im(wz) too. Besides 

saving time, this policy avoids spurious exceptions like over/ 

underflow that might afflict only the unwanted part. 

Note too, to conserve ±0, that -z is not 0-z though 

they be equal arithmetically; and similarly w-z is the same as 

-z+w but not -(z-w). Multiplication or division by i =v'-1 

should be accomplished not by actual multiplication but rather 

by swaps and sign reversal; iz. :=-y+ix. In a similar way, an 

expression that is syntactically pure imaginary with an unsigned 

zero for its real part should be handled in a way that avoids 

both unnecessary arithmetic and unnecessary hazards. For instance, 

iS+z := x+i(S+y) 

z/(iS) := -i(z./S), 

(iS)z := i ( Sz), 

(iS)/z. := i(S/z). 

In languages where a construction 1 ike CMPLX (x, y) is used to 

create the complex value z :=x+ iy, the expression CMPLX (0, S) 

should be treated as iB, whereas CMPLX(+O,B) and CMPLX(-0,S) 

should be treated as intentional attempts by the programmer to 

introduce an appropriately signed zero into the calculation. Of 

course, both attempts will produce the same CMPLX(+O, S) on a 

machine whose only zero is + 0. 

8, COMPLEX ZEROS AND INFINITIES 

All four zeros ±0 ± i0 are arithmetically equal. Whether 

all complex infinities should be arithmetically equal is a topo­

logical question. When dealing' with complex algebraic (not 

transcendental) functions, the most convenient topology is that 

of the Riemann sphere with its unique point at infinity. A 

metria (distance function) that induces that topology is the 

Chordal Metria : 

Chord ( z, ?;) := I z - l; I / v' ( ( I+ I z. I 2 ) ( I + I?; I 2)) 

if I z I < 00 and I l,; I < 00 , 

: = Chord ( I / z , I /?;) if z --#-0 and ?; --#-0 ; 

< Chord(O, 00) := Chord(00, O) :=I. 

In this topology, every algebraic function is a continuous 

(though perhaps multi-valued) map of the sphere to itself. So 

are our nine elementary functions f(z). Only a function discon­

tinuous at infinity can be affected by its multiplicity of 

representations there; an important instance is the equality 

case f(z) z. To combat ambiguity at infinity a prograllllller 

can map all its representations upon one of them, namely real 



+co, by invoking the function 

PROJ (x + iy) := x + iy if Ix I * co and IY I * co , 

:= + co + i copysign ( 0, y) otherwise, 

before performing any operation discontinuous at infinity. Of 

course, PROJ is just the identity function on machines that 

lack a way to represent co. 

The topology of the Riemann sphere is inappropriate for 

functions like ez that have an essential singularity at infi­

nity. Instead, different representations of infinity are custo­

marily associated with different paths that tend to infinity in 

some asymptotic way, justifying assertions like 

exp(-co+iy)=O and lexp(+co+iy)I co for all finite y. 

For example, " 00 + i2" could represent a path asymptotically 

parallel to the positive real axis and 2 units above it; 

"oo+ ioo" would have to represent a path parallel to that traced 

by exp(S+ i8) as 13 ➔ + 00 for some fixed but unknown 8 strictly 

between O and rr/2. Unfortunately, programming languages like 

Fortran represent complex variables by pairs of reals in such a 

way as allows at most nine asymptotic directions (8) to be repre­

sented by two real variables of which at least one is ± oo. Those 

directions are 

8: ±rr -3rr/4 --rr/2 -rr/4 ±o 

z: - 00 ±is -oo-i oo f3-ico +co ±i<» + 00 ±ia 
8: rr/4 rr /2 3-rr/4 NaN 

z: +oo+ioo a+i,,,, -oo+ ico NaN±i<» or ±co± i NaN. 

(Here e stands for any finite real number.) 

These complex infinities z are the only ones available. By 

default, in the absence of some contrivance programmed explicit­

ly to cope with other asymptotic directions, every infinite 

complex result, especially of multiplication and division, has 

to be approximated by something chosen from the available com­

plex infinities z in a fashion resembling the way real numbers 

are rounded to the ones representable in floating-point. That 

default rounding, while fully satisfactory in the topology of 

the Riemann sphere, can approximate arbitrary asymptotic direc­

tions at best crudely, 

Crudely, but not quite arbitrarily. The approximations 

should be predictable and consistent with reasonable expecta­

tions; in particular, it seems reasonable to expect 

wz exp(tn(w)+in(z)} and w/z=exp(in(w)-9,n(z)} 

to hold within an allowance for roundoff even for infinite or 

zero products and quotients, These relations imply lwzl = lwl lzl 

and lw/zl = lwl / lzl at O and 00 , equations that can be satisfied 

exactly; another implication is that 

arg(wz) = arg(W) + arg(z) mod 2rr and 

arg(w/z) = arg(w) -arg(z) mod 2rr 

have to be approximated within the set of ten values available 

for arg(I',;) when r,; is zero or infinite. Those values turn out 

to be: 

arg(+O±iO) = arg(+co± iS) = ±0 for all finite f3 , 

arg(+co± ioo) ±rr/4, 

arg(f3 ± ioo) = ±TI/2 for all finite 13, 

arg(-®± ioo) = ±3TI/4, 

arg(- 0 ± iO) = arg(--<X>± if3) = ±TI for all finite f3; 

arg(NaN + i Anything) and arg(Anything + i NaN) are both NaN. 

Thus, any coherent scheme for computing complex products, 

quotients and logarithms at zero and infinity can be regarded 

as a scheme that rounds arg(I',;) into one of the ten values above 

when r,; is zero or infinite. To be acceptable, such a scheme 

should not add much to the cost of complex multiplication and 

division. The procedure Box that follows seems tolerable. 

9. THE PROCEDURES 

Box supplants the explicit calculation of arg during 

multiplication and division. It is followed by procedures and 

auxiliary procedures that calculate the Principal Expressions 

of the Elementary Functions of Table I, and algorithms for CTANH 

and CTAN are given too. Several real special functions are 



userl by these procedures; indeed the only complex auxiliary func­

tion that occurs during the computation of the inverse trigono­

Metric and hyperbolic functions is CSQRT. It is assumed that 

the radix of the computer arithmetic is 2. 

• • • To compute x + iy = z := Box( I;) = Box(~+ in). 

CBOX (~+in): • • • Defined onty for zero and infinite arguments, 

If ~=0 and n=O then z := copysign(I .~) +in 

else if I~ I = 00 

then { if lnl = 00 

then z := copy sign ( I , ~) + i copysign (I , n) 

else z := copysign (I,~)+ in/~ } 

else if lnl=oothen z:=~/n+icopysign(l,n) 

else z := (0 + i0)/0; • • • Invalid use. 

Return z; end CBOX, 

•••To compute p:= lzl lx+iyl =y(x 2 +y2), 

ABS (x+iy): ••• Fortran's CABS(Z)=C's hypot(x,y). 

•••The obvious formula can produce errors bigger than one 

ulp, and could over/underflow spuriously. Not so for 

•••what follows, 

Constants r2:=y2, r2pl := l+V2, t2pl :=I +../2-r2pl; 

These constants must be correctly rounded to work­

ing precision; consequently r2pl +t2pl =I+ ../2 

to double that precision. 

Save invalid flag;••• This suppresses spurious Invalid 

• • • Operation signals from NaN comparison or 00-00; 

but spurious inexact signals can be generated by 

•••this program. 

x:=lxl; y:=IYI; s:=0.0; 

If x < y then swap x and y ; • • • so x > y > 0 if not NaN. 

If y ="" then X := y ; 

t:=x-y; 

If x ,;,. co and t 4'-x then 

{ ••• executed if x ,t,. co, y 4'-00 and y is not negligible. 

Save Underflow flag; 

If t > y 

then •••when 2 < x/y < 2/£, 

{ s := x/y; s :=s+ ../(I +s 2 ) } 

else • • • when I <; x/y < 2 , 

s:= t/y; t:=(2+s)s; 

s :=((t2pl +t/(r2+ ../(2+t)))+s)+r2pl } ; 

s := y/s •• • Harmless Gradual Underflow can occur here. 

Restore Underflow flag; 

} ; 

Restore Invalid flag ; • • • Only if deserved can Overflow 

• • • happen now. 

Return x + s ; end ABS, 

•••To compute 0:= arg(z) arg(x+iy). 

ARG(x+iy): •••=Fortran's ATAN2(y,x). 

If x =0 and y=0 then x :=copysign(l ,x) 

If lxl =co or IYI 00 then z := CBOX(z); 

•• • leaves signs unchanged. 

If IYI > I.xi then 0 := copysign(n/2, y)-arctan(x/y) 

else if x < O then 0 := copysign(1T, y) + arctan(y/x) 

else 0 := arctan(y/x) ; 

Suppress any Underflow signal unless 101 < 0.125, say; 

••• Better accuracy may be obtained by further case 

reduction and use of identities like 

. .. arc tan (y/x) = n/ 4 + arc tan( (y -x) I (y + x)) • 

Return 0 ; end ARG. 



•••To compute x+ z:=<: 2 = (l;+in)
2

• 

CSQUARE (l; + in) : 

x:=(l;-n)(l;+n) •••Not i;2 -n 2
• 

y·:= l;n +-l;n; •••ONE multiply, one add. 

If a spurious NaN is created by overflow it gets 

•••removed thus: 

If x':#;c then 

{ if !YI = 00 then x := copysign(O,i;) 

else if lnl = 00 then x := -00 

else if I I; I = 00 then x := = } 

else if y':#y and Ix! 00 then y:= copysign(O,y) 

Return (x + iy) ; end CSQUARE . 

••• To compute p:= j(x+iy)!zkl 2 
scaled to avoid Over/Underflow. 

CSSQS(x+iy): ••• =p+ik, with an inteeer k. 

Integer k; 

k :=O; 

Save and reset the Over/Underflow flags; 

p := x 2 + y 2 ; •••Multiply twice and add, 

If (p-,t,p or p=00) and (lxl =oo or IYI = 00) then p:= 00 

else if { the Overflow flag was just raised, or 

the Underflow flag was just raised and P < A/£ } 

then k:=logb(max(lxl, IYI)); 

p := scalb ( x, 2 + scalb ( y, -k) 2 
} ; 

Restore the Over/Underflow flags: 

Return ( p + i k) ; end CSSQS . 

•••To compute [;+in=<: :=yz =y(x+iy). 

CSQRT (x + iy): 

Real p ; Integer k ; 

p + ik := CSSQS(x + iy) ; 

• • • Sum-of-Squares Scaled : see above • 

If x =x then p := scalb( Ix I , -k) + VP ; 

If k is odd then k := (k- 1)/2 

else { k:= k/2-1; p:=p+p}; 

p := scalb(vp,k) ; 

• • • = v( (Ix+ iy I + Ix I)/ 2) without over/underflow. 

i;:=o; n:=y; 

If p * 0 then 

{ if lnl * 00 then { n := (n/p)/2; 

if n underflowed, signal it } ; 

if x < o then { I; : = I n I 

n := copysign(p, y) } 

} ; 
Return (i; +in); 

... 
• • • This program seems to handle all cases correctly: 

•••v(-S±iO)=+O ± iy(S) for all 13;;..o. 
• • • y (x ± i00) = +oo ± i00 for aU x, finite, 

... 

... 
infinite or NaN, and if x is NaN then 

"Invalid Comparison" is signalled too. 

• • • For all finite S , 
••• y(NaN+iS), v(S+iNaN) and v(NaN+iNaN) 

• • • are all NaN+ iNaN; 

• • • Y(+00± il3) =+00 ± iO; 

••• y(+00±iNaN) =+00+iNaN; 

••• y(-00±£13) =+0±£00; 

• • • Y(-00 ± i NaN) = NaN ± i 00 . 

End CSQRT 



•••To compute ,;+in= r;. :=in(2J z) = in(2J (x+iy)) (integer J). 

CLOGS(x+ iy,J): •••For use with J-4'0 only when lx+iyl 

•••is huge. This program is particularly helpful for 

•••inverse trigonometric and hyperbolic functions that 

• • • behave like Jl,n (2z) for huge I z I . This program uses 

• • •' a subprogram tn l p (x) := in( I + x) presumed .to be 

... 
avpilable with full relative accuracy for all tiny 

real x. Such a program exists in various math, 

libraries, included that for 4.3 BSD Unix, Intel's 

• • • CEL and Apple's SANE. The accuracy of .11,n Ip 

• • • influences the choice of thresholds TO, Tl and T2. 

Constants TO := l /../2; Tl:= 5/4; T2 := 3; Jl,n2 := tn(2); 

Real p ; Integer k ; 

p+ik:=CSSQS(x+iy); •••= l<x+iy)/2kl 2 +ik; see above, 

S : = max ( Ix I , I y I ) ; 0 : = min ( I x I , I Y I ) ; 

If k=O and TO< S and (S <::Tl or p<T2) 

then p := fnlp((S-l)(S+ I) +0 2)/2 

else p := tn(p)/2 + (k+J) J1,n2; 

0 : = ARG (x + i y) ; 

Return (p+i0); end CLOGS. 

• ••To compute E, + in = r;. := .11,n(z) = .11,n(x + iy). 

CLOG(z) :=CLOGS(z,O). 

•••To compute E, + in = r;. := arc cos (z) = arccos (x + iy) • 

CACOS (z) : • • • Based upon formulas : 

• • • E,: 2 arctan(Re(../(J -z))/Re(\1(1 + z) )) ; 

•••Suppress any Divide-by-Zero signal when z .s;; -l • 

• • • n :=arcsinh(Im (../(l +z)*../ (1-z))); 

Return (E, +in); end CACOS. 

•••To compute ,;+in= I',;:= arccosh(z) = arccosh(x+iy). 

CACOSH(z) : • • • Based upon formulas : 

••• E, := arcsinh(Re(../(z-1)*..f(z+ l))); 

• • • n : = 2 arc tan ( Im ( ../ ( z - I ) ) / Re ( ../ {z + I ) ) ) ; 

•••Suppress any Divide-by-Zero signal when z ...;; -I . 

Return (f, + in) ; end CACOSH . 

•••To compute E, + in = r;. := arcsin(z) = arcsin{x + iy) •. 

CASIN (x + iy) : •••Based upon formulas : 

•• • E, := arctan(x/Re(../(1-z)../(J +z)}); 

• • • Suppress any Divide-by-Zero signal when z <; - I • 

••• n := arcsinh(Im(../(1-z)*../(l +z))); 

Return (E, + in) ; end CASIN • 

•••To compute E, + in r;. := arcsinh(z) = arcsinh(x + iy) • 

CASINH(z) := -i CASIN(iz). 

•••To compute E, + in = r;. := arctanh(z) = arctanh(x + iy) 

CATANH(x + iy): 

Constants 0 := ../(n)/4, p := 1/0; 

S := copysign( I , x) ; z := S z*; •••Copes with unsigned O. 

If X > e or IYI > e ••• To avoid overflow. 

then { n := copysign(-rr/2, y) ; E, := Re( I/ (x + iy)) } 

else if x l 

then { E, := tn(../(../(4+y 2))/../(IYI +p)); 

n := copysign('rr/2 + arctan( ( IY I + p)/2), y)/2} 

else • • • Normal case. Using in l p (u) := in( l + u) 

• • • accurately even if u is tiny. 

{ E, :=tnlp'(4x/((I-x/+(IYI +p) 2 ))/4; 

n := arg( (I -x) (I+ x) - ( IYI + p) 2 +2iy)/2 } 

• • • All cases appear to be handled correctly • 

Return ( Sr;,*) ; end CATANH . 



•••To compute E:+ in= 1; := arctan(z) 

CATAN(z) := -iCATANH(iz). 

arctan(x+iy). 

•••To compute x+iy = z :=t:anh(i';;) tanh(,;+in). 

CTANH(,; + in) : 

If !.;I> arcsinh(n)/4 •••Avoid overflow, 

then z := copysign( I , ,;) + i copysign(0, n) 

else { 

t := tan(n) ; • • • Suppress any Divide-by-Zero 

• • • signal here. 

6 := I +t 2 ; • • • l/cos 2n. 

s := sinh (,;) ; 

p:=y(l+e 2 ); •••= cosh,;. 

if ltl=co 

then z := p/e + i/t • • • May signal if s= 0. 

else z := (eps+it)/ (I +6e 2) 

} ; 
Return z ; end CTANH • 

• • • To compute x+ iy = z := tan(i'.;;) 

CTAN(i'.;;) := -i CTANH(i 1;;). 

tan(,; +in). 

THE EXPONENTIAL FUNCTION zw, AND oO 

The function zw has two very different definitions. One 

is recursive and applicable only when w is an integer: 

z O = I and z (w+ l) = zW z whenever zW exists. 

The second definition is analytic: 

zw := lim exp(w in(O) , 
(;; ➔ Z 

provided the limit exists using the principal value and domain 

of in(i'.;;). The limit process is necessary to cope smoothly with 

z = 0. Since the recursive definition makes sense when z is a 

number or a square matrix or a nonlinear map of some domain into 

itself, regardless of whether in(z) exists, the fact that both 

definitions coincide when w is an integer and in(z) exists 

must be a nontrivial theorem. The fact that both definitions 

agree that z 0 = I for every z is doubly significant because pro­

grammers who have implemented zW on computers have so often 

decreed o0 to be a capital offence. 

I can only speculate on why o0 might be feared, Perhaps 

fear is induced by the singularity that zW possesses at z = w = 0; 

if both z and w are compelled to approach 0 but allowed to do 

so independently along any paths, then paths may be chosen on 

which zw holds fast to any preassigned value whatsoever. Assum­

ing for the sake of argument (because it is generally not so) 

that neither z nor w could be exactly zero but must instead be 

approximately zero because of roundoff or underflow, the expres­

sion o0 would have to be treated as if it really ought to have 

( ) roundoff . h 1 f' • • been roundoff , wh1c genera ly de 1es est1mat1on. 

To draw conclusions based upon something better than fear 

or speculation, we need estimates for certain costs and benefits. 

Setting zO := I without exception confers the benefit of adher­

ence to simply stated rules; but it introduces some risk that we 

might unwittingly accept I for o0 instead of an unknown but 

preferred value with tiny i'.;; and v. That added risk should 

be judged in the light of the greater and unavoidable risk that 



zw might unwittingly be accepted when z and w are both non­

zero but tiny and quite wrong because of roundoff. In other 

words, only on those extremely rare occasions when a program of 

unknown reliability betrays its inaccuracy by a chance encounter 

with o
0 will we benefit from outlawing o 0 • But outlawing o0 

incurs ,the cost of departing from a simple rule; it imposes upon 

those pro~rammers who prefer to take z O for granted, regard­

less of whether z = 0, the extra burden of remembering to insert 

extra code to cope with a rare eventuality. 

There are two situations in which programmers are fully 

entitled to take o0 = 1 for granted. The first arises in lan­

guages like Fortran and Pascal that distinguish variables of 

type INTEGER from floating-point variables of type REAL and 

COMPLEX. Suppose that M is of type INTEGEl't but n, has a 

floating-point type; then zM can be distinguished from z0', 

an<1 particularly zO from z 0•0 , because they call upon different 

subroutines from a library of intrinsic functions. Since round­

off cannot possibly obscure the value of an exponent M of type 

INTEGER in the way it might obscure the value of a floating­

point variable w that happens to vanish, there is no reason to 

doubt that zO = I for every z regardless of one's fears about 

O.o
0

•
0 

• Therefore, in every language in which M can be declared 

of INTEGER type, the exponential function zM must be consistent 

with its recursive definition even if computed, at least when IM/ 
is huge, with the aid of logarithms; 

when M O then zM 

in short, 

regardless of z. 

A second situation in which programmers might presume that 

o o0•0 - 1 • f 1 ·d • • - arises requent y. Consi er two expressions z := z (0 

and W := w(cJ that depend upon some variable E,, and suppose that 

z <B) = w(S) = 0 and that z and w are analytic functions of (;. 

in some open neighbourhood of E, S. This means that z (E,) and 

w(E,) can be expanded in Taylor series in powers of l;.-13 valid 

near E,= S, and both series begin with positive powers of l;.-B. 

Then we find that Z ➔ O and W ➔ O and zW = exp(wtn(z)) ➔ I as 

c; ➔ S regardless of the branch chosen for in. Since this pheno­

menon occurs for aZZ pairs of analytic expressions z and w, it 

is very common. 

In the light of the foregoing considerations, O. o0•0 = o0 = I 
seems to be the only reasonable choice; similar considerations 

imply 000•0 =000 = I too. Some other exponential expressions in­

volving infinite operands require further thought. For instance, 

1.0
00 

is clearly an invalid operation, but 1
00 = I might be 

acceptable. Somewhat less clear are the signs 

(±Q,5)
00 = 000 

(±2f
00 = (±00f

00 = 0 > 

-oo -Cl() )"" )00 (±0.5) , 0 (±2 , (±00 , all 

of results like 

and 

±00. 

It is possible to argue that all these results should be assigned 

+ signs in real arithmetic on any North American computer; since 

all sufficiently big floating-point numbers on such machines are 

even integers, taking the limit makes ex, an even integer too. 

Whether equally fulgent reaaoning can be applied to complex 
.-<:O 

arithmetic remains to be seen. And whether O = ex, should 
-1 

signal "Division by Zero", as O and I /0 must, ~eems to be a 

matter of taste until we realize that no signal is needed for 

0-
00 

because "Division by Zero" is a misnomer imposed for histori­

cal reasons in place of the more appropriate phrase 

"an infinite result produced exactly from finite operands". 

When z is neither zero nor infinite, and when w is not 

an integer, the complex function could be assigned a multi-

plicity of values; they are arranged around a circle if w is 

real, or otherwise along an Archimedean spiral in the complex 

plane. What distinguishes the Principal Value defined above 

from all others is that its logarithm has minimum magnitude; 

this definition is conventional. Respectable accuracy can be 

difficult to achieve when either I wl or lw fo (z) ! is big, 

requiring extraordinarily careful calculation of ln(z), but 

that is a story to unfold elsewhere. 
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is documented in the Apple Nwnerias Manual published in 1986 by 

Addison-Wesley, Reading, Mass. 

The Intel i8087 and i80287 floating-point coprocessor chips 

were designed to conform to an early draft of IEEE 754; they 

very nearly conform to the present standard. Though widely used 

in the IBM PC, PC/XT and PC/ AT, they are not yet well supported 

by software in that realm. A fine library of elementary func­

tions for them, real ones coded by Steve Baumel, complex by Dr 

Phil Faillace, comes with Intel's Fortran for its 286/310 and 

286/330 computers running under both Xenix and RMX86 operating 

systems, That library's algorithms are much like ours above. 

The real functions are documented in Intel's 80287 Support 

Library Reference Manual (1983), order no. 122129. Real functions 

similar to those, and almost as accurate, are implemented on the 

Motorola 68881 and documented in the MC68881 Floating-Point 

Coproaessor User's Manual (1985, preliminary edition), order no. 

MC68881UM/AD. I do not yet have public documentation for analo­

gous libraries running on the ELXSI 6400 (programmed by Peter 

Tang), on the National Semiconductor 32081 floating-point slave 

processor chip, and on the IBM PC/RT. The latter two machines' 



libraries are very much like the C Math Library for IEEE 754-

conforming machines programmed mostly by Dr Kwok-Choi Ng and now 

distributed with 4,3 BSD UNIX by the University of California at 

Berkeley; that library is intended ultimately to be distributed 

independently of Berkeley UNIX. 

The hp-71 B is currently the only implementation in Decimal 

arithmetic of p854; that hand-held computer is the subject of 

the July 1984 issue of the Hewlett-Packard JouPnal, vol. 35, no. 

17. Many of the complex elementary functions, plus PROJ, have 

been implemented in the hp-71B' s Math Pac, HP 82480A; but its 

implementers were compelled by limitations upon time and space 

to acquiesce to a few compromises that I wish they could have 

avoided, For instance, users of that machine have to write Z*Z 

instead of ZA2 to compute z2 , and (-IMPT(Z), REPT(Z)) instead 

of (0, I)* Z to compute iz, if they wish to conserve the sign 

of zero. 

Some of the ideas that lead to canonical formulas around 

branch-points are explained in pp.276-286 of volume III of A.I. 

Markushevich's Theory of Functions of a Complex Variable trans­

lated by R.I. Silverman, 1967, Prentice-Hall, N.J. The confor­

mal map from the right half-plane to a liquid jet was adapted, 

with corrections, from pp. 122-5 of Theory of Functions as 

Applied to Engineering Problems, edited by Rothe, Ollendorf and 

Pohlhausen, translated by Herzenberg in 1933, reprinted in 1961 

by Dover, N.Y. Another Dover reprint is the Handbook of Mathe­

matical Functions with Forrmtlas, Graphs, and Mathematical 

Tables, edited by M. Abramowitz and Irene Stegun, issued origin­

ally in 1964 as no. 55 in the U.S. National Bureau of Standards 

Applied Math. Series. Its Chapter 4 locates the slits for all 

nine elementary functions considered here, but its formulas 

4,4,37-9 for complex Arcsin, Arccos, and Arctan are non­

committal on the slits and generally vulnerable to roundoff; 

and it lacks a formula for complex Arccosh. During the Hand­

book's ninth reprinting its definition of arccot(z) changed 

from ·rr/2-arctan(z) to arctan(I/z). Finally, H. Kober's 

Dictionary of Conformal Representations contains pictures of 

many useful conformal maps; this too was reprinted by Dover, 

in 1957. 

w. Kahan 
Elect. Eng. and Computer Science 

and Mathematics Departments 
University of California 
Berkeley 
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