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the race goea not always 1.0 the swift. 
nor the battle to the strong. 
neither security to t,he 11rudent 
nor weal th to the we 11-cr,nnected, 
nor yet success to the skilful, 
but Time and Chance happens to them all. 

- a version ot Ecclesiastes IX-11. 

The RISC philosophy can tempt engineers to take risks 
thftt deserve more thought. As we attempt not Just to 
produce taster computers, but also to produce them 
faster, we impose upon the fabric of the computer 
industry strains that could undo our efforts: 

By concentrating too hard on optimizing designs for the 
most common situationa, do we undermine performance by 
requiring defensive programming to cope with exceptions 
too rare to figure largely in our thoughts, yet not rare 
enough that they can be ignored? 

Can compilers for new architectures really exploit their 
supposed architectural advantages without conflicting with 
long-established habits among programmers? Do enough good 
compiler writers, knowledgeable not only about computer 
architectures but also applications, exist? 

Ne all want software to be reusable, portable or at 
least trensporatable; but excessively diverse computer 
architectures pose unresolvable dilemmas for the would-be 
portable programmer. 

How do we strike a balance between innovation and 
stability, between healthy diversity and fatal 
dispersion of effort? 
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flow Intel 80x87 Stack Over/Underflow Should Have Been Randlffd. 
by W. Kahan 

The Intel 80x87 family of numeric co-processors keep their eiRht 
floftting-point operands in a Stack. Trying to push or genernte 
B ninth orerend on the stack precipitates instead a stack overflow 
exception; trying to reference an empty cell on the stack causes 
a stnck underflow exception. These exceptions ere expensive to 
hRndle in software because the handler has too much work to do: 

- Discriminate between stack over/underflow and other INVALID 
operations C easier on the 80387 than its predecessors). 

- Decide what to copy between stack and its extension in memory. 
- Retry the operation that was thwarted by stack over/underflow. 

This expense could be reduced substantially by slightly revising 
whftt the 80x87 hardware does. Such a revision would bring the 
chip into line with the original intention for its design. which 
was frustrated by misunderstanding■ between the specifiers and the 
implementors of the 8087; see p. 93 of The 8087 Primer by 
John Pnlmer and Stephen P. Morse (1984), Wiley, N. Y. 

Frustration continues. All attempts to persuade Intel's chip 
implementors that 80x87 stack over/underflow handling has to be 
fixed by hardware modifications have tailed. Intel's attitude 
seems to be " it's just a matter of software." But software to 
cope with the problem has yet to appear in Intel's own CEL 
run-time library for the 80x87 family, and is elsewhere almost 
nonexistent. Consequently, almost all higher-level languages' 
compilers emit inefficient code for the 80x87 family, degrading 
the chips' performance by typically 50X with the spurious stores 
and loads necessary simply to preclude stack over/underflow. 

Compared with architectural changes that have already occurred in 
the course of evolution from the 8087 to the 80387, changes 
advocated below to eliminate the stack over/underflow problem are 
fnw, simple, upward compatible, and more likely than previous 
changes to promote improved performance. Curing the stack over/ 
underflow problem will change what is perceived as a disadvantage 
of 80x87 architectures into an advantage compared with the flat 
register architectures of the Motorola 68881/2 and WE 321/206. 

now the 80x87 stack should work 
Think of the eight registers in the 80x87 as the topmost eight 
calls of an indefinitely long stack. Floating-point operands and 
results can travel between memory and stack only via the cell on 
top of the stack, as is customary tor stacks. Every arithmetic 
oparetion combines a source operand with a destination operand and 
writes the result over the latter; one of these two operands must 
be the cell on top of the stack. The other operand Cond possibly 
destinfttionl can be any of the eight cells in the 80x87; this 
peculiarity of the 80x87 permits subexpressions to remain in the 
stack for subsequent re-u■e, and permits more than one floating
point stack to reside ephemerally in the 80x87 during tight 
loops. The top cell can also be popped, duplicated, or swapped 
with any other of the eight oells, so anything that can be done 
with eight registers, as exist on the Motorola 68881/2, can be 
imitated on the 80x87 at the cost of some swaps. 
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Why is the 80x87 orgRnized as a stack instead of a flat set of 
re~isters like the 68881? On p. 60 of their book, PalmAr and 
Morse attribute this choice to limits on availftble op-code space, 
but acknowledge that thft stack architecture's advantages go beyond 
making a virtue of necessity. Foremost among them is the frePdom 
from h1wing to save and restore registers when functions that pass 
their floatinf{-point arguments by value are invoked. These VAiues 
( normal ly .just one or two ) need merely bA punhed onto the A tack 
to be consumed and replaced by the function's result. And if an 
interrupt requests some small floating-point service, such as 
~caling or transforming the numbers received from or sent to a 
t·.ransducer, that service can be performed quickly on top of the 
stack without first saving and later restoring its contents 
provided nothing extra is left on the stack afterwards. Since a 
floating-point stack's depth fluctuates very little compared with 
other stacks a floating-point stack is often empty and hardly 
ever has as many as four cells active memory traffic during 
those function calls and interrupts tends to be much lower with a 
stack than with flat registers. That is an important advantage 
for machines whose memory bus is much narrower than an operand. 

Of course, the foregoin• assumes that stack over/underflows will 
occur very rarely, and that when they occur very little time will 
be spent unloading or reloading the bottom few cells of the 80x87 
to or from an area in memory devoted to the rest of the stack. If 
the 80x87 had been provided with slightly better facilities to 
handle stack over/underflow, the second assumption would be true. 

Provision for stack over/under~low on the 80x87 
The 80x87 has a two-bit tag associated with each stack cell. 
This tag takes the value 112 {in binary) if the cell is EMPTY 
otherwiRe its value is used by the 8087 and 80287, but not the 
80387, to indicate what the cell contains: 

00 Finite nonzero number 
01 ± Zero 
10 ± Infinity, or NaN ( Not-a-Number 
11 EMPTY ce 11 

C The 80387 sets the ta, bits the way the other chips do, but 
ignores distinctions among nonEMPTY cell-tags.> 

The 80x87 has a three-bit pointer called TOP that points to 
the cell that is currently on top of the stack. Pushing another 
i t,em onto the stack decrements TOP by 1 ; popping an item off 
the stack increments TOP by 1. References to cells are always 
r~lative to the stack top; a reference to ST(i) is to the cell 
pointed to by TOP+ i . The addition and increments/decrements 
Are all performed modulo 10002 in binary; decrementing TOP 
fr~m 0002 puts it to 1112. 

Stack overflow occurs when an attempt to push CFLDx. FILD, FBLD) 
or creat.e C FPTAN) another i tam on the stack would decrement TOP 
to poin1; to a nonEMPTY cell. For that stack overflow the intended 
r~medy is to copy a few cells from the bottom of the 80x87's 
stack into a downward extension of that stack in memory, and then 
t~g thosP. cells EMPTY to• permit the top of stack to grow into 
t.hem, end then retry the operation that was thwarted. 
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Stack underflow occurs when an attempt to read a stack cell finds 
it EMPTY. The intended remedy tor stack underflow is to refill 
that EMPTY cell and perhaps some others from the stack's extension 
in memory, and retry the operation that was thwarted. 

The area in memory devoted to the extension of the 80x87's stack 
can be tiny; 1280 bytes is almost always ample. Far larger areas 
might be needed to cope with Recursive Cself-oalling) programs; 
but Recursion ( as distinct from Recurrence or Iteration) so 
seldom involves floating-point values that r~allooating a larger 
area, whether on demand at run-time or only after recompilation, 
should be relegated to the category of remote possibilities. 

Software to handle stack over/underflow { especially underflow) 
turns out to be extremely intricate. Part of the problem springs 
from differences within the 80x87 family. For instance, format 
and operating system differenoes make it necessary for an 80x87 
trap handler either to be conficured differently for each chip or 
to recognize at run-time which chip is in the machine; for the 
80287 there are two variant oonfigurations to be recognized, one 
Intel's standard and the other IBM's in PC-ATs. Instruction 
retry is complicated by differences tantamount to bugs in the ways 
the chips record an offending operation's op-code: 

80287 and 80387 sense ••1ment over-ride, 8087 does not. 
80386 forgets to.tell 80387 about FILD (word) . 
80387 treats FXCR'a staok underflow anomalously. 

The 80387 distinguishes stack over/underflow from other invalid 
arithmetic operations like 0.0/0.0 by providing C except for 
the FXCH instruction! ) information that the other chips do not; 
but this information ia hard to exploit in codea that have to be 
portable in binary (.EXE) form to different PC hardware. 

Intel has abdicated it■ responsibility to supply its 80x87 chips 
with standardized device-driver software that would have hidden 
their differences and difficulties. Instead PCs are cursed with 
intractable diversity that renders exception handling uneconomical 
at every level operating system, compiler, application code. 

'nle Blight 
For leek of software to handle atack over/underflow, compilers 
have to preclude it altogether. The simplest and most common way 
to do that is to leave no intermediate result on the stack unless 
it is to be used immediately as an operand. Doing so can double 
the incidencP. of loads and stores in loops, For example, the 
_inner loop of 

s ·- 0 • for k = 1 ton do s := w[kl*z[kJ + s i 
which com;~tes'a scalar produot 

s = wtkl*z[k) + w[kl*z[k] + ... + w[kl*zCkJ , 
should contain one floating-point multiply, one add, and two 
loads < ot w[kl and z[kl ); but the simplest policy to avoid 
stack overflow would generate three loads C of w[kl, z[kl ands) 
and a store C of s) . Until fairly recently, almost every 
compiler for IBM PC's used to do that, almost halving the speed 
of the loop. 

Better policies have begun to appear in compilers. Some of them 
reserve (say) four registers as scratch r~gisters, so they can 
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retain fts many as four values in the r.tack vlthout having to save 
ftnd r"lst.ore any of them vhen a function is ca: led. Such a policy 
brings t.he simplest loops, li~e the 11ne fthov,, up to speed, but 
does not do much for others th~,t are common bi t more complicated. 
For instance, supr•<•'H!I 

s = q + ir, wlkJ = uCkl + lv[kl and 2Ckl = x(kl + iy[kJ 
are complex variables, e:,cpanding the pro"ram segment above into 

q := 0; r := 0 i 
for k = 1 ton do 

{ q :: q + uCkl*x[kJ - v(kJ*y[kJ ; 
r :: r + v[kl*x(k} + u(kJ•y[kl } 

whose inne·.- loop can be effected on M 80x87 using at most 7 
stack cells and four floating-point multiplies, four adds, four 
loads and one DUPLICATE of the stack's top. But no compiler I 
know to be governed by a policy that restricts register residency 
can get by with fewer than six loads. and some take eight. 

A number of ugly consequences can be traced to the lack of proper 
stack over/underflow handling. E:,cpression evaluation should be 
simpler to compile to en 80x87-like stack architecture than to a 
flat set of registers whose allocation has to be optimized, but 
the threat of stack overflow has instead complicated compilers and 
delftyed their dissemination. As arithmetic gets faster relative 
to memory =ana«ement, superfluous loads ond stores detrnct ever 
more severely from performance. Had their deleterious effect upon 
benchmark runs of the 8087 and 80287 been appreciated sooner, 
the Weitek 1167 and 3167 might not have been developed; the 
latter chip was expected to outperform the 80387 by~ factor of 
four but it barely achieves a factor of two with newer compilers 
that generate fewer superfluous loads and stores. So meager an 
improvement in speed hardly compensates for the tragic dilution of 
software development and fragmentation of the market brought, about 
by arithmetic incompatibilities between the two families; Weitek 
chips lack the Double-Extended (80 bit) format that is the most 
efficient medium for e,cpreesion evaluation on the 80xB7 family. 

The prevalence of superfluous loads and stores among current 
compilers and applications for the 80x87 cripples the market for 
a chip identical to the BOx87 but fester. F.ven if such a chip 
performed arithmetic twice as fast as the 80x87 it could not run 
existing software more than about 4/3 as fast since the time now 
wasted on spurious loads and stores would continue to be wasted. 

What Should tfe Do? 
We need a family of etandftrdized device drivers, one for each 
hardwAre configuration that includes an 80x87 chip, that hide 
all oxception-handling differences from compilers end applications 
codes. These drivers must hide stack over/underflow as well as 
certftin arithmetic differences between the 80387 and its tvo 
predeco~sors; the latt~r differences ·can be hidden well enough by 
supplying driver software that makes the 8087 and 80287 conform 
more nearly to IEEE Standard 754. as does the 80387. Intel's 
CEL library might hftve served as such a driver but for its neglect 
of exception handlin« and its outrageous price; it still provides 
a model worth copying in other respects. 

4 

) 

STACK87 t«>RK IN PROGRESS June 26, 1989 

The drivers have to be extremely lne:,cpenalve if they are to beco~~ 
ubiquitous; otherwise software developers will not use them. And 
ve nP.od somr expectation that hnrdw11re will evolve to sur1>ort o•.Jr 
driver software efficiently, promising future higher perform11nr:e 
ftS nn incent.ive to convert software to use the drivers now. Th,:, 
Burport neecled from hardware is small. as the rest of this report 
wi 11 attempt, to shov. The reason that hardware has to evolve is 
twofold: first, the trap-handlers needed for the presont 80x87 
hnrrlwnre ar1• unnecessarily complicated and slow; second, they 
face a dilemma that can never be resolved perfectly. 

The dilemma arises tlret when the stack overflows; how meny cells 
should be copied from the bottom of the 80x87's stack into its 
extension in memory? And then when the stack underflows, how 
many of the 80x87's stack cells should be refilled from memory? 
An adequate answer to ••How many'?" la probably three or four, 
but the best answer may well vary from one program to another. 

The dilemma would not arise if the 80x87 had been implemented 
according to the original intentions. No description of those 
intentions has been published yet; what follows is the first. 

What Should Have Beeo Done 
What follows is the description of a hypothetical 80X87 that 
differs from current 80x87s only in the way the stack behaves. 
The same instruction set and the same eight registers are assumed, 
though Complex arithmetic and Interval arithmetic would fare 
better with sixteen registers even if only the eight on top of the 
stack were accessible directly. The hypothetical BOX87 differs 
from the 80x87 also in the interpretation of the two-bit tngs, 
and in the use of a five-bit two's complement integer to hold TOP 
even though only its last three bits ( TOP mod 8 l point to the 
top of the 80X87'e stack. The role played during stack over/ 
underflow by TOP's two leading bits and soma other minor changes 
will be described later. 

For the sake of definiteness. suppose the stack extension area in 
memory is allocftted 1280 bytes; since each stack cell occupies 
10 bytes, this allows for 128 stack cells all told, addressed 
from O to 127. These cells can be grouped in 16 blocks of 
eitht, numbered frOftl O to 15. The current top of the stack is 
at address T = TOP+ 8B , where B is the current block number 
though 88 is kept in memory. Initially 8B = 128 and TOP= 0 
but there is some ambiguity about the representation of T since 
adding +8 or -8 to 8B and doing the opposite to TOP chenges 
neither T nor the 80X87 cell ( TOP mod 8 ). Pushing an item 
onto the stack decrements TOP and T popping increments them. 

Every cell in the 80XB7•a stack lo associated with a cell in the 
stock's extension in memory although the contents of these two 
cells may differ. For O it< 8 • cell number t in the 80X87 
associates with cell 8B + TOP - ( ( (TOP mod 8) - t) mod 8) in the 
extension. The figure shows associated cells when TOP= 2 : 
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Indicator-

PRINCIPAL INDICATORS of the COST 
of DEVELOPING and MAINTAl~lNG 

NUMERICAL SOFTWARE 

) 

SUBROUTINE CALLS Depend upon how complex the program's task 
is relative to the resources available. 

DECLARATIONS 

INPUT/OUTPUT 

TESTS & BRANCHES 

Depend upon the adequacy ot Type-Support 
in the chosen programming language. 

Formats, windows, graphics, interaction 
in real time, are big issues in few 
numerical codes except during debugging. 

What to test? 
Compared with what threshold? 
Where to go? What to do there? 

EXCEPTIONS INTRODUCE COSTS INTO SOFTWARE BY MULTIPLYING TESTS 
AND BRANCHES, INTRODUCING (SOMETIMES INVISIBLE) SPAGHETTI 
THAT OBSCURES A PROGRAM'S PATHS OF CONTROL. 

WE WISH TO HANDLE EXCEPTIONS WITH A MINIMUM OF TESTS AND 
BRANCHES, AS FEW OF THEM AS POSSIBLE IN INNER LOOPS, AND 
WITHOUT ANY NEW OR EXOTIC CONTROL-STRUCTURES. 

(I 

KHAT EXCEPTIONS? 

INXCT: INEXACT RESULT only tor IEEE 754/854 

UNFLO: UNDERFLOW not tor CRAY, ... 

DIVBZ: DIVIDE-BY-ZERO, actually means an 
INFINITE RESULT COMPUTED EXACTLY FROM 

FINITE OPERAND($). 

OVFLO: OVERFLOW Conly Floating-Point 

) 

INTXR: INTEGER EXCEPTION OR ERROR WITH DUBIOUS RESULT 
some overflows, and 1/0. 

INVLD: INVALID OPERATION, such as 

7.0VRZ: 
IOVRI: 
lNVDV: 
7.TMSl: 
lMJNI: 
FOUOM: 

UNDTA: 
DTSTR: 

NLPTR: 

0.0/0.0 
INFINITY/INFINITY 

either of the above 
O.O*INFINITY 

INrINITY - INFINITY 
FUNCTION OUTSIDE ITS DOMAIN, such as 

SQRT(-3) , LOG(-3) , ARCSIN(3) , 

UNINITIALIZED DATA or VARIABLE 
ATTEMPTED ACCESS OUTSIDE A DATA STRUCTURE, 

... like ARRAY REFERENCE OUT OF BOUNDS 
DEREFERENCING A NIL POINTER 

ALLXS: ALL OF THE ABOVE for treatment en ma99e. 
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IN MEMORY 

CBBBBB) 8B 
(CCCCC) 

DDDDD T = 8B+2 
EF.EKE 
FFFFF 
GGGGG 
HHHHH 
IIIII 
JJJJJ 8B+8 
KKKKK 
LLLLL 

lt2 
#3 
#4 
It& 
#6 
#7 
ttO ,n 

IN AN 80X87 

ddddd 
eee13a 
fffff 
ggggg 
hhhhh 
iiii i 
Jjjjj 
kkkkk 

June 26, 1989 

SPCO) TOP = 2 
SP( 1) 
SPC2) 
SP(J) 
SPC4> 
SP(5) 
SP(6) 
SPC7) 

Every cell in the 80X87 le tagged with two bits to tell first 
whether that cell is EMPTY, and if nonEMPTY then whether its 
contents have been COPIED into its associate in the extension area 
in mamory. That copying occurs only when the 80X87 stack over/ 
underflows. Initially all tags are EMPTY. 

The only legitimate way to fill an EMPTY cell is to push an item 
into it., either by loading the item from memory or from another 
nonEMrTY stack cell, or by creating it during FPTAN; after 
that the cell is tagged nonEMPTY and unCOPIED. The same thing 
happens when an item is pushed onto a cell previously tagged 
nonEMPTY but COPIED; this dispels the aforementioned dilemma and 
substantially reduces the incidence of stack overflow on 80X87e. 

Stack overflow occurs when an attempt to push or create another 
item on the 80X87's stack would decrement TOP to point to a 
nonEMPTY unCOPIED cell. The remedy is to copy all such nonEMPTY 
unCOPTED cells from the 80X87 into their associates in memory 
and !leg those 80X87 cells COPIED. But first the leading two 
bits of TOP have to be cleaned up; add or subtract 8 to put 
TOP strictly between -8 and +8, and do the opposite to 88, 
and th~n do the copying. Finally retry the operation that caused 
the overflow; this would be facilitated if the operation an~ its 
memory opffrand had been saved so that retry end return from the 
overflow trap handler could occur simultaneously. 

The 80X87 is supplied with a new instruction that simultaneously 
retries the saved operation that precipitated stack over/underflow 
( which was detected as soon as that offending instruction was 
issued ) and returns the host processor from the trap handler; 
this eliminates a need to decode or copy the offending instruction 
and prevents unwanted interactions with other kinds of exceptions. 
there is ample room on the chip to eave the offending operation, 
dnd either an operand from memory or the address of a destination 
in memory, in registers not yet used to carry out the offending 
instruction. 

Steck unrlerflow occurs, as before, when an attempt to obtain an 
operand from a cell finds it tagged EMPTY. The remedy is to 
first clean up the firsb two bits of TOP as described before, 
then copy their associates' contents into all EMPTY cells and 
tag them nonEMPTY and COPIED, and then return-and-retry. 
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Finally, the stack over/underflow trap handler must always check 
for over/underflow of the stack's extension in memory. Overflow 
entails reallocating the extension to a bigger area. Underflow im 
prohAhly a blunder. As long as normal stack discipline prevails, 
whereby only pushes and pops are allowed to lengthen or shorten 
the stack, EMPTY and nonEMPTY cells will never interlace, so 
the scheme described above cannot malfunction but must nearly 
minimize memory traffic. 

Is All This Worth The Bother Now'l 
Compatibility with old software i ■ the way the computer industry 
plays God 

visiting the iniquity of the fathers upon the 
children unto the third and fourth generation . . . . " 

Exodus XX-5 
No easy way exists to correct a mistake after innumerable sources 
of software have wound their expedients around it. 

The incentive for correcting Intel's mistaken treatment of stack 
over/underflow must arise among Intel's competitors. Unless new 
compilers supplant old applications programs by new ones free from 
most of the superfluous loads and stores that now afflict users ot 
80x87s, faster versions of the 80x87 will not convey enough of 
their speed to existing software to Justify their higher price, 
especially since Intel can so easily lower its price for 80x87s 
when competition looms. A paradoxical aspect of the situation now 
is that competitors have to promote the dissemination of software 
that will enhance the performance of Intel's chips in order to 
create opportunities tor them to compete by enhancing performance 
agAin. Compiler writers have to see a path along which successive 
versions of their compilers will enJoy ever better performMce as 
they evolve together with the hardware. 

Compiler writers must be sorely tempted by halt-measures like the 
policy mentioned above that sets aside some of the 80x87's stack 
in order to use the rest efficiently. Half measures can solve a 
technical problem satisfactorily for so large a fraction of the 
market as to put satisfaction for the rest beyond the purview of 
profitable commerce. Only the urge to do things right, and the 
strength of character to resist temptation, will put the right 
solution for the 80x87's stack problems into circulation. He 
know what the right thing to do is; who has strength to do it? 
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Benjamin Franklin's advice (1757) 

Three removes are as bad as a fire. 

A change of address for one's family and possessions used 
to be called a "remove". J\. F. reckoned three of them 
es risky to one's possessions as a fire. Hovinf. data too 
often, as required by some computer architectures, also 
entails risks; branching burns performance severely. 

I have come to believe that Vector Architectures are 
destined for decline in almost all markets because they 
fly in the face of BenJamin Franklin's advice. 

FOUR IMPEDIMENTS to PORTABILITY 
of NUMERICAL SOFTKARE for 

SCIENTIFIC and ENGINEERING COMPUTATION: 

1. DISPARATE ROUNDOFF PROCESSES AMONG DIVERSE 
COMPUTER ARITHMETICS. 

C Abated by IEEE STANDARDS 754 and 854) 

) 

****************************************************************** 
* * * 2. DISPARATE RESPONSES TO KXCKPTIONS • 
* C like ... /0 , SQRTC-... ) , . . . ) * 
* AMONG DIVERSE . . . MACHINES, * 
* OPERATING SYSTEMS, • 
* PROGRAMMING LANGUAGES. * 
* * 
****************************************************************** 

3. SHORTAGE OF ADEQUATE TESTS and 
DIAGNOSTIC BENCHMARKS. 

4. FEDERAL FUNDING FOR NUMERICAL SOFTKARE DEVELOPMENT 

EXCLUSIVELY 

FOR MAINFRAME/SUPER-COMPUTERS 
ARITHMETICALLY NORSE THAN 
ALMOST ALL NORK-STATIONS. 
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Gresham's Law: 
Bad money drives out Good. 

- attributed to Sir Thomas Gresham (1519-79) 

Coins debased by paring or adulterfttion of precious metal 
reimain in circulation while undebased coins are hoarder!, 
going out of circulation. Have you any reel silver coins 
left in your pocket? Gresham's law is not so much a lAw 
of Nature or legislature as a remark about human nature. ) 

Gresham's Law adapted to Computers: 

The Faster drive out the Slower, 
even if the Faster are wrong. 

The thought that CPU speed is all that really matters 
is a misperception based upon over-simplification, au if 
other aspects like accuracy, robuetness and intellectual 
economy had no commercial value. 

We should by now have learned from the Japanese that 
qualities like Integrity are worth more than money, 
worth a lot of money in the long run. 

and 

SOLVINO LINEAR SYSTEMS A LiffLK BIT BETTER 
by W. Kahan 

We wish to solve 
AX = B 

for the N-by-M matrix X. 

GAUSSIAN ELIMINATION by Crout-Doolittle Factorization: 

To compute 

PA= LU 

Permutation matrix 
Lower triangle 
Upper triangle 

p , 
L • u 

costs about N1 operations, moetly in Scalar Products. 

Now PAX= LUX= PB can be solved in eteps: 

Solve LC= PB 
UX = C 

for C , 
for X 

and then 

costs about N1 M operations, mostly in Scalar Products. 

Despite contrary received wisdom, 
can be mostly avoided. 

Cache Misses and Page_Faults 

ITERATIVE REFINEMENT improves approximately calculated X thus: 

Residual R = B - AX MAIN LIMIT TO ACCURACY rs HERE 

Correction Y solved from 

Improved approximation is z = 

HOW MUCH BETTER THAN X IS Z? 

PAY= 

X + y 

LUV = PR . 

All arrftys and computation in Double 53 sig. bits) ..... 

Z is often worse than X 

All arrays in Double, but ell scalar products accumulated in 
Double-Rxtended ( 64 sig. bits) ..... 

Z is alwaye better than X, 
and about 10 bits better than X before, 
and even better when N is in the hundrarls or more, 

AND FASTER TOO WHEN PERFORMED ON i80x87, MC6B881/2, KF.321/206. 

But no compiler support on SUN III, little on IBM PC, ... , ! 

) 
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WHAT MAKES AN EXCEPTION EXCEPTIONAL? 

NOT ITS RARITY 

NOT ITS WRONG(?) RESULT 

e.g.: X = 3.0/~.0 IS RARE. 

Y = C 8.0*X - 3.0) - X IS F.XACTLY NONZERO; 

IS Y WRONG? 

AN EXCEPTION IS A COMPUTATIONAL EVENT FOR WHICH ANY POLICY, 

CHOSEN IN ADVANCE TO DEFINE ITS RESULT IN ALL CIRCUMSTANCES, 

WILL nCCASIONALLY PRODUCE A RESULT TO WHICH SOMEBODY MIGHT 

REASONABLY TAKE EXCEPTION. 

***************************************************************** 

e.g.: 
0.0/0.0, SQRT(-3) , READ PAST END OF FILE, 

SOME EXCEPTIONS SHOULD NOT BE EXCEPTIONAL AT ALL: 

e.g. : 0. oe1 • 
0 = 1. 0 and 

cos( 1 00000 00000 00000 00000.0 = 0. 7639 ... 

have been declared EXCEPTIONAL ARBITRARILY 

EXCEPTIONS ARK NOT ERRORS 

KXCKPTIONS ARK NOT KRm>RS 

KXCKPTIONS ARK NOT XRRORS 

KXCKPTIONS ARK NOT XRRORS 

KXCKPTIONS ARK HOT ERRORS 

DCKPTIONS ARK NOT ERRORS 

EXCKPTIONS ARK NOT KRBORS 

UNLESS THEY ARE HANDLED BADLY. 

) 

WHAT FOLLOWS ARE THREE EXAMPLES INTENDED TO ILLUSTRATE 

WHY EXCEPTIONS SHOULD NOT ALWAYS BE TREATED AS ERRORS. 



) 

John Milton's observation (1608-74) 

They also serve who only stand and wait. 

- from Sonnet XIX "On His Blindness" 

Deepite low duty-cycles, some components deeerve a place 
in computers so that they may respond quickly to rare but 
valuable opportunities. A divider ls such a component. 

) 

>f : :a - I • - . 'IFl •• 5 

H"rP i\r1~ two w.,y~ tu e,:pr-ess the e.-me r-attonal function, 

3 

M - 2 -

M - 7 + 

k - 2 -
)f - 3 

r-p hd JD 

l l 2 - M • ( 151 - M • ( 72 x·<l4-Ml>l 

ThP cnincicfpnc-P. of the grilph• obtllined by plotting both P.Mpre~o;ions 
rnnfirm,; lh~t lh~y r-Ppres~nt the same function, though thPy trP.~t 
l~uunrlof f • Ovf-'r f I tiw o:'nd Di vi !Si on-by-Zero differently. 

r p ( l I ::: 7 

c:f <~I ,. • 
I j singularity 

rp(21 ,. 4 

cf(3) • • 
I ! singularity 

rp(31 • 1.6 

cf (41 = • 
I 
j .. tnqulAri ty 

Oivisinn-by-Zero cAnnot happen to rp<»> I end it would be h~rmle5g 
1 n r f (d ton if the CD supplied by the hardw"'re < it hA-. An INTEL 
llr't):07 th<:'t cnnfc,r m~ to tF.:rE o,tAndi.\rd 754 I wPre u!Sed As i t9 dP.qi gneru 
111t.m1dP11. F"or· tn-.t.,mce, computing cf(JI would thP.n produce corr-P.ctly 

tO/o a(), >I - 7 - Cl = -4 , 

) 



) 

F'f1~ : = (I.~ 

8. 7523R 

cf<lC),rp(X) 

8.75238 

3 
cf<x> := 4 -

>: - 2 -
I (I 

>I - 7 + 

)f - 2 -
,: - 1 

622 - ,c • ( 751 - >: • C 324 - x • < !59 - 4 • >: ) > ) 
rp<>:> :"" 

11 ~ - x • ( 1 SI - >c • C 72 - M • < 1 4 - )I ) I > 

IJ : ::: 1. 60631924 X ,~ U,U + eps •. U + 360 eps 

.•♦ 
.... 

+ + + + + 
,♦ + 

+ .,++ ♦• u# ++ 
♦.fff. ♦• ... ,.. :ffl' 

.. .1 ···•' 

+ ++ + ... + 
i•+ ++ 

'".♦♦ + J+ ... 
i"'' .ffl# . ,,#+ 

t + 
• t ++ 

++ 
*ff!-

ff ... 

:'¥"'" ♦ff'" +· 
.,.Jl 1 •*•* ,•*# +*-ttf-++ffll 

••* + + +I • t ♦ ... 
,i ,tttt

1 
+ + t + 

t t+ + ♦ ++ + 
• • + + 

++ 

+ 

1.6(1632 X 

,#l' .. ♦ ♦ 
•.♦ .. ♦ 

♦t• 

++ 
+ 

1. 6(1632 

The ne,,r l y ""mi:,oth ~r«\ph ----- bel ong!I to c.f <>1 > : the r-Agged graph n·f 
+ •~ bnlongs to rph:I . Every point on each graph hAs bP.P.n plotted to 
show nnl: only how much wors~ roundoff af.fect!l rp (>: I them cf(>: I but 
.-lso tl1,01\ r·otindo·H is not nearly so random A!I somr people think. 

ThP n,;,·:t: e,:.-mple illustrates that cf(Y.) is invulnerAblP. tc:, Ovr.;orflow 
but r JI C,: I i •·· not : 

cf [10
77

] "' 4 rp [i,/7] .. 
I 

r.nrri,r.: t I y. I OVr'r· f 1 CIW I 

) ) 

T'lirt nP,r t- qr«\phr. ilrP i nr. I uded Ju!lt to show thAt the previous one WAil not a 
rJul,.•. ThP.y ,, • .,. diffp,.-pnt ranges of values for >: • 

ll I"' 2.4006617 X 1~ U,U + 2·eps .. U + BOO·ep~ 
(1.740707 

♦• ♦ ♦ + ++ ♦ +++ + ++ 

c: f < X > • rp < X > 

+ + 
++ 

\♦.+++ Hu..+ 

♦♦.• ++ 4-+ + 
++ ~. \♦...J+. ++i. ♦-♦•♦\..♦. +fl.'-+.d 

++ * 
+t ++ t+ ++ ++~ +.. t\ + 

flt -♦~\ ·++j+ 
+ -4+ + ++ .♦ l ♦ 

+ + + 
+ ♦ ♦ ♦ + 

'+I"\ t\♦ ". tf ~ ft . 
•♦, .. + ++ ++ 1♦.+ + ++ \ ~ .... ++ ++ '"\· ♦ 

♦ • ...... ♦ + +* 
+ + ♦ ++ ♦ 

1).740707 
2.40066 2. 4(11)61:, X 

V := ~ + 24~ ep~ e (M) s s cf (x > - r p (>: > 

Tho> rir,::t 
r ounrln.f f 
hut nPl 
74 tlffie~ 
nnP urd t 
for mnst 

2p-1)13 

cf (1:) - rf CV> qr Aph shc,w'!. how 
r.:rb•.i:11r PS rp (>C) , 

cf C::) • by About 
d (x > t"' 

A~ ~,~h AS th~t function change~ 
in it~ lAst plsce for v~lue5 M 

oth~r val uP.c; of M roundoff l n 

l•) 

when >t chAngE>c; by 
slightly bigger than ~; 
rp ls much wor~~ than this. 

IJ := 2 + 2·eos X 10 u.u + 2·eDS .. u + 4BO·eps 

+ 
·····•• .............. J + ♦ + + +♦ 

• ................ . ♦ h ♦ ++ + ♦ +++ 

d(XI .e<XI 

~- • + + 
+\\ + ++ ++ "••··-.. -..... \. + •♦ ♦ + +\++ + ' +++\+ + + + +. ..... ♦ ♦ .+ . +:t+++\+\+ +4+ ............... ++ •♦\+\.++.+ + -\\+.++\ 

I. T H"' 't ++ +++ + ......... + f + \-\ " 
1,:++ + 't \~ + ++ + ·····• .. ~.... + ++ + •♦... .......... ♦ 
\ \++ ++\ + + ++ \+\l + :+:• ....... __ H +\ +++ + '"V 

+ \/++\♦++ \ + + ♦+\+ + +.♦-+ .. , .................. _ ♦• ♦♦ + 
♦ + + ♦ ♦ + ♦+ + . \ .. t ............ · .. 

♦ ++ + + + + ....... ·····+ 
♦ 

-20-f)t :~ ;' 
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,: 1. • • 11:1 TOI. t"' Ir) 

M ~~ 

Here i5 an P.MAmple of a 9imple PquAtion fCx> • O that can be hard 
fnr cor1vP.11t1orMI zf:'rn-Hndin11 1SL1fh•Are to solvP. for M berr.'ll<;P. t.he 
-;parch fflAY wel 1 P!<CAPP. frClm the r1omc:11 n Ori whH h f h:) i c; tJf'f i ned, 
Ant.I th1•n the under I y1r1,1 computer· sv~t:Prn may ~hort the prnqri'm. 

Starting gues!51 X 1• 2 

X :• 4 

X P" 10 

rr,ot Cl O:>, lO a I 

root(f<X>,X> • • 
I I not conver,1i ng I 

root<fCX>.X> = • I • 
I not conve>rgi ng I 
rootCf(Xl,Xl ~ 10 

Thi!, crJmJ1uler nystP.m C MathCAD on An IBM PC > re9orts to compl P.>r 

,,,. t thmet ic wllPrievP.r it h,.s to compute squ~rP. rnots nr 109..,.ri thms of 
ru~~l•"'t i vc.- n1.1mher- s, but that does not. sol VP. lhP proh 1 em Pt ther br.cause 
d1~r;onttrn11tiP~; in those function!S" principal voAlw:•s 11pc;et thf? loqic 
nl t tee zero-f I ndr•r. 

) _) 

-14 
X ID--, ..• TOL t • 10 

~!~,f, 1 ~-fl LOIJ►:JNG FOR AN ELUSIVE POSITIVE ZERO 

-4 
con5tructing gh:) r• >I 

0 

Fi rf't g1.11?9<st X , ... 1 

Anet.her gues!;: X a• .9 

Another guess: X :~ .995 

if it eKlstB. 

and loolcing -fer its pnsi ti VP zero. 

X 

root(f(X),XI • • • 
I I 9ingularlty 

root< (XI, X> a • • 

underflow 

root(f<X>,X>. • 0.000034452027 

root< c X >. x> • • 

a 0 
very nearly 

underflow 

root<f<X>,XI • • • 
I ! not converging ! 

root<g<X>,X> a• • 

t ! not convl!rging ! 

M~thCAO"e built-in 
zpro-finder seems 
un~ble to find any 
~trir.tly pn~itive 
zero M nr.etr 1 . 

On~ might pl~ustbly conclude that f(~l hag no po~itivP. zrro, but••• 

) 



) 

,: :::r --.- + •• 1 

I Pt• 5 P.}!pe\nd the 1 owP.r right corner of t:he pr r•vi l"ll!.'i c,r <"r,h: 

• ('17 

-.c)t5 

Fir-st (lllf?!'iSI 

X : ., .9999 

Annther: 

Upper curvP.I 

-4 

L.owP.r r.ur VP: 

gh:) :"" )I ·f(>:) 

root(f(X),X) a 0.999906012413 

root<g<X>,X> a 0.999906012413 

A POSITIVE ZERO 
DOES EXIST AFTER 
ALL. 

) 

X :<" -18 
root(f(x,,x, a 0.999906012413 l.~57007904161 •10 

-1"1 
root(q(x,,x, m 0.999906012413 - 6.77260495771 ·10 t 

Jm~ginAl"Y pArt~ Al"P. 
~purious ArtirActs of 
the tmneces~ary use 
of r.r•mn t m: .u· i t hmet i c • 

Tn ftnrl th,. pnc;itivP rern, w~ hAd to qjve thP ;-prn-finrlPr firwt ~1e~nP.~ 
t h;:,t m.it.c hPrl th.it :-P.r n t n -fo1.1r •,i g. d'!'c:. ! T111 c; i ~ nr,t "''' much " fl aw in 
thf• ;-,, ... n-f I nd,,.r •'"' ~ rt~f ,~, t t'n I h~ WAY P.>lCl'!'S:' lt nn,; J j le:!:, nt;;i n ( ·;1 ) Ar"'l' 
hrtnrllf->d. If ,di •.11ch r·:1.Pptinn'-, r.t.tuld hP. l·,.mrll1,r1 < Af thP. pro,1rAmmrr··r. 
n~q11 r";~ I in th,,. •,pir•,t: r.if 11:TF. ~t.And~rrl"I 754/n:54, zP.ro fitldt!r·~ ,,rut 

t,I li••r ... , •. 1r·r 1, pr1·1Qr,11nq wr:1111 d wnrl mor·p ~mr.1c1l:hl y, a~ do thosP. nn r Pcent 
IIP r. ,'II ,:ul ,,t ,.,r•,, wi t.hout i mpo~, nq .- nui o:;anr.P. upcm e;ofh•1i'lrP u•,P.r •;. 

) 

IF YOU WOULD HANDLE EXCEPTIONS WELL, YOU MUST DEAL WITH ... 

NAMF.S: NE SHOULD ALL USE THE SAME NAMES FOR THE SAME THINGS 
IF WE WISH TO SHARE EACH OTHER'S PROGRAMS. 

FLAGS: THESE TELL A PROGRAM WHICH EXCEPTIONS HAVE OCCURRED. 
They cannot be numerous lest we forget their names. 

t«>DES: A PROGRAM CHANGES THEM TO CHANGE THE WAY ITS 
EXCEPTIONS WILL BE HANDLED. Very few are useful. 

SCOPE: CONCERNED MITH LINGUISTIC CONVENTIONS FOR H1D1NG THE 
SETTING, SENSING, CLEARING, SAVING AND RESTORING 
OF FLAGS AND MODES 

RETROSPF.CTIVE DIAGNOSTICS: 
THESE PROVIDE A WAY FOR THE USER OF A PROGRAM TO COPE 
WITH THE POSSIBLY MISHANDLED EXCEPTIONS, AND ARF. 
PROVABLY INDISPENSABLE FOR CORRECT EXCEPTION HANDLING. 

We have been working on good we.ye to deal with these issues 
that are, as nearly as possible, 

INDEPENDENT OF HARDWARE 
INDEPENDENT OF LANGUAGE 
INDEPENDENT OF COMPILERS. 



) 

BREAKING Tim VICIOUS CIRCLJ: 

PORTABILITY: 
NO RF.SPONSIBLE APPLICATIONS PROGRAMMER WILL EXPLOIT UNFAMILIAR 
Mfi:CIIANISMS TO HANDLE EXCEPTIONS UNLESS REASONABLY ASSURF.D OF 
THEIR C IMPENDING > UNIVERSALITY. 

INDIFFERENCE: 
Nn RRSPONSIBLE COMPILER-WRITER WILL IMPLEMENT UNFAMILIAR 
M~:CHAN ISMS TO HANDLE EXCEPT IONS UNLESS ASSURED THAT CUSTOMERS 
DESIRE THEM ENOUGH TO PAY FOR THEM. 

MARKETING: 
HARDWARE DESIGNERS TEND TO OMIT FEATURES THAT COMPILER WRITERS 
TEND NOT TO USE. 

"WHEN HIP-DEEP IN ALLIGATORS, WHO CAN ENTERTAIN 
PROPOSALS TO JOIN IN DRAINING THE SWAMP?" 

A consortium of interested partiea in the computer industry is 
being formed to agree upon exception-hBndling well enough to 
implement would-be universal capabilities. N. K. 

) 

OSK IT OR LOSK IT 

IEEE 754 DIRECTED ROUNDING: 
Round to +INFINITY 
Round to -INFINITY 

at the programmer's option. 

Major application ... INTERVAL ARITHMETIC 

for Roundoff Error Bounds 

for ABSOLUTE SENSITIVITY ANALYSIS 

for SEARCHES for ROOTS of systems of equations 
for OPTIMA 

NO SUPPORT IN COMPILERS ===> NO USE TO APPLICATIONS PROGRAMMERS 

LANGUAGE DESIGNERS AND IMPLEMENTORS ARE TOO OFTEN 

PETTY TYRANTS 

EXERCIZING ENORMOUS INFLUENCE, 1, NOT CONTROL, OVER 

HARDWARE ARCHITECTS .AND APPLICATIONS PROGRAMMERS, 

YET SELDOM MORE KNOWLEDGEABLE THAN EITHER. 

N. Kahan 

) 


