Notes prepared for a presentation

BUMPS ON THE PATH TO FLOATING-POINT PROGRESS

for the IEEE-sponsored

HOT CHIPS SYMPOSIUM

at Stanford University

June 26-7, 1989

by Prof. W. Kahan

Elect. Eng. & Computer Science,
University of California
Berkeley CA 84720

the race goes not always 1.0 the swift,
nor the battle to the strong,

neither security to the prudent

nor wealth to the well-connected,

nor yet success to the skilful,

but Time and Chance happens to them all.

- a version of Ecclesiastes IX-11.

The RISC philosophy can tempt engineers to take risks
that deserve more thought. As we attempt not just to
produce faster computers, but also to produce them
faster, we impose upon the fabric of the computer
industry strains that could undo our efforts:

By concentrating too hard on optimizing designs for the
most common situations, do we undermine performance by
requiring defensive programming to cope with exceptions
too rare to figure largely in ocur thoughts, yet not rare
enough that they cen be ignored?

Can compilers for new architectures really exploit their
supposed architectural advantages without conflicting with
long-established habits among programmers? Do enough good
compiler writers, knowledgeable not only about computer
architectures but also applications, exist?

We all want software to be reusable, portable or at
least trensporatable; but excessively diverse computer
architectures pose unresolvable dilemmas for the would-be
portable programmer.

How do we strike a balance between innovation and
stability, between healthy diversity and fatal
dispersion of effort?

STACK87 WORK IN PROGRESS June 26, 1989

How Intel 80x87 Stack Over/Underflow Should Bave Been Handled.
by W. Kahan

The Inte]l 80x87 family of numeric co-processors keep their eight
floating-point operands in s Stack . Trying to push or generate
a ninth operand on the stack precipitates instead a stack overflow
exception; trying to reference an empty cell on the stack causes
a stack underflow exception. These exceptions are expensive to
handle in software because the handler has too much work to do:

- Discriminate between stack over/underflow and other INVALID

operations (easier on the 80387 than its predecessors).

~ Decide what to copy between stack and its extension in memory.
- Retry the operation that was thwarted by stack over/underflow.
This expense could be reduced substantially by slightly revising
what the 680x87 hardware does. Such a revision would bring the
chip into line with the original intention for its design, which
was frustrated by misunderstandings between the specifiers and the
implementors of the 8087 ; ses p. 93 of The 8087 Primer by
John Palmer and Stephen P. Morse (1884), Wiley, N. Y.

Frustration continues. All attempts to persuade Intel’s chip
implementors that B80x87 stack over/underflow handling has to be
fixed by hardware modifications have failed. Intel’s attitude
seems to be " it’s just a matter of software.” But software to
cope with the problem has yet to appear in Intel’s own CEL
run-time library for the B80x87 family, end is elsewhere almost
nonexistent. Consequently, almost all higher-level languages’
compilers emit inefficient code for the 80x87 family, degrading
the chips’ performance by typically 50X with the spurious stores
and loads necessary simply to preclude stack over/underflow.

Compared with architectural changes that have already occurred in
the course of evolution from the 8087 to the 80387, chenges
advocated below to eliminate the stack over/underflow problem are
few, simple, upward compatible, and more likely than previous
changes to promote improved performance. Curing the stack over/
underflow problem will change what is perceived as a disadvantege
of B80x87 architectures into en advantage compared with the flat
register architectures of the Motorola 68881/2 and WE 321/206 .

flow the 80x87 stack should work

Think of the eight registers in the B0x87 as the topmost eight
cells of an indefinitely long stack. Floating-point operands and
results cen travel between memory and stack only via the cell on
top of the stack, as is customary for stacks. Every arithmetic
oparation combines a source operand with a destination operand and
writes the result over the latter; one of these two operands @ust
be the cell on top of the stack. The other operand (and possibly
destination) can be any of the eight cells in the 80x87 ; 'this
peculiarity of the B0x87 permits subexpressions to remain in the
stack for subsequent re-use, and permits more than one floating-
point stack to reside ephemerally in the B80x87 during tight
loops. The top cell can also be popped, duplicated, or swapped
with any other of the eight oells, 8o anything that can be done
with eight registers, as exist on the Motorola 68881/2, can be
imitated on the B0x87 at the cost of some swaps.

STACK87 WORK IN PROGRESS June 26, 1989

Why is the B80x87 orgnnized as a stack instead of a flat set of
registers like the 68881 ? On p. 60 of their book, Palmer and
Morse attribute this choice to limits on available op-code space,
but acknowledge that the stack architecture’s advantages go beyond
making a virtue of necessity. Foremost among them is the freedom
from having to save and restore registers when functions that pass
i.heir floating-point arguments by value are invoked. These values
(normally just one or two) need merely be pushed onto the stack
to be consumed and replaced by the function’'s result. And if an
interrupt requests some small floating-point service, such as
scaling or transforming the numbers received from or sent to a
transducer, that service can be performed quickly on top of the
stack without first saving and later restorind its contents
provided nothing extra is left on the stack afterwards. Since a
floating-point stack’s depth fluctuates very little compared with
other stacks =~- a floating-point stack is often empty and hardly
ever has as many as four cells active -- memory traffic during
those function calls and interrupts tends to be much lower with a
st.ack than with flat registers. That is an important adventage
for machines whose memory bus is much narrower than an operand.

Of course, the foregoing assumes that stack over/underflows will
occur very rarely, and that when they occur very little time will
be spent unloading or reloading the bottom few cells of the 80x87
to or from an area in memory devoted to the rest of the stack. If
the 80x87 had been provided with slightly better facilities to
handle stack over/underflow, the second assumption would be true.

Provision for stack over/underflow on the 80x87
The 80x87 has a two-bit tag associated with each stack cell.
This teg takes the value 112 {in binary) if the cell is EMPTY ;
otherwire its value is used by the 8087 and 80287, but not the
80387, to indicate what the cell contains:

00 Finite nonzero number

01 + Zero

10 + Infinity, or NaN (Not-a-Number)

11 EMPTY cell
(The 80387 sets the tag bits the way the other chips do, but
ignores distinctions among nonEMPTY cell-tags.)

The 80x87 has a three-bit pointer called TOP that points to
the cel]l that is currently on top of the stack. Pushing enother
item onto the stack decrements TOP by 1 ; popping an item off
the stack increments TOP by 1 . References to cells are always
relative to the stack top; a reference to ST(i) is to the cell
rointed to by TOP +i . The addition end increments/decrements
are all performed modulo 1000» in binary; decrementing TOP
frtim 0002 puts it to 1112 . .

Stack overflow occurs when en attempt to push (FLDx, FILD, FBLD)
or create (FPTAN) another item on the stack would decrement TOP
to point. to a nonEMPTY cell. For that stack overflow the intended
remedy is to copy a few cells from the bottom of the 80x87’s
stack into a downward extension of that stack in memory, aend then
tag those cells EMPTY to- permit the top of stack to dgrow into
them, eond then retry the operation that was thwarted.

STACK87 WORK IN PROGRESS June 28, 1989

Stack underflow occurs when an attempt to read a estack cell finds
it EMPTY. The intended remedy for stack underflow is to refill
that EMPTY cell and perhaps scme others from the stack’s extension
in memory, and retry the operation that was thwarted.

The area in memory devoted to the extension of the 80x87’'s stack
can be tiny; 1280 bytes is almost alwaye ample. Far larger areas
might be needed to cope with Recurgive (self-calling) progranms;
but Recursfon (as distinct from Recurrence or Iteralfon) so
seldom involves floating-point values that reallocating a larger
area, whether on demand at run-time or only after recompilation,
should be relegated to the category of remote possibilities.

Software to handle stack over/underflow (especially underflow)
turns out to be extremely intricate. Part of the problem springs
from differences within the 80x87 family. For instance, format
and operating system differences make it necessary for an 80x87
trap handler either to be configured differently for each chip or
to recognize at run-time which chip is in the machine; for the .
80287 there are two variant configurations to be recognized, one
Intel’s standard and the other IBM’s in PC-ATs. Instruction
retry is complicated by differences tantamount to bugs in the ways
the chips record an offending operation’s op-code:

80287 and 80387 senme gegmaent over-ride, 8087 does not.

80386 forgets to. tell 80387 about FILD (word) .

80387 treats FXCH’s stack underflow anomalously.
The 80387 distinguishes stack over/underflow from other invalid
arithmetic operations like 0.0/0.0 by providing (except for
the FXCH instruction!) information that the other chips do not;
but this information is hard to exploit in codes that have to be
portable in binary (.EXE) form to different PC bhardware.

Intel has abdicated its responsibility to supply ite 80x87 chips
with standardized device-driver software that would have hidden

their differences and difficulties. Instead PCs are cursed with
intractable diversity that renders exception hendling uneconomical
at every level -- operating system, compiler, application code.

The Blight
For leck of software to handle stack over/underflow, compilers
have to preclude it altogether. The simplest and most common way
to do that is to leave no intermediate result on the stack unless
it is to be used immediately as en operand. Doing so can double
the incidence of loads and stores in loops. For example, the
inner loop of

B := ; for k=1ton do s := wlkl*elk] + s ;
which computes a scalar product

8 = wlkl*z(k] + wlk)*z(k] + ... + wlkl*z(k) ,
should contain one fleoating-point multiply, one add, and two
loads (of wlk] and z(k)); but the simplest policy to avoid
stack overflow would generate three loads (of wl[k), z(k) and s)
and a store (of s) . Until fairly recently, almost every
compiler for IBM PC’s wused to do that, almost halving the speed
of the loop.

Better policies have begun to appear in compilers. Some of them
reserve (say) four registers as scratch registers, so they can

3

STACK87 WORK IN PROGRESS June 26, 1969

retain as many as four values in the ntack without having to save
and reostore any of them when a function is ca:led. Such a policy
brings the simplest loops, like the ine abovi, up to speed, but
does not do much for others that are common bi t more complicated.
For instance, supypo:s
s = q + ir , wik} = ulk) + iv(k] and z[k) = x(k) + iy(k)

are complex zariables. expanding the program segment above into

q := ;o r =0 ;

for k=1ton do

{ q := q + ulk)xx(k]) - v(k)*y(k) ;
r = r 4 vikl*x(k) + ulk)xyl(k) 1} ;

whoge inne: loop can be effected on an 80x87 using at most 7
stack cells and four floating-point multiplies, four adds, four
loads and one DUPLICATE of the stack’s top. But no compiler I
know to be governed by & policy that restricts register residency
can get by with fewer than g@ix loads, and some take eight.

A nunber of ugly consequences can be traced to the lack of proper
stack over/underflow handling. Expression evaluation should be
simpler to compile to an B80x87-like stack architecture than to a
flat set of registers whose allocation has to be optimized, but
the threat of stack overflow has instead complicated compilers and
delayed their dissemination. As arithmetic gets faster relative
to memory management, superfluous loads and stores detract ever
wore severely from performance. Had their deleterious effect upon
benchmark runs of the 8087 and 80287 been appreciated sooner,
the Weitek 1167 and 3167 might not have been developed; the
latter chip was expected to ocutperform the 80387 by a factor of
four but it barely achieves a factor of two with newer compilers
that generate fewer superfluous loads and stores. So meager an
improvement in speed hardly compensates for the tragic dilution of
software development and fragmentation of the market brought about
by arithmetic incompatibilities between the two families; Weitek
chips lack the Double-Extended (80 bit) format that is the most
efficient medium for expression evaluation on the 80x87 family.

The prevelence of superfluous loads and stores among current
compilers and applications for the 80x87 cripples the market for
a chip identical to the 80x87 but faster. FEven if such a chip
performed arithmetic twice as fast as the 80x87 it could not run
existing software more than about 4/3 as fast since the time now
wasted on spuriocus loads and stores would continue to be wasted.

What Should We Do?

We need a family of standardized device drivers, one for each
hardwnre configuration that includes an 80x87 chip, that hide
all oxception-handling differences from compilers end applications
codes. These drivers must hide stack over/underflow as well as
certain arithmetic differences between the 80387 and its two
predecessors; the lattar differences can be hidden well enough by
supplying driver software that makes the 8087 and 80287 conform
more nearly to IEEE Standerd 754, as does the 80387. Intel’'s
CEL library might have served as such a driver but for its neglect
of exception handling end its outresgecus price; it still provides
a model worth copying in other respects.

STACK8? WORK IN PROGRESS June 28, 1969

The drivers have to be extremsly inexpensive if they are to become
ubiquitous; otherwise software developers will not ugse them. And
we nend some expectation that hardware will evolve to support our
driver software efficiently, promising future higher performance
as an incent.ive to convert gsoftware to use the drivers nuw. The
support neeilded from hardware is small, as the rest of this report
will attempt to show. The reason that hardware has to evolve is
twofold: first, the trap-handlers needed for the presont 80x87
hardwnare are unnecessarily complicated and slow; second, they
face a dilemma that can never be resolved perfectly.

The dilemma arises first when the stack overflows; how many cells
should be copied from the bottom of the 80x87’'s stack into its
extension in memory? And then when the stack underflows, how
many of the 80x87's stack cells should be refilled from memory?
An adequate answer to “How many?” is probably three or four,

but the best answer may well vary from one program to another.

The dilemme would not arise if the 80x87 had been implemented
according to the original intentions. No description of those
intentions has been published yet; what follows is the first.

What Should Have Been Done

What follows is the description of a hypothetical 80X87 that
differs from current B80x87s only in the way the stack behaves.
The same instruction set and the same eight registers are assumed,
though Complex arithmetic and Interval arithmetic would fare
better with sixteen registers even if only the eight on top of the
stack were accessible directly. The hypothetical 80X87 differs
from the 80x87 also in the interpretation of the two-bit tags,
and in the use of a five-bit two's complement integer to hold TOP
even though only ites last three bits (TOP mod 8) point to the
top of the 80X87's stack. The role played during stack over/
underflow by TOP’s two leading bits and some other minor changes
will be described later.

For the sake of definiteness, suppose the stack extension area in
memory is allocated 1280 bytes; since each stack cell occupies

10 bytes, this allows for 128 stack cells all told, addressed
from 0 to 127 . These cells can be grouped in 16 blocks of

eight, numbered from O to 15. The current top of the stack is
at address = TOP+8B , where B 1is the current block number

though 8B is kept in memory. Initially 6B = 128 and TOP = O

but there is some ambiguity about the representation of T since

adding +8 or -8 to 8B and doing the opposite to TOP chaqges

neither T nor the 80X87 ocell (TOP mod 8). Pushing an item

onto the stack decrements TOP and T ; popping increments them.

Every cell in the 80X87’'s stack is asmaociated with a cell in the
stack’s extension in memory although the contents of these two
cells may differ. For 0 ¢t < 8, cell number t in the B80X87
agssociates with cell 8B + TOP - (((TOPmod 8) - t) mod 8) in the
extension. The figure shows essociated cells when TOP = 2 :

IN

PRINCIPAL INDICATORS of the COST
of DEVELOPING and MAINTAINING
NUMERICAL SOFTWARE

Indicator

oo v e e 0 e e

Depend upon how complex the program’s task

SUBROUTINE CALLS
is relative to the resources available.

DECLARATIONS Depend upon the adequacy of Type-Support
in the chosen programming language.
INPUT/OUTPUT Formats, windows, graphics, interaction

in real time, ... are big issues in few
numerical codes except during debugging.

What to test?
Compared with what threshold?
Where to go? What to do there?

TESTS & BRANCHES

EXCEPTIONS INTRODUCE COSTS INTO SOFTWARE BY MULTIPLYING TESTS
AND BRANCHES, INTRODUCING (SOMETIMES INVISIBLE) SPAGHETTI
THAT OBSCURES A PROGRAM'S PATHS OF CONTROL.

WE WISH TO HANDLE EXCEPTIONS WITH A MINIMUM OF TESTS AND
BRANCHES, AS FEW OF THEM AS POSSIBLE IN INNER LOOPS, AND
WITHOUT ANY NEW OR EXOTIC CONTROL~STRUCTURES.

WHAT EXCEPTIONS?

20 2 0 90 0 e 0 20 00 0 2 0 0 20

INXCT: INEXACT RESULT (only for IEEE 754/854)
UNFLO: UNDERFLOW { not for CRAY, ...)}
DIVBZ: DIVIDE-BY-ZERO, actually means an
INFINITE RESULT COMPUTED EXACTLY FROM
FINITE OPERAND(S).
OVFLO: OVERFLOW (only Floatindg-Point)
INTXR: INTEGER EXCEPTION OR ERROR WITH DUBIOCUS RESULT
... some overflows, and 1/0 .
INVLD: INVALID OPERATION, such as ...
Z0VRZ: 0.0/0.0
IOVRI: INFINITY/INFINITY
INVDV: either of the above
ZTMSI: 0. 0*INFINITY
IMINI: INFINITY ~ INFINITY
FODOM: FUNCTION OUTSIDE ITS DOMAIN, such as ...
SQRT(-3) , LOG(-3) , ARCSIN(3) ,
UNDTA: UNINITIALIZED DATA or VARIABLE
DTSTR: ATTEMPTED ACCESS OUTSIDE A DATA STRUCTURE,
... like ARRAY REFERENCE OUT OF BOUNDS
DEREFERENCING A NIL POINTER

NLI'TR:

ALLXS:

ALL OF THE ABOVE ... for treatment en masse.

STACKO7 WORK IN PROGRESS June 26, 1989

IN MEMORY IN AN 80X87
(BBBBB) 8B

(CCCCC)
DDDDD T = 8B+2 #2 ddddd SP(O)) TOP = 2
EFEFE #3 eeenn SP(1)
FFFFF #4 fEfff SP(2)
GGGGG #5 geedd SP(3)
HHHUHH #6 bhbhh SP(4)
II1I1I #7 iiiii SP(5)
JJJJJ 8B+8 #0 35444 SP(8)
KKKKK #1 kkkkk SP(7)
LLLLL

Every cell in the 80X87 1is tagged with two bits to tell first
whether that cell is EMPTY, and if nonEMPTY then whether its
contents have been COPIED into its associate in the extension area
in memory. That copying occurs only when the B80X87 stack over/
underflows. Initially all tags are EMPTY.

The only legitimate way to fill an EMPTY cell is to push an item
into it, either by loading the item from memory or from another
nonEMPTY steck cell, or by creating it during FPTAN ; after
that the cell is tegged nonEMPTY and unCOPIED. The same thing
happens when an item is pushed onto a cell previously tagged
nonEMPTY but COPIED; this dispels the aforementioned dilemma and
substantially reduces the incidence of stack overflow on 80X87s.

Stack overflow occurs when an attempt to push or create another
item on the 80X87’s stack would decrement TOP to point to a
nonEMPTY unCOPIED cell. The remedy is to copy all such nonEMPTY
unCOPJED cells from the 80X87 into their associates in memory
and fleg those 80X87 cells COPIED. But first the leeding two
bits of TOP have to be cleaned up; add or subtract 8 to put
TOP strictly between -8 and +8 , and do the opposite to 8B ,
and then do the copying. Finally retry the operation that caused
the overflow; this would be facilitated if the operation and its
memory operand had been saved so that retry and return from the
overflow trap handler could occur simultaneously.

The 80X87 is supplied with a new instruction that simultaneously
retriaes the saved operation that precipitated stack over/underflow
(which was detected as scon as that offending instruction was
issued) and returns the host processor from the trap handler;
this eliminates & need to decode or copy the offending instruction
and pravents unwanted interactions with other kinds of exceptions.
Ehere is ample room on the chip to save the offending operation,
nd either an operand from memory or the address of a destination
in memory, in registers not yet used to carry out the offending
instruction.

Stack underflow occurs, as before, when an attempt to obtain an
operand from a cell finds it tagged EMPTY. The remedy is to
first clean up the first two bits of TOP as described before,
then copy their associates’ contents into all EMPTY cells and
tag them nonEMPTY and COPIED, and then return-and-retry.

3 6

STACK87 WORK IN PROGRESS June 26, 1989

Finally, the stack over/underflow trap handler must always check
for over/underflow of the stack’s extension in memory. Overflow
entails reallocating the extension to a bigger area. Underflow is
probably a blunder. As long as normal stack discipline prevails,
whereby only pushes and pops are allowed to lengthen or shorten
the stack, EMPTY end nonEMPTY cells will never interlace, so
the scheme described above cannot malfunction but must nearly
minimize memory traffic.

Is All This Worth The Bother Now?

Compatibility with old software is the way the computer industry

plays God ...

" ..., visiting the iniquity of the fathers upon the
children unto the third and fourth generation "
Exodus XX-%
No easy way exists to correct a mistake after innumerable sources
of software have wound their expedients around it.

The incentive for correcting Intel’s mistaken treatment of steck
over/underflow must arise among Intel’s competitors. Unless new
compilers supplant old applications programs by new ones free from
most of the superfluous loads and stores that now afflict users of
80x87s, faster versions of the 80x87 will not convey enough of
their speed to existing software to justify their higher price,
especially since Intel can so easily lower its price for 80x87s
when competition looms. A paradoxical aspect of the situation now
is that competitors have to promote the dissemination of software
that will enhance the performance of Intel’s chips in order to
create opportunities for them to compete by enhancing performence
again. Compiler writers have to see a path along which successive
versions of their compilers will enjoy ever better performance as
they evolve together with the hardware.

Compiler writers must be sorely tempted by half-measures like the
policy mentioned above that sets aside some of the 80x87’s stack
in order to use the rest efficiently. Half measures can solve a
technical problem satisfactorily for so large a fraction of the
market as to put satisfaction for the rest beyond the purview of
profitable commerce. Only the urge to do things right, and the
strength of character to resist temptatiocn, will put the right
solution for the B80x87°'s stack problems into circulation. We
know what the right thing to do is; who has strength to do it?

FOUR IMPEDIMENTS to PORTABILITY
of NUMERICAL SOFTWARE for
Benjamin Franklin’s edvice (1757) : SCIENTIFIC and ENGINEERING COMPUTATION:

Three removes are as bad as a fire.
1. DISPARATE ROUNDOFF PROCESSES AMONG DIVERSE

COMPUTER ARITHMETICS.
(Abated by IEEE STANDARDS 754 and 854)

A change of address for one’s family and possessions used
to be called a “remove”. R. F. reckoned three of them HF OO OR RO AOK KRR KRR KA KK RRK KKK AR AR & & A K A AKR KK

as risky to one’s posgssessions as a fire. Moving data too *

often, as required by some computer architectures, ealso x 2, DISPARATE RESPONSES TO EXCRPTIONS *

entails risks; branching burns performance severely. * (like ...70 , SQRT(-...) , . x
L4 AMONG DIVERSE ... MACHINES, *
* OPERATING SYSTEMS, *

I have come to believe that Vector Architectures are * PROGRAMMING LANGUAGES. ®

destined for decline in almost all markets because they * *

fly in the face of Benjamin Franklin’s advice. ERERKEEKREKERE KKK EKKRE TR R EXRRIR KKK KR KR KRR RERN S A d Xk kk kR

3. SHORTAGE OF ADEQUATE TESTS and
DIAGNOSTIC BENCHMARKS.

4. FEDERAL FUNDING FOR NUMERICAL SOFTWARE DEVELOPMENT
EXCLUSIVELY
FOR MAINFRAME /SUPER-COMPUTERS

ARITHMETICALLY WORSE THAN
ALMOST ALL WORK-STATIONS.

Greshem’s Law:
Bad money drives out Good.

-~ attributed to Sir Thomas Gresham (1519-78)

Coins debased by paring or adulteration of precious metal
remain in circulation while undebased coins are hoarded,
going out of circulation. Have you any real silver coins
left in your pocket? Gresham’s law is not so much a law
of Nature or legislature as a remark about human nature.)

Gresham’s Law adapted to Computers:

The Faster drive out the Slower,
even if the Fasater are wrond.

The thought that CPU speed is all that really matters
is a misperception based upon over-simplification, as if
other aspects like accuracy, robustness and intellectual
economy had no commercial value.

He should by now have learned from the Japanese that
qualities like Integrity are worth more than money, and
worth a lot of money in the long run.

SOLVING LINEAR SYSTEMS A LITTLE BIT BETTER
by W. Kahan

We wish to solve

AX =B
for the N-by-M matrix X .

GAUSSIAN ELIMINATION by Crout-Doolittle Factorization:

PA = LU
To compute Permutation matrix P,
Lower triangle L .,
Upper triangle o

costs about N*' operations, mostly in Scalar Products.

Now (PAX =) LUX = PB can be solved in steps:
Solve LC = PB for C , and then
UX =¢C for X

costs about N’M operationas, mostly in Scalar Products.

Despite contrary received wisdom, Cache Migses and Page Faults
cen be mostly avoided.

ITERATIVE REFINEMENT improves approximately calculated X thus:

Residual R=B - AX .+s. MAIN LIMIT TO ACCURACY IS HERE
Correction Y wsolved from (PAY =) LUY = PR .

Improved approximation is8 2 =X + Y .

HOW MUCH BETTER THAN X IS Z %
All arrays and computation in Double (53 sig. bits }
Z is often worse than X !
All arrays in Double, but all scalar products accumulated in
Double-Fxtended (64 sig. bits)
Z is always better than X ,
and about 10 bits better than X before,
and even better when N is in the hundreds or more,

AND FASTER TOO WHEN PERFORMED ON iBOx87, MCA8861/2, WE321/208.
But no compiler support on SUN III, 1little on IBM PC, ..., !

WHAT MAKES AN EXCEPTION EXCEPTIONAL ?

NOT ITS RARITY
NOT ITS WRONG (?) RESULT

e.g.: X =3.0/7.0 IS RARE.
Y= (8.0%X - 3.0) -X IS FXACTLY NONZERO;
IS Y WRONG ?

HRREEREEIAKRRRINKKEEREREK KRR R KRR R AR R KR KRR N KKK F R KRRk
AN EXCEPTION IS A COMPUTATIONAL EVENT FOR WHICH ANY POLICY,
CHOSEN IN ADVANCE TO DEFINE ITS RESULT IN ALL CIRCUMSTANCES,
WILL OCCASIONALLY PRODUCE A RESULT TO WHICH SOMEBODY MIGHT
REASONABLY TAKE EXCEPTION.

L2 RS 2333 82222330333 212220323233 S3332323 222223233 322233132333333 324

o.g.:
0.0/0.0 , SQRT(-3) , READ PAST END OF FILE ,

SOME EXCEPTIONS SHOULD NOT BE EXCEPTIONAL AT ALL:
e.g.: 0.0°° = 1.0 and
cos(1 00000 0G000 0OC00 00000.0) = 0.7639...
have been declared EXCEPTIONAL ARBITRARILY !

EXCRPTIONS ARE NOT ERRORS
RXCEPTIONS ARE NOT ERRORS
EXCEPTIONS ARE ROT KRRORS
EXCEPTIONS ARE NOT KRRORS
EXCEPTIONS ARE KOT
EXCEPTIONS ARE NOT ERRORS
EXCRPTIONS ARE NOT ERRORS

UNLESS THEY ARE HANDLED BADLY.

WHAT FOLLOWS ARE THREE EXAMPLES INTENDED TO ILLUSTRATE
WHY EXCEPTIONS SHOULD NOT ALWAYS BE TREATED AS ERRORS.

S PR]

Hire are two ways to express the same rational function:

3

cf(n) to0 4 -

X - 2 -
10

X -7 +

-~
o

"~ 2 -
S

John Milton's observation (1608-74) : i
622 = w (751 - % (324 - % (59 - 4:x)))

rp(x) e
112 - %+ (151 - (72 - %- (14 - »)))
They also serve who only stand and wait.

- from Sonnet XIX "On His Blindnesse" ?
Despite low duty-cycles, some components deserve & place
in computers so that they may respond quickly to rare but

valuable opportunities. A divider i{s such a component.
cfix),.rpix)
0
-1 x]

The cnincidence of the graphs cobtained by plotting both expressions
ronfirms that they represent the same function, though they treat
Roundofé, Dverflow and Division-by-Zero differently.

For eczample, ...

vfll) = 0 cf(D) = @ cf(I) = » cf(4) = o
{sinqularit;1 Isingularity] [slnqularitjj [qinqularity]
rpt1) = 7 rp(2) = 4 rp(3) = 1,6 rp(d8) = 2.5

Division-by-Zero cannot happen to rpi(n) 3 and it would be harmless
in cf(x) toon if the o supplied by the hardware (it has an INTEL
17 that conforms to IEFE standard 754) were used as ita designers
1otended., For instance, cemputing cf(3) would then produce correctly

M- = o nePl-w = -0 , 10/0 = O, ¥ =-7-0=-4, eae

cf(n) := 4§ -

622 - % (751 = % (324 -~ x (59 ~ 4-x)))

rpn) &=
112 = % (151 - %" (72 -~ % (14 - %))}

U 1= 1,460631924 X t= U, U + eps ..U + 360 eps

8.7%238
+
+ +
pt . + \ !
1 ¥ + 1
o # . + it m t#‘
+ + 4+t +
’“’ ‘y“t' + + ’-H? + ## +
3 +
wit? Al ol M’N my o
] ru § W L \
CE OO rp XD ”,ﬂf’ o p ‘,u” ot #
¢ P #t N i +
H ¥ 4 +4
+4 44 4 # 4 W
: H 4 + F's $ + 3+
+ + 44 44 #
[+ + + +
+ 44
+ +
8.75238
1.60632 X 1.60632
The nearly smaoth graph —-—-— belongs to cf(x) : the ragged qraph of

+ ’s brlongs to rp(x) . Every point on each graph has been plotted to
show nat only how much worse roundoff affects rp(x) than cf(x) but
also tna‘ roundoff is not nearly so random as some people think.

The ne:t example illustrates that cf(u)}
butl rpx) i not s

77 .
Lo = 4

correctly.

is invulnerable to Overflow

ol

1 over flow j

The nexnt
fluatbe.

graphs are included just to show that the previous one was not a

They use different ranges of values for s .

U 3= 2.4006617 X t= U,U + 2'eps ..U + 8OO -eps

0.740707
+
+
ta ! et ¢ w4 K
00 +s ’*0 H + ®
céiXr.rp oty ﬁ‘ﬂb 4t ¥ &* H'#» !-ﬁ-,# o’ h h“t’l ++§
‘H { 73 4 1T Yy Hy
f : *u” ”W '4#' ¥ kﬁ ¥ iﬁ Ty :0,+ ‘ 1
”‘+ 4‘§’§ ‘:‘;’;’ d”* . + 4’4 N *§4‘" ”‘:‘ "} 0 {’4 ﬂ**
“
R PN o b ot , u*
+ + +4 +) }
4 4 4 + + ,. 3
0.740707
2.400664 X 2.40066
Vo= 2 + 240 eps e(x) t= céln) - rpOY)

The pet graph shows how
r oundof § chacures
tut not
~4 times as mich as that function changes when x
rne unit in its last place for values x
for most other values of »

26-013

d (X}, e(X)

200173

cf () - cé (V)

rpix) dix) 1=
by about 10

changes by
slightly bigger than 20 1

ts much worse than this.

cf)

roundoff in rp

2= 2 + 2-@9ps X 3» Y,U + 2-eps ..U + 480 -eps

~3

”

1 1

12 S, L0 T, = 10

b4 32

Here is an example of a simple pguation fix) = 0O
for conventional zern-finding software to solve for
search may well escape from the domain on which {{x) is defined,
and then the underlying computer system may abort the program.

f(n) = ln(n)~J|0 -

fi2Y 0

Starting quesst X g 2 root (F(X),X) = |

X := 4 root (F(X),X) = « @
[not converqin§1
. X 3= 9,999 root (£(X) X} = a
[not convergingl

X t= 10 root(f(X),X) = 10

This computer system (MathCAD on an IBM PC) resorts to complex
arithmetic whenever it has to compute square roots or logarithms of
negative numbers, but that does not solve the problem either because
diccontinuities in those functions’ principal valuss upset the logic
of (ke zero-finder,

that can be hard
berause the

-9 1 1

-14
TOL 1= 10

LOOKING FOR AN ELUSIVE POSITIVE ZERQ

We sepel a positive rero of

$(x) 1= tani{x) - asinix)

if {t exists.

since f(x} has an unwanted triple 2ero at x = 0 , we remove it by
-4
constructing gix) 1= % -f{x) and looking for its ponsitive zero.
qin)
1
qiX), £0X) 0D
fin)eoe
-0,02
[X 1
First gueas: X 3= .o root (£(X),X) = e @
singularity
root(qg(X) ,X) = = »
Another guess: X 1= .9 root (£ (X),X) = 0,000034452027 «e. @ Q

root (q(X),X) = »

Another guess: X 1= 993 root(f(X),X) = s o

lnot cunverging]

root{q(X),Xl o e e

Inot convergingj

One might plausibly conclude that £ ()

~)

very nearly

MathCAD’s built-in
zero--finder seems
unable to find any
strictly positive
zero x near 1 .

has no positive zera, but ...

@205 A0 1

ta m— — 4

256 256 65576

... let's pupand the lower right corner of the previous qgraph:

Upper curve: Lower curve:
-4
g{») 1= n R XS fex) 2= tan(x) - asin(:)
.07
Qi) F(n),0
\ 0
-3
0.996094 » 1
First quesst
X 1= ,9999
root{(f(X),X) = 0,999906012413 A FPOSITIVE ZEROD
DOES EXIST AFTER
root (g(X}),X) = 0,999906012413 ALL.
Annther:
X := 1 -18
root (§(X),X) = 0.9999056012413 - 1.257087904161 -10 i
-19
root (g(X),X) = 0.999906012413 - 4.77260495771 -10Q 1
' Imaginary parts are

apurious artifacts of
the unnecessary use
of complex arithmetic.

To find the positive zero, we had to qive the sero-finder first gqueanes
that matcherl that sero to four sig. dec.! Thas is not =0 much a flaw in
the sorn-finder az 2 defect In the way exceptions like asin(3t) are
handled, If ol cach erceptions could be handled (at the programerr ‘s
ceguest Y i the spirit of ICTE standarda 7254/M154, zeoro finders and
Gl apareh pragrams wonld worl aore sanothly, as do those on recent
HE caleulaters, without imposing a nuisance upon software usern,

IF YOU WOULD HANDLE EXCEPTIONS WELL, YOU MUST DEAL WITH ...

NAMFS: WE SHOULD ALL USE THE SAME NAMES FOR THE SAME THINGS
IF WE WISH TO SHARE EACH OTHER’S PROGRAMS.

FLAGS: THESE TELL A PROGRAM WHICH EXCEPTIONS HAVE OCCURRED.
They cannot be numerous lest we forget their names.

MODES: A PROGRAM CHANGES THEM TO CHANGE THE WAY ITS
EXCEPTIONS WILL BE HANDLED. Very few are useful.

SCOPE: CONCERNED WITH LINGUISTIC CONVENTIONS FOR HIDING THE
SETTING, SENSING, CLEARING, SAVING AND RESTORING
OF FLAGS AND MODES .

RETROSPECTIVE DIAGROSTICS:
THESE PROVIDE A WAY FOR THE USER OF A PROGRAM TO COPE
WITH THE POSSIBLY MISHANDLED EXCEPTIONS, AND ARE
PROVABLY INDISPENSABLE FOR CORRECT EXCEPTION HANDLING.

We have been working on good ways to deal with these issues
that are, as nearly as possible,

INDEPENDENT OF HARDWARE
INDEPENDENT OF LANGUAGE
INDEPENDENT OF COMPILERS.

BEEAKING THE VICIOUS CIRCL}

FORTABILITY:

NO RESPONSIBLE APPLICATIONS PROGRAMMER WILL EXPLOIT UNFAMILIAR
MECHANISMS TO HANDLE EXCEPTIONS UNLESS REASONABLY ASSURED OF
THEIR (IMPENDING) UNIVERSALITY.

INDIFFERENCE:

NO RESPONSIBLE COMPILER-WRITER WILL IMPLEMENT UNFAMILIAR
MECHANISMS TO HANDLE EXCEPTIONS UNLESS ASSURED THAT CUSTOMERS
DESIRE THEM ENOUGH TO PAY FOR THEM.

MARKETING:
HARDWARE DESIGNERS TEND TO OMIT FEATURES THAT COMPILER WRITERS
TEND NOT TO USE.

* WHEN HIP-DEEP IN ALLIGATORS, WHO CAN ENTERTAIN
PROPOSALS TO JOIN IN DRAINING THE SWAMP ? *

A consortium of interested parties in the computer industry is
being formed to agree upon exception-handling well enough to
implement would-be universal capabilities. W. K.

USE IT OR LOSK IT

1EEE 754 DIRECTED ROUNDING:
Round to +INFINITY
Round to -INFINITY
e at the programmer’s option.

Ma jor application ... INTERVAL ARITHMETIC
for Roundoff Error Bounds ...
for ABSOLUTE SENSITIVITY ANALYSIS

for SEARCHES for ROOTS of systems of equations
for OPTIMA

NO SUPPORT IN COMPILERS ===> NO USE TO APPLICATIONS PROGRAMMERS

LANGUAGE DESIGNERS AND IMPLEMENTORS ARE TOO OFTEN
PETTY TYRANTS
EXERCIZING ENORMOUS INFLUENCE, IF NOT CONTROL, OVER
HARDWARE ARCHITECTS 'AND APPLICATIONS PROGRAMMERS,
YET SELDOM MORE KNOWLEDGEABLE THAN EITHER.

W. Kahan

