
Notes prepared for a presentation

BUMPS ON THE PATH TO FLOATING-POINT PROGRESS

for the IEEE-sponsored

HOT CHIPS SYMPOSIUM

at Stanford University

June 26-7, 1989

by Prof. W. Kahan

Elect. Eng. & Computer Science,
University of California

Berkeley CA 94720

)

the race goea not always 1.0 the swift.
nor the battle to the strong.
neither security to t,he 11rudent
nor weal th to the we 11-cr,nnected,
nor yet success to the skilful,
but Time and Chance happens to them all.

- a version ot Ecclesiastes IX-11.

The RISC philosophy can tempt engineers to take risks
thftt deserve more thought. As we attempt not Just to
produce taster computers, but also to produce them
faster, we impose upon the fabric of the computer
industry strains that could undo our efforts:

By concentrating too hard on optimizing designs for the
most common situationa, do we undermine performance by
requiring defensive programming to cope with exceptions
too rare to figure largely in our thoughts, yet not rare
enough that they can be ignored?

Can compilers for new architectures really exploit their
supposed architectural advantages without conflicting with
long-established habits among programmers? Do enough good
compiler writers, knowledgeable not only about computer
architectures but also applications, exist?

Ne all want software to be reusable, portable or at
least trensporatable; but excessively diverse computer
architectures pose unresolvable dilemmas for the would-be
portable programmer.

How do we strike a balance between innovation and
stability, between healthy diversity and fatal
dispersion of effort?

)

STACK87 WORK IN PROGRESS June 26, 1989

flow Intel 80x87 Stack Over/Underflow Should Have Been Randlffd.
by W. Kahan

The Intel 80x87 family of numeric co-processors keep their eiRht
floftting-point operands in a Stack. Trying to push or genernte
B ninth orerend on the stack precipitates instead a stack overflow
exception; trying to reference an empty cell on the stack causes
a stnck underflow exception. These exceptions ere expensive to
hRndle in software because the handler has too much work to do:

- Discriminate between stack over/underflow and other INVALID
operations C easier on the 80387 than its predecessors).

- Decide what to copy between stack and its extension in memory.
- Retry the operation that was thwarted by stack over/underflow.

This expense could be reduced substantially by slightly revising
whftt the 80x87 hardware does. Such a revision would bring the
chip into line with the original intention for its design. which
was frustrated by misunderstanding■ between the specifiers and the
implementors of the 8087; see p. 93 of The 8087 Primer by
John Pnlmer and Stephen P. Morse (1984), Wiley, N. Y.

Frustration continues. All attempts to persuade Intel's chip
implementors that 80x87 stack over/underflow handling has to be
fixed by hardware modifications have tailed. Intel's attitude
seems to be " it's just a matter of software." But software to
cope with the problem has yet to appear in Intel's own CEL
run-time library for the 80x87 family, and is elsewhere almost
nonexistent. Consequently, almost all higher-level languages'
compilers emit inefficient code for the 80x87 family, degrading
the chips' performance by typically 50X with the spurious stores
and loads necessary simply to preclude stack over/underflow.

Compared with architectural changes that have already occurred in
the course of evolution from the 8087 to the 80387, changes
advocated below to eliminate the stack over/underflow problem are
fnw, simple, upward compatible, and more likely than previous
changes to promote improved performance. Curing the stack over/
underflow problem will change what is perceived as a disadvantage
of 80x87 architectures into an advantage compared with the flat
register architectures of the Motorola 68881/2 and WE 321/206.

now the 80x87 stack should work
Think of the eight registers in the 80x87 as the topmost eight
calls of an indefinitely long stack. Floating-point operands and
results can travel between memory and stack only via the cell on
top of the stack, as is customary tor stacks. Every arithmetic
oparetion combines a source operand with a destination operand and
writes the result over the latter; one of these two operands must
be the cell on top of the stack. The other operand Cond possibly
destinfttionl can be any of the eight cells in the 80x87; this
peculiarity of the 80x87 permits subexpressions to remain in the
stack for subsequent re-u■e, and permits more than one floating
point stack to reside ephemerally in the 80x87 during tight
loops. The top cell can also be popped, duplicated, or swapped
with any other of the eight oells, so anything that can be done
with eight registers, as exist on the Motorola 68881/2, can be
imitated on the 80x87 at the cost of some swaps.

1

)

)

STACK87 WORK IN PROGRESS June 26, 1989

Why is the 80x87 orgRnized as a stack instead of a flat set of
re~isters like the 68881? On p. 60 of their book, PalmAr and
Morse attribute this choice to limits on availftble op-code space,
but acknowledge that thft stack architecture's advantages go beyond
making a virtue of necessity. Foremost among them is the frePdom
from h1wing to save and restore registers when functions that pass
their floatinf{-point arguments by value are invoked. These VAiues
(normal ly .just one or two) need merely bA punhed onto the A tack
to be consumed and replaced by the function's result. And if an
interrupt requests some small floating-point service, such as
~caling or transforming the numbers received from or sent to a
t·.ransducer, that service can be performed quickly on top of the
stack without first saving and later restoring its contents
provided nothing extra is left on the stack afterwards. Since a
floating-point stack's depth fluctuates very little compared with
other stacks a floating-point stack is often empty and hardly
ever has as many as four cells active memory traffic during
those function calls and interrupts tends to be much lower with a
stack than with flat registers. That is an important advantage
for machines whose memory bus is much narrower than an operand.

Of course, the foregoin• assumes that stack over/underflows will
occur very rarely, and that when they occur very little time will
be spent unloading or reloading the bottom few cells of the 80x87
to or from an area in memory devoted to the rest of the stack. If
the 80x87 had been provided with slightly better facilities to
handle stack over/underflow, the second assumption would be true.

Provision for stack over/under~low on the 80x87
The 80x87 has a two-bit tag associated with each stack cell.
This tag takes the value 112 {in binary) if the cell is EMPTY
otherwiRe its value is used by the 8087 and 80287, but not the
80387, to indicate what the cell contains:

00 Finite nonzero number
01 ± Zero
10 ± Infinity, or NaN (Not-a-Number
11 EMPTY ce 11

C The 80387 sets the ta, bits the way the other chips do, but
ignores distinctions among nonEMPTY cell-tags.>

The 80x87 has a three-bit pointer called TOP that points to
the cell that is currently on top of the stack. Pushing another
i t,em onto the stack decrements TOP by 1 ; popping an item off
the stack increments TOP by 1. References to cells are always
r~lative to the stack top; a reference to ST(i) is to the cell
pointed to by TOP+ i . The addition and increments/decrements
Are all performed modulo 10002 in binary; decrementing TOP
fr~m 0002 puts it to 1112.

Stack overflow occurs when an attempt to push CFLDx. FILD, FBLD)
or creat.e C FPTAN) another i tam on the stack would decrement TOP
to poin1; to a nonEMPTY cell. For that stack overflow the intended
r~medy is to copy a few cells from the bottom of the 80x87's
stack into a downward extension of that stack in memory, and then
t~g thosP. cells EMPTY to• permit the top of stack to grow into
t.hem, end then retry the operation that was thwarted.

2

) .J·)

STACK87 MORK IN PROGRESS June 26, 1989

Stack underflow occurs when an attempt to read a stack cell finds
it EMPTY. The intended remedy tor stack underflow is to refill
that EMPTY cell and perhaps some others from the stack's extension
in memory, and retry the operation that was thwarted.

The area in memory devoted to the extension of the 80x87's stack
can be tiny; 1280 bytes is almost always ample. Far larger areas
might be needed to cope with Recursive Cself-oalling) programs;
but Recursion (as distinct from Recurrence or Iteration) so
seldom involves floating-point values that r~allooating a larger
area, whether on demand at run-time or only after recompilation,
should be relegated to the category of remote possibilities.

Software to handle stack over/underflow { especially underflow)
turns out to be extremely intricate. Part of the problem springs
from differences within the 80x87 family. For instance, format
and operating system differenoes make it necessary for an 80x87
trap handler either to be conficured differently for each chip or
to recognize at run-time which chip is in the machine; for the
80287 there are two variant oonfigurations to be recognized, one
Intel's standard and the other IBM's in PC-ATs. Instruction
retry is complicated by differences tantamount to bugs in the ways
the chips record an offending operation's op-code:

80287 and 80387 sense ••1ment over-ride, 8087 does not.
80386 forgets to.tell 80387 about FILD (word) .
80387 treats FXCR'a staok underflow anomalously.

The 80387 distinguishes stack over/underflow from other invalid
arithmetic operations like 0.0/0.0 by providing C except for
the FXCH instruction!) information that the other chips do not;
but this information ia hard to exploit in codea that have to be
portable in binary (.EXE) form to different PC hardware.

Intel has abdicated it■ responsibility to supply its 80x87 chips
with standardized device-driver software that would have hidden
their differences and difficulties. Instead PCs are cursed with
intractable diversity that renders exception handling uneconomical
at every level operating system, compiler, application code.

'nle Blight
For leek of software to handle atack over/underflow, compilers
have to preclude it altogether. The simplest and most common way
to do that is to leave no intermediate result on the stack unless
it is to be used immediately as an operand. Doing so can double
the incidencP. of loads and stores in loops, For example, the
_inner loop of

s ·- 0 • for k = 1 ton do s := w[kl*z[kJ + s i
which com;~tes'a scalar produot

s = wtkl*z[k) + w[kl*z[k] + ... + w[kl*zCkJ ,
should contain one floating-point multiply, one add, and two
loads < ot w[kl and z[kl); but the simplest policy to avoid
stack overflow would generate three loads C of w[kl, z[kl ands)
and a store C of s) . Until fairly recently, almost every
compiler for IBM PC's used to do that, almost halving the speed
of the loop.

Better policies have begun to appear in compilers. Some of them
reserve (say) four registers as scratch r~gisters, so they can

3

STACK87 WORK IN PROGRESS June 26, 1989

retain fts many as four values in the r.tack vlthout having to save
ftnd r"lst.ore any of them vhen a function is ca: led. Such a policy
brings t.he simplest loops, li~e the 11ne fthov,, up to speed, but
does not do much for others th~,t are common bi t more complicated.
For instance, supr•<•'H!I

s = q + ir, wlkJ = uCkl + lv[kl and 2Ckl = x(kl + iy[kJ
are complex variables, e:,cpanding the pro"ram segment above into

q := 0; r := 0 i
for k = 1 ton do

{ q :: q + uCkl*x[kJ - v(kJ*y[kJ ;
r :: r + v[kl*x(k} + u(kJ•y[kl }

whose inne·.- loop can be effected on M 80x87 using at most 7
stack cells and four floating-point multiplies, four adds, four
loads and one DUPLICATE of the stack's top. But no compiler I
know to be governed by a policy that restricts register residency
can get by with fewer than six loads. and some take eight.

A number of ugly consequences can be traced to the lack of proper
stack over/underflow handling. E:,cpression evaluation should be
simpler to compile to en 80x87-like stack architecture than to a
flat set of registers whose allocation has to be optimized, but
the threat of stack overflow has instead complicated compilers and
delftyed their dissemination. As arithmetic gets faster relative
to memory =ana«ement, superfluous loads ond stores detrnct ever
more severely from performance. Had their deleterious effect upon
benchmark runs of the 8087 and 80287 been appreciated sooner,
the Weitek 1167 and 3167 might not have been developed; the
latter chip was expected to outperform the 80387 by~ factor of
four but it barely achieves a factor of two with newer compilers
that generate fewer superfluous loads and stores. So meager an
improvement in speed hardly compensates for the tragic dilution of
software development and fragmentation of the market brought, about
by arithmetic incompatibilities between the two families; Weitek
chips lack the Double-Extended (80 bit) format that is the most
efficient medium for e,cpreesion evaluation on the 80xB7 family.

The prevalence of superfluous loads and stores among current
compilers and applications for the 80x87 cripples the market for
a chip identical to the BOx87 but fester. F.ven if such a chip
performed arithmetic twice as fast as the 80x87 it could not run
existing software more than about 4/3 as fast since the time now
wasted on spurious loads and stores would continue to be wasted.

What Should tfe Do?
We need a family of etandftrdized device drivers, one for each
hardwAre configuration that includes an 80x87 chip, that hide
all oxception-handling differences from compilers end applications
codes. These drivers must hide stack over/underflow as well as
certftin arithmetic differences between the 80387 and its tvo
predeco~sors; the latt~r differences ·can be hidden well enough by
supplying driver software that makes the 8087 and 80287 conform
more nearly to IEEE Standard 754. as does the 80387. Intel's
CEL library might hftve served as such a driver but for its neglect
of exception handlin« and its outrageous price; it still provides
a model worth copying in other respects.

4

)

STACK87 t«>RK IN PROGRESS June 26, 1989

The drivers have to be extremely lne:,cpenalve if they are to beco~~
ubiquitous; otherwise software developers will not use them. And
ve nP.od somr expectation that hnrdw11re will evolve to sur1>ort o•.Jr
driver software efficiently, promising future higher perform11nr:e
ftS nn incent.ive to convert software to use the drivers now. Th,:,
Burport neecled from hardware is small. as the rest of this report
wi 11 attempt, to shov. The reason that hardware has to evolve is
twofold: first, the trap-handlers needed for the presont 80x87
hnrrlwnre ar1• unnecessarily complicated and slow; second, they
face a dilemma that can never be resolved perfectly.

The dilemma arises tlret when the stack overflows; how meny cells
should be copied from the bottom of the 80x87's stack into its
extension in memory? And then when the stack underflows, how
many of the 80x87's stack cells should be refilled from memory?
An adequate answer to ••How many'?" la probably three or four,
but the best answer may well vary from one program to another.

The dilemma would not arise if the 80x87 had been implemented
according to the original intentions. No description of those
intentions has been published yet; what follows is the first.

What Should Have Beeo Done
What follows is the description of a hypothetical 80X87 that
differs from current 80x87s only in the way the stack behaves.
The same instruction set and the same eight registers are assumed,
though Complex arithmetic and Interval arithmetic would fare
better with sixteen registers even if only the eight on top of the
stack were accessible directly. The hypothetical BOX87 differs
from the 80x87 also in the interpretation of the two-bit tngs,
and in the use of a five-bit two's complement integer to hold TOP
even though only its last three bits (TOP mod 8 l point to the
top of the 80X87'e stack. The role played during stack over/
underflow by TOP's two leading bits and soma other minor changes
will be described later.

For the sake of definiteness. suppose the stack extension area in
memory is allocftted 1280 bytes; since each stack cell occupies
10 bytes, this allows for 128 stack cells all told, addressed
from O to 127. These cells can be grouped in 16 blocks of
eitht, numbered frOftl O to 15. The current top of the stack is
at address T = TOP+ 8B , where B is the current block number
though 88 is kept in memory. Initially 8B = 128 and TOP= 0
but there is some ambiguity about the representation of T since
adding +8 or -8 to 8B and doing the opposite to TOP chenges
neither T nor the 80X87 cell (TOP mod 8). Pushing an item
onto the stack decrements TOP and T popping increments them.

Every cell in the 80XB7•a stack lo associated with a cell in the
stock's extension in memory although the contents of these two
cells may differ. For O it< 8 • cell number t in the 80X87
associates with cell 8B + TOP - (((TOP mod 8) - t) mod 8) in the
extension. The figure shows associated cells when TOP= 2 :

)

)

Indicator-

PRINCIPAL INDICATORS of the COST
of DEVELOPING and MAINTAl~lNG

NUMERICAL SOFTWARE

)

SUBROUTINE CALLS Depend upon how complex the program's task
is relative to the resources available.

DECLARATIONS

INPUT/OUTPUT

TESTS & BRANCHES

Depend upon the adequacy ot Type-Support
in the chosen programming language.

Formats, windows, graphics, interaction
in real time, are big issues in few
numerical codes except during debugging.

What to test?
Compared with what threshold?
Where to go? What to do there?

EXCEPTIONS INTRODUCE COSTS INTO SOFTWARE BY MULTIPLYING TESTS
AND BRANCHES, INTRODUCING (SOMETIMES INVISIBLE) SPAGHETTI
THAT OBSCURES A PROGRAM'S PATHS OF CONTROL.

WE WISH TO HANDLE EXCEPTIONS WITH A MINIMUM OF TESTS AND
BRANCHES, AS FEW OF THEM AS POSSIBLE IN INNER LOOPS, AND
WITHOUT ANY NEW OR EXOTIC CONTROL-STRUCTURES.

(I

KHAT EXCEPTIONS?

INXCT: INEXACT RESULT only tor IEEE 754/854

UNFLO: UNDERFLOW not tor CRAY, ...

DIVBZ: DIVIDE-BY-ZERO, actually means an
INFINITE RESULT COMPUTED EXACTLY FROM

FINITE OPERAND($).

OVFLO: OVERFLOW Conly Floating-Point

)

INTXR: INTEGER EXCEPTION OR ERROR WITH DUBIOUS RESULT
some overflows, and 1/0.

INVLD: INVALID OPERATION, such as

7.0VRZ:
IOVRI:
lNVDV:
7.TMSl:
lMJNI:
FOUOM:

UNDTA:
DTSTR:

NLPTR:

0.0/0.0
INFINITY/INFINITY

either of the above
O.O*INFINITY

INrINITY - INFINITY
FUNCTION OUTSIDE ITS DOMAIN, such as

SQRT(-3) , LOG(-3) , ARCSIN(3) ,

UNINITIALIZED DATA or VARIABLE
ATTEMPTED ACCESS OUTSIDE A DATA STRUCTURE,

... like ARRAY REFERENCE OUT OF BOUNDS
DEREFERENCING A NIL POINTER

ALLXS: ALL OF THE ABOVE for treatment en ma99e.

STACK07 NORK IN PROGRESS

IN MEMORY

CBBBBB) 8B
(CCCCC)

DDDDD T = 8B+2
EF.EKE
FFFFF
GGGGG
HHHHH
IIIII
JJJJJ 8B+8
KKKKK
LLLLL

lt2
#3
#4
It&
#6
#7
ttO ,n

IN AN 80X87

ddddd
eee13a
fffff
ggggg
hhhhh
iiii i
Jjjjj
kkkkk

June 26, 1989

SPCO) TOP = 2
SP(1)
SPC2)
SP(J)
SPC4>
SP(5)
SP(6)
SPC7)

Every cell in the 80X87 le tagged with two bits to tell first
whether that cell is EMPTY, and if nonEMPTY then whether its
contents have been COPIED into its associate in the extension area
in mamory. That copying occurs only when the 80X87 stack over/
underflows. Initially all tags are EMPTY.

The only legitimate way to fill an EMPTY cell is to push an item
into it., either by loading the item from memory or from another
nonEMrTY stack cell, or by creating it during FPTAN; after
that the cell is tagged nonEMPTY and unCOPIED. The same thing
happens when an item is pushed onto a cell previously tagged
nonEMPTY but COPIED; this dispels the aforementioned dilemma and
substantially reduces the incidence of stack overflow on 80X87e.

Stack overflow occurs when an attempt to push or create another
item on the 80X87's stack would decrement TOP to point to a
nonEMPTY unCOPIED cell. The remedy is to copy all such nonEMPTY
unCOPTED cells from the 80X87 into their associates in memory
and !leg those 80X87 cells COPIED. But first the leading two
bits of TOP have to be cleaned up; add or subtract 8 to put
TOP strictly between -8 and +8, and do the opposite to 88,
and th~n do the copying. Finally retry the operation that caused
the overflow; this would be facilitated if the operation an~ its
memory opffrand had been saved so that retry end return from the
overflow trap handler could occur simultaneously.

The 80X87 is supplied with a new instruction that simultaneously
retries the saved operation that precipitated stack over/underflow
(which was detected as soon as that offending instruction was
issued) and returns the host processor from the trap handler;
this eliminates a need to decode or copy the offending instruction
and prevents unwanted interactions with other kinds of exceptions.
there is ample room on the chip to eave the offending operation,
dnd either an operand from memory or the address of a destination
in memory, in registers not yet used to carry out the offending
instruction.

Steck unrlerflow occurs, as before, when an attempt to obtain an
operand from a cell finds it tagged EMPTY. The remedy is to
first clean up the firsb two bits of TOP as described before,
then copy their associates' contents into all EMPTY cells and
tag them nonEMPTY and COPIED, and then return-and-retry.

) 6)

STACK87 WORK IN PROGRESS June 26, 1989

Finally, the stack over/underflow trap handler must always check
for over/underflow of the stack's extension in memory. Overflow
entails reallocating the extension to a bigger area. Underflow im
prohAhly a blunder. As long as normal stack discipline prevails,
whereby only pushes and pops are allowed to lengthen or shorten
the stack, EMPTY and nonEMPTY cells will never interlace, so
the scheme described above cannot malfunction but must nearly
minimize memory traffic.

Is All This Worth The Bother Now'l
Compatibility with old software i ■ the way the computer industry
plays God

visiting the iniquity of the fathers upon the
children unto the third and fourth generation "

Exodus XX-5
No easy way exists to correct a mistake after innumerable sources
of software have wound their expedients around it.

The incentive for correcting Intel's mistaken treatment of stack
over/underflow must arise among Intel's competitors. Unless new
compilers supplant old applications programs by new ones free from
most of the superfluous loads and stores that now afflict users ot
80x87s, faster versions of the 80x87 will not convey enough of
their speed to existing software to Justify their higher price,
especially since Intel can so easily lower its price for 80x87s
when competition looms. A paradoxical aspect of the situation now
is that competitors have to promote the dissemination of software
that will enhance the performance of Intel's chips in order to
create opportunities tor them to compete by enhancing performance
agAin. Compiler writers have to see a path along which successive
versions of their compilers will enJoy ever better performMce as
they evolve together with the hardware.

Compiler writers must be sorely tempted by halt-measures like the
policy mentioned above that sets aside some of the 80x87's stack
in order to use the rest efficiently. Half measures can solve a
technical problem satisfactorily for so large a fraction of the
market as to put satisfaction for the rest beyond the purview of
profitable commerce. Only the urge to do things right, and the
strength of character to resist temptation, will put the right
solution for the 80x87's stack problems into circulation. He
know what the right thing to do is; who has strength to do it?

7)

)

Benjamin Franklin's advice (1757)

Three removes are as bad as a fire.

A change of address for one's family and possessions used
to be called a "remove". J\. F. reckoned three of them
es risky to one's possessions as a fire. Hovinf. data too
often, as required by some computer architectures, also
entails risks; branching burns performance severely.

I have come to believe that Vector Architectures are
destined for decline in almost all markets because they
fly in the face of BenJamin Franklin's advice.

FOUR IMPEDIMENTS to PORTABILITY
of NUMERICAL SOFTKARE for

SCIENTIFIC and ENGINEERING COMPUTATION:

1. DISPARATE ROUNDOFF PROCESSES AMONG DIVERSE
COMPUTER ARITHMETICS.

C Abated by IEEE STANDARDS 754 and 854)

)

**
* * * 2. DISPARATE RESPONSES TO KXCKPTIONS •
* C like ... /0 , SQRTC-...) , . . .) *
* AMONG DIVERSE . . . MACHINES, *
* OPERATING SYSTEMS, •
* PROGRAMMING LANGUAGES. *
* *
**

3. SHORTAGE OF ADEQUATE TESTS and
DIAGNOSTIC BENCHMARKS.

4. FEDERAL FUNDING FOR NUMERICAL SOFTKARE DEVELOPMENT

EXCLUSIVELY

FOR MAINFRAME/SUPER-COMPUTERS
ARITHMETICALLY NORSE THAN
ALMOST ALL NORK-STATIONS.

)

Gresham's Law:
Bad money drives out Good.

- attributed to Sir Thomas Gresham (1519-79)

Coins debased by paring or adulterfttion of precious metal
reimain in circulation while undebased coins are hoarder!,
going out of circulation. Have you any reel silver coins
left in your pocket? Gresham's law is not so much a lAw
of Nature or legislature as a remark about human nature.)

Gresham's Law adapted to Computers:

The Faster drive out the Slower,
even if the Faster are wrong.

The thought that CPU speed is all that really matters
is a misperception based upon over-simplification, au if
other aspects like accuracy, robuetness and intellectual
economy had no commercial value.

We should by now have learned from the Japanese that
qualities like Integrity are worth more than money,
worth a lot of money in the long run.

and

SOLVINO LINEAR SYSTEMS A LiffLK BIT BETTER
by W. Kahan

We wish to solve
AX = B

for the N-by-M matrix X.

GAUSSIAN ELIMINATION by Crout-Doolittle Factorization:

To compute

PA= LU

Permutation matrix
Lower triangle
Upper triangle

p ,
L • u

costs about N1 operations, moetly in Scalar Products.

Now PAX= LUX= PB can be solved in eteps:

Solve LC= PB
UX = C

for C ,
for X

and then

costs about N1 M operations, mostly in Scalar Products.

Despite contrary received wisdom,
can be mostly avoided.

Cache Misses and Page_Faults

ITERATIVE REFINEMENT improves approximately calculated X thus:

Residual R = B - AX MAIN LIMIT TO ACCURACY rs HERE

Correction Y solved from

Improved approximation is z =

HOW MUCH BETTER THAN X IS Z?

PAY=

X + y

LUV = PR .

All arrftys and computation in Double 53 sig. bits)

Z is often worse than X

All arrays in Double, but ell scalar products accumulated in
Double-Rxtended (64 sig. bits)

Z is alwaye better than X,
and about 10 bits better than X before,
and even better when N is in the hundrarls or more,

AND FASTER TOO WHEN PERFORMED ON i80x87, MC6B881/2, KF.321/206.

But no compiler support on SUN III, little on IBM PC, ... , !

)

)

WHAT MAKES AN EXCEPTION EXCEPTIONAL?

NOT ITS RARITY

NOT ITS WRONG(?) RESULT

e.g.: X = 3.0/~.0 IS RARE.

Y = C 8.0*X - 3.0) - X IS F.XACTLY NONZERO;

IS Y WRONG?

AN EXCEPTION IS A COMPUTATIONAL EVENT FOR WHICH ANY POLICY,

CHOSEN IN ADVANCE TO DEFINE ITS RESULT IN ALL CIRCUMSTANCES,

WILL nCCASIONALLY PRODUCE A RESULT TO WHICH SOMEBODY MIGHT

REASONABLY TAKE EXCEPTION.

e.g.:
0.0/0.0, SQRT(-3) , READ PAST END OF FILE,

SOME EXCEPTIONS SHOULD NOT BE EXCEPTIONAL AT ALL:

e.g. : 0. oe1 •
0 = 1. 0 and

cos(1 00000 00000 00000 00000.0 = 0. 7639 ...

have been declared EXCEPTIONAL ARBITRARILY

EXCEPTIONS ARK NOT ERRORS

KXCKPTIONS ARK NOT KRm>RS

KXCKPTIONS ARK NOT XRRORS

KXCKPTIONS ARK NOT XRRORS

KXCKPTIONS ARK HOT ERRORS

DCKPTIONS ARK NOT ERRORS

EXCKPTIONS ARK NOT KRBORS

UNLESS THEY ARE HANDLED BADLY.

)

WHAT FOLLOWS ARE THREE EXAMPLES INTENDED TO ILLUSTRATE

WHY EXCEPTIONS SHOULD NOT ALWAYS BE TREATED AS ERRORS.

)

John Milton's observation (1608-74)

They also serve who only stand and wait.

- from Sonnet XIX "On His Blindness"

Deepite low duty-cycles, some components deeerve a place
in computers so that they may respond quickly to rare but
valuable opportunities. A divider ls such a component.

)

>f : :a - I • - . 'IFl •• 5

H"rP i\r1~ two w.,y~ tu e,:pr-ess the e.-me r-attonal function,

3

M - 2 -

M - 7 +

k - 2 -
)f - 3

r-p hd JD

l l 2 - M • (151 - M • (72 x·<l4-Ml>l

ThP cnincicfpnc-P. of the grilph• obtllined by plotting both P.Mpre~o;ions
rnnfirm,; lh~t lh~y r-Ppres~nt the same function, though thPy trP.~t
l~uunrlof f • Ovf-'r f I tiw o:'nd Di vi !Si on-by-Zero differently.

r p (l I ::: 7

c:f <~I ,. •
I j singularity

rp(21 ,. 4

cf(3) • •
I ! singularity

rp(31 • 1.6

cf (41 = •
I
j .. tnqulAri ty

Oivisinn-by-Zero cAnnot happen to rp<»> I end it would be h~rmle5g
1 n r f (d ton if the CD supplied by the hardw"'re < it hA-. An INTEL
llr't):07 th<:'t cnnfc,r m~ to tF.:rE o,tAndi.\rd 754 I wPre u!Sed As i t9 dP.qi gneru
111t.m1dP11. F"or· tn-.t.,mce, computing cf(JI would thP.n produce corr-P.ctly

tO/o a(), >I - 7 - Cl = -4 ,

)

)

F'f1~ : = (I.~

8. 7523R

cf<lC),rp(X)

8.75238

3
cf<x> := 4 -

>: - 2 -
I (I

>I - 7 +

)f - 2 -
,: - 1

622 - ,c • (751 - >: • C 324 - x • < !59 - 4 • >:) >)
rp<>:> :""

11 ~ - x • (1 SI - >c • C 72 - M • < 1 4 -)I) I >

IJ : ::: 1. 60631924 X ,~ U,U + eps •. U + 360 eps

.•♦
....

+ + + + +
,♦ +

+ .,++ ♦• u# ++
♦.fff. ♦• ... ,.. :ffl'

.. .1 ···•'

+ ++ + ... +
i•+ ++

'".♦♦ + J+ ...
i"'' .ffl# . ,,#+

t +
• t ++

++
*ff!-

ff ...

:'¥"'" ♦ff'" +·
.,.Jl 1 •*•* ,•*# +*-ttf-++ffll

••* + + +I • t ♦ ...
,i ,tttt

1
+ + t +

t t+ + ♦ ++ +
• • + +

++

+

1.6(1632 X

,#l' .. ♦ ♦
•.♦ .. ♦

♦t•

++
+

1. 6(1632

The ne,,r l y ""mi:,oth ~r«\ph ----- bel ong!I to c.f <>1 > : the r-Agged graph n·f
+ •~ bnlongs to rph:I . Every point on each graph hAs bP.P.n plotted to
show nnl: only how much wors~ roundoff af.fect!l rp (>: I them cf(>: I but
.-lso tl1,01\ r·otindo·H is not nearly so random A!I somr people think.

ThP n,;,·:t: e,:.-mple illustrates that cf(Y.) is invulnerAblP. tc:, Ovr.;orflow
but r JI C,: I i •·· not :

cf [10
77

] "' 4 rp [i,/7] ..
I

r.nrri,r.: t I y. I OVr'r· f 1 CIW I

))

T'lirt nP,r t- qr«\phr. ilrP i nr. I uded Ju!lt to show thAt the previous one WAil not a
rJul,.•. ThP.y ,, • .,. diffp,.-pnt ranges of values for >: •

ll I"' 2.4006617 X 1~ U,U + 2·eps .. U + BOO·ep~
(1.740707

♦• ♦ ♦ + ++ ♦ +++ + ++

c: f < X > • rp < X >

+ +
++

\♦.+++ Hu..+

♦♦.• ++ 4-+ +
++ ~. \♦...J+. ++i. ♦-♦•♦\..♦. +fl.'-+.d

++ *
+t ++ t+ ++ ++~ +.. t\ +

flt -♦~\ ·++j+
+ -4+ + ++ .♦ l ♦

+ + +
+ ♦ ♦ ♦ +

'+I"\ t\♦ ". tf ~ ft .
•♦, .. + ++ ++ 1♦.+ + ++ \ ~ ++ ++ '"\· ♦

♦ • ♦ + +*
+ + ♦ ++ ♦

1).740707
2.40066 2. 4(11)61:, X

V := ~ + 24~ ep~ e (M) s s cf (x > - r p (>: >

Tho> rir,::t
r ounrln.f f
hut nPl
74 tlffie~
nnP urd t
for mnst

2p-1)13

cf (1:) - rf CV> qr Aph shc,w'!. how
r.:rb•.i:11r PS rp (>C) ,

cf C::) • by About
d (x > t"'

A~ ~,~h AS th~t function change~
in it~ lAst plsce for v~lue5 M

oth~r val uP.c; of M roundoff l n

l•)

when >t chAngE>c; by
slightly bigger than ~;
rp ls much wor~~ than this.

IJ := 2 + 2·eos X 10 u.u + 2·eDS .. u + 4BO·eps

+
·····•• J + ♦ + + +♦

• ♦ h ♦ ++ + ♦ +++

d(XI .e<XI

~- • + +
+\\ + ++ ++ "••··-.. -..... \. + •♦ ♦ + +\++ + ' +++\+ + + + +. ♦ ♦ .+ . +:t+++\+\+ +4+ ++ •♦\+\.++.+ + -\\+.++\

I. T H"' 't ++ +++ + + f + \-\ "
1,:++ + 't \~ + ++ + ·····• .. ~.... + ++ + •♦... ♦
\ \++ ++\ + + ++ \+\l + :+:• __ H +\ +++ + '"V

+ \/++\♦++ \ + + ♦+\+ + +.♦-+ .. , _ ♦• ♦♦ +
♦ + + ♦ ♦ + ♦+ + . \ .. t · ..

♦ ++ + + + + ·····+
♦

-20-f)t :~ ;'

--9
,: 1. • • 11:1 TOI. t"' Ir)

M ~~

Here i5 an P.MAmple of a 9imple PquAtion fCx> • O that can be hard
fnr cor1vP.11t1orMI zf:'rn-Hndin11 1SL1fh•Are to solvP. for M berr.'ll<;P. t.he
-;parch fflAY wel 1 P!<CAPP. frClm the r1omc:11 n Ori whH h f h:) i c; tJf'f i ned,
Ant.I th1•n the under I y1r1,1 computer· sv~t:Prn may ~hort the prnqri'm.

Starting gues!51 X 1• 2

X :• 4

X P" 10

rr,ot Cl O:>, lO a I

root(f<X>,X> • •
I I not conver,1i ng I

root<fCX>.X> = • I •
I not conve>rgi ng I
rootCf(Xl,Xl ~ 10

Thi!, crJmJ1uler nystP.m C MathCAD on An IBM PC > re9orts to compl P.>r

,,,. t thmet ic wllPrievP.r it h,.s to compute squ~rP. rnots nr 109..,.ri thms of
ru~~l•"'t i vc.- n1.1mher- s, but that does not. sol VP. lhP proh 1 em Pt ther br.cause
d1~r;onttrn11tiP~; in those function!S" principal voAlw:•s 11pc;et thf? loqic
nl t tee zero-f I ndr•r.

) _)

-14
X ID--, ..• TOL t • 10

~!~,f, 1 ~-fl LOIJ►:JNG FOR AN ELUSIVE POSITIVE ZERO

-4
con5tructing gh:) r• >I

0

Fi rf't g1.11?9<st X , ... 1

Anet.her gues!;: X a• .9

Another guess: X :~ .995

if it eKlstB.

and loolcing -fer its pnsi ti VP zero.

X

root(f(X),XI • • •
I I 9ingularlty

root< (XI, X> a • •

underflow

root(f<X>,X>. • 0.000034452027

root< c X >. x> • •

a 0
very nearly

underflow

root<f<X>,XI • • •
I ! not converging !

root<g<X>,X> a• •

t ! not convl!rging !

M~thCAO"e built-in
zpro-finder seems
un~ble to find any
~trir.tly pn~itive
zero M nr.etr 1 .

On~ might pl~ustbly conclude that f(~l hag no po~itivP. zrro, but•••

)

)

,: :::r --.- + •• 1

I Pt• 5 P.}!pe\nd the 1 owP.r right corner of t:he pr r•vi l"ll!.'i c,r <"r,h:

• ('17

-.c)t5

Fir-st (lllf?!'iSI

X : ., .9999

Annther:

Upper curvP.I

-4

L.owP.r r.ur VP:

gh:) :"")I ·f(>:)

root(f(X),X) a 0.999906012413

root<g<X>,X> a 0.999906012413

A POSITIVE ZERO
DOES EXIST AFTER
ALL.

)

X :<" -18
root(f(x,,x, a 0.999906012413 l.~57007904161 •10

-1"1
root(q(x,,x, m 0.999906012413 - 6.77260495771 ·10 t

Jm~ginAl"Y pArt~ Al"P.
~purious ArtirActs of
the tmneces~ary use
of r.r•mn t m: .u· i t hmet i c •

Tn ftnrl th,. pnc;itivP rern, w~ hAd to qjve thP ;-prn-finrlPr firwt ~1e~nP.~
t h;:,t m.it.c hPrl th.it :-P.r n t n -fo1.1r •,i g. d'!'c:. ! T111 c; i ~ nr,t "''' much " fl aw in
thf• ;-,, ... n-f I nd,,.r •'"' ~ rt~f ,~, t t'n I h~ WAY P.>lCl'!'S:' lt nn,; J j le:!:, nt;;i n (·;1) Ar"'l'
hrtnrllf->d. If ,di •.11ch r·:1.Pptinn'-, r.t.tuld hP. l·,.mrll1,r1 < Af thP. pro,1rAmmrr··r.
n~q11 r";~ I in th,,. •,pir•,t: r.if 11:TF. ~t.And~rrl"I 754/n:54, zP.ro fitldt!r·~ ,,rut

t,I li••r ... , •. 1r·r 1, pr1·1Qr,11nq wr:1111 d wnrl mor·p ~mr.1c1l:hl y, a~ do thosP. nn r Pcent
IIP r. ,'II ,:ul ,,t ,.,r•,, wi t.hout i mpo~, nq .- nui o:;anr.P. upcm e;ofh•1i'lrP u•,P.r •;.

)

IF YOU WOULD HANDLE EXCEPTIONS WELL, YOU MUST DEAL WITH ...

NAMF.S: NE SHOULD ALL USE THE SAME NAMES FOR THE SAME THINGS
IF WE WISH TO SHARE EACH OTHER'S PROGRAMS.

FLAGS: THESE TELL A PROGRAM WHICH EXCEPTIONS HAVE OCCURRED.
They cannot be numerous lest we forget their names.

t«>DES: A PROGRAM CHANGES THEM TO CHANGE THE WAY ITS
EXCEPTIONS WILL BE HANDLED. Very few are useful.

SCOPE: CONCERNED MITH LINGUISTIC CONVENTIONS FOR H1D1NG THE
SETTING, SENSING, CLEARING, SAVING AND RESTORING
OF FLAGS AND MODES

RETROSPF.CTIVE DIAGNOSTICS:
THESE PROVIDE A WAY FOR THE USER OF A PROGRAM TO COPE
WITH THE POSSIBLY MISHANDLED EXCEPTIONS, AND ARF.
PROVABLY INDISPENSABLE FOR CORRECT EXCEPTION HANDLING.

We have been working on good we.ye to deal with these issues
that are, as nearly as possible,

INDEPENDENT OF HARDWARE
INDEPENDENT OF LANGUAGE
INDEPENDENT OF COMPILERS.

)

BREAKING Tim VICIOUS CIRCLJ:

PORTABILITY:
NO RF.SPONSIBLE APPLICATIONS PROGRAMMER WILL EXPLOIT UNFAMILIAR
Mfi:CIIANISMS TO HANDLE EXCEPTIONS UNLESS REASONABLY ASSURF.D OF
THEIR C IMPENDING > UNIVERSALITY.

INDIFFERENCE:
Nn RRSPONSIBLE COMPILER-WRITER WILL IMPLEMENT UNFAMILIAR
M~:CHAN ISMS TO HANDLE EXCEPT IONS UNLESS ASSURED THAT CUSTOMERS
DESIRE THEM ENOUGH TO PAY FOR THEM.

MARKETING:
HARDWARE DESIGNERS TEND TO OMIT FEATURES THAT COMPILER WRITERS
TEND NOT TO USE.

"WHEN HIP-DEEP IN ALLIGATORS, WHO CAN ENTERTAIN
PROPOSALS TO JOIN IN DRAINING THE SWAMP?"

A consortium of interested partiea in the computer industry is
being formed to agree upon exception-hBndling well enough to
implement would-be universal capabilities. N. K.

)

OSK IT OR LOSK IT

IEEE 754 DIRECTED ROUNDING:
Round to +INFINITY
Round to -INFINITY

at the programmer's option.

Major application ... INTERVAL ARITHMETIC

for Roundoff Error Bounds

for ABSOLUTE SENSITIVITY ANALYSIS

for SEARCHES for ROOTS of systems of equations
for OPTIMA

NO SUPPORT IN COMPILERS ===> NO USE TO APPLICATIONS PROGRAMMERS

LANGUAGE DESIGNERS AND IMPLEMENTORS ARE TOO OFTEN

PETTY TYRANTS

EXERCIZING ENORMOUS INFLUENCE, 1, NOT CONTROL, OVER

HARDWARE ARCHITECTS .AND APPLICATIONS PROGRAMMERS,

YET SELDOM MORE KNOWLEDGEABLE THAN EITHER.

N. Kahan

)

