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Despite the publication of hardware designs [1] that produce correctly rounded quotients 
quickly and reasonably economically, some hardware designers continue to use techniques 
that multiply the numerator by an approximate reciprocal in the hope that it may be cheaper 
and/or faster. Testing these techniques for accuracy is an interesting challenge because they 
can produce approximate quotients that are almost always correctly rounded, so aberrant 
cases may escape detection even though billions of divisions by randomly generated trial 
arguments may have been scrutinized. On occasion, that kind of testing has tempted 
someone to claim that his implementation of division rounded correctly when it didn't. 

This paper provides practical alternatives to random testing; it shows how to generate trial 
arguments whose quotients are not so unlikely to be rounded incorrectly by approximate 
techniques for division. I deplore those techniques as much as I deplore sexual promiscuity 
among teenagers, but in both cases the greater sin is to deny sinners information that could 
prevent something worse. 

Approximate Floating-Point Division: 
The deplorable techniques for approximating a quotient x / y start by approximating the 
reciprocal 1/y by a value p obtained from a table-look-up followed by the iteration p := 
p + (1 - yp)p. Then a rough quotient q' := xp is generated and its residual r := x - q'y is 
computed very carefully from a double-width product q'y; finally q := q' + rp is rounded 
off to produce the desired quotient. Almost. If p approximates 1/y closely enough, as can 
be assured by iterating often enough, then q will almost always be correctly rounded at the 
end. When will q not be correctly rounded? The difficult cases arise when x/y takes values 
like dddddd.499999ddd and dddddd.500000ddd where the d's are arbitrary decimal digits 
and the digits to the right of the decimal point are to be rounded off. In such cases, the 
value of q' + rp before rounding can turn out to be respectively dddddd.S00000ddd and 
dddddd.499999ddd (the latter is the more likely case), thereby rounding off to a quotient 
q whose last digit is respectively too big or too small. Here is an example, using decimal 
arithmetic rounded to six sig. dee.: 

Let x := 998586; 
let y := 0.999307, so 1/y = 1.000693480582 .... 
Iterating p := p+ (1- yp)p--+ p = 1.00069. It looks good. 
q' := xp yields q' = 999275; q'y = 998582.502425 exactly. 
r := x - q'y = 3.497575, which rounds to 3.49758. 
q := q' + rp = 999278.499993, which rounds to 999278. 
Iterating q := q + ( x - qy )p rounds again to 999278. 
But x/y = 999278.5000005003 ... should round to 999279. 
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Having to compute x/y to beyond twelve sig. dee. in order to round it correctly to six 
makes this example seem extraordinary, but others like it do exist. The trick is to find 
them. 

How Difficult can Correct Rounding be? 
Consider floating-point arithmetic carried out to N significant digits of radix /3, where /3 = 2 
for Binary, /3 = 8 for Octal, f3 = 10 for Decimal, /3 = 16 for Hexadecimal arithmetic. Since 
working with integers will be convenient, we multiply numerator and denominator of a 
quotient x/y by powers of /3, without changing the significant digits, to put them into the 
range 

13N-1 ~ X $ {3N - 1, and 13N-1 ~ y $ 13N - 1. 

To put the correctly rounded quotient Q into the same range, we must scale it by a power 
of f3 that depends upon X and Y; so 

let j := (Y $ X) = 1 if Y ~ X, 
= 0 if X < Y; and 

let Q := 13N-j X/Y correctly rounded. 

Now 13N-l $ Q ~ f3N - 1, and if /3 = 2 then 2N-l + 1 - j $ Q $ 2N - 1. 

The exact quotient is 13N-j X/Y = Q ± (1/2- e) for some fraction c:; 0 $ e $ 1/2. We wish 
to choose X and Y to make£ as tiny as possible. 

How tiny can e be? 

To find out, rewrite the foregoing definition of e thus: 

±2eY = (2Q ± l)Y - 213N-j X = ±R respectively 

for some nonnegative integer R $ Y. Risa kind of remainder. Now we shall prove a ... 
Proposition: 

If /3 > 2 then R can vanish, and so cant:. 
If /3 = 2 then R ~ 1, so E ~ 1/(2Y). 

Proof: It depends upon whether f3 = 2 or f3 = 10 or neither. 

Making Rand e vanish is easy when 2 < /3 :f; 10. Choose a digit 1/ from the set {1, 2, ... , /3/2-
1} and let Y := 211f3N-1. (Do not choose a power of 2 for 1/ if you wish p not to equal 1/Y 
exactly in the deplorable division algorithm above, lest it produce a correctly rounded 
quotient.) Then choose for X any odd multiple of 1J strictly between Y and f3N. 

Making Rand E vanish when /3 = 10 entails a wider range of choices. First choose j := 0 
or 1. Then choose any multiple of 2N+1-j strictly between 10N-l and 10N for Y. Let 5K 

be the largest power of 5 that divides Y, so O ~ K < N. Choose (2Q ± 1) to be any odd 
multiple of 5N-K-i lying between limits that depend upon j as follows: 

if j = 0 then 2 x 102N-l / Y ~ 2Q ± 1 < 2 x 10N; 
if j = 1 then 2 x 10N-l < 2Q ± 1 < 2 x 102N-l / Y. 
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This last choice determines Q and X = 10i-N(2Q ± l)Y/2, though the choice of Q depends 
upon whether you like ... ddd.5 to be rounded up or down. For example, when (3 = 10 
and N = 6, choose j := 0 and Y := 2998 x 2~+1-i = 383744 arbitrarily; then choose 
2Q ± 1 := 79 x 5N-K-i = 1234375 almost arbitrarily, whence X = 236842 and Q ± 1/2 = 
10N X/Y = 617187.5. This should round to Q = 617188. What would deplorable division 
deliver? Suppose 1/Y = 2.60590393 ... 10 - 6 is approximated by p = 2.6059010 - 6, which 
comes as close as it can. Then 106 X p = 617186.5678 rounds to q' := 617187, whence 
r := 106 X - q'y = 191872 exactly, and q' + rp = 617187.499999 rounds back to q' instead 
ofQ. 

When (3 = 2 we deduce that Rand e cannot vanish by examining the crucial equation(*) 
above, which now takes the form 

±2EY = (2Q ± l)Y - 2N+1-i X = ±R respectively . 

Evidently the integers R and Y have the same number, say K, of trailing zeros in their 
binary representations; i. e., 

R = Y = 2K mod 2K+1 where O :5 K < N. (**) 

That is why R 2: 1. So ends the proof of the Proposition. 

The Proposition shows us that after a floating-point quotient has been computed to more 
than 2N sig. digits, it can surely be rounded correctly to N sig. digits. More precisely, 
if q approximates [3N-i X/Y with an absolute error smaller than 1/( 4Y) or with a relative 
error smaller than 1/( 4{3 2N), then either q matches a half-integer Q ± 1/2 so closely that 
the Proposition implies [3N-i X/Y = Q ± 1/2 exactly (impossible if (3 = 2), or else q rounds 
to Q correctly. When (3 = 2, absolute error smaller than 1/(2Y) or relative error smaller 
than 2-2N-t is good enough. 

Finding Hard Cases: 
Now we turn to the task of finding scaled floating-point quotients [3N-i X/Y that differ from 
a half-integer Q ± 1/2 by about as tiny a positive fraction E = R/(2Y) as possible. When 
/3 = 2 these encompass all the hard cases, all the trial quotients most likely to be rounded 
incorrectly by whatever division algorithm is being tested. One measure of the difficulty of 
rounding is the absolute tinyness of£; another is its relative tinyness, i.e. 

c/(Q ± 1/2) = R/(2{3N-ix ± R). 

The tinier these quantities, the harder is correct rounding. The latter quantity will be 
tiniest when R is a small integer like 1 or 2 or 3, when j = 0,. and when X is close to its 
upper bound pN - l. But, given /3 and N and R, what reason is there to think j and X 
can be chosen arbitrarily? In fact they cannot. Instead, so few 4-tuples (j, X, Y, Q) satisfy . 
the crucial equation 

±2cY = (2Q ± l)Y - 213N-i X = ±R respectively 

and the constraints j(j - I) = 0 and pN-l :s; X, Y, Q < 13N - l that we can contemplate 
computing many 4-tuples systematically. 
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Finding Hard Cases by Factorization: 
Fix f3 and N for the time being. For R = 1, 2, 3, ... in turn, we wish to compute admissible 
4-tuples (j, X, Y,Q), preferably with X as large as possible {but less than pN), that satisfy 
the crucial equation (*). Rewriting it in the form 

{2Q ± l)Y = 213N-j X ± R respectively 

provides a motivation for considering factorization as a plausible technique. Having chosen 
R, for each admissiblej and X we need merely factorize each of213N-jx ±Rand determine 
which factors, if any, constitute admissible values of 2Q ± 1 and Y. Of course, factorizing an 
integer with about 2N digits could take a long time. A faster way would be preferable. A 
faster way does exist to compute 4-tuples whose X, Y and Q lie not too far from their lower 
and upper bounds pN-t and pN - 1. It requires factorizations of rather smaller integers 
of the form mpN-t ± R with m = 1, 2,3, ... ; formulas to compute X, Y and Q from those 
factors are given below. In all six cases, the factors are f and g, and f is an odd factor 
subject sometimes to further limitations. In particular, if a formula does not produce X, Y 
and Q that lie between their lower and upper bounds pN-t and f3N - 1, then it cannot be 
used with those factors f and g. 

Suppose (2M + l)f3N ± R = f g, and the odd factor f 2:: 2M + 3. Then 
X := pN + M - g- (!- 1)/2; Y := f3N - g; Y > X; 
j := 0; Q := f3N - (f ± 1)/2. -(Case 1) 

Suppose (2M + l)f3N-t ± R = f g, and the odd factor is f. Then 
X:=f3N-1 +M+g+(f+l)/2; Y:=f3N- 1 +g; Y<X; 
j := 1; Q := pN-t + (f =F 1)/2. -(Case 2) 

If also the odd factor f 2:: 2{3g - 2M - 1, then 
X := f3N - M + {3g- (f + 1)/2; Y := f3N-t + g; 
check that Y < X and, if so, continue with 
j :=·1; Q := f3N - (f =F 1)/2. -(Case 3) 

If 'T/ := (M + (f + 1)/2)/ f3 is an integer leg, then 
X := 13N-1 + g- 'T/; y := pN-1 + g; y > X; 
j := O; Q := f3N - (f =F 1)/2. -(Case 4) 

Suppose 2Mf3N-t ± R = Jg, and the odd factor is/. 
If 2M/{3 < f < 2(M + g)/{3 then 
X := pN - M - g + f f3 /2; y := f3N - g; 
j := 1; Q := 13N-l + (f ± 1)/2. 

If 2(M + g)//3 ~ f and 'T/ := (M + g)//3- 1/2 is an integer, then 
X := pN-1 - 'T/ + (f - 1)/2; y := pN - g; 
check that X < Y and, ifso, continue with 
j := 0; Q := pN-l + (/ ± 1)/2. 

-(Case 5) 

-(Case 6) 

Each decomposition of a number like (2M + l)f3N ± R into a product of primes produces 
a number of pairs of factors (f,g) from each of which one or two 4-tuples (j, X, Y,Q) can 
often be derived, either from cases 1, 5 and 6, or else from cases 2,.-3 and 4. Cases 1 and 5 
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are usually the hardest to round correctly because they usually have the biggest values of 
X and Y ~ For example consider six digit decimal arithmetic (/3 = 10, N = 6); starting with 
R := 1 and M := 0, we obtain prime decompositions of 

(2M + 1)/JN-l + R = 100001 = 11 x 9091; 
(2M + 1)/JN + R = 1000001 = 101 x 9901, 

= 2((2M + 1)/J/2)/JN-l - R. 

(2M + 1)/JN-l - R = 99999 = 32 x 41 x 271; 
(2M + 1)/JN - R = 999999 = 33 x 7 x 11 x 13 x 37, 

= 2((2M + 1)/J/2)/JN-l + R. 

Some of the 115 4-tuples (j, X, Y, Q) derived from these four prime decompositions are 
displayed in Table 1 below. All 115 of them were fed to a carefully implemented but 
deplorable division algorithm of the kind described on the first page of this paper. A # sign 
marks some of the 31 4-tuples that were rounded incorrectly. Were quotients x/y generated 
at random and fed to the same algorithm, at least about 100000 of them would have to be 
scrutinized before one incorrectly rounded instance could be expected to appear. 

Similar examples for 24-bit binary arithmetic (/3 = 2, N = 24) have been derived from 
the prime decompositions 

223 -1 = 47x 178481, 223 +1 = 3x 2796203, 22
• -1 = 32 x 5 x 7 x 13 x 17 x 241, 224 +1 = 97 x 257x 673. 

Of 164 4-tuples derived that way, the 10 shown in Table 2 were rounded incorrectly by a 
deplorable division algorithm so nearly perfect that millions of random test quotients might 
have been scrutinized without finding one incorrectly rounded. 

All computations of 4-tuples except possibly the factorizations can be performed efficiently 
in an almost obvious way using just (presumably correctly rounded) floating-point addition, 
subtraction and multiplication in the arithmetic whose division is under test. If the arith
metic's division is unreliable, the factorizations can become difficult, so Table 3 exhibits a 
few factorizations that I have found helpful. For instance, the factors of 3 x 2 27 - 1 provided 
the two test cases 

227 x 125650617 /125650639 = 134217704.500000004 and 

227 X 134088288/134089861 = 134216153.500000004 

that revealed a flaw in a nearly perfect 27-bit division scheme. 

Finding hard cases for each di visor Y : 
The foregoing formulas were motivated by a desire to make c as small as possible relative to 
the quotient Q; this was to be accomplished by seeking 4-tuples (j, X, Y, Q) whose numerator 
X is as large as possible. If instead we try to make c = R/(2Y) as small as possible 
absolutely, our quest will lead to 4-tuples with Y as big as is compatible with a given 
R = 1,2, 3, .... 

Given /3 and Nanda small remainder Rand a trial divisor Y between 13N-l and 13N - 1, 
the crucial equation 

(2Q ± l)Y - 213N-i X = ±R respectively 

can be solved for j, Q and X provided Y and R are compatible. If we regard 2Q ± 1 as 
a kind of quotient ±R/Y mod 213N-j, we can think of the necessary c_alculation as a long 
division carried out from right-to-left instead of left-to-right. To simplify the exposition 
considerably let us assume that /3 = 2 and that .R and Y are :odd, thereby satisfying the 
compatibility condition (**) mentioned at the erid of the Proposition's proof, namely that 
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Table 1 : 4-tuples (j, X, Y, Q) with Q = 106-; X/Y rounded 
{3 = 10, N = 6, R = 1, M = 0 or 5 

(/ X g = 100001) 
I g case M j X y Q 106-; X/Y 
1 100001 2 0 1 200002 200001 100000 100000.4999975 

11 9091 2 0 1 109097 109091 100005 100005 .4999954 
9091 11 2 0 1 104557 100011 104545 104545 .4999950 

3 0 1 995564 100011 995455 995454.5000050 
100001 1 2 0 1 150002 100001 150000 150000 .4999950 

3 0 1 950009 100001 950000 949999.5000050 

(/ X g = 99999) 
I g case M j X y Q 106-;X/Y 
1 99999 2 0 1 200000 199999 100001 100000 .5000025 
3 33333 2 0 1 133335 133333 100002 100001.5000038 

2439 41 2 0 1 101261 100041 101220 101219.5000050 
3 0 1 999190 100041 998780 998780. 4999950 

99999 1 2 0 1 150001 100001 150000 149999 .5000050 
3 0 1 950010 100001 950000 950000.4999950 

(/ X g = 1000001) 
I g case M j X y Q 106-;X/Y 

101 9901 1 0 0 990049 990099 999949 999949 .4999995 
5 5 1 990599 990099 100051 100050.5000005 

9901 101 1 0 0 994949 999899 995049 995049 .4999995 # 
1000001 1 1 0 0 499999 999999 499999 499999 .4999995 

(/ X g = 999999) 
I g case M j X y Q 106-;X/Y 
3 333333 1 0 0 666666 666667 999999 999998.5000008 

5 5 1 666677 666667 100001 100001.4999993 
9 111111 1 0 0 888885 888889 999996 999995 .5000006 

5 5 1 888929 888889 100004 100004.4999994 
27 37037 1 0 0 962950 962963 999987 999986 .5000005 

5 5 1 963093 962963 100013 100013.4999995 
7 142857 1 0 0 857140 857143 999997 999996 .5000006 # 

5 5 1 857173 857143 100003 100003.4999994 

3003 333 1 0 0 998166 999667 998499 998498.5000005 # 
9009 111 1 0 0 995385 999889 995496 995495 .5000005 # 
27027 37 1 0 0 986450 999963 986487 986486 .5000005 # 

76923 13 1 0 0 961526 999987 961539 961538 .5000005 # 
481 2079 1 0 ·o 997681 997921 999760 999759.5000005 # 
1443 693 1 0 0 998586 999307 999279 999278.5000005 # 
4329 231 1 0 0 997605 999769 997836 997835 .5000005 # 
12987 77 1 0 0 993430 999923 993507 993506 .5000005 # 
3367 297 1 0 0 998020 999703 998317 998316 .5000005 # 

111111 9 1 0 0 944436 999991 944445 944444.5000005 
333333 3 1 0 0 833331 999997 833334 833333 .5000005 # 
999999 1 1 0 0 500000 999999 500001 500000 .5000005 
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Table 2 : 4-tuples (0, X, Y, Q) with Q = 224 X/Y rounded 
f3 = 2, N = 24, R = -1, j = M = 0, case 1 

(I * g = 224 - 1 = 16777215) 
I g X y Q 224X/Y 
21 798915 15978291 15978301 16777206 16777205.50000003 # 

273 61455 16715625 16715761 16777080 16777079.50000003 # 
315 53261 16723798 16723955 16777059 16777058.50000003 # 
85 197379 16579795 16579837 16777174 16777173.50000003 # 

1105 15183 16761481 16762033 16776664 16776663.50000003 # 
3315 5061 16770498 16772155 16775559 16775558.50000003 # 
2169 7735 16768397 16769481 16776132 16776131.50000003 # 
1205 13923 16762691 16763293 16776614 16776613.50000003 # 
1687 9945 16766428 16767271 16776373 16776372.50000003 # 
3133 5355 16770295 16771861 16775650 16775649.50000003 # 

Table 3 : Some Factorizations 

105 
- 1 = 32 X 41 X 271, 

106 - 1 = 33 X 7 X 11 X 13 X 37, 

109 - 1 = 34 X 37 X 333667, 

1010 - 1 = 32 X 11 X 41 X 271 X 9091, 

1011 
- 1 = 32 X 21649 X 513239, 

1012 - 1 = 33 X 7 X 11 X 13 X 37 X 101 X 9901, 

1013 
- 1 = 32 X 53 X 79 X 265371653, 

223 - 1 = 47 X 178481, 

224 
- 1 = 32 X 5 X 7 X 13 X 17 X 241, 

226 - 1 = 3 X 2731 X 8191, 

227 
- 1 = 7 X 73 X 262657, 

3 X 227 
- } = 47 X 67 X 127867, 

247 
- 1 = 2351 X 4513 X 13264529, 

248 - 1 = 32 X 5 X 7 X 13 X 17 X 97 X 241 X 257 X 673, 

252 
- 1 = 3 X 5 X 53 X 157 X 1613 X 2731 X 8191, 

253 - 1 = 6361 X 69431 X 20394401, 

255 - 1 = 23 X 31 X 89 X 881 X 3191 X 201961, 

256 - 1 = 3 X 5 X 17 X 29 X 43 X 113 X 127 X 15790321, 

262 
- 1 = 3 X 715827883 X 2147483647, 

263 - 1 = 72 X 73 X 127 X 337 X 92737 X 649657, 

264 -1 = 3 X 5 X 17 X 257 X 641 X 65537 X 6700417, 

105 + 1 = 11 X 9091, 

106 + 1 = 101 X 9901. 

109 + 1 = 7 X 11 X 13 X 19 X 52579, 

1QlO + 1 = 101 X 3541 X 27961. 

10 11 + 1 = 112 X 23 X 4093 X 8779. 

1012 + 1 = 73 X 137 X 99990001. 

10 13 + 1 = 11 X 859 X 1058313049. 

223 + 1 = 3 X 2796203, 

224 + 1 = 97 X 257 X 673. 

226 + 1 = 5 X 53 X 157 X 1613, 

227 + 1 = 34 X 19 X 87211. 

3 X 227 - 1 = 5 X 11 X 1399 X 5233. 

2 47 + 1 = 3 X 283 X 165768537521, 

248 + 1 = 193 X 65537 X 22253377. 

252 + 1 = 17 X 858001 X 308761441, 

2 53 + 1 = 3 X 107 X 28059810762433. 

255 + 1 = 3 x 112 x 683 x 2971 x 48912491, 

256 + 1 = 257 X 5153 X 54410972897. 

262 + 1 = 5 X 5581 X 8681 X 49477 X 384773, 

263 + 1 = 33 X 19 X 43 X 5419 X 77158673929, 

264 + 1 = 274177 X 67280421310721. 
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R and Y have the same number (none) of trailing zeros. We shall also need the Parity 
function 

1r(n) := 1 if n is odd, 

:= 0 if n is even. 

Starting with Q1 := 0 and X 1 := (Y - R)/2, run the recurrence 

Qk+i := Qk + 2k-11r(Xk); Xk+l := (Xk + 1r(Xk)Y)/2; 

fork= 1,2, ... ,N - 1 in turn to obtain the small solutions Q N and XN of (2QN + l)Y = 
2N X + R with O < Q N < 2N-t and O < XN < Y. The crucial equation (*) has one or two 
solutions: 

First try Q := 2N-t + Q N and X := Y + XN; 
if X < 2N then j = 1 and (2Q + l)Y = 2NX + R; 
else if 1r(X) = 0 replace X by X/2, 

and then j = 0 and (2Q + l)Y = 2N+1x + R. 

Next try Q := 2N - QN and X := 2Y- XN; 
if X < 2N then j = 1 and (2Q- l)Y = 2NX - R; 
else if 1r(X) = 0 replace X by X/2, 

and then j = 0 and (2Q - l)Y = 2N+1x - R. 

... (Case A) 

. .. (Case B) 

... (Case C) 

. .. (Case D) 

The foregoing recurrences produce 4-tuples (j, X, Y, Q) for each of which Q is the correctly 
rounded value of the quotient 2N-iX/Y. Note that these recurrences, including the Parity 
function ,r , can be realized using only floating-point addition, subtraction and multipli
cation operations correctly rounded to N sig. bits, and all the multiplications are exact 
multiplications by 0.5 or other powers of 2. 

Thus for each odd trial divisor Y strictly between 2N-t and 2N, and for each odd trial 
remainder R smaller than Y, we obtain one or two 4-tuples (j, X, Y, Q) upon which to test 
floating- point division. (When Rand Y are even with the same number of trailing zeros, 
the process gets more complicated because more 4-tuples can turn up. The details must be 
deferred to another occasion.) To test division upon a 4-tuple whose quotient is as hard as 
possible to round correctly, we have to strike a balance between opposing forces. On the 
one hand, we should choose Ras small as possible, say R := I or perhaps 3, and Y as big 
as possible, say 2N - 1, 2N - 3, 2N - 5, ... , to keep e = R/(2Y) as small as possible. On the 
other hand, we should try to scatter values Y in an interval, if we can find it, where the 
division algorithm under test is likely to commit its worst errors. 

Whether the deplorable division algorithm discussed on the first- page of this paper commits 
its worst errors when 2N - Y is a small odd integer depends upon details of the implementa
tion. The iteration p := p+ (1- pY)p that produces an approximate reciprocal p converges 
to 1/Y from below, ~o if it is stopped too soon p: will tend to underestimate 1/Y. That 
underestimation's extent will exceed half a unit in the last place of 1/Y whenever Y is an 
odd integer between 2N and 2N - 2N/2 because then 22N-t /Y must have a fractional part 
bigger than 1/2; underestimation in p will be compounded later to produce a final error 
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that our 4- tuples are very likely to expose. On the other hand if iteration is not stopped 
too soon but instead p is computed so carefully that p = (1/Y correctly rounded) almost 
always, then p will overestimate 1/ Y in such a way as will partly compensate for underesti
mation occurring later in the algorithm; then its final quotient will most likely be correctly 
rounded too. Therefore, if that deplorable algorithm has been implemented with so much 
care as to make its flaws hard to find, Y should be chosen rather smaller than 2N - 2N/2 

to enhance the likelihood that the quotient 2N-; X/Y will be rounded incorrectly. 

For example, take N = 24 and reconsider the nearly perfect but deplorable division al
gorithm whose flaws were exposed by the 4- tuples derived from factorization and dis
played in Table 2. Let R := 1 and for Y choose consecutive odd integers starting with 
2N - 1 = 16777215 and running down through 16777213, 16777211, ... until a 4-tuple ex
poses a flaw. The first flaw found was at 

2N X 12237320/16772199 = 12240980.50000003, 

which the deplorable algorithm rounded down instead of up to Q = 12240981. Note that 
Y = 16772199 < 2N - 2N/2 = 16773120, as the previous paragraph leads us to expect. 
All of the 4-tuples generated from 2508 odd trial divisors between 2N and 16772198 were 
rounded correctly. But the next 12500 4-tuples generated from consecutive odd trial divisors 
Y < 16772198 produced over 630 instances (all Case D) incorrectly rounded; this hit rate 
( over 1/20) far exceeds the yield from purely random tests. 

Can Iterative Division be Rounded Correctly? 
In software anything is possible, for a price. Two schemes come to mind that obtain correctly 
rounded quotients x / y from an algorithm like the deplorable one. The first scheme is based 
upon the Proposition proved above; the second is based upon an exact remainder which 
must be compared with the divisor. Both schemes are expensive. Each will be sketched 
only very briefly because I believe neither is so cost-effective a.s a simple hardware divider. 

Both schemes require special prescaling to protect division from spurious over/underflows. 
Therefore, we might a.s well assume that the quotient q will be an N-digit integer between 
fJN-l and fJN; when correctly rounded, I q - x/y I~ 1/2. 

The first division scheme carries extra precision for intermediate quantities p, q' and r. The 
iteration p := p + {1 - py)p must be performed carrying p to two or three extra digits of 
precision, and when pis in error only in the last of those extra digits then q' := xp must be 
computed to two or three extra digits too. The residual r := x - q'y will require a product 
with 2N + 2 or 2N + 3 digits, but after over half of them cancel only N sig. digits of r need 
be retained. Finally, q := q' + rp will be correct to more than..2N digits before the sum is 
rounded, so the Proposition implies that it will be rounded correctly except possibly if x/y 
differs from q by exactly 1/2. That can happen only if the radix /J exceeds 2, and can be 
detected by observing when q' + rp differs from q by too nearly 1/2. 

The second scheme resembles what H. Kuki and J. Ascoly did to implement extended
precision {28 hex. digits) division correctly chopped (not rounded) on the IBM 360/85 [2]. 
After using the deplorable algorithm to compute the integer q == x/y so well that I q-x/y I< 
1, though q is not necessarily correctly rounded, we must compute the remainder r := x - qy 
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exactly; it requires a double-width product of which at least half the digits will cancel off. 
Ordinary floating-point subtraction suffices to determine whether I y I - I r I> I r I, in which 
case q is correctly rounded; otherwise the signs of r and y tell whether to increment q or 
decrement it by 1. When I q- x/y = 1/2 I exactly, something special may have to be done, 
but that won't happen if /3 = 2. 

Conclusions: 
There is now no excuse for testing division algorithms merely upon quotients x/y with x 
and y generated independently at random. Such a test is weaker than a test with x and 
y so correlated as must much enhance the likelihood that the quotient will be rounded 
incorrectly, if that can happen at all. The procedures herein and programs below achieve 
that correlation at a tolerable cost. 

Does correctly rounded division really matter? The answer to that question would require a 
longer paper than this one. This paper merely shifts the onus for an answer from those who 
say "It does matter" to those who say "It doesn't." An ontological principle "If you can't 
tell the difference, it can't matter to you." is often invoked to excuse slightly incorrectly 
rounded arithmetic although the validity of that principle would be challenged by a mechanic 
who has purchased incorrectly marked bolts weaker than what he needs. Regardless of its 
validity, that principle has now been rendered irrelevant by programs that will very likely 
expose incorrectly rounded division. 
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Appendix: 
Three programs are appended here, all written in BASIC for an IBM PC , to serve as 
models from which parts may be copied by whoever wishes to test a possibly deplorable 
division algorithm. 

The first program, FACTOR, factorizes any integer that can be represented exactly in the 
computer as a floating-point number. On the IBM PC, carrying 56 sig. bits in BASIC, 
consecutive integers up to 256 - 1 can be factored; larger integers are handled correctly 
because they are all divisible by some power of 2. On a machine whose radix exceeds 2 the 
program should be revised to first remove powers of the radix as factors. 

The second program, CASES, runs through the formulas in Cases 1 to 6 to deliver 4-tuples 
(j, X, Y, Q) from an appropriate factorization, and to test wheth~r a possibly deplorable 
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division algorithm handles them correctly. 

Ideally, the first two programs should be implemented in fixed-point with integers wider 
than the significands of the floating-point numbers X, Y, Q that will figure in the tests of 
the division algorithm. Otherwise several tricks will be required in a few places in those 
programs to simulate wider precision than is required merely to hold X, Y and Q. But 
the third program, DVSRS, can be executed entirely in the binary :floating-point arithmetic 
whose division is under test after it is substituted for the simulated deplorable division in 
the program. This program scans any specified sequences of consecutive odd divisors Y and 
remainders R to generate 4-tuples (j, X, Y, Q) in accordance with cases A to D. Instances 
of incorrectly rounded division can be recorded in a file named "DEPLORE" at the user's 
option. 

Users of these programs be.come participants in the author's researches, and are 
asked to report their experiences to him. 
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FACTOR @W. Kahan 1987 

10 , FACTOR: Integer factorization program for the IBM-PC, in BASIC. 
20 DEFDBL D, C, Q, 1: DEFIRT I, K: DIM C(11) , Initialization ... 
30 FOR I•1 TO 11: READ C(I) : BEXT I :' This is a table of differences 
40 DATA 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6 :' between nonaultiples of 2, 3, 5 . 
60 DEF FRT(T$) • (60•VAL(LEmCT$,2))+VAL(MID$(T$,4,2)))•60!+VAL(RIGHT$(T$,2)) 
60' 
70 IIPUT "Enter number to be factored ( or O to quit ) : " , XO 
80 IF X0-0 TBER PRI!IT "Goodbye." : EID 
90 X•FIX(.ABS(lO)) : T • 0 
100 IF X><XO THER PRiliT "It aust be a positive integer." GOTO 70 
110' 
120 l•O: 0-2: T$•TIME$: FOR 1•1 TO 3, 
130 Q•FIX(X/D) : IF l•Q•D TBER GOSOB 230: 
140 D • D+C(I) : IEXT I, 

Initialize search for divisors. 
GOTO 130 ' Loop to remove powers 

of 2, 3 , 6. 
160 GOSOB 180 ' . . . to reaove powers of priaes > 6 . 
160 PRIRT : PRIIT "Have you any aore nuabers to factor?" : GOTO 70 
170, 
180 FOR I • 4 TO 11 ' This is the main loop. It increments a trial di visor D 
190 Q•X/D : IF FIX(Q)=Q THEN GOSUB 230 GOTO 190 , vhile D < sqrt(X) 
200 IF Q<D THER D • X : GOTO 230 ' through successive 
210 D • D+C(I) : IEXT I GOTO 180' nonmultiples of 2, 3 and 5. 
220, 
230 T • FRT(TIME$)-FRT(T$) K • K+1 ' This subroutine displays results. 
240 IF X>1 OR K•1 THER PRiliT "Factor no.";K;" is ";D;". ","Time =";T;"sec." 
260 X • Q : REroRN ' This subroutine adds negligibly to TIME$ . 
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10 , IBM PC BASIC program to generate difficult quotients from factorizations 
20 CLEAR , , 1000 : DEFDBL A-H ,0-Z : DEFIBT I-N 
30 KP• 9: DIM 1(9), P(9), Q(9,9) , ... at aost KP distinct prime factors 
40 B • 0 : PRINT "Choose a radix b -= 2, 8, 10 or 16 b •";: INPUT B 
50 IF B-0 THEN PRIBT "Goodbye": EHD 
60 IF (B-2)•CB-8)•CB-10)•(B-16) >< 0 THEN 40 ELSE 80 
70 PRIIT "Choose integer I> 3 but b-1 <• 2·66 • 72057594037927936 11 

80 PRIJiT "Choose the number B of sig. digits of radix b •" ;B;": N =11
; 

90 INPUT Z : I • Z : IF Z-0 THEN 40 ELSE IF l><Z OR 1<4 OR B·N>2·ss THEN 70 
100 BH1 • B·(B-1) : BB• B•BN1 , ... • B.B for B digits of Radix B 
110 PRIBT "b • 11 ;B; 11

, R •";H;", b·(N-1) •";BH1;"< X, Y, Q < b·N =";BN 
120 BLOG• LOG(B) : EPS • 3E-24: H • .6 
130 DEF FNB(Z) • B·(IIT(LOG(ABS(Z)+EPS)/BLOG) - I+ 1) 
140 DEF FIR(Z) • FNB(Z)•FIXCH•SGH(Z) + Z/FBB(Z)) 1 •• • Z rounded to R sig. dig. 
150 PRIBT "Choose a small integer M >= 0 ( or < 0 to quit) : M ="; : INPUT Z 
160 M • Z: IF Z<O THEN 80 ELSE IF M><Z THEH 160 
170 PRINT "Choose a small nonzero integer R : 11

;: INPUT··R 
180 IF RszO THEH 150 ELSE IF R><IRT(R) THEN 170 
190 PRINT "Choose L • 0 or 1 : L 11111

;: IIPUT Z 
200 LLL-= Z: IF Z•CZ-1)><0 THEN 190 
210 IF LLI.•1 THEI FG • (N+M+1)•BN1 + R ELSE FG • (N+N+1)•BN + R 
220 PRIBT "M •";M;", R • tl ;R;", L •";LLL;", (2M+1)•b·(N-L) + R = f•g =";FG 
230 , Set up table of factors of (2M+1)•B·(N-LLL) + R (or 2M•B-(N-1) + R) 
240 , Say (2M+1)•B-(1-LLL) • (p1·11)•(P2·12)•( ... )•(Pkp-Kkp) ; then set 
260, Q(i,j) • Pj•i for j a 1 to kp and i • 0 to Kj . 
260 PRIBT "PresU11ably you are ready to provide the prime factorization of" 
270 PRINT 11 11 ;FG; t1 • (P(1) ·1(1)) • (P(2) ·1(2)) •< ... >• (P("; 
280 PRIBT KP;t1)•1( 11 ;KP; 11)) :

11 

290 FOR J•1 TO KP: P(J) = 1 : K(J) • 0: NEXT J 
300 PRilff "( Enter a P(j) • 0 or l(j) • 0 to quit, < 0 to go back. )" 
310 Jc 1 : WHILE J <= KP 
320 IF J<1 THEH J 1111 
330 PRIBT "1 < prime P(" ;J;") = ";: INPUT Z : IF Z><INT(Z) OR Z=1 THEN 330 
340 IF Z-0 THEN 380 ELSE IF Z<O THEN J • J-1 : GOTO 320 ELSE P(J) • Z 
360 PRINT "0 < index KC" ;J; ") 111 ";: INPUT Z : KJ • Z : IF KJ><Z THEN 350 
360 IF KJ-0 THEN P{J) • 1 : GOTO 380 ELSE IF IJ<O THEN 330 ELSE K(J) = KJ 
370 J = J+1 : WEND 
380 HO• 0: RD a O : FOR J=1 TO KP: Q(O.J)a1: BEXT J 
390 FOR J=1 TO KP: FOR 1•1 TO K{J) : Q(I,J) = P(J)•Q(I-1,J) : NEXT I : NEXT J 
400 PRINT FG; 11 is allegedly the product of the folloving prime povers:" : G=1 
410 FOR J-=1 TO KP: IF P(J)=1 OR K{J)=0 THEN 440 
420 G • G•Q(K(J),J) 
430 PRIBT J;": II ;P{J);: IF K(J)•1 THEB PRINT II ti ELSE PRINT IIAII ;K(J) 
440 IEXT J 
450 IF FG=G THEN PRINT II And they do aatch.": GOTO 520 
460 PRIBT II But their product is ";G;" instead. 11 

470 PRINT "Shall ve Continue anyvay [C] , or Re-enter prime povers [R] , 11 

480 PRINT n or change M etc. [M] , or just Quit [Q] 11
;: INPUT Q$ 

490 IF Q$•11C11 OR Q$=11c 11 THEN 620 
500 IF Q$•"Rn OR Q$at1r11 THEN 260 
610 IF Q$•"M11 OR Q$•111111 THEN 150 ELSE PRINT "Sorry about that. 11 

: STOP 
520 FOR 19=0 TO K(9) FOR 18:::0 TO K(B) : FOR 17=0 TO K(7) : FOR 16~ TO K(6) 
530 FOR 15=0 TO K(5) : FOR 14--0 TO K(4) : FOR I3=0 TO K(3) : FOR 12~ TO K(2) 
640 FOR 11=0 TO 1(1) : Z 111 (((I9•10+I8)•10+I7)•10+I6)•10+I5 
560 Z = (((Z•10+I4)•10+I3)•10+I2)•10+I1 
660 F = Q(I1,1)•Q(I2,2)•Q(I3,3)•Q(I4,4)•QCI5,6)•Q(I6,6)•Q(I7,7)•Q(I8,8)•Q(I9,9) 
570 G = Q(K(1)-I1,1)•Q(K(2)-I2,2)•Q(K{3)-I3,3)•Q(K(4)-I4,4)•Q(K(5)-I5,5) 
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690 MD• M 
600 PRINT 11Combination";Z; 11

: f • 11 :F;", g • 11 ;G; 11
, f•g •";F•G 

610 IF LLL•1 THEN FOR L=2 TO 4: GOSUB 730: NEXT L: GOTO 680, cases 2 to 4 
620 , . . . but vhen LLL a 0 , do cases 1, 5 and 6 : ... 
630 L • 1 : GO SUB 7 30 : ' case 1 
640 M • (M+M+1)•CB/2) 
650 L • 5 : GOSUB 730 : ' cue 6 
660 L • 6 : GOSUB 730 : ' case 6 
670 M • MO 
680 NEXT 11 : IEXT 12 
690 IEXT 13: IEXT 14: IEXT 16: IEXT 16: IEXT 17: NEXT IS : NEXT I9 
700 PRIBT R0: 11 e:z:maples. ";RD;" Deplorable Divisions. The End." : END 
710, 
720 ' Subroutine to co■pute X and Y , and coapare quotients: 
730 01 L GOSUB 900, 940, 980, 1020, 1060, 1100' ... case L, 0 < L < 7 
740 IF X<BN1 OR X>BR OR Y<BR1 OR Y>BR OR Q<BR1 OR Q>BN THER RETURN 
760 IF X><IBT(X) TBER RETURR 
760 BRJ • BH1•CB-J•CB-1)) : QQ • BIJ•X/Y 
770 'Possibly deplorable division algorithm: 
780 RHO • FHR(1/Y) : RHO a FBR(RHO + FHR(RBO•FIR(1-FHR(RHO•Y)))) 
790 Q1 • FBRCRHD•X) : Q2 = FBR(Q1 + FIR(RIIJ•FIR(BNJ•X - Y•Q1))) 
800 Q3 • FIR(Q2 + FRR(RHD*FHR(BIJ•X - Y•Q2))), ... approximates BNJ•X/Y 
810 IF Q3 - Q THER S$11111 II ELSE S$ - II 1 11 HD - HD+1 
820' 
830 PRINT 11Case 11 ;L;": R m";R;", M sr";M;", j •";J;" Q =";Q;S$ 
840 PRINT II X •";I;", Y • 11 ;Y; 11

, (
11 ;B; 11

"'
11 ;N-J;")•X/Y -=";QQ 

860 RO • 10+1 : RETURN 
860' 
870 IF RR><R THER PRIRT "Disparity: caae11 ;L; 11 computes 11 ;RR; 11 for R •";R 
880 RETURB 
890' 
900 RR• F•G - (M+M+1)•BN: GOSUB 870 ' 
910 Ya BN - G: X = Y + M - (F-1)/2: 
920 RETURH 
930' 
940 RR• F•G - (M+M+1)•BN1 : GOSUB 870, 
950 YD BN1 + G: X III Y + M + (F+1)/2: 
960 RETURH 
970' 
980 RR a F•G - (M+M+1)•BN1 : GOSUB 870 ' 
990 Y • BN1 + G X • BN-M+B•G-(F+1)/2 
1000 RETURN 
1010' 

... case 1 
J = 0: Q = BN - (F+SGN(R))/2 

... case 2 
J = 1: Q = BN1 + (F-SGN(R))/2 

... case 3 
J a 1 : Q • BN - (F-SGN(R))/2 

1020 RR• F•G - (M+M+1)•BR1: GOSUB 870, ... case 4 
1030 Y • B11 + G: X • Y - (M+(F+1)/2)/B: J • 0: Q • BN - (F-SGN(R))/2 
1040 RETURB 
1050' 
1060 RR • F•G - (M+M) •BN1 : GOSUB 870 , . . . case 5 
1070 Y • BN - G X • Y - M + F•B/2: J • 1: Q • BN1 + (F+SGN(R))/2 
1080 RETURB 
1090, 
1100 RR• F•G - (M+M)•Bl1: GOSUB 870 ' 
1110 Ya BR - G X • BN1+F/2-(M+G)/B 
1120 RETORB 

... case 6 
J a 0: Q a BNl + (F+SGN(R))/2 

14 



April 11, 1987 15 

DVSRS: @W. Kahan 1987 

10 'Test Accuracy of Division X/Y on Trial Divisors Y . Runs on IBM PC . 
20 CLEAR ,,1000: DEFDBL A-H, 0-Z: H = .6: TLOG • LOG(2#) : EPS = 3E-24 
30 DEF FNG(Z) • 2·(IRT(LOG(ABS(Z)+EPS)/TLOG) - B + 1) 
40 DEF FBR(Z) • FBG(Z)•FIX(H•SGB(Z) + Z/FIG(Z)) ' ... • Z rounded to N sig. bits 
60 DEF FNPAR(Z) • Z - 2•IRTCZ•H) : ' ... • Parity(z) 
60 OB IEY(9) GOSUB 680: PRINT "Preas [F9J to stop." 
70 KEY(9) STOP ' ... suspends stopping until there is something to report. 
80 INPUT "Hov a.any aig. bits" ;NO : H • INT(ABS(NO)) 
90 IF 1•0 TIIER PRINT "Goodbye." : EID 
100 IF l><HO OR 1>66 THEN PRI!lT " ... positive integer < 67 . " : GOTO 80 
110 RC• 0: ID• 0: 11 • R-1: Till• 2·11: TN• TN1+TH1 ' ... = 2·1 
120 PRIIT "Should Deplorable cases be vritten to DEPLORE ( [Y]es or [N]o)"; 
130 IIPUT Y$ 
140 IF BDT(Y$•"Y" OR Y$="y") THEN 170 
150 OPEN "DEPLORE" FOR APPEND AS 11 
160 PRINT#1, "I •";I;" sig. bits." 
170 PRIRT "Choose a range of small odd reaainders:" 
180 A$• "an": GOSUB 640: IF Z•O THER 80 ELSE R1 = Z 
190 A$ • "another" : GOSUB 640 : IF Z-0 TBEI 80 ELSE R2 = Z 
200 IF R1>R2 THEH SVAP R1,R2 ' ... Rt <• R2 
210 PRIRT "Chooae a range of odd diviaora to test vith each odd remainder:" 
220 YL • TN1 : IF R2 > TB1 THEN YL • R2+1 ' . . . R1 <= R2 < YL < every Y 
230 A$ • "a" : GOSUB 590 : IF Z=O THEN PRINT : GOTO 170 ELSE Y1 = Z 
240 A$• "another": GOSUB 690: IF Z•O THEH PRIRT: GOTO 170 ELSE Y2 = Z 
250 IF Y1>Y2 THEN DY• -2 ELSE DY= 2 
260 R • R1 : WHILE R<•R2: Y • Y1 : WHILE (Y2-Y)•DY>=O: GOSUB 330 
270 Y • Y+DY: VERD: R = R+2: WEND 
280 PRINT NC;"cases, ";RD;"deplorable divisions." : PRINT 
290 IF Y$="Y" OR Y$= 11y11 THEN PRINT#1, NC; "cases, " ; HD; "deplorable.": PRIHT#1 , 
300 GOTO 170 
310' 
320 'Subroutine to compute (j, X, Y, Q) from Y and R. 
330 T • H : QO = 0 : XO = Y-R : FOR I = 1 TO N ' . . . run recurrence 
340 P • FNPAR(XO) : QO • T•P + QO : XO• (P•Y+XO)•H: T = T+T: NEXT I 
360 IF T><TN1 THEN PRINT "DISASTER: T =" ;T;" >< 2· (N-1) =" ;TN1: STOP 
360 C$ = "A" : X = XO+Y: Q c: QO+T: S = 1 : J = 1 
370 IF X-T<T THEN GOSUB 440 ELSE C$a"B": J=O: X=X•H: IF X=INT(X) THEN GOSUB 440 
380 C$ • "C" : X a Y-XO+Y: Q • T-QO+T: S • -1 : J = 1 
390 IF X-T<T THEN GOSUB 440 ELSE C$s::"D": J-0: X=X•H: IF X=INT(X) THEN GOSUB 440 
400 KEY(9) OB' ... GOSUBs to 680 if [F9] has been pressed. 
410 KEY(9) STOP: RETURN' ... or stop after [F9] . 
420' 
430 ' Subroutine to compute quotients, compare them, and display results. 
440 IC• RC+1: TNJ a T + (1-J)•T' ... = 2·(B-j) 
460 QQ • IHT(H + TBJ•X/Y) ' ... • (X•2·(N+1-j))/Y rounded if B < 28 
460 IF QQ><Q AND 1<28 THEN D$ •"BUG!": PRIBT "QQ•";QQ: GOSUB 520 : STOP 
470 'Bov for a deplorable division algorithm rounded to N sig. ·bits: 
480 RHO• FBR(l/Y) : RHO a FBR(RHO + FRR(RHO•FBR(1-FIR(RHO•Y)))) 
490 Qt• FIIR(Rlll•X) : Q2 • FBR(Q1 + FHR(RHO•FIIR(TBJ•X - Y•Q1))) 
600 Q3 • FRR(Q2 + FIR(RHO•FBR(TRJ•X - Y•Q2))) ' ... a deplorable quotient? 
610 IF Q3 • Q THEH D$ =""ELSE D$ = 11 # 11

: ND• HD+1 
520 PRINT "Y m";Y;", R •";S•R;", Case ";C$;": j •";J; 
530 PRINT " , X •" ; X; 11 

, Q =" ; Q ; D$ 
640 IF D$=" " OR NOT(Y$=11Y11 OR Y$="y") THEN RETURN 
560 PRIRT#1, "Y c

11 ;Y; 11
, R =";S•R;", Case ";C$;": j =";J; 

560 PRINT#!, ", X •";X;", Q •";Q;D$ : RETURN 
670' 
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680 , Subroutine to input a divisor and check that it lies in range. 
690 PRINT "Choose 11 ;A$; 11 divisor betveen 11 ;YL; 11and 11 ;TB; 11

:
11
;: INPUT YO 

600 Z • ABS(INT(YO)) : IF Z-0 THEIi REnJRH 
610 IF Z><YO OR Z<YL OR Z-TB1>TB1 OR FHPAR(Z) mO THEN 690 ELSE RETURN 
620' 
630 'Subroutine to input a remainder and check that it lies vithin range. 
640 PRIIT "Choose 11 ;A$; 11 odd reaainder smaller than" ;TB-2 ; 11 :";: INPUT RO 
660 Z • ABS (IIT(RO)) : IF Z-0 TREI RETURN 
660 IF Z><ABS(RO) OR Z-TB1>TB1-3 OR FIPAR(Z)•O THEB 640 ELSE RETURN 
670' 
680 PRIIT BC;"cases, ";ND;"deplorable. 11 

' ••• Subroutine for [F9] . 
690 IF Y$•11Y11 OR Y$•11y" THEB PRIID1, IC;"cases, ";BD;"deplorable." : CLOSE 
700 STOP 

16 . 




