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CONSERVING CONFLUENCE CURBS ILL-CONDITION 

* W. Kahan 

Abstract. Certain problems are ill-conditioned, in the sense that 

their solutions are hypersensitive to small changes in data, only 

because a slight change in data could cause those solutions to 

exhibit singular behaviour associated with various kinds of 

confluence. For example, an over- or under-determined linear 

system solved by l~ast-squares can be ill-conditioned only if 

there exist some small perturbations to its matrix which increase 

its nullity (i.e. diminish its rank); zeros of a polynomial can 

be ill-conditioned only if their multiplicities can be increased 

by very small perturbations of the polynomial's coefficients; 

eigenvalues of a non-Hermitian matrix can be ill-conditioned only 

if their algebraic multiplicities can be increased by very small 

perturbations of the matrix. When perturbations constrained to 

a small neighbourhood can be further constrained to maximize 

confluence, i.e. to maximize nullity (minimize rank) or maximize 

multiplicity, and when that maximized confluence can be increased 

again only by perturbations far beyond the small neighbourhood, 

then the slightly perturbed problems exhibit well-conditioned 

confluent solutions. Beyond these vague statements lie the 

shadows of numerical methods which may either eliminate ill

condition or, when ill-condition is persistent, illuminate its 

cause. 

* Computer Science Department, University of California, Berkeley. 
This work was also supported by a grant from the U.S. Office of 
Naval Research, contract no. N00014-69-A-0200-1017. 
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CONSERVING CONFLUENCE CURBS ILL-CONDITION 

w. Kahan 

"Mother may I go to swim?" 
"Yes, my darling daughter; 
Hang your clothes on yon tree limb, 
But don't go near the water." 

Introduction. Numerical calculations generally appear in the form 

Compute y = f(~) 

where f characterizes a class of problems and ~ represents 

the particular data. Commonly f is defined implicitly by a 

set of equations whose coefficients' values constitute ~. and 

y is the solution of those equations. The equations are called 

itt-oond.itioned whenever there exist tiny perturbations o~ 

which cause huge changes 6y = f(: + 6:) - f(:). 'ro make this 

notion more precise we imagine : and y to reside in metric 

spaces -- normed linear spaces are customary -- and define a 

condition number 

y - sup Uoyll/Uo~U 

where the supremum is taken over all 6: in some neighbourhood 

of ~. thus, the condition number y is a Lipsohita constant; 

Uf(~~) - f(~) U ~ yU&cU. the larger is y, the more ill-condi

tioned is the problem f near ~. When y is infinite we 

sometimes say that f is itt-poaed near ~, though this term 

is reserved by some for discontinuous behaviour. 
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Non-differentiable functions f are so rarely encountered 

in practice that we might as well exploit the simplification 

afforded by constraining perturbations oz to infinitesimal 

neighbourhoods. Now 

wherever the Frechet derivative af/az exists, in which case 

here we use the induced norm for linear operators between two 

normed linear spaces. 

Since af/oz is usually differentiable too, it seems natural 

to guess that an ill-conditioned problem, with Uaf/azll huge, 

probably has its data z near a place where of/oz becomes 

infinite or fails to exist. The locus of all such places is 

usually a manifold in z's space, and that manifold is the sub

ject of this paper. Here are three examples: 

When f represents solving a system of linear equations 

Ay • b with square matrix A, so each point z in data-space 

has coordinates (A~b), and when the infinitesimal neighbourhoods 

are generated by all infinitesimal (oA,ob) without constraint, 

then the manifold where of/az becomes infinite consists of 

just those points z - (A~b) with singular A since elsewhere 

y • A-lb varies by oy • A-1db - A-1(dA)A-1b, a bounded linear 

function of the infinitesimal perturbation <5.2: - (oA.,ob). When 

f represents solving polynomial equati~ns 

n n-1 n-2 y -zy -zy -•••-z y-z • 0 l 2 n-1 n 
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so each point ~ ~ (~1 ,%2, ... ,~n) in data-space is identified 

n tn n-j with a polynomial ~(y) • y - , 1 ~jY , the manifold where 

af/a% becomes infinite consists of just those polynomials % 

with some multiple zeros since elsewhere each simple zero y of 

tn n-3 I , ( ~ varies by 6y • ,
1 

y 6~3 % y). A similar situation arises 

when f represents solving eigenproblems for square matrices 

X; the eigenvalues and eigenvectors are well-known to be 

differentiable functions of X's elements only when X's eigen

values are distinct, so the manifold of interest consists of 

those matrices X with some multi?le eigenvalues. 

One might be tempted to assign some pejorative adjective to 

that manifold on which af/a~ fails to be finite. (There are 

precedents; in 1884 Sylvester assigned the word derogatory to 

certain matrices with multiple eigenvalues, and physicists 

almost universally apply the epithet degenerate to eigenvalues 

whose only flaw is their indistinguishability.) In so far as 

f is ill-behaved neal' that manifold, the more so as it is 

. . * approached, th& manifold warrants the name peJorat~ve. But 

in the last two examples above f will be found to behave very 

well on the manifold, except as ~ approaches certain sub-mani

folds. More precisely, for almost all ~ on the pejorative 

manifold and for all infinitesimally nearby %+0~ also on that 

manifold the difference f(:+&:) -f(~) is a bounded linear func

tion of ~, and the bound varies with ~ on the manifold in 

such a way that the bound can approach infinity only as ~ 

approaches some doubly pejorative sub-manifold on which the same 

kind of behaviour recurs. That phenomenon is what this paper is 

about. 

* Pejorative: from the Latin pejora:zte to make worse. 
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The paradox, that / can be well-behaved on a manifold in 

every open neighbourhood of which f is arbitrarily ill-behaved, 

would be uninteresting but for another property of such pejorative 

manifolds; they can be characterized ostensibly independently of 

f's good or ill behaviour. For want of a better term I use the 

word conf1,uenoe to describe what happens to f on those manifolds. 

When f represents zeros of polynomials or eigenvalues of matrices 

the confluence 1s obvious; some zeros flow together as a polynomial 

~ approaches a pejorative manifold; some eigenvalues flow 

together as a matrix X approaches a pejorative manifold. 

Confluence in a linear system is identified with collapse of the 

range of its matrix as it approaches a pejorative manifold; this 

manifold in matrix-space is the locus of discontinuities (drops) 

in the rank function. 

Pejorative manifolds are interesting just because they are 

associated simultaneously with confluence and with an abrupt 

change from wild mis-behaviour to tame good-behaviour. Consider, 

for example, a polynomial ~
0 

so constructed as to ensure, in the 

absence of error, that among its zeros y • f(~) must be some 
0 0 

that are coincident; but because error /:J:J: has crept into the 

data 3: none of the available zeros y +Ay • f(3: +&I:) are coin-o O 0 

cident. They may well be nowhere near coincident. Frantic 

dispersal of perturbed zeros is frequently quite pronounced 

when 3: is of high degree, and is not surprising when we realize 
0 

how wildly f must misbehave near a pejorative manifold. Given 

only 3:
0
+6:c and a bound for 11.:.\.1:11, can we discover a nearby 3:l 

on a pejorative manifold? That 3:l will not be unique but, 
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provided the bound on Il&t:11 is small enough to keep :1:1 well away 

from a doubly pejorative sub-manifold, we can expect that the multiple 

zeros among y1 • f(:,:
1

) will not vary much as :1:1 runs through 

those values on the pejorative manifold close to :,:
0

+&&. Thus do we 

substitute a well-c~nditioned problem f(:,: 1) for an ostensibly ill

conditioned problem f{:,: +&I:). On the other hand, we may discover 
. 0 

that :,: +~ is farther from the pejorative manifold than the bound 
0 

on UA-cll, in which case we infer that something, either the bound 

or the construction of :,:
0

, is wrong (i.e. mistaken). 

The properties of pejorative manifolds have many other prac

tical implications but to discuss them here would be premature. 

First we must verify the foregoing assertions about those prope~ties. 

Secondly, we should consider how to locate the manifolds compu

tationally; here is where the theory is weak. Only for linear 

systems do we know how to tell cheaply whether a data-point :,: 

is close to or far from a pejorative manifold, and whether there 

are multiply pejorative sub-manifolds nearby, and where they are. 

Some of this knowledge is imparted in part I of the paper. 

Parts II and III consider polynomials' zeros and matrix 

eigenproblems respectively. For these problems the simplest 

pejorative manifolds, corresponding to double zeros and double 

eigenvalues, are easy enough to locate; but multiply pejorative 

sub-manifolds are not yet within reach of cheap computation. In 

particular, we cannot easily tell whether a data point :,: is far 

enough from a multiply pejorative sub-manifold that that sub-mani

fold need not be explored, unless :,: is very far from every such 

sub-manifold. Fortunately for our theory, multiply pejorative 
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sub-manifolds need only rarely be considered; in ordinary language 

this means that double roots, though rare, are overwhelmingly 

more common in practice than are roots of higher multiplicity. 

Consequently, the theory is ripe for exploitation despite its 

immaturity. The theory's subsequent growth seems lik~ly to depend 

upon numerical analysts' proficiency with algebraic geometry and 

metric spaces. 

I take pleasure in acknowledging here the assistance and 

encouragement received, while the foregoing notions were evolving, 

from several years' discussions with many colleagues and friends. 

Especially, George Forsythe's continuing interest in those notions 

considerably stimulated their development. I am indebted too to 

th the organizers of the 5-= Gatlinburg Symposium on Numerical Linear 

Algebra, held at Los Alamos on June 5-10, 1972, for an opportunity 

to present those notions to a wide audience. 
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I 

...... 
Part I: The Pseudo-Inverse 

-rhe pseudo-inverse X t of an m x n matrix X is uniquely 

defined formally by the familiar equations 

but a better definition is· derived from its principal application, 

the solution of linear least-squares problems: Given X and an 

m-vector u we seek that n-vector w which minimizes llv - Xwll, 

and when the minimizing w is not unique (as must be the case 

just when X's columns are linearly dependent) we seek that mini

mizing w with minimal llwU. The vector norm used here is 

llwD = ✓wwr.1; we shall also use the induced matrix norm 

ozg = max UZWU/DwD and the root-sum-squares norm Uzll 2 - ✓tr.(Z*Z). 
w+o t 

The desired minimizing vector w turns out to be w •Xv; 

see R. Penrose (l954,i955). This formula is interesting only when 

X's columns are linearly dependent or nearly so, since otherwise 

we could substitute Xt • (X*X)-1X• and ignore the equations 

(t) above. t But just when X becomes interesting it becomes 

numerically exasperating no matter what method is empZoyed to 

compute it because when X's columns are linearly dependent Xt 

must be a violently discontinuous function of X and hence hyper

sensitive to small variations, as we shall see. 

In what follows we shall discern a nested sequence 

of pejorative (for k ! l) manifolds and sub-manifolds in the 

space M
0 

of m x n matrices X; Mk is the manifold of matrices 
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whose rank does not exceed min(m,n)- k. We shall discover that 

Xt is a well-behaved function of X provided X is confined to 

Mk and avoids Mk+l• More precisely, we shall find that while X 

8 

and its infinitesimally neighbouring X+ oX are constrained to Mk-Mk+l 

t UX U • 1/(the minimum distance U•••U from X to Mk+l) , 

Some of these discoveries have been seen before, particularly in 

the works of G.W. Stewart (1969), v. Pereyra (1969), and Golub 

and Pereyra (1972), whose treatments should be compared with what 

follows. Finally, we shall consider, given X and a tolerance 

t > 0 such that all X+llX with ll/lXU ~ t must be regarded as 

indistinguishable for practical purposes, how to find an approximation 
~ ~t 
X indistinguishable from X with the best-behaved X. 

Some apparatus is needed. Let us assume m > n (otherwise 

transpose X) and denote X's n singular values in order by 

; >; > ••• > ~ > O. That ; 1 • UXU is well known, as is 1-2- -n-

the fact that Xt's singular values are the re-ordered numbers 

t ; ., where 
J 

• 

Not so well known is the following relation proved by L. Mirsky 

(1960, theorem 2): 

tk • min llMll over rank(X+M) < k . 

One implication of this relation, to be used later, is that no 

singular value of X+M can differ from the correspondingly 



numbered singular value of X by more than IIMU. Another impli

cation obtained via llXtll • max.(t~) is that 
J J 

llXtll • 1/minllMll over rank(X+MJ < rank(X) 

Consequently, if X & Mk but X ♦ Mk+l then 

t 
UX ll • l/minllMU over X+llX e Mk+l • 

t which is just what was claimed for llX U above. 

Next we shall exploit a little known formula; 

This formula can be verified by applying the equations (t) above 

to reduce the right-hand side to its simplest terms. Note that 

(l-YtY) and (l-XXt) are orthogonal projectors which annihilate 

t * t• Y and Y • and X and X respectively. Consequently we 

find 

cxt-Yt>*cxt-zt> - xt*cx-z>*zt*ztcx-1>xt 

- xt*cx-z>*zt*1t1t*cx-:1>*<1-xxt> 

+ xt•xt(X-Y)(l-YtY)(X-Y)*xt*xt 

- (1-XXt)(X-:t)Ytzt*yt(X-:t)Xt 

+ (l-XXt)(X-Y)(YtYt*) 2(X-Y)*(l-XXt) 

and taking norms yields an important inequality 

Now let Y • X + M, and suppose both X and X + M lie on Mk 
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but not on Mk+i• As AX+ 0 we see that ll(X+M)tll becomes 

and remains bounded, and then that IIXt - (X+M) tll + O. In short, 

Xt is a continuous function of X on Mk away from Mk+l• It 

soon follows that Xt is differentiable too, for we need only 

set :l • X + oX, with infinitesimal ox constrained to keep 

X +oX, like X, on Mk away from Mk+l' to deduce that 

t Next we seek to compute supllo(X )II/UcSXll 2. To this end it 

is convenient to invoke Autonne's theorem which exhibits X a PAQ 

where P is m xm unitary, Q is n x n unitary, and A is 

m x n diagonal with the singular values t. on its main diagonal. 
J 

This singular value decomposition may be computed at modest cost 

by methods described in Golub and Reinsch (1970), and will be 

further exploited below. For the present let us partition 

in such a way that just X's non-zero singular values t. appear 
J 

on the diagonal of the square diagonal matrix A. Evidently 
0 

Xt • Q*Atp* where 

• 

Also llXtll • UA-1U. Next partition conformally 
0 

10 



* * (6A 6B) oA = P (oX)Q -
6C 6D 

by fixing P and Q independently of oX we oblige oA to be 

non-diagonal in general. Since X+oX must have the same rank 

as X, A+oA must have the same rank as A, and this must be 

the same as the rank of 

The rank in question is that of A, and also of A +oA since 
0 0 

6A is infinitesimal. Therefore we must have 

, 

but this merely says that the infinitesimal 6D • O. Therefore, 

infinitesimal perturbations uX for which X and X+oX have 

the same rank must have the form 

• 

Substitution into the formula above for o(Xt) soon leads to the 

conclusion that 

with equality possible when oA, 6B and oC are chosen to have 

non-zero entries only in rows and columns corresponding to the 

A-1. largest entries in 
0 

Thus we conclude that pseudo-inversion 

11 



can be ill-conditioned with respect to rank-preserving perturba

tions only if the data-matrix X is very near another of lower 

rank. 

Finally let us discuss how to compute a pseudo-inverse appro

priate for a given matrix X when given also a tolerance t > 0 

such that all X+llX with UMll ~ t must be regarded as indis

tinguishable from X. Should some of these ma~rices X+M have 

different rank than X there must exist others whose pseudo

inverses differ arbitrarily much among each other. None of those 

wildly divergent pseudo-inverses can be useful. Instead let us 
,. ,.. ,.. 

find a matrix X • X+ AX of minimal rank with llMII ~ t. Such 

a matrix is easily obtained from A above by annihilating all 
,. ,. ,.. 

let A denote what results and let X • PA(J. If 
,.. ,.. 

then A• A and X • X; in this case for all AX with 

UMU ~ t we find that 

"'" U(X+M) 1 U ~ 1/(~n-t) and 

ucx+u)t -xtu,uxtu < (1+t2l<t -t> 2)112t/t - n n n 

The latter inequality is obtained by substituting Y • X+ AX and 

XtX • yty • 1 into the formula above for Xt-Yt, and then taking 

the norm of (Xt-Yt)(Xt-Yt)* with the aid of llXtll • 1/t and n 

llYtU < 1/(t -t). The point of the inequality is that if t/tn << 1 
- n 

we may confidently assert that all indistinguishable matrices 

X+llX have nearly the same pseudo-inverse. 

The. interesting case occurs when tn-k > ~ ~ tn+l-k for some 

k > O. ?his means that among the matrices X+AX with IIMU ~ f; 

are some of rank n-k,n+l-k, ... ,n. Every time X+llX changes rank, 

12 



(X+M)t jumps infinitely violently. But as X+!:J{ runs through 

matrices on Mk of rank n-k with UMll ~ ;, (X+M)t varies 

continuously and 

Whenever tl;n-k << 1, the pseudo-inverses of matrices on Mk 

indistinguishable from X will differ only slightly among each 

other, although matrices X+!:J{ not on Mk will have huge and 

"'T wildly varying pseudo-inverses; in this case X seems to be a 

reasonable response to the command 

"Compute Xt" 

But if ; k is only moderately larger than t that command n-
deserves to be questioned. 

"'T Another way to appreciate X when ~/t k << l < tit •+l n- - n-K 
is geometrical. Consider the image P under the operation t of 

the ball B of matrices X+M with UMll ~ t; i.e. consider the 

set P of pseudo-inverses of all matrices in that ball B. P has 

two disconnected components P
0 

and Pm. P consists of the 
0 

pseudo-inverses of matrices in B nMk, and looks like a small 

"'t t bent coin roughly centered on X; all the points (X+M) in P 
0 

At 
are close to X (see the inequality above) and have modest norms 

not exceeding 1/(tn_k-t). The other component Pm has tentacles 

which reach to m starting from far-out points (X+M)t which 

must satisfy ll(X+M)tU ~ 1/(;~n-k+l) >> 1/(;n-k-t). 

13 



Part II: Zeros of Polynomials 

Many numerical analysts suffer from a misconception that 

multiple roots are infinitely more ill-conditioned than simple 

roots. Actually, a multiple root behaves much better than the 

clustered simple root-approximations so often accepted in its 

place. More precisely, we shall find that each zero of a poly

nomial-is a differentiable function of its coefficients provided 

that zero's multiplicity is conserved; only when multiplicities 

change can the derivatives become infinite. Moreover we shall 

find that the condition number of a multiple zero must be inversely 

proportional to the product of the distances from that multiple 

zero to all other zeros of the polynomial. For the problem of 

finding polynomials' zeros the pejorative manifolds and sub-mani

folds in the space of polynomials ar~ evidently the loci occupied 

by polynomials with various combinations of multiple zeros (one 

double zero, two double zeros, ••. , one triple zero, one triple 

and one double-zero, ••• ). However, given a polynomial ~ no 

convenient way is known yet for determining how near ~ is to a 

pejorative manifold short of computing laboriously all the points 

nearest ~ on each of the various manifolds and sub-manifolds. 

We shall describe some of the easier such calculations. 

II.l: Differentiability of Multiple Zeros 

If , is a simple zero of the monic polynomial 

then ~•a first derivative ~•(~) cannot vanish at ~ and hence 

14 



each ot/o=. • ,n-jl='(t) must be finite, whence it follows that J I 

t must be an analytic function of each coefficient =j as long as 

t remains simple. To what extent can this assertion be valid 

when t is a multiple zero of =? 

must Whenever ~ has a multiple zero its coefficients ~j 

satisfy certain constraints expressible as polynomial equations 

in those coefficients with the aid of d~terminants known as 

bigradients Qr ~esuttants; see Bocher (1907, ch. XV) or Householder 

(1970, §§1.2-3) or van der Waerden (1950, ch. XI). It suffices 

to acknowledge those constraints without describing them, and 

then exploit them with the following result: 

Proposition II.l: The constraints satisfied by the coefficients 

~j of the monic polynomial 

when it possesses an m-tuple zero t define ~ and the 

last m-1 coefficients ~ +2 , ••.• ~ to be analytic func-n -m n 
tions of each of the first n+l-m coefficients 

=1 ,~2, ••• ,=n+l-m as long as the multiplicity of t remains 

precisely m, irrespective of the other zeros' multiplicities. 

And then if tm+l'~2, ••• ,tn are ~•s other n-m zeros, 

different from t but otherwise not necessarily distinct, 

Proof: Since t is an m-tuple zero of ~, ~(m)(t) ~ 0 but 

~(m-l)(t) • 0, ~(m-2>(t) • 0, ... , ~•(t) • 0 and ~(t) • 0. The 
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first two relations imply that- z;, (m-1) as a simple zero of = , 
must be an analytic function of its coefficients =1 ,~2, ••• ,=n+l-m• 

Substituting that function for z; in the last m-1 equations 

exhibits the last m-l coefficients in turn as analytic functions 

of the first n+l-m •. Then differentiate the equation =(m-l){t) • 0 

with respect to =· to produce 
'Z, 

and apply -~~~~~z's rule to =(L) • (L-t)mn:+1(t-tj) to produce 

=(m)(z;J • m1Il:+1<t-tj), whence follows the last part of the 

proposition. -----·-

Here are three examples to illustrate the proposition. First, 

a quadratic L
2-2aT+6 has a double zero z; • a just when 2 a - a ; 

here z; and a are analytic functions of a as claimed in the 

proposition, but if we regarded z; and a as functions of a 
they would have a branch-point singularity at a• O. This first 

example provides some excuse for regarding, as does the proposition, 

the first n+l-m coefficients =· instead of some other subset 
J 

as independent variables. 

The second example is a quartic 

which has a triple zero z; • a+A whenever y • (a+~) 2(a-2A) 

and· o • (a+A) 3 (a-JA) where A E ±(a2-a) 1/ 2; evidently t, y 

and o are analytic functions of a and B except at the branch 

point where A• O, at which point z; becomes a quadruple zero. 

16 
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The third example is the quartic 

q(T,A) = t 4 - (2+A2
)-r

2 + 2XIAIT + 1 - X2 for real A 

• ('t - sign(A)) 2 
('t + sign(AJ + A) ('t + sign(A) - A) 

q has a double zero t for all real X, but t • l for A.?:. 0 

and ~ • -1 for A< 0 - , with ambiguity and discontinuity at 

A• 0 despite that t and the last coefficient l-A2 may appear 

to be formally analytic functions of the first three coefficients 

(0,2+X2,2XfXI). But these first coefficients are not free here 

to vary independently, nor are they analytic functions of the real 

parameter A near A• O. A better explanation for the apparent 

anomaly is obtained from a geometrical approach which identifies 

quartic polynomials with points in a 4-dimensional space. The 

polynomials with double zeros constitute a 3-dimensional manifold 

in that space; the manifold intersects itself at points corres

ponding to polynomials, 1ike q(t,O), with two double zeros. As 

A runs from -1. to O to +l, say, q(T,A) runs along one 

sheet of that manifold to a point of self-intersection and then 

turns a corner to run along the other sheet. The 3-dimensional 

manifold is pejorative; the corner where q's double zero is 

discontinuous lies on a multiply pejorative sub-manifold. Little 

seems to be known about the complicated geometry of these manifolds. 

II.2: Condition Numbers for Multiple Zeros 

The condition of a zero t of a polynomial ~ 1~ generally 

a vague notion (cf. Wilkinson {1963, pp.29-32 and 47-48)) partly 

because the metric by which we measure distance between polynomials 

17 



is so often arbitrary. A natural metric for polynomials regarded 

as ,oints in a linear space is a vector norm ll•••ll; e.g. for 

arbitrary weights w. > 0 
J 

Although we shall use just this last norm in what follows, the 

statements concerning condition numbers will be stated for (and 

are valid for) any vector norm. Whatever the norm, one corresponding 

condition number for a zero t of a polynomial = will be 

def±ned to be 

y(c;,=,ll··•UJ - sup !oc;l/ll~U 
6= 

where o~ is the infinitesimal change in l; caused by changing 

the polynomial = infinitesimally to :x:+6=. This condition number 

y is appropriate when absolute variations in t and : are at 

issue; y/fl;j is a more appropriate condition number when relative 

variations 0l;/l; are at issue. 

Of course y's definition makes sense only if o= is under

stood to be so constrained that C's multiplicity is conserved; 

otherwise l; loses its identity, disintegrating into a cluster 

of zeros whose condition numbers approach infinity as the cluster. 

coalesces upon c. This assertion, which we have yet to prove, 

explains why multiple zeros have a bad reputation for ill-condition 

undeservedly acquired by association with the cluster of closely 

spaced and therefore ill-conditioned approximate zeros which are 

so often accepted instead of multiple zeros; cf. Wilkinson (1963, 

p.41, §8). 

18 



Pro~osition II.2: If ~ is an m-tuple zero of a monic polynomial 

~ whose other zeros are ,m+l'~m+2, ••• ,tn then its condition 

number is 

where K is independent of ~ and its zeros other than ~. 

Proof (for any norm U·••ll): and 

Here o~ is expressed as a linear function of the first n+l-m 

infinitesimal coefficients o~ .. The last m-l coefficients 
J 

are also linear functions of the first n+l~m obtained by solving 

a tr_iangular system of linear equations derived from the equations 

• 

The last set reduces simply to 

which may be solved for o~n+2-m,o~n+J-m••••,o~n in turn. Hence 

there exists some linear operator Q depending upon ~. n and 

m alone such that 

!his linear operator Q transforms an arbitrary polynomial p 
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of degree n-m into another q • Qp of degree n-l in such a 

way that 

the last few equations constitute an initial value problem whose 

solution is 

Hence we deduce that Qp • 0 only if p • O, and therefore 

ll!P Ill = IIQp!( is another norm on the linear space of polynomials 

p of degree n-m. Now 

over constrained 

and * (m-l) n * ot • e &: /Ilm+1 (z;-z;i) where e is the linear functional 

defined above in the earlier expression for oz;. ijence 

y - sup I e * oa: (m-l) ,n:+1 (z;-r; .) 1,111 oa: (m-l) Ill 
oa: (m-l) J • • 

- K/Il~l I z;-r;j I 

as claimed, where 

* K = sup le p I / II IP ll l over (n-m)-degree polynomials p 

depends upon m, .n, z; and the norm U•••U but not upon a: 

nor its zeros other than z;. 

·corollary: Proposition II.2 may be applied to non-monic polynomials 

a:(T) = ln a:.Tn-j with a: + 0 provided K is replaced by 
0 J 0 
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a different function 

The foregoing results fail to reflect one important aspect 

of floating point computation -- independence of scaling. Speci

fically, we would expect the relative precision of approximations 

to a zero ~ = az; of i(T) = an~(T/a) to be independent of a 

at least as long as the scale factor a is a modest power of the 

computer's radix. The proposition above appears to give results 

which are altered by scaling, but it can also be applied in a way 

independent of scaling. The proposition remains valid when the 

norm ll•••ll varies with r;;, as for example does 

More generally, whenever the norm ll•••U varies with ~ in such 

21 

a way that 11~(-r) ll r; • Ill ,-n~(r;T) Ill for some norm lll • • • Ill independent 

of z; we find that 

y(az;,an~(T/a), II··• llar/ I (ar; I • y(r;,~, ll • • • llr/ /It; I 
• K(m,n,l,ll•·•ll 1J/Il:+1 ll-z;

1

;'r;l • 

Then the condition number y/lc;l is independent of scaling and 

depends only upon the multiplicity m of z; and its retative 

separation from ~• s other zeros·. Consequently, only clusters of 

relatively closely spaced zeros can be ill-conditioned when such 

a ,;-dependent norm is used. 

The word cluster used above has been used very loosely. One 

might hardly consider the zeros of ~(T) = Ilio(T-j) to constitute 



a cluster in the usual sense, yet the zeros near 15 have been 

observed by Wilkinson (1963, pp.41-43) to be feroci~usly ill

conditioned. This observation does not contradict proposition II.2 

and its corollaries; when the constant K is evaluated (for 

m • l here) we do get condition numbers of the order of 1010 . 

This means that one's intuition about clusters is unlikely to be 

reliable. 

-It Calculations by a student, Mr. David Hough, have shown that 

one need only perturb each coefficient of ~(~) = TiiO<~-j) by 

less than one part in 1011 to construct a nearby polynomial 

:,:;+t,;,; whose zeros, while still all real, include a double zero. 

Consequently the polynomial ~ is very close to a pejorative 

manifold; in fact, it is almost equally close to several multiply 

pejorative sub-manifolds. These observations explain Wilkinson's 

polynomial's ill-condition more convincingly than can any alle

gation of clustering among its zeros. 

II.3: Where are the Pejorative Manifolds? 

When m of a polynomial's zeros are clustered closely in a 

region well-separated from the rest of the zeros, it is natural 

to expect that a small perturbation in the polynomial's coeffi

cients should suffice to collapse the cluster into an m-tuple 

zero. That m-tuple zero must be a simple zero of the perturbed 

polynomial's (m-1).!E. derivative, and therefore close to a zero 

of the original polynomial's (m-l)ll derivative. Consequently 

when we wish to substitute what we hope is a well-behaved m-tuple 

zero for a cluster of m . ill-behaved zeros, we can approximate 

-1'- 'iM-se. Cl'--/~/1A.h~s j>~lieJ ,~ecv,ttd. - Tie. v-qv<~eJ ~e-
1
~f1~e.. 

~etfvv~tro!A. ,~ -f&~ le.s5i tt~oot o\f\t r'<'4t 1\\ ,o , 

... 2 



the m-tuple zero by a simple zero of the polynomial's (m-l)!S. 

derivative provided such a simple zero can be found near the cluster. 

The next result guarantees that such a zero can be found. 

Lemma II.3: th Suppose the n degree polynomial ~(T) has at 

least m zeros , 1 ,~2, ... ,tm (15-m ~ n) in some convex 

region C. Then ~(m-l)(T) must vanish at least once in the 

star-shaped region S consisting of all points from which C 

subtends an angle no less than ~/(n+l-m). 

Proof: (m-1)!£. divided 

difference of ~(~) over the zeros t 1 ,t2, ... ,tm• Since each 

~(t.) • 0 that divided difference must vanish. Therefore we 
J 

obtain 

from a formula attributed to Hermite and to Genocchi by Milne

Thomson (1933, p.10 and p.18 ex. 6). Let us denote the n+l-m 

zeros of ~(m-l) by nm,nm+
1

, ••• ,nn and so infer 

I I • • . I H ( ri - r a . ' . ) da da • • • da • 0 
k-m k j•l J J 1 2 m 

All a.>O 
3-

and 1: a.•l 
J 

• 

From this point ~e pursue an argument similar to Marden's (1966, 

§24). 

Were every nk outside S we could find a ek for each 

k • m,m+l, ... ,n such that 
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In particular r,l a .r;. 
J J 

lies amidst the ~.•s, and hence in C, 
J 

for all relevant sets of values a1 ,a2 , ••• ,am; therefore we should 

deduce that 

whence it would follow that the last integral, with its integrand 

confined to a half-plane that excludes zero, could not vanish. 

This contradiction proves the lemma. 

In particular, when C is a circle of radius p then S 

turns out to be a concentric circle of radius rr/2 
p csc n+l-m; in 

general S cannot be enormously larger than C, so the desired 

simple zero of :,;(m-l) can always be found somewhere near a 

cluster of m zeros of :,;. 

In general one cannot expect ill-conditioned zeros to cluster 

in an obvious way, and we must search instead for nearby polyno

mials on pejorative manifolds. Thus one comes to consider problems 

like this one: 

n \'n n-j Problem II .3: Given :t:(T) = T - L.1 :t:jT find the nearest 

_ \'n n-j 
polynomial :,;-y, where y(T) = L.l YjT , with an m-tuple zero. 

We interpret "nearest" to mean that 

llyil 2 , 

with given positive weights w3, should be minimized. 

This problem can be approached in a conventional way via 



Lagrange multipliers. The result is a set of m equations 

for k =- 0,1,2,.-•. ;m-l 

from which we eliminate the Lagrange multipliers X. by setting 
~ 

a determinant of the coefficients of (l,A
0

,A1 , ... ,Am_2) to zero. 

The result is an equation to be solved for the m-tuple zero ~

The equation is not a polynomial equation because both ~ and its 

* complex conjugate z; appear. When m • 2 the equation is 

and is not hard to solve for t, though most of the solutions 

must be discarded as irrelevant. 

The problem becomes more interesting when ~(~) has real 

coefficients and, naturally, we require that y(~) have real 

coefficients too. 

However ugly these calculations may be, they are worth pur

suing whenever ~ has a badly ill-conditioned m-tuple zero t. 

For if z;'s condition number y is huge then, since proposition 

II.2 tells us that 

n 
y • K/ II I z;-z; -1 =- m lK/ I~ (m) (z;) I 

m+l J . 

for some modest K, we see that ~ differs from a polynomial 

with an (m+l)-tuple zero z; by just a little; 
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~ can be no farther than that from the multiply pejorative sub

manifold of polynomials with (m+l)-tuple zeros. 
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Part III: Eigenproblems 

"What I tell you three times is true." 

Lewis Carroll, Hunting of the Sn.ark, Fit 1. 

Let ,; be an m-tuple eigenvalue of the n x n matrix Z 

and let oz run through infinitesimal perturbations so constrained 

that Z+oz continues to possess an m-tuple eigenvalue ,;+o,; 

near z;. We define 

y(,;,Z,ll•••II) - sup lo,;l/lloZU over such constrained oz 

to be the condition number of l; as an m-tuple eigenvalue of Z 

with respect to some given matrix norm ll•••U. The constraints 

on oz are complicated but indispensable when m· > l; without 

them the condition number y would be either infinite or 

meaningless. 

We shall obtain estimates for y which relate it to the norm 

of the spectral projector P onto l;'s m-dimensional invariant 

subspace. P is characterized by the equations 

P can be computed straightforwardly from the similarity trans

formation that exhibits Z's Jordan normal form. (For example, 

when m • 1 * l; 's non-zero row and column eigenvectors ~ and y • 

* * * * which satisfy ~ Z • ~ and Zy • l;y. • yield P • y~ /~ y.) 

We shall find that, roughly speaking, y is big if and only if 

IIPU is big. Since y .is appreciably more expensive to compute 

than llPU when m > 1, we shall use UPU as a measure of l;'s 



ill-condition instead of y. 

Hypersensitivity to small perturbations, and the consequent 

risk of numerical instability, always accompany a spectral projec

tor of large norm irrespective of whether it belongs to a multiple 

eigenvalue or to a cluster of simple eigenvalues of z. The spec

tral projector P onto an m-dimensional invariant subspace 

belonging to a cluster of m eigenvalues {counting multi-

plicities) is just the sum of the spectral projectors P. belong-
J 

ing to the distinct values z; .. When IIPll/m is huge at least 
J 

one of the UP .U 's must be huge too so at least one z; . must be 
J J 

ill-conditioned. We shall see other bad things happen; for exam

ple every similarity transformation Q, which reduces Z to a 

diagonal sum 

in which the m x m matrix B has as its spectrum the cluster of 

m eigenvalues z; . , is necessarily ill-conditioned in the sense 
J 

that IIQll•UQ-1 11 must exceed UPU, roughly. Indeed, when llPll/m 

is huge the cluster's very identity as a cluster of m eigen

values may be jeopardized by small uncertainties or perturbations 

in z. Why? Because then to every closed contour r which 

encloses the cluster and excludes the rest of Z 's eigenvalues 

corresponds at least one small perturbation ~Z, with 

llliZII ~ KIIZU/llPll 1/m for a modest constant K, such that z+az 
has either fewer than m or more than m eigenvalues inside r. 

In the special case when Z ~ cluster contains just one m-tuple 



eigenvalue ~, the small perturbation ~ can be so chosen that 

that same ~ is an (m+l)-tuple eigenvalue of Z+~Z; our proof 

of this assertion will sharpen and generalize portentous results 

for m • 1 published earlier by Ruhe (1970) and Wilkinson (1972). 

So, spectral projectors of huge norm are critical symptoms of 

hypersensitivity to small perturbations, and no matrix can possess 

huge projectors unless tiny perturbations to its elements suffice 

to increase the multiplicities of some of its eigenvalues. Evi

dently the eigenproblem's pejorative manifolds and sub-manifolds 

consist of those matrices with various combinations of multiple 

eigenvalues (one double, one triple, two double, one quadruple, 

one double and one triple, ... ). 

Although, given a·matrix Z, no convenient way is known yet 

to determine just how near Z is to arbitrary pejorative sub

manifolds, ways are known to find points, ~lose enough to Z for 

many practical purposes, on some simpler pejorative sub-manifolds. 

These ways invoke unitary similarity transformations which reduce 

Z to a block-upper-triangular form with diagonal blocks of small 

dimensionality. Each block is intended to correspond to a cluster 

of Z 's eigenvalues to which belongs a spectral projector of 

mode~ate norm even though the spectral projectors belonging to 

every sub-cluster _of the cluster have huge norms. When such clus

ters exist, and often they do exist, they may not look like clus

ters to the naked eye; this is so because the individual eigen

values in the cluster are very ill-conditioned and disperse fran

tically in response to most·small perturbations of z. The eigen

values in a cluster can be identified only by the observation that 
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each eigenvalue's projector, though huge, cancels parts of the 

others' projectors in such a way that the sum of all the individual 

projectors has a moderate norm. 

Having found suitable clusters and corresponding small blocks, 

we try to replace each block by its nearest like-dimensioned 

matrix with just one eigenvalue; this turns out to be tantamount 

to the construction for each block of the nilpotent matrix nearest 

to i~. En~ugh is known about that construction to make it cheap 

for small blocks -- 2 x 2 and 3 x 3 -- but for larger blocks no 

cheap construction is known yet. 

30 

Ihe theory is extensive but incomplete. Lacking sharp indi

cations of the distance from Z to various pejorative sub-manifolds, 

we could too often become enmeshed in expensive calculations of 

nearest nilpotent matrices whenever Z is neither so far from 

all pejorative sub-manifolds that they are obviously ignorable 

nor so near to some as to indicate obviously which ones are the 

only ones worth considering. Yet the theory is attractive. If it 

can be refined to cover the majority of cases that arise often in 

practice, it will be complete enough. 

III.1 Some apparatus 

Only the following matrix norms will be used; 

- ltr.(x*x) • ✓t (singular values of X) 2 IIXll 2 

llXll - max IIX.Yll 2/ll.Yll 2 • maximum singular value of X 
:i+O 

These norms have been chosen because they are not changed when X 

is multiplied by a unitary matrix and consequently have many useful 



properties which we will fr,:.roke with little comment; for details 

see Mirsky (1960) or Gohberg and Kreln (1969). 

Given an n x n matrix Z we shall sometimes identify a clus-

ter of m of its eigenvalues r; . 
J 

(counting multiplicities) by 

specifying one of the closed contours r in the complex plane 

which enclose all of the cluster's m eigenvalues strictly in 

their interiors leaving the rest of Z 's spectrum strictly outside. 

Some of the contours may have disconnected components but none of 

them can pass through an eigenvalue of z. We soon di~cover, 

after Kato (1966, p.67), that 

is the spectral projector onto Z's invariant subspace belonging 

to the cluster of eigenvalues inside r. these eigenvalues are ~he 

m non-trivial eigenvalues of PZ • ZP, of wl1lch the remaining 

n-m eigenvalues are just O. 

There are other ways to represent P. We may aptly select a 

new (generally not orthogonal) coordinate system, or equivalently 

perform an apt similarity transformation, which will exhibit Z 

in the reduced form (~ ~) in which the m xm matrix B has as 

its eigenvalues just those inside the cluster and A's eigenvalues 

are outside. In that coordinate system P appears as (~ ~). 

Alternatively we may invoke Schur's theorem to obtain a new 

orthogonal coordinate system, or equivalently perform a unitary 

similarity, which will exhibit Z in the (block-) upper triangular 

form 



in which A and B have the same spectra as before. The block 

AR-RB is written that way for more convenient correlation with P 

which, in the same coordinate system, has the form 

If we do not insist that A and B be upper triangular we can 

instead arrange with the aid of Autonne's theorem that R be an 

(n-m) x m diagonal matrix exhibiting its singular values. Either 

way, because the similarity transformation is unitary we have 
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llPU a U Cf) II and, incidentally, 11 l-PU • ll (l R) ii sa IIPll (cf. Kato ~ 

(1960)). Finally, a non-unitary similarity which relates the tri-

angular form to a block diagonal form is 

When the cluster inside r contains only one m-tuple eigen

value z; the m x m block B must have only z; as an eigenvalue; 

consequently (B-z;)m • O. When (B-l;)m-l • 0 too B is called 

derogatory for reasons that will be clear soon. To simplify 

matters let us temporarily set z; • 0 as we digress to study nil

potent m x m ·matrices; these are characterized by the equation 

If' - o. 



Lemma III.1.1: -s" • 0 if and only if tr.(Bk) • O for 

k • 1, 2, ... ,m. 

Proof: Apply Newton's identities (cf. Householder (1970) p.37) 

to sums of powers of B's eigenvalues to deduce that they must 

all vanish. 

What conditions upon an infinitesimal perturbation oB 

ensure that both B and B+oB are nilpotent? Another way to 

think of this question is to imagine that B • B(T) is an analytic 

function of T that stays nilpotent for all T; what characterizes 

B = dB/dT for all such functions? The question is not trivial 

because, although we may differentiate the equations If"• 0 and 

k tr.(B) • 0 to get respectively 

l.~ #-l. oB•rf'-j • 0 or 

tr. (Bk-loB) • 0 or 
k-1· tr.(B B) a O for k a 1,2, ... ,m 

those are merely necessary conditions upon oB and B when B 

is a derogatory nilpotent matrix those conditions fail to be suffi

cient. For example, when B • 0 those conditions impose almost no 
. 

constraint upon oB and B whereas they ought to satisfy 

(oB)m • 0 and if'• O. 

Lemma III.1.2: When B is a non-derogatory nilpotent m xm 
0 

matrix the following three conditions are equivalent and char~c-

terize the derivative B = B{O) of every nilpotent analytic 
0 . 

function B(T) which satisfies B(O) = B : 
0 

l) 
. . . 
B

0
•SB -BS 

0 0 0 0 
is solvable.for 

. 
s . 

0 

33 



2) 

3) 

tm Bk-lB i"-k. O 
t.1 0 0 0 

tr.(BkB) • 0 for k • 0,1,2, ••• ,m-l. 
0 0 

Proof: Without· interpreting the dot as a derivative, we observe 

trivially that 1) implies 2) and 3). To deduce 3) implies 1), 

define the linear operator B thus; BX = XB - B X. Any linear 
0 0 

functional L on the range of B must have the form 

LBX • tr. (LBX) for some matrix L. But tr. (LBX) - tr. (LXB - La X) 
0 0 

• tr. (B LX- LB X) • -tr. ((BL)X). From Fredholm's theorem of tne 
0 0 

alternative (cf. Dunford-Schwarz (1958) p.609) we know that the 
. . . 

equation BS a B 
0 0 

is solvable (perhaps not uniquely) for S
0 

only if LB
0 

• .o for every L which satisfies LB a O, and we 

have just seen that LB ca O means BL a O, which implies 

BL• LB, which implies that L is a polynomial in B since 
0 0 0 

B is non-derogatory (cf. Gantmacher (1959) p.222). So every L 
0 

which satisfies LB• 0 has the form LB a tr.(LB) a 
0 0 

a tr.((polynomial in B )B ), and this must vanish because of 3) 
0 0 

k and the fact B • 0 for k > m. Therefore 3) implies l). ~ext 
0 

let us deduce 2) implies 3). Since B is non-derogatory and 
0 

nilpotent it must be similar to J • . If 

m><m . 
the similarity that takes B to J takes B to X • (~ .. ) 

0 0 ~J 
then, by 2), X must satisfy 

m+l-i 
i.e. l ~ · k 

1 

• k • 0 for 1 ~ i, ~ j ~ m m+l-j ~+ - ,J-~ 
0 

.J .. 



This is soon recognized as equivalent to 

m-k 
l :x; ·+k • 1 J ,J - 0 for O ~ k ~ m-1 

i.e. tr. (l<xJ i:::a Q for o ~ k ~ m-1 . 
Reversing the· similarity yields 3). 

Finally we demonstrate the existence of an analytic nilpotent 

B(T) that interpolates B(O) • B and 8(0) a B. Solve l) for 
0 0 

S and set S{-r) = l + -rS and B(-r) = S(-r)B S(i:)-l. Now B(-r) 
0 0 0 

is nilpotent (and non-derogatory), since it is similar to 

at least for -r small enough. And B(O) - S(O)B - B 8(0) 
0 0 

B , 
0 . = a . 

0 

Lacking anything comparable to lemma III.1.2 for derogatory 

nil~otent matrices, we should like to avoid them. That is not 

difficult to do. In the manifold of nilpotent matrices the non

dt~ogatory ones constitute a dense open set; that this is true 

can be inferred from the Jordan normal form in a way that will 

be left to the reader. 

III.2: The condition number of a multiple eigenvalue 

Let ,; be an m-tuple eigenvalue of an n x n matrix Z and 

let P be ,; 's spectral projector. We shall estimate the condi

tion number 

where the supremum is taken·over all infinitesimal oz such that 

Z+oZ continues to possess an m-tuple eigenvalue ~+o~ near ,. 

We shall show that 
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Furthermore, provided the restriction of z to P's range is ~ot 

derogatory, i.e. provided Z has only one eigenvector belonging 

to or, equivalently, provided m m-l P(Z-t) • 0 + P(Z-t) , 

shall show that y can be computed straightforwardly though 

expensively by solving a linear least-squares problem; 

In this case, we shall conclude, 

we 

Although the upper and lower bounds for y are far apart when 

m > 1 and llPU 2 is big, each bound can be achieved by an appro

priate and non-trivial example. 

Here is how those claims are proved. Recall that, provided 

no eigenvalue of Z lies on the closed contour r, 

is the spectral projector upon Z's invariant.subspace belonging 

to the eigenvalues inside r. Suppose there are m such eigen

values. Then their average value is 

µ = tr. (PZ) Im 

Since no eigenvalue of Z lies on r, we find that both P and 

µ are continuously differentiable functions of Z; in fact an 

3c 



infinitesimal perturbation o·z causes P and µ to change by 

(cf. Kato (1966) pp. 76 and 79) 
.,,, 

oµ • tr.(PoZ)/m since tr.(ZoP) • 0 

We are interested in the special case when all m eigenvalues 

inside r are coincident at ~. and when the perturbation oz 
is so constrained that all m perturbed eigenvalues inside r stay 

. \ 

coincident at l;+o~. In this case µ • l; and o~ • o,, so , 's 

condition number y(,;,Z,ll•••ll 2J satisfies 

y • sup loµj/ll6Zll 2 over constrained oz 

•; sup ltr.(PoZJI/HoZU2 over constrained oz 

~; sup ltr.(PoZJl/lloZU2 over all oz 

• UP11 2/m 

Thus we conclude that an ill-conditioned eigenvalue must have a 

spectral projector of large norm. After we show to what extent the 

converse is true we shall show how, given m and a value i1Pll 2, 

to construct a matrix Z with y • llPU 2/m. 

To obtain a sharper estimate for y we must take the con

straints upon oz into account, and we shall now do that just in 

the non-derogatory case when P(Z-l;)m • O + P(z-,)m-l. By 

lemma III.l.l the equation P(Z-l;)m • 0 is, equivalent to 

which, when differentiated, yields 
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The last term vanishes because 

tr.((Z-t)koP) • -2
1 l tr.({Z-t)k{T-Z)-1oZ(T-Z)-1)dT 
1Tt 'Jr 

• -21 tr.(I (Z-~)k(T-Z)-2dT oZ) • 0 . 
;rt '! r 

k-1 Furthermore the coefficient of o~, -k tr.(P(Z-t) ), already 

vanishes when k > l. Therefore oz necessarily satisfies 

·k-1 tr.((Z-~) PoZ) g O for k • 2,3, ... ,m 

and what remains to be shown is that these conditions upon oz· 

are also sufficient to ensure that t+ot, with ot a tr.(PoZ)/m, 

is an m-tuple eigenvalue of Z+oZ. 

L h di • hi h z - r - (AO BO) et us c oose a coor nate system in w c ~ - w:!.th 

non-singular A and an m x m matrix B which must satisfy 

(
o.Z 11 oz 12) 

Let oz • 
oz21 oz22 

satisfy 

the conditions in question; 

We wish to infer that Z+oZ has an m-tuple eigenvalue ,+o,, 
and shall do so by constructing a non-singular matrix 

(differing infinitesimally from 1) for which 



'When this similarity relation is pre-multiplied by (l-oS) we 

find that 6S and oA must satisfy 

oA • 0S11 • A -AoSll + ozll - Ol; 

Bos21 - os21 •A • oz
21 

Aos12 - os12 • B • oz12 

sos22 - os22 •s - oz22 - oz; 

These equations are obviously solvable for oA, os11 (arbitrary), 

oS • _rm-l s1 oz •A-j-l and oS ~-l A-j-loz s1 but 
21 Lo 21 12 • lo 12 • ; 

the solution os22 of the last equation is not so obvious. How-

ever, lemma III.1.2 provides assurance that a solution os22 does 

exist provided oz;• tr.(oz22J/m • tr.(PoZ)/m, in which case the 

conditions 3) of lemma III.1.2 are satisfied with B a B and 
0 

B - oz -oz;. 
0 22· 

Of course, the foregoing manipulations with infinitesimals 

6S .. can be re-interpreted in terms of derivatives along the lines 
1,J 

of lemma III.1.2 and the matrix S(L) constructed there. 

Now that we know the necessary and sufficient constraints 

upon oz etc., namely 
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tr. (P(Z-z;)k) • 0 and tr. (~(Z-,;)k-l(oZ-cSz;)J • 0 for k ~ 1,2, ... ,m 

provided P(Z-z;)m-l + 0, we return to the computation of 

Y • sup loz;l/UoZU 2 over constrained oz • 

The computation will be carried out in a new orthogonal coordinate 

system in which 



(

A AR-RB) 
z- r; -

0 B 
and 

and A is non-singular and If"• 0 + If"-1• Once again we set 

(
oz11 oz12) 

oz• but now the constraints take the form 
oZ2l oZ22 

Therefore 

o,:: • tr. (oz22 - oz21RJ /m and 

k tr. ((oz22 - oz21R)B ) • 0 for k • 1,2, ••. ,m-l • 

2 I 12 2 y a sup o,:: /11<5ZU 2 over constrained cSZ 

a m-2sup ltr.(cSZ22-cSZ21RJl
2

/IIlloZijll~) over ••• 

a m - 2sup I tr. ( oz22-oz21R) I 
2 / ( ll oz21 II i + ll oz 22 11 ~) over • • • 

where we have set oz11 • 0 and oz12 m O because any other 

values diminish the quotient we are trying to maximize. The desired 

supremum may now be located by standard variational techniques 

which we shall merely summarize and verify, though first we shall 

drop the o in front of oz22 and oz21 since the quotient and 

the constraints are homogeneous functions. 

-1 • * * 
Let C = (1 - ~ \8) (-R 1) with the coefficients A. 

J 
2 * so chosen that llcll 2 a tr.(CC) 

solutions of the normal equations 

is minimized. The A . 's are the 
J 

1 

which are linear in {A.} and non-singular too because, since 
J 

.m ..m-1 • ~-1 _-; 
~ • 0 + ~ , the polynomial Ll Ajl:S" cannot vanish unless 
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all A.'s vanish. The normal equations for C coincide with the 
J 

constraints that (Z21 z22) must satisfy (recall that the.o's 

have been dropped), so C is a permissible choice for (z21 z22) 

and differs from any other choice by a matrix I = (Z 21 z22) - C 

which must satisfy the same constraints, namely 

We are about to discover that only when (z21 z22) is a non-zero 

scalar multiple of C can the following quotient achieve its 

supremum: 

m
2

lo,;;I
21\l0Z~i • I tr. ( <z21 z22> Cf) J l 2 /~ <Z21 z2?> ll; 

m-1 . 
• I tr. ( (C+I)(c* +Cf) }: Ajs7) J I 2 

/ IIC+Yll i 
1 

• 111clii+t~.r1c*J+ol2/Uc+111~ 

- ucu! - (u.ru;ncu~- ltr.r.rc*J l2)111c+1u~ 

< llClli , 

with equality only when .Y is a scalar multiple of C. Therefore 

we have proved that, in the non-derogatory case, 

y(,;;,Z,U•••ll 2J • UCllifm 

• min ~ (l- r;_-1 \Bk) * (-R* l) ~
2

/m 
Ak 

• min ~P(l·- ri-l ¾ (~-l;)k) ll/m 
-~ 

Our next task is to secure a lower bound for y. Write 

U = 1- r;_-1\.i/' and let U 's singular values in order be 
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2 2 2 
a1 ~a2 ~ •••~am> O. Also write p = URll 2 • 11Pll 2 -m.- We 

* * seek a lower bound in terms of p and m for llU (-R l)ll 2/m. 

Evidently 

* * 2 * * 2 * 2 
II U {-R 1) U 2 • ll U R 11 2 + II U ll 2 

> a2p2 + tr.(u*uJ 
- m 

* * 2 * the last inequality is achieved just when UU R O amR. What do 

we know about U's singular values a.1 Since 'i" a O, det.U • l 
J 

2 2 2 * and hence a1a2•••am • 1 while a1+a2 +•••+am m tr.(U U). 

Therefore 

* * UU (-R l) ll 2 > a2 + a2 + ••• + a2 + (l+p2)a2 
2 - l 2 m-1 m 

> m(a20 2 .•. 0 2 0 2(l+p2))1/m 
- 1 2 m-1 m 

=- m(l+p2)1/m 

with equality in the inequality between arithmetic and geometric 

means just when a - a a • 0 • - a a a ✓1 +p 2 • 1 2 m-1 m 

Assembling the relevant relations above yields 

as claimed. The final tasks are to demonstrate that the bounds 

are achievable. Briefly, to achieve the upper bound y ~ IIPll /m 
* it suffices that RR above be diagonal. To achieve the lower 

bound it suffices that 

1 
0 1 
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* and that R have the form R • y~ where 

* 1-m 2-m -2 -1 
~ a (a ,a , ... ,a ,a ,l) and 

* 2m-2 2 y y .. a (a -1) 

for some arbitrary a> 1. It will ·turn out that 

U • l - (a2-1) J.~-l a-j Jii and R*R + l • a 2 (UU*) -l. The details are, 

once again, ·left to the reader. 

Since y is huge if and only if IIPll 2 is huge, even though 

they may still be orders of magnitude apart, we shall henceforth 
I 

dispense with y and use only IIPU 2 or llPII as our measure of 

ill-condition. 

III.3 What happens when UPU is huge? 

We shall consider now some of the ugly phenomena associated 

with spectral projectors of huge norm. 

Proposition III.3.1: If ~ is an m-tuple eigenvalue of Z and 

P its spectral projector, then there exists a perturbation ~Z 

such that ~ is an (m+l)-tuple eigenvalue of Z+~Z and 

ll6Zll ~ llZ-~U/llPlll/m, so U~ZU is small if IIPU is huge. 

Proof: By a unitary similarity exhibit 

and P• (: -:) 

m m 
_m (z-.,.)m • (:Ao AoR) where A is non-singular and ~ .m O. Evidently ~ 

so we find that 
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llPil • ll (l R) ll ~ IIA-mll U (Am AmR) ll 

=- IIA-mll U (Z-r;)mll ~ IIA-lllmllZ-c;llm 

How close is A to its nearest singular neighbour A+AA? We know 

(see part I) that such a AA can be found with IIMII ~ l/llA-1 11 • 

and the previous inequality shows that that AA satisfies 

llAAII ~ llZ-r;ll /llPll l/m. Therefore we can use az • (~ ~) to 

achieve what has been claimed. 

This proposition slightly sharpens one of Wilkinson's (1972) 

when m • 1, in which case the proposition is best-possible with

out more information about Z than IIZ-l;ll and IIPII. Even so, it 

can be somewhat misleading. 

G.E. Forsythe: 

z -

Consider an example used by 

0 1 
0 l . . . . . . 

0 1 
0 nxn 

Here we may assume n > 10, and l; small and positive, say 

t < l/10. Z has n distinct eigenvalues equally spaced around 

a circle of radius r; all with the same condition number 

Consequently, the proposition says that Z is no farther from a 

1/2 n-1 matrix with a double eigenvalue then roughly n r; . In fact, 

Z is within l;n of a matrix with an n-tuple eigenvalue. 

When m > 1 proposition III.3.l probably far over-estimates 
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the distance to the nearest matrix z+az. with an (m+l)-tuple 

eigenvalue. 

We now turn to the spectral projectors belonging to clusters 

of eigenvalues of unspecified multiplicities; and demonstrate why 

projectors of large norm are to be avoided. 

Proposition III.3.2: Let r be a closed contour in the complex 

;>lat1e which separates Z 's spectrum into two parts; m eigenvalues 

(counting multiplicities) strictly inside r and the rest strictly 

outside. And let P be the spectral projector onto Z's invariant 

subspace belonging to the m eigenvalues inside r. Whenever 

llPII is huge, in particular whenever llPU > ✓m+l, there exists a 

small perturbation az satisfying 

such that z-az has at least one eigenvalue on the boundary r. 

Proof: Once again use a unitary similarity to exhibit 

where B is an m x m matrix whose spectrum lies inside r and 

A's spectrum lies outside. Furthermore, we may exploit Autonne's 

theorem to exhibit R as an (n-m) x m. diagonal matrix with its 

singular values p > p > ·•• > p > 0 on its main diagonal. 1-2- -m-

(It is convenient here to assume n-m ~m; otherwise swap the 

roles of A and B.) Note that llRll • p1 and llPll = ✓l + pf • 
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For any k in 1 ~ k ~m we may partition 

with square A• diag(p1 ,P2, ... ,pk) 

and M • diag(pk+1, ... ) or null, 

and conformally partition 

,.. 

h 11 • di 1 • h d ~z - (Mo;~) Wes a examine a st nguis e ~ ~ where 

-1 

• 

,.. - [-A Xll/2 B12) 
and M = 

0 0 
are so chosen that 

have in common the k common eigenvalues of 

A 

Consequently, using AZ= Laz with O < L < 1 we shall find that 

the eigenvalues of Z-AZ move continuously, as L increases from 

0 to 1, until k eigenvalues that started inside r coalesce 

with k that started outside r. For some L between O and 1 
,.. 

one of those eigenvalues must cross r, and then Uazu 2 • Lll~ZU 2 ~ 

,.. 
Thus, all that remains to be shown is that ll8Zll satisfies 
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11az11; • IIMU~ + u&n; 

D !ilX11A-
1
li + II <x21+MB21>A-

1lli + IIA-
1

<A12M-X12> Iii+ !~A-
1
x11lli 

i Pj/ (l(x11ll i'2 + < ~x21ll 2 + Pk+1l821~ 2> 
2 

+ < ~x12ll 2 + Pk+1llA12ll 2> 
2
) 

i Pk
2
<1 + P~+1> qx11li+ ~x21~i+ ~821~i+ ~x12lli+ ~A12~i> 

-2 2 2 
~ pk (l+ Pk+l> uzn 2 • 

Let us now choose k to minimize the factor 

pose 8 is that minimum value; i.e. 

Then 

, 

••• 

; 

evidently 6 is no bigger than the positive root 0 of 

2 2 -l -2 -m IIPU • l + p = l+ 0 + 0 + • • • +0 2 1 

Sup-

2 -1 2 -m When p
1 

> m we must have 0 > 1 and hence p1 < m0 , whence 

0 < ml/mp-;_2lm < el/e (IIPU 2-1)-l/m~ where el/e • l, 445• • • • The 

claimed result follows. 

This proposition seems to overestimate ll6Zll grossly. Indeed, 

if P has k large singular values and the rest small, say 

✓l+pk/ ✓l+pk+l >> 1, then the proof above yields 

uazn ~ pk1✓l+Pk+luzu, which is far smaller than claimed in the 

proposition. Another example of overestimation arises when a 
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similarity (perhaps not unitary) of modest condition number (see 

below) succeeds in diagonalizing A and B without erasing the 

block AR.- RB. It is possible to show then that UaZll need not 

much exceed UZU 2/UPU 2 when UPU is large; this claim will not 

be proved here. 

Next we shall consider the condition number K(Q) = UQU•UQ-1U 

of similarity transformations that reduce Z to the block diagonal 

form 

There are many similarities which reduce Z to this form, and we 

shall be particularly interested in the ones whose condition num

bers are roughly minimal. Experience teaches us that if the mini

mal condition number is huge then the reduction of Z will be 

hypersensitive to rounding errors and other perturbations and 

uncertainties; see Wilkinson (1965) p.87. 

Proposition III.3.3: Let r, Z, m and P be as in the previous 

proposition III.3.2. When IIPU is huge every similarity Q-1zQ, 

which reduces Z to block diagonal form with one block for the m 

eigenvalues inside r and the other block for those outside, must 

be ill-conditioned; K(Q) ~ UPU. Conversely, if every similarity 

is ill-conditioned then ll.Pll must be big because for some such 

similarities IIPH ~ K(QJ/4. 
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Proof: Once again use a unitary similarity (which does not aggra- .~ 

vate the condition numbers) to exhibit Z in the block triangular 



form used in proposition III.3.2. Any eligible similarity Q 

must exhibit two blocks, one similar to A and the other to B~ 

Consequently, every such Q must have the form 

,r1zQ • (S-:AS 
T-~Hr) 

, 

whence Q - [~ -~) and -1 (s-1 
S-lR] Now llQll ~ USll Q - -1. 

0 T 

and llQU ~ II Cf)TII ~ IIPII /UT-1ll' and IIQ-1 ll > IIT-1 ll and -
llQ-1U ~ us-1 c1 R) II ~ UPU / llSU. Therefore 

> 4llPII , as claimed. 

On the other hand, if we choose for S and T any matrices which 

satisfy s*s • a2 and T*T • L
2 for constants a and T that 

satisfy a/T • IIPII, we find that 

t<:(Q) • UQU • IIQ-1U < (11s0 + IIPll • IITU) (IIT-1 11 + us-10 • IIPll) 

• (a+LIIPU) (T-1 + a-111PU) 

• 4llPU , as claimed. 

III.4: The nearest nilpotent matrix 

Suppose we have identified every cluster of Z 's eigenvalues 

to which belongs a spectral projector of moderate norm, and no 

such cluster may be broken up without introducing huge spectral 

projectors. We could perform a unitary similarity which exhibits 

Z in block-upper-triangular form with one diagonal block for each 

cluster. What should be done next? 

49 



In a sense, each block resists further reduction as if it 

were an approximation to a truly irreducible block, namely a block 

with only one multiple eigenvalue. The purpose of what follows 

is to discuss how to locate that irreducible block in the hope that 

we may replace each ill-behaved cluster of eigenvalues by a well

behaved multiple eigenvalue without appreciably changing the given 

matrix. 

Problem III.4.1: Given an mxm block B, find the nearest 

matrix a +C with only one eigenvalue B; C must be nilpotent. 

By "nearest" we mean to minimize 11B-a-cu. 2 

It is not hard to find the best value for 6; write 

2 2 a\ 12 B • tr. (B) Im +t and observe UB- a- Cll 2 • UB - tr. (BJ Im- Cll 2 +i ~ 

since tr.(C) • O. Therefore the best value for a is 

S .. tr.(B)/m (cf. µ in III.2) 

and from the same observation we deduce that the nilpotent matrix 

C nearest to B - B is independent of a. That at least one such 

nearest nilpotent C exists follows from the fact that we need 

only search for the matrix in the compact set of nilpotents C 

which also satisfy 

IIB - a- cu < UB - a - au 2- 2 

since there is no need to look at anything farther away than the 

nilpotent O. 

Let us imagine that the best C has been found, and choose 

a new set of orthogonal coordinates to exhibit C in upper 
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triangular form. Since C is nilpotent it is strictly upper 

triangular. Since C is closest to B-B, B-'3-C must be lower 

triangular in that coordinate system, and that lower triangle must 

have the minimum norm of all lower triangles of matrices unitarily 

similar to B - a. Since the norm of all of B - a is unchanged 

by unitary similarity, we have the following result: 

Proposition III.4.2: Given an m xm matrix B, the nearest 

matrix B+ C with only one eigenvalue a can be cons~ructed as 

follows. Of all matrices * . U BU unitarily similar to B, choose 

one whose super-diagonal elements have the largest sum of squared 

* magnitudes; call it E • U BU. Annihilate all the sub-diagonal 

elements of E to get F. Its diagonal elements will all be the 

same, namely S (this is not obvious -- see below). ?hen 

* S+ C • UFU . 

To prove that all the diagonal elements of E are the same we 

need only consider its 2 x 2 principal submatrices with adjacent 

rows and columns. Each such submatrix must be such that no. 2x 2 

unitary similarity can increase its super-diagonal element. A 

modest calculation shows that this implies its two diagonal ele

ments are equal. I am indebted to Alan J. Hoffman for suggesting 

this simple approach to what used to be a much more complicated 

proof. ?hat proof, which used variational methods, also showed 

that (B-S-c)* must be a polynomial in C, and that if d'<- • 0 

then k ~ (m+l)/2, but these facts seem not to help the search 

for C. 
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Proposition III.4.2 suggests that C might be constructed 

via a sequence of 2x 2 Jacobi rotations each designed to enhance 

the magnitudes of super-diagonal elements. Such a scheme works 

immediately when mm 2, 

be intolerably slow for 

research. 

may work well when m • 3, and seems to 

m > 4. There is ample scope for further 
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