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CONSERVING CONFLUENCE CURBS ILL-CONDITION

We. Kahan*

Abstract. Certain problems are ill-conditioned, in the sense that
their solutions are hypersensitive to small changes in data, only
because a slight change in data could cause those solutions to
exhibit singular behaviour associated with various kinds of
.confluence. For example, an over- or under-determined linear
system solved by least-squares can be ill-conditioned oaly if
there exist some small perturbations to its matrix which increase
its nullity (i.é. diminish its rank); zeros of a polynomial can
be ill-conditioned only 1if their multiplicities can be increased
by very small perturbations of the polynomial's coefficients;
eigenvalues of a non-Hermitian matrix can be ill-conditioned only
if their algebraic multiplicities can be increased by very small
perturbations of the matrix. When perturbations constrained to

a small neighbourhood can be further constrained to maximize
confluence, i.e. to maximize nullity (minimize rank) or maximize
multiplicity, and when that maximized confluence can be increased
again only by perturbations far beyond the small neighbourhood,
then the slightly perturbed problems exhibit well-conditiomed
confluent solutions. Beyond these vague statements lie the
shadows of numerical me;hods which may either eliminate ill=-
condition or, when ill-condition is persistent, illuminate its

cause.
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CONSERVING CONFLUENCE CURBS ILL-CONDITION

W. Kahan

"Mother may I go to swim?"

"Yes, my darling daughter;

Hang your clothes on yon tree limb,
But don't go near the water."

Introduction., Numerical calculatioms generally appear in the form

Compute Yy = f(x)

where f characterizes a class of problems and & represents
the particular data. Commonly f 1is defined implicitly by a
set of equations whose coefficients' values constitute &, and
Yy 1s the solution of those equations. The equations are called
tll-conditioned whenever there exist tiny perturbations Ox
which cause huge changes &y = f(x+6x) - f(x). To make this
notion more precise we imagine & and y to reside in metric

spaces -- normed linear spaces are customary -- and define a

condition number

Y = sup [Syl/l8xl

where the supremum is taken over all 6x in some neighbourhood
of x. Thus, the condition number Yy 1is a Lipschitz constant;
If (x+6z) = f(x)l < ylSxl. The larger is Y, the more ill-condi-
tioned is the problem f near x. When Y is infinite we
sometimes say that f i1s <ll-pogsed near &, though this term

is reserved by some for discontinuous behaviour.



Non~differentiable functions f are so rarely encountered
in practice that we might as well exploit the simplification
afforded by constraining perturbations 6x to infinitesimal

neighbourhoods. Now

Flatdz) = flz) = (3f/3z)dx

wherever the Frechet derivative 09f/9x exists, in which case

Y = |of/oxl

here we use the induced norm for linear operators between two

normed linear spaces.

Since df/9x 4is usually differentiable too, it seems natural

to guess that an ill-conditioned problem, with [9f/oxll huge,
probably has its data & near a place where Jf/9x becomes
infinite or fails to exist. The locus of all such places is
usually a manifold in &'s space, and that manifold is the sub=-
Ject of this paper. Here are three examples:

When f represents solving a system of linear equations
Ay = b with square matrix A, 8o each point z in data-space
has coordinates (4,b), and when the infinitesimal neighbourhoods
are generated by all infinitesimal (64,00) without comstraint,
then the manifold where df/0x becomes infinite consists of
just those points & ~ (4,b) with singular 4 since elsewhere
y = A-lb varies by &y = A" tsp - A-l(GA)A-J’b, a bounded linear
function of the infinitesimal perturbation 6x ~ (84,8b). When

f represents solving polynomial equations

n n cee - -
y =y -y - T, 1Y =%, o ,



so each point x ~ Czl,zz,...,zn) in da:#—space is identified
with a polynomial xz(y) = y" - ZZ xjyn-j, the manifold where
9f/3x becomes infinite consists of just those polynomials &
with some multiple zeros since elsewhere each simple zero y of
& varies by &y = Zt yn-jdzﬁlz'(y). A similar situation arises
when f represents solving eigenproblems for square matrices
X; the eigenvalues and eigenvectors are well-known to be
differentiable functions of X's elements only when X's eigen-
values are distinct, so the manifold of interest consists of
those matrices X with some multiple eigenvalues.

One might be tempted to assign some pejorative adjective to
that manifold on which 9Jf/dx fails to be finite. (There are
precedents; in 1884 Sylvester assigned the word derogatory to
certain matrices with multiple eigenvalues, and physicists
almost universally apply the epithet degenerate to eigenvalues
whose only flaw is their indistinguishability.) 1In so far as
f 1is ill-behaved near that manifold, the more so as it is
approached, the manifold warrants the name pejorative*. But
in the last two examples above f will be found to behave very
well on the manifold, except as & approaches certain sub-mani-
folds. More precisely, for almost all & on the pejorative
manifold and for all infinitesimally nearby z+6x also on that
manifold the difference f(z+Sx)-f(x) 1is a bounded linear func-
tion of &x, and the bound varies with & on the manifold in
such a way that the bound can approach infinity only as x
approaches some doubly pejorative sub-manifold on which the same

kind of behaviour recurs. That phenomenon is what this paper is

about,

*
Pejorative: from the Latin pejorare to make worse.



The paradox, that f can be well-behaved on a manifold in
every open neighbourhood of which f 1s arbitrarily ill-behaved,
would be uninteresting but for another property of such pejorative
manifolds; they can be characterized ostensibly independently of
f's good or ill behaviour. For want of a better term I use the
word confluence to describe what happens to f on those manifolds.
When f represents zeros of polynomials or eigenvalues of matrices
the confluence is obvious; some zeros flow together as a polynomial
& approaches a pejorative manifold; some eigenvalues flow
together as a matrix X approaches a pejorative manifold.
Confluence in a linear system is identified with collapse of the
range of its matrix as it approaches a pejorative manifold; this
manifold in matrix-space is the locus of discontinuities (drops)
in the rank function.

Pejorative manifolds are interesting just because they are
assoclated simultaneously with confluence and with an abrupt
change from wild mis-behaviour to tame good-behaviour. Consider,
for example, a polynomial & 6 80 constructed as to emsure, in the
absence of error, that among its zeros y _ = cho) must be some
that are coincident; but because error Ar has crept into the
data z_ = none of the available zeros yo-ﬁAy - fﬂrd+Ax) are coin-
cident. They may well be nowhere near coincident. Frantic
dispersal of perturbed zeros is frequently quite pronounced
when z, is of high degree, and is not surprising when we realize
how wildly f must misbehave near a péjorative manifold. Given
only x°+Ax and a bound for Az, can we discover a nearby -

on a pejorative manifold? That x, will not be unique but,

1



provided the bound on [Ax] is small enough to keep %, well away
from a doubly pejorative sub-manifold, we can expect that the multiple
zeros among Y, = fﬂzl) will not vary much as x, runs through

those values on the pejorative manifold close to x°+Ax. Thus do we -
substitute a well-conditioned problem fﬂzl) for an ostensibly ill-
conditioped problem fo°+Ax). On the other han@, we may discover
that x°+Ax is farther from the pejorative manifold than the bound
on lAxll, in which case we infer that something, either the bound

or the construction of z , 1s wrong (i.e. mistaken).

The properties of pejorative manifolds have many other prac=-
tical implications but to discuss them here would be premature.

First we must verify the foregoing assertions about those properties.
Secondly, we should consider how to locate the manifolds compu-
tationally; here is where the theory is weak. Only for linear
systems do we know how to tell cheaply whether a data-point &

is close to or far from a pejorative manifold, and whether there

are multiply pejorative sub-manifolds nearby, and where they are.
Some of this knowledge is imparted in part I of the paper;

Parts II and III comsider polynomials' zeros and matrix
eigenproblems respectively. For these problems the simplest
pejorative manifolds, corresponding to double zeros and double
eigenvalues, are easy enough to locate; but multiply pejorative
sub-manifolds are not yet within reach of cheap computation. In
particular, we cannot easily tell whether a data point & is far
enough from a multiply pejorative sub-manifold that that sub-mani-
fold need not be explored, unless & is very far from every such

sub-manifold. Fortunately for our theory, multiply pejorative



sub-manifolds need only rarely be considered; in ordinary language
this means that double roots, though rare, are overwhelmingly
more common in practice than are roots of higher multiplicity.
Consequently, the theory is ripe for exploitation despite its
immaturity. The theory's subsequent growth seems likely to depend
upon numerical amalysts' proficiency with algebraic geometry and
metric spaces.
% Kk ok ok %k

I take pleasure in acknowledging here the assistance and
encouragement received, while the foregoing notions were evolving,
from several years' discussions with many colleagues and friends.
Especially; George Forsythe's continuing interest in those notioas
considerably stimulated their development. I am indebted too to
the organizers of the SEE Gatlinburg Symposium on Numerical Linear
Algebra, held at Los Alamos on June 5-10, 1972, for an opportunity

to present those notions to a wide audience.
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Part I: The Pseudo-Inverse
The pseudo=-inverse XT of an mXxn matrix X 1s uniquely

defined formally by the familiar equatioms

@ xtxeax, futax, ™o =x%, «H* «xx,

but a better definition is derived from its pfincipal applicationm,
the solution of linear least-squares problems: Given X and an
m-vector v we seek that n-vector ® which minimizes [v-Xwi,
and when the minimizing w i1s not unique (as must be the case
just when X's columns are linearly dependent) we seek that mini-
mizing w with minimal .ﬂwﬂ. The vector norm used heré is

lwl
izl

m

Yw¥; we shall also use the induced matrix norm

Ytr.(2%2Z).

max [Zwl/lwl and the root=-sum-squares norm llle2
T::Odesired minimizing vector w turns out to be w = va;
see R. Penrose (1954,1955). This formula is interesting only when
X's columns are linearly dependent or nearly so, since otherwise
we could substitute X# - (X*X)-IX* and ignore the equations

(+) above. But just when X+ becomes interesting it becomes
numerically exasperating no matter what method ie employed to
computa it because when X's columns are linearly dependent X?
must be a violently discontinuous function of X and hence hyper-

sengitive to small variations, as we shall see.

In what follows we shall discern a nested sequence
MODMIDMZD'"

of pejorative (for k 2 1) manifolds and sub-manifolds in the

space Mo of mxn matrices JX; Mk is the manifold of matrices

23



whose rank does not exceed min(m,n)- k. We shall discover that

X' is a well-behaved function of X provided X 1s confined to

Mk and avoids Mk+l' More precisely, we shall find that while X

and its infinitesimally neighbouring X+ 38X are constrained to Mkak+l

UX+H = 1/(the minimum distance [+l from X to Mk+l) »

ﬂX+ﬂ2 - supﬂd(x+)uzlﬂ6XU2 over X+6X on the same Mk as X .

Some of these diséoveries have been seen before, particularly in

the works of G.W. Stewart (1969), V. Pereyra (1969), and Golub

and Pereyra (1972), whose treatments should be compared with what
follows. Finally, we shall consider, given X and a tolerance

€ > 0 such that all X+AX with [AXl < £ must be regarded as
indistinguishable for practical purposes, how to find an approximation
X indistinguishable from X with the best-behaved 2*.

Some apparatus is needed. Let us assume m > n (otherwise
transpose X) and denote X's n saingular values in order by
£ 2 5'2 2 00 > E,'n 2 0. That §, = fixl 1s well known, as is
the fact that X*'a singular values are the re-ordered numbers

E}, where
C+ = 1/% except for 0* =0 .

Not so well known is the following relation proved by L. Mirsky

(1960, theorem 2):
Ek = min [AX] over rank(X+AX) <k .

One implication of this relation, to be used later, is that no

singular value of X+AX can differ from the correspondingly



numbered singular value of X by more than [AXl. Another impli-

cation obtained via ﬂX*ﬂ = maxj(g;) is that

170 = 1/minldX] over rank(X+AX) < rank(X) .

Consequently, if X 6 Mk but X ¢ M then

K+l

1-
1X'l = 1/minlAXl over X+AX e Mk+l R

which is just what was claimed for RX+H above.

Next we shall exploit a little known formula;

-yt w T ensT + a-ro @en* et Pt eenfa-n® .

This formula can be verified by applying the equatioms (1) above
to reduce the right-hand side to its simplest terms. Note that
(1-2*2) and (l—XX*) are orthogonal projectors which annihilate

* *
I* and Y , and X* and X respectively. Counsequently we

find

& &xt-rTy - xM* - ™y e-nxt

- -0 e e-n* -

+ 1% -n a-r' o -0 T
- a=xxD) x-pr ™yt w-nx’

* *
+ @-xxh) x-n T 2 e-nta-y
and taking norms yields an important inequality

PR LR PR L (P A P L P LT P | P S Pary
< 5Ix-x1% max{1x™1, 00" 0} .

Now let Y = X+AX, and suppose both X and X+AX 1lie on Mk
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but not on Mk-i-l' As AX + 0 we see that | (X+AX)+H becomes

and remains bounded, and then that liX+ - (X+AX).‘.EI + 0. 1In short,

X+ is a continuous function of X on Mk away from Mk-i-l'
soon follows that X.r is differentiable too, for we need only

It

set Y = X+38X, with infinitesimal &X constrained to keep

X+8X,1like X, on Mk away from M

K1 to deduce that

sy = =xTs0x™ + a-xto ex ™t + o ex™y a-xxty .

Next we seek to compute supllS(X*) [ 2/ UGXIIZ. To this end it
is convenient to invoke Automne's theorem which exhibits X = PAQ
where P2 is mxm unitary, Q is #nXn unitary, and A is
mXxXn diagonal with the singular values EJ. on its main diagonal.
This singular value decomposition may be computed at modest cost
by methods described in Golub and Reinsch (1970), and will be

further exploited below. For the present let us partitiom

in such a way that just X's non-zero singular values F,'J. appear
on the diagonal of the square diagonal matrix Ao. Evidently

X* - Q*A".P* where

Also llX+1| - lIA;lﬂ. Next partition conformally
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84 6B
* *
SA =P (8X)Q = ;

8C 6D
by fixing P and Q independently of 6X we oblige &A to be
non-diagonal in general. Since X+8X must have the same rank
as X, MA-SA wmust have the same rank as A, and this must be
the same as the rank of |

1 0 A°+6A 8B
-1 (A+SA) = -1 .
-60(A°+GA) 1 0 GD-SC(A°+6A) (:]

The rank in question is that of Ao, and also of A°+6A since

84 is infinitesimal. Therefore we must have
8D - 60(A0+6A)'153 -0 ,

but this merely says that the infinitesimal &D = 0. Therefore,
infinitesimal perturbations uX{ £for which X and X+8X have
the same rank must have the form

64 6B

8X = P e .
&€ 0

Substitution into the formula above for Gcff) soon leads to the

conclusion that
1612 < 1xTntiexi

with equality possible when 64, 6B and OC are chosen to have
noun-zero entries ohly in rows and columns corresponding to the

largest entries in A;l. Thus we conclude that pseudo-inversion
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can be ill-conditioned with respect to rank-preserving perturba=-
tions only if the data-matrix X i1s very near another of lower
rank. |

Finally let us discuss how to compute a pseudo-inverse appro-
priate for a given matrix X when given also a tolerance § > 0
such that all X+AX with [AXl < £ wmust be regarded as indis-
tinguishable from X. Should some of these matrices X+AX have
different rank than X there must exist others whose pseudo-
inverses differ arbitrarily much among each other. Nomne of those
wildly divergent pseudo-inverses can be useful. Instead let us
find a matrix X = X+AX of minimal rank with [AX] < €. Such
a matrix is easily obtained from A above by annihilating all
F;J. < &; let A denote what x;esults and let X = P?\Q. If £ < «En 7~
then A=A and X = X; 4in this case for all AX with

jaXl < § we find that

| Gean) T < 1/(6,~E)  and

by < (e g 0 2,

The latter inequality is obtained by substituting Y = X+ AX and

o
X*X = Y'Y = 1 into the formula above for XT-Y'I-, and then taking

the norm of (X*—.Y.r) (X*-.Y*)* with the aid of IIX'E.!I - I/En and

1rt < v/ (,-E). The point of the inequality is that if E£/f << 1

we may confidently assert that all indistinguishable matrices
X+AX have nearly the same pseudo-~inverse.

The interesting case occurs when En-k >E£2>¢ for some

n+l=k
k > 0. This means that among the matrices X+AX with [AX{ < &

-

are some of rank n=k,n+l-K,...,n. Every time X+AX changes rank,
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L¥+AX)+ jumps infinitely violently. But as X+AX runs through
matrices on Mk of rank n-k with [AXl < &, (X*AX)* varies

continuously and
t ot 2
DdX) " =X < B o I, =80 .

Whenever E/En_k << 1, the pseudo~inverses of matrices on Mk
indistinguishable from X will differ only slightly among each
other, although matrices X+AX not on Mk will have huge and
wildly varying pseudo—inverses; in this case 2* seemg to be a

reasonable response to the command

"Compute X+" .

But 1if gn—k is only moderately larger than § that command
deserves to be questioned.

Another way to appreciate %7 when €/€n_k 1 S-E/En-k+l
is geometrical. Consider the image P wunder the operation * of
the ball B of matrices X+AX with [AXl < §; 4i.e. consider the
set P of pseudo-inverses of all matrices in that ball B, P has
two disconnected components Po and P_. Po‘ consists of the
pseudo-inverses of matrices in B f\Mk, and looks like a small
bent coin roughly centered on %f; all the points (X+AX)+ in P°
are close to 2+ (see the inequality above) and have modest norms
not exceeding ll(En_k-E). The other component P_ has tentacles
which reach to <« starting from far-out points (X+AX)* which

must satisfy H(X+AX)+U 21U GEH, g0 >> HE, _-8).

.



Part 1I: Zeros of Polynomials

Many numerical analysts suffer from a misconception that
multiple roots are infinitely more ill-conditioned than simple
roots. Actually, a multiple root behaves much better tham the
clustered simple root—approximations so often accepted in its
place. More precisely, we shall find that each zero of a poly-
nomial -is a differentiable function of its coefficients provided
‘that zero's multiplicity is comserved; only when multiplicities
change can the derivatives become infinite. Moreover we shall
find that the condition number of a multiple zero must be inversely
proportional to the product of the distances from that multiple
zero to all other zeros of the polynomial. For the problem of
finding polynomials' zeros the pejorative manifolds and sub-mani-
folds in the space of polynomials are evidently the loci occupied
by polynomials with various combinations of multiple zeros (one
double zero, two double zeros, ..., one triple zero, ome triple
and one double-zero, ...). However, given a polynomial & no
convenient way is known yet for determining how near & 1is to a
pejorative manifold short of computing laboriously all the points
nearest & on each of the various manifolds and sub-manifolds.

We shall describe some of the easier such calculations.

I1.1: Differentiability of Multiple Zeros

If 7 is a simple zero of the monic polynomial
=N n =g
z(t) =T -1 S

then x's first derivative z'(T) cannot vanish at  and hence



each 3;/3:3 - ;n-j/x'(c) must be finite, whence it follows that
{ must be an analytic function of each coefficient zj aa'long as
{ remains simple. To what extent can this assertion be valid
waen g 1s a multiple zero of x?

Whenever &% has a multiple zero its coefficients zﬁ must
satisfy certain comstraints expressible as polynomial equations
in those coefficients with the aid of determinants known as
bigradients or resultants; see Bdcher (1907, ch.‘XV) or Householder
(1970, §51.2-3) or van der Waerden (1950, ch. XI). It suffices
to acknowledge those constraints without describing them, and

then exploit them with the following result:

Proposition II.1: The comstraints satisfied by the coefficients

xj of the monic polynomial
z(t) =& - Z: a::a.‘r""7

when it possesses an m=tuple zero § define 7 and the

last m=1 coefficients L oam? s &, tO be analytic func-
tions of each of the first n+l-m coefficients
LysEgpeeesd, 0 8B long as the multiplicity of § remains
precisely m, irrespective of the other zeros' multiplicities.

And then if %n+l’Qw+2""’cn are &'s other n-m zeros,

different from § but otherwise not necessarily distinct,

Nn=1+l=m .
4 .
32;/33:1: - L_E_Cr‘l-l) /I[;_l_l(z;-;j) for 1 <7 < ntl-m .

Proof: Since  is an m-tuple zero of &, xo")(c) # 0 but

2™ (g) =0, 2P () 0, ..., 2@ =0 and z(T) = 0. The

15
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first two relations imply that [, as a simple zero of x@m-l)’
must be an analytic function of its coefficients xl’”Z""'xn+1-m’
Substituting that function for g in the last m-l1l equations

exhibits the last m=-1 coefficlents in turn as analytic functions

of the first n+l-m. Then differentiate the equation zﬂm-l)(c) =0

with respect to z, to produce
zoﬂ)(c)aclaxi - (n-i)l;n-z+l-m/(npi+l-m)l -0 ,

and apply*Eg;ppiz'g rule to x(T) = (T-C)mn;+l(T-Cj) to produce

: xom)(c) - mIHZ+l(C-Cj); whence follows the last part of the

proposition.

Here are three examples to illustrate the proposition. First,
a quadratic 12-2a1+8 has a double zero § = & just when B = az;
here § and B are analytic functions of o as claimed in the
proposition, but if we regarded § and o as functions of 8
they would have a branch-point singularity at B = 0. This first
example provides some excuse for regarding, as does the proposition,
the first n+l-m coefficients xj instead of some other subset

as independent variables.

The second example is a quartic

t‘ - 4at3 + 6812 -4yt + 6

which has a triple zero { = 0+ A whenever Y = (a+A)2(a-2A)
and § = (G*A)3(a-3A) where A = t(az-B)llz; evidently g, Y
and ¢ are analytic functions of & and B except at the branch

point where A = 0, at which point 7 becomes a quadruple zero.



The third example is the quartic

™ - @aHt? + AA|t +1 - 2% for real A

q(T,\)

(t- signlM))2(t+ sign(M) + A) (T+siga(A) =A) .

q has a double zero § for all real A, but =1 for A >0
and { = -1 for A <0, with ambiguity and discontinuity at

A = 0 despite that [ and the last coefficient l-kz may appear
to be formally analytic functions of the first three coefficients
(0,2+k2,2A]A|). But these first coefficients are not free here

to vary independently, nor are they analytic functions of the real
parameter A near A = 0., A better explanation for the apparent
anomaly is obtained from a geometrical approach which identifies_
quartic polynomials with points in a 4~dimensional space. The
polynomials with double zeros constitute a 3-dimensional maniifold
in that space; the manifqld intersects itself at points corres-
ponding to polynomials, like q(t,0), with two double zeros. As
A runs from -1, to O to +l, say, q(T,A) runs along one
sheet of that manifold to a point of self-intersection and then
turns a corner to run along the other sheet. The 3-dimensional
manifold is pejorative; the corner where ¢q's double zero is
discontinuous lies on a multiply pejorative sub-manifold. Little

seems to be known about the complicated geometry of these manifolds.

11.2: Condition Numbers for Multiple Zeros

The condition of a zero § of a polynomial x is generally
a vague notion (cf. Wilkinson (1963, pp.29-32 and 47-48)) partly

because the metric by which we measure distance between polynomials

17



is so often arbitrary. A natural metric for polynomials regarded
as points in a linear space is a vector norm [*+<[l; e.g. for

arbitrary weights wj >0
n n=jn - n | 2

Although we shall use just this last norm in what follows, the

statements concerning condition numbers will be stated for (and

are valid for) any vector norm. Whatever the norm, one corresponding

condition number for a zero § of a polynomial &= will be
defined to be

Y(g,z,0*++l) = sup |8z]/l6xl

Sz

where 07 is the infinitesimal change in f caused by changing
the polynomial &« infinitesimally to &+8x. This condition number
Y 1is appropriate when absolute variations in § and & are at
issue; Y/lcl is a more appropriate condition number when relative
variations 6Z/f are at issue.

Of course Y's definition makes sense only if &x is under-
stood to be so constrained that {'s multiplicity is conserved;
otherwise 7 loses its identity, disintegrating into a cluster
of zeros whose condition numbers approach infinity as the cluster .
coalesces upon §. Thi; assertion, which we have yet to prove,
explains why multiple zeros have a bad reputation for ill-condition
undeservedly acquired by association with the cluster of closely
spaced and therefore ill-conditioned approximate zeros which are

so often accepted instead of multiple zeros; cf. Wilkinson (1963,

p.41, 88).

18
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Proposition I11.2: If ¢ 1is an m-tuple zero of a monic polynomial

& whose other zeros are cm+1';m+2"°"cn then its condition

number is
Y@@, deel) = Rlmn, Gyl /ML o]
where K i1is independent of & and its zeros other than Z.
Proof (for any morm flec+fl): If x(T) = < - 22 xjtn_a and

Sx(t) = -Zz ijtn.a then by proposition II.l

1 on+lem m=iy n-i+l-m '
se=nll i)t S,/ “Zﬂ(@'ﬁj) .

Here 0§ 18 expressed as a linear function of the first n+l-m
infinitesimal coefficients ij. The last m=1 coefficients
are also linear functions of the first n+l-m obtained by solving

a triangular system of linear equations derived from the equations

x(k)(;) w0 for k= 0,1,2,.;.,m-l ;

2% (z) + 2% D r)sp =0 for k = 0,1,2,...,m1 .
The last set reduces simply to
Gx(k) (;) = 0 for k b 0.1,2,....’""2 ’

Sx

which may be solved for &x b3em®

2 Gxn in turn. Hence

there exists some linear operator & depending upon %, 7 and

m alone such that
S = Qéxo"-l) .

This linear operator { transforms an arbitrary polynomial p
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of degree n-m into another q = gp of degree n-1 in such a

way that

Q(g) = q'(g) = ooe = q™D(r) a0 ana ¢V ap

the last few equations constitute an initial value problem whose

solution is
1 |[F m=2
q(T) = (Qp)(T) = T J;(T-G) p(6)de .

Hence we deduce that ¢p = 0 only if p = 0, and thérefore
!le“ = HQpH is another norm on the linear space of polynomials

p of degree n-m. Now

Y = sup |8%|/l6xzl over constrained &x = de(m-l)

* -
and 6 = ¢ &xoﬂ l>/H;+l(c-;j) where e* is the linear functiomal

defined above in the earlier expression for 6%. Hence

* . (m=1) T (m=1)
Y= sup |e Sz / (€=5.) |/ ||| 8=

n
as claimed, where

K = sup le*plllnpln over (n-m)-degree polynomials p

depends upon m, n, & and the norm u~4-u but not upon &

nor its zeros other than I,

Corollary: Proposition II.2 may be applied to non-monic polynomials

x(t) = ZZ xsrn-a with z # 0 provided K 1is replaced by

20



e A g el g N _for g .
_ _enducer f JM N2rser. _g” .3 __ﬁ‘»
. et = may lery % Ny dl____over oll y 3o -

oé'vz Ma’r ‘ MM e?___ff?“—e"-‘-étf“b Yo M My e aC AN
e Menoay vémo'&&ru/ Wmﬂ& n e forem e* _”=WZ:"ed-*

- #«W _ehoten_valeer _ e" 2 dua,(’ nonen Sl
———i /‘Wﬁ o( YHhodo ‘,.,,éw,, F—Tg,, stornple, W’ﬂdz:& f"":’{ w >0

WU M E ey ) then Nt = A ETIgfRe ) L

L £/l. M éa M Wﬂ? wett e -@tmlgz_afm —wxo.v\e/-
. e*y £ yl5)= ZF EEAFS (e X = S™i)

— Lb"—deu—t s "fﬁ-fw Mm i + peen M._A "‘/..,, <

— e K= m___l'_“_’f_‘_ Rgl/ll SR? I ever aa pgzﬂmea/s J‘
o whee 8_ s ﬂmy 'org!eal-or a-,q-o%e. su/ o pa sonials of dogree < p-m
i trd B maltipliie vt by (TS0 A Jaaﬂ%

~ mw,‘ i o‘F Buck(f?GS) —— du.s’l‘ an Gf'ﬂ“/ﬂ-o\q
o—( % " Habp - Bamd\ 7"\9-&4'0-441 _ row be imeotend -
| . mane, le’Rgl/NSR = Wl pver  solubns of of u* SR = &
‘4.__ -'73 JJM .___...._.,_ of “VS/?M’ e'R'_ Q/“ Yern oed- Yo have 7"'/2-' /';I»n
A et f)' ( Y- 2T 2 e’ Dh) )C,,, Y “"4‘1“4"7 Ag s

\ wAcM D fs ‘Fﬂl __Jl%“ ’ 2 a/oel\a)t&') . ( e" Dh} = 3( )/S/ )

——-— - —— - o e -

Rl /) = ._;‘z_;_"[_»:én,;,'_._;!!'[éf_?"'f- ZZ e DAL Qﬁ .

3\' ;vi;-k)pr.“‘—"‘z_ : zf

*-(r=y -k

‘D -UM compSalle vex the sy?«,ton LA M ~-

o et (TS

e w2, Ka E/ Z’(» )ls""l o, -(Z(“'J)"Sul/“’ /(Z ’”5 “"/w)jpml

T/\c.a ﬂﬂ.d ~/—A,u:e /WJM %.94 K can 62 Me’ P M‘Al,ﬁ GO

Mn ‘/-o %A:z Camfawm o §ﬂo1 M&w y‘ aww-éflt’m_g,pmvﬁ

cmgwkem Naamben, _ o
h~Wu% 2erey of monic W ></7-) = 'r" Z 2 '7-"‘7. .

3"?




21

a differeat function
R(m,n,gyleee )/ |2, | o

The foregoing results fail to reflect one important aspect
of floating point computation -- independence of scaling. Speci-
fically, we would expect the relative precision of approximations
to a zero E 2 gg of 5(1) = cnx(rlc) to be independent of ¢©
at least as long as the scale factor G ‘is a modest power of the
computer's radix. The proposition above appears to give results
which are altered by scaling, but it can also be applied in a way
independent of scaling. The proposition remains valid when the

norm [°*°°l varies with g, as for example does
n n=ju = n n=Ji2
1L, z T | = /(Zo wjlmj; 19y .

More generally, whenever the norm [°***l varies with g in such
a way that Mﬂmc-mf%MUm for some norm |||+++||| independent

of ¢ we find that

Y(05,0"(1/0) 1=+ g ) /]ot] = y(g,e, el )/ [z]

n
= K(m,n,1,0" "1)/“m+111"j/‘| .

Then the condition number Y/Icl is independent of scaling and
depends only upon the multiplicity m of § and its relative.
separation from x's other zeros. Consequently, only clustérs of
relatively closely spaced zeros can.be ill-conditioned when such
a p-dependent norm is used.

| The word cluster used above has been used very 1oésely. One

might hardly consider the zeros of x(T) = Hio(r—j) to constitute



a cluster in the usual sense, yet the zeros near 15 have been
observed by Wilkinson (1963, pp.41-43) to be ferociously ill-
conditioned. ‘Thié observation does not contradict proposition II.2
and its corollaries; when the constant K 1s evaluated (for
m = 1 here) we do get condition numbers of the order of 1010.
This means that one's intuition about clusters is unlikely to be
reliable.

Calculationgkby a student, Mr. David Hough, have shown that

one need only perturb each coefficient of x(T) = Hio(T'J) by

less than one part in 10ll

to construct a nearby polynomial
xo+Ax whose zeros, while still all real, include a double zero.
Consequently cﬁe polynomial x is very close to a pejorative
manifold; in fact, it is almost equally close to several multiply
pejorative sub—maniéolds. These observations explain Wilkinson's

polynomial's ill-condition more convinecingly than can any alle-

gation of clustering among its zeros.

I11.3: Where are the Pejorative Manifolds?

When m of a polynomial's zeros are clustered closely in a
region well-separated from the rest of the zeros, it is natural
to expect that a small perturbation in the polynomial's coeffi-
cients should suffice to collapse the cluster into an m-tuéle
zero, That m=tuple zero must be a simple zero of the perturbed
polynomial's On-l)ig derivative, and therefore close to a zero
of the original polynomial's On-l)EE-derivacive. Consequently
when we wish to substitute what we hope is a well-behaved m-tuple

zero for a cluster of m ill-behaved zeros, we can approximate

% These calwlations prwved meovvect . The m[we,;a »/@fcirfzve,
Pe\r‘t\)vbm{’fow S “faf lessi aboot owe pocct W i0'?,
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the m-tuple zero by a simple zero of the polynomial's on-l)EE
derivative provided such a simple zero can be found near the cluster.

The next result guarantees that such a zero can be found.

Lemma II.3: Suppose the nth degree polynomial x(t) has at
" least m zeros Cl,cz,...,cm (L <m<n) 4in some convex
region C. Then zom-l)(r) must vanish at least once in the
star-shaped region S consisting of all points from which C

subtends an angle no less than 7/ (nt+l-m).

Proof: Let Kn_¥r(;l,;2,...,;m) be the Qw-l)gs-divided
difference of x(T) over the zeros cl,cz,...,;m. Since each

x(Qj) = 0 that divided difference must vanish. Therefore we

obtain
LU (m-l) [} - m-l =
J J x (ZZ cjcj)dcldoz dom A x(cl,cz,...,;m) 0
ALl 0.0
and Z ¢ .=l
Jd

from a formula attributed to Hermite and to Genocchi by Milne-
Thomson (1933, p.1l0 and p.18 ex. 6). Let us denote the n+l-m

m=1) wy .,

zeros of « m+l""’nn and so infer

n m
JJ see J I[(n - U-C-)da dO' ..'dc -0 .
kL TF%d 12 m
All 050" k= J=1
J—

dIo.ml
and & 95

From this point we pursue an argument similar to Mardem's (1966,
§24).
Were every Ny outside S we could find a ek for each

XK =muml,...,n such that



0< arg(nk-'r)- 8, < W/ (n+l-m) for all T in C .

In particular Z? cjcj lies amidst the cj's, and hence ia C,
for all relevant sets of values 01,02,...,cm; therefore we should
deduce that
n m n
02 ars(kilm(nk--jzlojcj)) -’% B <T
whence it would follow that the last integ;al, with its integrand

confined to a half-plane that excludes zero, could not vanish.

This contradiction proves the lemma.

In particular, when C is a circle of radius p thean S

T/2_,
n+l-m’ in

turns out to be a concentric circle of radius p cse
general S cannot be enormously larger than (, 8o the desired

simple zero of x(m-l)

can always be found somewhere near a
cluster of m zeros of x.

In general one cannot expect ill-conditioned zeros to cluster
in an obvious way, and we must search instead for nearby polyno-

mials on pejorative manifolds. Thus one comes to consider problems

like this ome:

Problem II.3: Given &(T) = 1°-[7 xj«c"‘J find the nearest

polynomial -y, where y(T) = Zg yjtn-a, with an m-tuple zero.

We interpret 'nearest'" to mean that

2 n 2
iyl 1 wa.lya-l ,

with given positive ﬁeights wj’ should be minimized.

This problem can be approached in a conventional way via



Lagrange multipliers. The result is a set of m equations

P I (T ) VD G o W U
vy = tZOA le (n=g=k) 1 (n-j-1)! W, ()

fOI’ k = 0'1,2’0'00’.’”—1

from which we eliminate the Lagrange multipliers Ai by setting
a determinant of the coefficients of (l,ko,kl,...,lm_z) to zero.
The result is an equation to be solved for the m-tuple zero .

The equation is not a polynomial equation because both § and its

complex conjugate C* appear. When m = 2 the equation is
g’ () = a(e) (3 =) |77 | 2w ) 1 (T 16" 121w )

and is not hard to solve for ¥, though most of the solutions
must be discarded as irrelevant.

The problem becomes more interesting when x(T) has real
coefficients and, naturally, we require that y(T) have real
coefficients too.

However ugly these calculations may be, they are worth pur-
suing whenever & has a badly ill-conditioned m-tuple zero (.
For if 's condition number Y is huge then, since proposition

II.2 tells us that
7 (m)
Y =&/ I |g-z,| = mik/|="™ (7)]
for some modest K, we see that & differs from a polynomial
(m)
2(t) - y(1) = (1) - —-—(5—(7 )"

with an (m+l)-tuple zero T by just a little;



Iyl = xi =)™y .

& can be no farther than that from the multiply pejorative sub=-

manifold of polynomials with (m+l)=-tuple zeros.

&0
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Part 1II: Eigenproblens

"What I tell you three times is true."
Lewis Carroll, Hunting of the Snark, Fit 1.

Let § be an m-tuple eigenvalue of the nxXn matrix Z
and let &Z run through infinitesimal perturbations so comstrained
that 2+8Z continues to possess an m=tuple eigenvalue §+0%

near ;. We define

Y(T,Z,l0<+l) = sup |6¢]|/I82] over such constrained &2

to be the condition number of f as an m-tuple eigenvalue of 2
with respect to some given matrix norm [+**ll. The constraints
on &8Z are complicated but indispensable when m > 1; without
them the condition number <Y would be either infinite or
meaningless.

We shall obtain estimates for <Yy which relate it to the norm
of the spectral projector P onto C'Q m-dimensional invariant

subspace. P 1is characterized by the equations

PP=P, PZ=1P, rank(P) =m , P(Z-x)" = 0

P can be computed straightforwardly from the similarity trans-
formation that exhibits Z's Jordan normal form. (For example,
when m = 1 's non-zero row and column eigenvectors x* and Yy,
which satisfy x*7 = Cz* and Zy = gy, yield P = yx*/x*y.)

We shall find that, roughly speaking, Y is big if and only if
iPl 4is big. Since Y .is appreciably more expensive to compute

than [Pl when m > 1, we shall use [Pl as a measure of Z's



ill-condition instead of Y.

Hypersensitivity to small perturbations, and the consequent
risk of numerical instability, always accompany a spectral projec=
tor of large norm irrespective of whether it belongs to a multiple
eigenvalue or to a cluster of simple eigenvalues of Z. The spec-
tral projector P onto an m-dimensional invariant subspace
belonging to a cluster of m eigenvalues cj (counting multi-
plicities) is just the sum of the spectral projectors E& belong-
ing to the distinct values Cj. When [Pl/m is huge at least
one of the UPBﬂ's must be huge too so at least one Cj must be
ill-conditioned. We shall see other bad things happen; for exam-
ple every similarity transformation &, which reduces Z to a

diagonal sum

A O
-1
Q "ZQ =
0 B
in which the mxXm matrix B has as its spectrum the cluster of
m eigenvalues ;j’ is necessarily ill-conditioned in the sense

chat 1Q1-1Q”%1

must exceed [Pl, roughly. Indeed, when {[P|/m
is huge the cluster's very identity as a cluster of m eigen-
values may be jeopardized by small uncertainties or perturbations
in Z. Why? Because then to every closed contour I which
encloses the cluster and excludes the rest of 2's eigenvalues
corresponds at least one small perturbation AZ, with

1azi < anm/nPul/m for a modest constant K, such that Z+AZ

has either fewer than m or more than m eigenvalues inside T.

In the special case when 2Z's cluster contains just one m-tuple
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eigenvalue G, the small perturbation AZ can be so chosen that
that same is an (m+l)~-tuple eigenvalue of Z+AZ; our proof
of this assertion will sharpen and generalize portentous results
for m = 1 published earlier by Ruhe (1970) and Wilkinson (1972).

So, spectral projectors of huge norm are critical symptoms of
hypersensitivity to small perturbations, and no matrix can possess
huge préjectors unless tiny perturbations to its elements suffice
to increase the multiplicities of some of its eigenvalues. Evi-
dently the eigenproblem's pejorative manifolds and sub-manifolds
consist of those matrices with various combinations of multiple
eigenvalues (one aouble, one triple, two double, one quadruple,
one double and one triple, ...).

Although, given a matrix Z, no convenient way is known yet
to determine just how near 2 is to arbitrary pejorative sub-
manifolds, ways are known to find points, close enough to 2Z for
many practical purposes, on some simpler pejorative sub-manifolds.
These ways invoke unitary similarity transformations which reduce
Z to a block-upper-triangular form with diagonal blocks of small
dimensionality. Each block is intended to correspond to a cluster
of 2's eigenvélues to which belongs a spectral projector of
moderate norm even though the spectral projectors belonging to
every sub-cluster of the cluster have huge norms. When such clus-
ters exist, and often they do exist, they may not look like clus-
ters to the naked eye; this is so because the individual eigen~
values in the cluster are very ill-conditioned and disperse fran-
tically in response to most small perturbations of Z. The eigen-

values in a cluster can be identified only by the observation that
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each eigenvaiue's projector, though huge, cancels parts of the
others' projectors in such a way that the sum of all the individual
projectors has a moderate norm.

Having found suitable clusters and corresponding small blocks,
we try to replace each block by its nearest like-dimensioned
matrix with just one eigenvalue; this turns out to be tantamount
to the construction for each block of the nilpotent matrix nearest
to it. Enough is known about that construction to make it cheap
for small blocks == 2X2 and 3x3 == but for larger blocks mno
cheap construction is known yet.

The theory is extensive but incomplete. Lacking sharp indi-
cations of the distance from Z to various pejorative sub-manifoids,
we could too often become enmeshed in expensive calculations of
nearest nilpotent matrices whenever 2 1s neither so far from
all pejorative sub-manifolds that they are obviously ignorable
nor so near to some as to indicate obviously which ones are the
only ones worth considering. Yet the theory is attractive. If it
;an be refined to cover the majority of cases that arise oftem in

practice, it will be complete enough.

III.1 Some apparatus

Only the following matrix norms will be used;

ﬂXﬂ2 /tr.(X*X) » ¥I (singular values of X)2 .

xi

max |XYl,/1¥l, = maximum singular value of X .
Y40 2 2

These norms have been chosen because they are not changed when X

is multiplied by a unitary matrix and consequently have many useful
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properties which we will invoke with little comment; for details
see Mirsky (1960) or Gohberg and Krein (1969).

Given an nXn matrix Z we shall sometimes identify a clus-
ter of m of its eigenvalues Cj (counting multiplicities) by |
specifying one of the closed contours [ in the complex plane
which enclose all of the cluster's m eigenvalues strictly iﬁ
their interiors leaving the rest of Z's spectrum strictly outside.
Some of the contours may have disconnected components but none of
them can pass through an eigenvalue of 2. We soon discover,
after Xato (1966, p.67), that

=1 oyl
P = VT Ty §I‘(T Z) “dt

is the spectral projector onto 2's invariant subspace belonging

to the cluster of eigenvalues inside I'. These eigenvalues are the
m n&n—trivial eigenvalues of PZ = ZP, of which the remaining
n-m eigenvalues are just 0.

There are other ways to represent P. We may.aptly select a
new (generally not orthogonal) coordinate system, or equivalently
perform an apt similarity transformation, which will exhibit 2
in the reduced form (‘g g) in which the mxm matrix B has as
its eigenvalues just those inside the cluster and A4 's eigenvalues
are.outside. In that coordinate system P appears as (g 2).

Alternatively we may invoke Schur's theorem to obtain a new
orthogonal coordinate system, or equivalently perform a unitary

similarity, which will exhibit Z in the (block-) upper triangular

form
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A AR-RB

in which A and B have the same spectra as before. The block
AR-RB is written that way for more convenient correlation with 2

which, in the same coordinate system, has the form

If we do not insist that A and B be upper triangular we can
instead arrange with the aid of Autonne's theorem that R be an
(n-m) Xm diagonal matrix exhibiting its singular values. Either
way, because the similarity transformation is unitary we have

1Pl = H(’f) I and, incidentally, W1-Pl = §(1 R)| = |Pl (cf. Kato
(1960)). Finally, a non-unitary similarity which relates the tri-

angular form to a block diagonal form is

A AR-RB 1 -R\[A 0}\/1 R

0 B o 1/\0 B3/\0 1

When the cluster inside [ contains only one m~tuple eigen-
value 7 the mXm block B must have only § as an eigenvalue;
consequently (B-;)m = 0, When (B-C)m_l = 0 too B 1is called
derogatory for reasons that will be clear soon. To simpiify
matters let us temporarily set § = 0 as we digress to study nil-

potent mXm 'matrices; these are characterized by the equation

g" =0,



Lemma III.1.1: F" = 0 if and only if cr.(Bk) = 0 for

k - l,2,...,m.

Proof: Apply Newton's identities (cf. Householder (1970) p.37)

to sums of powers of B's eigenvalues to deduce that they must

all vanish.

What conditions upon an infinitesimal perturbation 63
ensure that both B and B+0B are nilpotent? Another way to
think of this question is to imagine that B = B(T) is an analytic
function of T that stays nilpotent for all T; what characterizes
é = dB/dt for all such functions? The question is mot trivial

because, although we may differentiate the equations " =0 and

tr.(Bk) = 0 to get respectively

ZZ BJ-l'GB°Bm-j =0 or ZT Bj-léﬂm-j = 0 and

tr.(Bk-lGB) =0 or tr.(Bk'lé) =0 for k=1,2,000,m

those are merely necessary conditions upon 6B and B ; when B
is a derogatory nilpotent matrix those conditions fail to be suffi-
cient. For example, when B = 0 those conditions impose almost no

constraint upon &B and é whereas they ought to satisfy

8™ =0 and H" = 0.

Lemma III.1.2: Wwhen Bo is a non-derogatory nilpotent mXxm

matrix the following three conditions are equivalent and char;c—
terize the derivative éo = é(o) of every nilpotent analytic
function B(T) which satisfies B(0) = B, :

1) Bo = SoBo - BOS° is solvable for So .

33



k-1: _m-k
2) ;% %ﬁ -0

3) tro(Blééo) = 0 for k - 0,1,2,‘.-,57-1 .

Proof: wWithout interpreting the dot as a derivative, we observe
trivially that 1) implies 2) and 3). To deduce 3) implies 1),
define the linear operator B thus; B8X = XB° - BOX. Any linear
functional L on the range of B must have the form
LBX = tr.(LBX) for some matrix L. But tr.(LBX) = tr.(LXBo-LBOX)
™ :r.(BOLX-LBOX) = -tr.((BL)X). From Fredholm's theorem of the
alternative (cf. Dunford-Schwarz (1958) p.609) we know that the
equation Béo = éo is solvable (perhaps not uniqueiy) for éo
pnly if Léo = 0 for every L which satisfies LB = 0, and we
have just seen that LB = 0 means BL = 0, which implies
BOL = LBO, which implies that L i1is a polynomial in B° since
B° is non~-derogatory (cf. Gantmacher (1959) p.222)., So every L
which satisfies LB = 0 has the form LB = tr.(I3 ) =
= tr.((polynomial in Bo)éo), and this must vanish because of 3)
and the fact B§ = 0 for k >m. Therefore 3) implies 1). Next
let us deduce 2) implies 3). Since Bo is non-derogatory and
01

01
nilpotent it must be similar to J = s o . . If

01
0! mXm

the similarity that takes B° to J takes éo to X = Cxij)

then, by 2), X must satisfy

I Bt L SR

m+%-i
i.e. Lo 0 o o =0 for 1<L2<j<m
mtl-g 1+k=-1,j-mrk
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This is soon recognized as equivalent to

m=K
. .= 0 f 0<k<ml ;
gaﬁw oF LRLEt b
, i.e. tr.(JkX) =0 for 0L<k<ml .

Reversing the similarity yields 3).
Finally we demonstrate the existence of an analytic nilpotent
B(t) that interpolates B(0) = B° and B(0) = éo' Solve 1) for

S° and set S(T) E li-Téo and B8(7)

S(B ST . Now B(T)
is nilpotent (and non-derogatory), since it is similar to Bo’
at least for T small enough. And B(0) = é(O)Bo-Boé(O) = éo'
Lacking anything comparable to lemma III.l.2 for derogatory
nilpotent matrices, we should like to avoid them. That is not
difficult to do. In the manifold of nilpotent matrices the non-
de sogatory ones constitute a dense open set; that this is true
can be inferred from the Jordan normal form in a way that will

be left to the reader.

II1.2: The condition number of a multiple eigenvalue

Let § be an m-tuple eigenvalue of an #nXn matrix 2Z aad

let P be {'s spectral projector. We shall estimate the condi-

tion number

Y = Y(5,Z,0+++1,) = sup |8]/U821,

where the supremum is taken over all infinitesimal &Z such that
Z+6Z continues to possess an m-tuple eigenvalue Z+8f near G.

We shall show that



W
Ci

Y < WP /m

Furthermore, provided the restriction of Z to P's range is not
derogatory, i.e. provided Z has only one eigenvector belonging
to 7 or, equivalently, provided P(Z-C)m = 0 # P(Z-C)m-l, we
shall show that <Yy can be computed straightforwardly though
expensively by solving a linear least-squares problem;

m-l k
Y = min “P(l— Z Xk(Z-;) ]“/m .
Ak 1

In this case, we shall conclude,

Y > m-l/z(llPlI§+1-m)l/ @m)

Although the upper and lower bounds for Y are far apart when
m>1 and ﬂPﬂz is big, each bound can be achieved by an appro-
priate and non-trivial example.

Here is how those claims are proved. Recall that, provided
no eigenvalue of Z 1lies on the closed contour T,

= 1 -1
P = T j(r(‘r-Z) dt

is the spectral projector upon Z's invariant subspace belonging

to the eigenvalues inside TI'. Suppose there are m such eigen-

values. Then their average value is
u = tr.(PZ)/m .

Since no eigenvalue of Z 1lies on [, we find that both P and

U are continuously differentiable functions of Z; in fact an
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infinitesimal perturbation 62 causes P and U to change by

(cf. Kato (1966) pp. 76 and 79)

- -1 b (r-2)"Ysz(-2)"T
§P = o= §r<,r 2)"82(t-2) dt  and

Su = tr,(P82)/m since tr.(26P) =0 .

We are intereste& in the special case when all m eigenvalues
inside T are coincident at g, and when the perturbation &2

is so constrained that all m perturbed eigenvalues inside [ stay
coincident at g+6f. In this case U = ; ‘and Su =68z, s0 ¢'s

condition number Y(C;Z,ﬂ"'ﬂz) satisfies

Y = sup lGul/ﬂ&ZHz over constrained &2

o %'sup ltr.(PSZ)I/HGZuz over constrained 62

j_%-sup ltr.(PGZ)l/ilGZﬂ2 over all &2
- HPUzlm

Thus we conclude that an ill-conditioned eigéﬁvalue must have a
spectral projector of large norm. After we show to what extent tuae
converse is true we shall show how, given m and a value HPHZ,
to construct a matrix Z with Yy = HPHZ/m.

To obtain a sharper estimate for Y we must take the con-
straints upon 62 into account, and we shall now do that just in
the non-derogatory case when P(Z-;)m =0 # P(Z-c)m-l. By

lemma III.l.l the equation Pz-5)" = 0 is equivalent to

tr. (PG-0)%) = 0 for k= 1,2,.0.,m

which, when differentiated, yields



k te.(P@-0)*"1(62-60)) + tr.((-0)%P) =0 .

“,

The last term vanishes because

er. ((2-r)Rsp) = E%T § er. ((2-0) % (t-2) L6z (t-2)"L)ax
r

1 K, _p\=2 }
- 5L :r.(§r<z-r,) (t-2)"%at 62) = 0 .

Furthermore the coefficient of &g, -k tr.(P(Z-C)k-l), already

vanishes when Xk > 1. Therefore 6Z necessarily satisfies
k=1
tr.((Z-C) PGZ) = 0 fOI‘ k = 2,3,-00,’”

and what remains to be shown is that these conditions upon &2
are also sufficient to ensure that Z+8, with &7 = tr.(P8Z)/m,
is an m-tuple eigenvalue of 2+62Z.

Let us choose a coordinate system in which Z2 -7 = fg g) with

non-singular A4 and an mXm matrix B which must satisfy

00 LV 82

11 %12
. Let 62 = ( )
01 82,5, 825,

" =0 # A"t Now P = (

satisfy

the conditions in question;
k 3
tr.((2-g) P6Z) = tr.(B 6222) =0 for k= 1,2,.00,m=1 .

We wish to infer that 2+8Z has an m-tuple eigenvalue I+6Z,

and shall do so by constructing a non=-singular matrix

(differing infinitesimally from 1) for which
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1 A¥SA 0
(1-65) “(2+62-7-68L)(L-6S5) = )
0 B
When this similarity relationm is pre-multiplied by (1-6S) we

find that 65 and 64 must satisfy

A = 6.5'11'11 -A6Sll+ Gzll- 8¢ A«SSIZ- GSlZ'B = 6212
86321-6521'4 - 6221 36.5‘22- 6322-3 - 6222- s .
These equations are obviously solvable for 64, &S (arbitrary),

11
L _ ) -1 ] . -j-l = ’l -J.-l ] j .
85,, Z’: 3‘76221 A and 65, 2’: a7z, B ; but

the solution 6322 of the last‘equacion is not so obvious. How-
ever, lemma IIIl.l.2 provides assurance that a solution 6322 does
exist provided &7 = tr.(GZZZ)ﬁn a tr,(P8Z)/m, in which case the
conditions 3) of lemma III.l.2 are satisfied wich B0 = B and
B, = 5222 -6z,

Of course, the foregoing manipulations with infinitesimals
Gsij can be re-interpreted in terms of derivatives along the lines
of lemma III.1l.2 and the matrix S(T) constructed there.

Now that we know the necessary and sufficient constraints
upon 6Z etc., namely

k-1

tx. (P(Z-5)%) = 0 and tr.(PZ-0)X"L(82-8C)) = 0 for k=1,2,...,m

provide& JP’(Z-'C)m-l ¢ 0, we return to the computation of

Y = sup IGCI/H&ZUZ over constrained 67 .

The computation will be carried out in a new orthogonal coordinate

system in which
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and 4 1s non-singular and " =0 # Bm-l. Once again we set

82y 92y,
62 = ( ] but now the comnstraints take the form
82,4 5222

6z = tr. ((5222 - GZZIR) /m  and

k - -
:r.((GZzZ-Gzle)B ) =0 for k=1,2,.c.,m=1 .

Therefore

YZ = sup |ac|2/nazu§ over constrained &2
a m2sup |tr.(82,.,~62, R)|%/ZE16Z,.12) over «--
P L. 008950891 i3"2

= m2sup |er. (82,,-82,,R) |2/ (162, 12 +162,,15) over «--

where we have set Gle = 0 and 6212 = 0 because any other
values diminish the quotient we are trying to maximize. The desired
supremum may now be located by standard variational techniques
which we shall merely summarize and verify, though first we shall
drop the 6 in front of 6222 and 6221 since the quotient and
the constraints are homogeneous functions.

Let C = (1-2’{‘5‘33'7')*(-3* 1) with the coefficlents A
so chosen that UCH§ = tr.(CC*) is minimized. The Aj's are the

solutions of the normal equations
tro.(C(“}]?')Bk) = 0 for k = l,2,...,m-l ’

$
which are linear in {Xj} and non-singular too because, since

B" =0 # Bm-l, the polynomial 2?-1 ljBJ cannot vanish unless
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all Aj's vanisht The normal equations for C coincide with the
constraints that (221 Z22) must satisfy (recall that the §'s
have been dropped), so C is a permissible choice for (Zzl Zzz)
and differs from any other choice by a matrix Y = (ZZl Z22) -C

which must satisfy the same constraints, namely
e (2(F)F) w0 for k= 1,2,ee0mel

We are about to discover that only when (Z21 222) is a non-zero
scalar multiple of ( can the following quotient achieve its

supremum:

|62 |?/ez]3

Ry, |2 2
lex. (Gyy 25 (NG 2915

m=1
|tr. ((C+Y) (c*+(“l?) T AE)) Izlllc+xu§
19

lucng +tr. (2CT) + o|2/ac+yn§

2 2 * 12 2
- 1c12 - (undicr? - |ex.cxc™) | %) ricsni

IA

el

with equality only when Y i1s a scalar multiple of (. Therefore

we have proved that, in the non-derogatory case,

Y(5,2,01,) = lcl,/m

- n;in - ﬁ’lxkak)*(-a* )|, /m
%

= min [P(1-3"1N z-0)%) | /m .
o [2(2-21 "% l2

Our next task is to secure a lower bound for <Yy. Write

Us 1-fz-lxk3k and let U's singular values in order be
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2
D> ses > .
0'1 > 0’2 o> 0. Also write p

* %
seek a lower bound in terms of p and m for U (-R 1) Ilz/m.

o12 o 1512 - o
:!Rllz lll"’ll2 m. We

Evidently

*, % 2 *x % 2 * 2
v (=R ].)ll2 = [UR [lz + U Elz

*
> c}ipz + tr. (U U)

* % *
the last inequality is achieved just when UUR = O;R . What do

we know about U's singular values oJ.'Z Since Bm = 0, detJJ =1

2 2 2 *
and hence 0.0 seeg = 1 while o +0 +eee+o = tr. (U U).

172 1" 72
Therefore
* % 2 2,2 ... 2 2, .2
W (=R DI, 20[+05+*+0 _, +(1+p7)0,
22 .2 2 2.y1/m
> m(oldz om_lcm(l+p ))
= m(l+p2)l/m

with equality in the inequality between arithmetic and geometric

means just when 0. = g, = ¢ce = (O = cxm\/'ll.ﬂ)"r .

1 2 m=1
Assembling the relevant relations above yields

Y2 m-llz(lIPll§+ 1- m)l/Zm

as claimed. The final tasks are to demomstrate that the bounds

are achievable. Briefly, to achieve the upper bound Y < [Pl 2/m
*

it suffices that # R above be diagomal. To achieve the lower

bound it suffices that



*
and that R have the form R = yx where

* - -
£ = (cl-m,oz'm,...,c 2,0 1,1) and

* -
y'y = o2 (e%1)

for some arbitrary o > 1. It will turn out that
Us=1l- (02-1)2';‘10“7'5'7' and RR+1 = o2(WU")™ . The details are,
once again, ‘left to the reader.

Since Y is huge if and only if ﬂPﬂz is huge, even though
they may still be orders of magnitude a?art, we shall henceforth
dispense with Y and use only [Pl, or I[Pl as our measure of

2
ill=condition.

II1.3 What happens when [Pl is huge?

We shall consider now some of the ugly phenomena associated

with spectral projectors of huge norm.

Proposition IIl.3.1: If ¢ is an m-tuple eigenvalue of 2 and

P its spectral projector, then there exists a perturbation A4Z
such that 7 1s an (m+l)-tuple eigenvalue of Z+AZ and

nazi 5,uz-;u/upu1”“, so [AZ] is small if [P] is huge.

Proof: By a unitary similarity exhibit

A AR-RB 0 =R
Z=-C = and P =
0 B \o0 1
m A" AR
where 4 i1is non-singular and g".= 0, Evidently (Z-C) - [0 0 )

so we find that

43
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1Pl = 01 R < 1A7"HH™ AR

= 1A 2-0™ < 147Nzl

How close is A4 to its nearest singular neighbour A+4847 We know

(see part I) that such a A4 can be found with [Al f_l/ﬂA-lﬂ,

and the previous inequality shows that that A4 satisfies

1/m AA 0)

nadg < lz-gli/uzi 0 0

. Therefore we can use AZ = ( to
achieve what has been claimed.

This proposition slightly sharpens one of Wilkinson's (1972)
when m = 1, in which case the proposition is best-possible with-
out more information about 2 than §Z-gl and |Pl. Even so, it

can be somewhat misleading. Consider an example used by

G.E. Forsythe: 0

oK
- K

(e I )

Here we may assume 7n > 10, and ¢ small and positive, say
L <1/10. Z has n distinct elgenvalues equally spaced around

a circle of radius ¢ all with the same condition number

lIZCl-n

Y = |Projector| = n (l-czn)/(l—cz) .

Consequently, the proposition says that 2 1is no farther from a

matrix with a double eigenvalue then roughly nl/zcn-l. In fact,

Z dis within ;n of a matrix with an n-tuple eigenvalue. N

When m > 1 proposition III.3.1 probably far over-estimates



the distance to the nearest matrix Z+A0Z with aa (m+l)-tuple
eigenvalue.

We now turn to the spectral projectors belonging to clusters
of eigenvalues of unspecified multiplicities; and demonstrate why

projectors of large norm are to be avoided.

Proposition III1.3.2: Let I be a closed contour in the complex

plane which separates Z's spectrum into two parts; m eigenvalues
(counting multiplicities) strictly inside I and the rest strictly
outside, And let P be the spectral projector onto 2's invariant
subspace belonging to the m eigenvalues inside [. Whenever

Pl is huge, in particular whenever (P} > ym+l, there exists a

small perturbation AZ satisfying

lazl, /izl, < 1.22/(1p1% - 1y (2

such that 2-AZ has at least one eigenvalue on the boundary T.

Proof: Once again use a unitary similarity to exhibit

A AR-RB _ 0- =R
Z = and P =
0 B 0 1
where B 1is an mXm matrix whose spectrum lies inside I' and
A's spectrum lies outside. Furthermore, we may exploit Autonne's
theorem to exhibit R as an (n-m) Xm diagonal matrix with its
singular values PL2 Py 2 2P, > 0 on its main diagonal.

(It is convenient here to assume n-m > m; otherwise swap the

roles of A and B.) Note that Rl = Py and Pl = V1+p% .

45
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N
For any X in 1<k <m we may partition
. A O with square A = diag(pl,pz....,pk)
0 M/ and M = diag(pk+l,...) or null,
and conformally partition
X X A. . A-AB A, M-AB
11 12| _ oz popp el 1L 127712
%1 %2 T \AgMMByy 4By,
. . ~ - (b4 0
We shall examine a distinguished AZ = (() KB) where
N E A2 0 W (N /2 By
M = { } and AB = [ 0 0 ] are so chosen that
Ayy 0
-1 -1
R (4,.+AB. A T)/2 A “ (A "A,,A+B..)/2 O 7
PR VI it A 12) . 5.3 = 1171 ]
0 422 Ba1 B2

have in common the X common eigenvalues of
A, + 08, A1y /2 = A4, A+B, )A7Y)2
11 11 11 11 °

Consequently, using AZ = TKZ with 0 < T <1 we shall find that
the eigenvalues of Z-AZ move continuously, as T increases from
0 to 1, until k eigenvalues that started inside [ coalesce
with % that started outside I'. For some T between 0 and 1
one of those eigenvalues must cross I', and then llAle2 - THKZﬂzli
< 18z,

Thus, all that remains to be shown is that §AZIl satisfies

the inequality claimed in the proposition for at least one Kk > l. S
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18213 = 18412 + 13812
= R T+ Ly, AT S+ [ x| 3 07 |
< o (2l 372+ gy I+ o800 %+ Ayl o+ oy 1411 0%)
< ot o) 15+ B 15+ 18 15+ [l * Bl
<o i@+or Nzl .
Let us now choose k to minimize the factor @ >(L+py, ). Sup-

pose 6 is that minimum value; i.e.

DZZ(I+P£+1)‘3 8 for k= 1,2,00e,m (%n+l = 0) .
2 -1
Then pm_<_,e
2 -1 2 -1, =2
Ppoy < © (1+Qm) <8 7+86 s
o2 < 07tapd) < o7he 0 Be e kg™

evidently © 1is no bigger than the positive root © of

2 2 -1

[IPll2 = J.Ar-c:1 = 140 +6’2+---+@’m .

When pz > m we must have 0-1 > 1 and hence p?' < m@-m, whence
1 1

llmp;.z/m < eep12-1)"™  uhere ¢1/€ = 1.445¢++ . The

O <m
claimed result follows.
This proposition seems to overestimate [AZl grossly. Indeed,

if P has k large singular values and the rest small, say

/l+p£/ /l+pi+l >> 1, then the proof above yields
iazy < p;l»/l+pkz +lﬂle, which is far smaller than claimed in the

proposition. Another example of overestimation arises when a
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similarity (perhaps not unitary) of modest condition number (see
below) succeeds in diagonalizing A and B without erasing the
block AR-RB. 1t is possible to show then that [JAZ] need not
much exceed HZHZIHPHZ when [Pl 1s large; this claim will not
be proved here.

Next we shall consider the condition number K(Q) = HQU'HQ-IH
of similarity transformations that reduce Z to the block diagonal

form

There are many similarities which reduce Z to this form, and we
shall be particularly interested in the ones whose condition num-
bers are roughly minimal. Experience teaches us that if the mini-
mal condition number is huge then the reduction of 2 will be
hypersensitive to rounding errors and other perturbations and

uncertainties; see Wilkinson (1965) p.87.

Proposition III.3.3: Let I', 2, m and P be as in the previous

proposition III.3.2, When [Pl i1is huge every simila?ity Q-lZQ,

which reduces Z to block diagonal form with one block for the m
eigenvalues inside ' and the other block for those outside, must
be ill-conditioned; k(@) > IPl. Cbnversely, if every similarity

is ill-conditioned then [P| must be big because for some such

similarities [P > k(Q)/4.

Proof: Once again use a unitary similarity (which does not aggra-

vate the condition numbers) to exhibit Z in the block triangular



form used in proposition III.3.2. Any eligible similarity @
must exhibit two blocks, one similar to 4 and the other to B.

Consequently, every such § must have the form

. slas o
¢z - N :
o 1 lar
| S -RT -1 (s stz
whence Q@ = [0 T} and @Q -[ -l]' Now (@l > iSH
0o T

-lﬂ

and Q8 > 1(T)70 > 120/077%0, and 1¢7H 2 177 and

llQ-lil > llS-l(l R)I > UPI/IS). Therefore

4k(Q) = 4bQU-1gt > (hsi+120/0z™%0) (7”20 + 120/ 1s1)

> 4Pl , as claimed.

On the other hand, if we choose for S and T any matrices which
satisfy S*S = 02 and T*.‘Z' = 12 for constants O and T that
satisfy o/7T = [P, we find that
-1 - -1 | -1
k(Q) = IQU<0@™"I < (st +12l-4zh) (I7™"1+ 4s™1-121)
= o+ TRl (" + oD

= 4[Pll , as claimed.

III1.4: The nearest nilpotent matrix

Suppose we have identified every cluster of Z's eigenvalues
to which belongs a spectral projector of moderate norm, and no
such cluster may be broken up without introducing huge spectral
projectors. We could perform a unitary similarity which exhibits
Z in block-upper-triangular form with one diagonal block for each

cluster. What should be done next?

49
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‘In a sense, each block resists further reduction as if it
were an approximation to a truly irreducible block, namely a block
with only one multiple eigenvalue. The purpose of what follows
is to discuss how to locate that irreducible block in the hope that
we may replace each ill-behaved cluster of eigenvalues by a well-

behaved multiple eigenvalue without appreciably changing the given

matrix.

Problem III.4.1: Given an mxm block B, £ind the nearest

matrix B+C with only one eigenvalue B; C must be nilpotent.
By "nearest" we mean to minimize |B- B-Cﬂz.

It is not hard to find the best value for B; write
8 = tr.(B)/m+E and observe IB-B=-Cl; = IB=-tr.(B)/m- cﬂiﬁ‘glz

since tr.(C) = 0. Therefore the best value for B 1is
B = tr.(B)/m (cf. ¥ in IIIL.2) ;

and from the same observation we deduce that the nilpotent matrix
C nearest to B-B 1s independent of B. That at least one such
nearest nilpotent ( exists follows from the fact that we need
only search for the matrix in the compact set of nilpotents C(

which also satisfy
ilB-B-C[Iz A UB-B-OHZ ’

since there is no need to look at anything farther away than the
nilpotent O.
Let us imagine that the best (¢ has been found, and choose

a new set of orthogonal coordinates to exhibit C in upper



triangular form. Since ¢ 1is nilpotent it is strictly upper
triangular. Since ( 1is closest to B-B, B-B-C must be lower
triangular in that coordinate system, and that lower triangle must"l
have the minimum norm of all lower triangles of matrices unitarily '’

similar to B -f. Since the norm of all of B-f is unchanged

by unitary similarity, we have the following result:

Proposition II1.4.2: Given an mxm matrix B, the nearest

matrix B+ C with only one eigenvalue B can be comstructed as
follows. Of all matrices U*BU unitarily similar to B, choose
one whose super-diagonal elements have the largest sum of squared
magnitudes; call it EF = U*BU. Annihilate all the sub-diagonal
elements of E to get F. 1Its diagonal elements will all be the
same, namely B (this i1s not obvious -- see below). Then

*
B+C = UFU .

To prove that all the diagonal elements of Z are the same we
need only consider its 2xX2 principal submatrices with adjacent
rows and columns. Each such submatrix must be such that no 2x2
unitary similarity can increase its super-diagonal element. A
modest calculation shows that this implies its two diagonal ele-
ments are equal., I am indebted tb Alan J. Hoffman for suggesting
this simple approach to what used to be a much more complicated
proof. That proof, which used variational methods, also showed
that (B—B-C)* must be a polynomial in (, and that if Ck =0
then k > (m+l)/2, but these facts seem not to help the search

for c.
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Proposition III.4.2 suggests that ( might be comstructed
via a sequence of 2X 2 Jacobi rotations each designed to enhance
the magnitudes of super-diagonal elements. Such a scheme works
immediately when m = 2, may work well when m = 3, and seems to

be intolerably slow for m > 4. There is ample scope for further

research.,
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