THE RELATIONSHIP 8ETWEEN NUMERICAL COMIUTATION
AND PROGRAMMING LANGUAGES, J.K. Reid (aditor)
North-Hollamd Publishing Company

© 1k1p, 1982

The Near Orthogonalily of Syntax, Semantics, and
Diagnostics in Numerical Programming Environments

¥. Kahan and Jerome T. Coonen

Mathematics Department
Universily of California
Berkeley, California 84720
u.s.a.

We can improve numerical programming by recognizing that three aspects of the
compuling environment belong Lo intellectually separate compartments. Onc is the
synlax of the language, be it Ada, C, Forlran or Pascal, which gives legitimacy Lo
various expressions without completely specifying their meaning. Another might be
called “arithmetic semantics”. It concerns the diverse values produced by
different computers for the same expression in a given language, including the
values delivered after exceptlions like over/underflow. The third compartment in-
cludes diagnostic aids, like error flags and messages; these too can be specified in
lenguage-independent weys. However imperfect, this decoupling should spell out
for all concerned the nsture of arithmetic responsibilities to be borne by hardware
designers, by compiler writers and by operating syslem programmers.

"Another of Llhe great advantages of using the axiomatic
approach is that azioms offer a simple and flexible technique for
leaving certain aspecls of a language wundefinad, for
example...accuracy of floating point... Thia is absolutely essen-
tial for standardization purposes..."”

— C. A. R. Hoare (1888)

Prolessor Hoare's attitude toward floating point semantics reflects the anarchy
that befell commercial floating poinl hardwere early in Lhe 1860°s [1], and wor-
sened in the 70's. Thal anarchy confounded atlempts Lo characterize all floaling
point arithmelics in one intellectually manageable way. Now Lhere is hope lor the
1880's. A new standard for binary flosting point arithmetic has been proposed
before the IEEE Computer Society, and a radix-independent sequel is in the works.
Since the binary slandard has been adopled by a broad range ol computer
manufacturers, including much of the microprocessor industry, we expect numeri-
cal programs to behave more nearly uniformly across differenl computers, and
perhaps across differenl languages as well. A draft of the binary standard, along
rith several supporting papers, may be found in the March 1981 issue of Computer
2-5).

Starting in Lhe 1960's programining language designers came to be the
arbiters of most aspects of Lhe programming environment. With control of the pro-
grammers’ vocabulary, language designers could control fundemental fealures
such as Lhe number ol numeric data Lypes available and the exlent of run time
exceplion handling. The language even limited Lthe numeric values available by
conslraining the literals in Lhe source text. This is not to say thal languege
designers acted capriciously. They were disinclined to mention any capability not
available on all compulters. In this respect computer architects have laid a heavy
hand on the compuling environment. Languages musl reflecl Lhe leasl common
denominator of available [ealures, and so they tend Lo vague oversimplifications
where floaling point is concerned. An exlreme case is Lhe new language Ada which,
by incorporatling W. Stan Brown's very general model for ficaling point computalion
[8]. pretends that the difference between one computer's arithmetic and another's
is merely a matter of a few environmental paramelers. Bul somelimes Lhe

104 W. Kahan and J.T. Coonen

programmer must know his machine’s arilhmetic to the last detail, especially when
trying to circumvent limilations in range or precision. These delails, dangling
between language designers and computer archilects, Loo often receive short shrift
{from bolh. Tying up Lhese loose ends would improve the compuling environment.

Of course Lhe computing environment inviles numerous improvementls, lo
graphics, file handling, database management and others, as well as floaling point
aend languages. Bul enhancements to which high-level languages deny access are
enhancements destined to die. Those ol us working on the proposed IEEE floaling
point standards have had to lace this problem. We believe the solulion is a proper
division of labor, rather than grand altempts Lo improve too many aspects of Lthe
compuling environmenl simullaneously; the latter way would require impraclical
coordination. For example, to encourage independent development ol program-
ming languages and floaling point hardware, we propose Lhal language (syntaclic)
issues be decoupled Irom arithmelic (semantic) issues to the exlenl possible. We
present our view ol Lhe inlerplay belween synlax, semanlics, and diagnoslics as
parts of the compuling environmenti, and discuss how they interface wilth each
other. Given an adequate interface discipline, we hope Lhatl responsibilily for these
parts can be divided among language designers, numerical analysls, systems pro-
grammers, and others. In Lhe past this division has been unclear. Unfortunately,
when everybody is responsible, or when nobody is responsible, then everybody can
be irresponsible.

Portability

We regard the progremming language as jusl one layer ol Lhe computing
environmenl, dissenting (rom a more traditional view thel Lhe language is the
environment. What does this mean for program portability? Until very recently,
porlability of numerical programs was considered Lo be a qualily of source code
that could be compiled and run successfully withoul change on a variely ol com-
puters. The issues appeared largely syntaclic. For example, progrems like the
PFORT verifier (7] were developed to check Fortran codes for adherence to a stan-
dard for "porlable Fortran'’, their principal task being Lo weed out various quirks
of dialect. Nowadays, we acknowledge that the porlability issues go deeper than
differences smong Fortran dialects. They entail Lhe (semantic) subtleties ol
over/underflow and rounding Lhat, if ignored, can cause ostensibly portable pro-
grams thal funclion beaulifully on one machine to fail on another. Programming
languages that lack Lhe vocabulary required to address these issues aren't very
helptul here. Il we cannol '‘mention’’ Lhese issues how can we resolve them?

Ideally, Lhe varistion ol floaling pointl arithmelic from one machine to another
should be describable wilh a few parameters (8] which porteble programs could
determine through system-dependenl environmental inquiries [9]. This scheme
works satislactorily for meny programs thal do not depend critically upon the finer
points of the aritlhmelic. However, any such parameterizalion must be based upon
an abslracl model encompassing simultaneously all current arithmetic engines,
some of Lhem disconcerlingly anomalous {1, 10]. To insisl Lhat this model underlie
portable programming is to dump upon programmers Lthe onus to discover and
delend against all mishaps the model permits, some ol them mere arlifacts ol gen-
erality. This in turn would burden programs wilh copious lesls egainst subtle (and
certainly machine-dependent) Lhresholds to avoid problems with idiosyncralic
rounding and over/underflow phenomena. A programmer who shirks his responsi-
bility to produce robusl code obliges the user of his program, possibly another pro-
grammer, to unravel a more tengled web. Ullimately, the buck mey be passed Lo
users who find either their programs or their compulers Lo be inexplicably unretli-
able. We doubt Lhat any semantic analog of Lhe PFORT verifier will ever be able lo
test for robust independence of the underlying arithinelic. Computer arithmetics
are loo diverse to allow every polentially useful numerical algorithm to be pro-
grammed straightlorwardly in a fashion formally independent ol Lhe underlying

The Near Orthogonality of Syntax 105

machine.

Portabilily al Lthe source code level is nice when inexpensive. When nol, we are
contenl with '‘transportability’’, whereby algorithms can be moved from one
environment to another by rouline text conversion, possibly with some aid from
sulomalion. An algorithm may depend crilically upon the underlying arithmelic
semantics and upon a syslem’s abilily lo communicate error reporls belween sub-
programs. Il is transportable to the extent that the dependencies can be commun-
icaled in nalura) language using mathematical terms, if not in Fortran. We are not
advocaling yel another programming lenguage. We prefer thal programmers
accompany Lheir codes with some documentation thal explains, and can even be
used Lo verify, how the program handles ils interactions with the underlying sys-
tem. Because computing environments are so diverse, we expecl some algorithms
Lo be lrensportable Lo only a few systems, not all; this does nol undermine Lhe
nolion of transportability. Essential Lo transportability is a manageable corpus of
inlormation about

* syntax — Lhe programming language Lo be used,

¢ semantics — the srithmelic of the underlying compuler, including the run-time
libraries of functions like cos(), and

¢ diagnostics — Lhe system'’s facililies for error reporting and handling,

preferably no more then can fit on a shorl bookshell, and yet enough Lo cover a
wide range of manufacturers’ equipments.

Synlax

In this paper, syntaz relers Lo Lhe expressions in a language — which ones are
legilimate and how they are parsed Issues relevant Lo numerical calculations
include Lhe number of data formals available, how Lthey combine to form arrays and
struclures, and the order of evaluation in unparenthesized expressions. Languages
vary greally in Lheir provision ol numeric data formals, usually called “lypes'.
Both Basic and APL have just one numeric type, which is Lo be used for both integer
and floating point celculalions; Pascal and Algol 80 have jusl one real type. Fortran
and C have single and double Lypes, although in C all floaling expressions are of
Llype double. PL/l programmers may specify the precision of their floating point
variables, though Lhey typically map inlo Lhe single and double types supported by
Lthe underlying system. The new language Ada provides synlactic ““packages” in
which floaling types may be defined Lo correspond to the hosl system’s lacilities,
but its strong Lyping prohibits mixing of different user-defined types in expressions
wilthoul explicil coercions, even il the underlying hardware types are the same.

Expression evalualion is just as varied. For example, in
1.0 + /2

most compilers would recognize the 3 and 2 as integers. Their ralio would be
evaluated as Lhe real 1.5 or truncaled integer 1 depending upon the strength of the
1.0 Lo coerce their Ltypes. Different Fortran compilers have disegreed in this silua-
tion. In Ada such an expression would be illegal unless the 3 and 2 were writlen
with decimal points lo indicate Lhal they were real literals. Whal about Lhe
unparenthesized expression

A*HB+C 7

Most languages, like Fortran, evaluale it as il it were written (A°B) + C, bul APL
evaluales A x B + C as il it were writlen A x (B +C). The siluation gels more com-
plicaled when relational and boolean operalors are involved. In Pascal, the attempt
to simplify the language by keeping Lthe number ol levels ol operator precedence
small led Lo some surprises lor programmers. For example, because Lthe conjunc-
tion N has grealer precedence than <, Lthe expression

106 W. Kahan and J. 1. Coonen

z<y Ny<z,
used for checking bounds on the veriable y, has Lhe bizarre interpretation

(z<lwny)) <z
which is illegal because of the appearance of the real y as an operand to .

Perhaps Lhe widest syntactic liberties are taken by standard C compilers.
Expressions of the form

at+tb+c ,

where a, b, and ¢ may be subexpressions, are evaluated in an order delermined al
compile time according to the complexity of a, b, and c. This is so regardless of
parentheses such as

(@ +b)+c

Such e convenlion is disastrous in floatling poinl where, say, (a+b) cancels Lo a
small residual Lo be added into Lhe accumulation ¢. In such cases all accuracy may
be lost if (b+c) is evaluated first al the compiler's whim. The cautlious program-
mer who writes

(z ~05)-05

lo delend against a machine’s lack of a guard digit during subtraction will always
be vulnerable, if not to a C compiler then Lo an oplimizer thal collapses the expres-
sion into Lhe algebraically, though not numerically, equivalent form (z - 1.0).

To jump the gun a bit, it is clear Irom the examples above thal syntaz con-
strains semantics. Synlax also conslrains programmers who, C compilers notwith-
stending, are well advised to preclude any ambiguily in expression evalualion by
inserting parentheses liberally.

Semanlics

We concenirate here on arithmeltic semantics Thal is, after an expression has
been parsed — so Lhe compuler knows which operations to perform — what does ils
evaluation yield? Floaling poinl semanlics depends vilally on the underlying arith-
melic engine. The inilialed reader realizes Lhal this is where the real headaches
sel in. For example, on machines such as programmable calculators where Lhe
fundamental constants # and ¢ are available in a lew strokes, we might expect

(nxe) — (e xm)

Lo evaluale to 0.0 since, semanticelly, we expecl mulliplication to be commutative
despite roundofl. Unforlunately, even Lhis simple statement is not universally Lrue.
Different Texas Instruments calculalors yield different liny values for Lhe expres-
sion above; and il's not just a matler of machine size and economy, lor early edi-
tions ol Lthe Cray-1 supercompuler exhibited similar noncommutativity.

Another well-known example of murky semantics is the expression
X - (1.0x X)

which is exaclly X rather than 0.0 for sufficiently liny nonzero values X on Cray
and CDC compulers. On Lhese machines (1.0xX) flushes Lo 0.0 for Lhose Liny X. On
some olher machines that lacked a guard digit for mulliplication, the expression
above was nonzero whenever X's last significant digit was odd!

Hardware-related anomalies like these seem to predominale in any serious
treatment of arithmelic semantics. Such distraclions are what led Prolessor Hoare
to despair about floating point in high-level languages. We will nol dig further into
the lore of arithmetic anomalies. Inlerested readers can find an introduction in
[1]. The Lechnical report [10] studies the overall impact of anomalies and com-
pares Lwo approaches o improvement.

The Near Orthogonality of Syniax 107

Arithmetic semantlics is nol reslricled Lo simple operalions. In languages like
Basic Lhat include malrix operations, assignments like

MAT X = INV(A) * B

are allowed. As users mighl expecl. mosL implementations eveluate (A7')*B
(approximately), following the slrict mathemalical interpretalion of the formula.
However, more robust systems by Teklronix and Hewlett-Packard use Gaussian
eliminalion to solve Lhe linear system AX = B for X, Lhereby oblaining a usually
more accurale X that is guaranteed Lo have a residual B — AX small compared
with |B| + |A|-|X|. I A is close enough to singular, the subexpression INV(4)
mey be valid or nol depending upon good or bad luck with rounding errors — on all
machines except the Hewlelt-Packard HP 85. All machines solve (4 + 84)X = B
with A4 comparable to roundofl in A though possibly differing from column to
column ol X. The HP 85 further constrains AA Lo guarentee Lhat (4 + AA)™? exisls.
Thus it has no ““SINGULAR MATRIX' diagnostic. Consequently, a program using
inverse ileration to compute eigenveclors always succeeds on Lhe HP 85 bul on
other machines is certain lo fail for some innocuous data. Is such a program, using
a standard technique, portable or nol? Who is to blame if it is nol?

Arithmelic exceplions such as over/underfiow and division by zero fit inlo our
informal notion of semantics when they are given '‘values'’. We lake this view in
spile of a currenl lrend among authors Lo consider exceplions under a separate
heading pragmatics. This trend is understandable, given Lhe variely of exceplion
handling schemes across different hardware. Consider for example the expression
0.0/0.0 . When Lhey are lo continue calculalion (i.e. without a trap) CDC, DEC
PDP /VAX-11, and proposed IEEE standard machines stuff a non-numeric error sym-
bol in the deslination fleld. This symbol is then propagaled through further opera-
tions. Most other machines just stop, forcing program termination. At leaslL one
will store the “answer' 1.0.

Dividing zero by ilsell is usually bad news within a program, so the diversily of
disaslers Lhal arise on various machines is nol Loo surprising. A quite different
situation arises wilth the exponentistion operalor in YX. Since Lhis is part of the
synlax of several languages, for example Fortran, Basic, and Ada, responsibilily (or
ils semantics has been taken by language implementors. Of the many problems
that arise we will consider just one: whal is the domain of Y¥ when both X and Y
are real variables? Consider the simple case (—3.0)*9, which is:

-27.0 ...on very good machines,
—26.999...9 ...on good machines,
TERMINATION ...on bad machines,
undefined ...on cop-outs,
+27.0 ...on very bad machines.

Why this bizarre diversily of semantics? Although for arbitrary X the expression Y¥
may have no real value when Y is negative, the particular case above is benign
because X has an integer value 3.0. Thus restricting the domain of Y lo nonnega-
Live numbers is unnecesserily punitive. We recommend that, should X be a floaling
point Fortran variable wilh a nonzero integer value,

Y *eX = Y **INT(X) .

This cannol hurt Fortren users, but will help the Basic programmer (and the
conversion ol programs from Basic) because most implementations of Basic, with
just one numeric dala type, cannol distinguish the real 3.0 from the inleger 3 in
Lthe exponenl. This recommendation cosls extra only when Y is negalive. On the
other hand, il Y is 0.0 we dislinguish Y%, which is an error, from Y° = 1.0 which
malhemalics makes obligatory. Nole thal none of these issues are language issues,
though until now they have been sellled by language implementors. ldeally, these
resnonsibilities should be lifted from language designers and implementors, and

108 W. Kahan and J T. Covnen

borne by people like Lhe members ol IFIP Working Group 2.5.

The point of Lhis digression inlo the murk of pragmalics was to indicate thal
Lthe current siluation in exceplion handling is the resull of a host ol design flaws
rather Lthan inherent difficulties. We objecl to Lhe connolation “pragmalics’ car-
ries with il of acquiescence Lo inevilable hazards. We preler to caplure all seman-
Llics, including the anomalies, under one heading even if this entails a different
semanlics for each different implementation ol arithmelic. This exposes ratlher
than compounds a bad situation.

A notlably clean and complete erithmetic semantics is provided by the pro-
posed binary floaling point standard. The IEEE subcommillee responsible for Lthe
proposal sel oul Lo specily Lhe resull of every operation, belancing safely against
utility when execution must continue after an exception. Even a cursory glance al
the proposal indicales the extenl to which exceplion handling motivaled the
design:
¢ Signed « for overflow and division by 0.0.
¢ Signed 0.0 to interact with t=, e.g. +1.0/ 0.0 = —oo,
¢ NaN - not a number — symbols for invalid results like 0.0/0.0 and V-3.

¢ Denormalized numbers - unnormalized and with the formal's minimum
exponent — Lo betler approximate underfiowed values.

¢ Sticky flags for all exceptions.
¢ Optional user traps lor allernative exception handling.

These leatures promole comprehensible semantics for **standard’ programming
syslems.

Diagnostics

After synlax and semantics, the third aspect of the numerical programming
environmenl is the sel ol executlion Lime dingno&lic aids. They may be roughly
divided inlo anticipalory and retrospectlive aids, and according to whether they find
use during debugging or during (robust) produclion use.

. The principal anticipatory debugging aid is the breakpoint for control flow and,
when the herdware permits, for dalta lco. Some systems can monilor control or
dela flow according Lo compiler direclives inserted in a program. Relrospeclive
debugging sids Iinclude the lamiliar warnings and terminalion eulogies, as well as
the more voluminous memory dumps and control tracebacks. Systems with sticky
error flags can list those still standing when execution slops — in a sense they sig-
nal unrequited evenls.

For the production program thal would be robust, and perhaps even portable,
the situation is not so clear. Because most current systems provide neither excep-
tion flags (such side effects are anathema Lo some language designers) nor error
recovery, a program — il il is nol Lo stop ignominiously on unusual data — musl
include precautionary tests to avoid zero denominalors and negelive radicands,
and lesls againsl Liny. bul cerefully chosen, thresholds to ward off the effects ol
underflow to zero. The lack of flags can lorce Lhe use of explicit error indicators in
subprogram argument lists o communicate exceplion condilions. The languages
Basic, PL/I, and Ada allow lor enlicipatory exception handlers (e.g. ON <condition>
... in PL/1) bul do nol ellow Lhe exceplion handler Lo discover anylhing aboul Lthe
exceplion beyond a rough calegory into which it has been lumped, thereby making
an automatic response by the program very cumbersome.

Another variely of anlicipatory diagnostic aid is available through an oplion in
the proposed floaling point standerd. IL is essentially an extension ol Lhe PL/|
“on-condilion’" excepl thal it is outside any current language synlax. This fealure,
which might be called trap-with-menu, allows the programmer Lo preselecl froin a
small list of responses an alternative to the defaull response. By devising the menu

The Near Orthogonality of Syntax 109

carefully, we should be able Lo give the user sufficient flexibilily without having Lo
cope with a voluminous foating poinl “'state” al the time of Lhe exceplion.

The Syntaclic—Semanlic Inlerface

From Lhe point of view of the nutnerical analysl, Lthe semanlic content of pro-
gramiming languages is given by Lhe Jollowing list.

¢ What are the numeric types, and whatl is their range and precision?

* Which numeric lypes are assigned Lo anonymous variables like inlermediate
expressions, converied literals, arguments passed by value,...?

¢ Which numeric literals are allowed, and are they interpreted differently in Lthe
source code Lhan the 10 stream?

* Which basic arithmelic operalions are available, and what is in the library of
scientific functions?

* |s Lhere a well-underslood vocabulary reserved for Lhe concepls and funclions
we need, and defended against collision with user-defined names?

* Whal happens when exceplions arise? How can error reports be communicated
between subprograms?

* Is Lhere a way lo alter Lthe default oplions (for, sey, rounding or handling of
underflow) by means ol global flags?

These are among the knottiesl issues in numerical compulalion. But, Lo a large
extent, they can be freed from lhe more conventional language issues and thus
resolved within the numerical communily. Only questions aboul data Lypes and the
change ol conlrol flow on exceplions are necessarily lied Lo language syntax.

Consider 8 hypotlhelical language wilh only skelelal numerical fealures.
Assume Lhal inleger types and arithmetic and character strings are "fully” sup-
ported. The language supports single and double real variables, pointers Lo them,
and allows real variables Lo be embedded in arrays and structures. There is also
provision for funclions returning real values, and lor real paramelers passed eilher
by value or relerence. But the only operation on real types is assignment of a sin-
gle value Lo a single variable, and of a double value Lo a double variable.

To be useful numerically, Lhis hypothetical language would require a support
library providing the basic arithmelic operations as well as the usual complement
of elementary funclions. Bul because each operation more complicaled then a
straight copying ol bils would result only from an explicit function call, the pro-
grammer would in principle have complete control of the arithmelic semanlics (by
choosing a suilable library). As an example, consider Lhe evaluation ol the inner
product of the single arreys z{] and y[] using a double variable for the inlermedi-
ate accumulation to minimize roundofl:

double_precision temp_sum;
temp_sum := DOUBLE_LITERAL(00");
foriin1 .ndo
temp_sum := DOUBLF_SUM(temp_sum,
SINGLE_TO_DOUBLE_PRODUCT(z{i], y[i])); od
inner_product := DOUBLE_TO_SINGLE(lemp_sum);

Even this simple example exposes many of Lhe questions Lhat arise in numerical
programs. Would Lthe conslant 0.0 require a special notation (such as 0.0D0) to be
assigned Lo a double variable? In a more conventional rendition of Lthe program Lhe
inner loop would involve a statement of the form

temp_sum := temp_sum + z[i]*y[i];
Would Lhe product be rounded to single precision before the accumulation into
temp_sum, destroying Lthe advantage ol double precision?

110 W Kahan and 1 1 Coonen

Semanlic Packages

The skeleton language above may be unambiguous, bul it is clearly much too
cumbersome for calculalions involving complicaled expressions What we musl do
is bridge the gap belween the handy synlactic expression z[i])%[i] and the
semantically well-defined

SINGLE_TO_DOUBLE_PRODUCT(=[], y[i]) .
We propose to do Lhis Lhrough so-called semantic packages.

It may be a sign of progress Lthat the new language Ada comes very close lo
suiling our needs. Although Ada incorporales the Brown model for arithmelic by
providing a sel of predefined atiribules for each real type available Lo the program-
mer, this is in general insufflicient for programs Lhat would be robust. More impor-
tant for us, Ada allows the overloading and redefinition of the infix operators +, ~,
elc. and in so doing provides Lthe explici! conneclion belween the operalors and Lhe
real hardware functions Lhey represenl. The semantic packages, corresponding
direclly lo the (syntactic) packages construct in Ada, could contain exacl
specifications ol the arithmetic funclions (which are actually implemented in
hardware). Thus there would be a semantic package for each basic archileclure,
for example IBM 370, DEC PDP/VAX-11, and the proposed IEEE binary standard.
Some semantic packages could be more general, encompassing several machines
whose arilhmetic is similar enough Lthal a lew environmental inquiries supply all
the distinction that is necessary lor a wide range ol applicalions. For example, one
such package might include IBM 370, Amdahl, Data General MV /8000, HP 3000, DEC
PDP/VAX-11 and PDP-10, relegating Tl, CDC 6000, Cray 1 to another.

Our altempt Lo force the grilty delails of arithmelic semanlics upon program-
mers may dismay readers who embrace Lthe modern trend to elevate the program-
ming environment above machine delails. Such an attempl is made within Ada, by
meeans of a small sel of predefined atlribules associaled with each real Lype. We
have already explained that this is nol enough; sometimes the program thatl would
be robust must respond to machine peculisrities Lhat dely simple parameleriza-
tion. The report [10) on why we need a standard contains several examples.

An effort to “package’ arithmelic semantics wilhin various programming
languages may seem impossible. For example, Lhe details of floating point, espe-
cially in the proposed IEEE standards, involve global flugs Lo indicale errors, and
modes to delermine how arithmelic be done. In Forlran, such state variables may
be defined as local dala within the standard library funclions whose job is to lest
and aller the flags, although the actual implementation involves collusion with Lhe
hardware flags. This is notl a complele lormalizalion, since Forlran provides no way
Lo describe Lhe conneclion belween the flags and Lhe arithmelic operalions.
Current Lrends in language design eschew error flags as side effects of the arith-
melic operalions (funclions). Modes and flags seem Lo violate Lhe principle that all
causes and effects ol expression evaluation should be visible within Lhal expression.
Perhaps surprisingly, Ada again provides us wilth the desired facilily — but wilhoul
excessive or expensive generality. In accordance with the Steelinan requirements
ol the United Stlates Department of Defense, Ada permils side effecls ** limited Lo
own variables of encapsulalions. This is exaclly our inlention in using semantic
packages lo describe arithmelic.

Optimization
Any treatmenl of floating poinl semantics must deal with thal favorile whip-

ping boy. Lthe code optimizer. We considered a mosl exlreme example above, in
which C compilers would calculate floaling sums like

(atbd)tc

wilthout regard Lo the parentheses, in whalever order makes besl use of the regis-
ter flle. This is simply a mistake in the language design

The Near Orthogonality of Svatax 1

Nol all anomslies are so clear-cut Some queslions arise when, as in architec-
Lures suggested by Lhe proposed IEFFE slandard, extended registers with extra pre-
cision and range beyond bolh single and double types are used as inlermediale
accumulators. Consider Lhe lypical code sequence

x:=a*b,
y:=z /¢,

in which all variables are assumed Lo be of Lype single. If (a®b) were computed in
an extended register, should Lhal value or Lhe single value z be used in Lhe evalua-
tion of y? Efficiency dictales Lhe former, saving one register load and lessening
the risk ol spurious over/underfiow. Bul common sense diclates the lalter, so that
what Lhe programmer sees is whal the programmer gels.

A similar situalion arises in inner productl calculations of the type discussed
above. Consider Lhe loop

double_precision lemp_sum;
temp_sum := 0.0;
foriin i..n do
temp_sum := temp_sum + z|i]*y[i]; od
inner_product := temp_sum,

in which. like the earlier example, all variables are single except for the double
temp._sum The fully "oplimized”” compiler might run this loop with just two
extended registers, one to compule the products z[i]*y[i] and one to accumulale
temp_sum, thereby avoiding (n—1) regisler loads and stores by simply ke.eping
temp_sum in a register. Alas, the programmer asked for a double precision inler-
mediale, nol exlended, so such oplimization is precluded.

The moral of Lthese examples is that declared types musl be honored. Also, Lhe
Lype assigned by the compiler to anonymous variables must be deducible synla'cti-
cally, or. belter, il should be under the programmer’s control. The alleged oplimi-
zalions above were disparaged because named variables were replaced surrepli-
liously by extended counterparis that happened lo be in registers. This is not_lo
say that extended evaluation is unhealthy: on the contrary, exiended lemporaries
can reduce the risk of spurious over/underflow or serious rounding errors, and
therefore should be used for anonymous variables. Bul Lhe advantage ol extended
is lost if languages prevent programmers from requesling it for declared Lem-
poraries. The expression

temp_sum + z[i}*yfi]

in Lhe loop above would besL be compuled entlirely in exlended before tLhe slore
inlo temp_sum. These lacilities for extended expression evaluation are notl uniql}e
Lo the proposed IEEE standard; the benefils of wide accumulalion were realize@ in
the earliest days of computing. The Forlran 77 standard includes some intention-
ally vague language aboul expression evaluation in order nol lo prohibil extended
intermediates, and the Ada slandard, which seems lo avoid some problems by
strict Lyping and requiremenls for explicil type conversions in programs, uses a
so-called universal_real type (al leasl as wide as all supported real types) lor the
evalualion of literal expressions al compile lime.

The use of an exlended type lor anonymous variables is prone Lo one class of
problems. When real values or expressions may be passed by value Lo subprograms
there may be a conflicL between Lhe implicil Llype el Lhe expression and Lhe
declared lype of the targel formal parameter. This problem arises in current
implementations of the language C. which supports both single and double types
but specifies thal all real expressions are of lype double. Suppose thal a C pro-
gram contains the statement

112 W. Kahuanand J.T Coonen

y:= f(a*/c),
where all veriables are of Lype foal (single) and the function f() is defined by
float f(z)
float z;

How can Lhe Lype of Lhe expression (3“6 /c) be double while the Lype of the lormal
parameler z is floal? C resolves Lhe discrepancy by silently countermanding Lhe
declaralion ol z and replacing floal by double. Once again, what you see is not
what you get. This use ol wider intermediates, exploiling the PDP-11 floaling point
architecture, is exaclly analogous lo one use ol extended registers. Though it is
eflicient and straightlorward to implement, it is not acceplable.

Conclusion

We have cited examples Lo show thal progress in numerical compuling has
been slowed by questionable decisions in Lhe design of compuling languages and
syslems. We have suggesled a rough division inlo Lhree calegories, synlax, seman-
lics and diagnoslics, so that Lhe difficult issues could be resolved by those most
qualified — and mosl profoundly impacted. IFIP Working Group 2.5 might well take
responsibilily for the interfaces wilh semantics. Ideally their efforls will lead to
fully specified environments for which reliable numerical soflware can be derived,
possibly aulomatically, from algorithms expressed in a mathematical form if not
already in a programming language. Programming then becomes a three phase
translation involving the language (syntax) lo be used, the underlying arithmetic
engine (semantics), and the host system (diagnostics). We acknowledge thal these
categories are not complelely independent, and Lhat the boundaries belween Lthem
cannol be drawn precisely, al least nol yel. Nonetheless, we remain convinced that
those boundaries musl be drawn if we are to bring Lhe required experlise to bear
on Lhe current morass.

Acknowledgement

This report was developed and originally typeset on a computer system funded
by the U. S. Department of Energy, Contract DE-AM03-76SF00034, Project Agree-
ment DE-AS03-78ER10358. The authors also acknowledge the financial support of
the Office of Naval Research, Contract NO0O014-76-C-0013.

References

[1]) Kahan, W., A Survey of Error Analysis,” in: Information Processing 71,
(North-Holland, Amsterdam, 1872) 1214-1239.

[2] "'A Proposed Standard lor Binary Floaling-Point Arithmetie,"’ Drall 8.0 of IEEE
Task P754, with an introduction by D. Stevenson, Computer, 14, no. 3, March
(1881) 51-62.

[3] Cody, W. J., "*Analysis of Proposals lor Lhe Floaling-Point Standard,' Computer,
14, no. 3, March (1861) 83-68.

(4] Hough, David, **Applications ol the Proposed IEEE 754 Standard lo Floating-
Point Arithmelic,” Computer, 14, no. 3, March (1881) 70-74.

[5] Coonen, Jerome T., "Underflow and the Denormalized Numbers,'* Compuler, 14,
no. 3, March (1961} 75-07.

[8] Brown, W. S, ""A Simple But Realislic Model of Floaling-Point Computation,’ Lo
appear in ACM Transaclions on Mathematical Software, 1901.

(7] Ryder, B. G., "The PFORT Verifier, Software — Praclice and Ezperience, 4
(1974) 359-377.

(8] Sterbenz, P. H., Floating-Point Computation (Prenlice-Hall, Englewood Clifs,
N T 1974\

The Near Orthogonality of Svatax 113

(9) Drown, W. S. and S. I. Feldman, “Environment Parameters and Basic Funclions
for Floaling-I’0int Compulation,” ACM Transections on Mathematical
Software, 8 (1980) 610-623

{10)Kahan, W., "Why do we need a standard lor floating point arithmetic?”, Techni-
cal Report, Universily of Calilornia, Berkeley, CA, 94720, February (1981).

