
'I'll/:. Rl:'I.A l"ION.'illll' II/: l1"f.'l-.'N NlJAIJ:'IUCAI. COMl'IIJifflON
ANI> l'ROt:IUMAIINt; UNtil/Atil-."S, J.t.. Rei,/ {nlitm}
N11rtl1-ll1•lla1rJ l'ublisl1i1t1 Cimq,a11,•
©ll-11'. IIJH1

The Near Orthogonalily of Syntax. Semantics. and
Diagnostics in N umericaJ Programming Environments

W. Kahan and JeTome T. Coonen

Malhemalics Deparlmenl
Universily or Calirornia

Berkeley, California 94720
U.S.A.

We can improve numerical proararnmina by recognizing lhal lhree aspects of lhe
oompuling environment belong Lo intellectually separate comportmenls. One 111 lhe
syntax of lhe lanauage. be it Ada, C, Fortran or Pascal, which givea leailimocy lo
various expressions without completely specifyina their meaning. Another mighl be
called "orilhmelic semantics". It concerns the diverse values produced by
different computers for the se1me eapreHion in a aiven languoge, includina lhe
values delivered afler exceptions like over/underftow. The Lhird comportment in·
eludes diaanosllc olds, like error ftags end messnges; these loo con be specifted in
lanauoae-independenl ways. However lmperfect. this decouplin11 should spell out
for all concerned Lhe nature or orilhmellc responsibilities to be borne by hardware
de■igner■, by compiler writers and by operating system programmers.

"Another of lhe areal advanlages of usins lhe axiomatic
approach is thnl aaioms offer a simple and tlexible technique for
leaving certain 1111pecls or a language unlle/fnad, for
eaemple ... occuracy of ftoalin11 point... Thia is absolutely essen
tial for slondardlznlion purposes ... "

- C. A. R. Hoare (1969)

Professor Hoare's allilude loward floating point semanlics reftecls the anarchy
lhal befell commercial ftoaling point hard were early in lhe t 960's [l), and wor
sened in lhe 70's. Thal enarchy confounded allempls lo characterize all ftonling
poinl arilhmelics in one inlelleclually manageable way. Now there is hope for lhe
l 980's. A new standard for binary ftoaling poinl arithmelic has been proposed
before the lEEE Computer Society, and a radix-independent sequel is in lhe works.
Since the binary standard has been adopled by a broad range of computer
manufacturers, including much of lhe microprocessor industry. we expect numeri
cal progrnms lo behave more nearly uniformly across different computers, and
perhnps across different languages as well. A drafl of lhe binary standard, along
wilh several supporting papers, may be found ln lhe March 1981 issue or ComputeT
(2-5).

Slarling in lhe 1960's progremming language designers cDme lo be lhe
arbilers of mosl aspects or lhe programming environment With control of lhe pro
&rDmmers' vocabulary, hmguage designers could control fundamental features
such as the number or numeric data lypes available and the extenl of run lime
exception handling. The language even limited lhe numeric values available by
constraining the literDls in lhe source lexl. This ls nol lo say lhal language
designers acted capriciously. They were disinclined lo mention any capability nol
available on all computers. In this respect compuler archilecls have laid a heavy
hand on lhe compuling environmenl. Languages must reflect lhe least common
denominalor of available (ealures, and so lhey lend lo vague oversimpliftcations
where floating poinl is concerned. An exlreme case is the new language Ada which,
by incorporating W. Sten Brown's very general model for ftoaling poinl computation
(6), pretends lhal the difference between one computer's arilhmelic and another's
is merely 11 malt.er of a few envirQnmental p11rameters. Uut sometimes the

I04 U'. K11l1c111 c111J J. '/: C 'm1t1c·11

programmer must know his mechine's erilhmelic lo lhe last delnil. especially when
trying lo circumvent limilalions in range or precision. These details, dangling
between language designers nnd computer archilecls, loo orten receive short shrift
from both. Tying up these loose ends would improve lhe computing environment.

Of course lhe computing environment invites numerous improvements, lo
graphics, ftle handling, database management nnd others, as well as ftoaling point
and languages. Dul enhancements lo which high-level languages deny access are
enhancements deslined lo die. Those of us working on the proposed IEEE floating
point standards have had lo race lhis problem. We believe lhe solution is a proper
division of labor, rather lhan grand allempls lo improve loo many aspects of lhe
computing environment simultaneously; lhe laller way would require impractical
coordination. For example, lo encourage lndependenl development ol program
ming languages and floating point hardware, we propose lhal language (synlaclic)
issues be decoupled from arilhmelic (semantic) issues lo lhe exlenl possible. We
present our view of lhe interplay between syntax, semantics, and diagnostics as
parts of lhe computing environment, and discuss how they interface with each
olher. Given an adequate interface discipline, we hope lhal responsibility for these
parts can be divided among language designers, numerical analysts, systems pro
grammers, and others. In lhe pasl lhis division has been unclear. Unforlunalely,
lt'hen everybody is responsible, or when nobody is responsible, then everybody can
be irresponsible.

Portability
We regard lhe programming language as just one layer or lhe computing

environment, dissenting from a more lradilional view lhal lhe language is lhe
environment. Whal does lhis mean for program portability? Unlil very recently,
porlabilily of numerical programs was considered lo be a quality of source code
lhal could be compiled and run successfully wilhoul change on a variety or com
puters. The issues appeared largely synlaclic. For example, programs like lhe
PFORT verifier [7] were developed lo check Fortran codes for adherence lo a stan
dard for "portable Fortran", their principal Lask being lo weed oul various quirks
of dialect. Nowadays, we acknowledge lhal lhe porlabilily issues go deeper lhan
differences among Fortran dialects. They entail lhe (semantic) subtleties of
over/underflow and rounding lhal, if ignored, can cause ostensibly portable pro
grams lhal function beautifully on one machine lo fail on another. Programming
languages lhal lack the vocabulary required lo address lhese issues aren't very
helpful here. If we cannot "mention" lhese issues how can we resolve lhem?

Ideally, lhe variallon or ftoaling poinl arilhmelic from one machine lo another
should be describable with a lew parameters [8) which portable programs could
determine through syslem-dependenl environmental inquiries (9]. This scheme
works salisfaclorily for many programs lhal do nol depend critically upon lhe finer
points of lhe arilhmelic. However, any such paramelerizalion musl be based upon
an abslracl model encompassing simultaneously all current arilhmelic engines,
some of lhem disconcertingly anomalous [I, 10]. To insist lhal lhis model underlie
portable programming is lo dump upon programmers lhe onus lo discover and
defend against all mishaps lhe model permits, some of them mere arlifacls of gen
erality. This in lurn would burden programs with copious lesls against sublle (and
certainly machine-dependent) thresholds lo avoid problems with idiosyncratic
rounding and over/underflow phenomena. A programmer who shirks his responsi
bility lo produce robust code obliges lhe user of his program, possibly another pro
grammer, lo unravel a more tangled web. Ultimately, lhe buck may be passed lo
users who ftnd eilher their programs or lheir computers lo be inexplicably unreli
able. We doubl lhal any semantic analog ol lhe PFORT verifier will ever be able lo
lest for robust independence of the underlying arilhmelic. Computer arilhmelics
are loo diverse lo allow every potentially useful numerical algorithm lo be prn
Rrammed straighUorwardly in a fashion formally independent of lhe underlying

J'lu· Nc•t1r Ortl111,:,mt1ltl1· uJ S1•11t1J.t IOS

machine.
Porlabilily al lhe source code level is nice when inexpensive. When nol, we are

conlent wilh "lransporlabilily", whereby algorithms can be moved from one
environment lo another by routine lcxl conversion, possibly wilh some aid rrorn
automation. An algorithm may depend critically upon lhe underlying arilhmelic
semantics and upon a system's abilily lo communicate error reports between sub
programs. ll is lransporlable lo the extent lhal the dependencies can be commun
icated in natural language using mathematical terms, if nol in Fortran. We are not
advocating yel another programming language. We pref er lhal programmers
accompany lheir codes wilh some documenlalion lhal explains. and can even be
used lo verify, how lhe program handles ils inleraclions with the underlying sys
tem. Because computing environments are so diverse, we expect some algorithms
lo be lransporlable lo only a few systems, nol ell; lhis does nol undermine lhe
notion of lransporlabilily. Essential lo lrsnsporlabilily is a mcmageable corpus of
information about
• syntax - lhe programming language lo be used,
• semantics - lhe arilhmelic of lhe underlying computer, including the run-lime

libraries or functions like cos(). end
• diagnostics - lhe system's facilities for error reporting and handling,

preferably no more lhan can ftl on a short bookshelf, and yel enough lo cover a
wide range of manufacturers' equipments.

Synlu
In this paper, syn.lox rerers lo the expressions in a language - which ones are

legilimsle and how lhey are parsed Issues relevant lo numerical calculallons
include lhe number of dala formals available, how they combine lo form arrays and
slruclures. and lhe order of evaluation in unparenlhesized expressions. Languages
vary greatly in their provision of numeric dala formals, usually called "types".
Both Basic and APL have just one numeric lype, which is lo be used for bolh lnleger
and ftoaling point calculations; Pascal and Algol 60 have just one real Lype. Fortran
and C have single and double types. although in C all ftoaling expressions are of
lype double. PL/I programmers may specify lhe precision of their ftoaling point
variables, though lhey typically map inlo lhe single and double types supported by
lhe underlying system. The new language Ada provides synlaclic "packages" in
which ftoaling lypes may be defined lo correspond lo lhe hosl system's facilities,
but ils strong typing prohibits mixing of different user-defined types in expressions
wilhoul explicit coercions, even if lhe underlying hardware lypes are lhe same.

Expression evaluation ls just as varied. For example, in

1.0 + 3/2

most compilers would recognize lhc 3 and 2 as integers. Their ratio would be
evaluoled as lhe real l .5 or lruncoled integer I depending upon lhc strength of the
1.0 lo coerce lheir lypes. Diff erenl Fortran compilers have disagreed in lhis silua
lion. In Ada such an expression would be Illegal unless lhe 3 and 2 were written
with decimal points lo indicate lhal lhey were real literals. Whal aboul lhe
unparenlhesized expression

A • B + C ?

Mosl languages, like Fortran, evaluate il as if il were wrillen (A •B) + C, bul APL
evaluates A x B + C as if il were wrillen A x (B + C). The situation gels more com
plicated when relational end boolean operators are involved. In Pascal, lhe allempl
t.o simplify lhe language by keeping lhe number of levels of operator precedence
small Jed lo some surprises for programmers. For example, because lhe conjunc
tion n has grealer precedence lha11 <, lhe expression

IOb W Ku/11111 cJlld J. 1'. (,11111c•11

z<11n11<z,

used for checking bounds on lhe variable ti, hDS lhe bizure inlerprelalion

(:a: < (11 (\y)) < z

which is illegal because of lhe appearance of lhe real y as an opernnd lo n.
Perhaps lhe widest synlaclic liberties are laken by standard C compilers.

Expressions of lhe form

a+ b + c ,

where a, b, and c may be subexpressions, are evaluated in an order determined al
compile lime according lo lhe complexity of 11, b, and c. This is so regardless of
pmrentheses such as

(11 ♦ b) ♦ C

Such a convention is disastrous in floating poinl where, say, (a+b) cancels lo a
small residual lo be added inlo lhe accumulation c. In such cases all accuracy may
be losl if (b +c) is evaluated ftrsl al lhe compiler's whim. The cautious program
mer who writes

(:a: - 0.5) - 0.5

lo defend against a machine's lack of a guard digit during subtraction will always
be vulnerable, if nol lo a C compiler lhen lo an optimizer lhal collapses lhe expres
sion into lhe algebraically, though nol numerically, equivalent form (z - 1.0).

To jump lhe gun a bil, il is clear from lhe examples above lhal synta.z con
strains semmntics. Syntax also constrains programmers who, C compilers notwilh
slanding, are well advised lo preclude any ambiguity in expression evaluation by
inserting parentheses liberally.

SemanUc1

We concentrate here on arilhmelic semantics Thal is, afler an expression has
been parsed - so lhe computer knows which operations lo perform - whal does ils
evaluation yield? Floating poinl semantics depends vitally on lhe underlying arith
metic engine. The initialed reader realizes lhal lhis is where lhe real headaches
sel in. For example, on machines such as programmable calculators where lhe
fundamental conslanls n and a are available in a few strokes, we might expect

(n >< e) - (e x n)

lo evaluate lo 0.0 since, semantically, we expect mulliplicalion lo be commutative
despite roundoff. Unforlunalely, even lhis simple statement is not universally lrue.
Diff erenl Texas Instruments calculators yield different liny values for lhe expres
sion above; and it's not jusl a maller of machine size and economy, for early edi
tions of lhe Cray-I supercomputer exhibited similar noncommulalivily.

Another well-known example of murky semantics is the expression

X - (l.O x X)

which is exaclly X rather than 0.0 for sufficiently tiny nonzero values X on Cray
and CDC computers. On lhese machines (I.OxX) Hushes lo 0.0 for lhose Uny X. On
some olher machines lhal lacked a guard digil for mulliplicalion, lhe expression
above was nonzero whenever X's lasl signiftcanl digit was odd!

Hardware-related anomalies like lhese seem lo predominate in any serious
lrealmenl of arilhmelic semantics. Such dislraclions are whal led Professor Hoare
lo despair about Ooaling poinl in high-level languages. We will nol dig further inlo
lhe lore of arilhmelic anomalies. lnteresled readers can flnd an inlroduclion in
[I]. The technical report [10) studies lhe overall impact of anomalies and com
pares two approaches lo improvement.

1"/u• Nc•c,r tJrtl,11g111111li1.,· oJ S,1·11/IIX 107

Arilhmelic semantics is nol restricted lo simple opernlions. In languages like
Uasic lhal include matrix operations, assignments like

MAT X = INV(A) • B

are allowed. As users mighl expect. most implementations evaluate u-1) •B
(approximately), following lhe strict malhemalical interpretation of lhe formula.
However, more robust systems by Tektronix and Hewlett-Packard use Gaussian
elimination lo solve lhe linear system AX = B for X, thereby obtaining a usually
more accurate X lhal is guaranteed lo have a residual B - AX small compared
wilh I BI + IA I· IX 1- If A is close enough lo singular. lhe subexpression /NV(A)
may be valid or nol depending upon good or bad luck wilh rounding errors - on all
machines except lhe Hewlell-Packard tlP 85. All machines solve (A + AA)X = B
with AA comparable lo roundoff in A lhough possibly differing from column lo
column of X. The HP 85 further constrains AA lo guarantee lhal (A + AA)-• exisls.
Thus il has no "SINGULAR MATRIX" diagnostic. Consequently, a program using
inverse ileralion lo compute eigenvectors always succeeds on lhe HP 85 bul on
other machines is certain lo fail for some innocuous dala. ls such a program, using
a standard technique, portable or nol? Who is lo blame if il is nol?

Arilhmelic exceptions such as over/underflow and division by zero ftl inlo our
informal no lion of semantics when lhey are given ''values". We lake this view in
spile of a current lrend among authors lo consider exceptions under a separate
heading pragmatics. This trend is understandable, given lhe variety of exception
handling schemes across different hardware. Consider for example lhe expression
0.0/ 0.0 . When lhey are lo continue calculation (i.e. wilhoul a lrap) CDC, DEC
PDP/VAX-I l, and proposed IEEE standard machines stuff a non-numeric error sym
bol in lhe destination fteld. This symbol ls lhen propagated through further opera
tions. Most other machines jusl slop, forcing program lerminallon. Al leasl one
will store lhe "answer" l.O.

Dividing zero by itself is usually bad news within a program, so lhe diversily of
disasters lhal arise on various machines is nol loo surprising. A quite different
silualion arises wilh lhe exponenlialion operator in yx. Since lhis is parl of lhe
syntax of several languages, for example Forlran, Basic, and Ada, responsibility for
ils semantics has been laken by language implementors. Of lhe many problems
lhal arise we will consider just one: whal ls the domain of yx when bolh X and Y
are real variables? Consider lhe simple case (-3.0)3•0, which is:

-27.0
-26.999 ... 9

TERAIINATION
undefined

♦ 27.0

... on very good machines,

... on good machines,

... on bad machines,

... on cop-ouls,

... on very bad machines.

Why lhis bizarre diversity of semantics? Although for arbitrary X lhe expression yX
may have no real value when Y ls negative, lhe particular case above is benign
because X has an integer value 3.0. Thus restricting lhe domain of Y lo nonnega
tive numbers is unnecessarily punitive. We recommend lhal, should X be a floating
point Fortran variable wilh a nonzero Integer value,

Y •• X = Y .. INT(X) .

This cannot hurl Fortran users, bul will help lhe Basic programmer (and lhe
conversion of programs from Basic) because mosl implemenlalions of Basic, wilh
just one numeric dnla lype, cannot distinguish lhe real 3.0 from lhe integer 3 in
lhe exponent. This recommendation costs exlra only when Y is negative. On lhe
olher hand, if Y is 0.0 we distinguish r°-0, which is an error, from Yo = 1.0 which
malhemalics makes obligatory. Nole lhal none of lhese issues are language issues,
though until now they hove been sellled by language implementors. Ideally, lhese
resoonsibililies should be lifted from lan~ua~e desii<ners and implementors, and

108 W. K11hu11 um/ J. ·1: C im,u•,i

borne by people like lhe members ol lFIP Working Group 2.5.
The point of this digression into the murk of pragmatics wus lo indicate lhal

the current silualion in exceplion handling is the result of a host of design news
rather than inherent difficullies. We object lo lhe connolelion ··progmalics" car
ries with il of acquiescence lo Inevitable hazards. We prefer lo capture all seman
tics, including the anomalies, under one heading even ii lhis entails a diff erenl
semantics for each different implementation of arithmetic. This exposes rather
lhan compounds a bad siluelion.

A notably clean and complete arithmetic semantics ls providt!d by lhe pro
posed binary floating point standard. The IEEE subcommillee responsible for lhe
proposal set oul lo specify lhe result of every operation, balancing SBfely against
ulilily when execution must continue after an exception. Even a cursory glance al
the proposal indicates the extent lo which exception handling molivaled lhe
design:
• Signed 00 for overflow and division by 0.0.

• Signed 0.0 lo interact with :1:00, e.g. + 1.0/ -0.0 = -oo.

• NaN - nol a number - symbols for invalid results like 0.0/0.0 and "-3.
•

•

Denormalized numbers - unnormalized and with the format's minimum
exponent - lo heller approximate underflowed values.
Sticky flags for all exceptions .

• Optional user traps for alternative exception handling.
These features promote comprehensible semantics for "standard" programming
systems.

Diagn oslics
After syntax and semantics, lhe lhlrd aspect of the numerical programming

environment is the set of execution lime diagnollic aids. They may be roughly
divided into anticipatory and retrospective aids, and according lo whether lhey ftnd
use during debugging or during (robust) production use.

. The principal anticipatory debugging aid ls the breakpoint for control flow and,
when the hardware permits, for data loo. Some systems can monllor control or
dale flow according lo compiler directives Inserted in a program. Retrospective
debugging aids Include lhe familiar warnings and termination eulogies, as well es
the more voluminous memory dumps and control tracebacks. Systems with sticky
error ftegs can lisl those still standing when execution slops - in a sense they sig
nal unrequited events.

For the production program lhal would be robust, and perhaps even portable.
lhe siluelion is not so clear. Because mosl current systems provide neither excep
tion flags (such side effects are anathema lo some language designers) nor error
recovery, a program - if il is not lo slop ignominiously on unusual dale - musl
include precautionary tests lo avoid zero denominators and negative radicands,
and lesls against tiny, but carefully chosen, thresholds lo ward off the effects of
underflow lo zero. The lack of ftags can force the use of explicit error indicators in
subprogram argument lists lo communicate exception conditions. The languages
Basic, PL/I, and Ada allow for anticipatory exception handlers (e.g. ON <condition>
... in PL/I) bul do not allow lhe exception handler lo discover anything eboul the
exception beyond a rough category inlo which it has been lumped, thereby making
an automatic response by the program very cumbersome.

Another variety of anticipatory diagnostic aid ls available through an option in
lhe proposed ftoaling point standard. IL is essentially an extension of lhe PL/I
"on-condition" except lhal ll is outside any current language synlax. This feature,
which might be called trap-with-menu, allows the programmer lo preselect from a
small list of responses an alternative lo the default response. By devising the menu

carefully, we shouhJ be able lo give lhe user sufficient flexibility without having lo
cope with a voluminous flouting poinl "slate" al the lime of lhe exception.

The Synlaclic-Semanlic Interface
f'rom the point of view of the numerical analyst. lhe semantic content of pro

gramming languages is given by the following list.

•
•

•

•

Whal are the numeric types, end what is their range and precision?
Which numeric types are assigned lo anonymous variables like intermediate
expressions, converted literals, arguments passed by value, ... ?
Which numeric literals are allowed, and ere lhey interpreted differently in the
source code than the 10 stream?
Which basic arithmetic operations are available, and what is in the library of
scienlinc functions?
ls there a well-understood vocabulary reserved for the concepts and functions
we need, and defended against collision with user-defined names?
Whal happens when exceptions arise? How can error reports be communicated
between subprograms?
Is there a way lo alter lhe default options (for, say, rounding or handling of
underflow) by means of global flags?

These are among the knolliesl issues in numerical computation. But, lo a large
exlenl, lhey can be freed from lhe more conventional language issues and thus
resolved within the numerical community. Only questions about data types and the
change of control flow on exceptions are necessarily lied lo language syntax.

Consider a hypolhelical lenguege with only skeletal numerical features.
Assume lhal integer types and erilhmelic and character strings are "fully" sup
ported. The language supports single and double real variables, pointers lo lhem,
and allows real variables lo be embedded in arrays and structures. There is also
provision for functions returning real values, and for reel parameters passed either
by value or reference. But the only operation on real types is assignment of a sin
gle value lo a single variable, and of a double value lo a double variable.

To be useful numerically, lhis hypothetical language would require a support
library providing the basic arithmetic operations as well as the usual complement
of elementary functions. Dul because each operation more complicated then a
straight copying of bits would result only from an explicit function call, lhe pro
grammer would in principle have complete control of lhe arithmetic semantics (by
choosing a suitable library). As an example, consider lhe evaluation or the inner
product of Lhe single arrays z() and yl) using a double variable for lhe intermedi
ate accumulation lo minimize roundoff:

double...precision temp_sum;
temp_sum := DOUBLUITEHJ\I.("0 0");
lor i in t . n do

temp_sum := DOUBLF.....SUM(temp_sum,
SINGLF.JO_l)OUIJI.IU'RODUCT(x(i), y(i))); od

inner_product := DOUBLFJO....SINGLE(temp_sum);

Even lhis simple example exposes many of lhe questions lhal arise in numerical
programs. Would the conslanl 0.0 require a special notation (such as 0.0D0) lo be
assigned lo a double variable? In a more conventional rendition of the program the
inner loop would involve a statement of the form

temp_sum := temp_sum + z(i]•y(i);
Would the product be rounded lo single precision before the accumulation into
,emp_sum, destroying the advantage of double precision?

I IO W Ki1J1111111ml J 'f Cim111·11

Semantic Packages
The skeleton language above may be unambiguous. but il is clea.-ly much loo

cumbersome for calculalions involving complicated exp.-essious Whal we musl do
is bridge lhe gap between the handy synlttclic exp.-ession :r l i).,, l i] and lhc
semantically well-defined

SINGLE....10...DOUHI.E-PHODUCT(:r(i}. y(il).
We propose to do lhis lhrough so-called semantic packages.

It may be a sign or progress lhal lhe new language Ada comes very close lo
suiting our needs. Although Ada incorporates lhc Brown model for arithmetic by
providing a sel of predefined allribules for each real lype available lo lhe program
mer, lhis is in general insufficient for programs that would be robust. More impor
tant ·for us. Ada allows lhe overloading and redefinition of the infix operators +. -.
elc. and in so doing provides lhe explicit connecllon between the operators and lhe
real hardware functions lhey represent. The semantic packages. corresponding
directly lo lhe (syntactic) packages construct in Ada. could contain exact
specifications of lhe arithmetic functions (which are actually implemented in
hardware). Thus there would be a semantic pttckage for each basic architecture.
for example IBM 370, DEC PDPIVAX-11, and lhe proposed IEEE binary standard.
Some semantic packages could be more general, encompassing several machines
whose arithmetic is similar enough lhal a few environmental inquiries supply all
the distinction lhal is necessary for a wide range of applications. For example, one
such package might include IBt.f 370, Amdahl, Data General MV /8000, HP 3000, DEC
PDP/VAX-I I and PDP-10, relegating Tl. CDC 6000, Cray I lo another.

Our allempl lo force lhe gritty details of arithmetic semantics upon program
mers may dismay readers who embrace lhe modern trend lo elevate the program
ming environment above machine details. Such an allempl is made within Ada, by
means of a small sel of predeftned allribules associated wilh each real type. We
have already explained lhal this is nol enough; sometimes the program lhal would
be robust must respond lo machine peculiarities lhal defy simple parameteriza
tion. The report (10] on why we need a standard contains several examples.

An effort lo "package" arithmetic semantics within various programming
languages may seem impossible. For example, lhe details of ftoating point. espe
cially in lhe proposed IEEE standards, involve global ftugs lo indicttle errors, and
modes lo determine how arilhmelic be done. In Fortran, such slate variables may
be defined as local data within the standard library functions whose job is lo lest
and alter lhe ftags. although the actual implementation involves collusion with lhe
hardware flags. This is nol a complete formalization, since Fortran provides no way
lo describe Lhe connection between lhe fhigs and lhe arithmetic operations.
Current trends in language design eschew error flags as side effects of the arith
metic operations (functions). Modes and ftttgs seem lo violate Lhe principle that all
causes and effects of expression evaluation should be visible within lhal expression.
Perhaps surprisingly, Ada again provides us with lhe desired facility - but wilhoul
excessive or expensive generality. In accordance with lhe Steelman requirements
of lhe United Stales Oeparlmenl of Defense, Ada permits side effects " limited lo
own variables of encapsulations". 1'his is exactly our intention in using semantic
packttges lo describe arilhmelic.

Optimization

Any lrealmenl of floating point semantics must deal with lhal favorite whip
ping boy, the code optimizer. We considered a mosl extreme ex11mple above, in
which C compilers would calculate floating sums like

(a + b) + c ,

wilhoul regard lo lhe parenltteses, in whatever order mttkes besl use of lhe regis
ter file. This is simply a mistake in the language design

J'JU' ,\',•t1r Or1J111~111111/ilr 11/ .'frlllUf 111

Nol all anomulius are so cleor-cul Some queslions arise when. os in archilec·
Lures suggested by lhe proposed IEEf: standard, extended rcgislers with extra pre·
cision and range beyond bolh smgle and double types are used as intermediate
accumulators. Consider lhe typical code sequence

z := a • b;
y := % / c;

in which all variables are assumed lo be of type single. If (a• b) were computed in
an extended register, should that value or lhe single value z be used in lhe evalua
tion of y'! Efficiency dictates the former, saving one register load and lessening
the risk of spurious over/underflow. Bul common sense diclales the latter, so that
what the programmer sees is whal lhe programmer gels.

A similar situation arises in inner product calculations of the type discussed
above. Consider the loop

double_precision lemp_sum;
temp_sum := 0.0;
for i in l .. n do

temp_sum := lemp_sum + :r(i)•y[i}; od
inner_product := lemp_sum;

in which, like the earlier example, all variables are single except for lhe double
temp_sum The fully "optimized" compiler might run this loop wilh jusl lwo
extended registers, one lo compute the products z[i]•y(i) and one lo accumulate
temp_sum, thereby avoiding (n -1) register loads and stores by simp.1~ kc_eplng
temp_su.m in a register. Alas, lhe programmer asked for a double prec1s1on anler
mediale, nol extended, so such optimization is precluded.

The moral of these examples is lhal declared types must be honored. Also, lhe
type assigned by the compiler lo anonymous variables must be deducible synl~ct!·
cally, or. heller, it should be under lhe programmer's control. The alleged ophm!
zations above were disparaged because named variables were replaced surrepla
liously by extended counterparts lhal happened lo be in registers. This is nol_ lo
say lhal extended evaluation is unhealthy; on lhe contrary, extended temporaries
can reduce the risk of spurious over /undernow or serious rounding errors, and
therefore should be used for anonymous variables. But the advsnlage of extended
is lost if languages prevent programmers from requesting it for declared Lem·
poraries. The expression

in Lhe loop above would besl be computed entirely in extended before lhe store
into temp_sum. These lacililies for extended expression evaluation are not unique
Lo the proposed IEEE standard; the beneftls of wide accu~ulation were r~alize~ in
the earliest days of computing. The Fortran 77 standard mcludes some 1nlenl1on
ally vague language about expression ev11luallon in order nol lo prohibit extended
intermediates, and the Ado standard, which seems lo avoid some problems by
slricl typing and requiremenls for explicit type conversions in programs. uses a
so-called universaLreal type (al leasl as wide as all supported real types) for the
evaluation of literal expressions al compile lime.

The use of an extended type for anonymous varittbles is prone lo one class of
problems. When reol values or expressions moy be passed by value lo ~ubp.-ograms
there moy be u. confticl between lhe implicit type of lhe expression and lhe
declared type of the lttrgel formal parameter. This problem arises in cmrenl
implemenlolions of the longuogc C. which supports bolh single 11nd double types
but specifies llml all reul expressions ure of type double. Suppose lhal a C pro
grum contains the slalemcml

112

y := J(a 'b/c);

where all variables are of lype noal (single) end lhe funclion /() is defined by

ftoalf(z)
Ooal z;

f 1
How can the lype of the expression (11 'b I c) be double while the type of lhe formal
paremeler z is ftoal'? C resolves lhe discrepancy by silenlly countermanding lhe
declaration of z and replacing ftoal by double. Once again, whal you see is nol
what you gel. This use of wider inlermediales, exploiting lhe PDP-l l floating point
erchileclure, is exaclly analogous lo one use of exlended registers. Though it is
efficient and straighlforward lo implement, il is nol acceptable.

Conclusion
We have cited examples lo show that progress in numerical computing hes

been slowed by questionable decisions in lhe design of computing languages and
systems. We have suggested a rough diVision inlo three categories, syntax, semen
lies and diagnostics, so lhal lhe difficult issues could be resolved by those most
qualified - and most profoundly impacled. IFJP Working Group 2.5 might well lake
responsibility for lhe interfaces wilh semantics. Ideally their efforts will lead lo
fully specifted environmenls for which reliable numerical software can be derived,
possibly aulomelically, from algorilhms expressed in a mathematical form if nol
already in a programming language. Programming then becomes a three phase
lrenslalion involving lhe language (syntax) lo be used, lhe underlying arilhmdic
engine (semantics), end lhe hosl system (diagnostics). We acknowledge lhal these
categories are not completely independent, and thal lhe boundaries between lhem
cannot be drawn precisely, al leasl nol yel. Nonetheless. we remain convinced that
those boundaries must be drawn if we are lo bring lhe required expertise lo beer
on the current morass.

Acknowledgemenl
This reporl was developed and originally lypesel on a computer system funded

by lhe U. 5. Department of Energy, Conlracl DE·AM03-78SF00034, Project Agree
ment DE·AS03-79ER10358. The authors also acknowledge lhe financial support of
lhe Office of Naval Research, Conlracl N00014·78-C-0013.

Reference■

(1) Kahan, W., "A Survey of Error Analysis," in: /nformrdian Processing 71,
(North-Holland, Amsterdam, 1872) 1214-1239.

(2) "A Proposed Slandard for Binary Floaling-Poinl Arilhmelic," Orafl 8.0 of IEEE
Task P754, with an inlroducllon by D. Stevenson, Compuler, l4, no. 3, March
(1981) 51-62.

[3] Cody, W. J., "Analysis of Proposals for lhe Floaling-Poinl Standard," Computer,
14, no. 3, March (1881) 63-68.

[4] Hough, David, "Applications of lhe Proposed IEEE 754 Standard lo Floaling
Poinl Arithmetic," Computer, l4, no. 3, March (1981) 70-74.

(5] Coonen, Jerome T., "Underflow and lhe Denormalized Numbers," Computer, l4,
no. 3, March (t 98 l) 75-07.

[6] Brown, W. S., "A Simple Dul Realistic Model of Floeling-Poinl Compulalion," lo
appear in ACM Transactions on Ma.thematical Software, 1981.

(7] Ryder, B. G., "The PFORT Verifier", Software - Prmctice and E%perience, 4
(1974) 359-377.

(8) Slerbenz, P. H., Floating-Point Computation (Prenlice-llall, Englewood Cliffs,
~ l tO"Pit\

11.J

(9] Brown, W. S end S. 1. l•'cldman, .. E11viro11menl Paromclers and Dasie ~·uncli~ns
for Flooling-l'oinl Cornpulelion," ACAi Transactions on !tlatltemah.cat
Software, 6 (1900) 51 O·f>23

(1 OJ Kahnn, W ., "Why do we need a slondard for floaling point arilhmelic?", Techni·
cal Heporl, Universily of California, Berkeley, CA. 94720, February (1981).

