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Given the elements f, g, h of the real matrix U = <: R> , we 
seek its singular values v and w and singular vectors which, 
when suitably assembled into matrices, will satisfy 
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= 

and 
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The challenge here is to compute each of v, w, cL, sL, c" and SR 
accurately to within a few ulps (Units in its Last Place) unless 
it deserves to over/underflow beyond the range of the computer's 
floating-point arithmetic. 

The singular values v and w are the·nonnegative square roots of 
the eigenvalues of LJTLJ; they are the values of the unobvious 
e>:pression I y( (f+h) 2 + g 2

) :t. 1'< (f-h) 2 + g 2

) I /2 , of which the 
bigger is w and the smaller is v = lfhl/w. But computing v 
and w directly from these expressions is unwise because they can 
suffer from over/underflow in the squared subexpressions even when 
v and w are far from the over/underflow thresholds. And explicit 
formulas for the elements cL, sL, c" ands" of the singular 
vectors are fraught with further ha%ards, as we shall see, that 
reflect their hypersensitivity to small perturbations when the 
singular values v and w are nearly coincident. That is why the 
algorithm developed below is so complicated. The reader who 
thinks that some simple expedient like scaling would render our 
complexities unnecessary is invited to consider the situation when 
the given data f, g and h span almost the full exponent range of 
his machine. < Our program works if one of f, g or h is 00 • ) 

Despite our efforts, we cannot guarantee freedom from anomalies 
on all computers; some computer arithmetics are too idiosyncratic 
to be encompassed by a single algorithm that is designed to work 
well on almost all commercially significant computers. Therefore, 
our algorithm is designed to be impeccable only on machines that 
conform to IEEE standard 754 (1985) for floating-point arithmetic. 
On machines that lack its gradual underflow, but flush underflows 
to zero instead, accuracy will deteriorate if all the data f, g 
and h are too close to the underflow threshold, as if the data 
had been perturbed by amounts comparable with that threshold. On 
CDC CYBER txx machines that suffer from "partial underflow.," a 
test for zero like "If x = 0.0 then ... " must be replaced 
by a more cumbersome "If t.O*x = 0.0 then ... " to function 
correctly. On a CRAY, with its propensity for partial overflow, 
results that lie between the overflow threshold and half of it may 
overflow anyway. On some machines with an inaccurate SQRT, its 
inaccuracy may be amplified surprisingly by our algorithm. Since 
more machines conform well enough to IEEE 754 than conform to 
any single other specification, it seems unreasonable to penalize 
the majority of computers by further complicating our algorithm to 
allow for idiosyncracies found in only a small minority of today's 
machines; let the users of those machines allow for them. 
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Signs and Symmetries and Singular Vectors 
The singular values v and w depend upon only lff, lgf and lhl, 
but the singular vectors (the e's and s's) depend upon all the 
signs of the data too. The dependence is a little ambiguous, as 
indicated by the ± signs in the defining equation above. Taking 
determinants on both sides of that equation will reveal both that 
fh = ±wv and lfhf = wv, so the independent ± signs in front 
of w and v are not entirely arbitrary. (see Footnote I.> 

To simplify our algorithm, we shall assume lfl 2 lhf • We can 
impose this condition upon the data by swapping f and h whenever 
necessary; and then we must also swap cL withs" and sL with 
cR at the end, as can be justified by deducing from the defining 
relation the following equivalent equation: 

< s" c" ) < h g > ( sL -cL > = < ±w O > 
< -cR S,t > ( 0 f > ( CL SL ) ( 0 ±v ) 

Therefore, assume henceforth that ffl ~ lhl and w 2 v 1 0. 

We turn now to the determination of the right singular vectors. 
Except in the special case when g = 0 and lfl = lhl = v = w, 
in which case the vectors are indeterminate, the row <-sR cR) 
turns out to be parallel to the rows of LJTLJ - w2 I , and hence to 
its first row ( f 2 -w2 fg > . We shall not compute this row lest 
it over/underflow, but it will serve as a starting point for the 
derivation of the formula that we shall compute. 

After computing a right singular vector we can multiply it by U 
to obtain a multiple (by a singular value) of the corresponding 
left singular vector. That is why 

< cL sL ) = < fcR+gsR hsR )/(±_w) , 

but we shall not compute it this way lest underflow spoil it; 
instead this formula will be used a~ the starting point for the 
derivation of a better one. 

When g is Gargantuan 
Consider the special case when the computed value of 
rounds to lgl . 

I g I + If I 

What does this mean? The expected meaning is that, to within the 
limits upon accuracy imposed by roundoff, lfl must be negligible 
compared with lgl . Of course, another possibility is that both 
ffl and lgl are zero. Unfortunately another perverse possibility 
arises on computers that round either towards infinity or by von 
Neumann's "jamming". Rounding tolAlard in-finity is or,e of the 
directed rounding modes afforded by the IEEE standard 754, but 
it is not the default mode and therefore would be in force only by 
accident; therefore we shall ignore it. Von Neumann's _iamming 
sets the last bit retained to 1 whenever any subsequent nonzero 
bits are discarded; this kind of rounding must be extremely rare 
nowadays. In either case, the perverse possibility is that lfl 
must be zero whenever lgf+lfl rounds to fgl ; this is far too 
perverse to be worth any further consideration. Therefore let f 

be the biggest positive number such that lgl + lfl wjll round 
to lgl whenever lfl f Efgl . Typically E is comparable with 
a rounding error in numbers close to 1.0. Note however that 
the precise determination of E could depend delicately upon how 
the computer rounds sums; and care must be taken not to confuse 
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two directions of implication: 
if If I s.. s: I g I then I g I + If I rounds to I g I ., but 
if fg I + If I rounds to If f then If I ~ ~EI g f ., where 

~=the arithmetic radix <typically 2, B, to or 16). 
Fortunately, only for the proof of our algorithm's correctness 
must E be known; it does not have to appear in our_ program. 

A complication arises on machines that evaluate subexpressions in 
registers with extended precision, more than has been stored in 
the variables f and g. On such machines, the relevant value of 
E pertains to extended precision rather than the precision of the 
variables. This complicates the analysis of our algorithm but 
does not invalidate it. 

Finally, we ignore the possibility that fgl + lfl may overflow, 
because its value will figure only in a comparison with fgl . On 
a machine that conforms to IEEE 754, the overflow would go to oo 
and the subsequent comparison would discard it after drawing the 
correct conclusion. On a machine that is stopped by overflow, or 
on a machine that fortes overflows to the biggest finite number, 
a statement like " if I g I + If I = I g I then . . . " roust be 
replaced by a statement like II if lfl ~ Elgl then ... " with a 
value E chosen to suit the machine as described above. 

If g = f = h = 0, then v = w = 0 too and the singular vectors 
are indeterminate; setting cL =CR= t and SL= sR = 0 will 
satisfy the defining relations well enough, so this is just what 
we shall do whenever g = 0. 

At last we come to the case when g ¢ 0 and is so gargantuan 
compared with lfl that lfl/lgl t ~E • In this case w = lgl 
and v = lfhl/w with negligible relative errors smaller than 
(f~) 2 ; but the last formula is too vulnerable to spurious over/-
underflow. so it has to be re-evaluated carefully thus: 

if lhl > 1 then v = ffl/(w/fhl) else v = <lfl/w) lhl endif. 
Similarly simple formulas suffice in this case to approximate the 
singular vectors too: CR= f/g , s~ =CL= t and SL= h/g. 

Now that the case of gargantuan g has been settled, we shall 
assume henceforth that g is not gargantuan, and consequently 
that fg/fl < 1/e: • 

The Normal Cases 
Here is a summary of the hypotheses in f6rce now: 

I h I f If I and I g/f I < 1 IE • 
Now it is safe tb compute certain intermediate quantities; first 

>.. = <If I - I h I> I If I and 1J = g/f • 
They satisfy O ~ >,. ~ t and l1JI ~ 1/E • Underflow in 1J is 
harmless if handled in the usual way, either gradually or flushed 
to zero. Otherwise the accuracy of >.. and 1J is crucial to the 
accuracy of the singular vectors, especially when both are tiny. 
On a machine that conforms to IEEE 754 or 854 that accuracy is 
assured; but extremely rare bad things can happen on some other 
machines which we digress to discuss now. 

On machines that flush underflows to zero, when 
underflow of lff - lhl can ruin the accuracy of 
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by observing when ~ = O though fff > fhl , and correct it by 
scaling. Cancellation in lfl - lhl can ruin its accuracy only 
on machines that lack a guard digit for subtraction; among such 
machines are the CDC Cybers, CRAYs, UNIVAC ltxx's and a few 
others that mimic their arithmetics. On these machines A might 
as well be computed from the formula A= 1 - lh/fl to avoid 
trouble with underflow to zero; then inaccuracy when A is tiny 
will be no worse than if f had first been perturbed by an ulp or 
two. On machines like the CRAY whose division is not atomic, 
division by f is actually accomplished by multiplying by t/f , 
which can overflow if f is tiny enough; on the CDC Cyber txx 
series, division by f can signal DIVISION BY ZERO when f is 
extremely tiny though not zero; solve both problems by computing 
the singular values of U+U and then halving them. 

Next compute rand e and ex thus: 
r = y < ( 2-A) 2 + µ2 ) ; 

if >. = O then e = Iµ I else e = v < A 2 + µ 2 endif 
ex= (r + e)/2. 

Nothing bad can happen to them because none exceeds l+t/~ , and 
r lex 2 l . And if >. ¢ 0 then >. ~ ~ , so µ 2 can underflow 
if it must without causing harm. Now we can compute the singular 
values 

v = lhl/~ and w = lfl~ 
knowing that they will not over/underflow unless they deserve to 
<except perhaps on a CRAY or a CDC Cyber). 

Now it is time to compute the right singular vectors. Recall that 
<-sR cR > is parallel to ( f 2 -w2 fg > ; but to avoid trouble 
from cancellation or underflow we shall divide this by fg before 
computing it to get, after some algebra, (see Footnote 2. > 

'T = 2 s,_./cR = <«+l > < µ./ (1T+2-~) + µ/ (~+>.) > 
from which it follows that 2 <Tlµ< 2+2/lul . However, if u 2 

has underflowed we must avoid inaccuracy in µ/(~+>.) by computing 
it directly from the data or, if >. = 0 too, by setting 'T to 
its lirnit as µ ➔ 0, narnely CopySign(2,µ) with IEEE 754/854, 
Sign(2,g) Sign(l ,f> without. Then compute CR= 2/~(7 2 + 4) and 
SR = 'T/tl(T 2 + 4) • 

Similar reasoning produces a 
CL = ( C 11 + S11 µ ) / Of, 

left singular vector: 
and sL = (h/f)s11/cx. 

Finally, 
to swap 

if we swapped 
cL with s11 and 

f with h at the start, 
SL with c11 . 

we must r ernernb er 

Our Program 
Considering how complicated it was to figure out, our program is 
surprisingly short. It is presented here in a syntax like that of 
Fortran 77, but with two innovations. One is the invocation of 
an intrinsic procedure SWAP<x, y) that swaps the values of its 
arguments. On a machine that contains a SWAP instruction in its 
hardware, this should be preferable to the three MOVES that 
would be needed instead. The second innovation is the use of 
three consecutive dots ( ... ) to introduce a comment at the end 
of a line rather than have to add a line beginning with "C" for 
every short annotation. 
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SUBROUTINE SVD2x2( f, g, h, cL, sL, w, v, cR, sR > 
Accurate singular value decomposition of a given 2x2 real 
matrix: ( cL sL ). < f g >. ( cR -sR) = ( +/- w O > 

(-sL cL ) ( 0 h ) ( sR cR ) ( 0 + /- v > 
with cL*cL+sL*sL = cR*cR+sR*sR = 1 and w .SE. v .SEO. 
REAL f, g, h, cL, sL, ~, v, cR, sR 

-- Input ------~Output------- Aliasing is OK. 
wand v are the singular values; the e's and s's define 
the singular vectors of the given matrix. In the special 
case g = O, we get cL = cR = l and sL = sR = O. In 
the special case h = 0, we get cL = 1 and sL = 0. 
LOGICAL L 
REAL ft,gt,ht, cLt,sLt, cRt,sRt 
REAL fa,ga,ha 
REAL ~, 8, A, u, uu, ~. v, T 
REAL Zero, 
DATA Zero,Half,One,Two,Four I 0.0, 
ft= f 
fa= ABSCft) 
ht= h 
ha= ABS(ht> 
L = (ha.GT. fa> 
IF CL> THEN 

gt = 
ga = 
IF 

g 

SWAP( ft, ht 
SWAP C fa, ha 

ENDIF 

ABSCgt) 
ga 

ELSE 

• EQ. Zero THEN 
V = ha 
w = fa 
cLt = One 
cRt = One 
sLt = Zero 
sRt = Zera 
- - - - - -

IF ( ga+fa • EQ. ga 
w = ga 
IF Cha .GT. One 

THEN 

THEN 

••• Copied and scratch values 
... ■ay be kept in registers 
••• to i ■prove speed & accuracy. 
Half, One, Two, Four 
0.5, t .o, 2.0, 4.0 / 

• •• RON fa ! ha . 

... the trivial case. 

the case of gargantuan g. 

v = fa/(ga/ha> 
ELSE 

ELSE 

v = (fa/ga)*ha 
ENDIF 

cLt = One 
sLt = ht/gt 
cRt = ft/gt 
sRt = One 
- - - - - - - - - - - - - - -
S = fa - ha 
IF CS .EQ. fa> THEN 

>.=One 
ELSE 

A= S/fa 
ENDIF 

µ=gt/ft 
,,. = Two - ,. 
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uu = u*u 
" = SQRT ( 'T*'T + uu > ••• I S. r < 1+1/r • 
IF (A .EQ. Zero) THEN 

e = ABS<u> 
ELSE 

e = SQRT( A*A + µµ) 

ENDIF 
°'=Half*(l7'+e> .... li•<f+l,1, 
v = ha/°' 
w = fa*°' 
IF < uu • EQ. Zero > THEN ... , 111st be very tiny. 

IF (A .EQ. Zero) THEN ... with IEEE 754/854 

ELSE 

'T = CopySign(Two, u> 
i. e., 'T = SIGN<Two,ft>*SIGN<One,gt> 

ELSE 
'T = gt/SIGN(8,f) + ul'T 

ENDIF 

'T = ( 1,1 / ( .r+'T) + µ I (~+A) ) * (One+«) 
ENDIF ... see Footnote 2. 

A= SQRT( 'T*'T +Four) 
cRt = Two/A 
sRt = ·Tl>. 
cLt = < cRt + sRt*u )/ex 
sLt =<ht/ft >*sRt/cx 

ENDIF 

IF (L) THEN 
SWAP< cLt, sRt > 
SWAP( sLt, cRt) 

ENDIF 
cL = cLt 
sL = sLt 
cR = cRt 
sR = sRt 
RETURN 
Cost: 15 Add/Subtract/Coapares, 9 Nultiplies, 10 Divides, 3 S9RTs 
END. 
- - -- - - End of SVD2>~2 - - -- - - W. Kahan Apri I 27, t 988 

Foot.note 1. 
An alternative definition of v and w hides the ambiguity of sign 
thus: 

( CL SL ) ■ ( f Q ) • ( C11 -s11 ) = ( W O ) 
( -SL CL. ) ( 0 h ) ( S11 C ft ) ( 0 V ) 

the singular values are now lvl and fwf ordered so lvl ~ fwf . 
To conform to this redefinition, change our program by replacing 
the letter 11 a 11 by 11 t 11 in every one of the six statements that 
say either ti v = . . . ti or II w = . . . 11 

; for instance rep! ace 
"w = fa*«" by "w = ft*«", "v = fa/(ga/ha)" by "v = ft/(gt/ht)". 

Foot.note 2. 
The alternative formula A= t - lh/fl ought to ensure Al O; 
but since nobody knows for sure whether this must hold on a CRAY, 
evaluating µ/(e+~> on it could conceivably hit DIVIDE-BY-ZERO! 
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