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Given the elements /, g, h of the real matrix U = a K), we seek its singular values 11 and w 
and singular vectors which, when suitably assembled into matrices, will satisfy 

W ~ 11 ~ o. 
The challenge here is to compute each of 11, w, CL, SL, CR and SR accurately to within a few 
ulps (Units in its Last Place) unless it deserves to over/underflow beyond the range of the 
computer's floating-point arithmetic. 

The singular values v and ware the nonnegative square roots of the eigenvalues of UTU; 
they are the values of the unobvious expression I ✓({/ + h )2 + g2

) ± ✓((f - h )2 + g2

) I /2, 
of which the bigger is w and the smaller is 11 =I fh I /w. But computing 11 and w directly 
from these expressions is unwise because they can suffer from over/underflow in the squared 
subexpressions even when v and ware far from the over/underflow thresholds. And explicit 
formulas for the elements CL, SL, cn and SR of the singular vectors are fraught with further 
hazards, as we shall see, that reflect their hypersensitivity to small perturbations when the 
singular values v and w are nearly coincident. That is why the algorithm developed below 
is so complicated. The reader who thinks that some simple expedient like scaling would 
render our complexities unnecessary is invited to consider the situation when the given data 
f, g and h span almost the full exponent range of his machine. (Our program works if one 
of /,g or his oo.) 

Despite our efforts, we cannot guarantee freedom from anomalies on all computers; some 
computer arithmetics are too idiosyncratic to be encompassed by a single algorithm that is 
designed to work well on almost all commercially significant computers. Therefore, our 
algorithm is designed to be impeccable only on machines that conform to IEEE stan­
dard 754 (1985) for floating-point arithmetic. On machines that lack its gradual underflow, 
but flush underflows to zero instead, accuracy will deteriorate if all the data /, g and h 
are too close to the underflow threshold, as if the data had been perturbed by amounts 
comparable with that threshold. On CDC CYBER lx:x machines that suffer from "partial 
underflow," a test for zero like "H :c = 0.0 then ... " must be replaced by a more cumbersome 
"H 1.0 x z = 0.0 then ... " to function correctly. On a CRAY, with its propensity for partial 
overflow, results that lie between the overflow threshold and half of it may overflow anyway. 
On some machines with an inaccurate SQRT, its inaccuracy may be amplified surprisingly 
by our algorithm. Since more machines conform well enough to IEEE 754 than conform to 
any single other specification, it seems unreasonable to penalize the majority of comput­
ers by further complicating our algorithm to allow for idiosyncracies found in only a small 
minority of today's machines; let the users of those machines allow for them. 
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Signs and Symmetries and Singular Vectors 
The singular values v and w depend upon only I / I, I g I and f h I, but the singular 
vectors (the e's and s's) depend upon all the signs of the data too. The dependence is 
a little ambiguous, as indicated by the ± signs in the defining equation above. Taking 
determinants on both sides of that equation will reveal both that/ h = ±wv and I f h I= wv, 
so the independent± signs in front of wand v are not entirely arbitrary. 1 

To simplify our algorithm, we shall assume f / f~I h I• We can impose this condition upon 
the data by swapping/ and h whenever necessary; and then we must also swap CL with BR 

and SL with CR at the end, as can be justified by deducing from the defining relation the 
following equivalent equation: 

Therefore, assume henceforth that I/ l~I h I and w ~ v ~ O. 

We turn now to the determination of the right singular vectors. Except in the special case 
when g = 0 and I/ 1=1 h I= v = w, in which case the vectors are indeterminate, the row 
(-sR cR) turns out to be parallel to the rows of uTu - w2 I, and hence to its first row 
(/2-w2 f g). We shall not compute this row lest it over/underflow, but it will serve as a 
starting point for the derivation of the formula that we shall compute. 

After computing a right singular vector we can multiply it by U to obtain a multiple (by a 
singular value) of the corresponding left singular vector. That is why 

but we shall not compute it this way lest underflow spoil it; instead this formula will be 
used as the starting point for the derivation of a better one. 

When g is Gargantuan 
Consider the special case when the computed value of I g I+ If I rounds to I g f. 

What does this mean? The expected meaning is that, to within the limits upon accuracy 
imposed by roundoff, I / I must be negligible compared with I g (. Of course, another 
possiblli ty is that both I f I and I g I are zero. U nfortuna.tely another perverse possibility 
arises on computers that round either towards infinity or by von Neumann's "jamming". 
Rounding toward infinity is one of the directed rounding modes afforded by the IEEE stan­
dard 754, but it is not the default mode and therefore would be in force only by accident; 

1 An alternative definition of " and w hides the ambiguity of sign thus: 

( 
CL BL ) . ( / g ) . ( CR -BR ) = ( W O ) 

-BL CL O I,, BR CR O V ' 

the singular values are now Iv I and I w I ordered so Iv ISi w I• To conform to this redefinition, change our 
program by replacing the letter "a" by "t" in every one of the six statements that say either "v = ... " or 
"w = ... ";for instance replace "w = fa•Cl'" by "w = ft•Cl'", "v = fa/(ga/ha)" by "v = ft/(gt/ht)". 
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therefore we shall ignore it. Von Neumann's jamming sets the last bit retained to 1 when­
ever any subsequent nonzero bits are discarded; this kind of rounding must be extremely 
rare nowadays. In either case, the perverse possibility is that I / I must be zero whenever 
I g I + I / I rounds to I g I; this is far too perverse to be worth any further consideration. 
Therefore let e be the biggest positive number such that I g I + I / I will round to I g I 
whenever I/ IS e I g I- Typically e is comparable with a rounding error in numbers close to 
1.0. Note however that the precise determination of£ could depend delicately upon how the 
computer rounds sums; and care must be taken not to confuse two directions of implication: 

if I/ l:5 EI g I then I g I+ I/ I rounds to I g I, but 
if I g I+ I/ I rounds to I/ I then I/ IS Pe I g I, where 

p = the arithmetic radix (typically 2, 8, 10 or 16). 

Fortunately, only for the proof of our algorithm's correctness must e be known; it does not 
have to appear in our program. 

A complication arises on ma.chines that evaluate subexpressions in registers with eztended 
precision, more than has been stored in the variables / and g. On such machines, the 
relevant value of E pertains to extended precision rather than the precision of the variables. 
This complicates the analysis of our algorithm but does not invalidate it. 

Finally, we ignore the possibility that I g I+ I/ I may overflow, because its value will figure 
only in a comparison with I g 1- On a machine that conforms to IEEE 754, the overflow 
would go to oo and the subsequent comparison would discard it after drawing the correct 
conclusion. On a ma.chine that is stopped by overflow, or on a ma.chine that forces overflows 
to the biggest finite number, a statement like "if I g I + I/ 1=1 g I then ... " must be replaced 
by a statement like "if I / IS e I g I then ... " with a value e chosen to suit the machine as 
described above. 

If g = / = h = 0, then v = w = 0 too and the singular vectors are indeterminate; setting 
CL= CR= 1 and SL= SR= 0 will satisfy the defining relations well enough, so this is just 
what we shall do whenever g = 0. 

At la.st we come to the case when g f; 0 and is so gargantuan compared with I / I that 
I / I / I g IS Pe. In this case w =I g I and v =I /h I /w with negligible relative errors 
smaller than (Pe)2; but the last formula is too vulnerable to spurious over/underflow, so it 
has to be re-evaluated carefully thus: 

if I h I> 1 then v = I / I / ( w / I h I) else v = (I / I /w) I h I endif. 

Similarly simple formulas suffice in this case to approximate the singular vectors too: 
CR = // g, SR = CL = 1 and SL = h/ g. 

Now that the case of gargantuan g has been settled, we shall assume henceforth that g is 
not gargantuan, and consequently that I g/ f I< 1/e. 

The Normal Cases 
Here is a summary of the hypotheses in force n~w: 

I h IS I I I and I g If I< 1/ e. 
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Now it is safe to compute certain intermediate quantities; first 

>. = (I / I - I h l)f I / I and µ = gf f. 

They satisfy O 5 ). :CS 1 and Iµ 15 lfe. Underflow inµ is harmless if handled in the usual 
way, either gradually or flushed to zero. Otherwise the accuracy of). andµ is crucial to the 
accuracy of the singular vectors, especially when both are tiny. On a machine that conforms 
to IEEE 754 or 854 that accuracy is assured; but extremely rare bad things can happen on 
some other machines which we digress to discuss now. 

On machines that flush underflows to zero, when / is very tiny, underflow of I / I - I h I can 
ruin the accuracy of .X; detect it by observing when).= 0 though I/ l>I h I, and correct it 
by scaling. Cancellation in I / I - I h I can ruin its accuracy only on machines that lack a 
guard digit for subtraction; among such machines are the CDC Cybers, CRAYs, UNIVAC 
llxx's and a few others that mimic their arithmetics. On these machines). might as well 
be computed from the formula).= 1- I hf f I to avoid trouble with underflow to zero; then 
inaccuracy when). is tiny will be no worse than if/ had first been perturbed by an ulp or 
two. On machines like the CRAY whose division is not atomic, division by / is actually 
accomplished by multiplying by lf /, which can overflow if/ is tiny enough; on the CDC 
Cyber lxx series, division by / can signal DIVISION BY ZERO when / is extremely tiny 
though not zero; solve both problems by computing the singular values of U + U and then 
halving them. 

Next compute u and p and a thus: 

(1 = ✓((2 - ).)2 + µ2); 
if).= 0 then p =Iµ I else p = ✓(>.2 + µ2) endif; 
Q =(Cl+ p)f2. 

Nothing bad can happen to them because none exceeds 1 + 1 / e, and Cl ~ a ~ 1. And if). :/; O 
then).~ e, so µ2 can underflow if it must without causing harm. Now we can compute the 
singular values v =I h If a and w =I/ I a knowing that they will not over/underflow unless 
they deserve to ( except perhaps on a CRAY or a CDC Cyber ). 

Now it is time to compute the right singular vectors. Recall that (-s R CR) is parallel to 
(/2 - w2 f g); but to avoid trouble from cancellation or underflow we shall divide this by 
I g before computing it to get, after some algebra, 2 

T = 2sRfCR =(a+ l}(µf(CI + 2- >.) + µ/(p+ >.), 

from which it follows that 2 < r/µ < 2 + 2/ I µ I• However, if µ 2 has underflowed we 
must. avoid _inaccuracy in µ/(p + >.) by computing it directly from the data or, if). = 
0 too,. by setting T to its limit as µ -+ 0, namely CopySign(2, µ) with IEEE 754/854, 
Sign(2,g)•Sign(l,/) without. Then compute CR= 2/,.;(r2 + 4) and SR= T/.J(:r2 + 4). 

Similar reasoning produces a left singular vector: 

CL= (cR + 8Rµ)fa and SL= (hf f)sR/a. 
2The alternative formula. l = 1- I h/ J I ought to ensure l ~ O; but since nobody knows for sure whether 

this must hold on a. CRAY, evaluating µ/(p + l) on it could conceivably hit DMDE-BY-ZERO! 


