e
]
F
-

beiiNin Jld e UBRLEE Feb,. Zo, 987

Doubled-Frecision IEEE Standard 754 Floating-Foint Arithmetic

Frof. W, kEehen
Elect. Ena. % Computer Science
tiniversity of California
EBerkeley. Ca& 94720

Introduction:

Let "WF" stend for "Working Frecision." which denotes
whichever is the widest floating-point format supported by some
computer that conforms to the JEEE standard 754-198% Afor binary
floating-point arithmetic. (That standard specifies Single,
Double and Extended formeats, but a conformning computer need not
support &ll of them.) Let YDFPY stand for “Doubled-Frecision,"
which dencotes a simulation of arithmetic accurate to about twice
WF though carried out using nothing but standard WF arithmetic.

How well can such & simulation be carried out? The discussion
that follows addresses that question, but does not settle it.
EBecause this paper is intended to stimulate rather than stifle
interest in the question. proofs have been omitted; many of them
can be found in references cited in the Eibliography.

Why does it matter?

Many scientific and engineering calculations, particularly those
that involve either massive destructive cancellation or else vast
numbers of small corrections to undulating variables, would be
swamped by the effects of roundoff but for the use of some kind of
extra-precise arithmetic. Frogreamming those calculations might be
simpler if higher precision were available merely for the asking.
but the exigencies of hardware or languace implementation impose &
limit. wusually small, upon the precision that can be programmed
conveniently and efficiently in higher-level langusaes. That is
why tricks have to be contrived. sometimes unconsciously., to
achieve the etfect of higher precision without calling upon it
explicitly. Those tricks are oenerally confined to small but
crucial parts of & proaram, where they lurk amongst manipulstiorns
of WP wvariables that seem entirely unexceptionable to the naked
Eve. In some situetions where WF variables would have to be
mixed with higher-precision variables if they were available, the
tricks. by &voiding both format conversions (between WF, &nd
higher—-precision formats) and calls to subroutines that simulate
higher—-precision arithmetic, run faster.

Unfortunately. tricky programs are danaerous, especially when
they simulete higher-precision floating-point arithmetic. Though
they seem to be portable. recompiling and running them on any
machine other than the one for which they were desioned runs the
risk of malfuncticons that. however rarely they may occur. are
bound to be mysterious. The epithet ‘“pornographic” has been
attached to these tricky programs. but undeservedly; they
aenerally do possess some redeeming social merit.

Understanding these trickes is worth cur while for two reasons.
First, if we have to use them, we shall have to know how and
when they work. Second. a prooram thset originated =2]ssvhers than

DiLi WoRi S TN FROGRESS Feh. Z&. 1987

on the machine to which we wish now to adapt it may contain such
tricke, and we have to recognize them before we can deal with
them. The tricks are hard to recogni:ze beceuse, to achieve
ostensible portability. they perform only standard floatino-
point operations upon WF variables. No Fortran EQUIVALENCE
statements matching INTEGER with REAL variables; no REAL
actual arquments for subproograms with INTEGER formal argumentes:
none of Fascal’'s deceitful VARIANT RECORDs; in short, none of
the bit-twiddling thet obviously obviates portability.

The games we play with ficating—-point might as well be played upon
& machine that conforms to the 1EEE standard 754-1985 for binary
floating-point arithmetic. If we have to simulate DF in our
proaram, it will be simpler on that machine .than upon almost any
other. And extra complications introduced to simulate DF on
diverse other machines will almost certainly continue te work on
that one. Let’'s avoid introducing those extra complications into
& subject that cen already be characterized as the exaltation of
complicated ways to calculate what would be z2ero in the absence

of roundoff.

Notation:

First some notation. Upper-case letters S, T, X, Yy Z4 «o. will
denote DF numbers. each represented in the computer by a pair
of WF numbers denoted by corresponding lower-case and Greek
letters. For instance., the DP variable X 1is represented in
the computer by x and § § in fact, X = x+§ exactly in so far as
that addition is construed not as WP arithmetic but infinitely
accurate. To help avoid confusion about the accuracy to which
various arithmetic operations are carried out, further notation
is required. We shall use brackets "[...1" to denote rounding
to WF in accordance with the IEEE standard 754; this means
rounding-to—nearest., with half-way cases rounded to nearest even.
(See the draft of the standard for a more explicit explanation.)
In particulary, let & be the difference between 1 and the
nearest other WF pumber 1-¢ 3 then [1+€] = 1 according to
IEEE 754, whereas 1+z would round to 1+2s on a DEC VAX .

We shall also adopt & convention for essignment statements, in
which the symbol " (= " appears: if such an assignment contains
only WF variables., then every arithmetic operation will be
presumed to be rounded to WF 3§ but if any DP variable appears
on either the left- or right-hand side of the assignment, then
the arithmetic will be presumed to be carried out in DF . For
instance. the assignment statement... "-{ = (x-z2) + yv " . implies-
¥ = [[x—=z3+4y3d ; but "T = (y-z) + y " implies that the DF
result T is obtained from & subtraction x-z carried out in DF
arithmetic, focllowed by &dditicn of v inm DF . Each such DF
operation is the result oFf a suitable sequernce of WF operations.

DP sum of WP variables, Z = nu+y

Every DF variable 2Z shall be represented as an unevaluated sum
z+% of a pair of WF variables; normally they will be further
constrained by the requirement that =z = [z+%{] = [Z}° . This state
of affairs can be brought about by & procedure that implements the

DEL1 WORIZ 1 PROGIRESE Feb. Z&, 1987

assignment " Z (= w+y " for any two WP variables x and vy @
If I»f < Ivl then swapix, y) ¢ ... so Ixl > |yl
2 =N+ Yy o3 «s. rounded to WF
t = (y-z) + v 3 .+« turns out to be exact!'
ses Now, iddeally. Z = z+4% should equal »x+y exactly.

Note: Do not omit parentheszes from this procedure, nor from any
presented later. Note too that this procedure performs none but
stendard HP Tfloating-point operations upon WP variables.

Frovided =z does not overflow bevond the range encompassed by WF
numbers, this simple procedure can be proved to work infallibly
for all finite WF variables x and y . But the proof cannot be
simple, because the procedure feils occasionally on arithmetics
that do not conform to IEEE 754 though they may be exemplary in
almost every other respect. Failure will occur when =z or x-z
underflows unless underflow is Gradual, as it is on standard-
conforming machines but almost no others. Esxcept for underflow,
this procedure works on &ll computers with binary floating-point
arithmetic rounded in a treasonable way; examples are DEC VAXs,
and the IEM FC’'s compiled BASIC but not its HRASIC interpreter.
Failure can occur often on machines that subtract without carrying
& guard digit; among such machines are all CRAYs and all CDC
CYBERs, many UNIVACs, most TI calculators and most credit-card
calculators. Except for underflow, the procedure works also on
IBM /370°s and other machines (AMDAHL, ...) with identical
hexadecimal arithmetic, but otherwise very rare failures will
occur on non-binary arithmetics whose addition with like signs is
rounded instead of chopped. For example; take x = 9999.9 and

y = 9999.7 on a machine that rounds to five significant decimals,
whereupon = = [19999.61 = 20000 and [x-zl = [-10000.1] = =10000
is not exact, so ¢ = —-0.3 instead of the correct -0.4 .

Evidently the assignment "Z o= sty " can be implemented in a
simpler way on computers that conform to IEEE 754 than on almost
any others. That is significant because this assianment realizes
the crucial special case (N =2) out of which emerges a more
general summation procedure upon which all arithmetic operations
upon floating—-point operands of arbitrarily high precision (not
merely DF) can be based. &t least in principal. The following
digression will explain.)

Distillation of a Sum of N WP numbers. -
For any given WP numbers 3. 2. «s:4 %N o there must exist
another set of WP numbers 5, X2, -2« ¥n-- that satisfy both

Mi + Mg + s.. + Mae = Ny + M2 + ... + xa exactly, and,

for 0O < J < N <N, Mse1 = [N§ +33541] rounded to WP ,
provided no sum overflows. When N > 2 the numbers {x,} do
rot necessarily determine the numbers {x;* umiquely, as the

following examples illustrate for binary floating-point arithmetic
rounded to 4 sig. bits the same way a&as IEEE 754 rounds to at
least 24 sig. bits:

1000cooocooo - 1000ooo — 11 = 1tilocococo + 11iloo + 1.

1000000000 - 10000 — 1 = 111locooce + 1111,
¢ The second exzeple, which shows that N' is not detersined uniquely, does not work with rounding like
a DEC YAX's ; f{for that kind ot rounding try instead
106fooooonocoo - 10000ooceo - 1001p + | = 10000oopoocoooe + §11loopoo + 3111)

oeL1 WOri. I FrOBRESS Feb. Zé&, 1987

Despite @ little ambiquity in the numbers <{»;} . calculating

them ie & plausible way to approximate the sum s Mg by a DF
approzimation ¥ne *+ Mnrey 4 OF more generally by an M-tuple
precision approximation Moo * Mmoot F aee ¥ Hpropes o Neither N
approximation is ‘“correctly rounded” in eny worthwhile sense,

but their respective relative errors are smaller than €2 and &% ,
where & was defined under "Notation" above as the best bound

for roundoff error in one WP operation. (When M > N the
M—-tuple precision approximation is actually perfect subaect to the
understand1nq that x5 = 0 when j < 1 .)

Schemes to calculate the numbers <{x§> wusing only WF operations
have been known for about two decades. They work by iterating DF
sums of two WF wvariables. " Z = x+y ," 1in ways so similar to
the way a refinery produces gascline or alcohel that they deserve
to be called Distillation schemes. The fastest one I know is
presented nearby. All such schemes I know that have been proved
correct work usually rather faster than has been proved, vyet much
slowerr than we would like; their average running times appear to
grow at least as fast as Nlog(N) as N - 0w . Asymptotically
faster schemes. running in times that grow just linearly with

N , exploit integer arithmetic upon the constituent exponent

and significand fields into which WP numbers can be decomposed
by. for instance. the Trexp function in the standard C math.
library. In principle, standard WF arithmetic operations are
capable of accomplishing that decomposition: but, no matter how
it be accomplished. it costs far too much time to be attractive
for the values N that figure in DF arithmetic. N =4 for DF
addition " Z = X+Y ." For DP multiplication " Z (= X*yY ," N
can lie between 6 and 16 . We seek adequately accurate schemes /0
that are faster than distillation or decomposition for values N
like these. The next paragraph shows what to do when N = 3 .

Add/Subtract DP + WP , Z = X+y :

Since X-y = X+(~-y) and v-X = (=X)+y , any implementation of
addition must encompass subtraction too. so let us concentrate
upon addition. The implementation of DF (= DF+WF is slightly
more complicated than the implementation of DP = WFR+WFP above.
X and y a&are assumed given: this means that %, § and vy are
given, and that X = u+§ with x = [X] = [u+§] . UWe seek to

compute Z = z+4{ = X+y 50 accuretely that [Z-(X+y)| < 22fX+y]| .
Here is a way to do it: but do not omit parentheses:
If lyl » Ixt then swap(x, vy)

else if |yl < |§] then swap(y, E; :

e Now x| > Iyl > I8 .

t = (E+y) + u 3 ..» computed in WP
T = ({(u—t) + y) + E 3 see im WP

z = t4T 3 «ee to WF

¥ = (z-t) + 7 3 ... exact in WF
ces HNow L = g47 F X+v .,

Froving this procedure’'s correctness is a challenging task. The
crucial step is proving (x-t) exact. The proof I know works for
arithmetic that conforms to IEEE 754 : I do not know how this
procedure (mis)behaves when some other kind of arithmetic is used.

eee continued on the page atiter next .. Vama

DEL 1 WORE 1IN FPRGGRESS $ Feb. Z&. 1987

=== =t 3 3 F S+ 3 3t 3 3 F - F 333 1 ¢ 3 <
A Distillation Program:
Given N > 0 and Xy, %2, eeeqy ¥n « wWe wish to replace them by
N' and Mi. ¥2. ca.4y ¥n- 1D such @& wav s nearly minimizes N vet
keeps X1 + M2 + ... + MHNr = ¥, + M2 + ... + ¥au exactly, using
only standard WF operations upon WF variables. We shall use a
DFF addition " Z = p+q * of WP variables p and q to provide-
Z = z+y = p+q exactly while =z = (z+{1] rounded to WF ;3 this can

be.realized using only WF arithmetic as described earlier.

The first step is to sort ({x;3 by magnitude to ensure that

O < Il £ Ix2) € oo £ Il . The sorting procedure used here
should depend upon the provenance of the data; if ;) is in no
special order then a Heap-sort is appropriate:; otherwise a
Bubble-sort or Merge-sort may run faster. Omitting the sort
altogether can do ro worse than slow down distillation.

The Distillation process proper consists of repeated summations
alternating in direction from small-to-big, then big-to-small.
Each summation leaves I, »; unchanged. Each summation starts
with ¥eg + Ma + ses + My aNd MHie + ses + N~y + Xn Already
distilled, and tracks changes in kl and kr . Here is the code:

Sort {xy3 so that O < Ix;] € 2] € ove & |%nl §3 oos Oomit zeros
kl =1 35 kr ;= H
while k1l < kr do «e. Forward pass
J =kl 3 p =% 8 k =03
for i = j+1 to N do {
if idkr & j-=13>k then { %y = p 3 J i= j+1 3 p = %, 3
else { g += sy 3
Z = p+q exactly: ... = z+0 with = = [z+4¥1]
if ¥ =0 then k =3
else { x4 = 1 if =z # q then k = J§ 3
j = j+t ¢ if k =0 then kl =] } 3
p =2 > X3
kbr = k 3 if k1 > 1 then 1l = kl-1 3
if p=90O then N = j-1 else { ¥, = p 3 N = § ¥ 3
if k1 < kr then { «e-. Backward pass
J = kr 3 p t= ¥y 1k 1= N+1 3
for i = j-1 to 1 step -1 do {
if i<kl & j+1<k then { %; = p 3 J «= =1 3 P, += %, ¥

3
else { g = ¥
Z .= p+a exactly: .

if ¢ q then k .=
if ¢ O then p ==
else { %y 1= 2 3 } = 3 =%y 3

3 J
if k >N the

n -
k1 = k 3 if kr < N then kr .= kr+1 3
if p= 0O then Jj. = j+1 else H;: =p 1
if § » 1 then € ji=j~1 3 Ni=N-j 3 kli=kl-Jj ; kri=skr-j i
for i = 1 to N do M:i += Mies 3 } 2.

DEL1 WORE. IN FROGRESS Feb. Z&, 1987

Simple implementations of " Z o= X+y " have many important
applications. especially to the summation of series, numerical
quadrature. and the solution of initial value problems. For ~

evample., the recommended way to sum an infinite series I, vy, 1is
to first decide how many terms tc retain. and then add them up,
starting with the smaller ones in order to avoid an excessive
accumul ation of roundoff. But this is impractical advice when the
number of terms is both so big that there is no place to save them
and, at the same time, impossible to determine in advance except
by computing &ll the terms twice, once forward and once backward
in the order that they will be added. A better way is to perform
the addition in DF starting from the big terms at the beginning.
That DPF sum will suffer scarcely more error than is already
inherent in the terms vy; , which we assume-to be accurate to WF
at best except possibly for the first few, which are often exact.
Then summation can be terminated when |y,| is deemed negligible
by some criterion that could depend upon the accumulated sum so
far. Here is an outline of how the summation might be performed:

errbnd .= P 2 = VYo i eee 1. Bay ZT S Yo 3 Y i=0 3
for j = 1 to MaxJd do eee Maxd could run to millions
{ Vs ¢+ = suen 3§
Z = 7 + vyy 3 e i. e.y =+l = z+} + vy,
errbnd = errbnd + (bound for error in vy;)
> until {vsyl ¥ Tolerarce(i, =z, errtind) : ...

Noew = approximates the sum of the series with an error partly
dependent upon how the Tolerance was defined, partly a sum of
the errors in the terms v, { that part is bounded by errbnd),
but otherwise independent of the number of terms accumulated.

A very important applicetion of " Z (= X+y " is to the numerical ‘-
solution of an initial value problem dz(t)/dt = f(z(t)) . The
typical numerical process consists of repeated updates like
z{t+At) (= z2(t) + Ff(z(t), At)xat ,
where now =z(.) 1is the numerical approximation and f(.. .) is a
formula designed to yvield better accuracy as A4t is made smaller.
EBoth =z(.) and f(., .) are qgenerally vectors. The worst rounding
error in this process is usually the one that occurs at the last
addition. It can cause the error accumulating in 2z(.) actually
to grow as &t —* O ., To suppress it., update this way instead:
y(t) e= F(z (L), Ot)*AL ... to WF
Z(t+At) = Z(t) + wit) 1 ... = 2(t+AL) + T (t+AL) to DF .
When z(.) is computed in this way its accuracy improves, as At
shrinks, until a limiting accuracy is achieved which is ljimited
almost entirely by the roundoff error that contaminates (., .)
and by the time taken to perform the very many updates required
when At is very tiny.

In cases when the terms vy; being summed are uncertain because of
roundoff and always smaller than the current sum, the assiagnment
AR ANE SV can ke implemented in & way even simpler than was
presented above, but the details are not needed here. See them

in the paper by 5. Linnainmaa (1974) cited in the bibliography.

DP Addition/Subtraction, Z = X+Y =

Given X = x+85 and Y = v+ , we seek to implement™the DF sum 7
Z = X+Y by some means faster than distillation of x+E+y+y but

rnot too much less accurate. A =light externsion of the previous

DEL1 WORE 1IN FROGRESS Feb. 2¢, 1987

procedure seems the obvious thing to try first:

I+ Ixl < {y!l then swap(X, Y) ; ses B0 M| X)vi

t = ((p+4E) + v} + x 3 <o« Computed in WF

T = (((x=t) + y) +) +n 1 ... in WP

2 .= t+7 2 e TO WP

= (t-z) + 7 ; eve exa&actly in WP
Does Z = z+4f¥ = X+Y to DF ? No; it fails because the sub-

expression (x—=t) may occasionally be inexact, as can be seen in
the following example with binary arithmetic rounded to 4 sig.
bits. Try x =y = 111l. and § =» = pg,01 § then t = 100000.
and [x-tJ = [-10001.] = -10000. or -1001o. according as rounding
follows IEEE 754 or & DEC VAX . Then T = -0.1 or -10.1 resp.
instead of the correct -1.1 . The obvious procedure fails.

A sliaghtly simpler procedure seems always to work much better:
Given X = x+§ and Y = y+n ,

If Ixl < lyl then swap(X. Y) 31 ... so [|xl 2 Iyl
t = (§ + vy) + x 3 ..o computed in WP

T = (((y—t) + v) + E) + % ;3 ... in WP

z = t+T 3 e to WP

v = (t-~) + T 3 ce. ©xactly in WF

Because (x-t] = (x-t) exactly now, Z = z+% # X+Y better than
before., at least when WF arithmetic conforms to IEEE 754, but
I cannot yet say how much better. At best, Z = X' +Y' where

X' and Y' @agree respectively with X and Y to about DP in the
sense that |X'-XI| £ £21XI/2 and |(Y'-Y| < €2|Y|/2 4, &as the next
examples suggest:

Take » = 1010 , § = -0.1 , y = -1001 &and » = -o0.o000001 using
arithmetic rounded again to 4 sig. bits., so € = 24 . Now

X = 1001.1 and Y = -1001.000001 , so X+Y = 0.011111 . But the
computed values are t =0 , T =0.1 and z = Z = 0.1 instead.
When & is changed from -o0.1 to -oc.oilil , changing X+Y to
0. 100001 , then t changes to 1 and T to -0.1 , but 2z = 1Z
= 0.1 unchanged from before. Consequently Z # X+Y to WP but
not DF . If these examples illustrate the worst that can happen
to the simple algorithm above then it is at least as good as has
widely been considered acceptable in the past; in fact, takinag
IEEE 754's single-precision format 24 sig. bits. & = 2-2%) as
WP would produce DF results at least as good as in the single-
precision (48 siq. bits) Fformats on CDC CYBERs and CRAYs.
But the simple algorithm is not good enough if we want Z # X+Y
to DF so accurately that [Z - (X+4Y)}] £ £2|X+Y| , especially
when X and Y have opposite signs and mostly cancel. To achieve
that superior accuracy., it seems necessary to augment the simple
algorithm above so that it will do something special whenever
either t =0 or [I[x-tl+y]l = 0 . Here is & suggestion:

DELZ ¢ WORE 1IN FROGRESS Feb. 15, 1987

Given ¥ = u+E a&and Y = v+np . toc compute 7 = X+Y @
Start: J€ Ix} < |yl then swan(X. ¥) 3 ... so Ixl 2 Ivl
t = (E+y) + w3 oo computed in WF
if t =0 then
{ t = (u+v) + & . exactly in WF
Z = t+n v to DF
exit)} 3
u = (x-t) + vy 3 ... to WF
if u=0 and p # 0O then
{ X = t+§ ... to DP
- Y i=1n 3 e to DF
go back to Start ¥ ;
T = {(u+g) + n 1 ees in WF
2 = t+7 3 ... to WF
T = (t-z2) + T 3 .. exact in WF
cee NOW Z = z+0 5 X+Y .

On what kinds of arithmetic, if any. can this procedure be
trusted? Must a trustworthy procedure be so complicated? Can a
trustworthy procedure be devised that is free from the tests and
branches that inhibit vectorization and other kinds of concurrent
execution?

DP product of WP variables, Z := x#y :
In the absence of special hardware, representing a product x#*y
of WP variables exactly as a sum of WF variables =4y = u#y
takes trickery that was discovered almost twenty years ago by two
Dutchmen, T. J. Dekker and 6. W Veltkamp. The basis for the
trickery is a procedure for rounding a WF number x to half-
precision. Let h{(x) = » rounded to Jjust half¥ WF . and let
a(x) :=x — h(x) 3 here think of h(x) &as the head of x &and
a(x) as its tall. both WF numbers with zeros across at least
half their sig. bits. Then we may express x#*y exactly as a sum,
x#y = h()*h{y) + h{x)*8(y) + e(x)*h{y) + @(x)*6{y) ,
in which each product is computed exactly in WF arithmeticy and
this sum of four terms can be distilled into a sum of two. To
carry out this strategy we must first discover how precise WF is
without using anything but standard WF arithmetic, then define
the function h{x) . then condense the distillation process into
something more economical.

Throughout the discussion, WF arithmetic is assumed to be binary
floating—-peoint rounded either as specified in IEEE 754 or as a
DEC VAX does it. For any other kinds of arithmetic the tricks
below become appreciably more complicated.

The precision of WF is characterized by the constant € , which
can easily be computed thus: g = | {2.0/3.0-0.5)%F.0 - 0.5 | .
This & 1is & povwer of 2 3 either g = Z-2k or g = Zr1-2%
according as the number of sig. bits carried in WF is even or
odd. A similar WF computation produces a multiplicative masék

-

m= 2%+ 1 needed to compute the furnction h{x) :

DRLZ WaRE, IN FROGRESS Fet. 195, 1987
b = 1/1 (4.0/2,0-1)%3F — 1 | 1 ... = 1/(2¢e)
roi= Y C4xh) cee = (Z2/8)
m = {{r +r%b) — r+b) + 1 ; ces = 2041
R®) = (% — m¥x) + m*Ex 2 eae = ¥ rounded to k sig. bits
a(x) = »x — h(x) .
Round every arithmetic operation above except ¢y to WP 3 but

iz accurate enough IT accurate to 1% . Do not omit parentheses.
Now the DF assignment W2 o= ney ¥ can be implemented:

2 .F MEYy 3§ “ea rounded to WF

U = ((hxd)*h(y) —z2) + h(x)*a(y) + 0 (x)*h(y)) + G@(x)*b(y) .

Then Z = z+f = x#y exactly because § is computed without any
rounding error. Eut the cost is high: seven WP multiplications
and ten additions or subtractions. The cost garows somewhat when
over /underflow makes scaling necessary. For instance the product
m¥»x required for hi{x) could overflow spuriously even though
h(x) lies well within ranae; in such a case compute b#*h(x/b)
instead of h{x) . 1If arithmetic conforms to IEEE 754 there is
no way for 6() to underflow, but on other machines that risk
has to be addressed too. For simplicity’'s sake we shall skip over
the scaling techniques that would be required to deal with over/
underflow conscientiously.

In principle, the DF assignment " Z = x#¥y " can be used to
compute products to arbitrarily high precision. The product

(Ls %) *¥(Ly yy) = Ly Ly ds¥*ys = L4 Ly (2uy +849)
can be distilled into a sum of a nearly minimal number of WF
numbers, though in practice a different expression
s s (hOi) #h(yy) + hixg) % (y,) + (k) ¥h(y;) + 60i)#¥08(y,))
may take less time because it reuses heads and tails. Omitting
negligible products toc saves more time, &s we shall see.

DP Multiplication, Z = X*Y :

Given X = x+§ and 'Y = y+5» , & reasonably accurate and
economical DP product 2Z = X*#Y is achieved by approximating
X#Y = u¥y + n¥p + E¥y + E#p by its first three terms, of which

only the 4 rst need be computed in DF :

{JNg = dk:= : ees = t+7 exactly in DF
T = (u*n + E¥y) + é" eee in WP
z 1= t4+T 3 vee - to WP .
¢ = (z-t) H +ee e¥Mact in WF

+ T
eee Now Z = z+8 % X¥Y . .
The cost is nine WF multiplications and fifteen additions or
subtractions.

4

DP Division, Z = X/Y =
Given X = w+E and Y = y+5 ., we mav approximate X/Y by &
process reminiscent of long division as carried out by hand and
portraved in the following diagram:

t+T

v+hn) H+E+0Q
vi+nt
r+...
VT+te.. -

Here is the proaram:

LRLE LORE I FROGRESS Feb. 15, 1987

t = w/vy o3 e to WF

S = vt : cve = e+ exactly in DR

T t= (((u-e) —) + & =« nxldV/v 3 ... to WF 7N
= t+T o2 cen to WF

t o= {t-z)Y + T ¢ cew esact 1n WF

ese Now 2 = z+0 = X/Y .

It coste two WF divisions. eight multiplications and seventeen
additions or subtractions., not much more than DF multiplication.

Division can be carried out to arbitrarily high precision in &
similar way at a cost not much worse than that of multiplication.

DP Square root, Z = H .
I t = ¥x then t+ (x-t2)/(2t) % ¥ to twice as many figures.
Then the series expansion Y(x+g) = ¢¥x + §/(Z2¢¥Y%) - ... explains

why t + (i —-t2 +§8)/(2t) approximates ¢¥X = ¢(x+E§) to DF by
combining the two processes. None but WF operations appear in
following program for a DF square root:

t = v o2 .. to WF

T = 0.3%((((x —h(t)2) — 2*h(t)+a(t)) —6(L)2) +E)/t 3
2 = t+7

T = (t-z) + 7 3

«e« Now Z % ¥vX .

Conclusions:
Processes for distilling sums and for computing heads and tails
provide a foundation in principal for floating-point arithmetic of 7~
arbitrarily high precicsion implemented entirely in WF . That is
why theoretical questions like

" How accurately can ... be computed in WF arithmetic? “
cannot be answered in absoclute terms; such questions make sense
only if some limit is imposed upon the time and space that will be
spent upon the computation. Such questions about DF addition
and subtraction have not yet been settled fully satisfactorily,
although reasonably efficient implementations with relative errors
not much worse than &2 have lona been known for multiplication,
division and sauare root.

Can the DF addition aloorithm suggested above, or some others,
settle all remaining questions ebout DF arithmetic to evervone's
satisfaction? No. Serious questions about software engingering
will remain. Consider a program that achieves its robustness and
efficiency partly by exploiting & little DF arithmetic. Such a
proaram may work correctly. after recompilation, on a wide range
of computers of diverse manufacture that all conform to the IEEE
standard 754 . Among such machines are Apple Macintoshes, ELXSI
&6400's, IBM RT-FCs. Sun Ills, HPF FPrecision Architectures; etc.
In the absence of under+low the program will likely work correctly
on any DEC VAX. But the program is likely toc fail occasionally
when run on other commercially significant machines, including
IBM /3708, CDC Cvbers., Univac 1100s. and Crays. Who deserves
the blame for those failures of an ostensibly portable program?

If & small change could render that program fully portable without !
any serious performance penalty, then the original program’'s
lapses could bhe blamed upon the proogrammsr’' s inexperience or

opLa WORE InN FROGRESS Feb, 12, 1987

indifference. But nobody has ever found an i1mplementation of DF
arithmetic that is portable to all the machines mentioned above.
end that not for leck of lookine. Then should DF arithmetic be
prohibited because it ie not portable? Such & prohibition seems
imnoral. for it denies the benefits of Letter arithmetic to those
who have paid for it., a&as well as unenforceable.

In the past. high-precision floating-point arithmetic has been
regarded &s & fixture of the programming environment, usually
implemented in machine language if available at all, certainly
not something that could be embedded within a small portable
program written entirely in some Fortran-like language. Now,
if we think of high-precision arithmetic merely as & programming
technique to be emploved in small doses as needed. can we look
bevond our present horirons to see a wider range of numerically
stable portable proceduires? .

Annotated Bibliography:

The first instance I know of & computation that recovered rounding
errors in order to cancel them off was S. Gill‘s version of the
Runge-Kutta method, "Frocess for the Step-by-Step Integration of
Differential Equsations in an Automatic Digital Computing Machine,"
Proc. Camhridae Phil. Soc. &7 (1951) 96-108. His trick is still
widely misunderstood in terms of algebraic identities, correct
for the fixed-point computations for which they were designed,
that confer no benefit upon floating—-point computation. However,
the ideas behind Gill's trick were exploited correctly in codes
that solved differential equations on the IEM 70920 around 1959;
they carried a term from the M& register, that would otherwise
have been discarded, forward to the next time-step, thetreby much
attenuating the accumulation of roundoff over vast numbers of tiny
time-steps. Because Fortran forbade any reference to the M@
register, these codes had to be written in assembly lanquage and
are now lost. 1 was able to transfer several of these codes to
Fortran 11 with the aid of the "DLAF Fackage" of Fortran -
callable functions that 1 contributed to the IBM 7090 SHARE
library in the early 19260°s5; cf. SHARE SD#IZ0Z21 (renumbered from
#1480), resubmittal dated Jan. 15, 19464, 3-page abstract + 2-
page listing + 10~page write-up, available from IEM only on
microfiche. The write-up describes numerous applications besides
the ones mentioned above in this paper. FPart of the package’s
efficiency was owed to the passage of function arguments by value
when they were expressions evaluated in the AC-MB registers. Eut
by 1963 the advent of Fortran IV, which passed arguments solely
by reference, had rendered the package less efficient than the
full double-precision supplied with the compiler.

By 1965 ways had been discovered to recover addition’s rounding
srror in programs weitten entirely in Fortran—-like languages,
albeit at the cost of & little extra arithmetic. The ideas were
published by 0. Mdller in two notes on " ... quasi double
precision" BIT 9 (1965) I7-50 and 251-205, and by me in &
letter, "Further Remarks on Reducing Truncation Errors,"” Commun.
ACH 8 (1965) 40. & thornuoh analysis, validation and comparison
of tricks like these has been published by 8. Linralnmaa in
"gnalvsis of some known methods of improving the accuracy of
floating-point sums," RJIT 14 (1974) 167-202.

= WOkE 3R FROGRESS ¢ Feb., 13, 1987

Meanwhile. to sum 2 ooublv infinmite series that suffered from
masesive cancellation, I had stumbled uvpon a distillation process f‘\
very like the one presented in this paper. But I was bafflec when
it gave different results in double-precision on the new I1EM 7094
than on the old IEM 7090, and different yet again on the CDC
6400, The old 70%0's results turned oul to be correct. In the
end the discrepancies were attributed on the 7094 to a lack of a
guard digit in its double-precision hardware, on the 6400 to
its Fortran compiler’s use of two instead of five floating-point
instructions to effect & single-precision subtraction. These
flaws undermined the computation of the DF sum " 7 = x+y " of
two WF npumbers. invalidating the distillation process. These
flaws caused anguish to others besides myself:; see my "Survey of

Error-Analysis.” Proc. IFIF Conagress 1571, ed. by C. V. Freeman
(1972), North-Holland Fubl. Co.., Amsterdam, vol. 2. 1214-1239. It
contains & tricky implementation of the DF sum " Z = x+y " of

two WF variables that works correctiy on all North American
computers with built-in flosting-point hardware except the CDC
Cyber 205. Therefore distillation, and hence DF arithmetic,
can be implemented in principle (but inefficiently) in a way
that is completely portable to &ll computers but that one.

The first distillation algorithm published was M. Fichat's
"Correction d’une Somme en Arithmetique & Virgule Flottante,”
Humerische Math. 19 (1972) 400-406. It is astonishingly simple,
without the presort and the backward pass in my algorithm; vet

his will distill & large number N of summands in not much more

time on average than twice what mine takes. In the worst case his f‘\
scheme can take time proportiormal to N2 | whereas the worst case

for mine, though far better than that, has yet to be determined.

G. Bohlender contributed two improvements to distillation in
"Floating-Foint Computation of Functions with Maximum Accuracy,™
IEEE Trens. Computlters C=26 nc. 7 (1977) &21-632 and "Benaue
Summation von Gleitkommszehlen.," Computing Supplement 1 (1577)
1-21. One improvement was an elegant formalism by which to prove
the convergence of distillation iterations. The other was a
family of stopping criteria suitable for use when less than +ull
accuracy is required in the final =suin. These stopping criteria
for Fichat”’ distillation. and ftor another one that presorts
the summmnds, are described alsc in the book Computer Arithmetic
in Theory and Practice by U. Kulisch and W. Miranker (1981)
Academic Press, New York, 192-209; but the programs therein
look much more complicated than mine partly because they refer to
the exponent and significand fields of floating—-point numbers as
if the programs were intended for machine-language. ~Actually the
directed roundings are the only features they need that might not
be found in conventionsl Fortran-like languages. For a clearer
account of FBohlender' s algorithm see "FParallsl Algorithins for
the Rounding-Exact Summation of Floating-Foint Numbers" by H.
Leuprecht and W. Oberaigner, Computling 28 (1982) 89-104. Their
directed roundings are superflucus for most practical purposes;
iteration could just as well be stopped as soon as one found &
distilled partial sum Muer + ooe + Mu=yg + Ha with no fewer terms
than desired and with [dee] = (sl + aie + JHur=r | + $Her) as N
computed in WF . .

oL T Witk PN FROSRESA Fet. 12, 1987

Some ouestions about distillation €till weioh uporn mv mind. Why
dn all distillation alcoritrme veuellv run so much faster than
anvone has heen ahle to prove™ Why cdoee the hackward pass in my
alporithm usually speed 2t up a little. sometimes a lot. but
sometimes slow il down very =lightlv compared with Fichat 'e?

DFF multiplication bas been more troublescome in the past fifteen
vears than in the previous fifteen. 0Older machines implemented
the DF product " Z = u%y " pf two WF variables in one machine
instruction (IEM 7090, UNIVAC 1107, DEC FDF-10) or two (CDC
6600), far faster than achievable using helf-precision heads
h(x) and tails &) 3 but recent designe have lacked any such
DF capability. That atrophy could be & byproduct of a linguistic
misconception among the designers of machines intended to support
Fortran-like languages. Here is why.

Fortran appears to offer almost what we want:; it has a function
DFROD(x. y) that returns the exact DCOUBLE FRECISION product of
two SINGLE FRECISION wvariables » and v . And some dielects of
Fortran provide QGQFROD(X. Y) . the EXTENDED (i. e. quadruple
precision) product of DOUBLE FRECISION variables. But if XX
and YY are variables of type EXTENDED there is no way to return
an exact product, call it OFROD{XX., YY) . because there is no
OCTUPLE FRECISION or DOUBLE EXTENDED data type in the language.
Hence there seems to be no way to supply a two-word result from an
operation upon one-word operands of the widest wordsize available.

Rut actually, if the COMFLEX data attribute is supported in the
language, OPROD(XX, YY) could be of type COMFLEX EXTENDED. The
function DPROD(x, y) could be a RECORD in FPascal, which
traditionally has only one REARL type:; the STRUCT construction
in the langusge C is & humane way to provide G@FROD. PBut C and
Pascal came too late to influence the desianers of those machines
upon which now we must compute heads and tails.

Other ways eiist that avoid collicsions with compilers by taking
refuge in the run-time library. O0One way is to provide & multiply-
add function pradi{a.b.c) = [a%b + ¢l rounded to WF with just
one rounding error: then = (= prad(x.v.9) and § = prad(i.y,—-z)
supply the DP product 240 = Z 1= x¥vy of WP operands in just
two operations. The full DF . .product z4+b = Z (= (H+E) # (y+n)
might take just =six operations instead of twenty—fouwr: .

T = N¥R + E¥y 3 c.a to WP

2 = pradi,v. T) 13 ¥ = prad{x.v,—z) + 7 .

Another way is to orovide & DF sccemulator, a special global
variable into which library proarams Jdpadd. Jdpmul, ... written
in machine lanauane (as are loa and cos), put their result,
This aoproach was +ollowed for the DLAF packans mentioned above.
A similar approach. but cearried to far greater lengths in a
super—accumilator for scalar preducts, is pursued by Kulisch and
Miranker in their book mentioned above and in the realization of
their ideas by IEM's "High—Accuracy Arithmetic Subroutine
Library (ACRITH) ." program numbers 5S&&64-185, 5665-337, 5666-T20,
documentation order numberes GLCIZI-6163~0Z2 and SCII-&TE4-02 (1986).
But such schemes do not lend themselves to portable programming in
the standardized Fortran-like languapes &s they are to-day.

- . g = . € = PR
wWakds 1IN FRGOReESS Febi. 313, 1587

vl
s

lw]
51
£

& maior contribution te peortability was published by T. J. Dether

in "A Flosting-pcint Technique for Extending the Aveailable
Frecision." Numerische Math. 18 (1971) 224-242, He showed how to
implement hix) and &(x) and the exact DF preoduct " Z (= x¥y "

of WF wvarizsbles in an ostensibly portable way. From the exact
DFF product and sum he implemented &ll the arithmetic operations
upon DF variables., §. Linnainmaa. in "Software for Doubled-
Frecision Floating-Foint Computations." ACH Trans., Hath. Soft. 7
(1981) 272~2BT. hes generalized Dekker’s algorithms., preoofs
and error bounds so thet they really are portable to & wide range
of fTaithftul arithmetics with diverse radices and odd word-sizes.
But not all arithmetics. Multiplication and subtraction on & CRAY
are unfaithful., &s is subtrasction on CDC Cybers and Univac
11xx°'s. so his codes must malfunction on those machines. And
even when his DFF addition/subtraction works, it is somewhat
less accurate than the second of my DF addition proorams
presented above. To reach the accuracy to which my third program
aspires, but in & universally portable way., seems to require so
complicated & program that nobody has written it.

If high-precision arithmetic were all we wished to perform, we
should choose & progreamming environment in which that is made as
convenient as possible. Such an environment is provided by ...
MACSYMA s Rigfloat arithmeticy see R. J. Fateman "“The MACSYMA
BRig-Floating—Foint Arithmetic System,” Froc. 1976 ACM Symposium
on Symbolic and Aloebraic Computation, ed. by R. D. Jenks.
DOE/MACSYMA and VAXIMA (prog. #%631) can be obtained from the
National Energy Software Center, Argonne National Laboratory,
?700 South Cass Ave., Argonne IL 6043%; tel. # (312) 972-7250 N
R. F. Brent's MF Fackage:; GIVE REFERENCE >3
T. E. Hull’s "Numerical Turina Language:" >

.....

But high-precision is not what we most often need. Instead, we
often need arithmetic with & little more precision —— DP is
enough —— in a small part of an otherwise WP program intended
for the widest possible distribution. That kind of arithmetic is
simul ated very sparingly in the excellent elementary function
codes found in W. J. Cody and W. Waite. SoTtware Manual for the
Elementary Functions {(1980), Frentice-Hall Inc., Ernglewood
Cliffs, New Jersey., The math. library of elementary functions.
distributed in 1986 by the Regents of the University of California
with 4.3 RSD UNIX, dces likewise. PBut algorithms that achieve
their speed and accuracy by using & little DF arithmetic pose a
major headache for the would-be distributor of portable software.

The would-be consumer of such codes can best avoid that headache
by puwrchasing & machine whose arithmetic conforms to ANSI/IEEE
Standard 754-1985 for ERinary Floating-Foint Arithmetic as
described in document no. SA10114 aveilable from the IEEE Irmc..,
345 East 47th St.. New Yori NY 10017. { For a more readable
gescription se=2 "A Froposed Radix— and Word-length-independent
Standard for Floating-point Arithmetic" by W. J. Cody et al.,
IEEE MICRG (Aug. 1984) B8&6-100.) Tricky codes that simulate

DF arithmetic in a way intended toc be az portable as possible may
run slower than they have to, but they will almost certainly run
correctly on a machine that conforms to that standard.

DELD WoRE L FRODRERE

PP, P A A PP N N T P P N A NN P N N P N P T P P e e e e e P 1y
8till to come: more applicationes to
Adloebraic functions
Correctly rounded WF division

