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Let "WP" stc:cnd for "Workinci Precision 11 " which denotes 
whichever is the widest floating-point format supported by some 
computer that conforms to the IEEE standard 754-1985 for binary 
floating-point arithmetic. < That standard specifies Single, 
Double and Extended formats, but a conforming computer need not 
support all of them. ) Let "DP" stii.nd for "Doubled-Precision~" 
whjch denotes a simulation of arithmetic accurate to about twice 
WP though carried out using nothing but standard WP arithmetic. 

How well can such a simLtlatior, be carried oL,t? The discL1ssion 
that follows addresses that question, but does not settle it. 
Because this paper is intended to stimulate r~ther than stifle 
interest in the que5tion- proofs have been omitted; many of them 
can be found in references cited in the Bibliography. 

Why does it matter? 
Many scientific ~nd en~ineering calculations, particul.arly those 
that involve either massive destructive cancellation or else vast 
numbers of small corrections to undulating variables, would be 
swamped by the effects of roundoff but for the use of some kind of 
extra-precise arithmetic. Programming those calculations might be 
simpler if hiqher precision were available merely for the asking. 
but the exi~encies of hardware or language implementation impose a 
limit. usually small. upon the precision that can be programmed 
conveniently and efficiently in higher-level languages. That is 
why tricks h~ve to be contrived4 sometimes unconsciously_ to 
achieve the effect of higher precision without calling upon it 
explicitly. Those tricks are penerallv confined to small but 
crucial pa,-t=- of a prof:n-«mn- where they lut-k amc,r,gst manipL1 li:ctic,ris 
of WP variables that seem entirely unexceptionable to the naked 
eve. In some situ~tions where WP v~riables would have to be 
mixed with ·higher-precision v~riables if they ~ere available, the 
tricks~ by ~voiding both format conversions (between WP, and 
higher-precision fo~mats> and calls to subroutines that simul~te 
higher-precision arithmetic, run faster. 

Unfortunatelv4 tricky programs are dangerous, especially when 
they simulate higher-precision floating-point arithmetic. Thouph 
they seem to be portable~ recompilinR and running them on any 
machine other th~n the one for which they were desiqned runs the 
risk of malfunctions that~ however rarely they may occur. are 
bc.•Lmd to be mvsteri OL{S. The ei:,i thet 11 oornogrc:c.phi c" has be-en 
attached to these tricky programs. but undeservedly; they 
generally do possess some redeeming social merit. 

Underst-Etndi ri~ these tri c:k~. j s wr.irth r.n.o-·· whj. J F.· for two rec:i.sons. 
First. if we have to use them, we shBll have to know how and 
when t.he:-v .,.,m-k,, SE-i::cmd r. ~. prom--::irn t.het o~; pi n-Bt.f:-d E-1 :=-, 1?l••he1-e.• th~1n 
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on_the m~chine to which we wish now to ~dapt it may contain such 
tricks~ ~nd w~ h~ve to recognize them before we can deal with 
them. The tricks are hard to recognize bec~use, to achieve 
ostensible portability. they perform only standard floatina-
point oper8tions upon WP variables. No Fortr~n EQUIVALENCE 
statements matchinp INTEGER with REAL variables; no REAL 
actual arguments for subprograms with INTEGER formal arguments: 
none of Pascal"s deceitful VARIANT RECORDs; in short, none of 
the bit-twiddling th~t obviously obviates portability. 

The games we play with floating-point might ~swell be played upon 
a machine that conforms to the IEEE standard 754-1985 for binary 
floating-point arithmetic. If we have to simulate DP in our 
program. it will be simpler on that machine.than upon almost any 
other. And extra complications introduced to simulate DP on 
diverse other machines will almost certainly continue to work on 
that one. Let's avoid introducin9 those extra complications into 
a subject that can alre~dy be characterized as the exaltation of 
complicated ways to calculate what would be zero in the absence 
of roundoff. 

Notation: 
First some notation. Upper-case letters s. T, X, V, z, ... will 
deno.te DP numbers. each t-epresented in the computer by a pair 
of WP numbers denoted by corresponding lower-case and Greek 
letters. For instance. the DP variable X is represented in 
the computer by x and~ ; in fact, X = x+~ exactly in so far as 
that addition is construed not as WP arithmetic but infinitely 
accurate. To help avoid confusion about the accuracy to which _,,--......, 
various arithmetic operations are carried out, further notation 
ts required. We shall use brackets ''C ... J" to denote rounding 
to WP in accordance with the IEEE standard 754; this means 
rounding-to-nearest, with half-way cases rounded to nearest even. 
(Seethe draft of the standard-for a more explicit explanation. > 
In particular. let E be the difference between 1 and the 
nearest other WP number 1-~ then Cl+EJ = 1 according to 
IEEE 754, whereas 1+~ would round to 1+2E on a DEC VAX. 

We shall also adopt a convention for assignment statements. in 
which the symbol u : = " appears: if such an assi. gnment contai r,s 
only WP v~riablesc then every arithmetic operation ~ill be 
presumed to be rounded to WP; but if any DP variable ~ppears 
on either the left- or right-hand side of the assignment, then 
the arithmetic will be presumed to be carried out in DP. For 
instance.. the assignment statement- -- " - \"' : = < >: -z) + y " • i rnp 1 i es . 
t" = [ [x-z J+vJ ; but II T := <>:-z > + y " implies that the DP 
result T is obtained from a subtraction x-z carried out in DP 
arithmetic .. followed by addition of v in DP. Each such DP 
operation is the result of a suitable seauence of WP operations. 

DP sum of WP variables, Z := x+y: 
Every DP variable Z shall be represented as an unevaluated sum 
z+t of a pair of WP variables; normally they will be further 
constrained by the requirement that z = [z+t J = [ZJ,··. This state r--'\ 
of affairs can be brought about by a procedure _that implements the 
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II z : = x+y It 

If l>:I < IYI 
for c::1.ny two WP variables x and y = 

l>tl 2: lyl 
WP 

then 
N + y ; 

: = ( >t -z ) + y : 
Now,. ideally" z -

swap(>{" y) : so 
... rounded to 
... turns out to be exact! 

should equal x+y exactly. 

Note: Do not omit parentheses ~rom this procedure~ nor ~rom any 
presented l~ter. Note too that this procedure-per~orms none but 
standard UP ~loating-point operations upon UP variables. 

Provided z does not overflow beyond the ran9e encompassed by WP 
numbers, this simple procedure can be proved to work infallibly 
for ~11 finite WP variables x and y. But the proof cannot be 
simple, because the procedure f~ils occasionally on arithmetics 
that do not conform to IEEE 754 though they may be exemplary in 
almost every other respect. Failure will occur when z or x-z 
underflows unless underflow is Gradual. as it is on standard
conforming machines but almost no others. Except for underflow, 
this procedure works on all computers with binary floating-point 
arithmetic rounded in a reasonable way; examples are DEC VAXs, 
and the IBM PC's compiled BASIC but not its BASIC interpreter. 
Failure can occur often on machines that subtract without carrying 
a guard digit; among such machines are all CRAYs and all CDC 
CYBERs, many UNIVACs .. most TI calculators and most credit-card 
calculators. Except for underflow, the procedure works also on 
IBM /370's and other machines <AMDAHL, ... > with identical 
hexadecimal arithmetic, but otherwise very rare fail~res will 
occur on non-binary arithmetics whose addition with like signs is 
rounded instead of chopped. For examplei take x = 9999.9 and 
y = 9999.7 on a machine that rounds to five significant decimals, 
whereupon z = [19999.6J = 20000 and [x-zJ = t-10000.1J = -10000 
is not exact, so r = -0.3 instead of the correct -0.4. 

Evident 1 y the assignment " Z : = >: +y " can be i rnp 1 ernented in a 
simple~ way on computers that conform to IEEE 754 than on almost 
any others. That is significant because this assignment realizes 
the crucial special case < N = 2 > out of which emerges a more 
general summation procedure upon which all arithmetic operations 
upon floating-point operands of arbitrarily high precision < not 
merely DP> can be based~ at least in principal. The following 
digression will explajn. 

Distillation of a Sum of N WP numbers. 
For any given WP numbers Xt, x2- ... , x" • there must exist 
another set of WP numbers x:. x~,- ···~ x~- - that satisfy both 

xi+ x2 + ... + >:N• = x, + >t2 + ... + XN exactly, and, 
for O < j < N' ~ N , :-:,;., = C>:j + >:j., J rounded to WP , 

provided no sum overflows. When N' > 2 the numbers {x3) do 
not necessarily determine the number3 {~~} uniQuely, as the 
following examples illustrate for binary floating-point arithmetic 
rounded to 4 sig. bits the same way as IEEE 754 rounds to at 
least 24 sig. bits: 

100000000000 - 1000000 - 11 = 11110000000 + 111100 + 1. 
1000000000 - 10000 - 1 = 111100000 + 1111. 

< The second eta1ple, which shoHs that N' is not deter1ined uniQuely, does not work with rounding like 
a DEC VAX's; for that kind of rounding try instead 

JOOloooooooooo - 1000000~00 - 10010 + J = 100000000000000 + 111100000 + 1111 .) 
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Despite a little ambiqLtity in the numbers {x;} ~ calculating 
them is a pl~usible way to aoproximate the sum EJ x, by a DP 
apprc,·:dms.tion >f.:.• + >:N•-• ,, o,- more gener-ally by an M-tuple ~ 
precision appro>:irnation >:~. + J-:~•-, + ••• + >:.:.--"•' • Neither 
appro>:iu,ation is "correctly rounded'' in anv worthwhile sense, 
but their respective relative errors are smaller than E 2 and e", 
where E was defined under "Notation" above as the best bound 
for roundoff error in one WP operation. ( When M > N' the 
M-tuple precision approximation is actually perfect subject to the 
understanding that x; := 0 when j < 1 .) 

Schemes to calculate the numbers <x;} using only WP operations 
have been known for about two decades. They work by ite~ating DP 
SL1rns of two WP variables,. "Z := x+y ,. 11 in ways so similar to 
the way a refinery produces pasoline or alcohol that they deserve 
to be called Distillation schemes. The fastest one I know is 
presented nearby. All such schemes I know that have been proved 
correct work usually rather faster than has been proved. yet much 
slower than we would like; their a~erage running times appear to 
grow at least as fast as N log(N) as N -➔ oo. Asymptotically 
faster schemes. running in times that grow just linearly with 
N, exploit integer arithmetic upon the constituent exponent 
and significand fields into which WP numbers can be decomposed 
by,. for instance. the frexp function in the standard C math. 
library. In principle, standard WP arithmetic operations are 
capable of accomplishing that decomposition; but, no matter how 
it be accomplished. it costs far too much time to be attractive 
for the values N that figure in DP arithmetic. N = 4 for DP 
addition "Z := X+Y ... For DP multiplication "Z := X*Y , 11 N 
can lie between 6 and 16. We seek adequately accurate schemes ~ 
that are faster than distillation or decomposition for values N 
like these. The next paragraph shows what to do when N = 3. 

Add/Subtract DP+ WP, Z != X+y: 
Since X-y = X+(-y) and y-X = <-X)+y, any implementation of 
addition must encompass subtraction too~ so let us concentrate 
upon addition. The implementation of DP:= DP+WP is slightly 
more complicated than the implementation of DP:= WP+WP above. 
X and y are assumed given; this means that x, ~ and y are 
given. and that X = x+- with x = CXJ = [x+-J . We seek to 
compute Z = z+t * X+y so accur~tely that IZ-CX+y) I ~ ~ 2 1X+yf . 
Here is a w~y to do it; but do not omit parentheses: 

If I y I > I >: I th en swap < >: , y > ;_ 
else if IYI < l~I then swap(y, ~) ; 
Now lxl ~ lyl L l~I . 

t : = ( ~ +y) + X ; 

7 := ((x-t> + y> + ~ ; 
t+'T; 

r := (z-t) + 'T = 

computed in WP 
in WP 
to WF' 
exact in WF· 

Proving this procedure's correctness is a challenging task. The 
crucial steo is proving <x-t) exact. The proof I know works for 
arithmetic that conforms to IEEE 754; I do not know how this 
procedure (mis)behaves when some other kind of arithmetic is used. 

continued nn the paqe a~ter next .. ~ 
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=====-======----=================================================e 
A Distillation Program: 
Given N > 0 and x •• x2, ••• , XN • we wish to replace them by 
N' and ►:;" H2" ••. ., >i,.. in such a w~v es near 1 y minimizes N' yet. 
keeps x; + x~ + ... + x~- = x1 + x2 + ... + XN exactly, using 
only standard WP operations upon WP variables. We shall use a 
DP addition 11 Z := p+q" of WP variables p and q to provide· 
Z = z+r = p+q exactly while z = Cz+tJ rounded to WP; this can 
be-realized usin~ only WP arithmetic as described earlier. 

The first step is to sort <x,} by magnitude to ensure that 
0 < lx1I ~ fx2I ~ f lx"I . The sorting procedure used here 
should depend upon the provenance of the data; if <x,> is in no 
special order then a Heap-sort is appropriate; otherwise a. 
Bubble-sort or Merge-sort may run faster. Omitting the sort 
altogether can do no worse than slow down distillation. 

The Distillation process proper consists of repeated summations 
alternating in direction from small-to-big, then big-to-small. 
Each summation leaves E, x, unchanged. Each summation st~rts 
with x, + X2 + ... + Xki and Xkr + + XN-1 + XN already 
distilled, and tracks changes in kl and kr. Here is the code: 

Sort {x.,> so that O < lx,I ~ lx2I ~ 
le: 1 : = t ; kr : == N ; 

~ IXNI ; ••• omit zeros 

while kl< kr do C Forward pass 
j := kl ; p := x, ; k := 0 ; 
for i = j+l to N do { 

kr 
if 
if 

if i>J~r & j-2)•Jf. then { >t, := p ; j := j+l ; p := x, } 
e 1 se { q : = x • ; 

= 
J .. ·- j .. . -Z := p+q exactly; 

if r = 0 then 
else { x., := t" ; if z 

j := j+1 : if 
p : = 2 ]· )·: 

: = k ; i f k 1 > J. th en 
p = 0 then N := j-1 
kl< kr then ( 

kl := 
else { 

j : =. kr ; p : = x 3 ~ k : = N+ l 
for i = j-1 to 1 ~tep -1 do { 

z+r with z = Cz+t l 

¢ q then l{ ·- j . .- !I 

k = 0 then kl ·- j J- . .. - !' 

kl-1 ; 
X3 ~= P ; N := j } ; 

Back1-c1ard pass 

i f i < kl s,. j + 1 < k t ~. en { ){ ., : = p ~ j : = j - 1 ; p .... : = x , > 
el se C q : = x , ; 

Z := p+q exactly; ... with z = tz+tl = z+r 
if r ~ Q then k := 
if t = 0 then p := 

.i 
z 

. 
!' 

else ·{ >:., 
if 

j := j-1 p := t ; 
k > N then kr := j >}); 

kl := k ~ if kr- < N the·n kr := kr+l ; 
if p = 0 then j: = j+t else x3: = p; 
if j > l then { j:=j-1 ; N:=N-j ; kl:=kl-j ; kr:=kr-j; 

for i = 1 to N do x, : = >:,., } } l • 

===================================================---------------
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Simple implementations of II Z := X+y" have many important 
applications. esoecial_ly to the summation of series, numerical 
quadrc:cture,. and the solut.ic,n of initial value problems. For ~ 
example,. the recommended way to sum an infinite series r, y, is 
to first decide how many terms tc, retain" and then add tt,em up, 
starting with the smaller ones in order to avoid an excessive 
accumulation of roundoff. But this is impractical advice when the 
number of terms is both so big that there is no place to save them 
and, at the same time, impossible to determine in advance except 
by computing all the terms twice, once fdrward and once backward 
in the order that they will be added. A better way is to perform 
the addition in DP starting from the big terms at the beginning. 
That DP sum will suffer scarcely more error than is already 
inherent in the terms y, , which we assume-to be accurate to WP 
at best except possibly for the first few, which are often exact. 
Then summation can be terminated when ly,1 is deemed negligible 
by some criterion that could depend upon the accumulated sum so 
far. Here is an outline of how the summation might be performed: 

errbnd : = C> ; Z : = Yo i . e. , z : = Yo ; t : = 0 ; 
for j = 1 to MaxJ do MaxJ could run to millions 

{ VJ : = • • • • ; 
z : = z + y' ; i . e • ' :z +r : = z +r + y J 

errbnd := errbnd + (bound for error in YJ) 
} until lv,f < Tolerance(j, z, errbnd) ; ... 

Now z approximates the sum of the series with an error partly 
dependent upon how the Tolerance was defined~ partly a sum of 
the errors in the terms y, ( th8t part is bounded by errbnd >, 
but otherwise independent of the number of terms accumulated. 

A very important application of '' Z := X+y" is to the numerical 
solution of an initial value problem dz(t)/dt = ~<z<t>> . The 
typical numerical process consists of repeated updates like 

z <t+6t > : = z <t > + f <z <t > , 6t > *6t , 
where now z(.) is the numerical approximation and f<.~ .) is a 
formula designed to yield better accuracy as ~t is made smaller. 
Both z(.) and f(., .) are generally vectors. The worst rounding 
error in this process is usually the one that occurs at the last 
addition. It can cause the error accumulating in z <. > c:1.ctual 1 y 
to grow as 6t -➔ 0 . To suppress it. 1..,pdate this way instead: 

y(t) := f(z(t), 6t)*6t; to WP 
Z<t+6t) := Z<t> + y(t) ; · = z (t+.6t> + t (t+.6t} to DF' • 

When z(.) is computed in this way its accuracy improves, as ~t 
shrinks, until a limiting accuracy is achieved which is lJmited 
almost entirely by the roundoff error that contaminates f(., .> 
and by the time taken to perform the very many updates required 
when 6t is very tiny. 

In cases when the terms YJ being summed are uncertain because of 
roundoff and always smaller than the current sum, the assignment 
u Z := Z + YJ 

II can be irnplernentecl in a wav even siropler than was 
presented above,. but the details are not needed here. See them 
in the paper by S. Linnainmaa (1974) cited in the bibliography. 

DP Addition/Subtraction, Z := X+Y: 
Given X = H+~ and Y = y+,; " we seek to i mpl ement--·the DF'. surn ~, 
Z := X+Y by some means faster than distillation of x+~+y+~ but 
not too much les~ ~ccurate. A slight extension of the previous 
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procedure seems the obvious thinq to try first: 
I f I >< f < I v ! the r, swap ( X , Y) ; so I :•: I 2. I y I 
t := ((~+-) + v> + x; computed in WP 
T := (((x-t) + y) + -) + ~: in WP 
z := t+7: to WP 
t := <t-z> + T ; • • • e>:actly in WP 

Does Z = z+r * X+Y to DP? No: it fails because the sub
expression (x-t> may occasionally be inexact, as can be s~en in 
the following example with binary arithmetic rounded to 4 sig. 
bits. Trv x = v = 1111. and ~ = ~ = o.ot : then t = 100000. 
and rx-tJ = c-16001.J = -10000. or -10010. ~ccording as rounding 
follows IEEE 754 or~ DEC VAX. Then T = -0.1 or -10.1 resp. 
instead of the correct -1.1 . The obvious procedure fails. 

A sliqhtly simpler procedure seems always to work much better: 
Given X = x+~ and Y = y+~ , 
If I>: I < Iv I then swap< X.. Y> : so I:< I 2:, I y I 
t := <~ + y) + x; computed in WP 
T := (((x-t) + y) + -) + ~; in WP 
z := t+T; to WP 
t := <t-z> + T: exactly in WP 

Because Cx-tJ = <x-t> exactly now, Z = z+t * X+Y better than 
before, at least when WP arithmetic conforms to IEEE 754, but 
I cannot yet say how much better. At best., Z = x· + v· where 
X' and Y' agree respectively with X and Y to about DP in the 
sense that 1x·-x1 f ~2 IXl/2 and 1v·-v1 ~ e 2 IYl/2, as the next 
examples suggest: 

Take x = 1010, ~ = -o.l ., y = -1001 and ~ = -0.000001 using 
arithmetic rounded again to 4 sig. bits., so ~ = 2-•. Now 
X = 1001.1 and Y = -1001.00000t , so X+Y = 0.011111 . But the 
computed values are t = 0, T = o.1 and z = Z = o.1 instead. 
When ~ is changed from -o.t to -0.01111 ., changing X+Y to 
0.100001 , then t changes to 1 and T to -o.1 , but z = Z 
= o.t unchanged from before. Consequently Z * X+Y to WP but 
not DP. If these examples illustrate the worst that can happen 
to the simple algorithm above then it is at least as good as has 
widely been considered acceptable in the past; in fact., taking 
IEEE 754's single-precision format (24 sig. bits~ ~ = 2-2 •> as 
WP would produce DP results at least as good as in the single
precision (48 siq. bit~> form~ts on CDC CYBERs and CRAYs. 

But the simple algorithm is not good enough if we want Z, X+Y 
to DP so accurately that IZ - <X+Y) I ~ E2 1X+YI , especially 
when X and Y have opposite signs and mostly cancel. To achieve 
that superior accuracy,. it seems necess=1rv to augment the simple 
algorithm abo~e so that it will do something special whenever 
either t = 0 or [[x-tJ+yJ = O. Here is a suggestion: 

C 



Given 
Start: Jf 

t ·-.-
if 

r ." 

u 
.. _ .-

if 
{ 

'T 
.. _ .-

z 
.. _ .-

r .. _ .-

WORK IN PROGRESS 

X = ~-:+I:. 
l>d < I y f 

~rid Y = v+J? • 
t t"ien swat:l < X" 

(~+·y) + }{ . 
' t = () then 

t 
.. _ 

(H+y) .-
z ·- t+>? .-
exit } . 

~ 

.(x-t > + y . 
' u = C> and 'r/ ;t C> then 

X 
.. _ 

t+~ . . - • 
y .. _ ,., . . - ' 90 back to Start )· 

(u+I;) + 'IJ 
t+T . !I 

<t-z > + 7' 

now z = z+r * X+Y 
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to compute Z := X+Y: 
Y > ; so I~: I 2. I y I 

cc:w,PLtt.ed in WP 

t=): ~ct l y in WP 
to DP 

to· WF' 

to DP 
to DF' 

in WF' 
to WP 
e>!act in WP 

On what kinds of arithmetic, if any. can this procedure be 
trusted? Must a trustworthy procedure be so complicated? Can a 
trustworthy procedure be devised that is free from the tests and 
branches that inhibit vectorization and other kinds of concurrent 
execution? 

DP product of WP variables, Z := X*Y: 
In the absence of special hardware, representing a product X*Y 
of WP variables exactly as a sum of WP variables z+t = X*Y 
takes trickery that was discovered almost twenty years ago by two 
Dutchmen, T. J. Dekker and G. W Veltkamp. The basis for the 
trickery is a procedure for rounding a WP number x to half
precision. Let h(x) != x rounded to just half WP - and let 
8(x) := x - h(x) ~ here think of h(x) as the head of x and 
8(x) as its tail~ both WP numbers with zeros across at least 
half their sig. bits. Then we may express X*Y exactly as a sum. 

X*Y = h(x)*h(y) + h(x)*8(y) + 8(x)*h(y) + 8(x)*8(y) , 
in which each product is computed exactly in WP arithmetic; and 
this sum of four terms can be distilled into a sum of two. To 
carry out this strategy we must first discover how precise WP is 
without using anything but standard WP arithmetic, then define 
the function h(x) _ then condense the distillation process into 
something more economical. 

Throughout the discussion, WP arithmetic is assumed to bf binary 
floating-point rounded either as specified in IEEE 754 or as a 
DEC VAX does it. For any other kinds of arithmetic the tricks 
below become appreciably more complicated. 

The precision of WP is characterized by the constant E , which 
can easi 1 y be computed thus: ~ : = I (2. 0/3. 0 - 0. 5) *3. C> - O. 5 I . 
This ~ is ~- po'1-1et- of 2 : either- ~ = 2- 2 k or- ~ = 2 1 - 2 1c 

according ~s the number of sig. bits carried in WP is even or 
odd. A similar WP computation produces a multiplicative mask 
m = 2"' + 1 needed to comoute the fLmcti on h (N) : 
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b := 1/1 (4.0/3.0 - 1 )*3 - t = 1/(2E) 

= i1 (2/ f) r ·- .,,, ( 4.-b ) . .. - • 
~ = 2k + 1. m ·- ( (r + r*b ). - t-•b > + 1 .. -

= x rounded to k sig. bits h(x) ·- (x - M*N) + m*>: . .- . 
Et ( ){) ·- >: - h (;.:) .- . 

Round every arithmetic operation above except ~ to WP; but ~ 
is accurate enou9h ii accurate to 1%. Do not omit parentheses, 

Now the DP assignment II Z := X*Y II can be implernented: 
z := x*v; rounded to WP 
t : = < < h < x > *h < v > - z > + h c M > *a < v > + a < x > *h < y > > + e < y, >*Et< y > . 

Then Z = z+t = X*Y exactly because r is computed without any 
rounding error. But the cost is high: seven WP multiplications 
and ten additions or subtractions. The cost· 9rows sornewhat when 
ov~r/underflow makes scaling necessary. For instance the product 
m*x required for h(x) could overflow spuriously even though 
h(x) lies well within range; in such a case compute b*h(x/b) 
instead of h<x> . If arithmetic conforms to IEEE 754 there is 
no way for 8(x) to underflow, but on other machines that risk 
has to be addressed too. For simplicity's sake we shall skip over 
the scaling techniques that would be required to deal with over/ 
underflow conscientiously. 

In principle.. the DP assiqnment " Z = >{*Y " can be used to 
cornpute products to arbitrarily high precision. The product 

CI:, >: s > * C £, y, > = Ls r, >:, *Y, = L, L, C z, , + r , , ➔ 
can be distilled into a sum of a nearly minimal number of WP 
numbers, though in practice a different expression 
r, :r, < h < x, > *h Cy, ) + h C x, ) *4:t ( y, ) + 8 C x s ) *h < y, ) + 8 < ){ s > *8 < y., ) > 

may take less time because it reuses heads and tails. Omitting 
negligible products too saves more tirne, as we shall see. 

DP Multiplication, Z := X*Y: 
Given X = w+~ and· Y = v+~ " a reasonably accurate and 
economical DP product Z := X*Y is achieved by approMimating 
X*Y = X*Y + x*~ + -*Y + ~*~ by its first three terms, of which 
only the fi~t need be computed in DF': 

L _},r' ::: '-( it" := >:*v ; rr-- = ·t+'T e>:actl y in DP 
v 7' : = ( x *)] + ~ * Y ) + ,C C; i n WP 

z := t+T; to WP 
r : = ( z -t. ) + -r ; ., .. • e>: act i n WP 

Now 
The cost is nine WP 
subtractions. 

Z = z +t * X * Y • 
multiplications and 

DP Division, Z := X/Y: 

f i. ft.een 

Given X = x+- and Y = v+~ • we may approximate 
process reminiscent of long division as carried out 
portrayed in the following di~gram: 

Here is the program: 

t+-r 
y+)} > >t+~ +O 

vt+nt 
r+ ... 

y,-+,. .. 

# 

addi. tions or 

XIV by a 
by hand and 
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t : = ').! IV : tc, WP 
S := Y*t : = s+~ exActly jn J")F' 

'r : = ( ( ( l•! - c;:.. ) - t.,. ) + ~ - )'! * i_ ) / \.• to WP 
z : = t+-r : to WF' 
t := (t-:::) + 'T : E~•{a.::-t in WP 

Now Z = z+t * X/Y. 
It costs two WP divisions. eight multiplications and seventeen 
additions or subtractions, not -much more thaM DP multiplication. 

Division can be carried out to arbitrarily high precision in a 
similar way at a cost not much worse than that of multiplication. 

DP Square root, Z := t'X: 
If t * -vx then t + <>:-t 2 )/(2t) * 1'>: to twice as many figures. 
Then the series expansion -.,<>:+~) = -vx + ~/(2t'x> - • • • explains 
why t + <>: - t 2 + ~)/(2t) appro>:imates t'X = 1"<><+~) to DF' by 
combining the two processes. None but WP operations appear in 
following program for a DP square root: 

t : = 1'>: : to WF• 
,WO ·-, . -
... ·' .- t+T. ; 
r : = (t-z) 

Now 

Conclusions: 

+ 'T ; 

Z * vX 

Processes for distilling sums and for computing heads and tails 
provide ~

1
foundation in principal for floating-point arithmetic of~ 

arbitrar1 v hi9h precision implemented entirely in WP. That is 
why theoretical questions like 

"How accurately can ... be computed in WP arithmetic?" 
cannot be answered in absolute terms; such questions make sense 
only if some limit is imposed upon the time and space that will be 
spent upon the computation. Such questions about DP addition 
and subtraction have not yet been settled fully satisfactorily, 
althou~h reasonably efficient implementations with relative errors 
not much worse than t 2 h~ve long been known for multiplication, 
division and souare root. 

Can the DP addition alg~rithm suggested above, or some others, 
settle all remaining questions about DP arithmetic to everyone's 
satisfaction? No. Serious questions about soitware engin~ering 
will remain. Consider a program that achieves its robustness and 
efficiency partly by exploiting a little DP arithmetic. Such a 
propram may work correctly. after recompilation, on a wide range 
of computers of diverse manuf~cture that all conform to the IEEE 
standard 754. Among such machines are Apple Macintoshes, ELXSI 
6400 1 s. IBM RT-PCs~ Sun IIIs, HP Precision Architectures~ etc. 
In the absence of underflow the program will likely work correctly 
on any DEC VAX. But the program is likely to fail occasionally 
when run on other commercially significant machines, including 
IBM /370s, CDC Cybers, Univ~c 1100s~ and Crays. Who deserves 
the blame for those failures of an ostensibly portable program? 

If ci. small change coL1ld render t.hc,t pro~ram fLtll.y portable withoLtt 
any serious performance penalty, then the original program's 
lapses could he blamed upon the pro~rammer·s inexperience or 



indifference. But nobody has ever found ~n lmplementation of DP 
~rithmPtic th~t is portable to all the machines mentioned above_ 
and that not for lack of looking. Then should DP arithmetic be 
prohibited because it is not portabl~? Such a prohibition seems 
in~or~l. for it denies the benefits of Letter arithmetic to those 
who have oaid for it. as well ~s unenforceable. 

In the past. high-precision floating-point arithmetic has been 
regarded as a fixture of the programming environment, usually 
implemented in machine lan~uage if available at all. certainly 
not somethinA that could be embedded within a small ·portable • 
program written entirely in some Fortran-like language. Now, 
if we think of high-precision arithmetic merely as a programming 
technique to be employed in small doses as needed. can we look 
beyond our present horizons to see a wider range of numerically 
stable portable procedures? 

Annotated Bibliography: 
The first instance I kn~w of a computation that recovered rounding 
errors in order to cancel them off was S. Gill's version of the 
Runge-•<utta method., "Process for the Step-by-Step Integration of 
Differential Equations in an Automatic Digital Computing Machine," 
Proc. Cambridqe Phil. Soc. 47 (1951) 96-108. His trick is still 
widely misunderstood in terms of algebraic identities, correct 
for the fixed-point computations for which they were designed, 
that confer no benefit upon floating-point computation. However, 
the ideas behind Gill's trick were exploited correctly in codes 
that solved differential equations on the IBM 7090 around 1959; 
they carried a term from the MQ register. that would otherwise 
have been discarded, forward to the next time-step, thereby much 
attenuating the accumulation of roundoff over vast numbers of tiny 
time-steps. Because Fortran forbade any reference to the MQ 
register, these codes had to be written in assembly language and 
are now lost. I was able to transfer·several of these codes to 
Fortran II with the aid of the "DLAF F'ackage" of Fortran -
callable functions that I contributed to the IBM 7090 SHARE 
library in the early 1960's; cf. SHARE SD#3021 (renumbered from 
#1480), resubmittal dated Jan. 15. 1964, 3-page abstract+ 2-
page listing+ 10-pctge write-up, available from IBM only on 
rAicrofiche. The write-up describes numerous applications besides 
the ones mentioned above in this paper. Part of tt,e package's 
efficiency was owed to the passage of function arguments py value 
when they were expressions evaluated in the AC-MQ registers.· But 
by 1963 the advent of Fortran IV, which passed arguments solely 
by reference~ had rendered the p~ckage less efficient than the 
full double-precision supplied wjth the compiler. 

By 1q65 ways had been discovered to recover addjtion's rounding 
or~t-·t'·m- in pn:•f:.1t-arns wr·:itten entire•ly· in Fortran-like lan9uages, 
ce.lbeit at the ct.,s.t of a little e>~tr~ c:1rithrnetic. The ideas were 
published by Ou M~ller in two notes on 11 

••• quasi double 
precision .... '1 BIT 5 (1965) 37-50 and 251-255, and by me in a 
letter~ "Further Remarks on Reducing TrLtncation Errors," Commun. 
ACM 8 (1965) 40. A thorough analysis, validation and comparison 
of tricks like these ha.s been published by S. Linnai·nrnaa in 
"Analysis of some known methods of improving the accLtracy of 
floating-point suros,. 11 BIT 14 (1974> 167-202. 
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MP~n~hile, to sum? ooublv infinite sPries th~t suffered from 
mces~:.i.ve Cc::\nceJl~ticm" I hct.tl 4.::.tumbJed t•pon r.r djstilJation process f"""'-.., 
very like the one presented in this paper. But I was baffled when 
:i.t Qave d1ffprent results- in dc,ut,le-pn.=•cj~jc,r, on the new IBM 7()Q4 
th~n on the old IBM 7090. and different yet ~gain on the CDC 
6400. The old 7090's r8suJts tur~ed out to bP correct. In the 
end the discrepancies were attributed on the ·7094 to a lack of a 
r.1uard dioit in jts double-precision hardware, on the 6400 t.o 
its Fort~an compiler's use of two instead of five floating-point 
instructions to effect a single-precision subtraction. These 
flaws undermined the cclrnoutation c,f the DF' surn " Z := x+y II of 
two WF' n~mbers" invalidatino the di~tiJlation process. These 
flaws caused anguish to others-besides myself; see my ''Survey of 
Errot--Analysis11 11 Proc, IF"JP Cc:,r,gre$S 1971" ed. bv C. V. Ft-eernan 
(1972>, North-Holland Publ. Co." Amsterdam. vol. 211 1214-1239. It 
contains a tricky implementation of the DP sum " Z := >:+v II o~ 
two WP variables that works correctly on all North American 
computers with built-in floating-point hardware except the CDC 
Cyber 205. Therefore distillation. and hence DF' arithmetic, 
can be implemented in principle (but inefficiently) in a way 
that is completely portable to all computers but that one. 

The first distillation algorithm published was M. Pichat's 
11 Correction d • une Somme en Ari thrnet i que a Virgule Fl at t ante, " 
f.lumerische l'lath. 19 (1972) 400-406. It is astonishingly simple, 
without the presort and the backward pass in my algorithm; yet 
his will distill a large number N of summands in not much more 
time on average than twice what mine takes. In the worst case his~ 
scheme can take time proportional to N2 , whereas the worst case 
for mine, though far better than that, has yet to be determined. 

G. Bohlender contributed two improvements to distillation in 
"Fl Ocl.ti ng-Poi nt Computation of Functions with Ma>~ i mum Accuracy""· 
IEEE Trans, Computers C-26 no. 7 (1977) 621-632 and "Genaue 
Summation von Gleitkomm.;.zahlen,. 11 Computin..:; Supplement 1 (1977> 
1-21. One improvement was an elegant formalism by which to prove 
the convergence of distillation iterations. The other was a 
family of stopping crite1-ia suitable for use when less than full 
accuracy is required in the final sum. These stopping criteria 
for Pichat's distillation" and for another one that presorts 
the summands,· are described ctlSC• in the book Computer Arithmetic 
in Theory and Practice by u. Kulisch and w. Miranker (19,S.1> 
Academic Press, New York- 192-209; but the programs therein 
look much more complicated than mine partly because they r-efer to 
the exponent and significand fields of floating-point numbers as 
if the programs were intended for machine-language. Actually the 
directed roundings are the only features they need that might not 
be found in conventional Fortran-like languapes. For a clearer 
account of Bohlender's algorithm ~ee 11 Parallel Algorithms for 
the Roundinp-E>:act Sumrna.ttcm c,4= Flc1eo.ting-Poirrt Numbers" by H. 
Leuprecht and W. Oberaj_ gner, Compi .. d inq 28 ( 1982) 89-104. ·Their 
directed roundings are superfluous for most practical purposes; 
iteration could just as well be stopped as soon as one found a 
distilled par-tieo.l sum >!1cr- + ..• +>:N-1 +~-:N with no fewer terms ~, 
th ct. n des i red and w i th I !·: 1c,.. f = ( i N 1 I + . . . + I >~ .. ,.. - 1 I + ·H! 1c ... I > as-
computed in WP. 
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Soroe C!'-'P~tjon: cfbaut dj!:-.tll}iFitic,n E-tlll wt-j_oh urion mv rnind. Why 
rln ~11 d1stilJation ~foo~ithm~ usuallv run so much faster than 
~n.., .. c-,r,F· he=,.~ h~e:-n ~bJ P. tn pr-r,v~-::- Why tin~£-- the bc1c:kward pc:t5S in rny 
aloorithm usu~lly soeed Jt uo a little. sometimes a lot. but 
sor,,E?t.iri,eF. s]c,w :it rfc1&ioJn very ~Jip.htJv c:C"'mpc1t"-ed with F'jctiat•~_-:-, 

DP multiplication ha~ been mare troublesome in the past fifteen 
years th~n in t~e previous fifteen. Older machines implemented 
the DP product II Z = X*Y " of two WF' vari. ables in one rnachi. ne 
instruction ( IBM 7090, UNIVAC 1107, DEC PDP-10 > or two < CDC 
6600 >. far faster th~n achievable using half-precision heads 
h(x) and tails 8<x> ; but recent de~igns h~ve lacked anv such 
DP capability. That atrophy could be a byproduct of a linguistic 
misconception ~mong the designers of m~chine~ intended to support 
Fortran-like languages. Here is why. 

Fortran appears to offer almost what we want; it h8s a function 
DPROD<x. y) that returns the e½act DOUBLE PRECISION product of 
two SINGLE PRECISION variables x and y. And some dialects of 
Fortran provide QPROD(X~ Y) . the EXTENDED ( i. e. quadruple 
precision) product of DOUBLE PRECISION variables. But if XX 
and YY are variables of type EXTENDED there is no way to return 
an exact product. call jt OPRODCXX~ VY) . because there is no 
OCTUPLE PRECISION or DOUBLE EXTENDED data type in the language. 
Hence there seems to be no way to supply a two-word result from an 
operation upon one-word operarids of the widest wordsize available. 

But actually. if the COMPLEX data attribute is supported in the 
language, OPROD(XX, YY> could be of type COMPLEX EXTENDED. The 
function DPROD<x, y> could be a RECORD in Pascal, which 
traditionally has only one REAL type; the STRUCT construction 
in the language C is a humane wc1y to provide QPROD. But C and 
Pascal came too late to influence the designers of those machines 
upon which now we must compute heads and tails. 

Other ways exist that avoid collisions with compilers by taking 
refuge in the run-time library. One way is to provide a multiply
add function prad(a.b.c) := Ca*b + cJ rounded to WP with just 
one rounding error~ the~ z := prad(x.v .. O) and r := prad<x .. y,-z> 
supo 1 y the DP product z +r = Z : = >~ *Y of taJP operands in just 
two operation~. The full pp --~roduct z+r = Z := Cx+~)*(y+~) 
might take just six operations instead of twenty-four: ~ 

T := X*~ + ~*Y; ••• to WP 
Z : = pr ad ( >: " V c 7 ) ; t : = pr ad ( }: • V , -z ) + T • 

Another way is to providP ct DP accumulator" a special global 
variable into which library programs doadd .. dpmu1, ... written 
in machine languape ( ~s are lo~ and cos>. out their result. 
This approach was followed for the DLAF package mentioned above. 
A similar approach. but carried to f~r greater lengths in a 
super-accumulator for scalar products, is pursued by Kulisch and 
Miranker in their book mentioned above and in the realization of 
their ideas by IBM's "High-AccLtracy Arithmetic Subroutine 
Library (ACRITH> ~11 program numbers 5664-185, 5665-337, 5666-320. 
deicumentatic,r, m-der numbers GC33-6163-C>2 and SC33-6-r64-02 <1986). 
But such schemes do not lend themselves to portable programming in 
the st~ndardized Fortran-like languages as they are tea-day. 



A major contribution to portability was published by T. J. De~~er 
in ''A Flo~ting-point Technique for Extending the Available 
p,-ecision, 11 Numerische Nath. 18 (1971> 224-242. He shc,wed how to 
i.m~•lerr,ent h(,d and EH>~) c:=,.nd the e>~~ct DF' product II Z := !-:-11-y 

11 

of WP variables in an ostensibly portable w~y. From the·exact 
DP product and sum he implemented ~11 the arithmetic operations 
upon DP variables. S. Linnainmaa. in "Software for Doubled
Precision Floating-Point Computations." ACM Trans. Math. So~t. 7 
(1981) 272-283. h~s ~eneralized Dekker's algorithms. proofs 
and error bounds so that they really are portable to a wide range 
of faithful arithmetics with diverse radices and odd word-sizes. 
But not ~11 arithmetics. Multiplication and subtraction on a CRAY 
are unfaithful. as is subtr~ction on CDC Cybers and Univac 
ltxx·s. so his codes must malfunction on those machines. And 
even when his DP addition/subtraction work~~ it is somewhat 
less accurate than the second of my DP addition programs 
presented above. To reach the accuracy to which my third program 
aspires, but in~ universally portable way, seems to require so 
complicated a program that nobody has written it. 

If high-precision arithmetic were all we wished to perform, we 
should choose a programming environment in which that is made as 
convenient as possible. Such an environment is provided by ... 
MACSYMA's Bigfloat arithmetic; see R. J. Fateman 11 The MACSYMA 

Big-Floating-Point Arithmetic System," Proc. 1976 ACM Symposium 
on Symbolic and Algebraic Computation. ed. by R. D. Jenks. 
DOE/MACSYMA and VAXIMA Cprog. #9631) can be obtained from the 
National Energy Softwdre Center, Argonne National Laboratory, 
9700 South Cass Ave., Argonne IL 60439; tel. # (312) 972-7250 

R. P. Brent"s MP Package; GIVE REFERENCE>>>>>>>>>>>>> 
T. E. Hul 1 • s "Numerical Turing L~.nguage; 11 >>>>>>>>>>>>> 

But high-precision is not what we most often need. Instead, we 
often need arithmetic with a little more precision DP is 
enough -- in a small part of an otherwise WP program intended 
for the widest possible distribution. That kind of arithmetic is 
simulated very sparingly in the excellent elementary function 
codes found in W. J. Cody and W. Waite, Software Manual for the 
Elementary Functions (1980>~ PrPntice-Hall Inc., Englewood 
Cliffs, New Jersev~ _The m~th. libr~rv of elementary functions. 
distributed in 1986 by the Reqents of the University of California 
with 4.3 BSD UNIX, does likewise. But algorithms that a~hieve 
their speed and accuracy by using a little DP arithmetic pose a 
major headache for the would-be distributor of oortable software. 

The would-be consumer of such codes can best avoid that headache 
by purchasing a machine whose arithmetic conforms to ANSI/IEEE 
Standard 754-1985 for Binary Floating-Point Arithmetic as 
de5.~ct-ibecl in docLm,ent ner. Sr-11011.6 a-....-~,j.lable ·fr-c,m the IEEE Ir,c., 
345 East 47th St.~ New York NY 10017. (Fora more readable 
description see ''A Proposed Radix- and Word-length-independent 
Standard for Floating-point A1-ithmetic 11 by W. J. Cody et al., 
IEEE MICRO <Aug. 1984) 86-100.> Tricky codes that simulate 
DP arithmetic in a w~y intended to be as portable as possible may 
t-Lm s1 c,wer thcc.n they have to. bL1t they wi 11 ct.l most -c·ertai nl y run ~, 
correctly on a machine that conforms to that standard. 



Still to ccme: more ~pplication~ to 
Al9ebraic functions 
Correctly rounded WP division 
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