
Elementary Functions from Kernels
W. Kahan Octa 24, 1985

Given binary floating-point subprograrns to calculate the "Kernels"
ln (x(•) > ford x 2:. 0 and lnlp (>e) := In (l+x

1
>

1
for H 1:. -dt .~

e>:p x an exprnt <>: > : = e><p <x > -1 for a x ., a.11

tan(>d for (xi < n/8 and arctan<x> for lxl ::;,. v2 - 1 ,
to nearly full working accuracy, we may calculate all the other
elementary transcendental functions almost as accurately, and with
no violation of (weak) monotonicity, as follows. Rounding must
conform to IEEE 754 or p854. We will need a threshold t
chosen about as large as possible subject to the constraint that
1 - t 2 round to t to working precision; and and we shall use
z := lxl and s := copysign<t,x> = ~1 We also abbreviate
expml to E and lntp to L.

sinh<x> := x if z < t, else (provided E(z) doesn 1 t overflow)
:= s*(E(z) + E(z)/(t+E(z)))/2 ... certainly monotonica

cosh(x) := O.S*exp<z> + 0.25/(0.S*exp(z>>

tanh (>:) : = >e if z < t , else
:= -s*E(-2*z)/(2 + E(-2*z)) .

asinh<x> := x if z < t., else, unless 2z overflows,

II

:= s*L< z + z/(1/z + ,y(1+(1/z) 2))) ignoring underflow.
For slightly better accuracy when z > 4/3, use
asinh<x> := s*ln(2z + 1/(z + t'(1+z 2) > > if z < 1/t , else

:= s*< ln<z> + ln(2) > .

acoshC>d != +L(vcx-1>*(1'(x-t> + y(x+t>> > Llnless 2x overflows.
For slightly better accuracy,
acosh(x> := ln(>d + ln(2) i-f x > 1/t , else

: = 1 n (2>: - 1 I (x + v<x 2 -1 > > > if 5/4 < x :=.;__ 1 /t else
!= L < <x-1> + y(2 (>{-1 > + <>:-1 > 2) > .

atanh(x) := x if z < t , else
:= s*L(2*z/(1-z))/2

arctan<x> := s-K·rr/2 arctan(l/x) if z > t , or (monotonically>
:= S*rr/4 + an:tan (<>,-s> / (>{+s) if 1'2-1 < z < 1'2+1 .

arcsin(x) := x if z < t , else
:= arctan(x/1'(1 - z 2)) if ti z i 1/2, else
!= arctan(x/1'(2(t-z>-<1-z) 2)) ignoring divide-by-zero~

arccos(x) := 2*arctan<v< (1-:<)/(l+x))) ignoring divide-by-zero.

For z ~ n/4 let TCM > != 2 tan (x/2) ; then
T < >:) : = tan (>t) : = sin C>t > : = H and co? (x > : = 1 if z < t .

Otherwise compute tan<x>, sin(x) and cos<x> thus for z ~ n/2

tan(>d := if z < rr/8 then T<2*>d/2
else if 3rr/8 < z then 2s/T(rr-2*z) ~
else S*(2 + T<2*z-rr/2))/(2 - T(2*z-rr/2)) .

(Check monotonicity as z passes through n/8 and 3n/8 .>

1

If n/4 ~ z i n/2 then the formulas sin<x> = s*cos(n/2-z> and
cos(x) = sin(n/2-z) reduce the argument x to y satisfying
IYI ~ n/4, wherein we compute T != T(y) , q := T2 , and then

s i n < y) : = y - y / < t +4 / q > ;

cos(y) := if q < 4/15 then 1 2/(1+4/q)
else 3/4 + ((1-2*q> + q/4)/(4+q) .

Monotonicity is preserved except possibly as x passes through
multiples of n/4, where the accuracy of T(x) matters.

Some implementations of tan(x/2) actually deliver two functions
A<x> and B<x> satisfying A(x)/B(x) = tan(x/2) for lxl f rr/4,

on which range IA<><> /B(x) I < 'V'2 - 1 = <).414... . These can be

used to deliver sin, cos.and tan more economically than above,
and monotonically too provided A(x)/B(x) is monotonic. For
t < z f n/4 let r != B(x)/A(x) > v'2 + 1 ; and then

sin <x > : = 2/ <r+t /r) and cos Cx > : = 1 - 2/ < 1 +r2 > .
If both of sin<x> and cos(x) are wanted simultaneously, a more
economical pair of formulas is

s i n (:<) : = 2 / (r + t / r) and cos (x > : = t - (t / r > s i n < x > .

To ensure monotonicity as x passes through multiples of n/4,
check that computed sin(rr/4) ~ computed cos(n/4) ; else use a
better formula for cos (see above). Computing tan(x) for
Ix(i n/2 from A(x) and B<x> is much like before:

tan(x) := if z < n/8 then A<2*>,>IB(2x)
els~ if 3n/8 < z then B<s*n-2*x)/A(s*n-2*x>
else s*<B<y>+A(y))/(B<y>-A<y>> where y := 2*z-n/2.

Monotonicity must be checked as z passes through n/8 and 3n/8.

Other topics to be added later:
yx
atan2Cy,x) = Arg(>~ + zy> , especially with ±0 and ±00

cabs<>, + iy> = v<x2 + yz>
other complex elementary functions

approximating tan(z) for O < z < n/8
ar-cta.n (z) -For O < z ~ tl2 - 1
ln1p(x) and ln(x) and expml<x> and exp(x)

argument reduction

Given A (X) and B (>~)
r := B(x)/A(x)
r := BCx)/ACx) ;

What is wrong with

above, which is better:
and then compute 1/r ,

(1/r) := A(x)/B(x) ;
or

?

v := 2A/(A2 +B2 > ; sin(x) != vB ; cos<x> := t - vA ; ?

2

