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Given binary floating-point subprograrns to calculate the "Kernels" 
ln (x(•) > ford x 2:. 0 and lnlp (>e) := In (l+x

1
> 

1 
for H 1:. -dt .~ 

e>:p x an exprnt <>: > : = e><p <x > -1 for a x ., a.11 

tan(>d for (xi < n/8 and arctan<x> for lxl ::;,. v2 - 1 , 
to nearly full working accuracy, we may calculate all the other 
elementary transcendental functions almost as accurately, and with 
no violation of (weak) monotonicity, as follows. Rounding must 
conform to IEEE 754 or p854. We will need a threshold t 
chosen about as large as possible subject to the constraint that 
1 - t 2 round to t to working precision; and and we shall use 
z := lxl and s := copysign<t,x> = ~1 We also abbreviate 
expml to E and lntp to L. 

sinh<x> := x if z < t, else (provided E(z) doesn 1 t overflow) 
:= s*( E(z) + E(z)/(t+E(z)) )/2 ... certainly monotonica 

cosh(x) := O.S*exp<z> + 0.25/(0.S*exp(z>> 

tanh (>:) : = >e if z < t , else 
:= -s*E(-2*z)/(2 + E(-2*z)) . 

asinh<x> := x if z < t., else, unless 2z overflows, 

II 

:= s*L< z + z/(1/z + ,y(1+(1/z) 2 )) ) ignoring underflow. 
For slightly better accuracy when z > 4/3, use 
asinh<x> := s*ln( 2z + 1/(z + t'(1+z 2 ) > > if z < 1/t , else 

:= s*< ln<z> + ln(2) > . 

acoshC>d != +L( vcx-1>*(1'(x-t> + y(x+t>> > Llnless 2x overflows. 
For slightly better accuracy, 
acosh(x> := ln(>d + ln(2) i-f x > 1/t , else 

: = 1 n ( 2>: - 1 I (x + v<x 2 -1 > > > if 5/4 < x :=.;__ 1 /t else 
!= L < <x-1> + y(2 (>{-1 > + <>:-1 > 2 ) > . 

atanh(x) := x if z < t , else 
:= s*L(2*z/(1-z))/2 

arctan<x> := s-K·rr/2 arctan(l/x) if z > t , or (monotonically> 
:= S*rr/4 + an:tan ( <>,-s> / (>{+s) if 1'2-1 < z < 1'2+1 . 

arcsin(x) := x if z < t , else 
:= arctan(x/1'(1 - z 2 )) if ti z i 1/2, else 
!= arctan(x/1'(2(t-z>-<1-z) 2 )) ignoring divide-by-zero~ 

arccos(x) := 2*arctan<v< (1-:<)/(l+x))) ignoring divide-by-zero. 

For z ~ n/4 let TCM > != 2 tan (x/2) ; then 
T < >: ) : = tan ( >t ) : = sin C>t > : = H and co? (x > : = 1 if z < t . 

Otherwise compute tan<x>, sin(x) and cos<x> thus for z ~ n/2 

tan(>d := if z < rr/8 then T<2*>d/2 
else if 3rr/8 < z then 2s/T(rr-2*z) ~ 
else S*(2 + T<2*z-rr/2))/(2 - T(2*z-rr/2)) . 

(Check monotonicity as z passes through n/8 and 3n/8 .> 
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If n/4 ~ z i n/2 then the formulas sin<x> = s*cos(n/2-z> and 
cos(x) = sin(n/2-z) reduce the argument x to y satisfying 
IYI ~ n/4, wherein we compute T != T(y) , q := T2 , and then 

s i n < y) : = y - y / < t +4 / q > ; 

cos(y) := if q < 4/15 then 1 2/(1+4/q) 
else 3/4 + ((1-2*q> + q/4)/(4+q) . 

Monotonicity is preserved except possibly as x passes through 
multiples of n/4, where the accuracy of T(x) matters. 

Some implementations of tan(x/2) actually deliver two functions 
A<x> and B<x> satisfying A(x)/B(x) = tan(x/2) for lxl f rr/4, 

on which range IA<><> /B(x) I < 'V'2 - 1 = <).414... . These can be 

used to deliver sin, cos.and tan more economically than above, 
and monotonically too provided A(x)/B(x) is monotonic. For 
t < z f n/4 let r != B(x)/A(x) > v'2 + 1 ; and then 

sin <x > : = 2/ <r+t /r) and cos Cx > : = 1 - 2/ < 1 +r2 > . 
If both of sin<x> and cos(x) are wanted simultaneously, a more 
economical pair of formulas is 

s i n ( :< ) : = 2 / ( r + t / r ) and cos ( x > : = t - ( t / r > s i n < x > . 

To ensure monotonicity as x passes through multiples of n/4, 
check that computed sin(rr/4) ~ computed cos(n/4) ; else use a 
better formula for cos (see above). Computing tan(x) for 
Ix( i n/2 from A(x) and B<x> is much like before: 

tan(x) := if z < n/8 then A<2*>,>IB(2x) 
els~ if 3n/8 < z then B<s*n-2*x)/A(s*n-2*x> 
else s*<B<y>+A(y))/(B<y>-A<y>> where y := 2*z-n/2. 

Monotonicity must be checked as z passes through n/8 and 3n/8. 

Other topics to be added later: 
yx 
atan2Cy,x) = Arg(>~ + zy> , especially with ±0 and ±00 

cabs<>, + iy> = v<x2 + yz> 
other complex elementary functions 

approximating tan(z) for O < z < n/8 
ar-cta.n (z) -For O < z ~ tl2 - 1 
ln1p(x) and ln(x) and expml<x> and exp(x) 

argument reduction 

Given A ( X) and B ( >~ ) 
r := B(x)/A(x) 
r := BCx)/ACx) ; 

What is wrong with 

above, which is better: 
and then compute 1/r , 

(1/r) := A(x)/B(x) ; 
or 

? 

v := 2A/(A2 +B2 > ; sin(x) != vB ; cos<x> := t - vA ; ? 
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