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Given binary floating-point subprograms to calculate the "Kernels" 

in(x) for x ~ 0 and lnlp(x) := ln(l + x) for x ~ -1, 
exp(x) and expml(x) := exp(x)-1 for all x, and 
tan(x) for lxl < 1r/8 and arctan(z) for lzl ~ ,12,- 1, 
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to nearly full working accuracy, we may calculate all the other elementary transcendental 
functions almost as accurately, and with no violation of ( weak) monotonicity, as follows. 
Rounding must conform to IEEE 754 or 854. We will need· a threshold t chosen about as 
large as possible subject to the constraint that 1- t 2 round to 1 to working precision; and 
and we shall use z := lxl ands := copysign(l,x) = ±1. We also abbreviate expml to E 
and lnlp to L. 

sinh(x) := x if z < t, else (provided E(z) doesn't overflow) 
:= s x (E(z) + E(z)/(1 + E(z)))/2 ... certainly monotonic. 

cosh(x) := 0.5 x exp(z) + 0.25/(0.5 x exp(z)) ... certainly monotomic. 

tanh(x) := x if z < t, else 
:= -s x ~(-2 x z)/(2 + E(-2 x z)). 

asinh( z) := z if z < t, else, unless 2z overflows, 
:= s x L(z + z/(1/ z + ✓(1 + (1/ z)2))) ignoring underflow. 

For slightly better accuracy when z > 4/3, use 

asinh(x) := s x In(2z + 1/(z + ✓Cl+ z2))) if z < 1/t, else 
:= s x (In( z) + ln(2)). 

acosh(x) := +L(✓(x - 1) x C✓(x - 1) + ✓(x + 1))) unless 2x overflows. 

For slightly better accuracy, 

acosh( z) := ln( x) + ln(2) if x > 1/t, else 
:= ln(2x - 1/{x + ✓(x2 - 1))) if 5/4 < x ~ 1/t, else 
:= L((x - 1) + ✓(2(x - 1) + (x - 1)2)). 

atanh(z) := z if z < t, else 
:= s X L(2 X z/(1 - z))/2. 

arctan(x) := s X 1r/2- arctan(l/x) if z > 1, or (monotonically) 
:= s x 1r/4 + arctan((x - s)/(x + s)) if ✓2-1 < z < ✓2 + 1. 

arcsin( z) := z if z < t, else 
:= arctan(x/ ✓(1- z2)) if t ~ z 5 1/2, else 
:= arctan(x/ ✓(2(1 - z) - (1 - z)2)) ignoring divide-by-zero. 
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arccos(x) := 2 x arctan(✓((l - x)/(1 + x))) ignoring divide-by-zero. 

For z ~ 1r /4 let T(x) := 2 tan(x/2); then 

• T(x) := tan(x) := sin(x) := x and cos(x) := 1 if z < t. 

Otherwise compute tan(x), sin(x) and cos(x) thus for z ~ 1r/2: 

tan(x) := if z < 1r /8 then T(2 xx )/2 
else if 31r /8 < z then 2s/T(1r - 2 x z) 
else s X (2 + T(2 X z - 1r /2))/(2 - T(2 X z - 1r /2)). 

( Check monotonicity as z passes through 1r /8 and 31r /8.) 
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If 1r/4 ~ z ~ 1r/2 then the formulas sin(x) = s x cos(1r/2- z) and cos(x) = sin(1r/2 - z) 
reduce the argument x toy satisfying IYI ~ 1r/4, wherein we compute T := T(y), q := T 2 , 

and then 

sin(y) := y - y/(1 + 4/q); 
cos(y) := if q < 4/15 then 1- 2/(1 + 4/q) 

else 3/4 + ((1 - 2 x q) + q/4)/( 4 + q). 

Monotonicity is preserved except possibly as x passes through multiples of 1r / 4, where the 
accuracy of T( x) matters. • 

Some implementations of. tan(x/2) actually deliver two functions A(x) and B(x) satisfying 
A(x)/B(x) = tan(x/2) for lxl ~ 1r/4, on which range IA(x)/B(x)I < ✓2 - 1 = 0.414 ..... 
These can be used to deliver sin, cos and tan more economically than above, and monoton
ically too provided A(x)/B(x) is monotonic. For 

t < z ~ 1r/4 let r := B(x)/A(x) > ✓2 + 1; and then 
sin(x) := 2/(r + 1/r) and cos(x) := 1 - 2/(1 + r 2). 

If both of sin( x) and cos( x) are wanted simultaneously, a more economical pair of formulas 
is 

sin(x) := 2/(r+ 1/r) and cos(x) := 1-(1/r)sin(x). 

To ensure monotonicity as x passes through multiples of 1r / 4, check that computed sin( 1r / 4) $ 
computed cos(1r/4); else use a better formula for cos (see above). Computing tan(x) for 
lxl ~ 1rj2 from A(x) and B(x) is much like before: 

tan(x) := if z < 1r/8 then A(2 xx)/ B(2 xx) 
else if 31r/8 < z then B(~ x 1r - 2 x x)/A(s x 1r - 2 xx) 
else s x (B(y) + A(y))/(B(y) - A(y)) where y := 2 x z - 1r/2. 

Monotonicity must be checked as z passes through 1r /8 and 31r /8. 

Other topics to be added later: 
y:c 

atan2(y,x) = Arg(x + 1,y), especially with ±0 and ±oo 
cabs(x + 1,y) = ✓(x2 + y2) 
other complex elementary functions 
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approximating tan( z) for O < z < 1r /8 
arctan(z) for O < z::; ~-1 
lnlp(x) and ln(x) and expml(x) and exp(x) 

argument reduction 

Given A( x) a.nd B( x) a.hove, which is better: 
r := B(x)/A(x) a.nd then compute 1/r, or 
r := B(x)/A(x); (1/r) := A(x)/B(x);? 

What is wrong with 

v := 2A/(A2 + B2 ); sin(x) := vB; cos(x) := 1- vA;? 
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