
Elementary Functions from Kernels

W. Kahan
Oct. 24, 1985

Given binary floating-point subprograms to calculate the "Kernels"

in(x) for x ~ 0 and lnlp(x) := ln(l + x) for x ~ -1,
exp(x) and expml(x) := exp(x)-1 for all x, and
tan(x) for lxl < 1r/8 and arctan(z) for lzl ~ ,12,- 1,

1

to nearly full working accuracy, we may calculate all the other elementary transcendental
functions almost as accurately, and with no violation of (weak) monotonicity, as follows.
Rounding must conform to IEEE 754 or 854. We will need· a threshold t chosen about as
large as possible subject to the constraint that 1- t 2 round to 1 to working precision; and
and we shall use z := lxl ands := copysign(l,x) = ±1. We also abbreviate expml to E
and lnlp to L.

sinh(x) := x if z < t, else (provided E(z) doesn't overflow)
:= s x (E(z) + E(z)/(1 + E(z)))/2 ... certainly monotonic.

cosh(x) := 0.5 x exp(z) + 0.25/(0.5 x exp(z)) ... certainly monotomic.

tanh(x) := x if z < t, else
:= -s x ~(-2 x z)/(2 + E(-2 x z)).

asinh(z) := z if z < t, else, unless 2z overflows,
:= s x L(z + z/(1/ z + ✓(1 + (1/ z)2))) ignoring underflow.

For slightly better accuracy when z > 4/3, use

asinh(x) := s x In(2z + 1/(z + ✓Cl+ z2))) if z < 1/t, else
:= s x (In(z) + ln(2)).

acosh(x) := +L(✓(x - 1) x C✓(x - 1) + ✓(x + 1))) unless 2x overflows.

For slightly better accuracy,

acosh(z) := ln(x) + ln(2) if x > 1/t, else
:= ln(2x - 1/{x + ✓(x2 - 1))) if 5/4 < x ~ 1/t, else
:= L((x - 1) + ✓(2(x - 1) + (x - 1)2)).

atanh(z) := z if z < t, else
:= s X L(2 X z/(1 - z))/2.

arctan(x) := s X 1r/2- arctan(l/x) if z > 1, or (monotonically)
:= s x 1r/4 + arctan((x - s)/(x + s)) if ✓2-1 < z < ✓2 + 1.

arcsin(z) := z if z < t, else
:= arctan(x/ ✓(1- z2)) if t ~ z 5 1/2, else
:= arctan(x/ ✓(2(1 - z) - (1 - z)2)) ignoring divide-by-zero.

Elementary Functions from Kernels- Oct. 24, 1985

arccos(x) := 2 x arctan(✓((l - x)/(1 + x))) ignoring divide-by-zero.

For z ~ 1r /4 let T(x) := 2 tan(x/2); then

• T(x) := tan(x) := sin(x) := x and cos(x) := 1 if z < t.

Otherwise compute tan(x), sin(x) and cos(x) thus for z ~ 1r/2:

tan(x) := if z < 1r /8 then T(2 xx)/2
else if 31r /8 < z then 2s/T(1r - 2 x z)
else s X (2 + T(2 X z - 1r /2))/(2 - T(2 X z - 1r /2)).

(Check monotonicity as z passes through 1r /8 and 31r /8.)

2

If 1r/4 ~ z ~ 1r/2 then the formulas sin(x) = s x cos(1r/2- z) and cos(x) = sin(1r/2 - z)
reduce the argument x toy satisfying IYI ~ 1r/4, wherein we compute T := T(y), q := T 2 ,

and then

sin(y) := y - y/(1 + 4/q);
cos(y) := if q < 4/15 then 1- 2/(1 + 4/q)

else 3/4 + ((1 - 2 x q) + q/4)/(4 + q).

Monotonicity is preserved except possibly as x passes through multiples of 1r / 4, where the
accuracy of T(x) matters. •

Some implementations of. tan(x/2) actually deliver two functions A(x) and B(x) satisfying
A(x)/B(x) = tan(x/2) for lxl ~ 1r/4, on which range IA(x)/B(x)I < ✓2 - 1 = 0.414
These can be used to deliver sin, cos and tan more economically than above, and monoton
ically too provided A(x)/B(x) is monotonic. For

t < z ~ 1r/4 let r := B(x)/A(x) > ✓2 + 1; and then
sin(x) := 2/(r + 1/r) and cos(x) := 1 - 2/(1 + r 2).

If both of sin(x) and cos(x) are wanted simultaneously, a more economical pair of formulas
is

sin(x) := 2/(r+ 1/r) and cos(x) := 1-(1/r)sin(x).

To ensure monotonicity as x passes through multiples of 1r / 4, check that computed sin(1r / 4) $
computed cos(1r/4); else use a better formula for cos (see above). Computing tan(x) for
lxl ~ 1rj2 from A(x) and B(x) is much like before:

tan(x) := if z < 1r/8 then A(2 xx)/ B(2 xx)
else if 31r/8 < z then B(~ x 1r - 2 x x)/A(s x 1r - 2 xx)
else s x (B(y) + A(y))/(B(y) - A(y)) where y := 2 x z - 1r/2.

Monotonicity must be checked as z passes through 1r /8 and 31r /8.

Other topics to be added later:
y:c

atan2(y,x) = Arg(x + 1,y), especially with ±0 and ±oo
cabs(x + 1,y) = ✓(x2 + y2)
other complex elementary functions

Elementary Functions from Kernels- Oct. 24, 1985

approximating tan(z) for O < z < 1r /8
arctan(z) for O < z::; ~-1
lnlp(x) and ln(x) and expml(x) and exp(x)

argument reduction

Given A(x) a.nd B(x) a.hove, which is better:
r := B(x)/A(x) a.nd then compute 1/r, or
r := B(x)/A(x); (1/r) := A(x)/B(x);?

What is wrong with

v := 2A/(A2 + B2); sin(x) := vB; cos(x) := 1- vA;?

3

