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Programmers, like other people, frequently take familiar 
properties of elementary functions for granted. If x ~ y, for 
instance, they expect exp(x) ~ exp(y) ; the possibility that 
computed exp<x> > computed exp Cy) might occur because of rounding 
errors is unlikely to be considered until after it has caused a 
disagreeable surprise. Such a violation of expected monotonicity 
is potentially more troublesome than an error of several ulps in 
the computed value of expCx) . Fortunately, library programs 
that compute exp(x) can easily be made monotonic even when, for 
very large lxl , they cannot easily be kept accurate within an 
ulp. For some other functions, like cos and log, the 
preservation of monotonicity can challenge the implementor. And 
if that challenge is overcome, inequalities among different but 
related elementary functions can pose problems of a still higher 
order of difficulty. How far is an implementor obliged to go to 
protect inequalities among elementary functions from roundoff? 

To appreciate better the limits upon an implementor's powers, let 
us consider the following examples of elementary inequalities: 

L: N / ( 1 +x) f lntp<x> 
.. _ 

1 n < l +>t > :=;_ >: for all X > -1 .,- . 
E: X ~ exprn 1 <x > ·- e>:p <x > - 1 for all >~ . and .,- !I 

EL: exprn 1 (H > i -lnlp(-x) ::;_ X / ( 1-x) for all >: -:::- 1 . 
The inequalities lntp(x) ~ x and x ~ expml(x) can be enforced 
by keeping the errors in the implementations of ln1p and eHprn1 
below one ulp when (xi is tiny; this is not hard to do. But no 
amount of care in the implementation of ln1p can enforce the ~ 
inequality x/Ct+x> ::;_ lntp(x) despite roundoff in x/C1+x) . For 
instance take x = 0.00499 and perform arithmetic rounded to 3 
significant decimalsD Then l+x = 1.00499 rounds to [t+xJ = 1 , 
and then x/C1+xJ rounds to x . But lnlp(x) = 0.0049775912 ... 
rounds to Oa00498 < x , violating the inequality in question. A 
similar example disposes of expml(x) ~ x/(1->:) • The inequality 
expml (x) i -lntp(-x) is more subtle; now try x = OaOOOOO 99999 
in a context where arithmetic is performed to 5 sig. dee. Since 

expmt (x) = 0.00000 99999 49999 1667 .. 
< 0.00000 99999 49999 3333 .. = -lnlp(-x) , 

an implementor could not round these to 0.00000 99999, that is 
to 5 sig. dee., without first knowing them to at least 10 sig. 
dee., twice as many. If each value were computed independently 
in error by as much as ±0.00000 00000 00001 , rounding them 
subsequently to 5 sig. dee. could yield 0.00001 0000 for 
expm1(x) and 0.00000 99999 for lnlp(x) , violating the 
inequality in question. 

It seems extravagant to carry more than twice as many figures as 
will be returned; and doing so would not by itself guarantee no 
argument x exists for which far more precision than that is 
needed to round wel 1 enough to preserve an i neqt.tal i ty. • Another 
unsatisfactory strategy for preserving inequalities is to use only 
algorithms designed for the purpose; the strategy is unattractive 
because the only such algorithms known at this ti rne i nvol ·ve the ~ 
use of Taylor series to the exclusion of economized polynomials or 
continued fractions or other more interesting schemes. Therefore 
the thoughtful programmer must acquiesce to the occa-ional 
violation of some familiar inequalities by roundoffg • 
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What relations among elementary functions deserve to be taken for 
granted? One of them, monotonicity, is a subject too delicate 
to be discussed here; m~ report on the subject appears elsewhere. 
A second relation concerns "Cardinal Values" ; these are e:-{ act 
values taken by transcendental functions. A collection of them is 
displayed in Table 1. A third relation concerns "Functional 
Identities" ; the best-known examples are the odd functions like 
sin<-><> = -sin <x) , arctan <-x) = -arctan (>< > , . . . and the even 
ones like cos(-x) = cos<x> , .... Less well-known, perhaps 
because they are wrongly taken for granted, are identities like 
y(x 2 ) = fxl , which is satisfied, for all floating-point numbers 
x for which x2 does not over/underflow, by correctly rounded 
square and square root operations in binary and quaternary 
floating-point arithmetic. The identity fails for some x when 
the arithmetic's radix exceeds 4. The complementary identity 
<vx> 2 = x , on the other hand, cannot survive roundoff for all 
positive x, regardless of radix or rounding correctness. The 
most general discussion so far of Functional Identities was 
published in Jatath. o-f C,:,mputation in 1971 by Harry Diamond. 

A fourth relation among elementary functions includes inequalities 
of the forms f<x> i Constant and f(x) ix or f(x) l x ~ Such 
inequalities can be preserved in implementations of f(x) by 
keeping its error below one ulp, so they deserve to be taken for 
granted. Table 2 contains a collection of inequalities .involving 
a representable Constant. Inequalities E and L above are 
instances of inequalities involving x , and some more follow: 

The following string of inequalities involves only odd functions 
of x , and is therefore stated only for all sufficiently small 
positive values of x. Reversing the sign of x reverses the 
sense of all the inequalities in the string. 

X COS X 

>t < sinh x < 
< arctan x 

arcsin ►: < 
< sin x 

tan x < 
< arcsinh >< 

arctanh H < 

Some of these inequalities remain valid as x increases from O 
only so long as x remains below some threshold. The thresholds 
are tabulated below: 

At X = 0.74461 14991 45 ... arctanh i•~ = X CC)Sh X 

At X = 0.97743 48912 2 ... 
' 

tan X = }{ cosl1 >{ 

At M = C>.99990 60124 1267 ... 
' 

arcsin X = tan )·( . 
For X ·> 1 remove arcsin X and arctanh X from the strin9. 
At X = 1. 55708 58155 

' 
arctan >t = sin X 

For X 2: n/2 = 1. 57079 63268 . . . remove tan X . 
At X = t. 8751 C> 40687 . . . tanh X = sin :~ 
At >C = 4.49340 94579 

' 
)( cos }{ = sin :.: 

At H = 4.91716 45703 . . . 
' X cos X = tanh >~ . 

At >{ = 4.99108 47512 . . . 
' 

)( cos X = arctan X 

At >: = 5.18250 39692 
' X cos X = arcsinh >t . 

Much as we rn"ight wish that the whole string of inequalities would 
persist as long as x remains between O and whatever threshold 
is pertinent, any of those inequalities demanding more than a 
comparison with x can succumb to roundoff when x is tiny. 

4 



Table 1 : EXACT CARDINAL VALUES 

Positive zeros: ln(t) = arccosh<t> = arccos(t) = exp<-oo> = 
= (:t_O) <•ven > 0> = <±oo> (even < o, = <±0) (non,nt:egeP"' > 0> = 
: (±,00) Cnanint:ege,- < 0> = (fracticn)+III = (±,(>1) )-CD = +() n 

Signed zeros: sin<:t.O> = arcsin<±O> = sinh<±O> = arcsinh<±O> = 
= 1 n 1 p <±O> = tan<±<)) = arc:tan <±0> = tanh <±O> = arctanh <±0> = 
= exprnt (±,0) = tf(:t,0) = (±_0) Codd > O> = (±,00) Codd < O> = ±0 resp. 

Whether sin(nn>, tan(nn) or c:os((n+t/2)n) can vanish and, if 
so, what sign to assign to O, depend upon how trigonometric 
argument reduction is performed. 

Ones: cos<O> = c:osh<O> = tanh(+OO) = exp(O) = <anything) 0 = 0~ = 
= t ! = 1un,~e = (:t,t)ev•n = 1 ; (-t)odd = tanh(-00) = -1 . 

Whether cos(2nn) = sin((2n+1/2)n) = tan((n+1/4)n) = 1 exactly 
depends upon how trigonometric: argument reduction is performed. 

Integers: for all sufficiently small tf(n 2 ) = log,o(10") = n 
nonnegative integers n ; m**" = m" is an integer too 

if lrnl is an integer. 

Silent Infinities: sinh(+OO) = arcsinh<±oo> = <±oo)<add>o> = ±00 resp. 
cosh<±oo> = arccosh(+oo> = v<+oo> = ln(+OO) = e>:p(+OO) = <±<>t»•m = 
= (+(X))Cnonin~eger > 0> = (±_(X))C•ven > 0> = (frac:tion)-m = +00 • 

Signaled Infinities: arc:tanh (+1 > = <±O> <add < 0 > = ±00 resp~ 
-ln (0) = oceven < 0> = ocnanint:ege,- < O> = +oo .. 

Whether tan((n+t/2)n) is infinite and, if so, its sign depend 
upon how trigonometric argument reduction is performed. None the 
less, the identity tan(-x) = -tan<x> should still hold. 

Arg(x + zy) = ATAN2<y,x) has values some of which are determined 
by consistency with complex arithmetic; to describe these 
special values we let w and n stand for arbitrary real 
variables subject only to the constraints O ~ w < Q ~ +ro 

ATAN2<±0, +0) = ATAN2<±.0, +Q) = ATAN2(:t_,.,.,, +00) = :t.O resp.; 
ATAN2 <±O, -0) = ATAN2 C±,0, -Q) = ATAN2 <±, ... ,, -oo> = :t.rr resp.; 
ATAN2(±Q, +Q) = ±n/4 resp. ; ATAN2(±Q, -Q) = ±3n/4 resp.; 
ATAN2<:too, +,.,.,) = ATAN2C:t,oo, -,,..,) = ATAN2C±,Q, 0) = ±~n/2 resp .. 

Table 2: CONSTANT BOUNDS 
I\, I\, I\, I\, I\, I\, I\, I\, 

lsinl ... 1 lcosl s.. 1 . ltanhl s.. 1 s. c:osh . :::.. !I !I 
(> s.. ENp . (> :::~. !I 

0 ~~ arccosh .. 0 s.. arccos ~- TT . larcsinl ~ rr/2 !I !I I at-ct an I ~~;. 
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