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The Error-Analyst• s Quandary t 

W. Kahan 
. University of Californi~ at Berkeley· 

Au.gust 1972° 

Numerical analysts often pass the buck by alleging that certain compu
tational schemes· are "numerically stable" even when they produce palpably 
wrong answers. This note is intended first to ·help the layman understand 

.why those allegations, hqwever misleading, may be true, and second to show 
numerical analysts that the buck is not ~o easy· to pass as might at first 
appear. 

Suppose you want to compute 
y = f(~) 

but.your computer gives you 2 instead and says that 
2 + ~2 = f ( tr; + ~) 

for some suitably small ~2 and ~~. Can you conclude that 2 is close 
to Y? .Not necessarily. None the less, such a calculation may be regarded 
as "stable"; the dis~repancy between y and a , if la_rge, will then be 
b 1 ame~ upon an II i 11-condi tioned" function f • 

Here i.s an example~ Say ;c = ( a ) . and f(~) ·= a - ~ . Try a =. 1.000 

and a= .9999 on a 4-significant decimal computer built like some that I 
have learned to live with: 

Cl. 

1.000 • 

. ~o.ggg· 9000 
... ·. 

0.000: 1000. 

~ .. . -4 
l.000 X 10 

C2. 

1.000 . 

-0.999 ! 
•. • ·0;001 

/ . 
• ¥· .• ·-3 
1.000 x ·10 . 

C3. 

• · 1.000 

.• . -0.999 9000 

.·o.ooo·~-
··/ • 

o. 

Jhr~e different answers frQm ~hree different machines.· In each case, 
howe.ver, .the ·comp_uted value. a_· 1s very ne-,rly,· ·nay, ·~xactlY·What· would. have 

··~esulted f·rom .the exa~t···calc~lat1o~· of f ·.at a s11g~tl~· pert~rbed argument 
X + /:JX : 
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Cl C2 C3 

1 ~000 1.0009 ·0.9999 

-0.9999 · -0.9999 -o·.9999 

0.000·1 0.001 o. 

Here is another example. Say f(xJ = sin :z: and :x: = 

31415 92653 58979 32384 62643.38328. Do you really expect to see 

y =0.4971 ... x 10-6 ? If so, h~w many significant figures will your computer 

have to pre~erve when converting :r: ~rom deci~al to binary, or when dividing 

x by ,r? Perhaps now you see why it is cheaper ~o produce instead of y 

a value z which satisfies z + ~z = sin(:r: +~)for ~9me Az amounting to 

at most a u~it or~~ in 2
1·s· last _place and some ·11:r: amounting to perhaps a 

fraction of a.unit in the last retained place of :r: •. 

In gen~ral, we make a virtue of necessity by saying that a scheme to 

compu_te y = f(:x:)· is numerically stable whenever we know sma 11 bounds for 

the perturbations 6z and &x; in the equation· z +Ila·= f(:r: + Ax) satisfied 

by the computed value z •. And· if z is then- very different from y we 
. .• . . . . 

pass the ·blame to f by descri.bi_ng ·it as 11 i"ll-conditioned11 at • :r:: •. In effect, 

we simplify the problem of estimating _y - a by abstracting from a complicated 

computational· scheme just two. numbers. the bounds u_pon Ila and /l:r: , whence 

. toe e~timation _ of. y ~- :r: feduces· to ~n -ostensibly machine-independent analysis 

of the pr9perties of f •. 

Unfortunately, the simplification is ·sometimes complicated ·by nasty problems. 

First is·the vagueness of our concept of numerical· stability .. The function f 

·may be regarded as mapping one metric space into.anQther, but the spaces are 

not ~lways· o~V.i(?u~ .• F~r ·example~ when· t ·= ,,.8 ··_should we r~gard its d.omain 

as a two_-sp~~e. ~f _P.~i~ • ( r.>° _ ~r. if ~e ar~ .eonce.~ned ·only wjth. ·a ~ _2_, 
:as a. one-space of numbers (a) ? . More ··generally. ··how ;do we ~i_s·t;n·gui sh· bet~een 

thos~ aspects -of a problem ~icb ar~. by as~ociation with· f·, deni"ed any 

• variation, a·nd ·those a~pec·~ ~hi~h :are~ by_ ass·ociati.o'n with ~- -~ _e~posed to ·s1 ight 

perturbations?. And how should the metrics _be c~osen? • The metrics should 

ideally ~efl ect the interests of th_e man who wants to compute y =. f(:x:) by 

• ~~sig_nin~ ·to equally_ .1mpor~ant. (or e~ually insignifican~) v~ri~tions .the same 
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measure.of magnitude. In practice, the metric tends to reflect mainly the 

limitatio~s of the equipment or the inclinations of the numerical analyst. 

Finally,. even when the .metric spaces are perfectly obv_ious, we encounter 

an u·navoi da·b 1 e arbftrari riess in the bounds upon /::,:& and • b.a , for we can 

always dimin.ish one at the ~xpense o~ increasing the other without altering 

the computational scheme in any way. For example, when f(x) = ~ we 

can validly write a+ b.a = ✓x + /j:,; with fb.21 and 1/j:,;I 
-- _< t --<' 

B X -

using any bounds t and t that satisfy both (1 + t) / (1 - c) 2 > 1 + e. 

and (1 - t) / {1 + t) 2 ~ 1 - e for some e > 0 that depends upon-the 

scheme_'s accuracy. More generally, we set t = 0 for the sake of simplicity 

whenever. we can do so without forcing t to· be embarrassingly ·1 arge. 

A second nasty problem arises when we try" to prove that some ~cheme is 

stable. Some fami"liar schemes, long believed to be stable, have not yet 

been proved stable. For example, suppose f(x) ~ x-1 for n x n matrices 

x with fixed but· large ·n . Nobody has-yet o~tained bounds for 

llllXll/llzll and lll1zll/llzll in 

z + 6z = (x + ~)-l 

which are simultaneously both independent of ~ and not exponentially growing 

functions of n , despite that Gaussian Elimination with pivoti·ng and other 

comparable t~~hniques ar~ regarded (prob,~bly right~y) as stable ways to invert 

matrices no matter-how nearly singular those mat•rices .may be. 

A third nasty problem arises when we realize that no _computational scheme 

exists for its own sake; it is a means to ~n end. And.that en~ is generally 

reached via a concatenation of schemes. For example, to compute h(x) ~ g(f{x)) 

we may natt:1rai_ly" apply f _to ~ _ to get y ., and- then g • to y ·to get 

h(~J = g_(y) • • But we will not actually get h(i) ; ins~e~d we shall _obtain., 

in place of· y, a value ·s:• satisfyi_n9. a·+·_A'~ = f(:c +·fl 1:p)_ .. for some small-

• bounded ·/1 1
:,;: .an·d ~•a ,·and then ~e ~hall co~struct in p~ace o~ h(x) some· 

u ·satfsfyin_g • u + b."u = __ gtz· + 11"z) = g(f(x.+ ~•:,;) - t:..'a + !:."a) • 

There is nq guarantee in gene.ral that small p~rturbations flu. ·and Ax exist 

satisfying u + flu =_h(x + ~) . Thus, the concatenation of two stable.schemes 

could be.{and usually·is) unstable.· 
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There are theorems which describe some of the circumstances when 
concatenated schemes are stable. Few of those theorems ar~ both interesting 
an,d gene~al. Thei~ gi~t t~nds to be of the followi~g kin~· (for the example 
h = j(g) above}; 

In order ~o compute h(a:) = ·t(g(a:)) in a stable way, we must ens_u_re 
that the errors t:,. • a and ll 11a in the intennediate result 2 ~ f(a:) are 
appropriately correlated, despite that those errors may be astonishingly 
large without vitiating stability. The a_ppropriate correlations must all 
too often be described in a. way which exhumes just those computational 
details that the error-analyst had hoped to bury in the course of distilling 
all computational errors into two ·simple bounds. 

Thus do we perceive the-error analyst's quandary; when should the error 
in a computational scheme b~ summarized in a-simple way? Do so too. soon, 
and the result may be too weak to be useful. Do so too late, and the rcsul t 

· i:nay be too compl icat~d to be Cf?mpre.he_nded. And there is no guarantee thcit a 
gap ex·ists between "too soon" and 11 to9 late"·. 


