
FIVE FRIGHTENING FACTS 
ABOUT 

FLOATING-POINT ARITHMETIC 

W. Kahan May 3, 1988 

1. WHAT YOU SEE IS NOT NECESSARILY WHAT YOU GET. 

2. WHAT YOU GET IS NOT NECESSARILY WHAT YOU EXPECT. 

3. MANY A DISCREPANCY BETWEEN WHAT YOU GET AND WHAT YOU EX
PECT IS MOST UNLIKELY EVER TO BE UNDERSTOOD, MUCH LESS COR
RECTED, EVEN THOUGH IN PRINCIPLE EVERY DISCREPANCY CAN BE 
CORRECTED. 

4. SIGNIFICANT DISCREPANCIES ARE VERY RARE, TOO RARE TO WORRY 
ABOUT ALL THE TIME, YET NOT RARE ENOUGH TO IGNORE. 

5. THE DISCREPANCIES THAT ALREADY AFFLICT FLOATING-POINT ARITH
METIC DO NOT GRANT THE SYSTEM DESIGNER CARTE BLANCHE TO 
ADD A FEW MORE OF HIS OWN. 

------------ Borland Turbo Basic on an IBM PC ------------

+------------------------- Edit ------------------------------+ 
I 

CLS I 
q = 3.0/7.0 I 
Print" The value of q = 11

; q I 
Print II but 3.0/7.0 = 11

; 3.0/7.0 I 
Print I 
Print II What You See Is Not Necessarily What You Get." I 
End I· 

+---------------------------------------------------------------+ 
+------------------------- Run -------------------------------+ 
I 
I The value of q = .4285714328289032 
I but 3.0/7.0 = .4285714285714286 
I 
I What You See Is Not Necessarily What You Get. 
I 
+----------------+-----------------------------+----------------+ 

+------------------------- Edit ------------------------------+ 
CLS 
z = 0 
y = 0.000123 
X = y/100 

Print Using 11 

Print Using 11 

Print Using 11 

1 

z = \#\#\#.\#\#\#"; z 
y = \#\#\#.\#\#\#"; y 
X = \#\#\#.\#\#\#"; X 



Print Using II y/x = \#\#\#.\#\#\# 11 ; y/x 
Print 
Print II What You See Is Not Necessarily What You Get. 11 

End 
+---------------------------------------------------------------+ 

+------------------------- Run -------------------------------+ 
z = 0.000 
y = 0.000 
X = 0.000 

y/x = 100.000 

What You See Is Not Necessarily What You Get. 
+----------------+------------------------------+---------------+ 

WHAT YOU SEE IS NOT NECESSARILY WHAT YOU GET. 

----------- Borland Turbo Basic on an IBM PC -----------

+--------------------------- Edit ----------------------------+ 

CLS 
p = 2: for i=1 to 6 p = P*P next i 
pp1 = p + 1 : pm1 = p - 1 
d = pp1 - pml 
Print II We expect d = 2, but actually d = 11

; d; 11 
,

11 

Print II al though (p+l) - (p-1) = 11
; (p+l) - (p-1) ; 11 

• ! 11 I 
Print 
Print 11 

End 
What you get isn't necessarily vhat you expected." I 

I 
+---------------------------------------------------------------+. 
+--------------------------- Run -----------------------------+ 

We expect d = 2, but actually d = 
although (p+l) - (p-1) = 1 . ! 

0 , 

What you get isn't necessarily what you expected. 

I 
I 
I 
I 
I 
I 

+------------------+------------------------+-------------------1 

WHAT YOU GET ISN'T NECESSARILY WHAT YOU EXPECTED. 

+---------------------------------- Edit -----------------------------------+ 
I pOK = ((((2.0\·2)\·2>\·2)\·2)\·2 I 

I pBAD = (((((2.0\·2)\·2)\·2)\·2)\·2)\·2 '<<< Error 5: Illegal function call I 

I Print I 

I Print "This Error is really caused by misuse of the 8087's stack." I 

I End I 

+----- ----------------------------------------------------------------------+ 

2 



+---------------------------------- Run - --------------------------+ 
I I 
I +------- Message --------------+ I 

I Error search: SIXTH I. 
I Time: oo : oo I 
I Line : 1 Stmt: 1 Free : 190k I 
+-----------------+ +---------------+ 

+--- ------- --------+ 

YOU ARE UNLIKELY EVER TO UBDERSTAND, MUCH LESS TO REMEDY EVERY ANOMALY. 

----------- Borland Turbo Basic on an IBM PC -----------

+------------------------ Edit -------------------------------+ 
for i = 1 to 8000 tj = 1 j k d 
for j = 0 to 15 tk = 1 

fork= 0 to j 0 0 2 
d = tj + tk ' = 2\-j + 2\-k 1 0 3 
q = i/d X = q*d <----« 1 1 4 
IF NOT( x=i ) THEN <----« 2 0 5 

print 11 x = 11 ;x; 11 NOT= II; i '<----<< 2 1 6 
STOP : END IF <----« 2 2 8 

tk = tk+tk ' = 2\-(k+1) 3 0 9 
next k 3 1 10 

tj = tj+tj J = 2\-(j+1) 3 2 12 
next j next i 3 3 16 

print II X = i ALWAYS ! II ' and d = 17, 18, 20, 24, 32, ... 
end 33, 34, 36, 40, 48, ... 

+---------------------------------------------------------------+ 

+------------------------ Run --------------------------------+ 
I 

x = i ALWAYS! I -
I 

+-------------------+---------------------+---------------------+ 

A PECULIAR PROPERTY OF DIVISION AND MULTIPLICATION 
WHEN ROUNDED ACCORDING TO IEEE STANDARD 754 

This very simple program is certain to stop prematurely if the 
computer's floating-point arithmetic uses any other radix than 2 
(binary), and almost certain to stop prematurely if division or 
multiplication is not rounded according to the IEEE standard. It 
stops prematurely on IBM 370s, DEC VAXs, CDC Cybers, CRAYs, 
all decimal calculators, .... But it says II x = i ALWAYS! 11 

on IBM PCs that use an 80x87 math. coprocessor, on all Apples 
that use SANE, on all SUN Ills, on the ELXSI 6400, 

CAN YOU EXPLAIN THIS? 

3 


