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Abstract: The functions mentioned in the title do similar things; they manipulate the 
exponent and significant-digits fields of floating-point numbers. But the functions frexp and 
ldexp found in the Math. Library of the language C are not so well defined as are logb and 
scalb recommended by the IEEE standards 754/854 for floating-point arithmetic. The latter 
functions make sense on all machines regardless of conformity to those standards, whereas 
the C functions may be unfortunate choices for machines whose floating-point arithmetic 
is Hexadecimal or Decimal instead of Binary. That is why a programmer might well prefer 
the logb and scalb functions whenever they are available, and why every run-time Math. 
library should provide them regardless of language. 

Introduction 
C started out as an idiosyncratic language for PDP-11 hackers who hated extra key-strokes. 
Now in its maturity it pretends to universality, and its devotees have to generalize its features 
to machines whose architectures diverge radically from the PDP-11 's. Of all divergencies, 
those pertaining to floating-point cause the worst troubles; here is one example. 

The definition of frexp(x, n) in some books about C cannot be correct. For instance, the 
otherwise very reliable book C: a Reference Manual by Harbison and Steele (1984, Prentice­
Hall) says on p .273 

" 11.3.13 frexp 

double frexp(x, nptr) 
double x 

int *nptr; 

frexp splits a floating-point number into a fraction / and an exponent n, such 
that the absolute value off is less than LO but not less than 0.5 and such that 
f times radix raised to the power n is equal to x, where radix is the radix used 
by the floating-point representation ( typically 2). The fraction f is returned, 
and as a side effect the exponent n is stored into the place pointed to by nptr .'' 

( A very similar definition appears on p. 322 of C Programming Language by Miller and 
Quilici (1987, Wiley) but without the phrase "the absolute value of", so it is wrong when 
X < 0.) 

The trouble with the foregoing definition becomes evident when the radix exceeds 2. On 
a decimal machine, whose radix is ten, a number like x = 2.9 cannot be handled because 
x > 1 but x/10 < 0.5. To make the definition feasible, either replace "0.5" by "1/ radix" 
or replace "radi:t' by "2." Which of these replacements is best? It is not obvious. 
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Fixing up frexp 
If compatibility with prior practice is paramount, restricting radix to 2 is best regardless of 
the machine's own radix. This definition of frexp can be implemented without any anomaly 
on a machine whose radix is actually a power of 2 , for instance on a Burroughs B6.5xx 
(Octal machine, radix = 8) or on an IBM 370 or its imitations (Hexadecimal machines, 
radix = 16); and then most old C programs that were intended to be portable to a wide 
range of machines with Binary floating point will run correctly after recompilation onto the 
machines with these larger radices. Those old programs are less likely to run correctly on 
a Decimal machine unless they are rewritten, regardless of how frexp is defined. 

The ostensibly portable implementations of frexp and its inverse ldexp that I have seen in 
some Math libraries for C will run anomalously on non-binary machines and unnecessarily 
slowly on all. Here is the gist of those implementations of frexp : 

*nptr = O 
if ( X != 0.0) 

{ 

} 

while ( fabs(x) >= 1.0) 
while ( fabs(x) < 0.5) 

return (x) ; 

{ *nptr += 1 
{ *nptr -= 1 

X *= 0.5 ;} 
X *= 2.0 ;} 

When run on either an octal or hexadecimal machine, this program can strip off the last octal 
or hexadecimal digit ofx. For example, if x = F.EDCBA12ABCDEF on an IBM 370, then 
it will be replaced by successively halved values 7.F6E5D0955E6F7, 3.FB72E84AAF37B , 
1.FDB97425579BD and 0.FEDCBA12ABCDE0 of which the last will be returned instead 
of 0.FEDCBA12ABCDEF . A better program frexp(x, nptr), faster and more accurate, 
follows: 

I* When floating-point is 
#define K = . . . I* 
#define M = ... 

const double R 
{ 

*nptr = 0 

I* 
= 1.0/M ; 

Binary, 
4 

16.0 

if ( x != 0.0 &t finite(x)) 
{ 

Octal or 
3 

8.0, 

Hex., ... *I 

4 *' 
16.0 

while ( fabs(x) >= 1.0) { *nptr += K; x *= R;} 
#ifdef CDC_CYBER_17x /*··· special code for a CDC Cyber 176 *I 

while ( fabs(x)-0.25 < 0.25) { *nptr -= 1; x += x } 

#else I*··· ordinary code for everyone else *I 
while ( fabs(x) < R) { *nptr -= K x *= M;} 
while ( fabs(x) < 0.5) { *nptr -= 1; x += x;} 

#endif 
} 

return (x) 
} 

I* COMPATIBLE WITH ldexp BELOW *I 
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This program improves upon the former in four ways: 

• A loop is avoided when x = ±oo (infinity), which can be encountered on Cybers, 
CRAYs and machines that conform to IEEE 754/854; on other machines, finite(x) = 
1 for all x. As is traditional, when·x = 0, frexp(x,nptr) = x and *nptr = O; and by 
analogy the same holds when x = ±oo. 

• The pseudo-zeros on CDC Cyber 17x's are handled as nonzero quantities; if you prefer 
to treat them as zeros, start the program with the statement X* = 1.0, and retain 
instead of removing the middle while-loop. (The pseudo-zeros on those Cybers are 
tiny numbers, less than twice as big as the underflow threshold, that are treated as 
usual by addition, subtraction and comparison, but treated as zeros by division and 
multiplication.) 

• The appearance of 0.25 twice compensates for a peculiarity of comparisons on Cyber 
17x's; otherwise they could not tell the difference between 0.5 and the next smaller 
number. 

• The values of K and M have been chosen both to preclude any loss of accuracy on 
machines with radices 2, 8, or 16, and to make the program run faster. 

Of course, the improved program is not so portable as the first one. That could be remedied 
with conditional compilation using compile-time environmental enquiries, provided all C 
compilers provided those things; but then all C compilers could just as well supply versions 
of frexp and ldexp in machine code that might run much faster than could any such program 
written in C. 

Fixing up ldexp 
The header definition of ldexp begins thus: 

double ldexp(x, N) 
double x 
int N ; 

ldexp(x, N) should return either radixN x or 2N x according to how frexp is defined; a 
compatible choice has to ensure that ldexp(frexp(x, &N), N) = x for all x, provided the 
compiler does not pass N to ldexp before it has been changed as a side-effect of frexp. 
Neither pow(radix, N) x x nor pow(2, N) x x is correct since they can over/underflow 
spuriously when the desired value of ldexp(x, N) would not. Here is a slow but serviceable 
program to return ldexp(x, N) = 2N x : 
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I* Kand M are as defined above. *I 
canst double aO = { 1.0, 2.0, 4.0, 8.0 } ; 
canst double bO = { 1.0, 0.5, 0.25, 0.125 } ; 
int i, j, L ; 
{ 

i = abs(N) j = i/K L = i¼K ; I* L = 
if ( N > 0 ) 

{ for ( i=0 i<j i++) X *= 
X *= a[L] } 

else if ( N < 0 ) 

0, 

M ; 

{ for ( i=0 i<j i++) X *= R; 
X *= b[L] } 

return (x) '* COMPATIBLE WITH frexp ABOVE 
} 

4 

1, 2 or 3 *I 

*' 

This program will not over/underflow undeservedly, nor will it lose accuracy unnecessarily 
on a Binary, Octal or Hexadecimal machine; but it is too slow compared with machine code 
to be used for more than a model of what ldexp should do on machines with reasonably 
regular arithmetic. On a CDC Cyber 17x, this program malfunctions when N > 0 and x 
is a pseudo-zero; on a CRAY the program may overflow even though its result ought to 
be barely bigger than half the overflow threshold. Those perversities can be handled by a 
more elaborate ldexp program whose derivation will be left to those readers who need it, 
with condolences from the rest of us. 

On non-Binary machines the definition ldexp(x,N) = 2Nx exposes its user to an unavoid­
able rounding error whenever L > 0 in the program above. That error- is not often so 
harmful as to vitiate the usefulness of ldexp, but situations do exist when scaling by powers 
of the radix, rather than by mere powers of 2, is the only way to avoid potentially fatal 
rounding errors. Those are the situations that motivated the introduction oflogb and scalb. 

Logb and Scalb 
The definitions of these functions are taken from the ANSI/IEEE Standard 854 for Radix­
Independent Floating-Point Arithmetic (1987), item SH11460 available from the IEEE Inc., 
345 East 47th St., New York NY 10017. The functions are not a mandatory part of that 
standard, but are two of twelve Recommended Functions and Predicates in an appendix. 

Let /3 be the radix of the floating-point arithmetic; /3 must be either 2 or 10 to conform 
to IEEE 854, and 2 to conform to IEEE 754, but the definitions below work for any radix 
/3 ~ 2. 

double scalb(x,N) 
double x; 
int N; 

scalb(x, N) returns f3N x for integral values N without computing f3N first. Over­
flow and underflow should be handled in the same way as for ( decimal string) -
(floating-point) conversion (when a floating-point datum, entered from a key­
board or read from a file as a decimal string in, say, ASCII, turns out to be too 
big or too close to zero); ideally this should produce a reasonable value like ±oo 
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or 0.0 by default, emit a signal, and continue computation unless the program 
has opted to abort instead. When /3 = 2, scalb = ldexp . 

double logb(x) 
double x; 

logb( x) returns the integer part N of logp I x I as a signed integer in x 's floating­
point format. For nonzero finite x 

1 $ 13-N = abs(scalb(x,-(int)logb(x))) < /3. 

Special cases: logb( ±oo) = +oo without any signal, and 
logb(NaN) is NaN without any signal, but 
logb(0.0) = -oo and signals divide-by-zero. 

5 

One special case covers the infinities available on CDC Cybers and CRAYs as well as on 
machines that conform to IEEE 754/854. The second covers the indefinites on Cybers 
and CRAYs and the reserved operands on DEC VAXs, as well as Not-a-Numbers in IEEE 
754/854. The divide-by-zero exception is associated with (finite nonzero)/0 expressions or 
any others that produce exactly infinite results from finite operands; they should produce 
±oo (or something as close to it as possible) by default, emit a signal, and continue com­
putation unless the program has opted to abort instead. 

When /3 = 2, frexp(x,nptr) sets *nptr = (int)logb{x)+ 1 except in the special cases; then 
*nptr = 0 by tradition but for no other good reason. The trouble with that tradition is 
that *nptr = 0 in two very different situations, 0.5 $I x I< 1 and x = 0, that can be 
confounded unless an extra test is inserted into the program that uses frexp. Moreover, 
some of the early machine code implementations of frexp for the PDP-11 and VAX would 
return *nptr = -128 when x = 0 because that was fastest; therefore prudent programmers 
might best assume no more about nptr in those special cases than Harbison and Steele say 
about them: nothing. 

All special cases can be handled in a reasonable way by logb because it returns a floating­
point value instead of one of type int. The floating-point value is convenient for most of 
logb's applications; the others that require (int)logb may have to prevent overflow during 
conversion from floating-point to type int by inserting tests like 

if(fabs(logb( ... )) < ma.'C.int) ... 

with an aptly chosen value for maxint . 

Lest the reader conclude that logb and scalb are now defined universally and unambiguously 
by the IEEE standards, three cautionary remarks are in order. First, the IEEE standards 
are not universally in force among computer systems. Although more arithmetic hardware 
conforms to IEEE 754 than to any other single specification, the non-conformists cannot 
be disregarded; among them are the IBM 370, DEC VAX, Univac llxx:, CDC Cyber, 
CRAY, Burroughs B65x."<, ... . Second, even if a machine's hardware does conform to 
IEEE 754, the compilers that run on it are unlikely to honor all the requirements of the 
standard, and the functions logb and scalb in particular may well be missing. Third, 
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even when they are present in the compiler or the run- time library, scalb( x, N) may be 
implemented as scalb(N, x) with its arguments reversed, as is the case in the Standard Apple 
Numeric Environment described in the Apple Numerics Manual (1986, Addison-Wesley); 
that environment also supplies the IEEE standards' recommended function copysign(x,y) 
with its two real arguments reversed! The reason for those reversals might make an amusing 
story were it not so perverse. 

None the less, logb and scalb are defined well enough for every commercially significant 
machine, regardless of IEEE standards, and useful enough to justify implementation as 
intrinsic functions ( compiled in-line) regardless of language. If not intrinsic, they surely 
merit inclusion in the run-time library among the few functions coded in machine-language. 
That is the point of this paper. 

Some Applications of frexp, ldexp, logb and scalb 
The crucial applications lie within the library programs that convert between the machine's 
floating-point format and the decimal strings, usually ASCII, that are sent to be printed or 
displayed on a screen. These programs are not normally expected to survive transportation 
to a machine with a different floating- point radix, although in principle they could be 
written portably using either of the frexp/ldexp or logb/scalb pairs defined above. If last­
digit accuracy of conversion is unimportant, some codes using frexp/ldexp will function 
adequately regardless of which definition, ours with radix = 2 or another with radix set to 
the machine's radix, is used for frexp and ldexp. But the most accurate codes are easiest 
to write with logb and scalb. 

Similar comments apply to cash, erf, exp, gamma, hypot (cabs), ln, sinh and sqrt. 

Many matrix computations can be protected from spurious over/underflow by prescaling 
of data and postscaling of results. For best results prescaling should be performed exactly, 
without any rounding errors, since any rounding errors suffered during prescaling could 
easily far exceed those that are generated during subsequent computation. The benefits 
conferred by scaling are universally acknowledged but almost never realized in portable 
libraries of matrix-handling software because that software is coded mostly in Fortran, 
which lacks anything like logb and scalb in its standard library. 

Logb and scalb are not always preferable to frexp and ldexp. Consider the product P = 
x[l] x x[2] x ... X x[m-1] x x[m] when mis extremely big, so big that a partial product could 
easily over/ underflow even though P itself, or a quotient of two such products, is believed 
for good reason to lie well within range. The computation of P could be accomplished safely 
but slowly first by sorting the array x[ .. ] in order of magnitude, and then by multiplying 
alternately biggest and smallest x[ .. ]'s ; but since sorting must consume time proportional 
tom ln( m) a faster way is worth considering. Computing exp(~ k In I x[k] I) is a bad idea be­
cause it can lose accuracy badly to roundoff; but a similar scheme based upon logb and scalb 
is just as accurate as the method that involves sorting and much faster if they are are com­
piled in-line. The scheme computes the product of terms scalb(x[k],-(int)logb(x[k])) simul­
taneously with the sums = r:k logb( x[k]), after which P = scalb(product,(int )s ). Replacing 
logb and scalb here by frexp and ldexp runs faster, and is almost equally accurate provided 
the implementation of frexp, like the one described above, incurs no rounding error. and 
provided the compiler does not overlook frexp's side-effect. Another very much faster way 
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uses the "Counting Mode" for over/underflows, implementable within the over/underflow 
trap handler on machines that support the IEEE standards' optional trapping modes as 
well as on the IBM 370 and the DEC VAX; see the book Floating-Point Computation by 
P. H. Sterbenz (1974, Prentice-Hall) or the report A Portable Floating-Point Environment 
by David Barnett (1987, University of California at Berkeley, for course CS281). 


