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GAUSSIAN ELIMINATION with EXTRA-PRECISE ACCUMULATION of PRODUCTS 

Issues: 

-- is it worth the cost? --

W. Kahan, April 23, 1983 
Univ. of Calif.@ Berkeley 

1 • .How to do i t? 
a. Extended precision sums in inner loops. (Fast & cheap) 
b. Extended precision temporary vectors. (Slowed by memory> 

2. What good is it? 
a. More. accuracy in "systernat i cal 1 y i 11-condi ti oned II cases, 

al rnost as good as if all data were. stored with a few. 
extra bits; but otherwise the improvement is small. 

b. Error and. its bound grows less quickly with dimension, 
so improvement i~ most apparent when dimension is huge. 

3. What does it cost? 
a. Hardware is more complicated, but not much slowed. 
b. Subexpression semantics harder to compile. 
c. Method ta may stumble over paging problems; this can be 

largely circumvented by trickery and some use of lb. 

4. Examples and comparisons: 
a. On 8087-like architectures <INTEL 86/330, IBM PC FORTH> 
b. Using software floating-point (hp-BS, APPLE III > 
c. High-performance machines <ELXSI 6400, ... > 

5. Programs listed below: 
~~~~~~~~~~~~~~~~~~~~~~ 

LUPA: Triangular Factorization with extra-precise 
accumulation of inner products (method ta>, -and 
alternative column-oriented code using extra-precise 
vector to accumulate scalar*vector products <meth. lb). 

LUXPB: Forward and back sustitution by two methods, like LUPA. 

RBAXt Residual by two methods,· like LUPA. 

VNORM: Root-sum-squares norm with extended-range accumulation 
of squares (method la>, and alternative code using no 
extended range but three times slower. 

RESYS: Solve system of linear equations and refine solution 
iteratively, using LUPA, LUXPB, RBAX and VNORM 

HUPA: 
HUXPB: 

A faster version of LUPA, and 
a faster version of LUXPB, to be used together in 
situations where page faults seem to preclude extra
precise accumulation of products. 
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LUPA: w. Kahan, Apr. 23, t 983 

Given a square matrix A, we seek triangular factors to satisfy 
LU= PA, 

where 
L = unit lower triangular matrix, 
U = upper triangular matrix, and 
P = permutation matrix represented by indices IpC ... J 

thus: ( Px ) C i l = x [ Ip [ i l J , 
inverse(P) = transpose(P> , 

(inverse<P>y>Cil = yCJJ where IpCJJ=i . 

If i > j then 
ACipCiJ,jJ = LCi,jl*U~j,jJ + Sum{k<J>C Lti.kl*UCk,jJ > 

else 
ACipCiJ,jl ·= l*UCi,Jl + SumCk(i}( LCi,kl*UCk,jJ > . 

Subro~tine LUPA< A, LU, Id, IP, N >: 
Integer values Id, N; Integer.variable IPCN+l ;. 
Real variables ACid,N+l,.LUCid,N+l; ... they may coincide. 

Integer . i , j , l(, i max ; 
Logical UnSav; ■ D ■ to save & restore Underflow flag. 
Real cmax, dmax, rndf, undr, UCN+J; 
Tempreal tsum, tpmax, tsmax, TCN+J; ... more precise than Real 
Equivalence (U,T> ; Save storage by packing U inside T. 
Comrnon /LtBWSP/ r· ; ... Shares workspace with other programs. ~ 

... Glossary: 

... ACid,N+J is a square matrix dimensioned ACid, at least NJ 

... LUCid,N+J will hold LUCi,jJ = LCi,jJ for i)j , 

. . . = UC i , j J otherwise . 

... < The program allows LU to overwrite A.> 

... IPCN+l will hold permuted indices 1, 2, 3, ... , N thus: 

... <Px)Cil = xCIPCiJJ . 

. . . . 

j is a column index that will run t, 2, 3, ... , N 
UCN+J will hold temporarily column j of U. 
TCN+J will hold temporarily (column j of L)*U[j,jJ . 
cmax holds the max. magnitude in column j of A. 
dmax holds the max. subdiagonal magnitude in column j of PA 
rndf = t.000 ... 0001 - t , measures roundoff among Reals. 
undr = tiniest positive number, at or beyond underflow . 
i is a row index that will run t, 2, 3, ... , N. 
tsum = ACIPCiJ,jJ ~ SumCk)( LCi,kl*UCk,jJ > . 
tsmax = max. ftsuml in column j ; if tsmax/(Sj) > crnax , 

U has grown so big that roundoff may be excessive, so 
columns 1 and j of A should be swapped. (Very rare.) 

tpmax = max. subdiagonal ltsuml in column j for pivoting. 
imax = row index where tpmax occurs. 

UnSav := UndrflowFlag( .false. > ; ... to save & reset U-flag. 
Gradual Underflow during factorizati~ri is ignorable. 
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·- t. 0 . rndf := nextafter(rndf, 2.0) - rndf • .- !I 

or else try rndf := 4.0 • rndf 1= rndf/3.0 ; 
' rndf 1= abs( <rndf - 5.0/4.0)*3.0 -

:= o.o . undr := nextafter(undr, 1. 0) . 
II ' or else try undr •= underflow threshold for 

Initialize IP: 
i = t to N do IPCiJ I= i 

Outer 1 oop, ·traversed once per column ( j > 1 

_j = t to N J 
cmax := O.O I tsmax 1= 0.0; 
... Compute column j of u I 
For i = t to j-1 ; 

the 

t.0/4.0 ) 

Reals . 

tsum := ACIPCil, jl s cmax :c max< cmax, absCtsum) ) ; 
For k •t to i-1 do tsum 1= tsum - LUCi,kl*UCkJ; 
Util 1= tsum; tsmax 1• max< tsmax, abs(tsum> >; 
next i ; 

... Compute potential pivots: 
dmax := 0.0; tpmax := 0.0; imax := j ; 
For i = j to N; 

tsum := ACIP[il, jJ; dmax := max< dmax, abs(tsum> ) J 
for k • t to j-1 do tsum 1= tsum - LUCi,kl*UCkJ ; 
TCiJ 1= tsum; tsum 1= abs<tsum> ; 
if tsum > tpmax then C imax := i ; tpmax 1= tsum) ; 
next i ; 

cmax := max< cmax, dmax >; tsmax := max< tsmax, tpmax >; 
If imax = j then< 

else 

if tpmax = 0.0 then< 

< ... 
for 

k . -. -
} 

exchange 
k = t to 

TCjJ := max<undr, rndf*dmax} ; 
go to DivByPiv} 

rows j and imax . 
j-1 ; drnax ·- LUC i ma>: , k J . .- ' LUCimax,kJ 1= LUCj,kJ . LUCj,kJ . - drnax , .-

next k . 
!I 

IPC-irnax J • IPCi rnax J := IPCjJ . IPCj J . -
' 

, .-
. 
!I 

k 

If tsmax/(B*j) > cmax then { . 
Display <"Warning: Extraordinary growth of 

intermediate results in LUPA may 16se 
too much accuracy. To avoid this loss, 
recompute after exchanging columns 1 
and ", j >; 

. 
!I 

tsum := 0.010.0; ... signals Invalid Operation. 

DivByPiv: tsum := T[imaxl 1. T[imaxJ 1= TCjl; U[jJ 1= tsum; 
for k = t to j do LUCk,jJ 1= UCkl; ... pivot. 
for k = j+1 to N do LUCk,jl := T[kl/tsum; ... = LCk,jJ. 
next j ; 

UnSav := UndrflowFlag(UnSav> ; 
return ;· 
end LUF'A 

Restore Underflow flag. 

. 
!I 
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Alternative Column-Oriented Code ........ 
Subroutine LUPAC A, LU, Id, IP, N ) : ~ 

Integer values Id, NJ Integer variable IPCN+l; 
Real variables ACid,N+l, LUCid,N+J; ..• they may coincide. 

Integer i , j , k, i ma>: ; 
Logical UnSav; •.. to save & restore Underflow flag. 
Real cmax, dmax, smax, rndf, undr, z • 
Tempre~l t, tpmax, TCN+l; ••. more precise than Real 
Common /LtBWSP/ T; •.• Shares workSPc;lCe with other programs . 

.•• Glossary: 

. . . 
ACid,N+l is a square matrix dimensioned ACid, at least N l 
LUCid,N+J will hold LUCi,jJ = LCi,jJ for i)j , 

= UCi,jl otherwise . 
( The program allows LU to overwrite A.) 

IPCN+J will hold permuted indices t, 2, 3, ... , N thus: 
<Px)Cil = xCIPCiJJ . 

j is a column index that will run t, 2, 3, ... , N 
TCN+J will hold temporarily column j of U, and then it 

will hold temporarily (column j of L)*UCj,jJ. 
cmax holds the max. magnitude in column j of A. 
dmax holds the max. subdiagonal magnitude in column j of PA 
rndf = t 000 ••• 0001 - t , measures roundoff among Reals. 
undr = tiniest positive number, at or beyond underflow. 
i is a row index that will run 1, 2, 3, ... , N. 
smax = max. ITtiJI in column j; if smax/C8j) > cmax , 

U has grown so big that roundoff may be excessive, s~ 
columns t and j of A should be swapped. <Very rare.>· 

tpmax = max. subdiagonal ITCill in column _j for pivoting. 
imax = row index where tpmax occurs. • 

UnSav := Undrf~owFlag( .false. > ; ... to save & reset U-flag. 
Gradual Underflow during factorization is ignorable. 

·rndf := laO; rndf := nextafter(rndf, 2.0) - rndf ; 
.... or else try rndf := 4.0; rndf := rndf/3.0; 
... rndf := abs( <rndf - 5.0/4.0)*3.0 - 1.0/4.0 > 

undr := 0.0; undr := nextafter(undr, t.O> ; 
or else try undr := underflow threshold for the Reals. 

Initialize IP: 
For i = t to N do IPCi] := i 
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Outer loop, traversed once per column (j) : 
j = 1 to N; 

tpmax 1= cmax := dmax := smax := O~O; 
Initialize column T. 

For i = 1 to N; 

For 

TC i J : = z : = AC IP C i J , j J ; z : s:: abs < z > ; 
cmax := max{ cmax, z}; 
if i £ j then dmax := max< dmax, z}; 
next i ; 

k = 1 to j-1 ; ... subtract Utk,jl*(col.k of L>. 
LUCk,jJ 1= z := TCkl; ••• = UCk,jJ. 
smax 1= max< smax, abs(z) ) ; 
for i = k+t to N do TCiJ := TCil LUCi,kl*z I 
next k; 

Locate pivot t; it maximizes ITCiJI . 
i max 1 = j ; 
For i = j to N; 

If 

t : = abs (TC i J > ; 
if t > tpmax then C imax := i ; tpmax := t >; 
next i ; 
irnax = j 

if 

else ( ... 
for 

then< 
tpmax = 0.0 theri ( 

exchange 
k = t to 

TCjJ := max<undr, rndf*dmax} 
go to DivByPiv > 

rows j and imax •. 
j-1 . dmax := LUCirnax,kJ • 

' ' LUCirnax,kl ■- LUCJ,kl . LU[j,kl 1= dmaN . - ' next k . 
' k 1= IP[ i max J ; IPCimax J ■- IP[jJ . IPCjJ := .- !I 

} 

If max< smax, tpmax )/(B*j) > cmax then< 
Display {"Warning: Extraordinary- growth of 

intermediate results in LUPA may lose 
too much accuracy. To avoid this· loss, 
recompute after exchanging columns t 
and ", j J-

t := 0.0/0.0; ... signals Invalid Operation. 
) 

DivByPiv: t := TCimaxl; TCimaxJ := T[jl 1 
LUCj,jJ := t; ... = pivot UCj,jl. 

k 

for k = j + t to N do LUC k , j l : = TC k J / t ; . . • = LC k , j J · • 
next j ; 

UnSav := UndrflowFlag(UnSav> ; ... Restore Underflow flag. 
return; 
end LUPA. 

The two LUPA codes should give identical results, including 
roundoff, but at different speeds depending upon the dimension N 
and details of the machine's memory management. On a machine 
that accumulates products in a fast-access register, the first 

. 
!I 

code should be the faster while N is so small that all data fits 
in a few pages and cache-blocks; otherwise the second code should 
be the faster, the more so as N increases. ( ~f. HUPA below.) 
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LUXPB: W. Kah an , Apr. 16, 1 983 .~ 

This program solves LUX= PB for X given matrices 
L = an unit lower triangular NxN matrix and 
U = an upper triangular NxN matrix stored in LU thus: 

if i > j then LUCi,jl = LCi,jl else LUCi,jl = UCi,jl. 
B = an NxM matrix, and 
P = an NxN permutation matrix represented by indices IpCiJ 

thus: < Px > Ci l = ><CI p Ci J l . 

X = an NxM 
LC= PB, 
UX = C , 

The solution 

matrix that will be calculated by solving in turn 
CCi,jJ + Sum<k<i}( LCi,kl*CCk,Jl) = BCipCiJ,jl 
Sum<kli)( UCi,kl*XCk,jJ > = CCi,jJ 

X may overwrite B but not LU. 

Subroutine LUXPB( LU, Id, IP, N, B, X, M )1 

Integer values Id, N, M; Integer var.iable IPCN+J; 
Real variables· LUC ld, N+J, BC Id, M+l, XC Id, M+J ; 

Integer i, j, k; 
Real CCN+l ; 
Ternpreal tsurn; ... more precise than Reals. 
Common /LtBWSP/ C; 
Logical UnSav; ... Gradual Underflow matters only in X. 
Unsav := UndrflowFlag(.false.) ; 

For j = 1 to M; ... solve for column j : 
for i = 1 to N; 

tsum := BCIPCiJ,jl; 
for k = 1 to i-1 do tsum := tsum - LU[i,kl*CCkl; 
CC i J : = t sum ; 
ne>et i ; 

for i = N to 1 step -1 ; 
tsum := CCiJ; 
for k = i+t to N do tsum := tsum - LUCi,kl*C[kl; 
UnSav := UndrflowFlag<UnSav) ; ... Expose Underflow. 
XCi,jJ := CCiJ := tsum/LUCi,il; 
UnSav := UndrflowFlag<UnSav) ; Hide Underflow. 
next i ; 

next j ; 
UnSav := UndrflowFlag(UnSav> ; Reveal X's Underflows. 
return; 
end LUXPB. 
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. . . . . . . . Alternative Column-Oriented Code ........ 
Subroutine LUXPBC LU, Id, IP, N, B, X, M >: 

Integer values Id, N, M; Integer variable IPCN+l; 
Real variables LUtid, N+l, BCid, M+J, Xtid, M+J; 

Integer i, j, k; 
Real z ; 
Tempreal CCN+J; ... more precise than Reals 
Common /LtBWSP/ C; ... shared workspace. 
Logical UnSav; ... Gradual Underflow matters only in 
Unsav 1= UndrflowFlag(.false.> ; 

For j = 1 to M; ... solve for column j 1 
for i = t to N do CCil 1= BCIPCiJ,jl; 
for k = 1 to N; 

z := C[kl; CCkl := z; 

X • 

for i = k+1 to N do C[iJ := CCiJ - LUCi,kl*z; 
next k; 

fork= N to l step -1 J 
UnSav := UndrflowFlag(UnSav) ; ... Expose Underflow. 
X C k , j J : = z : = CC k l /LUC k , k l ; *4 --
Un Sa v := UndrflowFlag<UnSav> ; ... Hide Underflow. 
for i = 1 to k-1 do CCil := CCil - LUCi,kl*z; 
next k ; 

next j ; 
UnSav := UndrflowFlag(UnSav) ; ... Reveal X's Underflows. 
return; 
end LUXPB. 

*Notes: The foregoin~ two codes should produce identical results 
including the effects of roundoff. However, the second code can 
be modified slightly to give marginally more accurate results at 
no significant extra cost provided multiplication of Real by 
Tempreal costs at most negligibly more than Real by Real . 
First merge declarations ... *1 and ... *2 to read 

Tempreal z, CCN+J; •.. more precise than Reals .... 1* & 2* 
Next simplify statement ... *3 to read 

z : = CC k J ; • • . 3* 
Finally, but only if references to UndrflowFlag<> cost rather 
more than a handful! of_ memory references, replace ... *4 by 

CCkJ := z := C[kl/LUCk,kl; ... 4* 
and move the adjacent statements to bracket a new statement 
inserted after ... *5 thus: 

next k ; 
UnSav 1= UndrflowFlag(UnSav> ; ... Expose Underflow. 
for i = 1· to N do XCi,jJ 1= CCil; 
UnSav := UndrflowFlagCUnSav) ; .•. Hide Underflow. 
next j ; ... etc. 

(Cf. HUXPB below.) 
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RBAX: w.· Kahan, Apr. 16, 1983 ~ 

This program calculates a residual R = B - AX given matrices 
B = an NxM matrix, 
A= an NxN matrix, and 
X = an NxM matrix. 

R may overwrite B but not A nor X. 

Subroutine RBAX( A, Id, N, x, M, B, R ) : 
Integer values Id, N, M ; 
Real variables A, x, B, R • 
Integer i ' j ' k ; 
Ternpreal tsLtrn . ... more precise than Reals ' 
For j ::: 1 to M ; . . . compute column j . 

for i = 1 to N • . . . row i . 
tsum := B[i,jl . 

' 

. 

for k = 1 to N do tsum :=·tsum - ACi,kl*X[k,jJ 
R[i,jl 
next 

next j 
return; 
end RBAX . 

. 
!I 

i 
. -■- tsum ; 
; 

Alternative Column-Oriented Code 

Subroutine RBAX< A, Id, N, X, M, B, R >: 
Integer values Id, N, M; 
Real variables A, X, B, R; 

Integer i, j, k; 
Real :z 

• e • ■ ■ ■ • Cl 

Ternpreal TCN+J; 
Common /LtBWSP/ T • 

' 
more precise than Reals 

... shared workspace. 

For j = 1 to M; compute column j . 
for i = 1 to N do TCiJ := BCi,jl; 
for k = 1 • to N ; z : = - X Ck , j l • ; 

for i = 1 to N do T [ i J 1 = TC i l + AC i , k J *Z- ; 
next k; 

for i = t to N do RCi,jl := TCil; 
next j ; 

retur·n ; 
end RBAX . 

. 
!I 



VNORM: w. Kahan, Apr . 14 , 1 983 

For any NxM matrix B, 
VNORM< B, Id, N, M > = I I B I I = SQRT< trace·< B' B > > 

where B 
= SQRT< Sum( t~j~M, t~i~n }( BCi,jl**2 

BC Id, M+l . is dimensioned 

Real Function VNORM< B, Id, N, M ) 1· 
Integer values Id, N, M; 
Real variable BCid, M+J; 
Tempreal t; 
t : = o. 0 ; 
for j=t to M do for i=t to N do tam t + BCi,jl**2; 
return VNORM := SQRT(t) ; 
end VNORM. 

......... Alternatively, ........ . 
·if Temp real -is unavai 1 ab 1 e then the f cl 1 owing code avoids over/ 
underflow at the cost of some speed and accuracy. 

Real Function VNORM< B, Id, N, M ): 
Integer values Id, N, M; 
Real vari~ble BCid, M+J; 
Real s, d, z ; 
Logical UnSav; ... to save & restore Underflow flag. 

UnSav := UndrflowFlag<.false.> ; 
d : = s : = O. () ; 
for j = t to M; for i = t to N; 

z : = abs< BC i., j J ) ; 
if • z > d then { s : = S* (d/z) **2 + t. 0 ; d : = s J

else if z > 0.0 then s := s + (z/d)**2; 
next i ; next j ; 

UnSav := UndrflowFlag(UnSav) ; ... Ig~ore Underflows. 
return VNORM := d*SQRT<s> J 
end VNORM. 
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RESYS: w. Kahan, Apr. 14 9 1983 ~ 

This program uses iterative refinement to solve AX= B and 
returns RESYS =II B - AX 11 , where 

A= an NxN matrix dimensioned A[Id, N+l , 
B = an NxM matrix dimensioned BCid, M+J , and 
X = an NxM matrix dimensioned XCid, M+l 

Real Functio~ RESYS( A, Id, N, B, M, X >: 
Integer values Id, N, ~; 
Real Atid, N+l, BCid, M+J, XCid, M+J; 

Integer i, j, k, L, IPCN+J; 
Real Rold, Rnew, WSC Id*(N+M+l)+] I 
Common /L2BWSP/ WS; ••. shared work-space. 
Equivalence <IP,WS> 1 ... packs IP inside. WS. 

Call LUPA< A, WSCid+lJ, Id, IP, N > I ... LU= PA. 
Call LUXPB< WSCid+tJ, Id, IP, N, B, X, M > ; ... LUX = PB . 
Rold:= 0.0; L := t+Id*<N+t) ; Go to Residual ; 

L~op: Rold:= Rnew; 
Call LUXPB< WSCid+tl, Id, IP, N, WStLl, WSCLl, M > ; 

LUZ= PR ,·.and Z overwrites R in WS 
For j = t to M; ... do X := X + Z. 

k : = ( N+ j ) *Id ; 
for i = 1 to N do XCi,jJ := XCi,jJ + WSCk+il; ~ 
next j ; 

Residual: Call RBAX( A, ID, N, X, M, B, WSCLJ) ; 
• • • R = B - AX i n WS . 
Rnew := VNORM< WSCLJ, Id, N, M > ; ... = 11 RI I • 
if <Rold= 0.0 .or~ Rold> Rnew > then go to Loop 

return RESYS := Rnew; 
end RESVS 

Note: To make this code ru~ faster on a pag~d machine when N is 
huge, replace LUPA and LUXPB respectively with HUPA and HUPXB 
respectively. 
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HUPA: w. Kahan, Apr. t 7, 1 983 

Given an NxN matrix 
except faster when N 

A, this program does the same as LUPA 
is very large. It calculates factors 

LU= PA, 
where 

L = unit lower triangular matrix, 
U = upper triangular matrix, and 
P = permutation matrix represented by indices IpC .•. J 

thus: <Px> Ci] = xCipCi]J • 

If i > j then 
ACipCiJ,jJ = LCi,jl*UCj,jJ + Sum<k<j}( LCi.kl*UCk,jJ > 

else 
ACipCiJ,jJ = l*UCi,jJ + Sum<k<i)( LCi,kl*UCk,Jl > . 

But, to diminish the performance degradation caused by page faults 
and other artifacts of memory management, HUPA packs L thus: 

LCi,jJ = HUCN+t-i+j, N+t-il for i >j . 

Subroutine HUPA< A, HU, Id, IP, N >: 
Integer values Id, N; Integer variable 
Real variables ACid,N+J, HUCid,N+J; ... 

Integer i, j, k, imax, L; 

IPCN+J ; 
they must NOT overlap. 

Logical UnSav; ... to save & restore Underflow flag. 
Real cmax, dmax, rndf, undr, UCN+l; 
Tempreal tsum, tprnax, tsma>t ,· TCN+J ; ... more precise than Real 
Equivalence (U,T> ; ... Save storage by packing U inside T. 
Common /LtBWSP/ T; ... Shares workspace with othe~ programs . 

. . . Glossary: 

... ACid,N+J is a square matrix dimensioned ACid, at least NJ 

... HUCid,N+l will hold HUCi,jJ = LCN+t-J, i-jl for i > j , . . . 

. . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . 

. . . 

= UCi,jJ otherwise . 
< The program expects HU and A NOT to overlap.) 

IPCN+J will hold permute~ indices 1, 2, 3, ... , N thus: 
CPx)Cil = xCIPCiJl. • 

j is a column index that will run 1, 2, 3, •.. , N 
UCN+J will hold temporarily column j of U . 
TCN+l will hold temporarily (column j of L>*UCj,jJ . 
cmax holds the max. magnitude in column j of A • 
dmax holds the max. ~ubdiagonal magnitude in column j of PA 
rndf = t . 000 ••• 000 t - 1 , measures roundoff ·arnong Reals . 
undr = tiniest positiv~ number, at or beyond underflow . 
i is a row index that ~ill run 1, 2, 3, ... , N . 
t sum = AC IP [ i J , j J - Sum < k } < LC i , k J *UC k , j l > . 
tsmax = max. ltsuml in column j I if tsmax/(8j) > cmax , 

U has grown so big that roundoff may be excessive, so 
columns t and j of A should be swapped. <Very rare.> 

tpmax = max. subdiagonal ltsuml in column j for pivoting. 
imax = row index where tpm•x occurs . 

UnSav := UndrflowFlag< .false. > ; ... to save & reset LI-flag. 
Gradual Underflow during factorization is ignorable . 
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rndf 1 = 1. 0 
• or else 

; rndf ·: = nextafter <rndf, 2. O> - rndf J 
try rndf := 4.0; rndf 1= rndf/3.0; 

rndf := abs( <rndf - S.0/4.0)*3.0 -
; undr := nextafter(undr, t.O) ; undr := 0.0 

or else try undr := underflow threshold for the 

For 

For 

Initialize IP : 
i = t to N do IPCiJ . -.- i ; 

Outer loop, traversed once per 
j = 1 to N . ' cmax := 0.0; tsmaM 1= o.o 

.•• Compute column j of U: 
For i = t to j-.t ; 

column ( j) : 

1.0/4.() ) 

·Reals ca 

tsum 1= ACIPCil, jJ ; cmax := max< cmax, abs(tsum> } ; 
L := N+t-i ; 
For k =t to i-1 do tsum 1= tsum - HUCL+k,Ll*UCkl; 
HU C i , j J : = UC i l : = t sum ; 
tsmax := max( tsmax, abs(tsum> >; 
ne>:t i ; 

Compute potential pivots: 
dmax := C>.C> ; tpma>: := 0.0 ; imax := j ; 
For i = j to N; 

tsum := ACIPCil, jl ; 
L := N+t-i ; 
for k = t to j-1 do 
TtiJ := tsum; tsum := 
if tsum > tpmax then< 
next i ; 

dmax := ma><< 

tsum := tsum 
abs(tsum> . 

' imax := i . 
' 

dmax, abs(tsurn> 

- HUCL+k,LJ*U[kl 

tprnax . -.- tsurn } 

} . , 

I 

. 
!I 

cmax := max< cmax, dmax); tsmax := max< tsmax, tpmax > ; 
If imax = j then< 

else 

if tpmax. = 0.0 then { 

} 

{ ... exchange 
L . -.- N+t-i ma>: 
for k = t" to 

TCjJ := max<undr, rndf*dmax) 
go to DivByPiv} 

rows j and imax . . i ■- N+l-j ; 
' .-
j-1 ; drnax 1= HUCL+k,LJ . 

!I 

HUCL+k,LJ == HUCi+k,il . HUCi+k,il := dmax 
' next k . 

' k := IF•[ i rnax J . IPCimax J 1= IPCjJ • IPCjJ r= , !I 

If tsrnax/(B*j> > cmax then< 
Display C"Warning1 Extraordinary growth of 

intermediate results in HUPA may lose 
too much accuracy. To avoid this loss, 
recompute after exchanging columns 1 
and ", j > ; 

k 

l 

. 
!I 

tsum := 0.0/0.0; ... signals Invalid Operation. 

DivByPiv: tsum := TC~rnaxJ; TCimaxl := TCjJ; 
HU C j , j J : = UC j J : = t surn ; . .. . = pi vot UC j , j l • 

~ 

for k = 1 to N-j do HUCj+k,kJ := TCN+l-kl/tsum ~ 
next j ; ... = LCN+t-k,jJ. 

UnSav := UndrflowFlag(UnSav) ; ... Restore Underflow flag. 
return; 
end HUPA. 
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HUXPB1 W. Kahan, Apr. 18, 1983 

This program solves LUX = PB for X given matrices 
L = an unit lower triangular NxN matr:ix and 
u = an upper triangular NxN matrix stored in HU thus: 

if • i > j then HU[i,jJ = LtN+t-j,i-jJ 
else HUCi,jJ = UCi,jJ . 

B = an· NxM matrix, and 
p = an NxN permutation matrix represented by indices Ip Ci l 

thus: <Px > Ci l = ,c C Ip C· i l l . 
X = an NxM 

LC= PB, 
UX = C , 

The solution 

matrix that will be calculated by solving in turn 
CCi,JJ + Sum{k(i}( LCi,kl*Ctk,jJ > = BCip[iJ,jJ 
Sum{kli}( UCi,kl*XCk,jJ > = _CCi,jl. 

X may overwrite B but not HU. 

Subroutine HUXPB< HU, Id, IP, N, B, X, M )1 

Integer values Id, N, M; Integer variable IPCN+l; 
Real variables HUCid, N+J, B[Id, M+J, XCid, M+J ; 

Integer i, j, k, L; 
Real z, CCN+J ; 
Tempreal tsum, TCN+l; .... more precise than Reals. ~ .. *1 
Equivalence <C,T> J ••• Save storage by packing C inside T. 
Common /LtBWSP/ T; ... shared workspace. 
Logical UnSav; ... Gradual Underflow matters only in X. 
Unsav := UndrflowFlag(.~alse.) ; 

For j = 1 to M; ... solve for column j : 
for i = 1 to N; 

tsurn := BCIPCiJ,jJ ; L :c _N+t-i ; 
for k = t to i-1 do tsum := tsum 
CC i J : = tsum ; 
next i ; 

for k = N to l step -l do TCkl := Ctkl; 
for k = N to l step -1 ; 

UnSav := UndrflowFlagCUnSav) ; ... Expose Underflow. 
XCk,jJ := z 1= TCkJ/HUCk,kJ ; *4 
UnSav := UndrflowFlag(UnSav) ; .•. Hide Underflow. 
for i = 1 to k-1 do TCil := TCil - HUCi,kl*z ; 
next k ; .... 

next j ; 
UnSav := UndrflowFlag(UnSav> ; ... Reveal X's Underflows. 
return; 
end HUXPB. 

*Notes: The foregoing code can be modified slightly to give 
marginally more accurate results at no significant extra cost 
provided multiplication of Real by Tempreal is only slightly· 
slower than Real by Real . First merge declaration ... *1 with 
its two neighbors thus: 

Tempreal z, tsum, TCN+J; ... more precise than _Reals .... l* 
Next replace two references to cc ... ] by T~ ... l in stat~ment 
... *2 and its predecessor; and delete statement ... *3. 
Finally, but only if references to UndrflowFlag() cost rather 
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more than a handful! of memory references, replace ••• *4 by 
TC k J : = z 1 = TC k J /HUC k, k J ; • • • 4* 

and move the adjacent statements to bracket a new statement 
inserted after ... *S thus: 

next ~( ; 
UnSav := UndrflowFlag(UnSav> ; ... Expose Underflow. 
for i = 1 to N do XCi,jJ := TCil; 
UnSav := UndrflowFlag(UnSav> ; ... Hide Underflow. 
next j ; •.• etc. 

Comparison of HU ... with LU ... : 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Programs, like RESYS, that.use LUP~ and LUXPB can instead 
use HUPA and HUXPB respectively to get the same results but at 
different speeds. At first sig~t, two pairs of programs appear to 
be under consideration; actually there are three pairs: 

LU ... accumulating scalar products extra precisely (method ta). 
LU ... alternative versions using column-oriented·code (lb). 
HU ... with LCi,jJ = HUCN+l-i+j, N+l-il. 

The HU ... codes should be never much slower than the first LU .. ~ 
codes, and always significantly faster than the second LU ... 
codes, even on vectorized and pipelined parallel machi~es, unless 
compiled with an alleg~dly optimizing compiler that fails to 
l"'ecognize and optimize subscript references of the form. HUCL+k,L·J 
when L is fixed and k varies in an inner loop. Here we assume 
that arrays are stored by columns as prescribed for Fartran. 

The extra-precise accumulation of scalar products -is a practice in~
decline on the largest and fastest computers. Part of the decline 
is attributable to the omission, from the instruction sets of 
newer machines, of an instruction that evaluates a product to wider 
precision than the factors; ·that omission may be motivated by the 
belief that page faults and similar artifacts cf memory management 
will drive numerical analysts to use column-oriented codes 
exclusively rather than sacrifice speed to achieve a little more 
accuracy. The HU ... codes sacrifice neither speed nor accuracy, 
so p~rhaps the issues should be reconsidered. 
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Transpositions and Permutations1 W. Kahan, May B, 1983 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

There are two ways to keep track of the pivotal exchanges of rows 
during Gaussian Elimination. One way uses an array ipC.l of n 
indices ip[tl, ip[2J, ... , ip[nJ to represent the n by n 
permutation matrix P directly thus1 

row ip[iJ of A is row i of PA. 
Hence, < ipttJ, ipC2J, ... , ipCnl >· is a permutation of the 
indices < t, 2, ... , n). The second way represents P as a 
product of n-t transpositions thus: 
P = (n-t, k[n-tl) Cn-2, k[n-2J> ( ... ) (3, k[3l) (2, k[2J) <t, kttl> 
where each • <i, k[il) is a transposition <exchange) of -the rows 
in position• i and- kCil; moreover ii kCil. These indices 
k[.J are called "imax" in programs LUPA and HUPA, where they 
are encountered and applied in order kCtl, kC2l, kC3J, •.. , kCn-1] 
to produce the array ipC.J thus1 

for i = t ton do ip[il := i ; ••. initialization 
for i = 1 to n-1 do swap( ipCiJ, ipCk[iJJ > ; ... build ip[.J 

Given this array ipC.l , can we reverse the process to recover 
the array kC.J? Yes. But first the permutation iqt.J inverse 
to ipC.J must be calculated thus1 

for i = 1 ton do iqCip[iJJ ~= 
Now row iqCiJ of PA is row i 
transforr ip[.J and iqC.J back to 
keeping them inverse to each other 

for i = t to n-1 do begin 

i ; •.• inversion. 
of A. Next we gradually 

identity ~ermutations while 
as kC.l is recovered thus: 

kCi l 1 = ipCi J ; ... reversion 
swap< ipCi J, ipCiq[i J l > ; ... so now ipCi J=i 
swap ( iqCi l, iqCkCi J J > ; . . . so now iqCi J=i 
end; 

·one application of the reversion is to reveal the sign of 
det(A) = det(PA)/det<P> = det(U)/det(P) , where 
det(P) = C-t)A( number of instances when k[iJ > i ) . 

Another application is to the encoding of P within L to 
dispense with the bother of providing for the array IPC.J when 
the factors Land U are saved for subsequent re-use. The encode 
function E(x) maps the reals x with lxl ~ t to IE<x> I ~ 2: 

if x=O then E<x> 1= Copysign(2, x> else E(x) 1= Scalb(x, K> 
where K is an integer barely large enough that Scalb(t.o, K> 
overflows to infi~ity. K = 128 for Single, or 1024 for Double 
precision in the proposed IEEE standard p754. The decode function 
D<x> inverse to E(x) is 

if xis infinite then D<x> := Copysign(t, x> 
else i~ lxl = 2 then D<x> 1= Copysign(O, x) 

else D<x> := Scalb<x, -K> ; ... and ignore Underflow. 
Then to encode IPC.J within L we revert IPC.J to kC.J and 
then replace LCkCjl,Jl by E(LCktjJ,j) whenever kCjJ > j To 
recover kC.l later, we scan < LCi,jJ, j < i ~ n} to find 
where ILCk[jJ,jJI > 1 , thereby determining k[jJ > j ; otherwise 
k[jJ = j . 

The success of the reversion process above is tantamount to a 
Theorem: Every permutation of n positi~ns can b~ eMpressed 
~~~~~~~ uniquely as a product of n-t transpositions 

Cn-t,ktn-tl> Cn-2,kCn-2J) C ... ) C2,kC2J> <t,kCtJ) 
in which each ktil ! i . 
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The theorem's validity can be confirmed by running the following 
prograrn: 
Program Proof(uptoN>: 

procedure Nest(ml: 
if m>O then for j = m ton do begin 

else begin 
for i = t to n do 
for i = t to n-1 
for i == 1 to n do 
for i = t to n-1 

kCml : = j ; Nest (rn-t > 
end 

ip[iJ := i ; 
do swap( ip[iJ, ipCkCill ) . 

' iqCipCill := i ; 
do begin 

if ipCil=k[il then begin 
swap< ip[i]' ipCiqCiJJ ) . 

!I 

swap< iq[i J' iqCk[ilJ ) 

end 
else begin 

write{ "Test fails at n ="; n 
11 with i = "; i 
"and kC.l = "; k[.J 
" ipC.J = "; ipC.J 
.. iq[.J = "; iq }; 

stop 
end 

end; 
write{ 11 n = 11

; n ; 11 tested successful 1 y." l
end end Nest; 

for n = 1 to uptoN do Nest(n) J write{ "End of test.} 
end Proof. 

• 
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Inverting the Hilbert matrix: w. Kahan, Dec. a, 1983 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Floating-point matrix inversion programs are customarily te$ted on 
an nxn Hilbert matrix H whose elements are Ht.,= 1/(i+j+p-1> 
for ·t ~ i,j ~ n and any integer p ~ 0. Because H becomes 
so ill-conditioned as nor p becomes big, its inverse W = H- 1 

becomes difficult to compute accurately in the face of roundoff. 
None the less, a way exists to compute W exactly and easily; 
it uses a little-known formula W = V H V where V is a diagonal 
matrix of integers V, = (-t)'((n+j+p-1.)!)/((n-j)! (j-1)! (j+p-1>!> 
obtained from a simple recurrence in which only integers appear: 

V, := -n ; for k = 1 to p do. V, := <V,/k) (n+k) ; 
for j = 1 to n-1 do v,.1 :-= < < <V,/ (j+p> >.. (j-n) > /j > <n+j-p) . 

Then Wt., := Vt V,/ (i+j+p-t > . (S. Schechter, MTAC, 1959) 

Since the elements of H are reciprocals of integers, they cannot 
be represented exactly in floating-point but must be rounded off. 
These initial rounding errors may do more damage to H- 1 than 
the inversion program under test. To avoid them, we actually use 

A := rnH , where m := LCM( p+t, p+2, p+3, ... , p+2n-1 ) , 
which bas integer elements all representable exactly in floatjng
point provided n and p are not too big. Then the inversion 
program is tested by using it to solve- AX= ml numerically for 
X. Here I is the. nxn identity matrix. Since ideally X 
should match W, the error introduced by the program under test 
is indicated by displaying a rough measure of the relative error 
in X : 

r = rnax, . ., I X, • , - W, • , I / I W, • , I . 
This statistic makes no allowance for th~ ill-condition of H nor 
for the precision of the arithmetic in which X was calculated. 
The ill-condition of H can be gauged from 

c = max, E., I Ht., w,.., I , 
which exceeds 1 to an extent that indicates how severe is 
cancellation when HW = I is evaluated. The precisi9n is· 
indicated by 

LI= 1.000 ... 001 - 1.000 ... 000 = 0.000 ... 001 
= One unit in the last place carried in numbers near 1 • 

Then one figure of merit for the program under test is 
q = r / (uc > ; 

the smaller is q , the better the program. Normally r < 1 and 
q < n; but when r > l the matrices A and H are so nearly 
singular that the program cannot be relied upon to get even one 
significant digit correct in X, and then the value of q 
be~omes irrelevant. Another figure of merit is the largest value 
of n for which r < 1 ; the larger is this n, the better. 

The error r, and therefore q, depend upon rounding errors that 
occur during the calculation of X, but rounding errors are not 
entirely dependable; they behave sometimes almost as if they were 
random. Therefore pruden~e demands that roundoff be sampled more 
than once before conclusions be drawn about a program's 
vulnerability to roundoff. For instance, most matrix inversion 
programs, and certainly those using LUPA and HUPA above, will 
generate different ro~nding errors if the column ordering of the 
matrix being inverted is changed. To be more specific, let S be 
the nxn permutation matrix that reverses ordert that is, 
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I O O t 
S = I O 1 0 when n = 3. ~ 

I 1 O O 
Then the inverse of S H S is S W S , but the computed solution 
Z of (SAS) Z = ml usual 1 y differs from S X S because of 
differences in the way roundoff occurs. Calculating r and q 
from Z instead of X gives a second opinion about the effect of 
roundoff upon the program under test. 

To calculate m = LCM( p+1_' p+2, p+3, ... ' p+2n-t ) 

' 
do thus: 

GCD (x, y): while y ,t 0 do ( z := y 
* 

y ·- )( rem z . )( := z } . .- ' !I 

return GCD := I>< I end GCD II 

LCM Cx ,y>: if x=O then return LCM : == 0 
else return LCM ·- ( fyl/GCD<x,y> >*lxl end LCM. .-

m : = p+1 ; fork= p+2 to p+2*n-1 do m := LCMCm,k) ; 
yields rn. 

For e>carnpl e, 
n = B 
m = 360360. 

when p = 1 , 
n.= 9 
m = 12252240 

we find 
n = 10 or 11 n = 12 
m = 232792560 m = 5354228880 




