GAUSSIAN ELIMINATION with EXTRA-PRECISE ACCUMULATION of PRODUCTS

NP N NP P N I T T P N TG NG NI P P P N I PO T P N N A A e P T T N P P P P N P P P P P P N T e N e N e e P P N P P P P R e Ny P Py

—— is it worth the cost ? ——

W. Kahan, April 23, 1983
Univ. of Calif. @ Berkeley

Issues:

1. How to do it? .
a. Extended precision sums in inner loops. (Fagt & cheap)
b. Extended precision temporary vectors. (Slowed by memory)

2. What good is it?

a. More accuracy in "systematically ill-conditioned" cases,
almost as good as if all data were stored with a few.
extra bits; but otherwise the improvement is small.

b. Error and its bound grows less quickly with dimension,
so0 improvement is most apparent when dimension is huge.

F. What does it cost?
a. Hardware is more complicated, but not much slowed.
b. Subexpression semantics harder to compile.
c. Method 1a may stumble over paging problems; this can be
largely circumvented by trickery and some use of 1b .

4. Examples and comparisons: :
a. 0On B087-like architectures (INTEL 86/330, IBM PC FORTH)
b. Using software floating-point (hp-85, APPLE III)
c. High-performance machines (ELXSI &400, ...)

S. Programs listed below:
L R R T L W Yl Ve VL VL Y VT VR T VT VI VT VT VT, VT, VI VI V)
LUFPA: Triangular Factorization with extra-precise
accumul ation of inner products (method 1a), . and
alternative column—-oriented code using extra-precise
vector to accumulate scalar#vector products (meth. 1b).

LUXFBR: Forward and back sustitution by two methods, like LUFA .
RBAX? Residual by two methods, like LUFPA .

VNORM: Root-sum—squares norm with extended-range accumulation
of squares (method 1a), and alternative code using no
extended range but three times slower. :

RESYS: Solve system of linear equations and refine solution
iteratively, using LUPA, LUXPB, RRAX and VYNORM .

HUPFA: A faster version of LUPA , and

HUXPR: & faster version of LUXPEB , to be used together in
situations where page faults seem to preclude extra-
precise accumulation of products.

n

LUPA: W. Kahan, Apr. 23, 1983

Lo 2 2 ")

Given a square matrix A , we seek triangular factors to satiasfy
LU = PA ,

where

L = unit lower triangular matrix,
U = upper triangular matrix, and
P = permutation matrix represented by indices Ipl...1]
thus: (Px)Lil = x[CIplCild ,
inverse(P) = transpose(PF) ,

(inverse(P)y)[il = y[jl where Ipljl=i .

I+ 1 > 3§ then : .
ACIplil,jd = LLi,j1%#UCi,3] + Sum{k<j>(LOi.kI*UCKk,jd)
else
ACIplil,jd = 1%ULi,j] + Sum{k<i}(LIi,kI*ULk,§JT) .

Subroutine LUPA(A, LU, Id, IP, N):
Integer values Id, N ; Integer variable IFIN+] ;. _
Real variables ALId,N+]1, LUCId,N+]1 § ... they may coincide.

Integer i, J, k, imax 3

Logical UnSav ; ... to save & restore Underflow flag.

Real cmax, dmax, rndf, undr, ULCN+] ;

Tempreal tsum, tpmax, tsmax, TIN+] ;3 ... more precise than Real
Equivalence (U,T) ; ... Save storage by packing U inside T .
Common /L1BWSP/ T i ... Shares workspace with other programs. /M

«.s.Blossary:

e ALId,N+] is a square matrix dimensioned ALId, at least N 1J
cee LUCId,N+] will hold LULi,j] = LIi,j] for i>j ,

P = Uli,Jj] otherwise .

cse (The program allows LU to overwrite A .)

0o IFCN+] will hold permuted indices 1, 2, 3y «s.4y N thus:
ane (Px)Cil = x[IPCi]] .

s J is & column index that will run 1, 2, 3, ..y N .

. UCN+] will hold temporarily column i of U.

aea TIN+] will hold temporarily (column j of L)*UCJj,J] .

«os cmax holds the max. magnitude in column §j of A .

cas dmax holds the max. subdiagonal magnitude in column j of FA
e rndf = 1.000...0001 - 1 , measures roundoff among Reals.
— undr = tiniest positive number , at or beyond underflow.
s i is & row index that will run 1, 2, 3, ..y N .

e tsum = ALIPLil,j] - Sum{k> (LLTi kI*®ULK,JjI)

e tsmax = max. |tsum| in column j 3 if tsmax/(8j) > cmax ,
cea U has grown so big that roundoff may be excessive, soO
. columns 1 and j of A should be swapped. (Very rare.)
es e tpmax = max. subdiagonal (tsum{ in column j +for pivoting.
.o imax = row index where tpmax occurs.

UnSav := UndrflowFlag(.false.) 3 ... to save % reset U-flag.
aee Gradual Underflow during factorization is ignorable.

™

3

rndf 1= 1,0 ; rndf := nextafteri{rndf, 2.0) - rndf i
or else try rndf = 4.0 3 rndf 3= rndf/3.0 j
rndf 3= abs((rndf - J5.0/4.0)%#3.0 - 1,0/4.0) ;
undr = 0.0 ;3 undr := nextafter(undr, 1.0) 3
or else try undr s= underflow threshold for the Reals .

Initialize 1IF s
For i =1 toNdo IPLil 1= i 3

Outer loop, traversed once per column (j)
For J =1 to N -

cmax := 0.0 3 tsmax 1= 0.0 3

e« Compute column j of U :

For i =1 to j-1 ;
tsum := ALIPCil, jJ 3 cmax t:= max{ cmax, abs(tsum) } 3
For k =1 to i-1 do tsum s= tsum — LULi, kI*UCk] ;
ULil == tsum 3 tsmax = max{ tsmax, aba(tsum) 3 ;

next i ;

««s Compute potential pivots :
dmax = 0.0 3§ tpmax := 0.0 3 imax = j 3}
For i = J to N ;
tsum z= ACIF[il, j1 ;§ dmax := max{ dmax, abs(tsum) > 3}
for k=1 to j-1 do tsum = tsum - LUCi,kI*ULk] 3
TLi) = tsum 3 tsum := abs(tsum) ;
if tsum > tpmax then { imax =1 3 tpmax := tsum J 3}
next i 3
cmax = max{ cmax, dmax } § tsmax := max{ tsmax, tpmax J 3
If imax = j then {
if tpmax = 0.0 then (
TLid := max{undr, rndf*dmaxl 7
go to DivByPiv 3}

3

else { ... exchange rows J and imax .
for k =1 to j—1 3 dmax = LUCimax,kl 3}
LUCimax 4k] 3= LULj,k] : LULj,k] := dmax 3
next k 3
k s= IPCimaxl ; IPLimax] := IPLJj] 3 IRPLJ] = k ;

9
r s

If tsmax/(8%j) > cmax then {)

Disgplay {"Warning: Extraordinary growth of
intermediate results in LUPA may lose
too much accuracy. To avoid this loss,
recompute after exchanging columns 1
and ", J ¥} ; .

tsum 3= 0.0/0.0 3§ ... signals Invalid Operation.

?
DivByPiv: tsum == TCLimax]l 3 TLimax] 2= TLjl 3 ULJI 1= tsum ;
for k=1 toJj do LUCk,jl := UCk] ; «=e pPivat.
for k = j+1 to N do LUCk,jJ z= TCki/tsum § ... = LLk,jl.

next J 3
UnSav := UndrflowFlag(UnSav) ; ... Restore Underflow flag.
return §
end LUFA .

csassssae Alternative Column~-Oriented Code nessaasen

Subroutine LUPA(A, LU, Id, IFP, N): !
Integer values 1d, N3 Integer variable IPCN+] . '
Real variables ACLId,N+], LULId,N+] § ... they may coincide.

Integer i, Jj, k, imax 3

Logical UnSav § ... to save & restore Underflow flag.

Real cmax, dmax, smax, rndf, undr, 2z j}

Tempreal t, tpmax, TIN+] ; ... more precise than Real

Common /LIBWSP/ T ; ... Shares workspace with other programs.

«.=.Blossary: '
- ALId,N+] is a square matrix dimensioned AllId, at least N 1]

cne LUCId,N+]1] will hold LULi,jl = LEi,d]1 for i>j ,

cas = Uli,jl otherwise .

ces (The program allows LU to overwrite A .)

- IPCN+] will hold permuted indices 1, 2, 3, ..., N thus:

ass (Px)Lil = %xCIPCil] .

ase J is & column index that will run 1, 2, I, .4 N .

cen TCN+]1 will hold temporarily column j of U , and then it
ens will hold temporarily (column j of L)#ULj,jl .

e cmax holds the max. magnitude in column § of A .

- dmax holds the max. subdiagonal magnitude in column j of PA
ase rndf = 1 000...0001 - 1 , measures roundoff among Reals.

s e undr = tiniest positive number , at or beyond underflow.

. s i is a row index that will run 1, 2, J, ..., N

cse smaxX = max. (TLil] in column j 3 if smax/(8Jj) > cmax , ~
cee U has grown so big that roundoff may be excessive, s
cee . columns 1 and j of A should be swapped. (Very rare.)
toa tpmax = max. subdiagonal |T[il] in column § for pivoting.
ces imax = row index where tpmax occurs. ‘

UnSav := UndrflowFlag(.false.) 3 ... to save & reset U-flag.
ces Gradual Underflow during factorization is ignorable.

rndf := 1.0 3 rndf := nextafter (rndf, 2.0) - rﬁdf H

— or else try rndf 2= 4,0 3 rndf = rnd$/3.0 ;

-) rndf := abs((rndf - S5.0/4.0)%3.0 - 1.0/4,0) i
undr := 0.0 3 undr := nextafter (undr, 1.0) g

cns or else try undr := underflow threshold for the Reals .

caa Initialize 1IP

For i =1 to Ndo IPLi]l] :=1 3

ene Outer loop, traversed once per column (j) @
For jJ =1 to N g
tpmax t= cmax := dmax 1= smax := 0.0 ;
«ae Initialize column T .
For 1 =1 to N j

TCil 2=z 3= ALIPCil, Jj)l § 2z := abs(z) ;
cmax = max{ cmax, z 2}

if 1 >3 then dmax := max{ dmax, z J 3
next i 3

For k=14%0 j-1 3 ... subtract Ulk,jl*{(col.k of L).
LUCKk,J] 3= 2 2= TCK] §3 .. = UCk,J1 .
smax := max{ smax, abs(z) 2} 3 :
for i = k+1 to N do TCi] := TCLil - LUCi,k1I*z j§
next k 3
ees Locate pivot t 3 it maximizes |[TEill .
imax t= § 3
For 1 = j to N 3
t := abs(TLil) ; .
if t > tpmax then { imax := i § tpmax
next i1
If imax = 3§ then {
if tpmax = 0.0 then {
TLJid := max{undr, rndf*xdmax’>
go to DivByPiv ?

t 3

>

else { ... exchange rows Jj and imax .
for k =1 to j—-1 ;3 dmax := LULimax,kl ;
LUCimax 4k3 == LUCJ, k] 3 LULCj,k] == dmax ;
next k ;
k s= IPLimax] 3 IPLimax] := IPLJj1 3 IPLJ] 2= k 3
3
If max{ smax, tpmax >/(8%j) > cmax then {

Display {"Warning: Extraordinary growth of
intermediate results in LUFPA may lose,
too much accuracy. To avoid this loss,
recompute after exchanging columns 1

) and ", Jj ¥ 3
t 2= 0.0/0.0 3 ... signals Invalid Operation.
3

DivByPiv: t 2= Tlimax]l 3 TCLimax] := TLJj1 }

LULj,3jl ==t ;3 ... = pivot ULj,id .

for k = j+1 to N do LU[Ck,Jj] 2= TCkl/t 3 ... = LLk,J] .

next J 3 .
UnSav := UndrflowFlag(UnSav) ; ... Restore Underflow flag.
return ;
end LUPA .

The two LUPA codes should give identical results, including
roundoff, but at different speeds depending upon the dimension N
and details of the machine’s memory management. On a machine

that accumulates products in a fast-access register, the first
code should be the faster while N is so small that all data fits
in a few pages and cache-blocks; otherwise the second code should
be the faster, the more so as N increases. (Cf. HUPA below.)

P A e s s

LUXFB: W. Kahan, Apr. 16, 1983 f‘\

This program solves LUX = PB for X given matrices

L = an unit lower triangular NxN matrix and
U = an upper triangular NxN matrix stored in LU thus:
if i > § then LULi,j] = LLi,jl else LUCi,jl = ULi,jl.
B = an NxXM matrix, and
P = an NxN permutation matrix represented by indices Ipfil
thus: (Px)Li) = xCIpCill . '
X = an NxM matrix that will be calculated by solving in turn

LC = PB , CLi,j3 + Sum{k<i>(LLi,kI*CCk,31) = BLIpCil,Jj]
ux = ¢ , Sum{k>iX>(Uli,kI*X[k,J]) = CLi,Jjl .-
The solution X may overwrite B but not LU .

Subroutine LUXPB(LU, Id, IP, N, B, X, M):
Integer values Id, N, M ;§ 1Integer variable IPEN+]1
Real variables LUCId, N+1, E{Id, M+], X[CId, M+] j;

Integer 1, i, k 3

Real CION+1 ; .

Tempreal tsum ;3 ... more precise than Reals .

Common /LIBWSP/ C ;

Logical UnSav § ... Gradual Underflow matters only in X .
Unsav := UndrflowFlag(.false.) i

For j =1toMg; ... solve for column j :
for i =1 to N ;
tsum := BLIPLil,j]
for k=1 to i-1 do tsum := tsum — LUCi,kI*CL[k] g
CLil == tsum ;
next i j;
for i = N to 1 step -1 3
tsum = CLi] 3 : ’
for k = i+1 to N do tsum := tsum - LUTi,kI*CLCk] g
UnSav := UndrflowFlag(UnSay) ; ... Expose Underflow.
XLi,J] := CLid := tsum/LULi,i] ;
UnSav := UndrflowFlag(UnSav) ;3 ... Hide Underflow.
next i j
next j
UnSav := UndrflowFlag(UnSav) ;3 ... Reveal X
return i
end LUXPB .

.

s Underflows.

asessenys Alternative Column-Oriented Code cescsnce

Subroutine LUXPB(LU, Id, IP, Ny, By X, M):
Integer values Id, N, M ; Integer variable IPIN+]1 ;
Real variables LULCId, N+]1, RU{Id, M+]1, X[CId, M+1 ;

Integer i, Jj, Kk j;

Real =z g ean %1
Tempreal CIN+] ; ... more precise than Reals . ane #2
Common /LI1BWSP/ C ; ... shared workspace.

Logical UnSav ; ... Gradual Underflow matters only in X .
Unsav t= UndrflowFlag(.false.) ;

For j=1toM; ... solve for column Jj 1

for i =1 toN do CCil] 1= BCIPLil,jd ;

for k =1 to N ;
z t= CCkl 3§ CCk] 2= =z 3 ese #3F
for i = k+1 to N do CrCi] := CCil] - LUCi,k)*z ;
next k 3

for Kk = N to 1 step -1 3
UnSav := UndrflowFlag(UnSav) 3 ... Expose Underflow.
XCkyjd == := CCkI/LULK,k] g eas ¥4
UnSav := UndrflowFlag(UnSav) ; ... Hide Underflow.
for i =1 to k-1 do CCil := CCi1] ~ LUCi, k1I*z 3
next k i cee #5
next j 3
UnSav := UndrflowFlag(UnSav) § ... Reveal X ‘s Underflows.
return ;
end LUXFE .

#Notes: The foregoing two codes should produce identical results
including the effects of roundoff. However, the second code can
be modified slightly to give marginally more accurate results at
no significant extra cost provided multiplication of Real by
Tempreal costs at most negligibly more than Real by Real .
First merge declarations ... %1 and ... #2 to read
Tempreal =z, CICN+] ;3 ... more precise than Reals. ... 1% & 2%
Next simplify statement ... *#3 to read
z = CCk] ; ces oK
Finally, but only if references to UndrflowFlag() cost rather
more than a handfull of memory references, replace ... %4 by
CCk] 2=z := CLk1I/LUCk,k] 3) sae 4%
and move the adjacent statements to bracket a new statement
inserted after ... #3 thus:
next k 3 ees #*5
UnSav t= UndrflowFlag(UnSav) § ... Expose Underflow.
for i =1 to N do X[i,jl 1= C[i] ;
UnSav := UndrflowFlag(UnSav) 3 ... Hide Underflow.
next j 3 ... etc.

(Cf. HUXPEB below.)

REBAX: W. Kahan, Apr. 16, 1983 M
ey
This program calculates a residual R = B - AX given matrices

B = an NxM matrix,

A = an NxN matrix, and

X = an NxM matrix.
R may overwrite B but not A nor X .

Subroutine RBAX(A, Id, N, X, M, B, R):
. Integer values 1Id, N, M ;
Real variables A, X, B, R ;

Integer i, Jj, k :
Tempreal tsum § ... more precise than Reals .

For j =1 toM; ... compute column j .
for 1 =1 toNgi ... row i .
tsum := BLi,jl j

for k =1 to N do tsum := tsum — ACi, kI*XT[k,j] ;
RCi,jJ := tsum ;
next i 3
next j 3
return i
end RBAX .

cessssesn Alternative Column—-Oriented Code .ecoicssc —

Subroutine RBAX(A, Id, N, X, M, B, R)1
Integer values Id, N, M
Real variables A, X, B, R 3

Integer i, Ji, k 3

Real =z

Tempreal TI[N+] ;3 ... more precise than Reals .
Common /LiIBWSP/ T ; ... shared workspace.

For j =1 tto M3 ... compute column j .
for i =1 toN do TC[il]l := BCi,Jil :
for k=1 toNgj; z s= =X[k,3l
for i =1 to N do TCil = TCil + ALi, klI*z
next k ;
for i =1 toN do RLi,j] := TLil ;
next j 3
return i

end RBAX .

VNORM: W. Kahan, Apr. 14, 1983

PP Ar e e

For any NxM matrix B ,)
VNORM(B, Id, Ny M) = || B || = 8GRT(trace(B'B))
= BERT(Sum{ 1j<M, 1<isn > (Bli,jl**x2)

where B 1is dimensioned BLId, M+] .

Real Function VNORM(B, Id, N, M)¢
Integer values 1Id, N, M 3}
Real variable BEId M+] ;
Tempreal t i
t t= 0.0 ;
for j=1 to M do for i=1 to Ndo ¢t 1= t + Bl[i,jl**2 ;
return VNORM := SERT(t) 3
end VNORM .

sesscscas Alternatively, csssansss
‘if Tempreal .is unavailable then the following code avoids aver/

underflow at the cost of some speed and accuracy.

Real Function VNORM(B, Id, N, M):
Integer values Id, N, M 3
Real variable BCId, M+1 ;
Real s, d, =z 3
Logical UnSav ; ... to save & restore Underflow flag.

UnSav := UndrflowFlag(.false.) j
d =g 1= 0.0 3 .
for j =1 toM; for i =1 to N ;
2z := abs(Bli,jl) ;
if =z >d then { 5 1= g#(d/z)#%%2 + 1.0 3 d :=s5 1}

else if z > 0.0 then s := g + {(z/d)*»*2 ;
next i 3 next J j; » ‘)

UnSav = UndrflowFlag(UnSav) ;3 ... Ignore Underflows.

return VNORM := d*SGERT(s) 3}

end VNORM .

10 .
5E§I§= W. Kahan, Apr. 14, 1983 P

This program uses iterative refinement to solve AX = B and
returns RESYS = || B - AX |l , where

A = an NxN matrix dimensioned ACId, N+1 ,
B=an NxM matrix dimensioned BL[Id, M+] , and
X = an NxM matrix dimensioned X[Id, M+1 .

Real Function RESYS(A, 1d, N, B, M, X):
Integer values 1d, N, M ;
Real ALCId, N+1, BCI1d, M+]1, XCId, M+1 ;

Integer i, Jj, k, L, IPIN+1] ;

Real Rold, Rnew, WSL Id#®(N+M+1)+ 1 ;

Common /L2BWSP/ WS ; ... shared work—-space.
Equivalence (IP,WS) § ... packs IP inside. WS .

Call LUPA(A, WS[Id+11, Id, IP, N) 3 ... LU = PA .
Call LUXPB(WSLId+11, Id, IP, N, By X, M) 3 ... LUX = FPB .
Rold 2= 0.0 3 L = 1+Id#(N+1) ; Go to Residual 3

Lcop: Rold := Rnew 3
Call LUXPB(WSLId+11, Id, IF, N, WSLL31, WSLLI, M) 3
P LUZ = PR ,~rand Z overwrites R in WS .- ’

For j =1toM3; ... do X s=X + 7 .
k s= (N+j)*Id ;
for i = 1 to Ndo X[i,jl := X[i,Jj] + WSLk+il ;
next Jj 13 :

Residual: Call RBAX(A, ID, N, X, M, B, WSIL]) 3

ces R=B-AX 1in WS .

Rnew := VNORM(WSLCL]1, Id, Ny M) : ... = [R |] .

if (Rold = 0.0 .or. Rold > Rnew) then go to Loop ;:
return RESYS := Rnew
end RESYS .

Note: To make this code run faster on a paged machine when N is
huge, replace LUPA and LUXPE respectively with HUPA and HUPXB
respectively.

11

HUPA: : W. Kahan, Apr. 17, 1983
Given an NxN matrix A , this program does the same as LUFA
except faster when N is very large. It calculates factors

LU = PA ,
where
unit lower triangular matrix,
upper triangular matrix, and
permutation matrix represented by 1nd1ce5 Ipf...]
thus: (Px)Lil = xCIpCill .

L
u
P

I+ i > 3§ then
ALIpLil,] = LEI,J]*UCJ,JJ + Sum{k<jx ¢ LLi. kJ*ULCK,J1)
else)
ACIpCil,j]l = 1*®UCi,J] + Sum{k<il(L[i,kJ*U[k,j]) .

But, to diminish the performance degradation caused by page faults
and other artifacts of memory management, HUPA packs L thus:
LCi,j] = HULCN+1-i+j, N+1-i] for i >j .

Subroutine HUFPA(A, HU, Id, IF, N):
Integer values Id, N ;3 Integer variable IPLN+1] ;
Real variables ALId,N+], HULId,N+] ;3 ... they must NOT overlap.

Integer i, j, k, imax, L 3

Logical UnSav ;3 ... to save & restore Underflow flag.

Real cmax, dmax, rndf, undr, UCN+] ;

Tempreal tsum, tpmax, tsmax, TIN+] § ... more precise than Real
Equivalence (U,T) 3 ... Save storage by packing U inside T

Common /LIBWSP/ T ;3 ... Shares workspace with other programs.

.« .ClOssary:

.cus ACId,N+] is a square matrix dimensioned ACId, at least N]
ers HU[Id N+1 will hold HULi,jl = LEN+1-3, i-j1 for i > j§ ,
cne = ULi,j] otherwise .

. (The program expects HU and A NOT to overlap.)

e IPIN+] will hold permuted indices 1, 2, 3, ..., N thus:
ces (Px)Cil = x[IPCil] .

ane J is a column index that will run 1, 2, 3, sy N .

ass UCN+1 will hold temporarily column j of U .

ens TEN+]1 will hold temporarily (column §j of L)i#ULj,j] .

e cmax holds the max. magnitude in column § of A .

.o dmax holds the max. subdiagonal magnitude in column j of PA
«aa rndf = 1.000...0001 - 1 s measures roundoff among Reals.
. undr = tiniest positive number , at or beyond under+flow.
. i is a row index that will run 1, 2, 3, ...y N .

fen tesum = ALIPLil,j] — Sum{k>(LLi kI*UCk,j3) .

ave tsmax = max. [tsum| 1in column j § 1 tsmax/(83) > cmax ,
- U has grown so big that roundoff may be excessive, so
- columns 1 and j of A should be swapped. (Very rare.)
. tpmax = max. subdiagonal (tsum] in column j for pivoting.
mes imax = row index where tpmax occurs.

UnSav := UndrflowFlag(.false.) 3 ... to save & reset U-flag.
con Gradual Underflow during factorization is ignorable.

12

rndf = 1.0 ;3 rndf := nextafter(rndf, 2.0) - rndf ;

. or else try rndf := 4,0 3 rndf 1= rndf/3.0 3)

cee rndf := abs((rndf - 5.0/74.0)%#3.0 - 1.0/4.0) , .
undr := 0.0 ;3 undr := nextafter(undr, 1.0)

e or else try undr := underflow threshold for the Reals .

su e Initialize 1IP :

For i =1 to Ndo IPLil :=1i ;
saa Outer loop, traversed once per column (j) :
For Jj =1 to N ;
cmax := 0.0 3 tsmax = 0.0 ;
««« Compute column j of U :
For i =1 to j-1 ;
tsum := ACIPLil, jJ § cmax := max{ cmax, abs(tsum) 2
L 2= N+1-i ;
For k =1 to i-1 do tsum := tsum - HULL+k,LJI*UCk]
HULi 3] 2= ULi] := tsum i
temax := max{ tsmax, abs(tsum) ? 3
next i j;

‘an

«=s Compute potential pivots :

dmax = 0.0 3 tpmax := 0.0 ; imax := j 3

For 1 =Jj to N
tsum := ACIPLil, J] § dmax := max{ dmax, abs(tsum) 3 j
L 2= N+1-i ;
for k =1 to j-1 do tsum := tsum - HULL+k,LI*ULCkK] 3

TCil := tsum ;3 tsum := abs(tsum) ~
if tsum > tpmax then { imax 2= i 3 tpmax := tsum 3 ; __
next i ;

cmax 1= max{ cmax, dmax > 3 tsmax := max{ tsmax, tpmax I 3
If imax = j then {
if tpmax. = 0.0 then {
TLj) := max{undr, rndf#dmaxl :
go to DivByFiv 3
¥
else { ... exchange rows j and imax .
L := N+il-imax 3 1 2= N+1-j ;
for k =1 to j-1 3 dmax 1= HULL+k,L] ;
HUCL+k,L] 2= HUCLi+k,i] 3§ HUCi+k,1] := dmax 3
next k ;
k 3= IFCimax] g IFLimax] 2= IPLJ] 3 IFCJ] = k 3

¥

If tsmax/(8%j) > cmax then {

Display {"Warnings Extraordinary growth of
intermediate results in HUPA may lose
too much accuracy. To avoid this loss,
recompute after exchanging columns 1
and ", J ¥ ; .

tsum := 0.0/0.0 3§ ... signals Invalid Operation.

)
DivByPiv: tsum := TLimax] 3 TCimaxl s= TLJjJ 3
HUCj,3d #= ULJj] t= tsum 5 ... = pivot ULj,i] .

for k = 1 to N-j do HULj+k,k] s= TCN+1-kl1/tsum ;)
next J j eee = LEN+1-k,31 . -
UnSav := UndrflowFlag(UnSav) ;3 ... Restore Underflow flag.
return 3 .

end HUFA .

HUXPE: . W. Kahan, Apr. 18, 1983
PP Ar N s
This program solves LUX = PR for X given matrices
L = an unit lower triangular NxN matrix and
U = an upper triangular NxN matrix stored in HU thus:
if i > Jj then HUCi,jJ LEN+1-j,i-j]
else HULi,Jj] Uri,ji .
B = an NxM matrix, and
P = an NxN permutation matrix represented by indices IplCil
thus:s (Px)Lil = xEIplCil] .

X = an NxM matrix that will be calculated by solving in turn
LC = PB ,° CLi,il + Bum{k<iY(LCi kI*CLk,j1) = BLIplLil,Jjl
Uux = ¢ , Sum{k>i>(ULi, kI*X[k,j§j1 > = CLi,J§] .

The solution X may overwrite B but not HU .

Subroutine HUXPB(HU, Id, IF, N, By X, M)¢
Integer values Idy, N, M ;3 Integer variable IPCN+1
Real variables HUCId, N+]1, BCId, M+], X[Id, M+1 3

Integer i, 3, k, L 3

Real =z, CIL[N+3] 3

Tempreal tsum, TIN+] ; ... more precise than Reals. ... #1
Equivalence (C,T) ; ... Save storage by packing C inside T .
Common /LIBWSP/ T 3 ... shared workspace.

Logical UnSav ;3 ... Gradual Underflow matters only in X .
Unsav i= UndrflowFlag(.false.) ;

For j=1%toMgj; ... solve for column J :
for 1 =1 to N
tsum = BCIPEiJ,jl 35 L == N+1-i 3
for k =1 to i-1 do tsum := tsum ~ HUCL+k,LI*CCk] j

CLil 2= tsum ; . ees #2
next i g
for k =N to 1 step -1 do TEkl := CEk] g3 ene #3F

for k =N to 1 step -1 ;
UnSav := UndrflowFlag(UnSav) : ... Expose Underflow.
XEkyjd 3= 2 1= TLk1/HUCk,k] ; es. *4
UnSav := UndrflowFlag(UnSav) § ... Hide Underflow.
for i1 =1 to k=1 do TLil := TLil - HULi k1*z ;

next k 3 Lewse %5
next j ’
UnSav := UndrflowFlag(UnSav) ;3 ... Reveal X ’'s Underflows.
return ;

end HUXPR .

*Notes: The foregoing code can be modified slightly to give
marginally more accurate results at no significant extra cost
provided multiplication of Real by Tempreal 1is only slightly-
slower than Real by Real . First merge declaration ... #1 with
its two neighbors thus:

Tempreal =, tsumy, TIN+] ;3 ... more precise than Reals. ... 1%
Next replace two references to CCL...1 by T[...] in statement
.. ¥2 and its predecessor: and delete statement ... *3 .
Finally, but only if references to UndrflowFlag() cost rather

14

more than a handfull of memory references, replace ... ¥4 by

TCk] 2= 2z 3= TCkI/HULK,k] R
and move the adjacent statements to bracket a new statement s
inserted after ... #5 thus:

next k 3 e *#5
UnSav := UndrflowFlag(UnSav) ; ... Expose Underflow.
i =1 to N do XCi,jl z= TLil ;
UnSav 2= UndrflowFlag(UnSav) j; ... Hide Underflow.
§ ... etc.

Comparison of HU... with LU... :
La vl Pl T a VT Ve VL VT VT VI VI VL VL VT VI VI, VI VI VT VI VT VI VL VT VI VI VI VL VT, VT, VR VL VT V)
Programs, like RESYS , that use LUPA and LUXPB can instead
use HUPA and HUXPR respectively to get the same results but at
different speeds. At first sight, two pairs of programs appear to
be under considerationy actually there are three pairs:
LU... accumulating scalar products extra precisely (method 1a).
LU... alternative versions using column—-oriented code (1b).
HU... with LCi,j3 = HUCN+1-i+j, N+1-1] .,
The HU... codes should be never much slower than the first LU...
codes, and always significantly faster than the second LU...
codes, even on vectorized and pipelined parallel machines, unless
compiled with an allegedly optimizing compiler that fails to
recognize and optimize subscript references of the form HULL+k,L]
when L 1is fixed and k varies in an inner loop. Here we assume
that arrays are stored by columns as prescribed for Fortran. oy

The extra-precise accumulation of scalar products is a practice in -~
decline on the largest and fastest computers. Part of the decline
is attributable to the omission, from the instruction sets of

newer machines, of an instruction that evaluates a product to wider
precision than the factors; that omission may be motivated by the
belief that page faults and similar artifacts of memory management
will drive numerical analysts to use column-oriented codes
exclusively rather than sacrifice speed to achieve a little more
accuracy. The HU... codes sacrifice neither speed nor accuracy,

s0 perhaps the issues should be reconsidered.

(=

Transpositions and Permutations: W. Kahan, May 8, 1983
La L VL VL VT VI VT VT VL VT VT P20 VI V2 Y2 VR VT VT VT VL VT VI VL VL VL VI VT, VI VY, V2, V2, ¥
There are two ways to keep track of the pivotal exchanges of rows
during Gaussian Elimination. . One way uses an array ipl.]l of n
indices ipl1l, ip[2], ...4 iplnl to represent the n by n
permutation matrix P directly thus:
row iplil of A is row i of PA .

Hence, <{(ipC13, ipf2]1, ..., ipfnl } is a permutation of the
indices {1, 2, ..., N > . The second way represents F as a
product of n-1 transpositions thus:
P = (n-1y kIn-11) (n-2, kin-21) (...) (3, k{31 (2, k[2]1) (1, &k[1])
where each (i, k[il) is a transposition (exchange) of .the rows
in positions i and k[il 3 moreover i € k[il . These indices
kL.l are called "imax" in programs LUPA and HUFA , where they
are encountered and applied in order k(C11], k[23, k[3], ..., kin-11
to produce the array ipL.]1 thus:

for i = 1 ton do iplil := i ; ... initialization

for i =1 to n-1 do swap(ipl[il, ipCk[il]]) 3 ... build ip[.1]

Given this array iplL.] , can we reverse the process to recover
the array k[.]1 ? Yes. But first the permutation iql.]l inverse
to iplL.]1 nmust be calculated thus: .
for i =1 ton do iqliplil] :=1i § ... inversion .
Now row iqlil] of PA is row i of A . Next we gradually
transforr ipl.] and iql.] back to identity permutations while
keeping them inverse to each other as kL.l is recovered thus:
for 1 = 1 to n-1 do begin
k[i] := iplil 3 ... reversion
swap(ipfil, ipLiglill) 3 ... 50 now iplil=i
. swap(iqfil, iqfklfill) 3 ... s0 now iqlil=i
end 3

'One application of the reversion is to reveal the sign of
det (A) = det (PA)/det(P) = det(U)/det(P) , where
det(P) = (-1)"{(number of instances when k(il > i) .

Another application is to the encoding of FP within L to
dispense with the bother of providing for the array IF[.]1 when
the factors L and U are saved for subsequent re-use. The encode
function E(x) maps the reals x with |[x] £ 1 to |E(x)]| > 2 :

if x=0 then E(x) := Copysign(2, x) else E(x) := Bcalbi{x, K)
where K 1is an integer barely large enough that Scalb(1.0, K)
overflows to infinity. K = 128 for Single, or 1024 for Double
precision in the proposed IEEE standard p754. The decode function
D(x) inverse to E(x) is

if x is infinite then D(x) := Copysign(1l, x)

else if |Ix] = 2 then D(x) := Copysign(0, x)

else D(x) := Scalb(x, -K) 3 ... and ignore Underflow .
Then to encode IPL.] within L we revert IF[.]1] to k[.]J and
then replace LI{kL[j1,j1 by E(LCKLj1,j) whenever k(jl > Jj . To
recover kL.l later, we scan { L[i,jl, j < i £ n3J to find
where |LLk[J1,j21 > 1 , thereby determining kLjl > j 3 otherwise
kLjil =3 .

The success of the reversion process above is tantamount to a
Theorem: Every permutation of n positions can be expressed
ittt uniquely as a product of n-1 transpositions
"o n=1,kln-11) (n-2,kln-21) (...) (2,kL21) (1,k[1])
in which each k[il 2> i .

The theorem’s validity can be confirmed by running the following
program:
Program Proof (uptoN):
procedure Nest(m):
if m>0 then for j = m to n do begin
: kEml == j 35 Nestim-1)
end
else begin

for i =1 ton do iplil :=1 j;
for i =1 to n-1 do swap(iplil, ipCk[ill) 3
for i =1 ton do iqlCiplil] := i 3
for i = 1 to n-1 do begin :
if iplil=kli] then begin
swap(ipLil, ipCiqlill)
gawap(iqfil, iqCkl[il])
end
else begin
write{ "Test fails at n ="; n
" with 1= "3 i
" and kC[.1 = "3 k[.]
" ipf.1 = "; ipC.1]
" iqlf.] = "3 iq 73
stop
end
end;
write{ " n = "3 n ; " tested successfully." >

end end Nest ;
for n = 1 to uptoN do Nest(n) 3 write{ "End of test.J
end Proof. v

12

~

%

Inverting the Hilbert matrix: W. Kahany, Dec. 8, 1983
Lo L VT VL VL VR VE VI VI VI VI VTa VI VI VT V2 VI VEL VT V2 P2 VT VT, VI VI V2L VT V1. ¥
Floating-point matrix inversion programs are customarily tested on
an nNxn Hilbert matrix H whose elements are H,,, = 1/(i+j+p-1)
for 1 £ i,j £ n and any integer p > 0 . Because H becomnes
s0 ill-conditioned as n or p becomes big, its inverse W = H™!
becomes difficult to compute accurately in the face of roundoff.
None the less, a way exists to compute W exactly and easily;
it uses a little-known formula W = VHV where V is a diagonal
matrix of integers V; = (-1)3((n+j+p-1)1/n=J)! (G~-1)! (i+p-1)"!)
obtained from a simple recurrence in which only integers appear:

Vi :=2=-n 3 for k=1 top do Vi = (V,/k) (n+k) 3

for § =1 to n=1 do Vse: = (((V,/703+p)) (i=))/J) (n+j-p) .
Then Wi,y = VW W/ ((i+j+p—-1) . (8. Schechter, MTAC, 1959

Since the elements of H are reciprocals of integers, they cannot
be represented exactly in floating-point but must be rounded off.
These initial rounding errors may do more damage to H-=!' than
the inversion program under test. To avoid them, we actually use

A :=mH , where m := LCM(p+1, p+2, p+3, «..y pP+2n-1) ,
which has integer elements all representable exactly in floating-
point provided n and p are not too big. Then the inversion
program is tested by using it to solve- AX = ml numerically for
X . Here 1 1is the nxn identity matrix. Since ideally X
should match W , the error introduced by the program under test
is indicated by displaying & rough measure of the relative error
in X :

r = maxse,s (1Xe,s — Wa, ol 7 1We, sl .
This statistic makes no allowance for the ill-condition of H nor
for the precision of the arithmetic in which X was calculated.
The ill—-condition of H can be gauged from
C = Mmax Ly IHyi, g Wy sl
which exceeds 1 to an extent that indicates how severe is
cancellation when HW =1 is evaluated. The precision is-
indicated by ’
u=1.000...001 - 1.000,...000 = 0,000.,.001

= One unit in the last place carried in numbers near 1 .

Then one figure of merit for the program under test is
q = r/{uc) 3} ’

the smaller is q , the better the program. Normally r < 1 and
Q< ngj3 but when r > 1 the matrices A and H are so nearly
singular that the program cannot be relied upon to get even one
significant digit correct in X , and then the value of q
becomes irrelevant. Another figure of merit is the largest value
of n for which r < 1 3 the larger is this n , the better.

The error r , and therefore q , depend upon rounding errors that
occur during the calculation of X , but rounding errors are not
entirely dependable; they behave sometimes almost as if they were
random. Therefore prudence demands that roundoff be sampled more
than once before conclusions be drawn about a program’'s
vulnerability to roundoff. For instance, most matrix inversion
programs, and certainly those using LUPA and HUPA above, will
generate different rounding errors if the column ordering of the
matrix being inverted is changed. To be more specific, let § be
the nxn permutation matrix that reverses orderj that is,

| © 1
S = | 0 o | when n =3I . N
| 1 o |
Then the inverse of SHS is SWS , but the computed solution
Z of (SAS)Z = ml usually differs from S XS because of
differences in the way roundoff occurs. Calculating r and gq

from 2Z instead of X gives a second opinion about the effect of
roundoff upon the program under test.

O~=0

To calculate m = LCM(p+1, p+2, p+3, ..., p+2n—-1) , do thus:

GCD(x,y): while y # 0 do { z 1=y § y =xremzgj; X =2 3}
. return G6CD = |x| end GCD .

LCM(x,y): if x=0 then return LCM = O
else return LCM = (|y|/BGCD(x,y))#*#|x| end LCM.
m:=p+l 3 for k = p+2 to p+2#n-1 do m := LCM(m,k) 3
.na yields m .
For example, when p =1, we find ...
n =28 n.= 9 n =10 or 11 n=12
m = 360360 m = 12252240 m = 232792560 m = 5354228880

