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An Exception arises when an operation performed by a computer 
has to produce a result to which some people might reasonably take 
exception. Examples are Divi$ion by Zero, Over~low and 
Floating-Point Under~lo~. Though most (but not all) exceptions 
must be rare, too rare to be topics cf everyday conversation, 
they are not so rare that computer programrner·s and users can 
ignore them altogether. This paper presents proposals, many of 
them now implemented on a few computers, to handle arithmetic 
exceptions in a generally satisfactory way at a tolerable cost. 
The proposals are designed to be fully compatible with concurrent, 
overlapped, parallel, pipelined and vectorized computing on new 
hardware that will be designed to support them without precise 
interrupts. Flags and Hodes are proposed to help programmers 
cope with exceptions; Retrospective Diagnostics are proposed to 
help most of the rest of us, who aspire to use computers without 
having to program them. The features of IEEE Standards 754 and 
854 are supported by but not obligatory for the proposals. 

Introduction to EKceptions, their Defaults, and their Flags: 
Words like Error, Exception, Over~low, Invalid and others to 
be mentioned later can refer to a single incident, a class of 
such incidents, or perhaps a state of mind. Equating Exception 
to Error is a mistake; an Exception becomes an Error only 
when it is handled badly. Some programming languages seem to have 
taken bad handling for granted, but they can be taught better; 
or else we can work around them without changing their compilers. 
Ideally, exception handling would be as independent of language 
as the meanings of phrases like "cos(x) " but for three issues: 

Scope: If a program contains a statement that specifie& ~ome kind 
of exception handling, over what part of the program does 
that statement hold sway? 

Pre-emption: Some languages provide exception handling statements 
that derail program control as soon as a run-time Error is 
detected1 but whether any particular Exception is an Error 
may have been removed from the programmer's discretion by the 
designers of the hardware or of the language. 

Efficiency: By taking cognizance of exception handling processes, 
a compiler could improve the speed and reliability of emitted 
rnach i ne code. 

These issues are important, but they will be discussed only after 
the nature of exceptions and their flags have been explained. 
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Table l I Arithmetic Exceptions 

~!I!_ _DescriQtion_0f_Exce2tion_ _Exce2tional_Value_ 

ALLXS ALL exceptions listed below (for treat ■ent ,n aasseJ 

OVFLO 
DIYBZ 
UNFLO 
INXCT 

Floating-point OYerFLON 
Exact • fro• finite operands, 
Floating-point UNderFLOw 
INeXaCT •••• 

like 
±• or a huge number 

1/0 ••• ±• or I huge nu■ber 
6r1du1l vnd1rfloM, or O 

flo1ting-point result rounded 

INTXR 

INVLD 

INTeger exception or eRror like overflow or 1/0 with dubious r11ult? 

ZOVRZ 
IOYRI 
INVDV 
ZTNSI 
ININI 
FODON 
UNDTA 
DTSTR 
NLPTR 

INYaliD aperatton, perhaps one listed below 
0.010.0 
■ I ■ 

One of the two INV1lid DiVisions above 
0.0 • G 
• - m 

Function co■puted Outside its DO"ains e.g. 
UNinitiaJized DaTu■ or vAriable 
Attempted access outside a DaTa STRucture 
De-referencing a Nil PoinTeR 

.... NaN ar ? .... NaN or ? 
•••• NaN or ? .... NaN or ? .... NaN or ? .... NaN or ? 

f-3 8 I I I NaN or ? .... NaN or ? .... NaN or ? .... NaN or ? 

Tablet exhibits a comprehensive (but not necessarily complete> 
list of exception classes, showing five-letter names for them. 
These names are so chosen in deference to a venerable programming 
language that is limited to si>:-letter names; our choices allow ~ 
programmers the freedom to choose one more letter for the names of 
variables associated with the exceptions. Our names have five 
letters instead of fewer to lower the risk of collision with names 
already chosen for other purposes. 

The default results suggested in Tablet are consistent with 
those prescribed by the IEEE standards for five classes of 
exceptions, namely INVLD, OVFLO, DIVBZ, UNFLO and INXCT. The 
other exception classes are not mentioned explicitly by the 
standards. All the exception classes in Tablet will be 
explained in more detail later, after we discuss Flags. 

Each named exception can occur only when an expression or a 
variable cannot be given a numerical value without violating some 
rule that might reasonably have been eMpected to constrain that 
value. Whether rules devised by mortals deserve the same rigid 
obedience as Divine Law is a que$tion for whose contemplation we 
make provision by suspending judgement rather than by terminating 
program execution; to this end, exceptional eMpressions and 
variables have to be assigned values with which the program c~n 
continue execution. On some machines those exceptional values are 
unpredictable except by someone who knows the hardware's wiring 
diagram; on other machines the designer's whimsy is documented 
for the benefit of programmers. Few conventions eMist to keep 
exceptional values consistent from one machine to another, so 
the values provided in Table 1 are just suggestions. ~ 
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Tablet provides a glimpse at the real trouble with exception 
handling, - its diversity. The computing industry ~as spawned 
innumerable schemes to handle exceptions, each with its faithful 
adherents determined to follow their own tao rather than mine. 
We cannot cast their schemes upon the Scrap-heap of History 
without throwing out all their software too, and that waste is 
too high a price to pay for true enlightenment. Instead I hope, 
eclectically, to comprehend all the worthwhile exception handling 
schemes even if no single computer system·s hardware is likely to 
support them all, even if programming languages and compilers all 
go their own ways, even if my hopes verge on the reconciliation 
of the irreconcilable. The ne~t four paragraphs indicate how near 
to irreconcilable are existing schemes to-day, and foreshadow how 
I hope to reconcile them. 

Exceptional Values1 
The symbol 11 0011 appears in the ·l·a!St column of Table 1 to stand 
for a special floating-point number found on machines that conform 
to IEEE standards 754 and 854 as well as on CRAYs and CDC 
Cybers. Although m can be simulated after a fashion on DEC VAX 
and PDP-tt's, most other computers, IBM 370s among them, have 
no practical way to simulate m, and must instead approKimate it 
by the biggest floating-point number available. That is roughly 
1076 on an IBM 370, not nearly so big as the bigger iinite 
values found on many other machines, but acceptably big for many 
applications. Big finite numbers do not always behave like m, 
nor do infinities on diverse machines that have them behave quite 
the same; for instance, t/(1/(-00)) might not yield -m on 
machines that lack the -0 provided by the IEEE standards. But 
Table l ignores discrepancies like that. 

The last column of Table 1 shows a question mark (?) or the 
syrnbol II NaN" for those except i anal values that cannot reasonably 
be appro>:irnated by ~m nor any finite value. The symbol "NaN" 
stands for 11 Not a Number, 11 a special bit-pattern provided for 
certain exceptional floating-point numbers by IEEE standards 754 
and 854. Analogous bit patterns are provided by some machines 
that do not conform to those standards; the CDC Cyber family 
and CRAYs have an "Indefinite'' value; DEC VAX and PDP-11 
machines have a "Reserved Operand." The analogies are imperfects 
only the IEEE standards' NaNs behave in a fully predictable way 
in comparisons and some other conte>:ts. Other computers, IBM 
370s among them, have nothing comparable to NaN for floating
point variables; and very few computers have anything like NaN 
for integers. Therefore, the exceptional value must be regarded 
as undefined or unpredictable <represented by "?"> whenever no 
NaN nor other natural value is available for it. 

To be most useful, exceptional values must be predictable; they 
must be supplied by De~ault, which means that those p~edictable 
values ought always to be supplied except when a program request5 
something else explicitly. For instance, a machine that does 
possess infinities ought to supply one of them when 1.0/0.0 is 
computed by any program that contains no mention of DIVBZ <i.e. 
floating-point division of a nonzero by zero>. A machine that 
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possesses no infinities but can continue execution after DIVBZ 
might supply its biggest floating-point magnitude with an apt sign 
whenever it does so continue. 

To Stop or Not to Stop: 
Must 1/0 stop the machine? No. The default respon&e to DIVBZ 
ought to be continued execution on machines that do have ±m, 
but aborted eKecution otherwise. If not, if the default response 
to DIVBZ were always to terminate execution, a programmer who 
wished to distribute software that used m would have to know the 
diverse magic words that enable its use on diverse machines. On 
the other hand, if the default response to division by zero were 
always to continue execution even if only with a huge finite value 
then quotients like (t/x)/(4/x) at x a O ~ould yield anomalous 
finite values without warning. The choice of a default response 
(continue, or abort> that correlates with the availability of a 
suitable default value < oo, or merely huge> is not so much a 
matter of taste as a vote of confidence <or otherwise> in the 
ability of the rest of the exception handling system to prevent 
calamities. When a program designed to exploit m is run on a 
machine that balks at DIVBZ for lack of an infinity symbol, the 
program will presumably stop rather than deliver a final result 
that is invalidated by that lack. On the other hand, when a 
program expected to abort rather than continue after DIVBZ, but 
con~aining no explicit request to abort, is run on a machine that 
supplies oo and then continues to an invalid conclusion, then 
the Retrospective Diagnostics (to be expl~ined later> should 
alert the user to "Unrequited Division by Zero" in his program. 

The very idea that a program continue execution after division by 
zero must make some readers uneasy, while others will accept it 
without fuss. Similar differences of opinion are aroused by the 
other exceptions listed in Tablet ; even their names are open 
to dispute. (If anyone knows better names, I shall receive their 
suggestions gratefully.> Some of the e>:ceptions are undetectable 
on some machines; only those that conform to IEEE standards 754 
ans 854 can detect INXCT; and some machines, notably CRAYs 
and CDC Cybers, lack hardware to detect UNFLO. To cope with 
these unconformities we shall propose a Henu System that lets 
computers omit certain exception-handling capabilities from their 
menus but does not undermine the overall utility of our proposals. 
Just as one program works better on machines with wider range or 
precision or more memory, another program will work better on 
machines that are more sensitive to exceptions or more tolerant of 
them, but it will not malfunction misleadingly otherwise. 

A few exceptions, notably UNDTA, DTSTR and NLPTR, require for 
their detection that compilers emit extra code to perform bounds 
checking or comparable operations at run time; these operations 
are obligatory in some strongly typed languages, but optional in 
others. We shall advocate the use of nodes to enable or disable 
the detection of various exceptions, implemented in some cases by 
compiler directives and in others by calls upon library programs 
at run-time. Other Modes will alter the exceptional values 
delivered by default; these Modes are made necessary by the 
impossibility of universal agreement upon those exceptional values 
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(else they would not be regarded as eMceptional). 

Diverse opinions about eMceptions eMtend also to strategies for 
• handling them. The most primitive opinion would outlaw Errors/ 
Exceptions altogether, obliging a programmer to insert a test 
and branch into his program at every point where it was necessary 
to preclude them. In general, this strategy is so intolerably 
onerous that many programming languages provide an alternative 
among their control structures; they allow a program derailed by 
an Error to transfer control to an Error-Handler specified by 
the programmer beforehand. These control structures cannot, in 
general, identify the point of derailment precisely nor can they 
generally allow the program to resume eMecution at the point most 
convenient for the programmer. For instance,. different dialects 
of the language BASIC derail at different places within a line 
or statement depending upon how an interpreter or a compiler may 
have rearranged the order of operations within that statement; 
consequently the ON ERROR GOSUB ... and RESUME statements 
often behave differently on different machines. On machines that 
execute operations concurrently in multiple arithmetic units or in 
a pipeline, the cost of a Precise Interrupt that would derail 
and resume precisely is the inhibition of concurrency to an extent 
that must intolerably penalize speed or the simplicity of the 
hardware or both. We need other strategies. 

Another strategy for exception handling is implicit in exceptional 
values provided by default for exceptions th•t do not derail 
computation. Instead of testing and branching to preclude them, 
a program can test for the consequences of eMceptions afterward. 
An ideal exceptional value would be so apposite as to require no 
tests; in this respect m is usually apposite to division of a 
nonzero quantity by zero. An exceptional value cannot be always 
apposite Cit would not be exceptional>1 therefore programs must 
exist that have to test for exceptions after they occur. But the 
tests may have to be postponed until so long after the event that 
no exceptional value is visible despite the damage it has done. 
For instance, the evaluation of Q := <A+B)/(C+D) may produce 
zero, a value not exceptional in its own right, when the correct 
value would have been 0.25 but for the accidental overflow of 
C+D to 00 before it could be divided into a huge A+B. On a 
machine that overflowed to the biggest available finite magnitude 
instead of m, the evaluation of Q might yield 0.5, which 
is more misleading than zero. This is one situation that cries 
out for an Over~low Flag. 

Why we need Flags: 
Another situation that implies the necessity of Flags involves a 
family of utility subprograms that Access and update a complicated 
data structure without any awareness of the use to which the data 
will be put. For all that the utilities know, an exception that 
arises during an update might affect only some part of the data 
structure destined not to be used; therefore, to abort updating 
whenever an exception occurs would be to over-react. On the other 
hand, the programs that invoke the utilities can be expected to 
know whether certain exceptions matter. OVFLO or UNFLO occurring 
during the updating process might be important to the invoking 
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program, in which case it would have to scan the data structure 
for exceptional values after updating it. That scanning process 
could be as cornpl i cated and expensive as the update, but far 1 ess .~ 
rewarding when exceptions are very rare. A better strategy for 
the invoking program is to discover (by testing summary Flags> 
whether OVFLO or UNFLO occurred during an update, and only then 
scan the data structure for entries that may be repaired while the 
data is still fresh. That is why Flags are necessary. 

In short, a Flag is a signal that the computer has had to do 
something disputable, and if the program does not respond to that 
signal and absorb it then the prograrn's user will have to judge 
whether to ignore the signal or not. 

Flags constitute a data-type that shares some of the properties 
of the LOGICAL or BOOLEAN data-type in Fortran or Pascal. the 
POINTER data-type in Pascal or C, and the external integer 
ERRNO in C or certain system variables in APL. A flag can 
be raised or lowered; and when lowered it has the value FALSE 
in BOOLEAN contexts, NIL or NULL in POINTER contexts. A 
raised flag is TRUE in BOOLEAN contexts, but awkward to 
interpret as a pointer at run-time because it points into a Log 
of Retrospective Diagnostics that depend too much upon details 
of the computer system's implementation and limitations; more 
about that later. A language purist might insist that a variable 
of type Flags, say flagO, be coerced explicitly before it i~ 
used in a BOOLEAN context; he might protest that the st~tement 

If flagO then ... 
is linguistically unsafe whereas something like 

If BOOL<flagO> then ... 
is une>:ceptionable. He is right, but I prefer the simpler way. 

Flags can be copied and lowered by as~ignment statements like 
flagl := flag2; flag2 := FALSE (or NIL, or NULL> ; 

and they can be combined and tested like BOOLEAN variables• 
if < flag! and <>: = 0.0) > then . . . else .... 

Raising flags directly, as in statements like 
flag3 :=TRUE; flag4 != flag! and Cx = 0.0) ; 

is legal but abnormal because the resulting flags may be useful 
only in BOOLEAN contexts, their POINTER values having been 
corrupted. 

The System Flags: 
Among the flags are certain System Flags accessible only through 
the flag-valued function FFLAG(excep, ... ) . Its first argument 
excep must be the name of an eKception in Table I J for example 
FFLAG<UNFLO, ... > accesse6 the UNFLO_flag if it exists. But if 
the computer's hardware is incapable of detecting underflow then 
"UNFLO" will be an undefined name detectable at compile-time; if 
the compiler overlooks this lapse then the expression 
FFLAGCUNFLO, ... > will cause a DTSTR exception at run-time and, 
if that does not derail execution, return FALSE by default, 
after which only FFLAG<DTSTR, ... > or FFLAGCINVLD, ... ), and 
perhaps an entry in the Log of Retrospective Diagnostics, will 
remain to defend the program·s user from possible jeopardy. 
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The value returned by FFLAG(exc•p, ... > is always the ~urrent 
value of the system's excep_flag that memorializes exceptions cf 
class excep provided they are detectable at run-time; no other 
way exists to access that flag. It is sticky in the sense that 
a system flag gets raised as a side-effect cf an appropriate 
exception and stays raised until lowered by an explicit invocation 
of FFLAG for the purpose. My syntax for that invocation is 
idiosyncratic enough to deserve a digression here. 

If "flagO" is "TRUE" er "FALSE" or the name of a ·variable of 
type Flags,· then the expression FFLAG(excep, flagO> first 
returns the current value of the system's •xcep_flag and then 
sets excep_flag := flagO. Hence, FFLAG swaps a new system
flag value for the old. This behavior has been chosen because the 
most common statements involving FFLAG will entail first the 
copying of a system-flag and its lowering, then a block of code 
containing operations that could raise that flag as a side-effect 
of an exception, then the restoration of the system-flag to its 
copied value, followed by a test that tells whether the block of 
code in question encountered an exception that raised the flag. 
In this way, any exception that occurs inside the block can be 
corrected and entirely hidden from the user of that block. Two 
swaps require only two invocations of FFLAG instead of four 
separate statements, two to read and two to write into the system 
flag. However, occasions do :rise when a system flag is to be 
read but not changed, and then I omit the second argument flagO 
from the invocation thus1 FFLAG<excep) returns excep_flag but 
does not change it. My syntax must tax implementers who labor in 
languages that disallow variable-length argument lists except for 
favored functions like PRINT or MAX. They may use a dummy 
flag value DUMMY in place of flagO to achieve the same effect 
as omitting it, or they may find another syntax better than mine. 

While we are on the subject of syntax, we might as well digress 
to another language issue raised by Functional Programming in 
Applicative Languages. In their purest forms, these languages 
deal solely with functions, with no notion of variable or state. 
Side effects are anathema to these languages, so our system flags 
have to be treated as appendages to the values taken by functions. 
Since these values can be complex structures with many components, 
appending another component called ~lags is no great conceptual 
burden; the flags component of a function composed from other 
functions is a kind of logical sum of their flags components that 
summarizes the exceptions that have affected the function's value. 
When a default exceptional value turns out to be apposite or when 
a conditional assignment supersedes an unwanted exceptional value, 
the corresponding flag should be lowered lest it raise a needless 
doubt about a function's value. The synta>: for lowering and 
raising flags in applicative languages lies beyond my present 
proposal, which is aimed at conventional procedural languages. 
Besides, I do not expect applicative and functional programming 
to supplant procedural languages but rather to coexist with them. 
Then exception flags will be handled most efficiently in the parts 
of a program that are procedural, whereas Presubstitution <a 
way to change exceptional values in advance that will be described 
later) will handle most exceptions in the applicative part better 
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than an auxiliary flags component would. 

The Old Ways are Not the Best Ways1 

May 14, 1987 

The foregoing complicated restrictions surrounding flags may seem 
superfluous to C programmers who use the external <global) 
integer ERRNO to reveal exceptions, or to assembly language 
programmers who routinely manipulate flag bits in a computer's 
status register. There are reasons for that complexity, but they 
are complicated too. Start with ERRNO I it receives error codes 
from certain C library functions < exp, acos, ... > when they 
cannot yield an unexceptionable value but they continue execution 
anyway. A typical error code is the constant ERANGE written 
into ERRNO when a result should overflow; exp(1000000000000.0) 
does that. Another error code is the constant EDOM written into 
ERRNO when an argument lies outside the function's conventionally 
accepted domain, an example is acos<3.7> • 

What's wrong with ERRNO? Even if it revealed exceptions in 
rational arithmetic operations (it doesn't) as well as in library 
functions, ERRNO would have to be tested immediately after every 
potentially exceptional operation of interest lest a subsequent 
exception obscure the situation by overwriting ERRNO. But this 
test would force each such operation to finish before the next 
could begin. Of course, extra hardware could be added to a 
computer to retract prematurely initiatlj operations whenever 
(rarely> necessary, but that kind of added hardware slows down 
all operations a little in the hope that it will prevent a few of 
them from being slowed down a lot. On the fastest computers, 
tests and branches that require prior operations to finish first 
tend to inhibit concurrency and put bubbles into pipelines; that 
is why we seek to move branches out of tight loops. Therefore 
flags must be sticky to reveal after a loop all the kinds of 
exceptions that occurred inside it. ERRNO cannot do that. 

ERRNO has to be abandoned, along with all other schemes that 
demand precise interrupts or too many explicit tests and branches, 
not so much because fast machines cannot be built to support them 
(they can!) as because most of the fastest machines Nill not be 
built to support them efficiently. Schemes that run inefficiently 
on those fastest machines will be avoided by ambitious programmers 
of codes intended for widespread distribution. Those programmers 
could use flags because, if well implemented, flags subtract 4ar 
less from speed than do conscientious tests of ERRNO. As side
effects of eKceptional concurrent operations, flags can be raised 
out of order; they need not be raised in the same sequence as the 
operations that raised them appear in source or object code. This 
means that raising a flag need not synchronize, nor i~hibit 
concurrency, nor put bubbles in pipes. Reading a flag must 
synchronize; but flags are designed to be tested rarely, outside 
inner loops, at natural synchronization points in programs, so 
the cost of testing can be spread over many potential exceptions 
instead of a few. 

Why must references to system flags have the syntax af function 
calls instead of mere references to variables? Assignments like 

flagt := excep_flag ; ~)C'cep_flag := FALSE ; 
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are quite acceptable provided the compiler knows that these are 
synchronizing operations that must wait for prior operations to 
finish, and that changes to a system flag can have further side
effects (which will be eKplained in a moment). But a compiler 
that knew nothing about exceptions might "optimize" a reference 
to a flag by moving it ahead of a possibly eKceptional operation. 
Since only the most reckless optimizer would move a function call 
whose side-effects are unknown to the compiler, putting system 
flags into function calls enhances the likelihood that they will 
function as intended regardless of whether the compiler cooperates 
with exception handling. This is important to anyone who would 
retrofit my kind of exception handling into an environment with 
pre-existing compilers that are best not tampered with. 

Why are flags not merely BOOLEAN variables, nor simply single 
bits in a processor·s status word? A flag has·to be a pointer in 
order to provide the Retrospective Diagnostics mentioned above 
and to be described in detail later. Without them, continuing 
execution after an exception could induce dangerous consequences 
in programs imported from an environment where that exception 
always aborts execution. In my environment, a program that 
leaves a flag raised when it terminates is trying to say one of 
three things: 
a The flagged exception is ignorable because it was handled 

correctly by its default response; this case :ould be handled 
even more humanely if the programmer, knowing the flag to be 
ignorable, had lowered it at the end of his program. 

a The flagged exception is deserved by the program's results; 
for example, exp(lOOOOOOOOOOOO.O) should signal OVFLO on 
most machines. By testing FFLAG<OVFLO, ... > afterwards the 
program that called exp could decide whether OVFLO occurred 
and what to.do about it. But this test might not happen; ... 

a The flagged exception was not anticipated by the program's user 
nor by its programmer, unless he expected it to abort 
execution. Whether the final results have been invalidated by 
that exception is now a question that will require some further 
investigation. That investigation begins with the flag, which 
points to an entry in the Log of Retrospective Diagnostics 
that, in turn, points to the site of the operation that was 
flagged exceptional, from which point debugging can begin. 

Now the reason for treating a flag as a pointer should be clear. 
Whenever an exception raises its flag it must record this event 
and its location in the Log of Retrospective Diagnostics and 
set the flag to point to the Log entry, all of which takes a 
little time. It is not obvious that Logging i5 compatible with 
imprecise interrupts and concurrent execution, but it is true 
none the less, as will be explained later. What must be 
explained now is that a call to FFLAG<excep, flagO) has rather 
rnore to do than rnerely set excep_flag := flag() , which is why a 
function call is needed instead of something that merely alters a 
bit in a status word. 

If all exceptions were rare the time taken to Log them all would 
be inconsequential, but some exceptions are not that rare. INXCT 
occurs with every rounding error; and when one UNFLO or OVFLO 
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occurs in a loop then many more are likely to follow. Fortunately 
only the Tirst exception in a class need raise its flag and be 
Logged; while its flag stands raised all subsequent exceptions in 
that class may be ignored provided its exceptional operations do ,,.,,, .. ,,\ 
produce the exceptional value expected by default. Let us assume 
that the hardware is designed to deliver that desired exceptional 
value. Then raising a flag may also tell the hardware to stop 
sending further signals to raise that flag; lowering a flag must 
tell the hardware to send a signal when next that flag has to be 
raised. Lowering a flag, like reading it, is a synchronizing 
operation that must wait until all operations that could raise the 
flag have finished. Raising a flag does not synchronize. This 
remains so whether it is raised as a side effect of an eKceptional 
operation or directly by a call upon FFLAG< .•• , TRUE> • Repeated 
signals to raise a flag will not affect its BOOLEAN value; and 
if the signals arrive out of order, as well they may when several 
operations are concurrent, the worst that can happen is that 
subsequent retrospective diagnosis will identify the first such 
exceptional operation to be detected instead of the first one 
issued. 

Thus we see that the time spent raising flags need not much eMceed 
the time a program spends lowering them. Therefore a program that 
pays no attention to its exceptions or commits none will spend 
very little time on them. Similarly, as we shall see la•er, the 
space occupied by the Log of Retrospective Diagnostics cannot 
much exceed the space occupied in a program by calls upon FFLAG, 
so the Log cannot consume too much memory either. And yet the 
user of a program oblivious to exceptions derives a measure of 
protection from their worst consequences because the flags left ~ 
standing by the program, and the Retrospective Diagnostic& to 
which they point, can tell him something about what has happened 
and where, should he later come to care. 

Herein lies the principal value of my proposals. Most computer 
users are oblivious to exceptions until they occur. A user runs a 
program to get a result, and only when exceptions occur and deny 
him a result or undermine his confidence in it would he want to do 
anything about them. My proposals help him get what he wants. He 
need not be preoccupied about exceptions but may deal with them as 
afterthoughts, if they arise; and if their defaults have been 
chosen wisely, and if also most of the software he uses has been 
designed robustly to hide irrelevant exceptions, chances are good 
that what few exceptions come to his attention will be localized 
well enough that he can decide easily what to do about them. 

Professional programmers have an obligation to protect their 
clients from unnecessary distractions like irrelevant or avoidable 
exceptions, but that obligation has in the past been so hard to 
discharge that we have had to forgive programmers when they failed 
to live up to our expectations. My proposals would make exception 
handling easier and more nearly portable, but still neither easy 
nor portable. Exception handling will never be an easy task. We 
can make it portable only by implementing as uniformly and as 
widely as possible those features necessary to ease the task. 
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EMamples using Defaults and Flags: 
• On page 399 of Data Structur~s Using Pascal by A. M. Tenenbaum 

and M. J. Augenstein (1981, Prentice-Hall, N. J.), in the midst 
of a discussion of a Heapsort program, the authors say 

"The last i~ statement reads 
if j+t i k 

then if x[j+ll > x[jl 
then j := j+t 

rather than 
if ( j + 1 S., k ) and ( K [ j + 1 J ) >< [ j J ) 

then j c j+t 
because we must ensure that the references to xCj+tl and xCjl 
are within array bounds." 

Since the references to xCj+ll and'K[j] cannot lie beyond array 
bounds when j+t ~ k , the BOOLEAN expression < xCJ+1l > xCjl > 
can be invalid <DTSTR> only when it doesn't matter; so the second 
statement makes perfect sense, seems simpler to understand, and 
would execute faster than the first if it were allowed to continue 
executing on those rare occasions when it is technically invalid. 
Only a Martinet could insist upon stopping computation instead 
of continuing with an exceptional value like NaN for x[k+ll. 

Language purists might protest that assigning a maaning to the 
second statement above when the language Pascal specifies that 
it be undefined is a corruption of Pascal's semantics. They 
might offer a conditional AND construct as in the language C, 
wherein we could write 

i f ( ( ( j + t ) < = k ) && ( X [ j + t ] > K [ j l ) ) j ++ 
to accomplish with syntax similar to the second Pascal statement 
what the first does. But syntax is not the issue. Regardless of 
language, a computer could run faster if it could overlap the 
evaluations of ((j+t> <= k) and (x[j+tl > >e[jl) s yet such 
overlap must be proscribed if the latter expression is capable of 
a side-effect like stopping computation. A conscientiou~ C 
programmer, aware that the cautious user of his program might 
compile it with bounds-checking enabled if the user's compiler 
provides such a service, has to use the slower &L operator; 
another shrewder programmer, reckoning that bounds-checking is 
not a standard feature of C, would use the unconditional & 
operator instead, and his program would run faster except when 
compiled by the cautious user. When the shrewder programmer's 
program aborts prematurely, who should take the blame and change 
his ways? Because the user and programmer disagree about that, 
an out-of-bounds reference to an array deserves to be classified 
as an exception rather than an error. 

To forestall misunderstanding, let me repeat1 I do not insist 
that execution never be aborted after an exception. Whether to 
abort or continue is a choice that I think belongs to the user or 
the programmer, not to petty tyrants who construct computers and 
compilers. Had language designers provided some syntax by which 
to distinguish between an array reference that will abort if out 
of bounds and one that won#t, say x[ ... J versus xC< ... >J , 
the choice might not fall into the realm of exception handling. 
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But, lacking that convenient mechanism for exercising a choice at 
compile-time, we are obliged to adopt a linguistically ugly 
mechabnisrntthfa~ttI call a mode, effective at execution time, that ~. 
can ere ro 1 ed into the run-time library of eMisting computer 
systems, in most cases without changing the compiler. To alter 
the mode of response to out-of-bounds array references xc ... J, a 
call will have to be made upon a library program that tells the 
exception handler associated with a DTSTR exception whether to 
ABORT or to DEFLT (DeFauLT>. The latter mode supplies a value, 
possibly unpredictable, for attempts to r~ad xC ..• l out of 
bounds, and ignores requests to write over it. This expedient 
seems no uglier to me than the extra-linguistic mode by which a 
Fortran 77 programmer tells the compiler whether to execute a 
zero-trip DO loop once (as in Fortran 66). or not. 

Other language purists might wonder whether exception handling 
could be bypassed by writing programs like Heapsort in better 
ways free from extra tests and branches as well as from array 
references out of bounds. Yes, better versions of Heapsort do 
exist; and finding one makes a challenging exercise for students 
of Programming Style since most of them cannot find it unaided. 
<They get hung up on elementary inequalities.> But the exercise 
is pointless in an industrial setting where elegance is so often 
its own sole reward and never an excuse for slipping a schedule. 

A Vectorizable Loop: 
Similar considerations apply to the statement 

For k = t to N do 
if <y,clx11 > 3) and ( lx11 I > IY1c 1~> then Z1c := t'z.c ; 

it is intended to replace Z1c by t'z1c whenever <x1c, Y1c> lies 
strictly inside a propeller-shaped region of the <x, y)-plane. 
What should it do to Z1c if X1c = Y11 = 0? The right thing to do 
is clearly to replace z1c by t'z11 rather than stop on an INVLD 
or ZOVRZ exception. The possibility that z1c < 0 adds a further 
complication; presumably this is not expected to occur when t'z1c 
is actually needed. On a vectorized computer with division and 
square root built into the hardware, the compiler would overlap 
the computations of IY1cl 3 , Y11IX11 and t'z1c to create a BOOLEAN 
vector b with which to select the correct values for z thus: 

For k = t to N < in parallel > 
do begin <overlapped> 

b1c := <y1cl><11 > 3> and <lx1cl > IYa.l~> ; r .. != t'z11 ; 
z., != if b11 then r1c else z1c 

end< fork ... >. 
How would that kind of overlap be ~ccomplished if irrelevant 
INVLD, ZOVRZ or FODOM exception& had to abort computation? A 
way that does not attempt ... /0 nor ~<negative> does exist: 
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fodom :=FALSE; 
For k = 1 to N < in parallel > 

do begin {overlapped) 
b>:1c := hc1c=O> ; bz1c := 
K111 := if bxk then t 
y11c := if bx1c then 1 
z11c := if bz1c then t 
b1c := Cyl1c/M111 > 3) and 

<z1c<O> ; 
else X11 ; 

else y., s 
else z .. ; 

< I x 1c I > I Y1c I 3 > ; 
else Z1c 1 z .. := if b1c then r1c 

fodom :• fodom or (bz1c and b1c> ; 
end< fork .•• ) . 

May 14, 1987 

This program sets fodom := TRUE only if the previous program 
would have raised the FODOM flag, and then (bz1c and b1c> finds 
the values z 11 that the previous program woulo have set to NaN. 

The cumbersomeness of the last program is the price paid for a 
policy that aborts execution on DIVBZ, INVLD, ZOVRZ or FODOM; if 
OVFLO or UNFLO aborted too the price would rise beyond bearing. 
Continued execution, with flags raised when necessary, is a more 
econorni cal policy. And if the programrner must know whether some 
of the elements of z are contaminated by ~(negative>, he can 
test the INVLD flag or, better, the FODOM flag afterward and 
then, only if it is raised, spend time re-examining z to find 
NaNs. 

Solving an Equation: 
The two examples so far showed how exception handling influences 
the way programs are written locally, near the site of potential 
exceptions. The next example shows how exception handling can 
affect the structure of a program globally, at a higher level; 
to appreciate the example's significance you must imagine how you 
would cope with similar examples on your favorite computer. 

Consider solving for x the equation f(x) = 0 given an explicit 
expression for f(x) and a library of software, precornpiled for 
your machine, from which to choose an equation solver. We shall 
call the solver tSOLVJ because that is the key to press to solve 
an equation on an hp-2BC calculator, and we hope to do as well 
on any other computer. Our program goes something like this: 

MAIN program: 
EXTERNAL REAL FUNCTION fCREAL> ; 
LIBRARY REAL FUNCTION [SOLVJ( REAL FUNCTION, REAL, ••. > ; 
... Choose one or two initial guesses for>< ; 
x : = tSOLV l ( f, guessed_><, ••• ) ; 
... Use the solution x ; 
END of MAIN program. 

REAL FUNCTION f(REAL x>: 
f <>:> : = 1 n < x > * t' < 1 O - >< > ; < . . . say > 
END of f . 

Unlike the example chosen here, whose zeros < >< = 1, x = 10 > 
and domain < 0 < x ~ 10 > are obvious upon inspection, f(x) 
will often be an e><pression so complicated that its domain is 
practically inscrutable, though its application will suggest 
first guesses x inside the domain. 
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When our example is run on an hp-28C, first guesses x somewhat 
less than 5.42 yield the zero x = t ; bigger first guesses 
yield the zero x = 10. As long as one guess lies in the domain 
of f , the calculator always produces one of those zeros or the 
other. Other machines do less well. When a similar program is 
programmed in C and run on certain old UNIX™ systems that set 
v<negative> := O with ERRNO :=EDOM, spurious zeros x > IC> 
are sometimes delivered with no warning except ERRNO (but who 
looks at that?>; at other times overflow aborts computation of 
f(negative> . On other computer systems that abort v<negative> 
and ln(nonpositive>, only first guesses close enough to x ct 
deliver that zero; the zero at x = 10 is inaccessible, and 
aborted computation is the reward for most guesses. 

The hp-28C fares so well because its zero finder knows what to 
do when f<x> is sampled at a point >< outside its domain, look 
elsewhere for a zero. And computation of f is not aborted by 
invalid operations but continues with an exceptional value that 
will not deceive the solver. This is a special case of a policy 
good for search programs generally; such programs include ... 

- Equation solvers that search for a zero, 
- Optimi~ers that search for an extremum, and 

Query managers that search a data base for an answer. 
Like any hunter, the search program must seek its quarry in 
places wherein may lurk something more dangerous than the quarry, 
something that can terminate the hunter instead of just the hunt. 
A policy that mitigates the danger is to continue execution after 
an exception provided either that the e~ceptional value (like a 
NaN) will not foist the wrong quarry upon the hunter, or that a 
deservedly raised flag will warn the hunter off a false scent but 
not deflect him from the true. Such a policy seems simpler than 
throwing and catching signals, setjumps and longjumps, ON ERROR 
statements and various other techniques that handle e><ceptions as 
interrupts; exceptional values and flags do not usurp a program's 
normal path of control. However, the next and last eKample in 
this section of the paper brings us back into a complicated world. 

Vector norrn: 
The following example is included because it is traditional. We 
consider now a function subprogram norm<x> that calculates the 
Euclidean norm of a real vector x = <x,, K2, ••• , ><N)T from the 
formula norm <x > : = y(,cT,c > wherein xT,c : • ><, • + ><2• + . • • + ><N2 • 

Unlike most previou~ treatments of this problem, ours presumes 
nothing about the order in which the sum will be computed, 
Allowing for the possibility that multiplications and addition$ 
will be overlapped on a pipelined or vectorized machine. Like all 
previous treatments, ours does attempt to circumvent the spuriou~ 
over/underflows that occur on rare occasions when all of the xks 
are so big or so small that their squares over/underflow although 
norrn<x> , if computed correctly, is unexceptionable. For that 
purpose certain machine-dependent constants are needed. 

One constant is a scale factor h , the smallest power of the 
machine's radix whose square h 2 overflows. It is a power of the 
radix to ensure that multiplication and division by h are always 
exact <no rounding error> provided they do not over/underf~ow. ~ 
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< This definition of h is ambiguous on CRAVs because their 
overflow threshold is ambiguous,- it depends upon the operation; 
so we pick the larger of two possible choices h .) . The second 
constant is the difference eps between 1.0 and the machine'~ 
floating-point number next less than t.O. < But eps should be 
determined from the number of significant digits that floating
point numbers carry rather than by actual subtraction on those 
computers that lack a guard digit for subtraction; among such 
computers are CRAYs, CDC CVBERs and UNIVAC 11xx's. On a CDC 
CVBER that subtraction could produce zero instead of eps .) The 
third constant t is the largest floating-point number such that 
eps2 t underflows to zero. < t is ambiguous too on CRAVs and 
CDC CYBERS because they can "partially underflow" but that does 
not matter.> All three constants can be computed from a function 
Nextafter<y, z> that returns the machine's floating-point number 
adjacent to y on the side towards z , provided subtraction is 
carried out with a guard digit as it is on IBM 370s, DEC VAXs, 
all machines that conform to IEEE standards 754 or 854, and a 
host of others; we shall compute the constants that way. 

The default response to UNFLO is presumed to be continued 
computation with an exceptional value that is 0.0 or a subnormal 
number as specified by IEEE 754 and 854. If the machine lacks an 
UNFLO_f lag, orni t al 1 references to it from the prograrn. Al so the 
default response to OVFLO is presumably continued computation 
with an e>: cept i onal value that is :t_m or huge and a raised OVFLO 
flag. These presumptions are presumptuous because some machines 
just stop on OVFLO, and others continue without a flag; to 
compute norrn(x) reliably on such machines is a problem left to 
the reader. 

eps := 1.0 - Nextafter<t.O, O> J 
radix := <Nextafter<t.o, m> - t.0)/eps; 
huge:= Nextafter<m, 0) ; ... presumed> t/epsA5. 
h := radixA(integer no less than 0.5•ln(huge)/ln(radix) ) ; 
t := Nextafter<O.O, 1)/epsA2; ... 

REAL FUNCTION norm< REAL VECTOR M) ; 
REAL s, c 
unflag := FFLAGCUNFLO, FALSE> J ••• saves and lowers 
ovflag := FFLAGCOVFLO, FALSE> ; ... system flags. 
s := xTx; ... over/underflow could happen here. 
ovflag := FFLAG<OVFLO, ovflag> ; ... copied and restored. 
c != t.O; ... in case over/underflow didn't happen. 
IF ovflag THEN c != 1/h ••• M must be very big. 

ELSE IF s < t THEN c := h/eps; ... if xis very tiny. 
IF c ~ t.O THEN s := (c*x)T(c•x> 1 
... OVFLO cannot have occurred since its flag was restored. 
unflag := FFLAGCUNFLO, unflag) ; ... restored. 
RETURN norm!= <vs)/c; ... signals only as necessary. 
END ... norm. 

This program runs about as fast as any program could run in the 
usual situation when neither overflow nor serious underflows occur 
to invalidate the first computation of s. Only when necessary 
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does the program scale x and recompute s. Without flags, x 
would have to be scanned for its biggest element to decide whether 
scaling is needed; that is the time this program usually saves. ~ 

MORE TO COME LATER ABOUT ... 

See also 

Individual exceptions: 
Unsupported exceptions. 
Multiple exceptions. 
Saving/restoring all flags at once. 

Modes: ABORT abort computation 
PREMT pre-empted by the languAge 
DEFLT Default mode < IEEE 754/854> 
PAUSE ••. , look around, and resume. 
COUNT over/underflows up and down. 
PRSBS Presubstitution. 

Scope I with language help, and without. 
localization of flags and modes. 
special effects for leaf-subprograms. 
simulation of atomic operations. 

Retrospective Diagnostics 1 
with language help, and without. 
with operating system help, and without. 
with error-traceback, and without. 
with precise interrupts, and without. 
Flag-annunciator on console screen. 
Circular "Standard Error file" on disk. 

E>, i sting schemes 
Fortran 
APPLE's 
etc. 

"Presubstitution, 
examples where 

on IBM 370s 
SANE 

and Continued Fractions" for 
Presubstitution pays off. 

David Barnett 1 s "A Portable Floating-Point Environment" 
for partial implementations on a DEC Vax 

and a Sun III 

"7094 II System Support for Numerical Analysis" in 
SHARE Secretarial Distribution SSD 159 <Dec. 1966), 
item C4537, pp. t-54 

Pat H. Sterbenz "Floating-Point Computation" ch. 2 
(1974) Prentice-Hall, N. J. 
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