
IMPLEMENTATION OF ALGORITHMS 

PART II 

Technical Report 20 

W. Kahan 

1973 

Lecture Notes By 

W.S. Haugeland and D. Hough 

Department of Computer sc;ence 
University of California 

Berkeley, California 94720 

1973 



CONTENTS 

PART I 

O. Introductory Remarks: Motivation and Outline 
1. Significant Digits, Cancellation, and Ill-Condition 
2. Rules for Floating Point Arithmetic 
3. Cost of the Rules 
4. Arithmetic on the CDC 64001 

5. Software Conspiracy and the Cost of Anomalies 
6. Execution Time Errors 
7. Proof of a Numerical Program -- the Quadratic Equation 
8. Modifying the Quadratic Equation Solver to Avoid Unnecessary 

Overflow and Underflow 
9. How Can We Add Up a Long String of Numbers? -- Standard Pseudo

Double Precision Algorithm 
10. How Can We Add Up a Long String of Numbers? -- Magic Constant 

Arithmetic 
11. How Much Precision Do You Need -- In Genera1?2 

12. Interval Arithmetic 
13. What Claims Should We Make for the Programs We Write? 
14. Which Base is Best? 
15. Base Conversion 

PART II 

16. An Eigenvalue Calculation Demanding Little From the Hardware 
17. How Much Precision Do You Need to Solve a Cubic Equation?3 

18. How Should We Solve a Non-Linear Equation? 
19. Construction and Error Analysis of a Square Root Routine 
20. Students• Report on Improved Versions of CDC SQRT, CABS, and CSQRT4 

Appendix I. Students' Report on Arithmetic Units in Various Machines5 

Appendix II. The RUNW.2 Compiler for CDC Fortran6 

Includes paper by F. Dorr and C. Moler. 
2Includes report by students. 
31ncludes report by students. 
4s. Bridge, B. Deutsch, and R. Gordon. 
5sy students. 
6condensed from report by D.S. Lindsay. 



16-1 

16. AN EIGENVALUE COMPUTATION DEMANDING VERY LITTLE FROM THE HARDWARE DESIGN 

Our object, in considering specifications for numerical hardware and 

software, is not to make life easy for n1.111erical analysts. Rather, it is to 

detennine what features make it least likely that an architect designing 

cathedrals will have to get a Ph.D. in numerical analysis in order to use 

the computer efficiently. 

However, we would also like to make it possible never to repeat an 

error analysis of an algorithm for every new machine that is manufactured 

or operating system that is written with previously unheard-of laws of 

arithmetic. Error analysis is such a burden that we should hope to do it 

only once. 

The aim of this course is to describe the considerations that should 

be borne in mind by the designer of a new system or the repainnan of an 

old one. We have seen that certain computations require rather stringent 

restraints on the way arithmetic is done. We will now demonstrate that 

some complicated calculations require little more than that the hardware 

be monotonic. 

The eigenvalue algorithm is described in a Stanford Report ("Accurate 

Eigenvalues of a Tri-Diagonal Matrix," Stanford Computer Science Department 

Report #CS41 (1966)) and in Kahan's Notes on Error Analysis (1968} for the 

Universftr of Michigan Sunrr1er School. The input is a real symnetric tri-

diagonal matrix J: 



J = J = N 

al bl 

bl a2 b2 

b2 a3 b3 

0 

16-2 

0 

All the eigenvalues are real. As in all symmetric matrices, if we 

strike off any row and column, the eigenvalues of the matrix left are inter

laced with the original eigenvalues: 

N 

N-1 

Ei genva 1 ues ori gi na 1 matrix l .-········•--'-.... J k...r,. 

Ei genva 1 ues reduced matrix 't I , · ·· J __,;_,,./ 
real axis , ...... , I 

The curve represents the polynomial det(J-A) which vanishes at each 

eigenvalue. 

I 
--< ....... 

We will exploit Sylvester's Inertia Theorem: If J -x = LDLT, where 

L is non-singular (ft will be lower triangular too), and D fs diagonal, 

the n1.111ber of positive, zero, and negative entries in D is equal to the 

number of positive. zero, and negative eigenvalues of J-x, respectively. 

It seems remarkable that the theorem is true no matter which of the 

many D's one considers. In any event we have located an eigenvalue of J 

between x1 and x2 if the n1J11ber of positive·eigenvalues of J- x1 is 

one less than the number of positive eigenvalues of J -x2. 

Let U = DLT so J - x = LU. Then L is almost always a non-singular 

unit lower triangular matrix and U is upper triangular. 



16-3 

1 U1 . 
. 1 0 0 u2 . 

L = u = . . 
0 . 1 

1 0 

We see that the diagonal elements of U are the same as those of D. Also 

note that these triangular matrices remind us of Gaussian elimination. There

fore we surrmarize our algorithm as follows: Do Gaussian elimination without 

pi voting on J - x to find the factors L and U. If we don't b 1 ow up on 

division by zero, the n1111ber of positive u's is the same as the number of 

eigenvalues of J greater than x. Then we could use a binary chop to test 

values of x to hane in on any particular eigenvalue. 

The algorithm for the u's is as follows: 

This seems simple enough, but suppose u 1 vanishes? We could fudge things n-
by perturbing an-l by e so that un-l = e for some tiny· e. Is this 

legitimate? There is a reassuring theorem. Suppose the eigenvalues of J, 

A;, .are indexed in order so that A1 ~ A2 ~•··~AN' and the eigenvalues 

of J ~ ~J, Ai+ ~Ai, satisfy Al+ M1 ~ A2 + ~A2 ~ • • • ~AN+ tAN. The theorem 

. states that 

f tA j I ~ I 8J I , j = 1 , ... , N 

_ /x*A*Ax for some suitable nonn. A suitable nonn is IAI = m~x x*x . 
x;'O 

By choosing an e small enough compared to the eigenvalue we seek and 



setting un-l = E, we can continue without worry. There are risks of over

flow and underflow; the paper discusses these problems. For our present 

purposes we will assume nothing bad will happen ff we replace un-l by a 

suitable £. 

Our program looks like the following 

9 

1 

2 

. 
DO 9 I=l,N 
88(1) = B(I-1}1rlr2 
. 
U = 1 0 0 • 

V = 0 
00 3 I=l,N 

u1 = (A(I)-BB(l)/U1_1)-X 
IF (U1) 2,1,3 
u1 = -ETA 
V = v+l 

3 CONTINUE 

(preparing the b~_1) 

(if u. = 0) 
1 

(if u. < 0) 
1 -

(The subscripts don't actually need to appear in the program.) 

Then v(x} = the m111ber of eigenvalues ~ x + ETA (?) 

16-4 

If 8J is negative semidefinite so that, for every vector v, vT~Jv !_ 0, 

then 8">.. ~ o·. By choosing ETA always negative we guarantee that the eigen

values are always perturbed down slightly, never up. But there is the 

uncertainty that eigenvalues within ETA of x could be shifted to either 

side of x so that they could be counted either way -- hence the(?) in the 

previous equation. But ETA is usually smaller than a unit in the last 

place of the results we are going to quote in the end. 

Aside fran the question of whether the algorithm coq>utes accurate 

eigenvalues, which we shall not consider here, there is the question of whether 

the subsequent logic dealing with v could be thrown off because v is 

) 



inaccurate due to rounding errors. In the absence of rounding errors, v 

plotted as a function of x will look like 

That is, it will be monotone nondecreasing with a jump at each eigenvalue. 

A program which expected a monotonic v might conceivably hang up if v 

were somewhere to decrease because of rounding or possibly the substitution 

of ETA for a 0. 

Our purpose is to show that if we only assume that our arithmetic is 

monotonic, then v will be monotonic despite rounding errors or ETA. 

To see this we must plot u as a function of x. We know 

det(JN-x) 
UN= det(JN_,-x) 

Then u1 = a1 - x has the graph 

16-5 



It is monotonic. and so is fts computed value on any machine that has 

monotonic arittvnetic. 

bf 
Next. u2 = a2 - x - -

u, 

This function is monotonic except at 1ts poles, where u1 = 0. A similar 

statement, proved by induction. is also true of each of the other u's; they 

are decreasing except for jumps at poles where the previous u had a zero. 

Now let us r.~nsider computed values: 

16-6 



16-7 

B2 
U = ( A - ...l:l) - X I I u1_ 1 

e2 
Clearly this is monotonic if A1- ...l:l is monotonic decreasing. Considering 

UI-1 
the problem of round-off first, we can show by an induction that, if u1_1 

B2 B2 
is monotone decreasing, then /-1 is monotone decreasing, so A1 - /-

1 is, 
I-1 I-1 

except when u1_1 = o. In this case of zero, we replace O by ETA, so 

we get an enonnous jump. Then the graph of the computed u resembles 

That is, we choose ETA so that no other quotient 

sentable numbers in the machine can be larger than 

2 81-l 
uI-1 

fonned by repre-

8~_1/ETA in magnitude. 

Clearly, then, ETA depends on the machine. On the 6400, for instance, we 

choose ETA to be the number smallest in magnitude but differing from zero, 

which has characteristic O and a non-zero integer part. The machine must 

operate in the 1119de which tolerates out-of-range operands, because the 

divider produces an = with the correct sign. (The possibility that B1_1 
is zero can be coped with in several ways discussed in the paper.) Conse

quently any other value of u1_1 will produce a quotient no larger than m 



16-8 

so monotonicity will certainly be preserved. 

So monotonicity in the arithmetic is all it takes to guarantee the 

monotonicity of the u's in this algorithm. We can see that if x is increased 

then v(x) cannot decrease. Suppose x is increased by one ulp. Then the 

u's may decrease a bit. If they decrease and preserve their signs, the count 

does not change. If they change their sign, the count might be affected. 

But the only way a u can go from a negative to a positive value (decreasing 

v) is for the previous u to go from a positive to a non-positive value, 

increasing v. The only time v has a net change is when the last u goes 

from positive to negative, so that v increases. This is the way to detect 

an eigenvalue. 

Therefore we can go a long way with this algorithm if the machine 

satisfies the simple requirement of monotonicity! Yet even this simple 

requirement is not always assured. For several years the 360 long word 

multiplication was not monotonic, before the guard digit was added to the 

hardware. Then for certain positive X, H, and Y, X*Y > (X+H)*Y. If X 

has the significant hexadecimal digits FF ... F, then its product with Y 

was Y minus one ulp. If X was increased to 1000 ••• 0, then the product 

fonned would be 

pv 

before postnonnalization, and the failure to provide a guard digit lost the 

last nexadecimal digit of Y. The amount of Y lost could be as large as 

fifteen ulps. 

Likewise CDC's RX* was not originally monotonic, or even co11111utative. 

Nowadays such defects are mostly limited to software floating point packages. 



17. HOW MANY SIGNIFICANT FIGURES DO YOU NEED TO SOLVE A CUBIC EQUATION? 

Theorems in numerical analysis are often of a negative sort and prove 

that certain calculations can't be perfonned. Yet correct theorems that 

seem to apply to certain problems often do not, as in the case of Viten'ko's 

theorem [10]. Very often the "impossible" calculation can be perfonned. 

An example of a fruitful area for such theorems and surprising counter

exa·mples is in the answers to questions such as, how accurate is the result 

of a computation if n significant figures are carried? If its error 

analysis does not provide realistic bounds, such a theorem may be misleading 

when we ask the complementary question: how many significant figures must 

be carried to achieve a desired pre-assigned accuracy? 

In particular, we shall study the solution of a cubic equation to 

see what precision must be carried to get roots correct to single precision. 

In general, we can imagine solving for the roots by an explicit formula 

involving the coefficients or by some sort of iteration such as Newton's 

rrethod. 
_ f(xn) . 

Newton's Method xn+l - xn - f'(x) converges almost always to a root 
n 

of a cubic equation. Can such a method get around rounding errors? Hardly. 

We must compute f, after all. Suppose our stopping criterion is f(~) = O. 

We will find that many simple functions don't vanish for any value in our 

machine. Consider 

F(X) = ((((((1.-X)+l.}-X)+l.)-X)+l.) 

Certainly the function f(x) = 4 - 3x has a root of t· When we substitute 
4 . 1 2 2 1 for X a number near 3, we get approximately - 3, +3, - 3, +3, -1, and 

0 for our partial results. Now recall that, on any.non-ternary base 

machine in the Western world with floating point hardware, l and numbers 

17-1 



17-2 

near t are represented with the same characteristic, so that their subtraction 

occurs without error. The result near -¼ has zeros inserted on the right 

when it is nonnalized. Therefore, since it was fanned from a number near ;, 

it can be added to 1 precisely. The digits shifted off and lost, or put 

in a guard digit or word, are always zeros and are of no consequence. The 

same argument applies to each of the six additions and subtractions. In each 

case a number fanned from a 1 or a ; is added to another 1 or j°• 
always precisely, so that F(X) is always computed precisely near t· There

fore F(X) = 0 only when X = ;. But no machine with a non-ternary base 

can represent ; precisely. Therefore F(X); 0 on any such machine. 

Therefore, when iterating we must wait for f to become negligible or 

for the sequence xn to settle down. In the latter case settling occurs 

when ;. is small, and this may not mean that f is especially small. 

Indeed, rounding could cause the computed value of f to become zero at the 

wrong place. 

To see how far wrong roots computed by any method could become, consider 

a cubic such as 

f(x) = x3 - !x2 + Jx - l t 

where 3 means a number near 3. Then the roots are i. Suppose the only 

error e 1s in the last mult1plicat1on so that 

((x-3)x + 3)x _ 1 = 0 1+e 

Since l+e won't fit in a word length, we round it to 1· so that we actually 

solve f(x) ~ a. Suppose now that we are actually trying to solve the equation 

(x-1) 3 = 0 so that instead we solve (x-1) 3 = e, whence x = 1 +e113 . 

If six figures are carried, e113 ~ 10·2. The root may ~-i1ly be good to 

l 



one third as many figures as were carried. 

Similarly. if an explicit fonnula is used and part of the rounding error 

is applied to any of the coefficients. the perturbation in the roots could 

be the cube root of the perturbation to the coefficients. Hence triple preci

sion seems to be required. We don't actually have a thoerem here. only a 

good argument. 

Oddly enough, double precision will suffice. This is possible because 

computers do better than our model of arithmetic implies! There is evidently 

some hidden order to the arithmetic which we have not explicitly uncovered. 

G.W. Stewart III concluded that there was no way to avoid triple preci

sion in Mathematics of Computation 25, January 1971, pp. 135-139. To see why 

he came to this conclusion, we must examine the way in which the ill-condition 

of certain cubics is customarily cured. 

Usual Algorithm 

The worst cases are when the cubic has nearly a triple root. When the 

roots are well spread out, nearly single precision results from a single 

precision calculation. When one root is nearly double, the perturbations 

are of order e112 which can be handled using double precision. 

Therefore we want to separate at least one root from the other two by 

17-3 

a transfonnation. One way to do this is to translate the origin to the point 

that is the arithmetic mean of the r.oots. Suppose the cubic is f(x) ~ c{x-t) 3
. 

Then we want to find q such that 

q(y) = f{t+y) ~ cy3 

Then, if our roots are still small, we can scale the problem by multiplying 

the coefficients by scale factors. 



0 

0 0 

0 0 

0 

Problem Trans 1 ati on Scaling 

Unfortunately, the usual method of translation causes rounding errors, 

which leave you as far from a correct solution as you were before! 

Let us investigate what happens. The mean of the roots of a cubic 

3 2 _ -al 
f(x) = a

0
x + a1x + a2x + a3 is just t - ra- . The usual way of c~uting 

0 

the coefficients of the new polynomial g(y) = baY3 + b1y
2 + b2x + b3, with 

b1 + O, is as follows. Consider Horner's recurrence: 

We can write f(x) in tenns of the h's and ; as follows: 

Then b3 = f(;). We think c: • ·i;at·!t..nal ly of an arrangement such as. the 

17-4 



following {note the re-definition of the b's). 

bl= ;bo + al 

b2 =;bi+ a2 b C tb" + b' 2 1 2 

Then f{x} = f{t+y} = bc,Y3 + b1y
2 + b~ + b3. We would use this recurrence 

because we expect the coefficients to be small near a triple root. After 

all, b3 = f{t}, b
2 

= f'{t), b
1 

= ~f"{;}, and they would all be zero at 

a triple root. 

Unfortunately rounding errors interfere in substantial numbers. Consider 

the equation x3 - 3x2 + Jx - l. Then t ~ 1. Let us see what numbers are 

generated. 

b = 1 
0 

bu .a. 1 1 .... -

b2 t 0 

We see that b1• b2, and b3 are primarily composed of rounding errors 

revealed by cancellation! Our coefficients have been perturbed by rounding 

errors of order e. so that we can expect the roots derived to have the 

usual e113 uncertainty! 

Stewart shows that the polynomial computed this way is not f(y+t) but 

is instead g(x) where 

17-5 



lfl is the polynomial obtained by replacing all the coefficients b; by 

their absolute value. Indeed, it 1s only realistic to suppose that the result 

of cancelling large computed numbers will only reveal their accumulated 

rounding errors. Hence, we must use triple precision with this algorithm 

to get single precision roots. 

Kahan Algorithm 

Much to our surprise, there is an algorithm, little different from this. 

that allows coll1)utat1on of singly-precise results using only double precision. 

Let 

Q(x) = a0x3 + 3a1x2 + 3a2x + a3 

Q(z+µ) = b
0
z3 + 3b1z2 + 3b2z + b3 

(z+µ = x, where µ is the origin shift). This rewriting is convenient, 

so that our new recursion is written 

b = a 0 0 

b - b µ + b" 3 - 2 3 

Let us try this new algorithm on the previous example. Then a1 t 1 and 

ll i -1. Thus 

b = 1 
0 

Cancellation is done first, so therre-~s no rounding error to reveal. 

17-6 



Then arithmetic is done on the cancelled results. All the products are done 

with near-zero operands except a1µ, which can be held in double precision. 

When a
1
µ is perfonned. the product may occupy as much as double preci

sion. The single precision part will cancel out when a;JJ -t: a2 is computed, 

leaving either zero or a small numer that was in the double precision part 

of the product. By carrying double precision throughout we can nearly get 

single precision results in the end. Actually a bit more than double preci

sion is necessary. To avoid this. choose JJ to be zero in as many bits as 

possible at the right. so that the effects of rounding products are postponed 

as late as possible. 

The algorithm we will use for choosing JJ is to look at the successive 
-a 

quotients JJ,• = -
1- (Then a. 1 • ,-
- t1+t2+t3 

µ1 - 3 ' ~ ; 

(t1t2+t1E;3+t2E;3) 
µ2 = (E;1+t2+t3) , + E; 

whenever all 

JE;l t2E;3 

Now we find a number which matches as many of the leading digits of the JJ 1 S 

as possible. 

k R, 

JJ1 XX ab c d"' 

JJ2 XX e f g h 

l13 xx 1 j m n 

l!:!I 0 

Then µ matches each JJ; to k digits of the R.-digit word. 

17-7 



When we compute b1 =a
0
µ+a1, a

0
µ will match -a1 to k digits, 

so the result b1 has at most about t digits. Hence b1, b2, and b3 
will all fit in a single word. We can't be sure what happens next, but we 

have reduced the rounding error in the coefficients by 10-k. 

We have reduced rounding errors by losing significance! As the roots 

become closer together, the algorithm works better at shifting the origin 

with little error. A proof of this, assuming the r~ots are sufficiently 

17-8 

close together, is given in Kahan's Notes for the Su11111er Institute at the 

University of Michigan, 1968. This proof is bad because it asslllles something 

we don't know in advance. It's possible for the µ's to agree to k digits 

while the roots only agree to ½4c. 

Thesis topic: Discover quickly a satisfactory and rigorous proof of this 

algoritl11l. 

Examples 

Let's consider a few examples. Let 

Q(x) = 353x3 - 984x2 + 915x - 284 

and we shall carry three figures in single precision. µ = .93, and the usual 

Horner scheme yields 

a
0 

= 353 

8
0 

= 353 

e1 = -655.71 

82 = 305.1897 

83 = -000.173579 

a1 = -984 

81 = -327.42 

82 = 000.6891 

a2 = 915 a3 = -284 

a1 =. ooo.a1 



17-9 

For the last subtraction, we needed nine digits, i.e. triple precision, of 

which three digits cancelled. Had we carried only six figures, instead of 9, 

we should have gotten s3 = -000.173 or -000.174, with an error equivalent 

to perturbing the coefficient 284 by about Sx 10-4, or a relative pertur

bation of about 10-6. We would run the risk of getting only two significant 

figures correct in the roots. In the second scheme, 

a1 = -328 

b1 = 000.29 

a2 = 305 

b2 = -000.04 

b2 = .2297 

a3 = -284 

bj = -000.35 

bj = -.3872 

b3 = -.173579 

Six digits (double precision) was enough to get the coefficients precisely. 

It would seem that the ~i•s agreed to two figures, but the roots agreed to 

but one, being 1 and .8937677 ± .07557681. 

Perhaps a more typical example would be 

Q(x) = 3x3 - 813x2 + 13449x - 2212111 

Then the zeros are 90.1150133, 90.4424934 ± 1.64390231 -- agreement to 

one figure. This cubic is very sensitive. If we change a3 to 2212110, 

the roots become 90, 90.5 ± 1.65831241. A change of five parts in 107 

-~hanges the roots by one part in 103. 

If ~ = 90.3, then Q(z+µ) = 3z3 - .3z2 + 8.0lz + 1.5111. Horner's 

scheme requires ten digits for precise coefficients, while the new scheme 

requires eight. The new scheme wasn't particularly designed for this· type 

of cubic. In any case double precision can give you the translated cubic 

precisely. 

As a final example, invert the order so that 



17-10 

Q(x) = 2212111x3 - 13449x2 + 813x - 3 

Then ~ = .0111, and 

Q{z+~} = 2212111z3 + 214.2963z2 + .09478893z + 10-6•.289041 

The new scheme required 9 digits while Horner's required 13, to get the 

coefficients precisely. 

We conclude that if double precision is used, the errors in the new 

scheme affect the roots far less in the critical cases, than the errors in 

Horner's recurrence. If the roots are not clustered, we don't need to trans

late the roots to the origin. Double precision suffices for the solution of 

the untranslated equation if the ~i don't agree to any digits. 

We have seen n<M that triple precision is not necessary for solution of 

the cubic, and double precision will suffice. We are tempted to ask if we . 

can do without double precision. It is suspected, but not proved, that there 

• is never any need for explicit multiple precision! But the general schemes 

that have been proposed are rather costly in time and space. 

Suppose They Built a Strange New Machine? 

NCM here is an upsetting fact. An algorithm which looks very innocent 

depends in a crucial way upon factors or aspects of floating point arithmetic 

which appear to be present in all the machines that I'd thought of at the 

time. Yet I can imagine somebody building a machine or implementing his 

single precision in a way that would invalidate this program. How would you 

ever debug it? You could say it was rounding errors, but then why does it 

work on other machines that also presllllably corrmit rounding errors? 

The tricks I've been telling you abou1 are important because we would 



17-11 

like to know how to design machines which are economical, easy to understand, 

and have a rich set of nice properties that would allow you to write reasonably 

efficient programs. Then your programs would run on machines that satisfied 
• 

these few reasonable rules. It is important to find out what these rules are. 

Alas, nobody has been brave enough to write them down.t 

Are There Any Machine Dependent Parts in the Code for the Cubic? 

We have just seen that there is an alternative to Horner's method for 

translating the origin of the cubic equation problem, which only seems to 

require double precision. It absolutely requires cancellation for maximum 

effectiveness! We would like to know if there are any machine-dependent 

parts of the algorithm. 

Remember that we are required to compare three numbers and extract as 

many leading digits as are equal in them. This may seem to be a machine 

dependent operation. 

Suppose we wish to compare two decimal numbers x1 and x2, which we 

can suppose to be positive. Then let o = lx1-x21. 

0 

Suppose we can multiply by a power of the base (10). Then we want to 

twe have rules which we think are reasonable, but nobody has built a machine 
like that, except for the BCC machine .. If it ever gets straightened out 
it might be the· first of a family of machines sufficiently decent in its 
hardware that you could imagine all sorts of other machines copying it, or 
copying it well enough that you could have machine independent code. Right 
now, the situation is anarchic. 

Note: The Berkeley Co111>uter Corporation folded and their machine was 
never completed, but some aspects of its arithmetic are discussed in 
[Appendix I]. • 



find k such that 

Then if we form 

Integer(lok•x1) 

10k 

we get the leading digits. This could easily be progranmed. The method is 

satisfactory but requires the base of the machine. 

17-12 

There is another method. Suppose we found another number T such that 

it fonned a whole word to the left of ~= 

T 

Then (T+x1)- T would give the leading digits we seek. The non-agreeing 

digits of x1 would fall off in the addition T + x1, then the renoval of 

T leaves the leading digits of x1. 

Since d ~ 1 ulp of T, if we knew the rounding error level E we could 

write T ~ 2.. Now we need to· know the rounding erro_r level instead of the • E• 

base. 

It is possible to write complicated machine independent coding to discover 

the base or £. (M. Malcolm, "Algorithms to Reveal Properties of Floating 

Point Arithmetic, 11 Stanford Report CS-71-211, 1971.) However, we can get E 

roughly, to within a factor of two, with comparative ease, which is good 

enough for the cubic algorithm. 



On machines with base 2, 4, 8, 16, 32, ... , or 10 (this covers North 

American and West European machines) 

H = 1.0/2.0 is always exact; 

T = 2.0/3.0 is never exact and has an error less than 1 ulp. 

In fact, T 1111st be fonned by chopping j ulp or rounding in 1 ulp. Now 

if we form 4H - 3T it should be about zero, plus the error in T, plus 

17-13 

addition errors. If we compute in the form EPS = ABS((((((H-T)+H)-T)+H)~T)+H) 

we will see that no rounding error is conrnitted due to addition or subtraction. 

H and T must have the same characteristic so H-T is exact and is about 

-!- This number was fanned from H so it can be added to H. Similar 

arguments apply down the line so that we compute EPS to be I 2 - 2 ± l or 2 ulps I 
so that EPS is 1 ulp on a rounding machine and 1 or 2 ulps on a chopping 

machine. Thus we have a simple procedure that is machine independent which 

we can use for the cubic algorithm. 

Students' Report on Coding the Cubic Equation Algor~thm 

Our problem was the following: Given a cubic equation 

where the a1 are exact to single precision, solve for the three roots, 

exact to a certain small number of digits in the last place of the solution. 

Separating the Roots 

The program first tests to see if the roots are triple or very nearly so. 

If the roots are exactly triple, there is a relation which holds between the 

coefficients and the answer is obtained inunediately. If the roots are not 



17-14 

exactly triple, we apply the transfonnation given previously to shift the 

origin and separate the roots. The shifting is done using double precision 

so that the coefficients of the new cubic equation will be correct to single 

precision. The shift factor, obtained from the digits that match in the 
a. 

ratios - a1-, i = 1,2,3, is never more than 48 bits in length. We arbitrarily 
i-r 

decided that at least the leading 4 bits of the ratios should match for the 

roots to be considered close. 

If necessary, the shifting can be done more than once. Our program 

applies the shifting until the roots are completely separated. 

After Roots Are Separated 

Once the roots are well separated, we compute xd and xd, the two 
1 2 

roots of the derivative of the original equation. This is done to get an 

initial approximation to start a Newton-Raphson routine to find a real root 

(at least one root must be real in a cubic). 

When xd 
1 

the point xd. 
a , 

through 1 - -, 
ao 

cubic with three real· 
roots, showing the roots 
of the derivative 

and xd are real, we construct two functions, one through 
2 

where the function is largest in absolute value and the other 

the inflection point whe~ the second derivative vanishes. 



, 
I 

, , 

/ 

,1 
I I I 

II I : 

I 

h' 
I 

/ 

g / 
I 

g(x) = f(a) + a
0
(x-a)3 

h(x) = f(S) + a
0
(x-a)3 

You are expanding f around these two points. Then, to the left of a, f 

17-15 

is greater than g; to the left of a, h is greater than f. (In other 

cases, it may be to the right of a and a that these relationships hold). 

There must be a real root of f between the real roots of g and h. Those 

two roots, y2 and y1, are easy to find; they are each the cube root of 

a real number. You then take a linear combination of y1 and y2 as the 

initial value for starting the Newton-Raphson subroutine. There is a magic 

factor, obtained by looking at the case of three real roots,t which tells us 

whi.ch linear coni>ination we should take. . We get 

The factor m is obtained by figuring out what cont>ination of y1 and y2 
will, in this case, give us exactly the root we are looking for. For m 
to work in other cases, you only need show that x

0 
is to the left of a. 

I /s!y.<:J 
I , 2 

I 
I 



3 
m = 12"+l - 1 

✓3 

This gives us an x0 which is to the left of a and the Newton-Raphson 

method will converge to the desired root. 

Question: What is the rationale for fi-nding the initial approximation 

in this way? If the cubic has three real roots, starting Newton's method 

almost anywhere will lead you to a root, unless you get sent to infinity, 

or get into a loop oscillating between two points. However, in the last 

case, one rounding error is enough to destroy the loop and then you'll con-

verge. Why go through such an elaborate procedure when almost any starting 

point will work? 

Answer: If you are not careful, you run the risk of converging to the 

root in the middle and that can be fatal to finding the other roots. 

Get Smallest Root First 

Once the first root r1 has been found by the Newton-Raphson method, t 

17-16 

using double precision, the original cubic is divided by the factor (x-r1); 

But r1 must be the smallest root in order to get the precision needed to 

solve the resulting quadratic. The reduction to the quadratic is accomplished 

by: 

bo = ao 

b
1 

= 3a
1 

+ r
1
a

0 

b2 = 3a2 + r 1 bl 

tThe iteration continues as long as convergence is monotonic or until the new 
function value does not differ significantly from the old one. 



17-17 

Notice what happens if the root is very large (consider a1 to be 1). 

-3a1 is the sum of the roots; if r1 is very large, 3a1 and r1 are 

essentially equal and lots of cancellation (or almost complete cancellation) 

could occur. So that cancellation will not occur, you want r1 to be the 

root smallest in magnitude. 

Kahan: This argt.111ent is not valid because it depends upon some cancella

tion occurring that you say you don't want, whereas actually if the cancella

tion occurred properly you'd be very happy indeed. The issue is that when 

you compute 

f{x) = {x-r1}Q{x) + f{r1) 

t 
quadratic 

f{r1) is supposed to vanish, but that may not happen. Suppose you made the 

error of accepting r1 as a root, when ft was only good to a few ulps of 

double precision admittedly. Then the Q you get, even if it is correct to 

double precision will be the quadratic factor, not of your polynomial f, 

but of your polynomial f modified by the subtraction of f{r1}. Suppose 

r is a large root. 

I ---------------~-

Where you have a big root you_generally have a big derivative as well. 



Then a small change in a big root, like a few ulps, can make a large 

absolute change r1. And since the derivative is big, the change in f(r1) 

might also be big. Making that big change in f{x) is like moving the 

horizontal axis (dotted line) somewhere, which tends to shatter the little 

root. That's why you don't want r1 to be big. 

If r1 is the smallest root, the shift in the horizontal axis will be 

small and will hardly affect the biggest root. 

You know you'd like the smallest root. But what if Newton's method is 

not so obliging and gives you the biggest root? 

If We Find the Biggest Root First 

If r1 is the biggest root, we take the inverse polynomial by making 

17-18 

the substitution z = !; that interchanges a
0 

and a
3

, a1 and a2, _and 

the biggest root becomes the smallest. We solve this cubic and if necessary, 

reverse again. 

Question: What if I move the origin to be very near that root with a 

large derivative? Then that argument about the derivative doesn't hold. 

Answer: Yes, but a unit in the last place of a small root is a very 

small number so you have a small change. But then the other two roots, which 

are badly blighted by this change, will be blighted by almost any change in 

the coefficients of an ulp, so they are not well determined. The argument 

I gave is incomplete, but its essence is not that a certain type of cancella

tion does or does not occur, but rather that if you throw in all the other 

rounding errors, you'll discover that the division process will give you a 

quotient Q which is in fact the Q that corresponds to a slightly wrong 

polynomial, slightly wrong because of f(r1) and each coefficient having 

been altered by a little. Even if r1 is the smallest root, the rounding 



17-19 

errors that will be most important will not be the errors associated with 

f(r1), but the errors associated with the perturbations in the coefficients, 

and if those perturbations cause the roots to fly around a lot, you just 

have to live with that. Of course, our perturbations are in double precision 

and will cause at worst a change in the roots of a few ulps in single preci

sion. Since we have sh1fted the origin so that we don't have near triple 

roots, e113 does not appear, but rather e112 turns up. So if you do 

everything to double precision, you get single precision results essentially. 

But let's get back to why it is bad for Newton's method to converge to 

the middle root. 

Why Not Get the Middle Root First? 

The middle root can also be a big root and then the same argument as 

before applies. The tiny root gets abnonnally badly shifted by the rounding 

errors. And now you can't avoid the issue by inverting the cubic; you can't 

escape the rounding error problem. That's why you must not get the middle 

(in magnitude) root first. 

should not get 
this root first 

• 

The strategy of the program will give the righthand root (which is the 

biggest) and then you invert the problem. If you had tried to divide out 

the factor for the lefthand root, you'd destroy either the largest or the 



17-20 

smallest root. When two roots are nearly equal and the third is very 

different, it doesn't matter which you get first, because you can always 

invert the polynomial. The problem arises only when the three roots are 

different in magnitude; you must not get the middle in magnitude first. The 

strategy is designed to avoid doing that. 

Derivative Has Complex Roots 

When the original cubic has no ~aximum or minimum but only inflection 

points, the derivative roots are complex. Then the picture looks like this: 

I g 
I 

I 

We still co111>ute the function g through -a1/a
0

, which guarantees 

a point to the left (in this picture) of the root and a suitable starting 

value for the Newton-Raphson method. Another suggestion was to take the 

derivative at -a1/a
0 

and extend the line to the axis and see which point 

is closer to -a1/a
0

• With either approximation, the Newton-Raphson 

method converges. 

The Derivative May Have Close Roots 

Problems arise when the quadratic has two real roots ·that are very 

close. The center of the graph becomes nearly horizontal. If we try to 

use the point for which the function is larger, we could make the wrong 

cho·:~:e. l!owever, the linear combination of points will give us a point to 



the left of -a1/a
0

, even if we made the wrong choice. 

I 

h ' 1 / 
/ 

It doesn't matter which h we use in this case. 

Kahan: The issue is to distinguish these two cases: 

this root / 
wanted 1 

It is easy in the cases drawn here. 

But what happens when the horizontal axis is so close to the point of 

inflection that you cannot tell which of the two lines is the axis, because 

of rounding errors. 

I 
I 

I 

If the lower line is the axis, you should go to the left; if the upper 

17-21 



line is the axis, you should go to the right. Now you need a formula such 

that the roundoff comnitted in evaluating the polynomial at the point of 

inflection will not do something bad to you. The original program compared 

the magnitude of f at the zeros of the derivative, but that has problems 

17-22 

when the curve is nearly flat. The logic was such that given the graph below, 

you thought you had the dotted graph and you'd never find the zero. 

) 

You need a formula such that, if you don't know if h should be to the right 

or left of the inflection, it will not matter which one you construct. You'll 

still get a satisfactory approximation to the biggest or the smallest root. 

Question: I'd like to go back to the middle root problem. I can make 

any root middle by moving the origin. 

Answer: There is a problem only when the three magnitudes are very 

different. If they are all close, it doesn't matter which root I get first. 

The algorithm appears to be independent of the origin but what it does is 

select a root to go to first,which has the property always,that if the three 

roots have very different magnitude~you will not go to the one of middle. 

magnitude. 

* can be middle 
(magnitude) roots 

/ 

/ 
I 

, 
I 



17-23 

If the middle root is on the right, the algorithm won't take you there. 

So what if it is on the left. Then you'll go to the large root at the far 

right. 



18. HOW SHOULD ONE SOLVE A NON-LINEAR EQUATION? 

What Should We Mean By "Solve an Equation?" 

How accurately can you solve an equation? I'm going to _limit myself to 

a single equation in one unknown with a real variable, plus some further 

limitations later. The reason for imposing these restrictions is to have 

a reasonably definite object to study. 

We want to solve: f(x) = 0 

First, we should not take that imperative too seriously. Solving 

f(x) = 0 could very well be impossible for either or both of two reasons. 

(1) When you compute f(x), the value you corq>ute will be contaminated 

by roundoff. It may be that even though you have the correct root repre

sentable precisely in the machine, an attempt to compute f, using reasonable 

arithmetic, will lead to rounding errors which necessarily produce a value 

of f that is not zero. It is conceivable that f as computed may never 

vanish, because the value is contaminated by roundoff. An example is a 

polynomial equation with reasonable integer coefficients, one of whose roots 

is an integer, but whose degree and coefficients are.large enough that a 

rounding error necessarily occurs; once it occurs, it doesn't.go away and the 

value is not zero where it should be. 

(2) It is conceivable that you could compute f quite precisely, but 

will f vanish at any value of x available to you? An example of such a 

function is: 

f(x) = (((x-0.5)+x-0.5)+x) 

or f(x) = 3x - 1 

18-1 

This function has the property that, for any machine, in the neighborhood 

of the zero, no rounding error will occur when the function is evaluated. Why? 



18-2 

Of course 1/3 is not representable precisely on a binary or power of 2 or 

decimal base machine. But numbers very close to 1/3 are representable and 

they'll have the same characteristic as 1/2. So x- 0.5 will be done pre

cisely. The difference will be --1/6; that may have a different characteristic 

from x, but when it is right shifted, no digits will be lost; so adding 

x doesn't give a rounding error; the result is now -1/6. Subtracting 1/2, 

even with a right shift loses no digits. so there is no error and the result 

is --1/3. Finally, adding ~l/3 causes no rounding error and almost all 

digits will cancel. But because no rounding errors have been committed, you 

cannot get zero because you did not put in 1/3. Therefore, f(x) never 

vanishes. 

Thus. if you insisted on solving f(x) = 0 explicitly, you could fail 

to do so even though you had canmitted no rounding errors. This example 

points out that there really are two reasons why equations are troublesome 

to solve. 

1) You cannot compute the function you'd like to have vanish exactly. 

2) You may not have a place where the function is small enough to be 

called zero simply because your set of representable numbers may be too 

coarse. 

It is possible to construct functions which, when computed in the machine 

with rounding error, will exactly match other functions that don't have the 

property you expect. 



18-3 

Consider the following two functions: 

Z=3x-1+~ 
->X-1 

Denominator computed as (((x-}}+ x-½>+ x} so it doesn't vanish. Z has a 

pole at 1/3, so it doesn't vanish anywhere. 

Y and Z have the property that for all numbers in your machine, 

assuming underflow is set to zero without a message, their coq,uted values 

are exactly the same, for suitably chosen e (= -150 on our machine}. 

Since Y and Z are indistinguishable, there rm.,st be certain things 

about zero finding that cannot be said with confidence. You have to be 

more circumspect in how you describe the problem. In effect, what we have 

to say is when the value of the function is small enough to be called zero. 

To do that you need to know more about the function than merely its computed 

value. 

To know that we are not trying to solve an insolvable problem, we have 

to have a bound on rounding error. I want to compute f(x} and I get F(X}. 

I need some tolerance e such that 

e ~ fF(X)-f(x)I 

I must know the uncertainty in the coq>uted value. If I do not knCM 



that uncertainty, I do not know if I'm trying to solve a reasonable or 

unreasonable equation. 

The problem must be changed to read as: Solve lf{x)I ~ e. That might 

make more sense, if you have e in advance. But the example of 3x- 1 

showed that it is not enough to know a bound on rounding errors. Here the 

rounding error was zero and had I been asked to solve lf{x)I ~ e with 

e = 0, I couldn't do it. 

This defect will be repaired shortly. The point is that to solve an 

equation you have to state more than the subroutine that defines the function. 

This problem is not due to any particular programning language, but rather 

resides in the mind of people who want to use equation solvers. These 

people must be educated to realize that equation solvers that require only 

a function defining subroutine cannot be depended upon. Additional infonna

tion in the nature of an error bound is necessary. 

Consider a modification of the above problem, which will have a solution. 

Suppose IF{X) - f(x)I ~ e{X), where F and e are known. A subrou

tine computes what is intended to be f{x) to within a known tolerance, 

which may vary with X. Suppose also that I know that if lx-x' I~ 1 ulp of 

x, then 

lf(x)- f(x')I ~ ~(x) 

o{x) is a bound on the variation of the function when you vary the argument 

by 1 ulp. So you know {1) how to compute the function approximately, (2) how 

approximate is that approximation and (3) how rapidly the function varies. 

Question: You're not talking about the kind of approximation where 

you compute approximately some approximate value, are you? [See 13]. 

Answer: That has to be bound up in the e. It can include rounding 

18-4 



errors and truncation errors (taking a finite part of an infinite series). 

Like for sin x, you expect the result to be within a unit or two of the 

sine of SCllle number which is almost what you put into the machine. e must 

reflect all that error. 

'8-5 

As we will see 6(x) is not as independent of e(x) as ft would appear. 

Not only are there errors in rounding the output; there are also errors in 

rounding the arguments which will appear in 6 and also in e. Nonnally 6 

need not be known in advance. 

When Will a Solution Exist 

I will show that if f{x) vanishes anywhere, then necessarily F 

must become smaller than the s1.111 of the two tolerances. 

"Solve IF(X)I ~ e(X) +d{X)" has a solution, provided 11solve f(x) = 0" 

has a solution. The main subroutine is F; you must also give the equation 

solver a subroutine that provides e{X) (not too exactly computed) and 

another that provides 6(X) (although this one is not really needed). I 

didn't say I would solve IF(X)I ~ e(X) +d(X), only that it has a solution 

which is quite a different thing. 

The trouble with this theorem is that it is non-constructive and trivial. 

The proof sheds very little light upon the nature of the problem. 

Proof. Say f(x) = O defines a value x, not necessarily representable. 

Let X be the closest representable number to x, so that 

IX - x I ~ 1 ul p of x or X 

Therefore 

IF(X)- O (= f(x)) I ~ (F(X)- f(X) I + lf(X)- f(x) I 
< e(X) ·+ 6(X) by hypothesis 



The proof is trivial; a solution exists, but all the proof does is 

assure us that the requirement "solve )F(X)I ~ e(X)+ o(X)" is not yet 

known to be impossible. 

Question: I'm still confused by one unit in the last place. It seems 

you'd find a place where the exponent changes so that the nearest repre

sentable number ... 

Answer: The nearest representable number differs from the given number 

by less than l ulp of that representable number, even if it is 1.00···0. 

It may be a good deal less than 1 ulp of the representable number. That's 

why I have o(X), not o(x). 

18-6 

~ 

111111111111111<1 ) 

Lines are repre
sentable numbers. 

1. 00 • • .Q 

What is the number closest to 1? The difference is less than l ulp of 1.0, 

which is the large gap to the right of it. I could have said 1/2 ulp and 

gotten essentially the same result. 

The problem is how do you go about computing o(X) and e(X)? Normally, 

o(X) < e(X), so e is a bound on o and not too large a bound. (I say 

nonnally because of the example Jx-1 where e(x) = 0.) e(X) comes from 

two sources: 

(1) You used an expression that is not exactly the function you want. 

(2) Roundoff alone {I'll consider just this one). 

I'll get a bound for e(X), considering roundoff only. Had there been 

truncation errors, e would be bigger and the result would be even more 

true (if one thing can be more true than another). 



Rounding Error Analysis 

Every operand that appears in calculating F(X) is named separately. For 

example 

F(X) = l:~ 
Subscript each appearance of each operand so that you could think of them as 

independent variables. The function you compute is what you get when all 

x1•s have the same value. 

18-7 

What would a rounding error bound look like? There will be many rounding 

errors. Among them will_ be the ones attached to our attempts to use the 

operands x1. For example. on the 6400 1 when we add anything to X, some

thing else is computed, 

"X $ Y" becomes X(l+t) + Y(l+n) 

We only know a bound on t, that ltl is at most l.ulp; (l+n) only makes 

the error bigger. When you compute rounding error bounds in the usual way, 

every use of X introduces a rounding error which may be attached to that 

letter X as a perturbation of at most a unit in the last place. Other 

stuff gives other perturbations, which tend to make the error even bigger. 

Let us consider how big is the contribution of those rounding errors 

that are attached to a letter X, every time it appears. The total error 

will certainly be even bigger than that. 

The easiest way to discuss this is to differentiate (even though that 

is not necessary). What I compute in place of &(X,X, ... ,X) is at least as 

bad as &(X(l+t1),X(l+t2), ... ,X(l+tn)). In each case, ltjXI < 1 ulp of X or so. 



18-8 

How Does & Vary 

I'm using the notion that each one of the X's is an independent 

variable and I can differentiate & with respect to that independent variable. 

I now have some notion of how the expression can be altered by rounding 

errors. The bound is in some respects realistic; it is conceivable that all 

the rounding errors ~j could have just the correct sign to match with the 

derivatives and ~j could be as large as a rounding error ever is but 

realistic to the extent that only if there were an extremely large number 

of rounding errors involved would we believe that you could not find an argu

ment for which all the rounding errors would be about as bad as they could be. 

The contribution due to roundoff is at least as bad as 41:~.lltjXjl' 
J J 

because roundoff will include some things we haven't taken into account (the 

(l+n) and truncation error). We can also write this as 

41~~.j ltjXjl ::, 4l~f.l•(l ulp of X) ::, e(X) 
J J J J t 

roundoff error 

Now let us consider what o(X) has to be like; o is a bound on the 

variation in the function caused by altering X by 1 ulp. 

lf(X)-f'(X)I:. 1~;11x-x•1 ~ 1£1•0 ulp of X) :i: o{X) 

That's the best bound we can hope to get for o(X), so that's what we expect 
t to get. 

~ may be a bit bigger; I should look at the maximum value taken by the 
derivative on the interval [X,X'], but being too rigorous will just 
obscure the issue. 



Compare the expressions for ~(X) and e(X). To do so, observe that 

Id f I _ I d _ r a t I a& I ar - fx&C x ••••• x > I - I j 3 x /'< x • x ..... x > I ~ j 3 x j 

That last sum appeared in the expression for e(X). So you see why I claim 

that normally ~(X) < e(X). 

There are many gaps in the reasoning, aside from the fact that I've 

approximated in many places, but they are approximations that can be patched 

up. What I've really done that's unforgiveable is to assume that every 

appearance of X is going to have its own independent rounding error. That 

is visibly untrue, because we had an example where each appearance of X 

18-9 

had no rounding error at all. I've also neglected to consider those machines 

in which roundoff behaves in a somewhat better way (where, when you sum, you 

round the sum and not the operands). It is an exercise to verify that even 

in that case, nonnally you expect o(X) ~ e(X). I say normally, meaning that 

when I add something to X, that something has been rounded, so that the 

rounding error that occurs can be attached to X instead when you look at 

the value of the whole sum; you allow the error to migrate to X. So this 

argument is reasonably general in spirit, but incapable of being proved 

precisely in all cases, since we have a counterexample. 

This nontheorem allows us to simplify the specifications on a equation 

solving subroutine to read: 

"Solve I F(X) I !_ 2e{X)" 

An exercise would be to consider a polynomial, evaluated in the usual 

way by Horner's recurrence 

f(X) = a xN + a xN-l +•··+a 1x + a the function o 1 n- n 

&(X) = (···((a
0
X1+a1)x2+a2)x3 +···) + an the expression 



18-10 

Each of the X's is multiplied and each multiplication generates an 

error that can be attached to the X. So e(X), constructed in any way you 

like, will necessarily have the property that it also bounds the variation 

in the function caused by altering X by 1 ulp. You really have a bound 

for the derivative. 

What Methods To Use To Solve Equations 

We now have some idea of the sorts of equations we could hope to solve. 

Now we need to consider what type of method to use to accomplish that 

solution. 

The presentation has not been rigorous, but was intended to show the 

nature of things that could be proved rigorously. Only in exceptional cases 

can you hope to solve equations exactly in any sense. 

When you start to look for the roots of an equation, a very interesting 

thing happens. Nonnally we say: Try some algorithm; if it doesn't work, 

try something else. That isn't much help. But for any algorithm that 

doesn't have an ironclad and necessarily trivial guarantee, you can expect 

to find counterexamples for which the algorithm will fail. 

Newton's Method 

An example is Newton's method. If you ever get close enough to a root 

of f(x) = O, convergence is necessarily rapid. 



18-11 

Even convergence to a multiple zero is not unduly slow, provided you measure 

it the right way. 

Unfortunately, the theory for Newton's method is of a local character. 

If you get close enough, then something will happen. The close enough means 

you can approximate your curve. to within a difference that doesn't matter, 

by a straight line. That's not generally what you have in mind when you 

start the problem. You shouldn't be surprised that there are many examples 

for which Newton's method doesn't work. 

Suppose your function looks like this (like arctan): 

If you start close enough, the method will work. But if you start 

outside the dividing lines, you'll go off to infinity and it won't take you 

long to get there. 

When Will Newton's Method Work 

You'd like some sort of theory that tells you that if you use Newton's 

method in this case, it will always work. That takes some fairly strong 

global statements about your function, such as if the function is convex in 

some neighborhood of a root, then anywhere in that neighborhood, you can 

expect Newton's method to work as long as you don't get thrown out of that 

neighborhood by the first iteration. 



18-12 

place (will converge) 
t 

not a good starting place (won't converge) 

A more precise statement (by Fourier) would be that if a function is 

convex in a certain interval at one end of which there is a root and certain 

sign conditions are met and if you start in that interval, you stay in it 

and convergence is monotonic. 

However, a condition of this type is not entirely satisfactory, but it 

is applicable in many cases. The situation is complicated by our inability 

to recognize when Newton's method is convergent. 

What many people do with methods like Newton's is to observe that when 

things are working, the value of the function decreases with every iteration. 

From the picture, f(x
0

) > f(x1). 

f(x
0

) 

The direction that Newton's method tells you to go is in a sense a downward 

direction for the magnitude of the function. 

Modified Newton Method 

So modify Newton's method so that instead of moving a distance 

f(x
0
)/f'(x

0
), you move a fraction t of that distance. Say 

l 



How does f change? 

xt moves in the direction 
Newton's method points, but 
not so far 

18-13 

The derivative, with respect to motion from x
0 

to x1, of f has a 

sign opposite to that of f. At least initially, the magnitude of the func

tion declines, in the direction that Newton's method takes you.t 

So people have attempted to guarantee, by the selection of t, that 

the value of f will always decline. That means t = 1 may not be such a 

good choice; t is some fraction that makes lfl decrease. That will 

greatly improve convergence in the following case: 

f is larger + 1 
I 

If you repeated this process you'd hope eventually for something good. There 

is a difficulty in that you are seeking a place where lfl is minimal and 

it might not be a root. So usually appended to this is a method to see if 

tYou can apply Newton 1s method in the complex plane .with similar results, or 
in the multidimensional case (f'(x) becomes a Jacobian matrix and 1/f' 
becomes (f•)-1 .} 



you've reached a local minimum in magnitude. 

*=traps 

\ 
The root is hidden by little traps. If the guy is a bit unlucky, he might 

end up in one of the traps and never find the root. He'd have to use some

thing that is not already in the algorithm to discover his plight. 

18-14 

But normally, you do have a way of detecting this situation and then you 

do something else. 

Question: Why not just take constant steps if you're going to scale 

down Newton's steps anyway? 

Answer: In principle, by taking constant steps of l ulp you could 

exhaust all the arguments and find the solution if it existed. But that's 

not fast. You take Newton's step and hopefully that value is so much closer 

to the root that you'd verify this fact by noticing an enonnous decrease in 

lff. You're confinned in that choice and do another Newton step. If you 

don't see the enonnous decrease in lfl, then and only then do you use a 

different strategy. You put in t and cut the step in half, quarter, etc. 

I'm not recomnending this method, but just indicating a rationale people 

might use and the way these things go wrong. 

There are certain cases in which it is known ~hat if·you hit a minimum 

of the magnitude, there is an obviously right thing to do. These are cases 

when you're dealing with analytic functions in the complex plane. The 

l 
f 



18-15 

Minimum Modulus Theorem says that the only way for an analytic function's 

modulus to be minimum is for it to be zero (also called d1Alembert's principle). 

Therefore people often feel they have here a guaranteed method, if only they 

jump into the complex plane. Unfortunately, this doesn't always work out. 

That is because, although it 1s true that a minimum of the magnitude can 

only be a zero for an analytic function,t if the function has singularities, 

a minimum of the magnitude could easily be a singularity. 

complex plane 
1 + zl/2 

l+ z112 has a local minimum in magnitude at Z = O, but that is not 

a zero of the function. The graph has a break. In this particular case, 

if you turned yourself and plotted orthogonally, you'd get the dotted line 

and discover you were at a saddle point and now were at a maximum of the 

magnitude. This difficulty is quite typical. 

Programs which are based on d'Alembert•s principle generally hang up 

in one or both of two ways. 

. (1) They find a minimum in the direction Newton's method tells them 

to take. 

t 
I 

' \ 

+ real axis plot 

, + imaginary axis plot 
' 

+An analytic function is one which in the interior of a neighborhood has no 
singularitiesi in that neighborhood, d'Alembert's principle holds. 



18-16 

I'm willing to use complex values for Z, but begin by using a real 

value. Newton's method tells me to go along the real axis and no matter how 

I choose t I never get into the co~lex plane and I only find the local 

minimum. If you looked at the problem along the imaginary axis, the graph 

is rather different. But you can't get onto the i-axis using Newton's 

method. 

(2) So people are obliged to discover that they are at a minimum of 

the magnitude of an analytic function with respect to variation along a 

line which is necessarily a saddle point. Then they must turn the problem 

through an appropriate angle which depends on how many derivatives vanish.t 

You either know all the derivatives or are willing to make a large number 

of guesses. 

But all of these algorithms have their own hangup. Their hangup is in 

their inability to recognize when they are nearing a minimum of the magnitude. 

You'd recognize that you were nearing a minimum by noticing that successive 

computed values of lfl appear to no longer be decreasing sensibly; they've 

practically stopped decreasing. You'd identify the minimum because lfl 

stopped decreasing at all or decrease only but a couple ulps. Unfortunately, 

it takes a long time to identify this fact, because convergence to the 

minimum of lfl is generally very slow and there doesn't appear to be a 

decent way of speeding it up. You can even construct functions that don't 

have a minimum but somehow the algorithm does ugly things to you. 

tlf f' = 0 and f 11
, 0, turn through 90°. If f 1 = O and f 11 = O and 

f 111 

:/- O. turn through 60° or 120° . If f' = f" = f 111 = 0, f 11

1 

, 0, turn 
through 45°. 



18-17 

Here's an example specifically to refute algorithns based on d1Alembert 1s 

principle. 

t 
start here 

If you started here, you'd 
oscillate between the two 
points. 

5th degree polynomial 

1 function value 1s a 
• little less here 

If you were oscillating, you'd catch yourself if you were testing for 

a decrease in Jfl. But say you start a little bit outside that box and get 

to a point also outside the box but a little closer. You end up traversing 

a path outside the parallelogram. getting closer all the time. 

Examples like this can be constructed so that although the sequence of 

values If) decrease, they decrease arbitrarily slowly. The decrease at 

step n of lfl • could be ~; you can easily figure out how big n would 
n 

have to be to be decreasing lfl by only a few ulps; perhaps at that point 

you'd be willing to give up that particular iteration. 

Question: Wouldn't you notice something fishy in that your X values 



18-18 

are alternately positive and negative? 

Answer: Did you notice that? You'd have to put in logic to notice that 

and you'd have to be sure that the logic wouldn't be tricked when the itera

tion is supposed to be like that. In this same example, if you get close 

enough the method is cubically convergent but the X's alternate in sign. 

I'm going through all this to show you the lengths you must go to have 

a program that you can guarantee. It is not possible to write a program that 

you can guarantee for arbitrary subroutines defining f. It appears possible 

that in principle no matter what logic you use and what constraints you put 

on the functions (like demanding that they be continuous and really have 

roots}, if your program accepts arbitrary functions, someone could look at 

your logic and construct an example to confound your method. 

More Reasonable Claims for Equation Solvers 

We must s~ttle for a more modest type of claim which severely restricts 

the classes of functions for which the zero-finders will work. For example, 

some programs only take polynomials; even in this case no one has proved that, 

including all errors, his program will work for all polynomials. The only 

programs for which people have given even approximate proofs in the litera

ture are those programs which are known to be exceedingly slow. For example, 

there's a method due to Lehmer that involves drawing circles and in the 

absence of rounding error tells you which circle contains a zero. If a circle 

contains a zero, you subdivide it into smaller overlapping circles and look 

again. This is obviously slowly convergent. 

There are other algorithms which say that if you do something long 

enough, then an event will occur after which convergence will be fast. In 

principle you can show that you should not have to work very long to have 



18-19 

worked long enough. But the proofs cannot say hCM long is long enough. 

There is a method by LaGuerre that is cubicly convergent if you are close 

to a zero. Programs using this method on the 7094 will accept polynomials 

up to degree so. although it has been modified for polyncrnials of degree 2500. 

This may sound like a great accomplishnent. but remember that such a polynomial 

has 2500 zeros which means they are almost everywhere. 

The only trouble with LaGuerre's method is that it cannot guarantee to 

give a starting value (for the fast convergence) in the time you are willing 

to wait. 

Then there are programs that use intimately everything you know about 

the function whose zero you seek. That of course includes the error bound 

because that's the only way you know when to quit looking. 

Can Binary Chop Be Bettered 

As an exercise consider finding a zero of a function known to be 

continuous and at the ends of a given interval the function has opposite 

signs. Is it possible to write a foolproof program that is faster than the 

obvious ·binary chop algorithm? To within certain limits, it i~ possible to 

construct a method that converges superlinearly. Once you get close enough, 

the number of correct digits is multiplie~ by some constant bigger than 1 

at each iteration. The function does have to be smooth. but most functions 

writeable in FORTRAN are sufficiently smooth. 

If you want to find where the function vanishes, you need more than the 

sign of the function. You also need to know an error bound. If you want 

only to know where the function changes sign as computed, you don't need an 

error bound but only need the sign digit correct. But then, binary chop is 

the best that you can guarantee. 



18-20 

For an interesting algorithm of this type, see that of T.J. Dekker in 

Proceedings of the Symposium on Constructive Aspects of the Fundamental Theorem 

of Algebra. 



19. CONSTRUCTION AND ERROR ANALYSIS OF A SQUARE ROOT ROUTINE 

Now I'll give you a successful error analysis. It is based on a very 

intimate appreciation of the hardware of the machine. You have to choose a 

simple algorithm -- I have chosen a square root. This analysis must be done 

for elementary functions.t 

I'm going to show you how to analyze a square root, coq>letely. Every 

detail will be covered. 

The 7090 and 7094 are signed magnitude machines: 

sign characteristic 
~I a O f I nonnalize integer 

part 

Specification for the SQRT routine: 

i) SQRT(X) t l"X, X ~ 0 

ii) SQRT(X) + -/:r, X < -Ott 

and an error trace and message 11SQRT(-X) = -SQRT(X). 11 

graph of SQRT(X), a nice continuous graph 

t All the elementary functions for IBM 360/50, in single and double precision, 
have been analyzed in this way to the extent that number theory wasn-'t 
needed. The man who wrote them has done this and is able to say sonething 
like the error is no more than 15 units in the last place. Then the machine 
is tested on thousands of operands to see if his predictions are justified. 

ttThe response to taking a square root of a negative number is not at all 
obvious. It's not obvious that we should be kicked off the machine. 
See [6]. 

19-1 



Specifications on the ERROR 

i) Error cannot exceed .50000163 ulp's (recall 27 bits is roughly 

8 decimal digits, so the error bound is given to 8 digits). 

ii) Among the 234 essentially different positive floating point 

numbers (227 different operands -- 226 from the significant digits, 21 for 

whether the exponent is odd or even), only 29 x27 produce incorrectly 

rounded square roots (neglecting powers of 4 that is only 29 different 

operands). By this I mean that for only that many operands will the value 

written out by SQRT be other than what you would have gotten by taking the 

square root exactly and then rounding it correctly to 27 bits. 

19-2 

The error bound is obtained by exhibiting those 29; for those correctly 

rounded, the error is 1/2 in the last place; for the others, the bound tells 

you how much worse the error is. 

One way to tell how bad a subroutine is, is to enumerate all the errors. 

But you could tell how long that would take, even on the 7094; that was not 

what was done. You have to do an error analysis sufficiently accurate so 

that all the places where the errors are likely to be big are exhibited and 

in those regions you enumerate all the arguments. 

Question: When you are checking these routines for the largest errors, 

suppose you are checking your double precision version? 

Answer: That's not the way it's done. The double precision routine 

could also be wrong. There is actually a number theoretic way, which is 

quite precise. 

Question: Would you go through the argument of what the 234 numbers 

are. and in particular, do you accept unnormalized numbers? 

Answer: No, we don't -11ow unnonnalized numbers. There are 27 bits, 



19-3 

of which the leading bit must be a 1, so there are 226 different operands. 

Then you can have 28 different characteristics, for a total of 234 different 

numbers. But there are only 226 times 21 essentially different operands, 

or 227 . Only 29 of those give incorrect rounding. 

Question: Is it part of the specifications that the routine only pro

duces correct results for nonnalized operands? 

Answer: Yes, all the subroutines on the 7090 are set up that way. 

Everything is assumed normalized. 

Specifications to be Matched 

Let's consider now some of the more valuable and interesting parts of 

the specifications. 

i) If X ~ Y ~ O, then SQRT(X) ~ SQRT(Y) 

(preserves monotonicity) 

ii) SQRT(X**2) = SQRT(RND(X*X)) = ABS(X) 

(exact for all X for which x2 doesn't overflow) 

Number ii) seems reasonable. But say in a fit of overant>ition, I tried 

to match the following: 

SQRT(X)**2 = X 

It is not possible to do this for all x. Why not? It is true for all 

X which are perfect squares. (That case is insured by ii) above anyway.) 

Question: Suppose on the 6400 that X and Y are sufficiently close 

that their square roots differ by 1 in the last place, so that when you 

subtract the l, ·what is left is in the double precision part of the register. 

Answer: That is a problem that will have to be looked at by the people 

who do that project. But I'm talking about a 7090, and on it if two numbers 

are different their difference is nonzero, unless it underflows, and then you 



19-4 

get a message. 

There are questions of how long the program should be, but that won't 

concern us except that it should not be appreciably longer than other programs. 

Then there are questions of what alternatives should be used. A properly 

documented program should say how long it takes, how much storage is required, 

what alternatives are there, are there any systems side effects. For example, 

in this SQRT, it is possible to take the square root of a number that has 

temporarily overflowed into the P and Q bits, e.g., for CABS. Another 

part of the documentation is the method used in the program. 

Heron's Rule 

The method is based on what used to be known as Heron's rule, now known 

as Newton's method for solving a quadratic. 

graph of y2-x 

Y1 = !{y + L) 2 o y
0 

From the picture, this clearly converges. It is important for us to know 

how fast it converges. Unless it converges quickly, it is not a good method 

to use. 

Convergence in this case is quadratic. If I can manage to get y
0 

to 

match the square root of x to a reasonable nuni>er of digits, each iteration 

wi 11 about double the nunt>er of correct digits .. 

The easiest way to show this, without resorting to Taylor series and 

st~·:h is to pretend: 



relative error is = 26
0 

for small 6
0 

so o1 = 6~ {quadratic 
convergence) 

How do you begin? What is your first approximation for y? 
0 

To Get the Approximation 

The idea is to choose a simple function, one that is extremely easy ~o 

compue and use it to approximate the graph of the square root. 

Say you wanted to use a linear function. But if you do that over a 

large range, something will go wrong. So you restrict the range of your 

approximation to numbers within a factor of 4. All nuni>ers will fit into 

this range by appropriate multiplication by powers of 4. 

__,..---------x 
1 l 
"2" 2 

approximate in this 
range of x 

1 Question: Wouldn't it be the range O to 2, not "2" to 2? 

Answer: No. Remember, zero is not a normal, floating point number. 

SQRT(O) = O; it is too easy. And the square root of all other numbers can 

be obtained by taking off all but the last digit of the characteristic, and 
1 that puts them into the range 2 to 2, without any rounding error. 

Once the number is in this range, you can start to talk about simple, 

19-5 

say linear, approximations. What is the best linear approximation? It turns 

out, however, that the best one is not the right thing to use, necessarily; 

it depends on the machine. On some machines, multiplying is expensive, 



19-6 

unless you multiply by a power of two. So things like the following are done: 

J = 0 or 1 

Ix= 21 ./ 2-JF 

y
0 

= 21{F/2 - J/4 + c) 

0.5 ~ F ~ 1.0 

the r is in the range ¼ to 1 

I tried all possible programs of a given length, and this one turned 

out the best. 

Question: Did you try table lookup? 

Answer: Yes. One of the best programs on the 7090 was a rather 

elaborate table lookup, but on the 7094, 11\Y scheme was faster. 



Question: I have a question about the function you chose to start 

the SQRT. You said there were other choices. What were they? 

Answer: The idea is to consider all possible programs, no longer 

than one program tha~ already worked, that could compute a square root. 

There are certain programs so implausible that you can rule them out 

i11111ediately. 

You begin by doing necessary things, like loading the arguments. 

You make a table of the possible first, second, third, etc. instructions. 

This listing generates a tree, in which each node represents a choice of 

instructions; each node is the state of the machine at that point (the 

value of a function computed) if you follow the tree to that node. - The 

tree gets pruned quickly because you throw out obvious things not to 

do (like increment an index you don't know). 

Question: It seems to me like a shotgun kind of thing. 

Answer: Isn't it? 

Question: Most times you have some sort of objective in mind? 

Answer: Many people would like to believe that if you know what 

you want to compute you can deduce how to do it. And, in a rational 

world, that would perhaps be true., But as you will discover, there is an 

enormous amount of trial and error in these things. Even after you've 

done all the deduction that can be done, you still have to try a few 

things. You should not decide beforehand that you will only use such. 

and such an approximation. 

19-7 

I worked out this tree and had various functions computed at the nodes. 

You don't have to go down more than a few levels to get a tree that is 



already unmanageable. But you can rapidly prune the leaves; you'll find 

you have the same function at two different nodes, and then you prune off 

the longer path unless it has advantages. If you don't prune diligently 

you won't get a decent set of programs; you must check at each stage what 

functions you can compute. You must be careful not to name any constant 

that need not be named. Say if I do an ADD; I don't say what 

I'm adding until later, so I can optimize the course of the calculation. 

It helps to know how the program is going to end. I knew I had to 

end with at least one step of Heron's rule; there is no other economical 

way known to tidy up a square root. Any calculation will be contaminated 

by rounding errors; to make them as small as possible, one step of Heron's 

rule is very nice. Of all high order convergent iterations, Heron's rule 

is fastest on a binary machine. 

The argument goes roughly as follows: Although rapidly convergent 

iterations are infinite in number, it is possible to do some analysis to 

restrict the kind you have to discuss. For example: 

iteration scheme 

This converges to x~ = ,(xm); we then talk about the speed with which 

this iteration converges. Convergence can be arbitrarily slow. But if 

, is differentiable and if l,'(xm)l < 1, then convergence is at least 

linear; i.e., the number of correct disits will be a linear function of 

the time spent doing the iteration. 

If ;'(xm) = 0 and ;"(xm), 0, then the convergence is quadratic; 

i.e., the number of correct digits nearly doubles with each iteration. 

19-8 



However there are infinitely many , that will give quadratic convergence 

to any particular root. All you have to do is write down an equivalent 

equation. 

x = ,Cx) (there are infinitely many of these) 

Say you want to solve 

f(x) = O. 

You could just as easily say you want to solve: 

~(x)f(x) = O (for any ~) 

Then consider: 

Saying x = ,(x) is like saying f(x) = 0. Of course, there is 

the question of choosing ~{x). Or, what other functions could I get? 

But here is something interesting. All quadratically convergent 

iterations are essentially Newton's method, applied to some equation equi

valent to yours. 

There has to be a function F(x) = ~(x)·f(x), which vanishes at 

the same place that your function does, with the property that: 

t(x) = x - F(x)/F'{x) (this must be true) 

It is not necessary that F(x) be some multiple of f{x), only 

19-9 

that they vanish at the same point So if the iteration is quadratically 

convergent, it i~ necessarily one in which the iterative function has the 

above form, for some F which has the appropriate property that F'(x=) ~ O. 

We know we want to solve the equation x2 = X; so f(x) = x2 -X. 

So we ask, what are the equations equivalent to .this one? But to do the 



iteration, the quotient has to be computable and it had better not be too 

complicated. What simple functions can you compute; you can add, subtract, 

multiply, but you might be reluctant to divide very often on some machines. 

When we limit ourselves to rational functions, F(x) is rational and 

proportional to f(x). That's a pretty strong limitation. You discover 

that x2- X is about as good a function as you can get and still con-

verge quadratically. 

If I write 

for some choices of p this can be cubicly convergent, but then $(x) is 

more compltated to compute. 

Some of this rather elaborate theory is discussed in a book by Traub 

in which he discusses families of iteration methodst (he fails to prove 

some things he says he does). 

The tree is not as ramified as you might at first think, since you 

have some idea how it must end. You are generating a first approximation 

to be used in one of these rapidly converging iterations. 

Question: Why did you limit yourself to the number of instructions 

in another program? 

Answer: Once I have a program that computes the square root, it is 

clear that there is no point in looking for programs worse than that one. 

They might be longer but faster, of course. So I guess it wouldn't be 

"none longe~'but"none much longer." But I had some programs that didn't 

use much floating point, so most instructions were 1 or 2 cycles. If I 

19-10 

was to do anything clever using floating point (which takes 3 or more cycles), 

I couldn't have a longer program or I'd be slowing it down. This was for 
t J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, 

1964. 



a 7094; on another machine you might have to think differently, like maybe 

no more than twice as many instructions. It is important to have an upper 

bound. You should have a program in hand, or you have nothing to optimize. 

Question: I don't see that you can get an upper bound. How many 

iterations of Heron's rule do you intend on using nonnally? 

Answer: In this program I was using three. On the 7090 program I 

used two. You can figure out how many you need; you do need at least two, 

so that the last one gives you an error of less than 1 in the last place. 

The one before that has to have at least a half-word length correct; it 

is obvious that you won't get that half word correct with just a few 

arithmetic operations. That is because the square root is too complicated. 

19-11 

You get indications of how complicated a function is from the entropy 

theory of approximation; the theory is an attempt to decide how complicated 

a function is to compute (the theory is at best rudimentary). There are discussion~ 

which say analytic functions are infinitely less complicated to compute 

than, say, nonanalytic ones which satisfy Lipschitz conditions. To see 

more about this, look into a survey by Timan {Approx.imation Theory, Pergamon 

Press). A man named Sprecher also does work in that area. 

The digression {in the questions) may have frightened you into 

thinking that to write a square root routine you have to have spent years 

studying obstruse theories. I guess if you want to write the best possible 

square root routine, maybe you do. There is a limit to how near perfection 

it is worthwhile to come, and it is not my intention to suggest that you 

should write a program in this way, since only a simple program could be 

optimized by examining a tree structure in this way. If the problem were 



complicated, the tree would soon get far too large to encompass in any 

machine storage you could think of. 

In wandering through the trees, it appeared there were several func

tions which could conceivably be considered as approximations to a square 

root. Every time you get one of these functions, you find there are some 

undetermined parameters, and it would be nice to know what they are. 

Approximating Functions That Have Symmetry 

Let me first mention, with an i-llustration, the existence of a theory 

that tells us that certain functions can be best approximated, in a fairly 

obvious sense. Consider the case of a rational approximation 

ax+ b :=: Ix 
ex+ d 

19-12 

on an interval that is cunningly chosen: ~ ~ x ~ ~-l (The interval is 

symnetric;_ but any interval whose endpoints are in the same ratio would do). 

Naturally, we want to get our approximation to be as good as possible 

in some sense. The most natural is relative error for floating point numbers. 

* The relctive error is perhaps most easily written in the log form. 

* 

min max jtn(~~!!:> - tn rxj 
a,b,c,d ~<x<~-1 

In discussing a specific problem, I get rather different answers 

Alternate ways to measure relative error are: 
1- f/F or 1 - F/f 

What I have is 
+.tn(f/F) 

These are all approximations of the same thing; and they are monotonic 
functions of each other; if I manage to decrease one, I've also decreased 
the others, especially if the error is small, so f and F are close. 



i9-13 

sometimes, depending on which measure of error I've used. If instead of the 

above, I used the absolute error, 

l
ax+ b 
ex+ a - rxl 

I would get different coefficients. And the coefficients might have been 

harder to compute. 

How Many Coefficients Are There? 

With some foretho~ght about the type of function you want to approxi

mate, you can often diminish tne labor needed to get the coefficients. It 

looks like I have four degrees of freedom while actually there are only 

three {I can divide all coefficients by a constant to make one of them 1). 

Actually, there are only two coefficients that matter. 

Question: I'm still worried about the fact that errors where the 

approximation is greater than ./x ·are treated differently from the other 

side. Is there very much difference there? 

Answer: There is a difference between the way the relative fonn and the 

absolute form treat errors. If you minimize one you get different coefficients 

than if you minimize the other. Look at this example. Say you want to 

approximate something like the following, where the slope goes to zero 

near the origin. 

absolute error 



The best linear approximation will have the maximum error in each section 

equal, using absolute error. 

19-14 

If one error was biggest, I could make it smaller by slightly increasing 

another, thus decreasing the maximum error. 

Using the relative error measure of the ratio of logs, the linear approxi

mation must go to zero at zero. Both approximations are bad. 

Had I chosen aslightly less drastic function (one that didn't have 

zero slope at the origin), the relative error linear approximation must 

share the slope at the origin and is thus uniquely determined. You really 

use the first two terms of the Taylor series expansion. 

/absolute error 
/ 

relative error 

If we restrict ourselves to a sufficiently narrow region, the two 

measures will not give very different results for the square root function. 



Symmetry Helps 

I have my problem, to minimize the relative error. The problem is 

not as complicated as it may seem, when applied to elementary functions, 

because elementary functions have certain synwnetries. The synmetry in the 

square root may not be obvious. So consider the sine function. It is an 

odd function and it would be odd to approximate it by something else. So 

you choose an approximating function with the same synwnetry. Of course, 

the synmetry will depend on the interval chosen. 

The synmetry properties are tied in with the irferval over which you 

wish to approximate the function. What is the synwnetry, in the region of 

interest, of the square root? Well, I've somewhat begged the issue by 

providing the interval [,,,-1]. 

Another aspect of these theories is that frequently you can show that 

a best approximation exists and is unique. Not always, unfortunately, but 

frequently. The square root is such a case.t 

The Best Approximation 

Let us assume that a best approximation exists and is unique. Then, 

observe what happens if I replace x by t, its reciprocal. Then t is 

in the irErval , ~ t ~ ,-1, and the approximation becomes: 

~ _ ~~ d~ + c _ ,;:-
~ - ,..,t or bt+a - r"t 

19-15 

The function is replaced by one of the same kind; the function exhibits the 

same synrnetry properties as the square root. 

tsome books on this subject are: J.R. Rice, The Approximation of Functions, 
Addison-Wesley, 1964, two volumes; E.W. Cheney, Introduction to ApEroximation 
Theory, McGraw-Hill, 1966 {extremely good), and occasional papers y Dunham, 
and a whole journal of approximation theory. These show lots of circum
stances in which the relativ~ error miniml.RTI exists and is unique. 



Then you can use the same criterion- for relative error: 

This is just the problem we had before. But remember I said that in 

this circumstance, the solution is unique. If I ever find values for 

a, b, c, d which work for x, they must also work for t. Therefore, the 

parameters must be related in this way: 

a= d and b = c 

There are only two independent parameters.t 

19-16 

This is an example of the type of thinking that goes into optimization 

and here you see there is a systematic theory. You aren't always that lucky. 

Sometimes you may have to approximate functions in which the standard theory 

turns out to be inapplicable. The ganma function is an example. There 

are degeneracies that turn up and then people are reduced to what amounts 

to a certain amount of intelligent trial and error. 

Obviously, in my tree, I had some rational functions like these. And 

I was able to see what values of the constant would give me the best appro

ximation. Then I was able to work out if that program was as good as some 

other program in the tree. On the 7090 a program like this was fine. 

On the 7094, because of timing changes, overla.p and faster floating point 

it worked out that a different program was best.tt 

tFor elementary functions, syrrmetry properties like this reduce by near two 
the number of parameters to be varied to seek an optimization. It is impor
tant that you find these syrnnetries, and use an approximating function that 
has these syrrmetries, to preserve as much of the character of the function 
as possible in your implementation. 

On most machines, you cannot guarantee that the square root of the reci
procal is the reciprocal of the square root, since reciprocals are not 
exact. But on a machine that used log representation, you would expect to 
have to preserve that quite precisely, and you could. 

ttThat program would probably also be best for the CDC, because the float
ing point is so fast, and the fixed point is so horrible. On CDC, you 
have to use floating point to do any interesting arithmetic. 



The Approximation for Starting Heron's Rule 

So let's look at this approximation in detail. 

~ ~ F < 1 

J = 0 or 1 

starting approximation for 
the square root 

Where did y
0 

come from? I said it came from the tree and that is 

what got us going. You see, in the tree there existed, among other sets 

of instructions, an initial sequence that went like this: 

19-17 

CLA operand> 0 (leave out test for sign and O in this discussion) 

STO X (op'd) store X 

ORA 116 In•· •1 I + fraction part: this picks J off the exponent 

ARS 1 right shift 1 

ADD X fixed point add (J added to fraction of X) 

ADD constant to be figured out later 

ARS 1 

STO s store the approximation 

4 Heron's rule 3 times (coded, not in a loop as it is very short) 

This sequence of instructions is extremely difficult to explain, so 

I'll change it slightly for didactic purposes only. Replace the ORA 77677···7 

by ANA 00100•••0 and adjust the constant. The ORA is used because it 

takes 2 cycles and allows overlap; the ANA takes 3 cycles and suppresses 

overlap. 



19-18 

Question: You were really able to discover that the OR with the 

particular bits you had there was the same function as the AND with the 

other bits and a different constant. How did you happen to pick those 

particular bits? 

Answer: It's not the particular bit pattern; it is that they are the 

same function. If I OR and later add, I get the same thing as if I AND 

and later add a different constant. It's because we're dealing with posi

tive numbers and the X recurs. What looks like one ADD node of the 

tree also includes SUB, ADD-carry-logical, ADD magnitude, SUB magnitude 

-- they're all imbedded in the same node of the tree. 

What Happens in the Code 

CLA {clear and add) 

STO (store) 

J = 0 

ANA (and of accumulator) J = 0 

ARS {right shift) 

ADD {fixed point) 

ARS 

ADD 

~ = 0 

21 + F 
(21 is actually 
biased by 128) 

(I)+<¥> 

(I) + (¥+ C) 

{last two instructions recall J=O 
have been swapped, 
doesn't matter except 
maybe for overflow) 

J = 1 

J = 1 in accumulator 
s8 = binary point 8 bits 
to the right of the sign bit 

l1 - 1 2 - 2 
1 21 - J + F + 2 

(but F+ 1 will carry into 
exponent) 

(21-J+l) + (F -1) 

(2l)+(F-1) 

(I) + <¥-¼> 
(I l + <¥- ¼+ C) 

recall J=l 



Question: There's got to be more to it than you just having figured 

it out on a big sheet of paper with a tree. You had to work out the func

tions and that meant a lot of interpretation of what all those bits meant 

and I think it is funny. 

Answer: Okay. 

We interpret the result as a floating point number. 'I' goes into 

the characteristic, the rest is the fractional part, and we have our appro

ximation y O = 21 (C+ F/2 + J/4). 

Question: How long did it take you to run the tree? 

Answer: I used to work on it in the evenings. It took several 

3 or 4 or 5. It did cover a big table. I would connect one branch to 

another, indicating they computed the same function, using leftover 

telephone wire. It really was mechanical; no great cleverness went into 

it. Some equivalences, like ANDing one constant and ORing its complement, 

are obvious. There could be more subtle equivalences that I might not 

have noticed, but I was only dealing with rational functions. 

Question: This rather reminds one of a chess game. There, at each 

move you have roughly 15 moves. You seemed to look at all possible next 

steps, not just the reasonable ones. So you had 64 choices and you claimed 

you went 50 steps deep. 

Answer: It didn't actually get that bad. Although I was prepared to 

go that deep, I did know what the end was going to be like, and a little 

of how to start. There were questions of ADD, ADD logical, SUB, but 

19-19 

those are relatively trivial. If it had been as bad as it sounds, it ought 

not to have been done. After this was done, a man by the name of Hirondo 

Kuki came up with exactly the code I have written with the AND instruction. 

He had constructed it himself~ whereas I had the·one with the OR, constructed 

by the tree. 



Choosing C 

In order to explain what to do with the approximation, I will again 

have to introduce an artifice. The question which arises now is how best 

19-20 

to choose C. It is not at all clear that one value of C should be chosen. 

The program could have been written to use different C1s if J was 1 or 

O. The approximation then would be: 

It will turn out that really only one value for C is needed; 2 values 

don't make that much difference. To see how this works, it is clear that 

the value of I is irrelevant; so ignore 21 for now. 

For the two values of J, I have two graphs. 

slope 1 

J = 1 - -
s 1 ope.......,

1 
--'------------~ F 

1 
2 1 

I'm approximating K by a linear function of slope 1- CJ has the 

task of shifting the line up and down in parallel. 

I already knew I could approximate IF by a line with slope 1, 
so that when F/2 appeared in the tree, it had to be scrutinized most 

carefully. 



All I have to do is choose the vertical displacement so as to mini-

mize the error. However this is not the nicest way to think of things. 

What I want to do is: 

J = 0 J = 1 

y
0 

= C
0 
+ F/2 :: K y

0 
= c1+F/2-l/4 === IFfl 

Do a transformation for J = 1 

F = ~f 

Yo= ~¥0 t ½,If 

Yo = (2Cl -1) + ~ === ./f 

l~f<2 

Now I have the same function for J = 0 and J = l; it is just a 

function of a different letter. And it is on a different interval. That 

is tantamount to remaking the foregoing graph as follows: 

slope½ matches 
at middle 

It is just a matter of scaling, so the relative error is still the same. 

What Hirondo Kuki had done was to use a linear approximation that was 

one straight line on the big graph. He did that by choosing C
0 

and c1 
so that the two constant expressions would be the same. 

~ C = l C0 = 2C1 -1 } 
2 

co= c, 

19-21 



19-22 

But my tree had led me down a different path. I still wanted to choose 

one constant if I could get away with it. But what were the two constants 

to choose for the two graphs? 

The Best Value for C 

error{ 

1 
2 

-

F 

1 2 

As I let the tangent be displaced downward, letting c1 and C
0 

be 

equal, the line will break. It will go down twice as fast on the right as 

on the left.t That is rather nice because it means that the error at the 

left end has the same relative importance as the error at the right end. 

So my object was to choose C in such a way that the error in the middle 

is just as bad in a relative sense as the errors at each end. That would 

minimize the maximum of the relative error. 

It wasn't really the relative error I wanted to make small. It is 

almost that. Recall what Heron's 
l+o 

If y
0 

= lx(1_0°) 
0 

·y1 = ½<vo + X/Yo) = 

01 = 0~ 

rule says: 

1+02 l+o 
rxc--t> = rxc,d> 

1-o
0 

1 

+If I move the line down by reducing C
0

, I can also reduce c1 and bring 
the line down, but since C

0 
and c1 are the same, you'll see that c1 

is doubled in the constant (2C1-1>- So decreasing C
0 

reduces the con-
stant in brackets twice as much and there is a break in the line. 

, 



19-23 

So it was o
0 

I wanted to minimize. If I minimize the maximum that 

o
0 

takes over this range, then I get the best approximation I can possibly 

get, when the approximation is as bad as it ever becomes on that interval. 

The right value for C worked out to be: 

C = 1 __ = .4826004• • •io 
1i7B + l1a + ,,a 

= .3670566308 

The Best Value To Use For C 

So C is a little less than a half. Needless to say, although I 

have the optimum value for C, that value is not actually optimum. By 

this time you would expect that every time you have accomplished your goal, 

there is yet another consideration. So let me say that it is true· that C 

should not differ from this by more than a few units in the last place. 

The fact remains that in order really to minimize the error at the very 

end of the program you have to see what happens to rounding errors. It 

turns out that by the time you 1re finished with the iteration it is really 

the rounding errors that are much more important than by the error caused 

by the fact that we are using an approximation in the first place and 

making it better by Heron 1s Rule. The error, comnitted because we use 

Heron 1s Rule three times instead of using the exact square root (usually 

called truncation error, in the sense of truncation of an infinite process), 

turns out to be extremely small. 

To within a factor of two, here are these 'truncation' errors. • 

00 < . 0177 

01 < • 000313 • • • after one application of Heron's rule 

02 < 9.841 X 10-S 

03 < 9.68 X 10-16 



After 3 applications of Heron's rule, we have a very accurate result, 

in the absence of rounding error. We only need 27 bits, which is 10-8 or 

10-9. The error is down to 10-13 . 

Question: You said that you wanted to pick a C accurate to within 

a few ulp's, but it seems that actually you can have quite a wide range on 

C, and still have the truncation error small enough. 

Answer: That is true. We could still get the truncation error small 

even with C = ~. That's what Kuki did and his truncation error was down 

to 10-10 or so. But there was something else I wanted. Remember, this is 

for didactic purposes as well as for a program and I wanted to do really 

well, to do the best possible program. So 10-13 is how small o3 could 

be without rounding errors, and if you want to keep it that small you 

cannot change C by much. 

This tells us that the program is now feasible. 

What If You Use a Less Accurate C 

If you use the less accurate value for C (say}) so that o3 is 

roughly 10-10 , instead of having o3 ~ 10-13 , the machine will be able 

19-24 

to see the difference. It shows up in the running time of one of the tests. 

You have to do some tests to find out what is the best value for C and 

how big the error is. In order to be able to make that decision, it'll 

be quite important that there be 13 zeroes in o3. If I had only 10 zeroes 

there, the time needed to find out how good the program was would have been 

multiplied by 103. 



Question: But you don't have that many digits around. 

Answer: Actually, when you try to minimize the maximum error, it 

doesn't look like: U but rather it is like V. If you change C 

from the optimum, the error will change more abruptly than is customary 

for minimization. So I really have to stay within a few ulp's of C. 

Question: You just said that if C = ½, you do better than a few 

ulps. You still have more accuracy than the machine can hold. 

19-25 

-13 Answer: That's true, but on the other hand for the best C, 03 - 10 . 

If I change C to ~, o3 - 10-10 , larger by a factor of 103 .• The error 

is a thousand times as big, by using a slightly less accurate C. 

The machine will see that error, you'll see. 



Question: That's a different argument than you've been using for why 

you wanted the best value of C. 

19-26 

Answer: I only want that much precision in C because I want to know 

what the best value of the constant is. But you're right. If I used 

a value for C as different as .5, I would clearly be able to get an 

adequate square root routine and that's what Kuki did. 

Question: And it would be just as accurate as yours? 

Answer: No, that would not be true. Kuki's routine has an error of 

.5001 ulps, while mine is .50000163, and there are other little discrepancies. 

Question: Is that a large difference in error? 

Answer: Actually, it looks very large to me right now. But as far 

as the ordinary innocent user is concerned, he'd not be able to tell the 

difference, except that my program was faster as well as more accurate. 

As long as I'm going to change Kuki's program, I might as well change it 

to a program that can't be beaten. 

Think of it in practical tenns. If every time someone thought of a 

way to improve a program epsilonically, he said "come on now librarian, 

put this on the system's tape", whatever he hoped to save the users would 

be blown by the cost of the new library update. So I said I'd make mine 

sufficiently good that it won't be worth someone else's while to introduce 

a new library update. 

Question: Hadn't that been reached with Kuki's .5001? 

Answer: No, his program was a lot slower than mine, too. He took 

77 microsec instead of 63. 

Question: What if you had used the exact same program, just with a 

constant closer to 1? 

Question: Wouldn't you have ended up with his error and your speed? 



-
19-27 

Answer: Yes. But I was detennined to get the best possible program. 

You're trying to ask me, was it worth the money spent. Of course it wasn't 

worth the money spent if you want to figure it in tenns of the number of 

happier users. I probably tested more numbers than will be run through the 

SQRT in a year on the 7094. 

But we are trying to see how well we can do. For the practical question, 

I hope most people would have stopped where Kuki did. We can't afford 

too many guys like me. But we can't afford to do without them either. 

How Accurate Are the Results? 

To find out how accurate the final result is, we have to examine the 

coding for Herons• rule. 

STO X 

STO s =: approximation 

CLA X 

FDH s to get X/S in accumulator 

XCA 

FAD s floating add (could have done fixed add if charac-
teristics lined up, which they usually 
did) 

ADD -1 division by 2 (subtract 1 from the characteristic) 

STO s 

This is the setup for two of the three Heron's steps. 

We have done 

S + t(s + X/S) 

Truncation has occurred in doing X/S, and in doing +. This has 

introduced roundoff. 



19-28 

The third Heron rule puts in a round instruction after the ADD -1. 

In the first two cycles of Heron's rule, the error is going to be smaller 

than the numbers quoted for the 01s, even taking rounding errors into 

account. Rounding errors actually make the approximation better than it 

otherwise would have been. The only possible exceptions would be if the 

original approximation were sufficiently close to the root that rounding 

errors could make things worse. But from the graph, that only happens for 

a very few numbers (where the straight lines cut the graph). For all 

the other numbers, rounding errors actually help. 

If you believe that everybody who writes programs does this sort of 

thing, or should do this, you've missed the point. The issue is to~ 

how well we could do and how much it would cost. 

Question: Why did you write out Heron's rule three times? 

Answer: The index register instructions take 3 cycles for testing, 

3 for setting and 2 for restoration. Why bother when the loop is so short? 

Kuki used a loop; that's why his takes longer. 



Review 

In getting the first approximation to the square root, we make linear 

approximations on each of two intervals, (1,1] and [1,2], where the 

second interval is really a translation of the situation when J = 1. We 

get two different, but parallel, line segments because we insist on using 

the same value of C for both graphs. 

1 
2 1 

F 
2 

19-29 

The values of o
0 

that you would compute at points Q), @,and@ 

would all be the same, although at@ it has the opposite sign. At point@, 

o
0 

would be a little bit better. 

C is chosen to minimize the maximum of the relative errors as it 

~appens in terms of the 01s. The reason that you want the minimum for 

o
0 

is that for each step of Heron's rule, oi+l = o~. 

Once we know what the first error is, we can work out what the next 

several will be. Then we can tell how many steps of Heron's rule are 

needed. For. example: o2 < 9.841 x 10-8 This is somewhat larger than 

we want the relative error to be; 2-26 ~ l.Sx 10-8; so we can't stop 

with only two iterations. 



19-30 

o3 < 9.685x 10-15 < 10-14 (without rounding) 

Therefore: 0 < rel. error in y3 < 2 x 10-14 (error before rounding) 

Rounding Errors Don't Hurt Sometimes 

Now, let us look and see why rounding errors, up to the third itera

tion, do not make things appreciably worse. Here is the code again. 

STO sits IA 

CLA A 

FDH S A/Sin accumulator 

exchange XCA 

FAD s 

SUB 

STO 

= 0001000000000 divide by 2 by subtracting from exponent 

__ S = }(s - A/S) 

DO this again 

At the end of one iteration, the error, o1, would be< .000313, if 

we had co111T1itted no rounding errors. What I will show is that the error 

actually is no worse than o1, even though there have been rounding errors. 

We are only interested to know if the error is appreciable and not 

just a few units in the last place of the square root. So say that the 

error is close to the computed bound, that is, about twice ~,. Then it 

looks like a rounding error or two could conceivably make things worse. 

But they don't. And that is because in Heron's rule, the iterates, except 

possibly for the first one, decrease toward the square root. The approxi

mations are successively decreasing. 

Heron's rule is just Newton's method applied to the graph s2 
= A. 

You draw tangents at the points Y;· 



19-31 

or 

You can also see that they decrease by showing that 

½<s + A/S) - S > 0 

You do have to have S > ./K for this to work. but after the first iteration 

and maybe before. it will be. 

The only effect rounding errors will have on this monotonically 

decreasing sequence is to maybe speed things up a little bit, if you're 

far away. Why? You compute A/S and truncate so you throw a little bit 

away. The division by 2 doesn't affect anything. Then you do a floating 

add and throw away a bit more. The net affect is to make your approximation 

a bit smaller than it would have been without rounding errors. But you 

could only object if you were so close to the root that throwing those bits 

away took you below the root. We aren't anywhere near that close when the 

error is big. So the error bounds I quoted are certain to be valid, in spite 

of rounding errors. This is a rare circumstance, when the rounding errors 

help. 



Rounding the Third Time Only Is Sufficient 

The third application of Heron's rule includes a round instruction. 

CLA A . 
_., FAD S 

SUM 
_., FRN 

STO S 

If the machine had a rounded add you could use that instead of FAD and 

FRN. To see why the FRN is all that is needed, we need to look at what 

is in the registers at this point. 

In a double length register called the AC and MQ, we w;ll have: 

{S + A/S)/2 

A/S has been truncated. After doing the add, there may be some bits in 

the MQ {the lower half of the word). FRN will round the double length 

word and put the single length result in the AC. It adds half in the last 

place of AC {which is adding 1 in the first place of the MQ). 

The truncating error in A/S is of no consequence. Why? Normally, 

at this stage (the third application), S > IA by a little. Hence 

A/S < IA by a little, and A/S < S. Now, when I add A/S to S, there 

are two possibilities: the exponents are the same, or the exponent of 

A/S is 1 less than that of S. (Remermer, the error at this point is. 

roughly o2 or 10-7). 

Case 1: exponents equal 

11 A/S I 77777 digits thrown away 

+ 11 s I 

I!] I.._ ____ '.! 
t 

19-32 

becomes first bit of MQ because of the overflow when add.ing 

l 



19-33 

All of the other digits that have been lost from A/S would have played 

no role anyway, because when I round, I add 1 to the first bit of the MQ 

and I do have something there. The truncation didn't matter because I 

merely threw away digits I would not have looked at even had I had them. 

Case 2. exponents differ by 1 

n A/S I///// 
+ Ill s 1 

m 10 
first bit of MQ: it comes from A/S 

or m I II D 

Again, you can see that the digits lost from truncating A/S would 

not have been used. 

Question: What if your machine obeyed the rule ~ound to nearest everr? 

Answer: Then I might want to know what those other digits were. But 

remember, here I'm talking only about a 7094. I guess this is the first 

situation I've seen in which rounding to nearest even might be less than 

advantageous. 

5 Cannot Be Much Too Small 

You should remember that by this time our approximation ·s is extremely 

good. Its relative error is down to around 10-7. So my assumptions are 

valid, unless our approximation was so good that a bunch of things happened 

that couldtt happen, so that A/S is too big {S < IA). Then the situation 

is: 

n A/S !///// 
+ 1-,---s~--

Then the lost digits would matter. But this could only happen if S is 



appreciably smaller than it should be; one or two units in the last place 

won't do, because that won't happen. The total error in each iteration is 

less than a unit in the last place. How could I possibly jump past the 

square root and be too small by a unit in the last place? 

Question: Could that happen if your initial approximation was too 

small? 

Answer: However bad the initial approximation was, I've done a couple 

steps of Heron's rule. They tend to make the approximation too big unless 

I was already so close that the rounding error dropped me down. But the 

total error is less than a unit in the last place -- 1 unit from the divi

sion and 1 from the add, but there is the factor of 2. 

19-34 

If the rounding error were exactly a unit in the last place, the situa

tion above (with exponent of A/S > exponent of S) could occur only if I 

were dropped on the wrong side of a power of 2. But as we will see later, 

things work out even in this case. I claim that this will never happen. 

Thus the digits lost in truncating A/S don't matter. On the last 

application of Heron's rule we round normally, by adding half in the last 

place to a number whose relative error is 2xlo-14. 

Incorrect Rounding Can Happen 

We run a certain risk, in that if we looked at the correct square root 

just before rounding it, the root would have, in the MQ {second word), a 

O and then a long string of binary l's and some garbage. Because our 

number is in error by 2x 10-14 (more than a few units in the last place 

for double precision), it is possible that what is in the MQ is actually 

bigger than that, namely a 1, a bunch of zeros and then some bigger garbage. 

Then you see Wf would round up instead of down. 



19-35 

The question is, how often does this happen? This is the only way we 

can get an incorrectly rounded result. In all other circumstances, we have 

everything that anyone could want. 

It is actually possible to discover how close we come to always return

ing the correctly rounded result. Of course, you can't do this for many 

functions, but we'll do it for this one. 

Playing With Last Digits 

We will digress to consider some examples of playing around with last 

digits, to get a modest feeling for the digits and the way they behave. That 

is, I'd like you to get used to the integer theoretic approach to rounding 

errors. When I write it on the board, it will seem much more complicated 

than it really is, simply because I have to write it down. Once you get 

used to it, you will be able to follow, fairly easily, calculations of this 

kind on any machine where the calculations have any value. 

I will consider what happens to Heron's rule for a certain set of 

approximations, namely numbers very close to 1, whose square roots we 

want. Some interesting things happen. 

So let us look at numbers of the form: 

A= 1 + 2-26n n is a small integer> O 

s =IA= 1 + 2-27n - 2-ssn2 + ••• 

just the power series expansion for (1 +2-26n)1/ 2 

Now, how do we round root A correctly on our 27 bit machine? If the 

leading digit is 1, the last digit is 2-26 . IA has a 2-27n in it, so 

there is one digit to the right of what can be held in 27 bits. And then 

there is another term (2-55n2) to be ·subtracted off. 



If n is odd, there is an extra half sticking out into the MQ, but then 

some small number gets subtracted: 

no- ......... ' 
- (O• .... • •Oxxxl 

p11 .... • 1xxxj MQ 

When n is even, ~ is really a multiple of 2-26 and we have: 

[IP·········· I 
P· • • • •• Oxxxl 

l1 11 • .. , , xxxl MQ 

Therefore, to round IA correctly, we should use: 

[largest integer in 9:-J 

If n is even, [1] = 1, and we have 

If n is odd, the extra half that sticks out into the Kl will get 

subtracted away, so the rounding is correct as stated. 

However, our S may not look like the power series. We may have: 

-26 n s2 = 1 + 2 {[2] + k} where k is a modest integer?_ -1 

19-36 

(s2 could be small by a unit in the last place.) Now what happens in Heron's 

rule? 

A/S = (1 + 2-26n)(l - 2-26(["] + k) + 2-52(["] + k) 2 - •• ·) 
2 2 2 

using a power series for t" = (1 + 2-26([~] + k))-1 

2 

A/S
2 

= 1 + 2-26(n _ [f]- k) + 2~52([~] +k)([i] + k- n) + 



That's the quotient. but of course that is not what will happen when you 

truncate. What will happen when you truncate depends on whether the tenn 

in 2-52 is positive or negative. So there are some conditions on k to 

check. 

We've had an arg1111ent already that showed that whether A/S2 is trun

cated or not is irrelevant. If you don't believe that. run through the 

cases when k is a small integer. and see what happens. 

Unfortunately, if k is a negative integer equal to [r], or 

{[~] + k - n) = O so that the tenn in 2-52 vanishes, you have to look at 

the next term in the series to find out what is going to happen. 

Question: When you say truncated do you mean truncated in the sense 

that numerical analysts use it? 

Answer: No, I mean machine chopped. 

Question: Then, why do you care about things far to the right? 

Answer: The quotient is exact if you write out the whole series, but 

the machine only writes out the first 27 bits of it. Those 27 bits will 

have contributions from later tenns. If the 2-52 tennis positive, the 

bits simply get thrown away. But if that tennis negative, 1 will be 

subtracted from the 21th bit and this will alter the truncated result. So 

you have to look at the sign of all the tenns after the first two. 

Now we add S and divide by 2. 

A/S2 + s2 = 1 + 2-26 (n-[iJ-k) + 2-52 ( )( ) + • • • + 1 + 2-26 ( [r]+k) 

= ~ + 2-26 ( n-[¥-J+[%]-k+k) .+ 2-52 ( )( ) + • • • 

= 2 + 2-26n + 2-52( )( ) + ••• 

(A/S2 + s2)/2 = 1 + 2-26[~] + 2-53( )( ) + • • • 

There are two possibiliti·es for the 2-53 tem. It could be positive 

19-37 



or zero. Then, if n is odd, adding half in the last place will bump up 

the sum. 

Specific Example of Incorrect Rounding 

n = 1 k = 1 

So A= 1 + 2-26 and S = 1 + 2-26 
2 

A/S2 = 1 

(A/S2 + s2)/2 = 1 + 2-27 

0 o • • • • • • -ol n O • • • • • • -01 

This then gets rounded up to 1 + 2-26 or 11 o. • • • • • 01 I , which repro

duces s2. That is bad because the square root of A is actually a little 

less than 1+ 2-27 , and so the result should have been rounded down to 1. 

It is easy to do this analysis for numbers A a little bigger than 1. If 

19-38 

A = 1 - 2.-27n ·(a number is a little less than 1, the leading bit represents 

a half and the last bit 2- 27 ), similar, but more interesting things happen. 

The only way to see where the bits go is to work with these numbers with 

pencil and paper. You should verify for small odd n, that for small k > O, 

you round up when you should round down. 



19-39 

So you see that there are cases when the error in the square root will 

be more than a half unit in the last place, that is, when the root is rounded 

up instead of down. 

Now I want to study these cases systematically. If you thought that 

this problem arises only when taking the root of a number near a power of 2, 

you are in for a surprise. 

Decimal Example of Incorrect Rounding 

Here is an example in 4 digit decimal arithmetic. This problem can 

arise with digit patterns that look essentially random. 

✓23790000 = 4877.4994··· 

We are using Heron's rule, and all we have to do is make an error of 

.0006 in the third application (almost correct to single precision before 

the last application), to get an incorrect result. 

Heron's rule would have given us: 

4877.5 

which would be rounded to 4878; itsh>uld have been 4877. 

We will study this phenomenon systematically mainly because it can be 

done and not because it has some overriding corrmercial value. It really 

is an example of what you can do if you are detennined. Having done this 

analysis, we can contemplate doing analyses for other functions, should 

they become necessary. 

Question: What if someone published a routine similar to yours and 

stated that the error was no more than 2 ulps? Wou1d you accept that? 



19-40 

Answer: It would be a true but terribly pessimistic estimate. He has 

overestimated by a factor of 4. 

Question: What if he said 1 ulp? 

Answer: Then I would ask him if the square root was monotonic and he 

_might not be able to prove it from that estimate. Remember that one of 

the spe~ifications of the program was that if you increase the argument 

the square root will not decrease. Or that the square root of a perfect 

square recovers the number. 

Question: Your estimate will be more exact and give you those results? 

Answer: My estimate will be sufficiently close so that getting those 

results will be easy. We've got that now. I don't really need to find 

those 29 numbers. I get what I want by computing the square root almost 

to double precision; it's a little too big by some numbers near the end 

of the second word. If I take the square root of a perfect square, the 

square root fits into the top word; the extra digits from Heron's rule go 

away when I round. 

Question: That ignores truncation errors from subtracting and dividing. 

Answer: No, I showed that truncation during division is irrelevant. 

So I have computed the correct square root plus some garbage far to the 

right and then I round. Square roots of perfect squares come out. 

Monotonicity holds because if I increase an operand by one unit in 

the last place, I increase its square root by roughly half in the last 

place, and that increase, in the upper part of the MQ, is not affected 
I 

much by what's in the lower part of the MQ. Even if the garbage decreases, 

there is enough increase at the upper part so that ·the result of rounding 

will not be to decrease the square root. The root may fail to increase, 
l 



19-41 

but it won't decrease after rounding. 

rx = I v111 
X1 > X 

rxr = I I ( -) ~ may have smaller garbage but is bigger 
------------ than Ii by -1/2 ulp 

So the last step of Heron's rule for rx will give me something 

bigger than the result of the last step for rx. Certainly not smaller. 

Then I round. And monotonicity is preserved. I can only prove this with 

an error bound of half in the last place. 

We want to find out what is the ultimate accuracy in our square root 

routine. We have: 

SQRT(X) = lx(l + e) rounded to 27 bits 
lel < 2x 10-14 

li(l+e) is the number that sits in the registers if you keep the 

digits that were truncated during division. It is what you have before 
+ you round.· 

Enumerating the Wrong Roundings 

Now we shall enumerate those cases in which the rounding is done 

incorrectly. Instead of having X a fraction, I will consider X to be 

a.n integer of the fonn: 

tThis program was one of the earliest that was proved to satisfy a certain 
set of reasonable specifications. There are others that have these pro
perties, like zero finders. 

This algorithm will work on the 6400, as the CDC has essentially the 
same structure as the 7094. Division takes about as long as multiplica
tion, so there is

7
no reason to prefgr multiplication. The analysis will 

then involve 2-4 instead of 2-2. On the 6600, the situation is quite 
different; division takes 3 times as long as multiplication, and multi
plications can be overlapped; so this algorithm would not be the most 
efficient. 



M is a 27 bit integer. 

case 1 

case 2 

Once you have written down this 27 bit integer, changing it by a 

factor of 2 could drastically change the square root, whereas multiplying 

by 4 doesn't change the root except by a factor of 2 (which doesn't matter 

on a binary machine}. 

There have to be two cases, differing by 12"; the characteristic is 

either even or odd. 

Define N as the root of X and if you have done your job properly: 

1 1 
N-2~/X< N+2 

226 < N < 226129 case 1 

22612' < N < 227 case 2 

N will just barely fit into a single precision word. N is the 

correct value you would get for the square root of X and then rounding 

it. 
t-1 

You write/'= integer+ fraction, where the fraction is less than a 

half; then things a~ correct. 

If you write i/. =integer+ fraction bigger than a half, then 

1',= integer+ 1 - fraction less than a half. 

NI could be halfway between two integers; then you use a convention 

for rounding. But that won't happen. 

The interesting cases occur when J/, is near one bound or the other; 

then you could easily make a mistake. Let's try to see just how close: 

19-42 



19-4~ 

If .fl ~ N + 1, then 

4X ~ (2N + 1)2 

But I have to know what I mean by approximately equal (=). 

I will have trouble when 4X(l+e), which is, after all, what I will 

have computed, is approximately equal to, or indistinguishable from, (2N+l)2. 

I will have problems when the set of numbers, {4X(l+e)}, lei< 2xlo-14 , 

is included in (2N±l)2. 

{4X(l+e)} ::> (2N ± 1 )2 

As I vary e, I will pass back and forth through the division points 

between the two cases. Those are the points where you decide to round one 

way or the other. 

The situation can only be interesting when: 

C can be positive or negative. While e runs through the values 

-2x10-14 to 2xlo-14 , throughwhatsetofvalueswill C run? Now 

notice: 4X is a big integer; (2N± 1)2 is also an integer; therefore C 

must also be an integer. The values used for e are limited in that 

(l+e)-2(2N ± 1 )2 must be an integer also. 

How big is C? By looking at the two extremes and at the bound on e, 

we see: 

ICI < 4 x 10-14 • (2N ± 1.) 2 - ·;t can't be any bigger than this,. ~ I 

We have the following relations: 



(2N ± 1)2 = C mod 228 Case 1t 

= C mod 229 Case 2 

ICI < 4 x 10-14 • 4X = ... < 2000 in case ltt 

< 4000 in case 2 

There really aren't very many values of C. There are about 4000 in case 1 

and 8000 in case 2; that's as many as I've got. A few thousand is like 

nothing for programming. The situation is actually not as bad as this. 

It looks like all I have to do is to let C take all those values, 

solve the equation for N, find out what X is, and compute the square 

root and see if I get N. That's all. But it is not at all clear how 

you'd solve that equation. It wasn't clear to me for quite a while. 

Solve By Recurrence 

19-44 

A man by the name of Heilbrand, a renowned number theorist, said isn't 

there a recurrence for things like that. The one he gave me didn't 

work, but there was one. 

We will pursue the recurrence by which you can solve equations of 

that kind. We want to solve: 

Case 1 

Case 2 

(2N ± 1)2 = C 

226 < N < 22612 

v'2'226 < N < 227 

Given C, find N. That's the problem. 

( 2N ± 1 ) 2 = C mod 228 

( 2N ± 1 ) 2 = C mod 229 

tThis means (2N ± 1)2 = C times some integer multiple of 228 

ttlCI ~4xlo-14 •4X because 4X very nearly equals (2N±1)2. 



19-45 

Then we observe that 

c = 1 mod at 

That cuts down on the interesting numbers; there are only t as many. 

We are down to about 1000 numbers in case 2 and 500 in case l; that 

is so small as to be almost negligible. 

All I have to do now is solve the equations for C in the class 1 

mod 8. The recurrence involves solving those equations 28 or 29 times. It 

just takes shifts and a few logical operations, so it isn't very expensive. 

You could make the program take less time than a division. 

We now write the problem as 

z2 = C mod 2m when C = 1 mod 8 

Z wi 11 be 2N ± 1; you take your choice. 

Bounding Z 

The first question is: how many solutions have we got. There are 4 

solutions, or there are none. 

If Z is negative, compute 2M-z instead; that doesn't change the 

square. If the value of Z is rather big, bigger than ~-2M, then com

pute (2M-z) and get an answer that is smaller than half of 2M. 

So I might as well assume: 

tc = (2N ± 1 )2 mod 228 or 229 

C = 4N2 ± 4N + 1 = 4N ( N ± 1 ) + 1 
Either N is even, or N ± 1 is even. Therefore 4N{N ± 1) is a multi

ple of 8; therefore C = 1 mod 8. 



19-46 

Z cannot be zero or 2M-l, because Z is odd. Notice that C is 

odd=> z2 is odd=> Z is odd. 

I can go farther and observe: 

This happens because of the factor of 2 that appears in the square.+ 

Thus, Z can be further reduced to: 

The four solutions are: 

Only Four Solutions 

Z can be transfonned 
to this range 

I've shown there are four. Are there any more? No,and let's see why: 

Suppose z2 = v2 = C mod 2m 

0 < Y < Z < 2m-2 C = 1 mod 8 

Can there be two solutions in this interval (would give 8 total solutions)? 

Notice that if O < Z < 2m-2, none of the other solutions is in that interval. 

Z and Y must be odd (their squares are odd). 

0 = z2-v2 = (Z-Y)(Z+Y) mod 2m 

I can factor 2m times some integer into those two factors. This is saying 

that: 

Z-Y = 21p 

• Z+Y = 2jq 

i > 1 

• > ltt 
J -

p is odd or zero 

q is odd 

t (2M-l_z)2 = 22M-2 _ 2·2M-lz + z2 = 2M(.2M-2_z) + z2 = z2 mod 2M 

ttj must be> 1; both Z and Y are odd so their sum is even. ) 



When you multiply these two numbers together you must get a number 

congruent to O mod 2m. This means that: 

i +j ~ m 

I will show that this implies Y and Z are equal. First I can't 

possibly have both i > 1 and j > 1. If that were true, there is at 

least a factor of 4 multiplying p and q. Then when I solve these 

equations, Z and Y come out even.t That can 1t happen. 

Therefore i > 1 and j > l is ruled out. So we try i = 1 

~ j ~ m-1 

2"1-1 ~ 2jq = Y + z < 2m-l tt hard to understand 

Anything that 1s hard to understand can't happen. So this doesn't happen. 

The last case to try is j = l 

=> i > m-1 

2m-l ~ 2 i p = Z - Y < 2m-2 or P = 0 

Therefore, we must have P = 0, or Z = Y and there is only one solution. 

The Recurrence 

Now we need the recurrence. I solve it for m = 3,4, ... ,28,29. 

We are using the lower m bits to represent C. If C ts negative, 

I go through 21s complement and take the bottom m bits. 

(since C = 1 mod 8) 

Let z3 = 1. Suppose for any m we have 

t i Z-Y=4·2 p 
Z + Y : 4• 2j IQ 

---· 'I ., . , ., 

22 = 4 ( 2 1 p + 2J q) ~ Z = 2 ( 2 1 p + 2J q) => Z even => Y even 
tty < 2m-2, 2 < 2m-2; y + 2 < 2. 2m-2 = 2m-1 

19-47 



z2 = C mod 2m m (true when n = 3) 

Assume O < Zm < 2m-2 (can always be done). If z; = cm+l mod 2m+l then 

set Zm+l = Zm. Else set zm+l = 2m-l - zm. 

It is a minor exercise to verify that in fact for a solution at stage 

19-48 

m, satisfying this bound, we end up at stage m+l with a solution satisfy

ing the corresponding bound. The computation involves nothing more than 

shifts and complementation. We do this, up _to 29, for each value of C 

congruent to 1 mod 8. From the values of Z we get values of N, from 

N's we get X's; we feed these to the subroutine SQRT and see what it 

computes. If it computes N, good. If not, we've found a number for which 

the error was bigger than half in the last place and it rounded up. 

This was done, and on 29 occasions these numbers popped up. Actually, 

it happened a varying number of times depending on C. C was adjusted 

by diddling the last couple digits to minimize the number of cases. 



19-49 
Review 

I've shown how you could hope to prove claims of 

accuracy for a SQRT program on a machine of a certain structure. There 

was an integer theoretic equation whereby you could hope to generate all 

the arguments for which the machine might be expected to be less accurate 

than to within half a unit in the last place, and inspect them. There 

were only a couple thousand to look at; on the 7094, only 29 gave errors 

that were too big. Of course, that example is rather special. Normally 

you cannot analyze a program as accurately as that. And even if you could, 

normally you wouldn't. there is a limit on how much people are willing 

to pay to know everything. 

Question: How many other programs have been analyzed like this? It 

seems that the SQRT is more susceptible to it. 

Answer: Oh, infinitely so. I've done analogous things for the 

cube root, exp, log and trig functions. The last three require a very 

different point of view and they are much harder to cope with. 

Question: What kind of error bounds do you get? 

Answer: Around .52 ulps. If I get .513 ulps, I'm happy. 

Question: Did you find a similar 29 cases? 

Answer: Oh, no. In log, etc., the number of arguments that approach 

the error bound would be substantial, although none would actually reach 

the bound. 

Other Aspects of SQRT 

Now let us look at some other aspects of the SQRT program. We shall 

see what difficulties arise when we try to carry out a similar analysis 

of a simple routine like SQRT on another machine. 

The code will look essentially mach.ine independent, but it is not 



because it will not function on some machines. Then we will try to see 

how the code could be changed to make it as nearly machine independent as 

possible. 

FUNCTION SQRT(X) 

IF (X .LT. 0) 

SQRT= 0. 

IF (X .EQ. 0) RETURN 

Y = (1. + X)/2. 

1 SQRT = (Y + X/Y)/2. 

complain (see [6]) 

first approximation 

IF (SQRT .EQ. Y) RETURN 

Y = SQRT 

G0 T{a 1 

END 

Notice that this uses a poor first approximation to Ix. Where 

did it come from? 

(l+X)/2 

ti 

(l+X)/2 is tangent to the graph of Ix at X = 1 and is bigger than IX 

everywhere else. So it is an acceptable approximation to use to start 

Heron's rule. Remember, from now on, applications of Heron's rule produces 

a descending sequence. 

19-50 



Question: What about rounding errors in Heron's rule? 

Answer: In the absence of rounding errors, which we'll consider for 

now, you would hope to get a descending sequence. 

Tennination Test 

19-51 

The test for termination is a simple one. On any machine, there are a 

finite number of representable numbers and therefore, sooner or later you 

must run out of numbers. And then it stops. 

However, arguments like this have a certain fatuity on machines like 

the 6400 where the number of distinguishable numbers is 260 = 1018. Since 

doing anything costs about a microsecond, it would take 1012 secs to exa

mine them all. Isn't that rather long? 

But we know that for Heron's rule, the argument is reasonable. As 

soon as you have 1 correct-digit, 7 more applications of Heron's rule will 

give you 64 correct digits, and that's more than the CDC can hold. Getting 

l binary digit is not hard. If your first approximation is terribly 

large, Heron's rule will bring it down roughly by a factor of 2; since no 

machines have an infinite exponent range, convergence will eventually get 

faster. It could conceivably require a thousand iterations to get 1 correct 

digit; then 7 more are enough. So it is machine independent. 

We can see that this will work on a machine for which we know neither 

the base nor the precision. It may be slow. But people used programs like 

this until they discovered that users liked to take square roots of numbers 

not very close to 1. 

I still want to analyze this program; getting the first approximation 

is a technical detail that necessarily depends on the_ structure of the 

machine. The rest of the code is more interesting. 



19-52 

This code would probably not run on an IBM 650. It wouldn 1t because 

the test IF(SQRT .EQ. Y) is too demanding. On machines of this type, the 

sequence that should be monotonically decreasing isn't. {Try the example 

of taking 13a in 2 decimal, truncated arithmetic.) After a while, the 

approximations will oscillate around the correct result. So the test 

always fails and the program never stops. 

Weaker Tennination Test 

The first thing you learn, then, is that you have to put in a weaker 

test on SQRT and Y. 

IF(SQRT .GE. Y) RETURN ( th i s wil 1 do) 

Why will this work? Your first approximation will be tex>big, or be 

only too small by 1 ulp. Too small by a unit in the last place is a 

very good approximation, so you would accept it. 

Using Heron's rule, you expect to decrease monotonically toward the 

square root. But a rounding error may throw you past the root, but only 

by a unit in the last place. There is a unit error in X/Y. You add and 

the right shift necessarily reduces the error to}. ~ounding brings the 

total to 3/2 units. Division by 2 on a nonbinary machine may give another 

1/2. So the total is 2 in the last place; that could be considered quite 

respectable. 

We Can Do Better 

It is possible to get slightly better accuracy, on most machines by 

the following dodge: 

SQRT = Y - {Y - X/Y)/2 



19-53 

This code takes advantage of the fact that on most machines, subtraction 

of numbers very close together is done exactly. 

X/Y is still in error by 1 ulp; but X- X/Y will be precise and be a 

very tiny number. Now division by 2 can also be done precisely, even on a 

nonbinary machine.t The only other error comes from the other subtraction; 

this normally occurs satisfactorily. There are exceptions, though, say on 

the CDC; but then division by 2 introduces no error. What you lose on the 

swing you gain on the roundabout. 

On hexadecimal machines, this trick is crucial. On the 360, with its 

guard digit, the subtraction is done precisely and the division by 2 no 

longer causes a rounding error. This is the trick used to code SQRT 

on the 360. The first approximation is better, of course. 

The error has thus been reduced from approximately two ulps, to at 

roost 1 ulp, for hexadecimal machines. You only conmit one rounding error. 

By using a similar dodge on other truncating machines, we can get 

the error down to 1 unit in the last place. Knuth used this when he wrote 

the SQRT for the 85500, an octal machine with rounded arithmetic.tt 

The point of the FORTRAN code was to show that you could do the job 

in a machine independent way, insofar as you can do anything in a machine 

independent way, if you are willing to wait long enough. 

t Y -X/Y is tiny, so it has lots of zeros. Dividing by 2 on any even base 
machine can at worst add one digit to the number and that can still be 
represented exactly. 

ttlt is interesting that people who have published analyses of SQRT routines 
did not use this trick and obtained even for binary machines error bounds 
of 3/4 ulp; it's a bit hard to see how they got that. This is in a book 
by Householder on Numerical Analysis, 1953, and by John Todd in some 
numerical analysis notes that he's been using for the past 40 years. 



20. STUDENTS' REPORT ON CDC 6400 SQRT, CABS AND CSQRT 

This lecture was a report by the group of students who worked on 

improving the CDC RUN FORTRAN library versions of SQRT, CABS and CSQRT. 

20-1 

Our basic method is stated by scaling the argument to lie between 1/2 and 

2, getting a rational approximation, and then applying three Heron's rules. 

The scaling was done by writing x = F•22I+J, J = O or 1. The 

rational approximation to F = x was 

/x ;, ax + b = ax + b 
ex+ d bx +d 

2 
= C + 1-C 

X +c 

because the interval is symmetric -1 < x < • ./2 
12-

where c = a/b 

The intervals to be approximated over are 

½ ~ x < 1 and 1 < x < 2 

We have an approximation on ..L < x < ~. So notice 
12-

f(x) ~ rx 
f(ax) ,1ax 

_l_f(ax) • rx ra 

Now we have -\ ~ x < 1 or l ~ x < -\ • 
a a 

we get the needed ranges above. We took an approximation to the square root 

on one range and mapped it into an approximation on another range; it is easy 

to compute on the first range; we intend to apply it on the second range. 

Now that we have an initial approximation, we will apply Heron's rule. 

Recall that after the first Heron's rule the error is greater than O. 



;t- absolute error after one 
.,,....--, \ Heron I s rule 

---=~--~--~-/~----i ( E error "' .1 x 10-3 
= o 

1 y 1 1 so naw E ½ 202 ~ 1 o~B 
~ ~ 0 

A rounding error at this point would be 10-14 . Comparing this to the 

error of 10-8, we see that a rounding error cannot change the graph much. 

After one Heron 1s rule, we wanted to drop that error graph by some 

absolute value and still keep the relative error nice. We want to drop the 

graph such that the relative error at y is the same as the relative error 

at 1; at y, the relative error changes most; at 1> the error improves 

the least. Say we drop the graph by S 

S E-S 
./y = -l-

You make the worst errors the best possible by choosing S in this way. 

In doing Heron 1s rule, division by 2 is accomplished by subtracting 

1 from the exponent, but as long as you are subtracting something anyway, 

why not subtract S from the integer part as well; it doesn 1 t cost you 

anything except the memory reference to get the constant. 

20-2 

You may get an unnormalized numbe~when you subtract S if the argument 

is close to l, but it won't be less than half of the number you'll divide 

it into. 

Yi may be unnonnalized by 1 bit. 

x will be near l, y1 is a little less than 1; so you won't have 



problems with the division giving you zero. Then when you do the add, x/y1 
has a leading l bit and so nothing is lost there. 

Heron's rule is applied nonnally two more times with the last operation 

a rounded add. The rounded add will work properly because the exponents are 

the same (the exponents might differ by 1 if you are very near 1). 

Empirically the only case in which this routine gives the wrong answer 

is when you have 1.0 ••• 01 as the argument. 

This routine was co~uted to take 52.8 µsec; the RUN library version 

takes 80.3 µsec. We did not look at any other versions. (The RUN version 

was optimized for the 6600, so it may not be so good on the 6400; it uses a 

strange formula.) The RUN version claim is that out of 200,000 random 

numbers one answer was off by 3 ulps and all the rest were right. 

Accuracy and Tests 

Now we'll discuss the accuracy of this routine and the tests that 

were made on it, how the initial approximation was found and briefly some 

other possible approaches. 

Two accuracy principles: 

(1) If you have an answer that is not machine representable and if 

your program calculates to within½ ulp of that answer, you have the 

correctly rounded result. 

your answer 
+ 
♦ t r~ machine numbers 

true answer 

(2) If the result of a long calculation is machine representable and 

if your program calculates to within 1 ulp, then the answer you get is that 

20-3 



20-4 

machine representable number that is the precise result. This second principle 

is relevant when you discuss complex absolute value, z = /22+y2 ; if z 

is precisely representable, can you guarantee you'll get that number, say 

if X = 3, y = 4. 

I ( e ) I 
t 
actual result here 

Our result is within 1 ulp so 
it must be the same. 

Question: I'm confused about what you mean by 1 ulp, especially near 

where the exponent changes. 

Kahan: Take the number 2. If you add 1 ulp, that takes you to the 

next machine number, but if you subtract 1 ulp, you drop down two machine 

numbers. 

Answer: We are talking about numbers between 247 and 248 . 

Kahan: So take 248 . You say your result will be correct to within 

1 ulp in 248 . So you are talking about 248 ± 2. But between 248 and 

248 - 2 there is another representable nllllber, 248 - 1. So that second 

principle is in doubt. 

The issue is: If the answer should be an integer do you get that 

integer? To prove that it would suffice to show that before you coovnitted 

the last rounding error, the result that you rounded was within~ ulp of what 

you'd like to get. Then the rounding can't bump you to the wrong place. But 

that argument needs to be made more precise, especially near the exponent 

changes. This problem will not arise in CABS because a~ integer times 

a power of 2 cannot be an answer. 

Question: I still don't see within half an ulp of what, the correct 

answer or the computed answer? 



Kahan: It would be the answer before rounding which is neither correct 

nor computed. 

20-5 

We tested the routine on 30,000 random numbers on [},2] and compared it 

to the double precision result correctly rounded to single precision. We 

found no difference between our routine, the RUN version, and the correctly 

rounded result. 

I'll show that our maximum error is -46 12 .5 + 2 ulp z .5 O 1 ulp. 

✓x( t~) = approximation 

= Ix ( 1 +o )( 1 + c5 + c5 2 + • • • ) 

= lx(l + 2c5 + 2o2 + • • ·) 

= /x(l+e) relative error~ 2c5 

Using Heron's rule 

xn+ 1 = ½< xn + ~) 

on+l = o~ 

We found c5
0 

= .16 xlo-3 < 2-12 . We got this result by knowing where, on the 

c5 error graph, the error would be maximal. 

Errors c5 < 2-12 
0 

0 < 2-24 
1 

o1 < ( ) < 2-24 (remember the S subtracted) 

2-48 2-47 o2 < or 

o
3 

< 2-96 or 2-94 relative error~ 203 ~ 8 units in double precision 

IHI 
• 
t + 
binary point last 3 or 4 bits may be in error after three Heron's rules 



20-6 

..... t ---"'+11~~--l(J]j.;:;::;....,~I error could be .5 + 2-
44 ulp 

You never actually write down all of X/xn; you do a truncated division 

so that all the double precision digits including those four in error never 

appear. Yet you can claim that the result you get is as good as if you had 

rounded the whole double precision number [19]. 

Question: Are you prepared to state for how many argllllents your routine 

will not give the correctly rounded results? 

Answer: Not yet. 

Kahan: Well, there are at most 6. 

Where could you round incorrectly? You could if the actual result was, 

in the double precision part: 

pl • • • • • • • • 1 • • • I 

1··· error part would cause a carry, then you would round wrong. 

Kahan: If you neglect powers of 4, there are only two different numbers 

that could cause problems. 

Answer: That's if you have ±1 in the last bit of 1. Of those, the 

+l was incorrect, the -1 was correct. 

Kahan: You should test all numbers I called C, where C = 1 mod 8 

and smaller than 8, so that's +l or -7. 

Good error bounds are needed to show that the routine recovers square 

roots of perfect squares and preserves monotonicity. 

t 



To Show that Square Roots are Recovered 

square fits in 48 bi ts ll x • • •••• .. ·•XI 

square root kxxxxOOOOOP······••xxx! 
1 __, 

e 

~xxxxl l l l lq ·•••••·-~I 

e 

Monotonicity 

x~y ~ /x~/y 

If e > O, rounding gives the 
correct result. 

If e < o. rounding propagates 
carries and you recover the 
correct answer. 

Assume A = 247 . lfi. = 223 + • • • ( ✓.!: = i2" * 223) 

(A+l)l/2 = Al/2 + 1 _l _ l 1 + ... 
2 IA a (~)3 
___, 

11 11 
01 

xxxxl 

If you increase an argllllent by 1 in the last place, its square root 

will increase by very much more than the sum of the errors you'll have made 

in computing the square root before the last rounding. You look at the two 

numbers before the last round;ng, and while there is trash in the last·3 or 

4 bits of double precision, the numbers will differ in the right direction 

by an amount much bigger than that trash. The rounding operation will not 

destroy the monotonicity. 

Reducing the Degrees of Freedom From 4 to 1 

rx . ax+ b 
X ~ CX + d 

20-7 



There is a theorem that says there is a best rational approximation to 

a function on a given interval. This approximation should hold if x + !-
.l+b 1 

If = L_ ~ _d_x_+_c_ = _l 
Ix • f..+ d • ✓x 

x ax+b 

Kahan: ~~!~ is a best approximation in that its relative error has 

been minimized. It must also hold for -1 which is in the same range. If 
✓x 

I ax+b r.:j we take the measure of error, in cx+d - in ~x, it is a function of x. 

The maximum value depends on a,b,c,d. 

Theorem. There exists a unique set {a,b,c,d}, except for a conmen factor, 

which minimizes the maximum taken by the relative error. If we compute the 

relative error, jin dx~c - in -1 j, it is the same kind of function of x, 
ax+b ✓x 

with a and d swapped, b and c swapped. It can also be minimized by 

apt choice of a, b, c, d. Since the choice is unique, the two functions 

must really be the same function. 

20-8 

If the function you wish to approximate has a symmetry that is preserved 

by the way you measure error and by the interval, then you should be able to 

use the syrrmetry to decrease the number of independent constants. 
ax+b 

So we can say that y = bx+a. 

3:---- ✓x 
.-~-?"": rational 

£,/ : 
I' I 

/;: I 

approximation 

/ / I I 
I 

l -X x 



20-9 

fi(l+o) = ax+b = c + l-c2 
1-tf 6x+a x+c 

We solved for 6(x), took o'(x) = 0; had to solve numerically to give points 

of maximum error; had maximum error at end points also. 

The two interior o's are equal, the two end o's are equal. regardless. 

So we set the errors 1 and 2 equal to detennine c. It is not possible to 

diddle with c, or with the S, so that that one wrong square root comes 

out correct. It is wrong because you use Heron's rule. 

It was suggested that we look at a third order method like xP(x2-A). 

The resulting P would require 8 operations to compute the function, whereas 

Heron's rule takes 3. Two steps of Heron's rule (6 operations) is 4th order 

while one step of the other method (8 operations) is 3rd order. 

We tried linear initial approximations, minimizing the absolute error 

(that's what the RU~ version does). The linear approximation has 1 multiply 

and 1 add; ours has 2 adds and 1 divide, so it is not much more work. We 

looked at Professor Kahan's initial approximation (for the 7094), but the 1 's 

complement exponent would be almost as much work to unravel as doing the 

other approximation. Also four Heron's rules would be needed. 

Z = CABS(X,Y) IZI =l,!;.v'l 

In the RUN compiler, they compute 

X > y 

They do this to avoid overflow, but introduce a rounding error in doing the 

division. 

We avoid the division by scaling instead. 



y = y•t1 

Z = 2n✓x2+v2 

The only problem then is how exact x2 and v2 can be. 

x2 to double precision 
2 v to double precision 

__ VII 
t 

lost 

20-10 

First add the two lower halves together. Then add that sun to v2 (smaller 

of two numbers}, truncated because when we add to x, the truncated part 

will get lost anyway. We did our own rounded add. Add the sum to the upper 

and lower halves of x2, then multiply lower sum by two and add to the upper 

sum. 

So now we have (x2+v2) to~ ulp. We call our ·sQRT routine and 

we·•d like to get (x2+v2} 112 to ¼ ulp, but because we may skip over a 

boundary we get 

plus the error from taking the SQRT which is~ .5 ulp. 

So the error in the final answer is 

This method takes longer than the RUN version which_ takes 85 µsec; ours 

takes ~100 µsec. 

In testing on random numbers, we found ours to differ by .8 ulp from 



20-11 

the correctly rounded double precision result, while the RUN version differed 

by 1½ ulp many places and by 2.4 ulp for one example. 

If Z is an integer, will we get that? We do get (x2+y2) to within 
1 
2 ulp. You don't run into boundary problems (as in principle (2) earlier) 

because all hypotenuses of Heronian triangles have an odd factor bigger 

than 1. z2 = x2 + y2; we're only in trouble if z is a power of 2. Cancel 

all powers of 2, so at least one of x2, y2, z2 is odd. If z2 is even, 

we must have x2 • and y2 both odd (can• t both be even) . An odd number 

squared is congruent to 1 mod 8. You add two such numbers. The sum is 

congruent to 2 mod 8, but z2 is congruent to 4 mod 8 or O mod 8. 

CSQRT 

Z = (X,Y) 

ll = (U, V) 

a= CABS(Z) 

b = ((a+ IXl)/2)1I2 

c = Y/2b 

if X ~ 0, U = b, V = c 

if X < O, U = sign(Y)•c, V = sign(Y)~ 

This is what RUN does and is about as accurate as you can do on our 

machine. If a or b overflows, X or Y was very close to overflowing. 

The time necessary to do all the checks is not worthwhile. The user should 

be scaling if he is that close. The only number that could underflow is c, 

but then you deserve it. 

Kahan: You could have avoided overflow by imbedding your CABS routine 

in this one and deferring the scaling up until later. You might have avoided 

over/underflow without excessive cost. 

(That would even save on RJ to call CABS; RJ is rather slow.) 



Kahan: On your SQRT, you said after two Heron's rules your result 

was good to about 2-48. It seems that with some careful trimning of your 

constants and trickery, that result before rounding could be good to 2-50 . 

Then your final error would have been something like .505 ulp. It would 

sti 11 preserve monotonicity and recover square roots of perfect squares. 

But you could not say there was only one operand whose SQRT was wrong. 

Shouldn't you save 8 ~sec and gain a program as good as any others around? 

20-12 

) 
' 



I. STUDENTS' REPORTS ON MACHINE ARITHMETIC 

Groups of students investigated various interesting machines in order 

to detennine how numbers are represented, what kind of model of arithmetic 

could be applied, how overflow and underflow worked, and which of the rules 

[2] were followed. The students' presentations to the class and the dis

cussions they generated are transcribed below. 

Burroughs 85500 Machine 

Infonnation from the manual did not always agree with that given by 

Professor Kahan or by the Burroughs people in Oakland. So some workings 

had to be guessed at. 

If some of the things told us were right, the manual is visibly wrong. 

48-bit word 

flag bit exp. sign bit 
j -~--~----------l O 11 exp I mantissa I 
l a' 3 S 9 47 
I 
I 

\ 
i 

t 
sign bit 

• ····------>Is word an operand or not? 

Representation is in powers of 8 handled by the machine as shown. The 

exponent is two octal digits and the mantissa is 13 octal digits. The octal 

point is to the right of the mantissa. A nonnalized mantissa could be like 

this: 

llxx• • • • • .. ·····I or in binary po1xxx- •.••••••• , 
9 47 

Exponent is not biased. It is also in sign magnitude, as is the mantissa. 

1-1 



85500 360/40 

Base/representation 8/ sign magnitude 16/ sign magnitude 

□IIlfilTII I ~~1 1 24 I word organization 39 
exp integer• car •mantissa 

exponent range -778 ~ e ~ +778 -64 < e < 63 -

usual arithmetic Add 1/2 in last Normalize, then 
rules p 1 ace; nonna 1i ze truncate {guard 

results first digit) 
(guard word) 

double precision Nonnalfzed and Like single 
truncated (do not precision 
form full produc~ 

over/underflow Characteristic Characteristic off 
in error, integer in high order bit, 
correct on over- mantissa correct 
flow , 

I 

7094 BCC Model 1 

2/ sign magnitude 2/ 2's complement 

f!HIII 'Zl I ~ [IT] n . xx 36 I 
char •mantissa char mantissa 

-128 < e < 127 -1022 < e < 1024 - -
Normalize, then Normalize and 
truncate (guard round using a 
word) round and 'sticky' 

bit (guard word 
as well) 

Same as single Same as single 
precision precision except 

for divide 

Special overflow Characteristic 
bit for charac- off in high order 
teristic, mantissa bit, mantissa 
correct - an correct - can 
interrupt to tell choose to trap 
you what happened 
and what kind of 
operation was 
being performed 

I CDC 6400 

2/ 1 's complement 

[10!]1 ilS I 
char integer• 

-1022 ~ e ~ l 02 4 

Chop answer with-
out normalizing 
(even though it 
has a guard word) 

Same as single 
precision 

Overflow - special 
number put in regi 
ter, attempts to 
use cause abortion 
Underflow - result 
set no zero, no 
warning issued 

s-

..... 
I 

N 



±0 are presented, but all operations treat any zero as a true zero; only 

test for zero is on the mantissa, regardless of sign or exponent. Integers 

are represented as floating point numbers with exponent equal to zero. 

Arithmetic operations work on a stack. The two top elements are 

registers A and B. Operations are perfonned on these two registers and 

the result is left in B-register. Another register X is used to hold 

shifted out digits and the extension of the result of multiplication and 

in division. X is not mentioned in the manual and its contents are not 

available to the programmer. 

You can't see X but it affects you. There is also an exponent 

register. N. 

The rounding rule (not from the manual but from the users so it may 

not be correct) is that you always round up by} in magnitude in the last 

place. You have a 'bias' up. 

How Addition and Subtraction are Perfonned 

If one argument is zero, then the other. is the answer. 

If the operands have the same exponent, they are added {subtracted) 

and the answer is rounded up to 13 digits. 

Question: To what extent are single precision arithmetic operations 

characterized by the rule that Knuth uses -- do the operation correctly, 

take leading 13 digits and round the 14th up? 

Answer: It is followed for nonnalized numbers in single precision 

(+ - * /). 

Question: Is there any case when this isn't true? 

Answer: It is not true if the larger operand is not normalized; this 

can lead to an error of 10% according to the manual. 

1-3 



You can generate unnonnalized numbers in subtraction as the result is 

not nonnalized after the operation. 

According to the Manual 

If the shifting to align octal points is by 14 digits or more, the 

larger operand is taken to be the result, say 

Q • • • 1 X 8Q } 
_ 14 res u 1 t = 1 x a0 

+ 7 •·· 7x8 

The correct result is l.077•••7x8° which rounds to 1.lOO··•OxS0 with 

more than 10% error. 

According to Professor Kahan 

If the larger operand is unnonnalized, shifted out digits are kept in 

the X-register (you lose only the last 7 in the example above). Addition 

I-4 

is performed in 26-bit adders; the answer is shifted left into the B-register 

until X is empty or the B-register is normalized. Then the result is 

rounded up. Now you only have difficulty when you are subtracting. If 

the 1 (in the example above) is unnonnalized, the result may be wrong by 

one unit in the last place in the stored register. 

This is the extent to which the 85500 results will vary if you use 

unnormalized operands, assuming that the manual is wrong. 

Comnents on the Rules in [2] 

1. If -x is representable then x is. 

2. The representation of a number is unique_except for unnonnalized 

numbers and for ±0. There is no nonnalize instruction. 

If you generate an unnormalized number, whether it remains unnormalized 



or not depends on the next operations. 

It was intended that you should get the same result from nonnalized or 

unnonnalized operands. If Professor Kahan is right, there is a small discre

pancy. If the manual is right, the error is too large to believe. 

3. Exact answers are given when possible. 

4. Overflow gives correct answer with exponent correct only to 

modulo 64; overflow toggle is turned on. 

Question: That would be okay if the only exponents to cause an overflow 

were 64 to 127. Then the fact that overflow had occurred would tell,you 

the true exponent. But what happens when you square 77. • • 7 x a63? 

Answer: {(813_1) x863)2 ~ a26x al26 = a13x 8139 = al3xa11 

So they should save two characteristic overflow bits. You do not still 

hae the operands. They were on the stack and they have been destroyed. You 

have irrevocably lost a binary digit. It could have been saved in the 

exponent sign bit since you know overflow could only occur for positive 

exponents. You cannot tell if you overflowed by a little or a lot. 

The Burroughs people were not willing to make the change to use the 

exponent sign bit for overflow. 

5. Rounding is okay except for unnonnalized numbers. 

6. You drift up in the sequence xn+l = (xn+y) -y [2]. 

Double Precision Representation 

13 13 
I I 11 exp I l 

Results in double precision are always nonnalized but truncated. 

On multiply there is a problem only when you get 25 and not 26 digits. 

They keep only 27 digits as they multiply {they don't fonn the 52 digit 

I-5 



product). There can be an error of 1 unit in the 2sth digit. 

In subtract, they keep only 26 digits. 

Question: If you have (A-B)•C and (A-8) yields an unnonnalized 

result, is it normalized before rrultiplication? 

Answer: No, multiplication is performed, then the 13 most significant 

digits are normalized and rounded if possible. 

If you multiply integers together, the answer tries to stay an integer, 

i.e. with zero exponent. There are special rules for rounding them. 

Question: How do ±0 compare in logical operations? 

Answer: They would be different. 

Question: Suppose I compare {x-y) with -(y-x)? 

Answer: You have to distinguish relation operations comparing numbers 

and Boolean operations on bit strings. In comparisons, ±0 is always zero. 

There are all the tests >, ~, etc. There is no test just for sign except 

by a Boolean operation. 

IBM 360/40 

32 bit word 

[] I char I ! fraction I 
0 1 7 8 32 

It uses true hexadecimal representation: 

biased exponent by 6410 = 4016 
characteristic O ~ C ~ 127 so -64 ~ exp ~ 63 

number is fraction x 16exp 

single precision 

double precision 
63 

5 • 4 X 1 0-79 
< f < 7 • 2 X 10 7 5 
- - Representable numbers expressed in 

sign magnitude. 

I-6 



The rounding rule is: Do operation to infinite precision. Then round 

to 6 or 14 hexadecimal digits. 
adding . 

When {subtracting} magnitudes, the rule is 

Z = TRUNC(X ± TRUNC(Y)) 

6 

I VI I II /I 
□ -1 ___ 10 
t t 

carry bit 'hex' as a guard digit 

The result is left shifted until the answer is nonnalized. It could 

be off almost one hexadecimal digit in the last place. 

If you get an overflow on adding 

IDlx••·········ID 

the result is right shifted by one 'hex' (4 bits) 

llx• • ········ID 

so you lose 4 digits. 

Say the -bit lost was F (= 1510). Then the answer is truncated. 

We might have 

lFFFFFIF 

1-7 

Then the answer is- just 1FFFFF16 , not ·20000016 as might be more reasonable. 

If the machine is given unnonnalized operands, it first normalizes them. 

In multiplication, it produces a 14-hexadecimal-digit result (the last 

two are always zero) (28 in double precision). Actually in double precision, 



it does a curious thing. It gets the 28 digits, truncates to 15, normalizes 

by left shifting and truncates to 14 digits. 

I-8 

(A long time ago they used to truncate to 14 hex digits first, then left 

shift if there was a high order zero. The answer was already truncated.) 

You had l.O*X; X because the last hex digit was truncated. 

Actually, they never keep more than 15 digits while multiplying. (In 

the larger model 360 1 s, they do this chopping -- they generate the whole 

product and throw a big chunk away.) 

In division, truncation is done properly. 

Overflow/underflow: In exponent overflow, the exponent is small by 128, 

the fraction is correct. 

In exponent underflow, the exponent is large by 128 and the fraction is 

correct. 

Division by zero is suppressed. 

The 360 has a strange thing -- over/underflow can cause an interrupt, 

but it can run with the interrupt turned off. Then a condition code is set, 

except for multiply and divide. You can get around all this by letting 

the interrupt work and code to prevent it. 

In FORTRAN there is not much hope of recovering from overflow. IBM 

says use PL/1 to find or go around your error. 

No infonnation from the exponent is lost on overflow because it can 

only overflow by 1 bit. The number range (nonnalized) is not so asymnetric 

as on the 85500.t 

tAs an exercise, verify that if the 85500 exponent were biased differently, 
you'd not lose that extra bit. You do not lose a bit on the 360. 



Rules satisfied: 

1. Have x, -x 

2. There is a -0, but it acts like the nonnal zero in compare 

operations. 

3. Exactness of answers is preserved. 

4. One can say they don't waste infonnation unnecessarily, but 

they make it hard to recover. 

Question: What about this truncating business? 

1-9 

Answer: In a sense that is not wasted because you had nowhere to put it. 

5. The answer won't necessarily be set to the nearest representable 

number because of truncation, but it is one of two numbers on 

either side. 

The error is less than 16-5 for single precision. You see this by 

looking at 

. 100000 I FFF • • • F 

If you throw away that (those) F's, the relative error is 

16-6 
- 16-5 in the last place (almost) 16-l -

6. Sign synmetry is preserved. You do get drift because of truncation. 

Double precision is just like single precision (they carry a guard digit) 

except for 14 instead of 6 hex digits. 

IBM 7094 

floating point representation . 

~f"charll fraction~ binary machine 
~9 3 

binary point 



characteristic biased by 128, -128 ~exp~ 127 

27 bits in fraction 

Arithmetic is done in an accumulator 

~IJIJ~~fractfon
3
~ Q, P overflow bits 

Another register which sometimes acts like a right hand extension of 

the accumulator is called the r(l. 

~I I char 11 fraction I 
0 1 8 9 35 

Integers use all 35 bits and have their own operations because they 

are not set up like floating point numbers with zero exponent. 

Add or Subtract operation -- different exponents. It puts the number 

with the smaller exponent into the accumulator. Then it right shifts it 

into the MQ. 

I• lx • • • .. • • • • I memory 
± pooo1xxxxxxxl ~xxxOOOOl AC and MQ 

1-10 

It performs + or -, puts the answer into the accumulator and 

nonnalizes, then doesn't round the answer, although the infonnation is sitting 

in the MQ. In normalizing, it brings in bits from the r(l. So you have 

54 bits when you add or subtract. There is a round instruction; it examines 

the highest bit of the MQ and rounds up if it is a 1. ·You could use 

Professor Kahan's rounding scheme here by examining.other bits of MQ, but 

this isn't do"'' 



For multiply, you have the 54 bit result in AC and Kl, but you only 

get the truncated {or rounded) result, as in adding. 

I-11 

In division, the quotient is in the MQ and the remainder is in the AC. 

Correct rounding here would require another division to detennine the ratio 

of remainder to divisor. So division is simply truncated. 

Question: How well does single precision follow the rule that says 

get the exact answer and truncate to so many significant figures? 

Answer: This is followed except in one case because if a result must 

be left shifted, bits are brought in from the MQ. The one exception is 

when an add or subtract shift sends the smaller number out of the MQ. Then 

the rule is not followed as the larger operand is the result. 

This case could lead to some sequenc(§ 1D not be monotonic that should be. 

Double Precision 

AC has high order bits, MQ has low order bits -- two words in memory 

have the other double precision word. 

Add and Subtract 

If you have to right shift one operand, shifted bits are simply lost. 

So there are no guard digits. 

Multiply 

Say words are A and B {in AC and Ml) and C and D (in memory). 

The leading digits of the answer come from [A xC]high order· Lower order 

digits come from [AxC]1 d + [AxD]h. h + [BxC]h. h. This can lead ow or er , g , g . _ 
to an error of 6 units in the last place. The machine truncates on taking 

[Ax D]high + [Bx C]high· So it could lose -2 in the last place. It 

will lose another 1 {down) in the last place because you ignored [Bx D]high· 



Then if the entire answer needs to be left shifted to nonnalize the result, 

these -3 would become -6 units in the last place. An instance of an 

error of 5.94 ulps was discovered at the Jet Propulsion Laboratory. 

Double precision divide can lead to -4 units error in the last place. 

Question: If you subtract two different double precision words, can 

you guarantee that the result is non-zero? Except for underflow. 

Answer: Yes, although it's not easy to find out. 

Question: What if one nt111ber is zero and the other gets shifted way 

to the right? 

Answer: It can't happen as the machine would detect the zero and give 

the other number as the result. 

Question: Is any information lost on over/underflow? 

Answer: No, registers are not cleared on over/underflow. Also, you 

get an interrupt and are given the foll<Ming information: whether overflow· 

or underflow occurred, in which register this happened, AC or MQ, what 

operation was being perfonned, +, -, *, /; the address +l is stored. 

You can do arithmetic with P and/or Q nonzero where they act as 

part of the characteristic. But the manual warns that this may give wrong 

results. 

You can get drift because of truncation. 

BCC Model 1 

1-12 

[I I char 11 mantissa I _l ........,,.~~-
Double precision adds 
48 bits to the mantissa 

+ 11 bits 36 bits 48 bits 
sign 

The exponent is biased by 20008; the mantissa is in 2's complement. 

The exponent is not changed for negative numbers. This is true for both 



I-13 

normalized and unnonnalized ntnnbers. 

4 Different Kinds of Floating Point Numbers 

nonnal zero: 

normalized nunt>ers: + lID k· ... -xi n .xx• •••• , 

- I!] Ix • • • • • xi or n . o • .. • • 01 - - - - both nonnal ized 
k).x••·••X! negative number 

unnormalized numbers: + IQ:l P · • • • •OI kl .x •••••XI 

(smallest exponent) 11 11.X••·••XI (sort of nonnalized) 

- [I P • • • • • O! ~ . x • • • • • xi 

Hardware for machines exists, but not all of the microcoding for floating 

point and none of it for double precision or for handling -00 exists. 

Floating point arithmetic was essentially implemented in microcode from 

the manual. 

Bias was put in the exponent to allow the zero test to be either fixed 

point or floating point. This actually is unnecessary because there are 

floating point tests. 

Any other number of the fonn 

is not a legal floating point number. If you try to use it as a floating 

point number, you get trapped. 

Arithmetic 

All arithmetic is done i~ double precision. The accumulator is 84 bits. 



I-14 

The result is rounded to 36 bits only when you do a store operation in single 

precision mode. 

Add and Subtract are done with a round bit and a sticky bit. 

Question: Aren't there two rounding bits? 

Answer: No, there's just one rounding bit. You can get around this 

(for subtract where two bits at the right may be needed) by shifting left 1 

at the beginning and using the overflow bit. 

Example where double precision arithmetic and then rounding don't work properly 

(according to the manual): 

36 48 RS 
~ n . xx ••••• 01 n a ....... 01 m m 

Round the double precision word to the nearest even so R and S are 

just thrown away. When you try to store this word in single precision, the 

machine looks only at the 48 bits and rounds to the nearest even in this 

case (so 48 bits are just thrown away) and your answer is off in the last 

place. This is wrong in the manual. It uses the 48 bits and the R and 

S bits to round. 

Multiply acts like you expect it to, using the R and S bits. 

Divide in single precision (claimed): 

37 S 
I quotient I 0 

t 
set if divide is not exact, 
set if there are more fraction 
bits in the accumulator 

There is an anomaly in double precision divide. You can divide 84 bits 

of accumulator by 84 bits in storage to give an 85 bit quotient. You need 

one more bit to be set if the division is not exact. 

The manual does not treat unnormalized numbers. It just says that they exist. 



You can generate them on underflow and choose to trap on underflow, 

or choose an unnonnalized result. 

If you trap on over/underflow, the mantissa is correct and the exponent 

is off by 211 (overflow) or -211 (underflow}. 

There are five different rounding and double precision modes. You 

can select a different mode for one operation and then the program reverts 

to the standard mode (discussed earlier). 

Discussion Comnents 

I-15 

1} There should be no discernible difference in the way single and 

double precision rounding are done. Thus, division is a mistake in the design. 

One bit is left out. 

This allows a user to discover if his program is not working because of 

a flaw in the program or because of rounding errors in the machine. He 

changes his single precision program to double precision and looks to see 

if his errors have moved to the right or not. 

2) The extra rounding modes give users access to interval arithmetic 

by alla,,ing users to specify round to the next larger or round to the next 

smaller in value or magnitude as wanted [12]. 

3) Default rounding is to the nearest number. 

But rounding can take as long as an ordinary add. So do your rounding 

when you use an operand and not when you generate it. Then you can overlap 

operations in the machine and not waste time. 

On the 7094 for example the Round instruction takes 2 cycles, ordinary 

Add takes 3, so Add and Round take 5 cycles. 

Question: On the 7094, is it possible to get the same result in two 

different ways {multiplying) because the binary point is to the right of the 

first digit? On overflow, that is. 



I-16 

Answer: No, you can only get one overflow from mantissas because their 

product, no matter how big they are, is less than 4. Say m = 1.1···1 then 

m2 
< 4. 

4) Nonnalized and unnonnalized numbers: Nonnalized numbers all have 

reciprocals. But the number fflP··•O!n.o••···OI does not (it is the only 

one that doesn't), so it is unnonnalized. Actually, it is called both. 

5) Why is there a -m? m isn't dealt with; it is just used to tell 

that overflow has occurred. 

In interval arithmetic, you think of numbers as being on a circle and 

every interval that is representable is an interval on that circle. Its 

complement is also representable, so that includes only one point as m [12]. 

This machine could have been ideal., depending on if the details were 

implemented conscientiously. 

Question: Why are numbers in complement form instead of in sign 

magnitude? 

Answer: Because they said it was easiest to run the registers that way 

and besides it doesn't matter. 

Question: Doesn't the double rounding cause problems? 

Answer: It could, if you did (A+B)*C without storing and if you 

stored (A+B), then fetched and multiplied by C. They get around this by 

always having A+B stored temporarily (by coq,iler) with store and fetch 

operations overlapped by others, so no time is lost in doing this. 

When a numer is rounded, right hand bits are cleared. But a double 

precision word ought not to be rounded until it is stored~ so somebody missed 

the point. 

Question: 

it a luxury? 

Is it ecor .ica; to have double precision hardware, or is 



Answer: Once it was decided that double precision was a good thing, 

you only pay a small penalty by doing all operations to double precision, 

namely a small time penalty for carries to propagate. 

Question: But why do most machines not have built-in double precision? 

Why was it done in the BCC? 

Answer: Usually, you can program double precision almost as well as 

it can be handled by hardware. But in machines of small characteristics, 

I-17 

you run into serious problems with underflow and overflow. The characteristic 

of the second word is down from the first, so there is a nasty tendency to 

underflow and the system may be cleared to zero. But you might say the 

problems get worse with higher precision. 

That's true, but most people are content with double precision. Those 

who want more are willing to sacrifice efficiency. 

CDC 6400 

floating point number range: 3 x 10-293 ~ f ~ 2 x 10321 

rather large compared to other machines 

m1nbers represented as: sign x 2exp x coefficient 

coefficient is considered as an integer 

-1022 ~ exp ~ 1022 

0 ~ coef ~ 248 - 1 

24 7 ~ coef ~ 248 - l 

1 · 10 48 
~IOI X• •;••XI! coefficient I 

unnonnalized 

nonnalized 

exp is 11-bit l's complement number 
then complement the first bit to bias the exp 

If the n11nber is to be negative, the whole word is l's complemented. 



The word is packed so complicatedly in order that you could take the 

floating point representations and compare them using fixed point compare, 

I-18 

as long as the n11T1bers are nonnalized and none are indefinite. But you can't 

do this by using fixed point subtract (it's not really faster anyway). 

Floating point operations 

Add 

Subtract } truncate, round, double precision 

Multiply 

Divide 

Normalize 

truncate, round 

nonnalize and round 

We will principally discuss single precision, nonnalized numbers. Since 

1 's complement numbers are isomorphic to sign magnitude numbers, we will 

only talk about magnitudes. 

Question: What does a nonnal zero look like? 

Answer: It depends on who wants to know and we'll go into that in some 

detail later. The best answer is that anything that is fed to the nonnalizer 

that it thinks is zero 1s cleared to all zeros. 

The RUN version of FORTRAN makes sure everything is nonnalized. It 

must nonnalfze after add and subtract. 

Addition 

11 x • • • • • • ····I 
kl • • • • • O 1 xx • • • • • xOOOI 

01, __ _ 
t 
overflow bit 

The smaller n11nber is put into a 96 bit 
register and right-shifted. Bits fall off 
the right end. 

,... . .. 

In truncated add, right bits are dropped. If the sum overflows, one 



right shift is done. 

Actually the leading 48 bits in the register are taken as the result, 

not the leading 48 significant bits. 

Subtraction 

Same sort of thing. Exact subtraction of magnitudes, truncated to 

leading 48 bits of the register. The answer may be very small. 

0 • • .. • • • xxxj I exponents differ by 1 

11 • • • • • • • • • • I 
n 1 
t 
This may be the only significant 
bit and it would be thrown away. 

error in A E9 B = A(l+e1) + B(l+e2) 

error in A e B = A(l+e1} + B(l+e2) 

Question: Why is that register 96 bits? 

Answer: It is used in multiplication and double precision operations. 

You can get at the right hand part. 

Question: Why must you have e1 maybe different from e2? Is it 

because you can get a zero answer undeservedly? 

Answer: No, for example, on the 650 where right shifted digits are 

lost immediately (and you don't get zero undeservedly), the same error 

analysis would have to be used. Non-zero answers can still have a high 

relative error. 

On the 650 (to two digits), 100 - 99 = 10. The e.'s could be made , 
equal, but they'd be huge and you wouldn't want to use them. 

Here you violate the rule _that says if the answer could be represented 

exactly in the machine, it should be. 



Rounding Add 

Add a 1 bit at the end of each nonnalized operand (try to nonnalize 

the operands), unless you have a O. {Zero is not normalized as far as 

this operation is concerned.) 

case of equal exponents 

llX• ••••• •I l 

11 X • • • • • • -! l 

l I· · · • · • • • xi 0 
\...;( '-./, 

case of unequal exponents 

__ __.11 
___ I 1 

This would add½ in the last place. 

This could still overflow. Then adding only! in the last place makes an 

error of: in the last place. 

A EBB= A(l+e
1

) + B{l+e2) 

no overflow ~ I e. j < 2-48 , -
overflow • le1 I ~ ¾x 2-47 

This doesn't lead to so pronounced a drift as in truncation. 

Multiplication 

It fonns an exact 96-bit product {may have only 95 significant bits). 

If it has a leading zero, the result is nonnalized while still in the 

96-bit register, then truncated to the 48 high-order bits. 

A ® B = Ax B( l+e) • I e I ~ 2-47 

1-20 



Rounded multiply 

When the machine was first built they would add a 1 to the end of one 

operand before multiplying, so that you could have Ax B 'f, Bx A. 

Now they add a 1 in the soth bit instead of 49th , then left shift 1 

if necessary. 

So they round by l or~. depending on if there is no or 1 left shift. 

Actually this adding is done at the beginning of the multiply operation 

(done by add, shift, add, shift, etc.). Instead of adding to zero in the 

first cycle, they add to 

Not much better than truncated multiply. 

Division 

It truncates the exact answer to 48 bits. 

A (2) B = A/B(l+e) , I e I ~ 2-47 

Rounded Division 

This appends to the nllllerator the series 010101··· so they compute 

N + ¼( 1 - 2•48) 
3 

0 and take the most significant 48 bits. 

AQ)B=A/B(l+e), !el ~ix2·47 

This assumes that the operands are unifonnly distributed between 2+47 

and 2•4s -1 and that the part thrown away is also unifonnly distributed. 

Then you get that the mean error, after rounding, is zero (by hocus-pocus). 

I-21 



I-22 

Question: Are the operands unifonnly distributed? 

Answer: I have no idea, but there may be a tendency for smaller numbers 

to appear. 

Who Wants to Know if It Is Zero? 

t E C E C E C E C 
3 
0 I; o 1 ~ o 1 0 1 to 1 1; o I 0 I 0 0 C: 
~ 

0 

c~~:re I 
N 

I 

N 

I 

N y .,_ 
V, N N y y +,) 
C: 
ca N V y y 

3 

0 
.c: Is It Zero? ---;,. 
.3 E = exponent 

E = 0 means smallest possible exponent 
C = coefficient 

Column 3 disappears when nonnalized numbers are demanded. If the 

ceofficient is zero, the whole thing is set to zero by the normalize 

instruction. 

In column 2, it will be set to zero unless it is already nonnalized. 

That is, if the nonnalize box has to shift left, it can't because the 

exponent is already as small as it could possibly be, so all zeros are 

entered. 

The add box would be happy to add in a number of the 2nd column type. 

There is a strange n1.111ber on the CDC that is treated differently by 

different units. 

P • • • .. Ol 11 x • • • • • • • ·•xi 

It is normalized since the leading bit is a 1. 

As far as the add unit is concerne~ this number is legal. But the 



multiplier looks at the zero exponent and says the number is zero. Thus 

you can get 

A•l. = 0 when A~ 0 

If you divide by this number, you get an indefinite answer. 

An example of two different numbers whose difference is 0: 

X: 
Y: exponents differ by 1 

When this answer is truncated, you lose 100% of the answer. So if you test 

for X = Y, the result is TRUE, according to the machine. 

Why is this so bad, since the numbers differ by only 1 in the last 

place? Because you are losing all of your answer. This could cause a 

problem in the following way: 

Say X = 1.0, Y = 1.0 - 2-SO are FORTRAN variables.. You test for 

X = Y and get TRUE, implying that X = Y. If you had tested for 

(X- .5) = (Y- .5), you would get FALSE, implying X; Y. 

Overflow and Underflow Peculiarities 

1-23 

If you overflow, there is no trap, but a certain bit pattern is produced, 

P111~···xl, called ~. When you try to use this number, you are trapped. 

There is a test for this number, but you would have to do it after every 

multiply and divide. 

On an overflow, the coefficient would be correct, but there's no way 

to get at it. And the exponent is put to 3777 (it is not correct modulo 

anything). 



On underflow, the result is cleared to zero and there is no message. 

Thus, things like the following can happen: 

Ax+ B 
~ =f. ex+ b = 1.o 3 

, 

A, B, C, D, X > 0 and nonnalized. 

In one case, the numerator and denominator underflow, in the other 

nothing happens. The point is that on the CDC you have no way of knowing 

if there was underflow. 

I-24 



II. THE RUNW.2 COMPILER FOR CDC FORTRANt 

Introduction 

This paper is a description of another revised FORTRAN IV compiler 

derived from the CDC RUN compiler. The modifications were performed by 

the author on the RUNW.l compiler, which is in turn a modification of the 

University of Washington RUN compiler, November 1970 version. Basically, 

RUNW.1 is a modification of the CDC RUN compiler which produces somewhat 

more efficient code, largely through improved use of temporary space. 

The purpose of the new revisions was to 11fix up 11 real single precision 

arithmetic. This has been done by modifying some in-line functions and one 

library function, changing the order of evaluation of relational expressions 

(such as X .GT. Y+Z) and, as a user option at the subroutine level, to 

provide properly rounded single precision real arithmetic instead of the 

sanewhat undesirable arithmetic currently compiled. 

This paper is a description of the new revisions. It is divided into 

four sections: Section I is a theoretical discussion of rounded arithmetic 

on CDC 6000 machines and numerical analysis, and is meant to describe and 

explain the defects in the CDC RUN code and provide solutions. The improve

ments made in the compiled code are discussed. 

Section II is a description of the options available to RUNW.2 users, 

and is oriented toward the somewhat sophisticated user. Some examples of 

COMPASS code are given, but they are mostly for completeness; it is not 

essential that the reader understand COMPASS in order to use Section II. 

Section III ·is devoted to compiler internals and is not. reprinted here. 

Section IV gives some wishes for the future. 

tBy David S. Lindsay. 

11-1 



Most of the new floating point algorithms generated by RUNW.2 were 

suggested by Professor W. Kahan, who supervised the compiler modifications. 

We state at the outset that our purpose is to implement correctly rounded 

arithmetic. Over/underflow problems still exist and there is just no 

sensible economically feasible solution on these machines. 

Section I: Rounded Arithmetic on CDC 6000 Machines 

In order to understand the options available on a 6000 series machine, 

11-2 

it is necessary to be familiar with the floating point hardware, as described 

in the machine reference manual, CDC publication #60100000. 

We first consider addition and subtraction, which may make use of the 

F, R, or D type add and subtract and the N and Z (normalize, and round and 

normalize) instructions. However, the Z instruction does not appear to be 

useful in this context. 

We will adopt the convention, used by the RUN compiler, that operands 

are assumed to be nonnalized and, if they are, then results are guaranteed 

to be normalized also. 

The "obvious" way to perform an add of Xl and X2 into X6 is: 

FX6 Xl+X2 FLOATING ADD 

However, normalization in the 98 bit accumulat-or does not occur. Its 

upper 48 bits are simply packed with the appropriate exponent into X6. Thus, 

as the reference manual points out, the result may not be nonnalized. Hence, 

if we are to adhere to our convention of guara~teeing nonnalized results, a 

normalize is required. As we shall see, the lack of an "automatic" normalize 

causes most of the problems associated with addition and subtraction. 



We thus arrive at the following code: 

FX6 Xl+X2 FLOATING ADD 
NX6 X6 NORMALIZE 

Similarly, a complete floating subtract would look like: 

FX6 Xl-X2 FLOATING SUBTRACT 
NX6 X6 NORMALIZE THE RESULT 

In fact, the RUN compiler compiles all of its single precision real 

adds and subtracts in this way (although, of course, not necessarily with 

the registers we used). 

11-3 

This arithmetic has an ugly feature. It is possible for two normalized 

real n1J11bers Y and Z to be such that Y-Z computed in this way yields 

zero, but (Y - 1.) - (Z - 1.) does not! 

For example, let 

value= exactly 2.0 Y = 1721 4000 0000 0000 0000 B 
Z = 1720 7777 7777 7777 7777 B value·= 2.0 - 2-47 exactly 

Now Y-Z, following the recipe in the reference manual, would be 

computed as follows: 

Put the number with the smaller exponent {Z) into the 98 bit accumulator, 

and right shift it by the difference between the exponents (1). Then perfonn 

the indicated operation(-). yielding: 

upper lower 
- 3777 7777 7777 7777 I 4000 0000 0000 0000 -z 
+ 4000 0000 0000 0000 1 0000 0000 0000 0000 v (11.l) 

0000 0000 0000 0000 / 4000 0000 0000 0000 result 

where the / marks the division between the upper and-lower 48 bits of the 

accumulator. 



Thus after the F subtract, the result register will contain: 

1720 0000 0000 0000 0000 

which, when normalized, is of course zero. 

But now consider Y - 1.: 

1. = 1720 4000 0000 0000 0000 

Thus Y - 1. = 1720 4000 0000 0000 0000 = 1 .0 

and Z - 1. = 1717 7777 7777 7777 7776 

Now compute the difference between these two numbers. The accumulator 

will then contain 

- 3777 7777 7777 7777 I 0000 0000 0000 0000 -(Z-1.) 

+ 4000 0000 0000 0000 1 0000 0000 0000 0000 Y-1. (II .2) 

0000 0000 0000 0001 / 0000 0000 0000 0000 result 

which is not zero! 

We therefore also note that the results obtained from this kind of 

arithmetic depend not only on the exact answer, but also on the operands. 

We would like to present code which does not have these defects. The 

availability of the lower 48 bits {by use of the D instruction) is the way 

out. 

Consider the following code: 

1 

2 
3 

DXO 
FX6 
FX7 

Xl+X2 
Xl+X2 
X6+XO 

Let us consider step 3. 

LOWER 48 BITS WITH THEIR EXPONENT 
UPPER 48 BITS WITli EXPONENT 48 LARGER 
ADO (1) ANO (2) 

The coeffic~ent of the smaller exponent (XO) is entered into the 

II-4 



accumulator and right shifted by the difference between the exponents (48). 

This puts it entirely in the lower half of the accumulator, which is of 

course where it came from to begin wi th in step 1 . 

The coefficient of the larger exponent is then added. It is of course 

of the same sign as the coefficient just entered, but lies wholly in the 

upper 48 bits. Thus the effect is exactly that of concatenating the two 

coefficients viewed as bit strings. This is all obvious enough. But some

thing interesting occurs if we insert a nonnalize between 2 and 3, thus: 

1 DXO Xl+X2 LOWER SUM 
2 

2.5 
FX6 Xl+X2 
NX6 X6 

UPPER SUM 
NORMALIZE UPPER SUM 

3 FX7 X6+XO ? 

(II .3) 

If n left shifts were performed in step 2.5, then the exponent of X6 

would be decreased by n (assuming the coefficient; 0). Thus in step 3, 

the coefficient of XO would be right shifted 48- n places before placing 

it in the accumulator. Its leftmost n bits now lie in the upper part; 

X6's lower n bits were cleared by the nonnalization, so again the effect 

11-5 

is just that of concatenating the bit strings, but the result is now normalized. 

The only exception to that statement arises if X6 were originally 

zero. Then the result of step 3 is exactly the lower part of the original 

sum, and so it still must be normalized to guarantee a nonnalized result. 

(But in fact, it is easy to see that nonnalization is only really necessary 

when the answer is zero.) 

We now have a method for getting more accurate chopped arithmetic. The 

only case in which the result obtained is not the chopped representation of 

the exact result is when 



11-6 

1) The add or subtract results in the algebraic sum of two non-zero numbers 

of opposite sign, and 

2) One is so small in magnitude with respect to the other that it is entirely 

right shifted out of the accumulator when it is loaded. 

The computed result equals the operand with the larger magnitude, but 

the exact chopped result is smaller (in magnitude) by 1 bit in the last 

place. (However, this is a lot better than we were doing before.) 

Replacing the floating add in step 3 by a rounded add will result in 

properly rounded arithmetic. The complete algorithm is: 

1 DXO Xl±X2 DOUBLE ADD/SUBTRACT 
2 FX7 Xl±X2 FLOATING ADD/SUBTRACT 
3 NX7 X7 NORMALIZE UPPER PART (II.4) 
4 ~7 XO+X7 GET ROUNDED RESULT 
5 NX6 X7 AND NORMALIZE 

To see why the rounded add works right, note that the operands in 

step 4 will be of the same sign, so a round bit will be attached to the 

right of the larger (and to the right of the smaller if and only if it is 

nonnalized). The presence or absence of the round bit on the smaller operand 

is irrelevant, as a consideration of the cases shows: 

Case I. The exponents are the same. 

How could this happen? The exponent of the upper part is 48 gre~ter than 

the exponent of the lower part before nonnalization (step 3); after normali

zation, the exponent is decreased by at roost 47, unless the coefficient is 

zero, in which case its exponent becomes -17778, corresponding to a charac

teristic of 0000. However, fortunately, the hardware treats this as a 

special case. It will not append a round bit to a zero operand. 

Thus the result of the addition will be exactly XO, as desired. 



Case II. The exponent of XO 1s greater than that of X7. 

The analysis in Case I shows that this can only happen when X7 is 

zero. But then we get the right answer, namely XO. 

Case III. The exponent of X7 is greater than that of XO. 

A round bit is then attached to the right of X7 before addition. If 

XO is not nonnalized, no round bit is attached to it; if it is normalized, 

a round bit is attached. But since XO is right shifted at least by 1, 

its round bit cannot generate a carry. Figure II.5 makes this clear. It 

assumes positive operands, the case of negative operands is similar. Note 

of course that both XO and X7 have the same sign. 

Figure II.5 

Oxxx •··xx/•·· xlOO •·· 00 XO right shifted at least 1 
lyyy •·· yy / 10000000 •·· 00 X7 nonnalized 

I 
xlOO ••• 00 

~annot generate a carry 

round bit 

We now know that the presence or absence of the round bit to XO has 

no effect. If X7; O, then it will have a round bit attached. Will this 

always give the correct rounded result? 

Since X7 1s coefficient will always have a round bit appended, if no 

overflow out of the accumulator takes place, the round will be ½ in the 

II-7 

last place. This is exactly what we want. But what if overflow does occur? 

There will then be a right shift by 1 ·to compensate for it, so the round is 

only by l· But in fact, the right answer still obtains, as follows: 

We noted previously that instruction 3 of II.3 effectively just repro

duced the accumulator as it was at the conclusion of the adds (or subtracts) 



Il-8 

in 1 and 2, except that it is now normalized. Thus the only time an overflow 

can take place in 4 of 11.4 is when it is caused by the round bit. But that 

can occur only when the 49 leading bits are all l. The result is then to 

clear all of them to zero and set the overflow condition, which will increase 

the exponent by l and produce a coefficient of 4000 0000 0000 0000 B. 

But that is the correctly rounded result. 

We conclude then, that the R add (instruction 4 of 11.4) will always 

produce the correctly rounded sum of its operands. Will that always be the 

exact answer to the original add (of Xl and X2) rounded to 48 bits? 

Surely it will be if the exact answer lies wholly within the 98 bit accumulator. 

But even if it does not, the result will still be correct, as the following 

argument shows: 

Suppose that the exact sum Xl+X2 does not lie wholly within 96 bits. 

This can only happen if the magnitudes of the operands are so different that 

there is at least 1 bit separating them when they are placed in the accumu

lator. Suppose first that they are separated by at least 2 bits: 

lxx xx/ 00000 .•. 00 
000 •·· 00 I OOlyy ••• yy / y 

+ 
at least 
2 zeros 

larger operand 
smaller operand partially (or wholly) 
shifted off 

If the operands are of the same sign, the rouna bit in step 4 of 11.4 

has no effect, and the result is exactly equal to the larger operand, which 

is the correctly rounded result; when the signs are different, we have in 

absolute value: 

zzz •·· zz I llww •·· ww result of the subtract 
t 
at least 2 ones 



II-9 

Even if the resu1t is not nonnalized. a left shift of 1 must nonnalize it. 

Thus the round bit will generate a carry, and rounding will be by 1. This 

restores the larger of (Xl,X2) as the final result, which is of course . 
the correctly rounded result, except when the coefficients are separated 

by 1 bit: 

Example 

Suppose the accumulator looks like: 

lxx •··xx/ 0000 •·· 00 
- 000 ••• 00 I 0lyy ••• yy / Y 

zzz ••• zz I lww •·· 

If the accumlator overflows, the larger coefficient must have 47 trailing 

zeros. To make the rounding come out wrong, we must have the one lost bit 

alter the upper part of the DP accumulator. The following example gives a 

wrong answer: 

100 oo I 0000 ... 00 I 

- 000 oo I 0100 ... oo t 1 
011 . . . 11 / 1100 ... 00 compute~ result 
011 . . . 11 / 1011 ... 11 / 1 exact result 

Now nonnalize and round the computed result: 

111 ... 10 / 00 ••• 0 
000 ... 01 / 10 ... 0 

1 round bit 
1000 ... oo I oo ... 0 computed result 

But if we normalize and round the exact answer:. 



II-10 

11 ... 10 / 00 . .. 0 
00 . . . 01 / 01 ... 1 

1 round bit 
11 ... 11 / 11 . .. 1 exact bit, rounded 

Thus the computed answer is not correct. 

We have thus concluded that the scheme in 11.4 will almost always yield 

the exact answer rounded to 48 bits, provided that at each step the operands 

and results were in range of the floating point hardware. 

This means that our scheme now guarantees that the result is dependent 

only on the exact answer and not on the operands almost always. This almost 

satisfies one of the conditions set forth in Knuth, Vol. II. 

We further note that it is no longer possible to have Y and Z such 

that Y-Z is computed to be zero,. but (Y-X) - (Z-X) for any X, is not, 

barring underflow problems. For if Y-Z is computed as zero, then either 

Y = Z exactly or Y-Z underflows. This is true because we compute the 

most significant 48 bits of the exact difference. If these are zero, then 

the difference is zero. But since V = z, we conclude Y-X = Z-X for 

all X (once again, barring underflow). 

Note that if the exact result of an addition or subtraction is half way 

between two adjacent floating point numbers, the rounding is always up in 

magnitude. In some special cases, this can cause problems. For example, if 

we compute X + Y - Y + Y - Y + • • • with X = 1.0 and Y = 2. **-48, then each 

time Y is added, it will add 1 bit, while each time it is subtracted, it 

will have no effect. The computed result will then drift upward, while the 

exact result merely oscillates about 1.0. To avoid such problems, we would 

actually like the rounding to always be to the nearest even (or odd) number, 

when the exact result is half way between. The following code will acco111>lish 



this, but it was not felt to be worth putting into the colJ1)iler. 

DXO Xl±X2 LOWER SUM/DIFFERENCE 
FX7 Xl±X2 UPPER SUM/DIFFERENCE 
NXS X7 NORMALIZE UPPER PART 
RX7 XO+XS ROUNDED RESULT 
NX6 X7 NEEDED ONLY FOR O RESULT 
~4 1 
DX3 XO+X5 LOOK AT LOWER PART OF ANSWER 
LX4 48 GET 0000 4000 0000 0000 0000 (II.6) 
UX3 X3 FILL EXP FIELD WITH SIGN BITS 
~4 X3-X4 SEE IF SPECIAL CONDITION HOLDS 
NZ X4,DONE SENSE NOT HALFWAY BETWEEN 
LX7 59 LOWER BIT OF RESULT TO SIGN BIT 
AX7 58 GET O IFF RESULT IS EVEN 
ZR X7,DONE SENSE EVEN 
~6 Xo+XS DONT ROUND -- THUS GET EVEN RESULT 

DONE BSS 0 DONT NEED TO NORMALIZE PREVIOUS STEP -- IT CANT BE 0 

This could be made into a subroutine by anyone who wishes to do that 

kind of rounding. 

II-11 

Let us now consider the multiply operations available. There are three 

multiply instructions: types F (floating), D (double), and R (rounded). 

Assuming normalized operands, the F and R instructions will yield normalized 

results. This.is done by perfonning an integer multiply of the two 48 bit 

operands in a 96 bit accumulator, and left shifting the result by 1 if and 

only if that will nonnalize the result. In the rounded instruction, the round 

bit is added before the final left shift, so that the rounding is either by 

¼ or ½- The rounded result is thus not correctly rounded. 

Assume for the moment that we are using floating point numbers which 

have 5 rather than 48 bits of coefficient. Here is an example of two pairs 

of operands which yield the same exact product, but different products using 



II-12 

the rounded multiply. 

The first pair of operands have coefficients of 18 and 20. Note that they 

are both normalized; as 5 bit binary n1111bers, they are: 

18 = 10010 
20 = 10100 

18 * 20 = 360, so the double length accumulator would contain: 

01011 / 01000 = 360 unnonnalized 
00000 I 01000 add round bit 
01011 / 10000 = result, unnonnalized, after rounding 

The hardware then left shifts by 1 before packing, thus yielding: 

10111 with a suitable exponent 

There is a pair of nonnalized 5 bit numbers which multiply to yield 

720 (twice 360). Thus if their exponents are chosen properly (their sum 

should be 1 less than the SllTI of the exponents chosen in the above example), 

then the exact product in each exa111>le will be the same. But look what 

happens in the rounding: 

The numbers are 24 and 30; 24 • 30 = 720. 

24 ~ 11000 
30 = 11110 

10110 / 10000 double length product 
00000 / 01000 round bit to be added 
10110 / 11000 result 

Thus the upper part= 10110. 

So although the two products are eq· ~ {~ith suitable exponents), their 



rounded products are not. 

·Here is a 48 bit example, which is messier to verify. The reader may 

show that: 

If 

then 

but 

A = 22 * ( 246 - 1 ) 

B = 5 * 245 

X = 224 * ( 223 + 1 ) 

y = 5 * 223 * ( 223 - 1 ) 

The F 111.1ltiply does not have this problem. It is properly chopped. 

Furthennore, since 96 bits are enough to hold the exact product of two 48 

bit numbers, we can employ the rounded add to provide a properly rounded 

multiply: 

11-13 

DXO Xl•X2 DOUBLE ttJLTIPLY. 
FX6 Xl•X2 FLOATING MULTIPLY 
RX6 XO+X6 FINAL ROUNDED ADD 

(II .7) 

The result obtained will, as in the case of addition and subtraction, 

be the properly rounded 48 bit representation of the exact answer. The 

computed result will thus not depend on the operands, but only on the exact 

result. 

Note that no final nonnalize is needed, since the F multiply always 

provides a nonnalized result, even when the result is zero. 

The case of division is much more difficult to do correctly. There are 

two divide instructions available, F (floating) and R (rounded). The floating 



divide gives the exact chopped result, but as always, the rounded operation 

is not correct. In the R divide, ~ is effectively added to the last bit 

of the dividend. The divisor is effectively a number between ½ and 1, 

so the round will be by a n1.111ber between ½ and f in the last place. 

The rounding is thus dependent on the divisor, and the coq:,uted answer is 

therefore not dependent only on the exact answer. Unfortunately, to compute 

the properly rounded quotient is a very long process. But the hardware R 

divide is such that, statistically, the rounding is very close to correct. 

For those reasons, the compiler was modified to produce R divides in rounded 

mode rather than the tedious double precision divide. However, we will pre

sent here an algorithm which may be coded as a subroutine and called by 

those who actually wish the correct answer. 

The method consists of perfonning the floating divide, then multiplying 

back (in double precision) and subtracting (with care), then dividing again 

to obtain the double precise answer, and finally using it to round the 

original result. The reader will probably agree that ~his is not nonnally 

worth doing; it reduces the maximum error by! bit, but the average error 

is almost unaffected. 

FX6 Xl/X2 FLOATING DIVIDE 
DXO X6•X2 START MULTIPLYING BACK 
FX7 X6•X2 COMPLETE THE MULTIPLY 
FX3 Xl-X7 BEGIN SUBTRACTING (II.a> 
DX4 Xl-X7 IN DOUBLE PRECISION 
NX3 X3 
FX3 X3+X4 OBTAIN EXACT DIFFERENCE OF (DIVIDEND - F KJLTIPLY) 
FX7 X3-XO NOW SUBTRACT THE D t,IJLTIPLY 

The fol ... :·ing double subtract (the starred lines) may or may not be 

necessary. , .. yet, we have not been able to prove•<0r disprove that it is: 

11-14 



DXO X3-XO 
NX7 X7 
FX7 Xo+X7 
NX7 X7 

* DOUBLE PART OF SUBTRACT 
NORMALIZE 
* ADD IN DOUBLE PART 
* NORMALIZE IN CASE RESULT IS ZERO 

We now have the remainder. Note of course that it will fit exactly in 

48 bits. We may now divide again, and then use this result (which is the 

double precision part of the divide) to round the single precision result: 

FX7 X7/X2 OBTAIN DOUBLE PART OF QUOTIENT 
RX6 X6+X7 CORRECTLY ROUNDED QUOTIENT 

Let us now consider exponentiation (of a real by an integer). 

II-15 

When the compiler sees R**K, where R is a real expression and K is 

an integer constant between -11 and l inclusive, in-line code is compiled 

to evaluate the result. The only exception is the case of K = -0, for 

which a function call (to RBAIEX) is made for some ll\YSterious reason. 

The in-line code squares the base, then squares that square, then squares 

that result, etc. At each step, a product is compiled-into the answer register 

• {usually X6) if necessary. For example, R**S would be compiled as: 

FX7 Xl•Xl (ASSUMING R IS IN Xl) 
FX7 X7*X7 OBTAIN R*"'4 
FX6 Xl•X7 OBTAIN R**S 

If the exponent is negative, the inverse is done last. 

The system subroutine RBAIEX, which evaluates such cases when in-line 

code is not compiled for them, seemed hopelessly inadequate, and was scrapped 

for rounded mode. It perfonns its multiplications with R instructions and 

does the division (in R mode) first. This of course renoves the possibility 

of "spurious over/underflow" which could arise if the divide is not done 



until last. But it also means that the two results X and Y below may 

not be equal: 

K = 3 
X = R,wrK 

Y = R••3 

For those reasons, when the compiler is in rounded mode (and so the 

in-line code uses our 3-fnstruction rounded multiplies of II.6) a different 

subroutine is called: RBAIEXR (for Real Base Integer EXponent Rounded). 

RBAIEXR perfonns its divides last, and has tests for under/overflows 

so that it will guarantee to return an answer without a mode error, and 

11-16 

will correct for spurious underflows with negative exponents. (Such under-. 

flows arise because the smallest floating number is about 296 times larger 

than the inverse of the largest floating number.) For example, if the 

correct answer is 10+3oo, the in-line code first tries to get 10-300 , 

which underflows to zero. Inverting yields m. It also guarantees to return 

infinity and zero of the correct sign, should they be generated. Furthennore, 

if the real argument is indefinite, it returns exactly this argument to 

aid in error tracing. However, if the exponent is ±0, +1.0 i~ always 

returned {to agree with 1n-11ne code). The old RBAIEX has none of these 

features. 

The in-line code has no traps for infinity or zero, however, so the 

following cou~d happen: 

1) The Fortran program could get a mode 2 or 4 error while perfonning an 

exponentiation. If the exponent is negative, this could happen when 

the correct answer underflows seriously. 

• 

2) If the exponent is negative, the Fortran program will produce infinity 

if the correct an~;er 1s within a factor of 296 of machine infinity 



11-17 

(between 10294 and 10322, approximately.) 

Thus if the user is operating in these ranges, it might be well to force 

calls to RBAIEXR by writing exponentiation as a real to an integer variable. 

No changes were made fn chopped mode code generation. It still calls 

RBAIEX. 

A few miscellaneous in-line functions were changed. AINT, the Fortran 

in-line function to take the floating greatest integer in a floating number, 

produces the following code under the old RUN: 

UX6 B7,Xl UNPACK OPERAND 
LX6 B7,X6 
PX6 X6 
NX6 X6 

FORM AN INTEGER 
START TO FLOAT IT 
NORMALIZE 

(11.9) 

This code has the disastrous defect that if the argument is greater than 

the largest 48 bit integer (about 1014), it produces garbage. The following 

trick eliminates this bug: 

MXO 1 
LXO 59 GENERATE UNNORMALIZED ZERO 
FX6 XO+Xl ADD IT TO THE ARGUMENT (11.10) 

NX6 X6 NORMALIZE THE RESULT 

If the argument is small (less than 248), then it will be right 

shifted during the add just enough to place its binary point to the right 

of bit 0. This is because the zero in XO has an exponent of zero. If, 

however, the argument is larger than that in absolute value, it will be the 

zero which is right shifted -- the result will then be exactly equal to the 

argument. But that seems to be what one would want: The 48 bit representa

tion of a number> 248 is the same as the 48 bit representation of its 

integer part. 



AMOD was also changed completely. AMOD(X,Y) used to generate code 

equivalent to: 

X - Y•AINT(X/Y) 

This is not always (or even often) the remainder when X is divided 

by Y. That is to say, the expression quoted above is of course AMOD -

but the code compiled for it falls far short of accuracy. We completely 

rewrote the in-line code to use the new AINT algorithm, followed by the 

remainder computation (as in 11.6). The result now generated 1s exact. 

Therefore, AMOD can now be used to program multiple-precision divides. 

Furthennore, if X/Y ~ 248, in which case the old MOD produced complete 

garbage, the new AMOD can be iterated as many times as necessary to yield 

the exact answer. 

11-18 

The floating point comparisons have also been changed. RUN and RUNW 

compile relational expressions from left to right as one long (almost) equiva

lent expression. For example 

X+Y .LT. Z-P 

is compiled as 

X+Y-Z+P t 

left-to-right, and then tests are perfonned on the sign of the result. That 

gives rise to the possibility of having, for example 

LOGICAL Ll, L2 
X = A+B+C 
Ll = D .LT. X 
L2 = D .LT. A+B+C 



II-19 

with Ll ~ L2. This problan is independent of the rounding problem; it arises 

from the fact that floating point addition is not associative. 

For example, let A be large, B = -A, and C and D at least 249 

times smaller than A. Then A+C = A in single precision. 

A+ B + C wil 1 be compiled left to right; B wi 11 exactly cancel A 

leaving zero, and C will be added, leaving C. Thus X = C. 

Then L1 = D . LT. C, or . TRUE. 1 f and only 1 f D - C < 0. 

But in the compilation of L2, D - A - B - C wi 11 be evaluated. Thus 

D- A will yield -A, then subtracting B will yield 0, and finally 

subtracting C will yield -C. Thus L2 will bear no relation at all to Ll! 

To remedy this, it is merely necessary to force compilation of the left 

and right sides of a relational symbol separately (using either chopped or 

rounded arithmetic depending on the compiler's mode) and then subtract them 

using the appropriate mode of subtract. This is surely what the user wants 

when he writes down a relation. 

This change was implemented in RUNW.2. 

Section II: Use of the Compiler's Features 

The main new feature is the choice of chopped or rounded mode. This 

mode is set by a coll1)iler directive between subprograms, and persists until 

changed by another directive. There are two directives for this purpose: 

'CHOP' and 'ROUND'. They are only recognized when the co"'3iler is looking 

for a subprogram declaration card. 

The directives 'ROUND' and 'CHOP' obey the rules for a standard Fortran 

statement: they must begin in colll11n 7 or later, etc. 

The default mode of the RUNW.2 compiler is chopped. 

In chopped mode, the modified in-line functions are still available 



II-20 

(discussed below) and the comparisons are still compiled as described at the 

end of the previous section. However, the standard real arithmetic using only 

F instructions 1s compiled. This mode is designed for coq,at1bil1ty with 

programs co~iled under RUN or RUNW (it will give the same wrong answers) 

or to provide faster and smaller programs for those who do not need (or do 

not think that they need) good rounded arithmetic. 

Under rounded mode, additions, subtractions, multiplications, and divi

sions are coq,iled in rounded fonn, as described in the previous section. 

Also, a different subroutine for evaluation of (real)••{integer expression) 

is called. 

To make the use of floating constants compatible with rounded mode, 

the compiler will evaluate combinations of floating constants using the 

rounded code previously described, in rounded mode only. In chopped mode, 

it uses the same code that would be compiled in that mode. This is what 

RUN originally did, but RUNW messed things up by inserting R type multiplies 

and divides (but not adds or subtracts!). Thus under RUNW, it might be 

possible to have Y and X come out differently in something like: 

Y = 100.•.77 
L = 100 

X = L•.77 

This cannot happen in either mode under RUNW.2. 

Apart fram the introduction of rounded mode, there are .some modifications 

and additions to in-line functions. The most obvious need is for a function 

to return the rounded single precision value of a double precision argument. 

Such a function, called RND, is available in either mode, and results in 

the rounded addition: 



RX6 X.U+X.L RND FUNCTION 

(where X.U and X.L hold the upper and lower parts of a double precision 

argument) . 

. SNGL. yielding the unrounded upper part of a double precision argument 

has been implemented in-line (before it was a system function, which seemed 

silly). It compiles perhaps a Boolean to move the operand to a different X 

register. However if the operand is an expression. the final DX7 XO+Xl 

which RUN is fond of compiling in double precision is suppressed. In this 

case. the in-line function actually removes some code! 

AINT has been changed to produce good answers for all operands not 

indefinite or infinite. Before it produced garbage for operands~ 248 in 

magnitude. 

AMOD, which is supposed to return the remainder upon division of the 

first operand by the second,t has been changed to produce an exact answer. 

If the quotient were greater than 248 before. the answer was garbage. If 

the quotient is that big now, the remainder returned is the exact chopped 

result. In fact. it can be AMOD'ed again to produce· the desired answer. 

Thus AMOD can be used to program multiple-precision divides. 

A few other functions have been optimized, and the double precision 

in-line functions have been corrected (all of them were wrong, both in RUN 

and RUNW, but the bugs were different). 

Section IV: Wishes for the Future 

The comparisons are still somewhat unsatisfactory, since they cannot 

compare against infinity without producing a mode err"9r. Infinity should be 

tThe precise definition of AMOD(X,Y) is: remainder when X is divided 
by Y to produce only those quotient digits left of the binary point; or, 
if there are more than 48 of them, then only the leftmost 48. 

11-21 



II-22 

bigger than everything, and -inf;nity smaller; also, if the machine is 

running in a mode to ignore indefinite operands, any test against indefinite 

should fail. The following code would do this, with appropriate coding at 

'FAIL' (perhaps a floating add, to abort if the machine is not in a suitable 

mode, followed by the production of .FALSE.). 

IXO X.L-X.R INTEGER COMPARE 
ZR XO ,E(JJAL SENSE EQUAL OPERANDS . 
ID X.L,FAIL SENSE LEFT OPERAND INDEFINITE 
ID X.R,FAIL SENSE RIGHT OPERAND INDEFINITE 
BX7 X.L-X.R ARE THE SIGN BITS DIFFERENT 

* HERE WE ARE GUARDING AGAINST INTEGER OVERFLOW 
PL X7,NOVFL SENSE NO OVERFLOW POSSIBLE 
BXO X.'L IF SIGNS ARE DIFFERENT, X.L TO XO 

NOVFL PL XO,GREAT SENSE LEFT OPERAND GREATER 
EQ LESS SENSE LEFT OPERAND SMALLER 

Note that, since the comparisons are exact, this coding would only be 

appropriate in rounded mode. 

There are various other shortcomings in RUNW.2. 

Relational expressions use only real arithnetic even when comparing 

double or coq:,lex variables. 

A case could be made that complex arithmetic should also be done in 

rounded mode, so that a user would get the same answer if he either used real 

variables or complex variables with zero imaginary part. Currently, rounded 

arithmetic affects only single precision reals. 

We believe that in coding RBAIEXR, we set a good ~xample by always 

returning the correct sign of O or infinity and guaranteeing not to abort. 

It would be nice if other arithmetic functions did this also. Since the Cal 

loader presets core to -indefinite+ address of self, it would be useful in 



error tracing to have system routines return a copy of their input argument 

if it is indefinite, rather than just a standard indefinite. Our RBAIEXR 

also does this (unless the exponent is ±0, in which case it returns 1.0 

to agree with in-line code generation). 

II-23 

Invisible system subroutines should have non-Fortran names. Currently, 

anyone writing his own RBAIEX, or many other names, will mess things up 

completely without knowing why. But the cure is not just to change all the 

names at the end of the compiler -- it has a routine somewhere (I do not know 

where) that removes non-standard symbols from external names. Unless this 

routine is also changed, it wi11 just turn strange names into Fortran names. 




