
'

INTERVAL ARITHMETIC OPTIONS IN THE PROPOSED

IEEE FLOATING POINT ARITHMETIC STANDARD

William M. Kahan

Electrical Engineering

& Computer Sciences Department

University of California

Berkeley, California

I. ABSTRACT

Implementors of the proposed standard, described in a

speci_al issue of the SIGNUM Newsletter { 1) and in an article

by J. Coonen in the IEEE Journal "COMPUTER" (2), are encou

raged to provide two "directed rounding modes" by which the

endpoints of intervals may be rounded outward autprnatically

without unnecessarily spreading.degenerate (one~point) inter

vals. This feature alone should bring the cost of· interval

arithmetic down by a substantial factor. Moreover, the stan-

.,~, .. t~W'~· o4 -.. s~""'°•ill.fll\ on
INTERVAL MATKEMATICS

Copyrighc @by Academic"'-· Inc.
AU righls of cq,n,duc:tion in any form mn,,cd.

\,..e.\f!. '" ff'c.~\.~ ,. t\., ~. C..e~""-."~ ISBN 0-12-51811~1

\I\L~ \' •~

W.M.KAHAN

dard provides symbols for infinity and specifies default

responses to over/underflow in ways intended, among other . . .
things,. to satisfy.the n~eds of interval arithmetic. Finally,

the s~an~ard is being impleme~ted, options and all, by more

than one. ·major microcomputer· .manufacturer, so we will all get

a.chance soon to try it out.

II. INTRODUCTION

.Th_;·s paper's title. is a~iguous. Does it ref er to oppor

tunities afford~~ users of the Standard to practice Interval

Arit~~tic? ooes·it refer.to Interval Arithmetic's influence

upon.the architects of that Standard? Both questions are

discii:ssed below .. But first the Standard itself must be de

scribed a little.

Which·standard? There h~ve been several proposals before

the IEEE/CS working· group concerned with floating point

arithmetic, but orily three have been persistent and, of those,

only one has consistently attra~te·d majority support within

the working group (5). That one is the KCS proposal described

in rno~t detail by.J. Coonen (2) and in least by w. Kahan and

_J·. -~alJ;rier (1) . Furthermor.e, only the KCS proposal is being

·implemented by semiconductor ·manufacturers (3) ; here is a
. .
partial list in rough ·chronological order:

IEEE FLOATING POINT ARITHMETIC STANDARD 101

AMO 9512

Intel 8087

Motorola 6839

National 16081

uses single and double precision formats

while omitting almos.t all exception handling,

several operations, and most options inclu

ding directed roundings, but is being sold

widely at time of writing.

does everything in the KCS proposal and more

on one chip and fast (< 40 µsec), but only

with 8086 or 8088 processors; due in late

1 9 80, see (8) .

firmware in a ROM to do all of KCS upon a

6809 processor; due in 1980-81, see (4).

slave processor for use with 16032 processor

to do most of KCS, including directed

roundings,on one chip and fast (< 20 µsec),

the rest via software; d~e by 1982. can be

used alone, see (3).

Many other implementations of all or part of the KCS proposal

on boards, in software or in firmware exist or have been

announced. The only other proposal for a standard to have

attracted a manufacturerl-support is the PS proposal which is

intended to be implemented partially, and without directed

roundings for the forseeable future, on the DEC VAX family; see

Payne and Bhandarkar (9). The third proposal, FW, differs from

the others mainly in its intrusion of two ·symbols to stand for

the intervals containing numbers too big or too tiny to be

represented in the normal way; though seemingly attractive at

first sight, this proposal has repelled implementors. All

W.M.KAHAN
102

-.
proposals specify formats for floating point numbers so that

radix,. ~r~cision and range ~ill be defined adequately for

equipment manufactur~rs as well as programmers. Typical binary

formats are these:

Nam_e word width~Sign '.Biased Exponent!Precision

Single 32 bits : 1 bit 8 bits 1+23 bits
l

Single extended ~ 44 ! 1 i~ 11 i~ 32 ,_
! I

Doubie 64 1 i 11 1+52

Double
i l~ \> extended ~ 80 : 1 15 64

! ...

Quad 128 ! 1 15 1112 or 1+112

The designation "1+23.bits" meahs.that the leading significant

bit ·is·_implicit and not· stored. The designation "~ 32" means

that the format's specification includes only a lower bound for

range ~nd precision; these extended formats, allowed only in

the KCS and FW proposals at the implementor's option, provide

an inexpensive but limited way to suppress roundoff and over/

under.flow in intermediate results. The KCS scheme uses its

·formals smallest exponents to.represent "Denormalized numbers"

(about which more later) and zero. Its largest exponent is

reserved for ±m and· for the NaNs; a NaN is Not-a-Number.that

par~ieipates in arithmetic merely by replicating itself.

Various NaNs may be used, at the implementer's option, either

as pointers to retrospective diagnostic information or, when

trapped, to provide arithmetic extensions beyond the specifi-

cations of the standard.

IEEE FLOATING POINT ARITHMETIC ST ANDA RD 103

All p~oposals specify performance standards for operations;

KCS does so for add, subtract, multiply, divide, remainder

{used for argument reduction for trigonometric functions and

nversions between the exponential}, square root, comparison, co •

various formats (single, double, extended, integer, decimal}.

All proposals say something about exceptions; here KCS is

particularly demanding. Every exception, when • it occurs, must

raise a flag that a program may subsequently sense and/or

_reset, p:rhaps long afterwards. Also every exception, including

INVALID, must deliver by default a result ~pecified by the

standard in a way that is, we hope, reasonable if not

universally acceptable. Traps, supplied a~ the implementor's

option, provide a program the means to over-ride the defaults

. wherever something else is better.

All proposals specify rounding by default to be round-to

nearest, with the ambiguous case rounded to nearest even. This

means that, if we were rounding numbers t 4 i o s g.dec., every

x in 3.1395 ~ x ~ 3.1405 would round to 3.J40

3.1405 < X < 3.1415

3.1415 ~ X ~ 3.1425

3.1425 < X < 3.1435

3 .141

'3 .142

3.143

As defaults go, this rounding is unimprovable. However, the

implementor may, at his option, supply directed roundings:

Round toward o, Round toward + co, Round toward

which a program may then preselect f or any operations that

produce rounded results. These directed roundings constitute

the only options in the standard designed specifically to

104 W. M. KAHAN

facilitate Interval Arithmetic. The directed roundings are

integrat~with the exception handling; for instance, a

positive sum, product or-quotient that overflows when being

rounded towards+= will actually be rounded to+= without

raising a flag (that wouid be redundant). Subsequently+=

will participate in .ari~hmetic_ .in a reasonable way (e.g.

-3.-0/(+=) = -0) until something _unreasonable like z=/ 00

creates_ a. NaN and raises the flag INVALID. The signed ±0 and

±= symbols allow for intervals which may or may not include

o or ~-as an endpoint; for instance c-0,1J includes O but

c+0,1l does not. Of course,= could lie inside an interval too,

as in C1,-1J = {x: 1 ~ x or x ~ -1 or x ==},see Caplat's

abstract in thes·e proceedings or Laveuve (7) . However, many

applications of Inter~al Arithmetic remain viable even if=

, never occurs inside an interval, and then implementation is

easier:

Here ends the discussion of features in the standard in

tended to promote Interval Arithmetic. Henceforth we discuss

how it~ ·feasability influenced the design of the KCS proposal.

III. CONTROVERSY AND _MISCONCEPTIONS

on reflection I am apalled at the intensity of controvery

and even acrimony that has been g~nerated during discussions

of the proposed standard. I can only conclude that many people

a~e burdened by misconceptions about the KCS proposal and

IEEE FLOATING POINT ARITHMETIC STANDARD 105

about other topics, among them

- the conflict among Safety, Utility and Cost.

- the role played by Interval Arithmetic in numerical software.

- the role of Error Analysis in numerical software.

- the principal contributors to the cost of numerical software.

- the assignment of blame for malfunctions of numerical

software.

Rather than treat Floating Point Arithmetic on a ·strictly

mathematical and technical basis, I propose to venture into

psychology and economics and other superstitions in an attempt

to expose misconceptions, some of them perhaps mine,and lay

them to rest.

A. The Complexity Issue

Yes, the RCS proposal looks complicated to implement. But

so does an automatic transmission look more complicated than

a manual transmission, yet makes driving a car easier, and at

relatively small extra cost. Since RCS is known to cost not

much more to implement than alternatives, what remains to be

proved is its impact upon the costs and performance of

numerical programs. Its advocates expect old programs to run

at least as well on KCS as on previous arithmetic systems, and

evidence is mounting to justify that expectation. Therefore

the critical questions concern new programs.

I claim that the cost of writing a new numerical program,

106 W. M. KAHAN

given the mathematical algorithm, is proportional mostly to

the incidence of

·subroutine calls

Comparisons, tests, thresholds

Jumps, branches, cases.

In other words, the "straight.:'line code" that evaluates

mathematical expressions contributes relatively weakly to

programming costs, especially when compiled from higher-level

lang:uages that allocate storage automatically·. Therefore good

design must attempt to trade off greater complexity in the

und~rlying implementation of arithmetic .(or software) against

enhanced simplicity of use as revealed by greater generality,

a larg·er doma-iri of .application, or fewer cases to test, fewer

branches to think about. This trade-off implies an awareness

of the purposes served by floating point arithmetic, purposes

who~e diversity is complicated by the sometimes paradoxical

styles of approximate reasoning in a domain where "One man's

Negligible is another man~s All".

B. The Importance of Being Accurate

Regardless of whether·John Rice and I and others, who claim

~hat -floating point computa_tion is far more nearly ubiquitous

than_·most computer users and builders think, are correct,

correct computation does not matter much. If most of the

numerical results printed or displayed matter at all, why are

IEEE FLOATING POINT ARITHMETIC STANDARD 107

they so soon discarded, often without be_ing seen? And if

numerical results don't matter, neither do their errors.

Besides, nobody believes that high-rise buiidings will topple

into underflows nor that aircraft will fold their wings in

flight over rounding errors; everybody who deals with numbers

daily distrusts them. We expe~t numerical errors to occur and

to make themselves known to the skeptical onlooker before they

can do irreparable damage.

The foregoing paragraph is not a parody; it merely reflects

an attitude both prevalent and obsolescent. Of course nobody

can object to incorrect results until he discovers they are

inqorrect; then what does he do? He may ignore them, or

correct them: or he may look for somebody to blame, preferably

somebody else.

As long as most consumers of numerical results were the

principal authors of their own programs, they had nobody else

to blame except in rare instances, and then the fellowship of

our guild precluded blaming one another except for the most

flagrant negligence. But times change. The consumers of nume

rical results are increasingly dependent upon software vendors,

upon professional programmers who sell their wares without

communicating more than superficially an understanding of

·their product. It must be done this way or else we would all

drown in the details we pay someone else to dispatch. Moreover,

proprietary interests are increasingly often defended by

providing software in a form that can, for a fee, be executed

but not read, thereby denying purchasers any opportunity to

108 W. M. KAHAN

verify the suitability of the program for their purposes even

when-they are willing to wade through the details. Therefore

numerical software must incre~singly come to be specified not

by a list of.-its instructions but by its vendor's representa-

tions, and equally so must the vendor bear the blame for

mi~representations.

Just as doctors and hospitals practice now a kind of

•
11 defe~sive medicine" in jurisdictions where malpractice suits

are_ common, so shall 11 defensive programming" become more

common, and with the same inflationary impact upon costs,

des~ite attempts to define and share risks. We are moving into

an era where the correctness of results is invisible and only

the.correctness of programs matters.

c. Our Faith in Interval Arithmetic

Many of the earliest .and still most enthusiastic advocates of

Interval Arithmetic acclaim its infallibility; it will not

give an answer that is wrong without a warning, namely a wide

interval, that the answer is ill determined. But who would

rather have a warning than an answer accurate enough? If the

objective were merely to compute correct errorbounds we could

al,.l ·save money by computing 110011
• The proper goal of a nume

rical pr.ocedure is an es·timate whose error is negligible

regardless of how big_or small that error may be. This goal

cannot possibly be accomplished by using only Interval

IEEE FLOATING POINT ARJTHMETIC STANDARD 109

Arithmetic; we all know this, and therefore the unanimous

endorsement of those optional provisions for Interval

Arithmetic within the proposed IEEE standard must stem from

other perceptions.

The proceedings of this symposium illustrate how diverse

are the applications of Interval Arithmetic·, but always in

conjunction with ordinary arithmetic and, most important,

always allowing for intermediate estimates and calculations

·that may fall far from their ultimate ~bjectives. some

calculation is best done carelessly but fast; later it will be

tidied up with a little bit of the mo·st meticulous kind of

calculation. Interval arithmetic can be used in either phase

or both; its potential usefulness is not disputed.

IV. ANTITHEOREMS

What must be disputed is a certain attitude toward compu

tation, as if it were a chain no stronger than its weakest

link. In fact, many modern calculations more resemble webs in

~hich some strands are far t h s ranger tan others but also weak

strands must contribute essential strength to the whole.

Ra~her than philosophize further on this theme, I shall offer

certain statements that illustrate the intellectual poverty of

tha chain-like attitude to computation. The statements are

couched as theorems which are widely believed and, alas, wide-

110
W. M. KAHAN

ly ta~ght. The theorems are false; that is why they are called

anti-.theorems.

Anti-Theorem 1: If all the intermediate results at some

intermediate stag~ of a computation are wrong, in the

sense that the¥ are very different from what would have

been calculat.ed using infinite precision and range, and

if the final result depends strongly upon those inter

mediate ~esults, then the final result must be wrong

too.

counterexample: The following program calculates the analy-

tic function

c»

f(x) = (ex - 1)/x = I xn- 1/nl
1

Real procedure f(x): real value x.

x :=ex ... rounded.xis overwritten to save memory

space.

if x;: 1 then x := (x - 1)/ln x.

• Return £:= x end ... correct if no over/underflow

occurs.

At that point in the program where (x - 1) and ln x are about

to participate in division there need be no record of the

original value of x. But if that original value was, say,

x = 1.49
10

- 9 on a 10 sig.dec. machine then calculated values

IEEE FLOATING POINT ARITHMETIC STANDARD Ill

(x - 1) and ln x will be respectively 1~0010 -9 and

9.9999 99995 10 - 10 quite different from the "correct" values

1.4900 00001 10 - 9 and 1.4910 - 9. Still we find

f = 1 .0000 00001 correctly in either case. Of course the

errors have cancelled, but this is not a trivial accomplishment

considering that one might naively have written a shorter

program

f(x) := if x = 0 then 1 else (ex - 1)/x

which suffers rather than benefits from cancellation. Just

such a naive program accounts for egregious errors produced

by certain popular financial calculators (not those made by

H-P).

Modern machine computation would be uneconomical if anti

theorem 1 were true. Only because it is false can we solve

large systems of linear equations, calculate accurate eigen

values and eigenvectors, and solve accurately certain initial

value problems which demand large numbers of tiny steps. Alas,

because anti-theorem 1 is false, naive users of interval

arithmetic are doomed too often to obtain grotesquely pessi

mistic error bounds. Therefore there will always be a small

but steady demand for error-analysts to practice their dreary

profession provided they continue to expose bad algorithms'

big errors and, more important, supplant bad algorithms with

provably good ones regardless of anti-theorem 1.

112. W. M. KAHAN

Anti~theorem 2: . The accuracy of a computation can always be

~mproved in the face of roundoff by carrying more

figures; .successive re-computations of a continuous

function in single-precision, double-precision,

quadruple-precision, ... must converge to the value

that would be produced by an ideal computation free

from roundoff.

counterexample: Execute the following program on any compu-

ter with built-in (rather than programmed) floating

· ~oint arithmetic, rounded or chopped, binary or

ternary or decimal or ...

X := 2.0/3.0 Y := IJ.OCx - o.s) - o.s112s.

z := if Y = O then else {ey - 1) /Y.

In infinite precision we should get· Z = f(O) = 1 (cf. anti

~he~iem~but. every computer I know produces instead Z = O

rega~dless of the precision carried during the computation.

This example may look_artif~cial, but it imitates life; cf.

my_ "Survey of Error Analysis" (6). Whether such examples are

common is impossible to discover because their victims,

finding no numerical disagreements, cannot know that some

thing disagreeable has happened.

Evidently no numerical procedure, regardless of the

precision with which it is executed, can be entirely

trustworthy unless either

- it is executed in interval arithmetic, or

- it passes the conscientious scrutiny of a competent error

IEEE FLOATING POINT ARITHMETIC STANDARD 113

analyst.

Doth options are so often so pessimistic and so costly that

most people prefer to take their chances with computations

carried out with precisions believed, rightly or wrongly, to

exceed by_~ar what is necessary. Their attitude makes sense;

they would rather believe the error to be negligible than know

how big it isn't. Their attitude will not change until the

cost of error analysis, whether performed dur.ing their compu

tation or before, declines to something near its perceived

\'alue.

Anti-theorem 3: Short computations free from overflow, un-

derflow or cancellation must be cor~ect. Specifically,

if·a computation involves only positive numbers, none

of them beyond the machine's range, and performs at

most 100 rounded arithmetic operations drawn from the

set{+, x, /, t} (no subtraction, hence no cancella

tion), then the result of the computation cannot

differ by more than about 100 ulps*) from what would

have been calculated using infinite precision.

Counterexample:

X := x2

X := /x

X := /x

X := /x

To replace x by lxl execute the instructions

50 square roots

·•)An ulp is a Unit in the Last Place of a computed result.

114

X := x2

X := x2

.x := x2

W. M. KAHAN

49 multiplications.

But on most computers that round off their square root

correctly this program calculates lxl = 1 for all

numbers x between o.s and 2 and usually gets !xi very

wrong otherwise. The final error can be as big a·s

200,000,000,000,ooo. ulps, or worse.

Th~s counterexample is neither an isolated example nor a

loophole overlooked .in the anti-theorem's statement. On the

IEEE FLOATING POINT ARITHMETIC STANDARD

they tend to believe in a kind of computational justice; if

every part of a computation is calculated-about as accurately

as conscientious and virtuous programming allows, then the

whole computation deserves to be correct. Alas, virtue is its

own and often sole reward. The unacknowledged failure of anti

theorem 3, in conjunction with the previous two, has the most

profound consequences for the design of arithmetic hardware.

V. THE ANTI-THEOREMS' IMPACT

contrary, the results of computations (involving millions Since computation can come out wrong w~en done right (AT3)

rather· than hundreds of operations) are frequently wrong, when and right when done wrong (ATl) and nobody can tell which

they are very wrong; just because of the kind of insidious (AT2) except an error analyst, why bother to build arithmetic

e~ror-arnplification illustrated here rather. than because of hardware Carefully when Fast is good enough?

cancellation .or over/underflow or even mere accumulation of The reason for carefully designed arithmetic, and for the

multitudinous errors .. Well-known instances are associated wi th sometimes paradoxical indifference to what may appear to be

the .solution of linear·systems via (possibly ill-conditioned) calamitous aberrations within what is none the less claimed to

triangular factors, and with (possibly unstable) recurrences be carefully designed arithmetic, cannot be found within the

used to solve initial value problems or calculate special chain-like model of computation. The reason can be found in

functions or eigenvectors, etc. the web-model. Computation preserves a web of relationships,

Many people, clever and otherwise competent, cannot accept some of them strongly (like the commutativity of addition and

that anti-theorem 3 is false. Their intuition, conditioned by multiplication despite roundoff) and others weakly (like

experience with very short computations of their own devising monotonicity), and other relationships leave only suggestive

or with long computations based upon the standard library of shadows in our memories. With experience we learn which

stable algorithms, confirms the anti-theorem. Consequently • relationships matter.

116 W. M. KAHAN

~sefully.to .illust~ate the web-model of computation is

imp~actical except by proffering an error analysis that nobo

dy wants to read, though that thought has never inhibited

publlc~tion. ~hat· I offer instead is an enlargement upon one

aspect of the KCS proposal,· its most controversial.

VI. WHAT IS GRADUAL UNDERFLOW?

IEEE FLOA T~NG POOINT ARITHMETIC STANDARD I 17

for O = ±(0.00 ••• 0) x (B8 or BO); whether zero is called nor

Nlized or not (because its D0 = O) does not matter. unnorma

lized floating point numbers, with Do= O ~ut e > e, are

usually ou~lawed as redundant in so far as t}leir values can be

represented equally well by normalized numbers (but the B5500

is one computer which treats unnormalized and normalized

numbers indis~inguishably). Denormalized numbers are

characterized by D0 = O and e = e; for instance on a 6 sig.

dee. calculator

(0.03142) X 10-99

It is a scheme which reduces the effect of underflow to is the beS t convenient approximation for n/10101 . Note that

something comparable with the uncertainty due to roundoff in a· denormalized numbers look unnormalized at first until you no-

wide -range of. numer.ical computations ·including most of those tice that the exponent e = e is minimal and realize that no

with·matrices, quadrature, ordinary differential equations, denormalized number can be represented by a normalized number

zero-finding, convergence acceleration, ... To understand . in the same format whereas an unnormalized number can be

gradual underflow we have to understand a little about formats supplanted exactly by another, normalized or denormalized,

used for floating poirit arithmetic. ._.1th a lesser exponent e.

Normalized floating· point numbers look like
e 5 ±(Do.d1d2···dn) x B e.g. ±(3.14159) x 10

where the radix B can be 2(binary), 8(octal), 10(decimal) or

16 (hexadecimal) on diver'se American computers; then the n+1

"signi·ficant digits" D0 , d1, d2 ... dn are each drawn from the

set ro,1,2, ... ,B-1} except that D0 -t, O; and the exponent e

is an 'integer confined to some interval e ~ e ~ e; e.g. hand-

But most computers have outlawed denormalized numbers too.

Those computers "flush" any attempt to compute a floating

point number whose normalized form would otherwise underflow

<have e < e); for instance, most hand-held calculators will

neither allow (n/1050)/1051 to be represented as

) -101 9 .l4159 x 10 nor denormalize it to 0.03142 x 10- 9 but

vtll instead display zero or 1 x ,o-99 or "Error". Only com

F~ters that underflow gradually possess denormalized numbers.

held calculators use B ~ 10 and e = -99 ~ e ~ e = 99. The fore- ~~ong such computers are the Electrologica X-8, Intel 8086-

going format excludes zer·o unless a special case is set aside 5088 with 8087, Motorola 6809 with 6839 (and IBM 7094, IBM

l~0-370, Burroughs B5500, DEC 20/PDP 10 with appropriate trap-

118 W. M. KAHAN

handling software.not·currently distributed by their

manufacturers).

• ·~o.~ does gradual underflow help? Its most obvious effect

is_t~ p~eserve the following relation: if O < x < Y ·then

x/y <_ 1 and y-x > o. The last inequality can be falsified by

computers that flush underflows to zero, but not by those that

underflow gradually. The effect upon program logic, where a

test of one relation is presumed to imply others, is immedia

tely clear, especially when we expect "y-x = O" to imply

"~{Y) - f(x) = O" unless f is a pathological function (invol

ving, ·say, division by zero) . But the effect goes much deeper•

consider. two nearby representable numbers x and y and their

di-fference z >i - y ,. and suppose x and y are so close to each

other that I z I ~ IX I • and r z I ~- I y I . Then z must be represen

"table exactly despite roundoff and, if underflow is gentle,

despite underflow. B~t just as poorly designed arithmetic

u~1ts can contaminate small differences unnecessarily with

roundo"ff (as do CDC 6000 class computers and most TI

calculators);. so will .. flushing underflows contaminate them.

This contamination is a noise that may defeat the feedback

loop-·in~ended to stabilize a computation. For instance, to

soive the equation f(s) = t for s given f and t, we are

obliged to calculate the discrepancy t-f(s) and feed it back

to alters, as in Newton's method:

IEEE FLOATING POINT ARITHMETIC STANDARD

tion scan be calculated. Gradual underflow makes m~ch less

noise here than does flushing.

119

Gradual ·underflow reduces every instance of underflow to

an amount absolutely no bigger than a rounding error in the

last significant digit of the smallest normalized number. This

means very often that a program which is proved correct in the

face of roundoff can easily be pro· ved t d i correc esp te under-

flow too provided underflow is gradual, whereas when underflow

·1s flushed that program may have to be augmented by tests

against format-dependent thresholds to provide a defense

against flushing. This is why gradual underflow is valuable

for matrix multiplication and inversion, operations so common

that their enhancement by gradual underflow is enough to

justify providing that feature. Moreover, subroutines pro

grammed conscientiously can often be designed more easily,

thanks to gradual underflow, to cope with their own under

flows automatically; consequently the naive users of such

subroutines can expect to see underflow messages significantly

less often on machines that underflow gradually than on

machines that flush.

Some kinds of underflow cannot be cured by gradualness,

nor by flushing. For intance, long chains of multiplications

and divisions unrelieved by alternate additions generally

require scaling to defend against over/underflow unless they

news= s + (t - f(s))/f' (s). can be calculated with the aid of a (possibly temporary)

The noise in t-f(s), whether caused by roundoff or underflow, exponent field extension (see SHARE sso 159 item c
4537

,

is. the principal limitation upon the accuracy to which a solu- Dec. 1966). So gradual underflow is no panacea. All that can

' ;

120 W. M. KAHAN ~

be claimed is that it improves a large and recognizable class 'ti
I >, QI Ill e
M l,.f N ,u QJ C

of programs without making others worse, without complicating a, QI 0
'8 :> r-i II) ::, C:

QJ ,u •rl 'tJ Q)) U)

our concept of representable numbers, and without much of a
::, e 0 QJ 0 1-1

E E e 1-1) r-1 Q)
Q) (I) 0 .µ 1-1 .µ 1H § 00 CD .c: .µ C: C QJ QJ l,.f

penalty in hardware or speed except possibly on pipelined f-1 C § ..Q Q)
Q) l'tl 'ti C
C 0 'tJ C

parallel array-oriented machines where a different approach M 0 Ill 1-1 C Q) ::, 'tJ
Q) 0. l'tl .. QJ ..!,(Q)

1 >< ... N 1-1 0 II) N

(the I<CS "Ex~ended" .format described by J. Coonen (2)) is more
Q) QJ Q) l'tl Q)

r-i I 0 "' a. .µ r-1
C 1M ..Q tl. .µ 1-1 l'tl ttS

0 l'tl 0 !ti >t "' e
appropriate for reasons ha.ving little to do with.underflow. .µ .µ tl. II) r-i r-i Q) 1-1

C QJ C) Q) r-1 0 "' Q) u 0 .µ U) Q) C

~efore you rush.out· to implement gradual ·underflow on your 0 C II) f.&l r-i >< ·C 1-1
0. IU QJ Q 1H Q) QJ Q)

1-1 M l,.f C 'ti 0 ..c:
computer be sure that it has can be given an Underflow flag. "' 0. .. Q) Ill .µ

or C 'tJ Q) 0 'tJ Q) Ill QJ 1-1 C .c: l'tl "' "' The best way to test whether
en .µ) I ::, .µ C C

an expression has underflowed, L l'tl 0 II) tl. Ill 0

"
0 r-i Q "' 'ti 1-1 0 e

.0 ,-t r-i tl. C C: QJ Q ltl

when ~nderflow is gradual, is to test the flag rather than to E 1H ,u ... •rl l'tl 1 M u .c: . 1M
::::, t' cu QI f.&l fl> e 1H

test ·Wh~ther the expr~ssion is zero or denormalized; z .c: r-i Q ::, e C N 0 see CIS .µ r-i r-i 'tJ
,IJ C l'tl ... 17'4 'tJ C

Coonen's.
C C e ,qo C QJ 'tJ ::,

article. ·o. ..Q 0 Ill 0\ Q) N C 0
0. 0 .µ QJ IU 1-1 n.

E
.µ ::, QJ 0 .a r-1

E C C CIS .c::
°' ~ -.t ..Q "' 0 :E Q) e e .µ
C C C Ill - .Q 1-1
~

. H 0 0);

'ADDENDUM "' 'ti .µ - 0 C C C
0 C ·::, 0 ltl QJ QJ QJ
0 Ill QJ ..Q fl) M .c: Q QJ r-1

~he proposed standard attempts to protect programmers - I 0. QJ .µ) .Q
LL 0::,0 Cl.I .. r:: tl. ..c: .µ l'tl

>- 'ti e •rl I 1-1 .µ QJ 1-1

accustomed -to machines that flush to zero from being am- CIS .c: ::z: QJQ ttl
L N C 0 - 'tJ) 0.

-~

M /If /If •rl Ill e
gradual ~nderflow. To this end, attempted

0 .c: e fl)) 0. M 0
b'1Sh_ec;1 by CD 1H .µ M ltl QJ 0

1H Q) Q) .c: "' § Ill 0 M E .c: 0 Ill

divisions by denormalized numbers, and multiplications and ~ E E
'ti a, ·O .µ ::, .µ ::,

N
C M "'·fl> 0 e /If C .µ

i= N ltl Q) "' .c: l'tl

that magnify them excessively, are inhibited .µ) ·C C .µ 'tJ .µ
divisions fl) 0 ..Q 0 0 0 QJ Ill

t
0. Ill N

operations are regarded as invalid and yield NaNs) ff . .. r-i ltl
(those Rf M 0 re, r-i r-i

QJ Q) 0 C ltl 0

E
II) j ~

.µ ltl 1H e .µ

unless the program has previously instituted the "Norrnalizinc; I UI

E
0 M ~ 0 Ill E; C r:: QJ e C: C

Mc;,de, 11 thereby placing in evidence the programmer's aware- N ·JI ,IJ 1 r-i 0 ltj +J .µ 1H Q)
E r-i r-i C: r:: C: M M .µ

like the !/~ /If 0 C Q) Q) ltl Rf
ness of th~ issue. . Uli:imately, most programs, t) .c: 0 0 QJ 'ti .µ fl) 0. 0. ltj .a C fl) :s

0 .µ Q) Q) ::, l'tl 0.

exai:nples that follow, will invoke that mode. M M "' "' N QJ e
,:, I ~0 ~

Q) .c: C C:Q r-i 0
QI.... • 0 > +J r-i ,u 0 0

'1:1 C 0 --'1:1 0 c~ .µ .µ ,u C. ::,
C GI L. .._ GI ._ .c: :J Rf ltl e ltl re, .µ ::IC GI L. .C GI .g ~ ooN -8 ~ N

0 0 0 0 M "' ttS 'g Ill
.0 C. 0 t,"l:1 Rf r-i r-i r-i 0 M 0
§~z §;: ._ C Cil 1H 1H 1M C ttS c., cu e C>=>

122 W. M. KAHAN

VII . EXAMPLES

Example 1. Complex Absolute Value Cabs (X+iY)

The simplest program exploits the Extended format to

dispel the nuisance·of over/underflow and to suppress roundoff . . ' . ~ .

below 1 ulp (Unit in the Last Place) of the result:

Real- procedure Cabs (X, Y):

Real values x, Y Extended s, anonymous

variables;

Save & set modes Normalizing, Affine ... to

distinguish tm.

s := ✓cx2 + Y2) ... evaluated in Extended format.

Restore Modes; Return Cabs := S~ end

The foregoing program cannot mislead nor be misled by patho

logi~s.like.underflo~ or invalid operation; for instance

Cabs .. ·(m+im) = m with no warning flag set. The only possible

new pa.thology is overflow of the calculated cabs when that

overflow is deserved;- intermediate over/underflow of x2 + Y2

is. precluded by its extended· range.

B.ut what if the Extended format is unimplemented?

Then we must cope somehow with data IXI and IYI which lie out

side the interval bounded by the square roots of the overflow

and underflow thresholds. For definiteness suppose

IEEE FLOATING POINT ARITHMETIC STANDARD 123

O ~ x ~ y ~ o, so that we may consider the formula

Vcx2 + y2) = xV(1 + (y /x) ~) 1n which y /x ~ 1 .

Here underflow of y/x or (y/x) 2 renders it negligible compared

with 1, so over/underflow poses no unwarranted hazard; but

roundoff is a nuisance because this formula, evaluated

entirely in single precision, can suffer a final error almost

as big as (but no bigger than) about (2+3B) /4 ulps where B is

the radix (B = 2 for binary, 10 for decimal, etc.). For instan

ce, in decimal the last formula produces Cabs (96,28) =

99.999 ... 994 instead of 100. A somewhat more accurate formula

is used in the next program which exhibits also the code

needed to cope properly with every pathology (0, m, NaN, etc.):

Real procedure Cabs (X, Y):

Real values X, Y; real r.

Save & clear Flags Overflow, Underflow, Invalid, .

Divide by zero.

Save & set Modes Normalizing, Affine.

x := lxl ; Y := IYI if Y > X then Swap (X,Y) ...

Clear Invalid Flag ... in case comparison in

volves a NaN.

r := X/Y r ~ 1 or else invalid 0/0 or m/m.

r := Y/(r + Vc1+r2)) ... may underflow gradually.

If Invalid Flagged then r := O.

Restore Flags; Restore Modes.

Return Cabs := X + r end.

124. W. M. KAHAN

On a binary machine this program's error cannot exceed} ulp,

with.a comparable bound for other radices, but the error can

exceed 1. ulp;. e.g. using 10 sig.decimals yields(ci.f~:f}of\ "t•bS)

• Cabs _(4684660,4684659) = 662'5109 .001 instead of 6625109.

Most ~ple accept ~he foregoing program's slight

inace~racy since a smaller error costs too much (see below).

·But note here the beneficial role played by gradual underflow

in the last value of r1 if underflow were flushed to zero

instead, the calculated Cabs could be quite wrong whenever X

and~ were~much bigger than the underflow threshold.

Lacki~g gradual underflow, the conscientious programmer is

forc8d· to complicate.the foregoing program with radix-dependent

scal~ng operations. •

. Finally, for perfectionists who can tolerate no error in

IEEE FLOATING POINT ARITHMETIC STANDARD 125

r := X - Y.

If r ~ Y then begin r := r/Y; s := r(r+2)

r· := ((s/(a+/T2+sl')+r)+B)+y

end

else begin Clear Invalid flag; r := X/Y 1

r := r + Y(1+r2) end.

r := Y/r; if Invalid Flagged then r := o.

Restore Flags; Restore -Modes.

Return Cabs := X + r end.

Surely this.cannot be preferable to the first Cabs program

above.

~abs so large as 1 uip but who have been denied the convenience Example 2 • Complex Divide x + iy = (a+ib)/(c+id).

of an Extended format, here is a better program:

Real .procedure Cabs:

Real values x, Y; real r, s.

The simplest program, and the best, exploits the Extended

format again:

Constants a = 12', y = 1+12' rounded, 8 = (1+12' - y) Procedure Complex divide (a, b, c, d; x,y): •

to several sig.de~ e.g. to 10 sig.dec.

a =·1.4142 13562, y = 2.414213562 ,

8 = 3.730950510-10.

Save & clear Flags Overflow, Underflow, Invalid,

Divide by zero.

Save & set Modes· Normalizing, Affine.

X := IXI; Y := IYI; if Y > X then swap (X,Y)

y ;;, x.

Real values a, b, c, d; Real output x,y.

Extended s, T, u, anonymous variables.

Save and set modes Normalizing, Affine.

S := c 2 + d2 T := ac + bd; U := be - ad.

Restore modes; x := T/S ; y := 0/S ; Return end.

126 W.M.KAHAN

~ut withou~ extended vari~bles to hold intermediate

results the foregoing program_is fatally vulnerable to over/

underflow ins, T and U from which may follow completely un

~eason~ble values for x and y. A program appropriate for

systems with no extended variables can be adapted from R. L.

ib di 1 2 f D E. Knuth 's "The Smith's algorithm d~scr e n vo. o •

Art of computer Pro·gr.amming". His algorithm assumes that

Id I ~ I c I ; O; ·otherwise either compute x+iy (b-ia)/(d-ic)

instead or deal appropriatly with the case c = d = O. Next let

r =:d/c, so lrl ~ 1, ands= c + dr; then x = (a+br)/s and

y =: (b-ar)/s. But now observe how gradual underflow comes into

play h~re; if all of a, b., c,: d, were only moderately larger

than the underflow threshold, and if one or more of dr, brand

ar underflowed, then flushing underflows to zero must produce

plausible but occasionally utterly wrong values for x and y.

·The reader should experiment with these formulas on suitably

ch~sen ·data, including also ca and NaN and denormalized numbers,

and then try to write a satisfactory program. Next try to get

along without gentle underflow, if you can.

ANNOTATED BIBLIOGRAPHY

1;· ACM SIGNUM Newsletter Special Issue, Oct. 1979, is

devoted to the p~oposed floating point standard and

includes

IEEE FLOATING POINT ARITHMETIC STANDARD

- Draft.5.11 of the standard, by Coonen, Kahan, Palmer,

Pittman and Stevenson

- Expository article by Kahan and Palmer about KCS

- Critique by Fraley and Walther, authors of the FW

proposal.

127

- Counter proposal by Payne and Strecker, the PS proposal.

- other shorter comments.

2. Coenen, J., "An Implementation Guide to a Proposed Stan

dard for Floating Point Arithmetic" in the IEEE/CS

journal 11Computer 11
, Jan. 1980, pp. 68 - 79. This lays out

the KCS proposal.

3. "Electronic Design", Feb. 1980; contains an article by

Burdick et al. about National Semiconductor's 16000 series.

4. "Electronics" for May 4, 1980 (published by Mc Graw-Hill).

Contains an article by Palmer et al. describing the 18087,

and another article that pee.ks at Motorola's plans for the

6809 and 68000.

5. IEEE/CS working group on Floating Point Standardization.

The minutes of the meetings are available at irregular

intervals from the distributing secretary, currently

Dr. David Hough.

APPLE Computer Co.

10260 Brandley Drive

Cupertino, Calif. 95104, U~S.A.

6. Kahan, w., "A Survey of Error Analysis". in ."Information

Processing 71" (North Holland), the proceedings of IFIP'71

in Ljublj'ana. An expose of arithmetic design, plus refe-

128 W.M.KAHAN

rences to some of the author's earlier unpublished works

and SHARE report.

7. Laveuve, S., ''Definition einer Kahan-Arithmetik und ihre

Irnplementierung in Triplex-Algol 60". Interner Bericht

75/6, Institut ftir Praktische Mathematik, Universitat

Karlsruhe, Feb. 1975

8. ·Palmer, J., "The INTEL Standard for Floating Point Arithme

tic" in Proc. COMPSAC (Chicago, 1977). Announces a precur

sor to ..m::.. KC.. $.

9. Proceedings of "ELECTRO 80", ~oston May 13-15, sessions 14

and 18. Contains more about i8087, KCS pro and con, VAX by

Payne and Bhandarkar, AMO 9512, etc.

Added in proof: Aug. 1980

7
A revised draft p.O of the proposed IEEE floating point

standard is about to be promulgated. It includes the working

group's recent decision to make directed roundings obligatory.

instead of an implementor's option, although nothing is said

about the way higher-level languages are to convey this capa
bility to programmers.

Acknowledgement: Much of the author's work reported herein

has been s~pported by a research contract N 00014-76-C-0013

with the U.S. Office of Naval Research, and by contract

DE-AT03-76SF00034 with the U.S. Department of Energy.

l

1

