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I. ABSTRACT 

Implementors of the proposed standard, described in a 

speci_al issue of the SIGNUM Newsletter { 1 ) and in an article 

by J. Coonen in the IEEE Journal "COMPUTER" (2), are encou

raged to provide two "directed rounding modes" by which the 

endpoints of intervals may be rounded outward autprnatically 

without unnecessarily spreading.degenerate (one~point) inter

vals. This feature alone should bring the cost of· interval 

arithmetic down by a substantial factor. Moreover, the stan-
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dard provides symbols for infinity and specifies default 

responses to over/underflow in ways intended, among other . . . 
things,. to satisfy.the n~eds of interval arithmetic. Finally, 

the s~an~ard is being impleme~ted, options and all, by more 

than one. ·major microcomputer· .manufacturer, so we will all get 

a.chance soon to try it out. 

II. INTRODUCTION 

.Th_;·s paper's title. is a~iguous. Does it ref er to oppor

tunities afford~~ users of the Standard to practice Interval 

Arit~~tic? ooes·it refer.to Interval Arithmetic's influence 

upon.the architects of that Standard? Both questions are 

discii:ssed below .. But first the Standard itself must be de

scribed a little. 

Which·standard? There h~ve been several proposals before 

the IEEE/CS working· group concerned with floating point 

arithmetic, but orily three have been persistent and, of those, 

only one has consistently attra~te·d majority support within 

the working group (5). That one is the KCS proposal described 

in rno~t detail by.J. Coonen (2) and in least by w. Kahan and 

_J·. -~alJ;rier ( 1) . Furthermor.e, only the KCS proposal is being 

·implemented by semiconductor ·manufacturers ( 3) ; here is a 
. . 
partial list in rough ·chronological order: 
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AMO 9512 

Intel 8087 

Motorola 6839 

National 16081 

uses single and double precision formats 

while omitting almos.t all exception handling, 

several operations, and most options inclu

ding directed roundings, but is being sold 

widely at time of writing. 

does everything in the KCS proposal and more 

on one chip and fast (< 40 µsec), but only 

with 8086 or 8088 processors; due in late 

1 9 80, see ( 8) . 

firmware in a ROM to do all of KCS upon a 

6809 processor; due in 1980-81, see (4). 

slave processor for use with 16032 processor 

to do most of KCS, including directed 

roundings,on one chip and fast (< 20 µsec), 

the rest via software; d~e by 1982. can be 

used alone, see (3). 

Many other implementations of all or part of the KCS proposal 

on boards, in software or in firmware exist or have been 

announced. The only other proposal for a standard to have 

attracted a manufacturerl-support is the PS proposal which is 

intended to be implemented partially, and without directed 

roundings for the forseeable future, on the DEC VAX family; see 

Payne and Bhandarkar (9). The third proposal, FW, differs from 

the others mainly in its intrusion of two ·symbols to stand for 

the intervals containing numbers too big or too tiny to be 

represented in the normal way; though seemingly attractive at 

first sight, this proposal has repelled implementors. All 
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-. 
proposals specify formats for floating point numbers so that 

radix,. ~r~cision and range ~ill be defined adequately for 

equipment manufactur~rs as well as programmers. Typical binary 

formats are these: 

Nam_e word width~Sign '.Biased Exponent!Precision 

Single 32 bits : 1 bit 8 bits 1+23 bits 
l 

Single extended ~ 44 ! 1 i~ 11 i~ 32 ,_ 
! I 

Doubie 64 1 i 11 1+52 

Double 
i l~ \> extended ~ 80 : 1 15 64 

! ... 

Quad 128 ! 1 15 1112 or 1+112 

The designation "1+23.bits" meahs.that the leading significant 

bit ·is·_implicit and not· stored. The designation "~ 32" means 

that the format's specification includes only a lower bound for 

range ~nd precision; these extended formats, allowed only in 

the KCS and FW proposals at the implementor's option, provide 

an inexpensive but limited way to suppress roundoff and over/ 

under.flow in intermediate results. The KCS scheme uses its 

·formals smallest exponents to.represent "Denormalized numbers" 

(about which more later) and zero. Its largest exponent is 

reserved for ±m and· for the NaNs; a NaN is Not-a-Number.that 

par~ieipates in arithmetic merely by replicating itself. 

Various NaNs may be used, at the implementer's option, either 

as pointers to retrospective diagnostic information or, when 

trapped, to provide arithmetic extensions beyond the specifi-

cations of the standard. 
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All p~oposals specify performance standards for operations; 

KCS does so for add, subtract, multiply, divide, remainder 

{used for argument reduction for trigonometric functions and 

nversions between the exponential}, square root, comparison, co • 

various formats (single, double, extended, integer, decimal}. 

All proposals say something about exceptions; here KCS is 

particularly demanding. Every exception, when • it occurs, must 

raise a flag that a program may subsequently sense and/or 

_reset, p:rhaps long afterwards. Also every exception, including 

INVALID, must deliver by default a result ~pecified by the 

standard in a way that is, we hope, reasonable if not 

universally acceptable. Traps, supplied a~ the implementor's 

option, provide a program the means to over-ride the defaults 

. wherever something else is better. 

All proposals specify rounding by default to be round-to

nearest, with the ambiguous case rounded to nearest even. This 

means that, if we were rounding numbers t 4 i o s g.dec., every 

x in 3.1395 ~ x ~ 3.1405 would round to 3.J40 

3.1405 < X < 3.1415 

3.1415 ~ X ~ 3.1425 

3.1425 < X < 3.1435 

3 .141 

'3 .142 

3.143 

As defaults go, this rounding is unimprovable. However, the 

implementor may, at his option, supply directed roundings: 

Round toward o, Round toward + co, Round toward 

which a program may then preselect f or any operations that 

produce rounded results. These directed roundings constitute 

the only options in the standard designed specifically to 



104 W. M. KAHAN 

facilitate Interval Arithmetic. The directed roundings are 

integrat~with the exception handling; for instance, a 

positive sum, product or-quotient that overflows when being 

rounded towards+= will actually be rounded to+= without 

raising a flag (that wouid be redundant). Subsequently+= 

will participate in .ari~hmetic_ .in a reasonable way (e.g. 

-3.-0/(+=) = -0) until something _unreasonable like z=/ 00 

creates_ a. NaN and raises the flag INVALID. The signed ±0 and 

±= symbols allow for intervals which may or may not include 

o or ~-as an endpoint; for instance c-0,1J includes O but 

c+0,1l does not. Of course,= could lie inside an interval too, 

as in C1,-1J = {x: 1 ~ x or x ~ -1 or x ==},see Caplat's 

abstract in thes·e proceedings or Laveuve ( 7) . However, many 

applications of Inter~al Arithmetic remain viable even if= 

, never occurs inside an interval, and then implementation is 

easier: 

Here ends the discussion of features in the standard in

tended to promote Interval Arithmetic. Henceforth we discuss 

how it~ ·feasability influenced the design of the KCS proposal. 

III. CONTROVERSY AND _MISCONCEPTIONS 

on reflection I am apalled at the intensity of controvery 

and even acrimony that has been g~nerated during discussions 

of the proposed standard. I can only conclude that many people 

a~e burdened by misconceptions about the KCS proposal and 
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about other topics, among them 

- the conflict among Safety, Utility and Cost. 

- the role played by Interval Arithmetic in numerical software. 

- the role of Error Analysis in numerical software. 

- the principal contributors to the cost of numerical software. 

- the assignment of blame for malfunctions of numerical 

software. 

Rather than treat Floating Point Arithmetic on a ·strictly 

mathematical and technical basis, I propose to venture into 

psychology and economics and other superstitions in an attempt 

to expose misconceptions, some of them perhaps mine,and lay 

them to rest. 

A. The Complexity Issue 

Yes, the RCS proposal looks complicated to implement. But 

so does an automatic transmission look more complicated than 

a manual transmission, yet makes driving a car easier, and at 

relatively small extra cost. Since RCS is known to cost not 

much more to implement than alternatives, what remains to be 

proved is its impact upon the costs and performance of 

numerical programs. Its advocates expect old programs to run 

at least as well on KCS as on previous arithmetic systems, and 

evidence is mounting to justify that expectation. Therefore 

the critical questions concern new programs. 

I claim that the cost of writing a new numerical program, 
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given the mathematical algorithm, is proportional mostly to 

the incidence of 

·subroutine calls 

Comparisons, tests, thresholds 

Jumps, branches, cases. 

In other words, the "straight.:'line code" that evaluates 

mathematical expressions contributes relatively weakly to 

programming costs, especially when compiled from higher-level 

lang:uages that allocate storage automatically·. Therefore good 

design must attempt to trade off greater complexity in the 

und~rlying implementation of arithmetic .(or software) against 

enhanced simplicity of use as revealed by greater generality, 

a larg·er doma-iri of .application, or fewer cases to test, fewer 

branches to think about. This trade-off implies an awareness 

of the purposes served by floating point arithmetic, purposes 

who~e diversity is complicated by the sometimes paradoxical 

styles of approximate reasoning in a domain where "One man's 

Negligible is another man~s All". 

B. The Importance of Being Accurate 

Regardless of whether·John Rice and I and others, who claim 

~hat -floating point computa_tion is far more nearly ubiquitous 

than_·most computer users and builders think, are correct, 

correct computation does not matter much. If most of the 

numerical results printed or displayed matter at all, why are 
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they so soon discarded, often without be_ing seen? And if 

numerical results don't matter, neither do their errors. 

Besides, nobody believes that high-rise buiidings will topple 

into underflows nor that aircraft will fold their wings in 

flight over rounding errors; everybody who deals with numbers 

daily distrusts them. We expe~t numerical errors to occur and 

to make themselves known to the skeptical onlooker before they 

can do irreparable damage. 

The foregoing paragraph is not a parody; it merely reflects 

an attitude both prevalent and obsolescent. Of course nobody 

can object to incorrect results until he discovers they are 

inqorrect; then what does he do? He may ignore them, or 

correct them: or he may look for somebody to blame, preferably 

somebody else. 

As long as most consumers of numerical results were the 

principal authors of their own programs, they had nobody else 

to blame except in rare instances, and then the fellowship of 

our guild precluded blaming one another except for the most 

flagrant negligence. But times change. The consumers of nume

rical results are increasingly dependent upon software vendors, 

upon professional programmers who sell their wares without 

communicating more than superficially an understanding of 

·their product. It must be done this way or else we would all 

drown in the details we pay someone else to dispatch. Moreover, 

proprietary interests are increasingly often defended by 

providing software in a form that can, for a fee, be executed 

but not read, thereby denying purchasers any opportunity to 
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verify the suitability of the program for their purposes even 

when-they are willing to wade through the details. Therefore 

numerical software must incre~singly come to be specified not 

by a list of.-its instructions but by its vendor's representa-

tions, and equally so must the vendor bear the blame for 

mi~representations. 

Just as doctors and hospitals practice now a kind of 

• 
11 defe~sive medicine" in jurisdictions where malpractice suits 

are_ common, so shall 11 defensive programming" become more 

common, and with the same inflationary impact upon costs, 

des~ite attempts to define and share risks. We are moving into 

an era where the correctness of results is invisible and only 

the.correctness of programs matters. 

c. Our Faith in Interval Arithmetic 

Many of the earliest .and still most enthusiastic advocates of 

Interval Arithmetic acclaim its infallibility; it will not 

give an answer that is wrong without a warning, namely a wide 

interval, that the answer is ill determined. But who would 

rather have a warning than an answer accurate enough? If the 

objective were merely to compute correct errorbounds we could 

al,.l ·save money by computing 110011
• The proper goal of a nume

rical pr.ocedure is an es·timate whose error is negligible 

regardless of how big_or small that error may be. This goal 

cannot possibly be accomplished by using only Interval 
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Arithmetic; we all know this, and therefore the unanimous 

endorsement of those optional provisions for Interval 

Arithmetic within the proposed IEEE standard must stem from 

other perceptions. 

The proceedings of this symposium illustrate how diverse 

are the applications of Interval Arithmetic·, but always in 

conjunction with ordinary arithmetic and, most important, 

always allowing for intermediate estimates and calculations 

·that may fall far from their ultimate ~bjectives. some 

calculation is best done carelessly but fast; later it will be 

tidied up with a little bit of the mo·st meticulous kind of 

calculation. Interval arithmetic can be used in either phase 

or both; its potential usefulness is not disputed. 

IV. ANTITHEOREMS 

What must be disputed is a certain attitude toward compu

tation, as if it were a chain no stronger than its weakest 

link. In fact, many modern calculations more resemble webs in 

~hich some strands are far t h s ranger tan others but also weak 

strands must contribute essential strength to the whole. 

Ra~her than philosophize further on this theme, I shall offer 

certain statements that illustrate the intellectual poverty of 

tha chain-like attitude to computation. The statements are 

couched as theorems which are widely believed and, alas, wide-
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ly ta~ght. The theorems are false; that is why they are called 

anti-.theorems. 

Anti-Theorem 1: If all the intermediate results at some 

intermediate stag~ of a computation are wrong, in the 

sense that the¥ are very different from what would have 

been calculat.ed using infinite precision and range, and 

if the final result depends strongly upon those inter

mediate ~esults, then the final result must be wrong 

too. 

counterexample: The following program calculates the analy-

tic function 

c» 

f(x) = (ex - 1)/x = I xn- 1/nl 
1 

Real procedure f(x): real value x. 

x :=ex ... rounded.xis overwritten to save memory 

space. 

if x;: 1 then x := (x - 1)/ln x. 

• Return £:= x end ... correct if no over/underflow 

occurs. 

At that point in the program where (x - 1) and ln x are about 

to participate in division there need be no record of the 

original value of x. But if that original value was, say, 

x = 1.49
10 

- 9 on a 10 sig.dec. machine then calculated values 
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(x - 1) and ln x will be respectively 1~0010 -9 and 

9.9999 99995 10 - 10 quite different from the "correct" values 

1.4900 00001 10 - 9 and 1.4910 - 9. Still we find 

f = 1 .0000 00001 correctly in either case. Of course the 

errors have cancelled, but this is not a trivial accomplishment 

considering that one might naively have written a shorter 

program 

f(x) := if x = 0 then 1 else (ex - 1)/x 

which suffers rather than benefits from cancellation. Just 

such a naive program accounts for egregious errors produced 

by certain popular financial calculators (not those made by 

H-P). 

Modern machine computation would be uneconomical if anti

theorem 1 were true. Only because it is false can we solve 

large systems of linear equations, calculate accurate eigen

values and eigenvectors, and solve accurately certain initial 

value problems which demand large numbers of tiny steps. Alas, 

because anti-theorem 1 is false, naive users of interval 

arithmetic are doomed too often to obtain grotesquely pessi

mistic error bounds. Therefore there will always be a small 

but steady demand for error-analysts to practice their dreary 

profession provided they continue to expose bad algorithms' 

big errors and, more important, supplant bad algorithms with 

provably good ones regardless of anti-theorem 1. 
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Anti~theorem 2: . The accuracy of a computation can always be 

~mproved in the face of roundoff by carrying more 

figures; .successive re-computations of a continuous 

function in single-precision, double-precision, 

quadruple-precision, ... must converge to the value 

that would be produced by an ideal computation free 

from roundoff. 

counterexample: Execute the following program on any compu-

ter with built-in (rather than programmed) floating 

· ~oint arithmetic, rounded or chopped, binary or 

ternary or decimal or ... 

X := 2.0/3.0 Y := IJ.OCx - o.s) - o.s112s. 

z := if Y = O then else {ey - 1) /Y. 

In infinite precision we should get· Z = f(O) = 1 (cf. anti

~he~iem~but. every computer I know produces instead Z = O 

rega~dless of the precision carried during the computation. 

This example may look_artif~cial, but it imitates life; cf. 

my_ "Survey of Error Analysis" (6). Whether such examples are 

common is impossible to discover because their victims, 

finding no numerical disagreements, cannot know that some

thing disagreeable has happened. 

Evidently no numerical procedure, regardless of the 

precision with which it is executed, can be entirely 

trustworthy unless either 

- it is executed in interval arithmetic, or 

- it passes the conscientious scrutiny of a competent error 
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analyst. 

Doth options are so often so pessimistic and so costly that 

most people prefer to take their chances with computations 

carried out with precisions believed, rightly or wrongly, to 

exceed by_~ar what is necessary. Their attitude makes sense; 

they would rather believe the error to be negligible than know 

how big it isn't. Their attitude will not change until the 

cost of error analysis, whether performed dur.ing their compu

tation or before, declines to something near its perceived 

\'alue. 

Anti-theorem 3: Short computations free from overflow, un-

derflow or cancellation must be cor~ect. Specifically, 

if·a computation involves only positive numbers, none 

of them beyond the machine's range, and performs at 

most 100 rounded arithmetic operations drawn from the 

set{+, x, /, t} (no subtraction, hence no cancella

tion), then the result of the computation cannot 

differ by more than about 100 ulps*) from what would 

have been calculated using infinite precision. 

Counterexample: 

X := x2 

X := /x 

X := /x 

X := /x 

To replace x by lxl execute the instructions 

50 square roots 

·•)An ulp is a Unit in the Last Place of a computed result. 
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X := x2 

X := x2 

.x := x2 

W. M. KAHAN 

49 multiplications. 

But on most computers that round off their square root 

correctly this program calculates lxl = 1 for all 

numbers x between o.s and 2 and usually gets !xi very 

wrong otherwise. The final error can be as big a·s 

200,000,000,000,ooo. ulps, or worse. 

Th~s counterexample is neither an isolated example nor a 

loophole overlooked .in the anti-theorem's statement. On the 
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they tend to believe in a kind of computational justice; if 

every part of a computation is calculated-about as accurately 

as conscientious and virtuous programming allows, then the 

whole computation deserves to be correct. Alas, virtue is its 

own and often sole reward. The unacknowledged failure of anti

theorem 3, in conjunction with the previous two, has the most 

profound consequences for the design of arithmetic hardware. 

V. THE ANTI-THEOREMS' IMPACT 

contrary, the results of computations (involving millions Since computation can come out wrong w~en done right (AT3) 

rather· than hundreds of operations) are frequently wrong, when and right when done wrong (ATl) and nobody can tell which 

they are very wrong; just because of the kind of insidious (AT2) except an error analyst, why bother to build arithmetic 

e~ror-arnplification illustrated here rather. than because of hardware Carefully when Fast is good enough? 

cancellation .or over/underflow or even mere accumulation of The reason for carefully designed arithmetic, and for the 

multitudinous errors .. Well-known instances are associated wi th sometimes paradoxical indifference to what may appear to be 

the .solution of linear·systems via (possibly ill-conditioned) calamitous aberrations within what is none the less claimed to 

triangular factors, and with (possibly unstable) recurrences be carefully designed arithmetic, cannot be found within the 

used to solve initial value problems or calculate special chain-like model of computation. The reason can be found in 

functions or eigenvectors, etc. the web-model. Computation preserves a web of relationships, 

Many people, clever and otherwise competent, cannot accept some of them strongly (like the commutativity of addition and 

that anti-theorem 3 is false. Their intuition, conditioned by multiplication despite roundoff) and others weakly (like 

experience with very short computations of their own devising monotonicity), and other relationships leave only suggestive 

or with long computations based upon the standard library of shadows in our memories. With experience we learn which 

stable algorithms, confirms the anti-theorem. Consequently • relationships matter. 



116 W. M. KAHAN 

~sefully.to .illust~ate the web-model of computation is 

imp~actical except by proffering an error analysis that nobo

dy wants to read, though that thought has never inhibited 

publlc~tion. ~hat· I offer instead is an enlargement upon one 

aspect of the KCS proposal,· its most controversial. 

VI. WHAT IS GRADUAL UNDERFLOW? 
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for O = ±(0.00 ••• 0) x (B8 or BO); whether zero is called nor

Nlized or not (because its D0 = O) does not matter. unnorma

lized floating point numbers, with Do= O ~ut e > e, are 

usually ou~lawed as redundant in so far as t}leir values can be 

represented equally well by normalized numbers (but the B5500 

is one computer which treats unnormalized and normalized 

numbers indis~inguishably). Denormalized numbers are 

characterized by D0 = O and e = e; for instance on a 6 sig. 

dee. calculator 

(0.03142) X 10-99 

It is a scheme which reduces the effect of underflow to is the beS t convenient approximation for n/10101 . Note that 

something comparable with the uncertainty due to roundoff in a· denormalized numbers look unnormalized at first until you no-

wide -range of. numer.ical computations ·including most of those tice that the exponent e = e is minimal and realize that no 

with·matrices, quadrature, ordinary differential equations, denormalized number can be represented by a normalized number 

zero-finding, convergence acceleration, ... To understand . in the same format whereas an unnormalized number can be 

gradual underflow we have to understand a little about formats supplanted exactly by another, normalized or denormalized, 

used for floating poirit arithmetic. ._.1th a lesser exponent e. 

Normalized floating· point numbers look like 
e 5 ±(Do.d1d2···dn) x B e.g. ±(3.14159) x 10 

where the radix B can be 2(binary), 8(octal), 10(decimal) or 

16 (hexadecimal) on diver'se American computers; then the n+1 

"signi·ficant digits" D0 , d1, d2 ... dn are each drawn from the 

set ro,1,2, ... ,B-1} except that D0 -t, O; and the exponent e 

is an 'integer confined to some interval e ~ e ~ e; e.g. hand-

But most computers have outlawed denormalized numbers too. 

Those computers "flush" any attempt to compute a floating 

point number whose normalized form would otherwise underflow 

<have e < e); for instance, most hand-held calculators will 

neither allow (n/1050)/1051 to be represented as 

) -101 9 .l4159 x 10 nor denormalize it to 0.03142 x 10- 9 but 

vtll instead display zero or 1 x ,o-99 or "Error". Only com

F~ters that underflow gradually possess denormalized numbers. 

held calculators use B ~ 10 and e = -99 ~ e ~ e = 99. The fore- ~~ong such computers are the Electrologica X-8, Intel 8086-

going format excludes zer·o unless a special case is set aside 5088 with 8087, Motorola 6809 with 6839 (and IBM 7094, IBM 

l~0-370, Burroughs B5500, DEC 20/PDP 10 with appropriate trap-
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handling software.not·currently distributed by their 

manufacturers). 

• ·~o.~ does gradual underflow help? Its most obvious effect 

is_t~ p~eserve the following relation: if O < x < Y ·then 

x/y <_ 1 and y-x > o. The last inequality can be falsified by 

computers that flush underflows to zero, but not by those that 

underflow gradually. The effect upon program logic, where a 

test of one relation is presumed to imply others, is immedia

tely clear, especially when we expect "y-x = O" to imply 

"~{Y) - f(x) = O" unless f is a pathological function (invol

ving, ·say, division by zero) . But the effect goes much deeper• 

consider. two nearby representable numbers x and y and their 

di-fference z >i - y ,. and suppose x and y are so close to each 

other that I z I ~ IX I • and r z I ~- I y I . Then z must be represen

"table exactly despite roundoff and, if underflow is gentle, 

despite underflow. B~t just as poorly designed arithmetic 

u~1ts can contaminate small differences unnecessarily with 

roundo"ff (as do CDC 6000 class computers and most TI 

calculators);. so will .. flushing underflows contaminate them. 

This contamination is a noise that may defeat the feedback 

loop-·in~ended to stabilize a computation. For instance, to 

soive the equation f(s) = t for s given f and t, we are 

obliged to calculate the discrepancy t-f(s) and feed it back 

to alters, as in Newton's method: 
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tion scan be calculated. Gradual underflow makes m~ch less 

noise here than does flushing. 
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Gradual ·underflow reduces every instance of underflow to 

an amount absolutely no bigger than a rounding error in the 

last significant digit of the smallest normalized number. This 

means very often that a program which is proved correct in the 

face of roundoff can easily be pro· ved t d i correc esp te under-

flow too provided underflow is gradual, whereas when underflow 

·1s flushed that program may have to be augmented by tests 

against format-dependent thresholds to provide a defense 

against flushing. This is why gradual underflow is valuable 

for matrix multiplication and inversion, operations so common 

that their enhancement by gradual underflow is enough to 

justify providing that feature. Moreover, subroutines pro

grammed conscientiously can often be designed more easily, 

thanks to gradual underflow, to cope with their own under

flows automatically; consequently the naive users of such 

subroutines can expect to see underflow messages significantly 

less often on machines that underflow gradually than on 

machines that flush. 

Some kinds of underflow cannot be cured by gradualness, 

nor by flushing. For intance, long chains of multiplications 

and divisions unrelieved by alternate additions generally 

require scaling to defend against over/underflow unless they 

news= s + (t - f(s))/f' (s). can be calculated with the aid of a (possibly temporary) 

The noise in t-f(s), whether caused by roundoff or underflow, exponent field extension (see SHARE sso 159 item c 
4537

, 

is. the principal limitation upon the accuracy to which a solu- Dec. 1966). So gradual underflow is no panacea. All that can 
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be claimed is that it improves a large and recognizable class 'ti 
I >, QI Ill e 
M l,.f N ,u QJ C 

of programs without making others worse, without complicating a, QI .... 0 .... 
'8 :> r-i II) ::, C: 

QJ ,u •rl 'tJ Q) ) U) 

our concept of representable numbers, and without much of a 
::, e 0 QJ 0 1-1 

E E e 1-1 ) r-1 Q) 
Q) (I) 0 .µ 1-1 .µ 1H § 00 CD .c: .µ C: C QJ QJ l,.f 

penalty in hardware or speed except possibly on pipelined f-1 C .... § ..Q Q) 
Q) l'tl 'ti C 
C 0 'tJ C 

parallel array-oriented machines where a different approach M 0 Ill 1-1 C Q) ::, 'tJ 
Q) 0. l'tl .. QJ ..!,( Q) 

1 >< ... N 1-1 0 II) N 

(the I<CS "Ex~ended" .format described by J. Coonen (2)) is more 
Q) QJ .... Q) l'tl Q) .... 

r-i I 0 "' a. .µ r-1 
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VII . EXAMPLES 

Example 1. Complex Absolute Value Cabs (X+iY) 

The simplest program exploits the Extended format to 

dispel the nuisance·of over/underflow and to suppress roundoff . . ' . ~ . 

below 1 ulp (Unit in the Last Place) of the result: 

Real- procedure Cabs (X, Y): 

Real values x, Y Extended s, anonymous 

variables; 

Save & set modes Normalizing, Affine ... to 

distinguish tm. 

s := ✓cx2 + Y2) ... evaluated in Extended format. 

Restore Modes; Return Cabs := S~ end 

The foregoing program cannot mislead nor be misled by patho

logi~s.like.underflo~ or invalid operation; for instance 

Cabs .. ·(m+im) = m with no warning flag set. The only possible 

new pa.thology is overflow of the calculated cabs when that 

overflow is deserved;- intermediate over/underflow of x2 + Y2 

is. precluded by its extended· range. 

B.ut what if the Extended format is unimplemented? 

Then we must cope somehow with data IXI and IYI which lie out

side the interval bounded by the square roots of the overflow 

and underflow thresholds. For definiteness suppose 
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O ~ x ~ y ~ o, so that we may consider the formula 

Vcx2 + y2) = xV( 1 + (y /x) ~) 1n which y /x ~ 1 . 

Here underflow of y/x or (y/x) 2 renders it negligible compared 

with 1, so over/underflow poses no unwarranted hazard; but 

roundoff is a nuisance because this formula, evaluated 

entirely in single precision, can suffer a final error almost 

as big as (but no bigger than) about (2+3B) /4 ulps where B is 

the radix (B = 2 for binary, 10 for decimal, etc.). For instan

ce, in decimal the last formula produces Cabs (96,28) = 

99.999 ... 994 instead of 100. A somewhat more accurate formula 

is used in the next program which exhibits also the code 

needed to cope properly with every pathology (0, m, NaN, etc.): 

Real procedure Cabs (X, Y): 

Real values X, Y; real r. 

Save & clear Flags Overflow, Underflow, Invalid, . 

Divide by zero. 

Save & set Modes Normalizing, Affine. 

x := lxl ; Y := IYI if Y > X then Swap (X,Y) ... 

Clear Invalid Flag ... in case comparison in

volves a NaN. 

r := X/Y r ~ 1 or else invalid 0/0 or m/m. 

r := Y/(r + Vc1+r2)) ... may underflow gradually. 

If Invalid Flagged then r := O. 

Restore Flags; Restore Modes. 

Return Cabs := X + r end. 
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On a binary machine this program's error cannot exceed} ulp, 

with.a comparable bound for other radices, but the error can 

exceed 1. ulp;. e.g. using 10 sig.decimals yields(ci.f~:f}of\ "t•bS) 

• Cabs _(4684660,4684659) = 662'5109 .001 instead of 6625109. 

Most ~ple accept ~he foregoing program's slight 

inace~racy since a smaller error costs too much (see below). 

·But note here the beneficial role played by gradual underflow 

in the last value of r1 if underflow were flushed to zero 

instead, the calculated Cabs could be quite wrong whenever X 

and~ were~much bigger than the underflow threshold. 

Lacki~g gradual underflow, the conscientious programmer is 

forc8d· to complicate.the foregoing program with radix-dependent 

scal~ng operations. • 

. Finally, for perfectionists who can tolerate no error in 
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r := X - Y. 

If r ~ Y then begin r := r/Y; s := r(r+2) 

r· := ((s/(a+/T2+sl')+r)+B)+y 

end 

else begin Clear Invalid flag; r := X/Y 1 

r := r + Y(1+r2) end. 

r := Y/r; if Invalid Flagged then r := o. 

Restore Flags; Restore -Modes. 

Return Cabs := X + r end. 

Surely this.cannot be preferable to the first Cabs program 

above. 

~abs so large as 1 uip but who have been denied the convenience Example 2 • Complex Divide x + iy = (a+ib)/(c+id). 

of an Extended format, here is a better program: 

Real .procedure Cabs: 

Real values x, Y; real r, s. 

The simplest program, and the best, exploits the Extended 

format again: 

Constants a = 12', y = 1+12' rounded, 8 = (1+12' - y) Procedure Complex divide (a, b, c, d; x,y): • 

to several sig.de~ .... e.g. to 10 sig.dec. 

a =·1.4142 13562, y = 2.414213562 , 

8 = 3.730950510-10. 

Save & clear Flags Overflow, Underflow, Invalid, 

Divide by zero. 

Save & set Modes· Normalizing, Affine. 

X := IXI; Y := IYI; if Y > X then swap (X,Y) 

y ;;, x. 

Real values a, b, c, d; Real output x,y. 

Extended s, T, u, anonymous variables. 

Save and set modes Normalizing, Affine. 

S := c 2 + d2 T := ac + bd; U := be - ad. 

Restore modes; x := T/S ; y := 0/S ; Return end. 
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~ut withou~ extended vari~bles to hold intermediate 

results the foregoing program_is fatally vulnerable to over/ 

underflow ins, T and U from which may follow completely un

~eason~ble values for x and y. A program appropriate for 

systems with no extended variables can be adapted from R. L. 

ib di 1 2 f D E. Knuth 's "The Smith's algorithm d~scr e n vo. o • 

Art of computer Pro·gr.amming". His algorithm assumes that 

Id I ~ I c I ; O; ·otherwise either compute x+iy (b-ia)/(d-ic) 

instead or deal appropriatly with the case c = d = O. Next let 

r =:d/c, so lrl ~ 1, ands= c + dr; then x = (a+br)/s and 

y =: (b-ar)/s. But now observe how gradual underflow comes into 

play h~re; if all of a, b., c,: d, were only moderately larger 

than the underflow threshold, and if one or more of dr, brand 

ar underflowed, then flushing underflows to zero must produce 

plausible but occasionally utterly wrong values for x and y. 

·The reader should experiment with these formulas on suitably 

ch~sen ·data, including also ca and NaN and denormalized numbers, 

and then try to write a satisfactory program. Next try to get 

along without gentle underflow, if you can. 
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standard is about to be promulgated. It includes the working 

group's recent decision to make directed roundings obligatory.

instead of an implementor's option, although nothing is said 
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