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ABBTRACT1 Si ■pli city is a Virtue; yet we 
continue to era• ever ■ore coaplicated circuits 
ever 1ore densely into silicon chips, hoping all 
the •hile that their internal co■plexity will 
proaate si ■plicity of use. This paper exhibits 
ha• Nell that hope has been fulfilled by several 
inexpensive devices Nidely used n0N1d1ys for 
nuaerical coaputation. One of the• is the 
HeNlett-Packard hp-lSC pragr1111ble shirt­
pocket calculator, on which only I few keys need 
be pressed la perfor ■ tasks like these: 
R11l and Co1plt1 &rilhNtic, including the elennl&ry transceftdectll 
functions ind their invents; llltrb 1rith11tic including inverH, 
transpose, deter1in&nt, r1sid111l, nor11, pra■ptld input/output &nd 
cD1ple1t-r11l convtrsion; Solve an equation and 1¥1luat1 an lnt11Jr1l 
nu1erically; si ■ple shtistics; r and cOGinatarial fundians; ..• 

For instance, a stroke of its Cl/Xl key inverts 
an BxB aatrix of 10-sig.-dec. nu■bers in 90 sec. 
This calculator costs under 1100 by ■ ail-order. 

"athematically dense circuitry is also found in 
Intel's 8087 coprocessor chip, currently priced 
below 1200, which has for two years aug■ented 
the instruction repertoire of the 8086 and 8088 
microco■puter chips ta cope with ... 
Thrtt binary floating-point forut1 32, 64 ind BO bits wid11 thrH 
biniry integer fcr■ils ti), 32 ind 64 bits wide; 18-digit BCDeci11l 
i11tegers; nlion1l 1nth11tic, square root, for1it conversion and 
exception h&ndling 111 in confor■ity •ith p754, the proposed IEEE 
1rith1etic shndud (Ht •ca■puter• !fir. l, 19811; tlle terntls of 
trinscendent&l functions exp, 1119, tin ind 1rct111; 111d 1n intern1l 
,tacl of eight reguters 11th 80 bits widt. 

~or instance, the 8087 has been used to invert 
~ lOG~iOO •atrix of 64-bit floating-point nu■bers 
in qo sec. A■ong the ■achines that can use this 
chip are the Nidely distributed 18" Personal 
CoDputers, each containing a socket already Nired 
for on B087. Several other ■ anufacturers naN 
produce arithaet1c engines that, like the 8087, 
confor• to the proposed IEEE arith■etic standard, 
so soft•are that exploits its refined arith ■etic 
proDerties should be •idespread soon. 

As sophisticated aathe■atical operations co■e 
into use ever ■ore widely, ■athe■atical 

proficiency appears to rise; in a sense it 
actually declines. Coaputations foraerly 
reser~ed for P.kperts lie now within reach of 
•ho~v~r ■ ight benefit fro■ the• regardless of hoN 
little •atheaatics he understands; and that 
l itll~ is aore likely ta have been gleaned fro■ 
~andbooks for calculators and personal coaputers 
than fro• professors. This trend is pronounced 
a ■ong users of financial calculators like the 
hp-12C. Such trends aught to affect Nh1t and haw 
Ne teach, as well as how we use ■atheaatics, 
regardless of whether l1rqe fast co■puters, 
hitherto dedicated ■ostly ta speed, ever catch up 
Nith so■e saaller aachines' proqress to•ards 
Gatheaatic1l robustness ind convenience. 

Prep1reG for the Joint Sbtistic1l lltttings of the ASA-ENAR-IIMR­
lltS-SSC held in Toronto, C1n1da, August 15-18, 1983. 
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INTRDDUCTIDN1 As a schoolboy in Toronto l Nas 
t1ught to cherish e1ch advance in Science in so 
fir as it enabled us to knoN ■ore while obliging 
us to ■e■arize less. By that criterion, albeit 
oversi ■plified, the technological 1dv1nces that 
now rain coaputer hardNare and software upon us 
do not yet constitute an advance in Science, not 
so long as they are acco■panied by a hail of 
needless inconsistencies 1nd inco■patibilities. 
Hardest to explain, in devices presu■ably 
dedicated to nu■erical co1put1tian, are the 
arithaetical ano■alies that arise fro• defective 
aatheaatical doctrines rather than fro■ ■ere 
oversights. For instance, the following table 
was printed out by VisiCorp's spread-sheet 
pragraa called •visiCalc 1.10• run an an 18" 
Personal Co■puter : 

A B t A/3 C = 3t8 A - C A/2 - C + A/2 ·----··· •M••-••••- -···-···-· ··--- "41,-4t"··" ..... 
100 33. 3333333333 99. 9999999999 .00000001 . 0000000001 

1000 m.33333333 999. 99999999 .00000001 .00000001 
10000 3333. 33333333 9999. 99999999 .000001 .00000001 

100000 33333. 333333 99999. 999"9 .000001 .000001 
1000000 333333, 333333 999999. 999999 .0001 .000001 

10000000 3llll3l. 3333 9999999. 9999 .0001 .0001 
100000000 33333333. 3333 99999999. 9999 ,01 .0001 

1000000000 333333333. 33 99ffi9999. 99 .01 .01 

Perhaps roundoff could account plausibly far the 
second coluan's Jaggedness; but how can errors 
in the fourth colu■n be reconciled Nith correct 
values in the fifth? I ■agine explaining the■ to 
a Co■puter Science class in pragra■■ ing: 

•To calculate <A - C) auch aore accurately, 
evaluate (A/2 - C + A/2) instead because ... • 

Since a far-fetched explanation is undignified, 
one ■ ight prefer ta believe these ana■alies are 
inconsequential and need no explanation. That 
belief induced 1011 anony■ous pragra■■er to dee■ 
the■ acceptable as a side-effect of I shortened 
and faster progra■ that perfor ■s arith ■etic for 
VisiCalc in radix 100 instead of 10 and drops 
a digit pre■aturely. Actually, the progra■ is 
only i ■perceptibly shorter and faster, but its 
-ano■alies are ■anifest and, as exa■ples below 
Nill show, aalignant. Fortunately, a wide range 
of calculators and coaputers, especially those 
that canfor ■ to the IEEE's proposed standards 
p754 and p854 for floating-paint arith ■etic, do 
not suffer fro■ paradoxical roundoff like that 
displayed above. Those ■achines and standards 
are part of •hat this paper is about. 

Ano■alies generally under■ ine econa■ ic1l thought, 
thereby underaining the integrity of software and 
inflating its cast. Th• worst ano■alie& can be 
kept out of ca■puters. Nhen they do intrude they 
are not 1lways accidental; too often they follow 
fro■ design decisions induced by aiscancaptions 
widely taught as rules of thu■b about what ta 
neglect in approxi ■ate coaputation. Rehftatians 
of those aiscanceptions abound in the literature 
Cl,2,3,4,5,61 but cannot help soaeane Mha has 
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not read thea, who believes every eleaentary 
subject ■ust be obvious, and whose ■athe■atical 
experience is too narrow to support sound 
judgaents. Here is another do■ain where our 
failure to teach aathe■atics effectively to a 
past generation co■es hoae to roost. 

I do not allege that ■athe■atical education has 
failed entirely. For ■ost, education succeeds as 
soon as they can follow a for ■ula chosen for the• 
by Experience or Authority. A few, captivated by 
the beauty or abstractness of the subject, 
espouse ■athe■atics ta escape the ■undane, and 
then need little help fro■ the likes of ae. But 
■any who endure two years of College Nathe■atics 
do so in the hope that it will help the■ explore 
and conquer other do■ains. They would crown 
"athe■atics •Queen of the Sciences• ■are far 
her power to illuainate her applications than for 
her beauty or abstractness. Alas, they lack the 
■athe■atical experience out of which grow first 
the abstractions and then the conviction that 
these are the source of illu■ ination. Lacking 
too is ti ■e we can spend together exploring 
exa■ples instead of exchanging ■ere for ■alities. 
So, when I try in class to illu■ inate for them 
the power and the beauty of the subject I love, 
abstractions that su■ up lifeti ■es of experience 
turn to chalk dust faster than ■ y students can 
copy, ■uch less learn. What will defend the• 
against ■e and •Y kind? 

Rather than have ta copy the received word, 
students are entitled to experi ■ent Nith 
aathe■atical phena■ena, discover ■ore of the■, 
and then read how our predecessors discovered 
even ■ore. Students need inexpensive apparatus 
analogous to the instru■ents and glassware in 
Physics and Che■ istry laboratories, but designed 
to co■bat the drudgery that inhibits exploration. 
This role is the first that I envisaged for the 
hp-15C shirt-pocket calculator Nhen it was being 
designed. Later, a•ong students who find it 
helpful for their Engineering and Science 
as5ign ■ents, I hoped a· few ■ ight wonder ~ow it 
works and why; so■e of these would beco ■ e 
co■puter scientists and applied ■atheeaticians 
all the ■ore co■ fartable with i ■portant ideas and 
techniques for having encountered them in their 
own calculators. Those ideas are part of what 
this paper is about 

This paper does not say just that c~■puters are 
s■aller, cheaper, faster and ■ore capacious. It 
tells how ~a•e ■ achines convey ■athe■atical ide1s 
to a far wider audience than used to benefit from 
the■• What Archi ■edes wrote in sand• could be 
read by only a few before it blew away. Written 
on paper, his ideas have been read by ■yriads and 
will be read by ■yriads ■are. When written into 
silicon chips, his ideas and their cousins serve 
the aeeds of hundreds of thousands now, and soon 
■ illians. (• Sand is ■ostly Silicon Dioxide.> 
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lil«J "S TD BLN£? Conventi anal wi sdo1 says that 
in those rare and pathological instances when 
co■puted results are found to be wrong because of 
roundoff, the right results can always be gotten 
by reco■putation, either carrying ■ore figures in 
what is otherwise the sa■e procedure as before, 
or via a different and ■ore •stable• nuaerical 
algorith• that could be very hard to find. This 
conventional wisdo• begs three questions: 

How can anybody tell Nhen and why 
results are ...,-ong? 

Who is responsible for finding and 
correcting Nr"'ang results? 

Will carrying ,nare figures illNays 
attenuate roundoff? 

The sa■e iaperatives that ■ave us to share 
scientific knowledge force us to share caeputer 
softNare. When we share knoNledge we share an 
understanding that leaves intact each individual ·s 
responsibility for the consequences of the use of 
that knowledge. But Nhen we share software. 
responsibility diffuses; were you obliged to 
understand in detail the progra• you got from ■e, 
you ■ ight as well have written it yourself. If 
you pay ■ e for a program that I let you believe 
correct, but it aisleads you into aisd1recting a 
client, who should be held responsible? 

I ■agine a courtrao■ scene wherein four af us are 
e■broiled in a lawsuit brought, despite customary 
disclaiaers, by your client. The ■anufacturer of 
your co•puter is the fourth party. 

Jn •Y defence I prove that, an all reasonable 
co■puters, ■y program copes properly with all 
data in a reasonable doaain and delivers at least 
half as ■any correct leading significint figures 
as the co•puter carries. You prove that your 
input data is reasonable and the output, though 
wrong, so plausible that you had no reason to 
Nithhold it fro• your client, who would have 
be~n happy with results half as accurate as I 
pro■ ised. The co■puter ■anufacturer's testi ■ony 

affir ■ s conventional wisdo■ : First, ■ y prograffl 
is defective because it uses algorithms generally 
regarded as •Nu■erically Unstable" and fails to 
take account of the computer's special features . 
Second, you are re■iss for using hardware and 
software less accurate than you should have known 
you needed and could have bought. The judge 1s 
baffled by expert testi ■ony; who• will he blaee? 

All the testimony in this scenario could be true. 
Lest you thin~ a contradiction ■ust lurk in it 
somewhere, here is an exa■ple drawn froe C3l and 
designed to under ■ ine faith in the foregoing tind 
of conventional wisdom. A progra■ is needed to 
co■pute a polyno■ ial f(x) of degree 504 defined 
by co■position thus: 

h(y) := ( 1/3 - y >•< 3 + 3.4S•y > ; 
g ( z ) : = 1 + z + Z 2 + z a + • • • + z •as + z 126 

f(x) := g<h(x 2 )) for all lrl < 1/{3 . 
The progra■ ■ust run fast, the faster the better. 

Ny program runs fast because it computes 
g(z) := ( 1 - z•n )/( 1 - z > if z ~ 1 , 

:~ 12i otherwise. 



On ■achines Nhose arith■etic is deci ■1l <or 
hexadeci ■al, but not bin1ry> I save space and 
ti•e by o ■ itting to test Nhether z = 1 ; since 
rounding 1/3 to 0.3333 ... 3333 guarantees that 
z := hly) < 1 far all y := 11• 2 0 ' I knDN 

g<z> := < 1 - zu7 )/( 1 - z > is alNavs safe. 

When z is very close to ey pragra• eay look 
like just another fast Nay to calculate not g<z> 
but Junk :=Roundoff/Roundoff. However, tests 
reveal and proof confir ■s that ■y prograa cannot 
lose eore than about half the ~ignificant figures 
carried on an~ machine whose every rational 
arith ■etic operation introduces into its last 
significant digit delivered no ■ore error than if 
the result had been chopped or correctly rounded 
or e~en rounded up by as ■uch as 0.9 of a unit 
in its last digit. The progra■ works correctly 
regardless of Nhether z••7 is calculated by 
repeated squaring thus ... 

z• := ztz ; z4 ::s z••z• ; z• := z"•z 4 ; 

z •• I= z••z• ; zaa : • zH•z •• ; z" : = zu•zaa 
z••7 := z•z••z"•z••z•••z•••z 64 ; ••• , 

or fro• the for ■ula z••7 1• exp(127tln(z>> used 
by ■any calculators, provided exp and ln 
suffer no worse error than ■y progra■ allows for 
each rational operation. Since it does not need 
"correctly rounded• arithaetic, 1y progra■ runs 
properly on IB" 370's and early DEC PDP-ll's 
as well as on ■1chines that round very carefully, 
as do DEC YAX's and recent H-P ■achines and 
those that canfor ■ to the rigours of the proposed 
IEEE floating-point standards p754 and p854. 

But •v progra■ fails on CDC Cybers and UNIVAC 
llOS's ind Tl calculators, 1■0ng others. Here 
is i table reporting results fro■ 1 sa■pling af 
••chines that perfor■ only d•ci ■al arith ■etic: 

NiNI of Sig. Die. Cilculattd 
C1lcul1tan carried HO> .. , __ ,,_,.,_ _,,_ .... .. .............. _ 
hp-lOC, l lC, l2C, l5C, 16C, 19C,22 I 

27 ,29C131E132E,33E/C,l4C > 10 127.00 
37E ,38E/C141C167, 91, 92, 97 I 

hp-75,85,86,87 12 127.000 

bp-21,15,35,45,55165 10 127. I 

CollOdart SR4l48R 12 127. I 

hp-80 Fi111nci1l 10 13. 
TI Bu1inn1 An1ly1t, sa-30,40 ti 100. 
Collador1 SR419015l90 12 12. 
COIICldar1 5114001 TI-IIA 12 0/0 Errar 
Tl SR-52156151-11 12-13 128. 
Tl SA-50,SOA151,51A1581S8C,59 13 14. 
llanrOI 326 13 12. 

'visiCllc 1. 10 aa tht 1111 PC 12 114. 

Th• tao 1t1tri11 ... 11td 1 •• tit• rigllt ._., far tu 1ran9 
ru1an1, IDt praaf of &ritbNtiC qaality. 

Evidently this co■put1tion·s 1ccur1cy d•p■nds not 
just on how ■•ny figures 1r• c1rri•d but ilsa on 
the ■anner in Nhich figures ire discard■d. But 
the results see■ to cry out for i valu• judg■ent1 
Faulty Br1nd r calculators? Or a p1tholo9ic1l 
progra■ rigged to cast undeserved 11p•r1ions? 
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I 1d ■ it that, on 111 c0■puter1, ■y progra■ is 
less accurate and not a lot faster than others 
that coapute g(z) fro■ expressions like 

(l+z> <l+z 2 > <l+z•> <l•z•> ll+z••> (l+zu> (1+z 64> . 
Si ■ ilar sche■es Nork for g"(z) 1• (1 - z")/(1-z> 
•hen n is in arbitr1ry integer instead of 127, 
though they are not so obvious; one such sche■e 
figures in financial calculations in the portable 
work-sheet co■puter •workSl1t1• just introduc•d 
by Convergent Technologies Inc. When n is not 
an integer the proble■ beco■es truly interesting; 
see C3J and C6l. But the possibility that g<z> 
■ight be co■puted on all ■achines by 1011 other 
sche•e better than ■y short pragra■, even if no 
better sche1e Nere visible yet, inhibits fair­
■ inded folks fro■ uttering pre■ature candeanation 
and distracts the1 fro■ the i ■portant question: 
If a si11ple prograca Narks and is proved 
11athematicall y al1111ays to Nark Nell enough 
on all but a few cDfllftMtrcially significant 
computers, Nho should bear the onus of 
adapting it ta the aberrant machines? 

In the past, the onus has fallen ■ostly upon the 
oNners of aberrant ■achines or upon the creator 
of the progra■, rather than upon the creators of 
aberrant arith■etics. The future is unlikely to 
be different. 

For the present, our best defence against 
arith1etic ano11lies is sa■e 1Narenes1 of how 
certain computers generate the■. The arithaetic 
aberration 1ost co■aon a■ong co■puters, the one 
responsible for ■ast of the 1n01alies exhibited 
so far in this paper, arises Nhen a digit is 
jettisoned pre■aturely fro■ the right-hand side 
of an internal register during an arith■etic 

operation. For exaaple, consider the subtraction 
d := 1 - z carried to five significant deci ■als 
with z = 0.99999 but otherNise perfor ■ed as 
four ■achines do it: 

Styln: corrtct CDC 7600 Tl 59 Tl IIBA _, .... -- _,,_ .... .. ....... _ ~ ... .,. 
z • 0.99ffl 0.99999 0.99999 0.99999 

1 • 1.0000 l. 0000 00000 1.0000 1.0000 
Z -➔ Z II 0.99999 o. 9999 90000 0.9999 1.0000 - -1-Z = 0.00001 o. 0000 10000 0.0001 - 0.0000 -
➔ 0.00001 0.0000 _ 0.0001 0 

d • I.O,o-5 0 t.O,o-4 0 

Digits dropptd prN1tur1ly bl¥1 '"" repl&cld by Uftdtrscartl _ , 

CRAYs' ind UNIVAC 11XXs' subtractions rese■ble 
in binary th• Tl 59's tn deci ■al. CDC's Cyber 
205 differs fro■ 111 the 1bove1 it ■ay allege 
z - 1 • 0 - 1 - z • Although th••• disparities 
s••• pervers■, they •r• no Norse thin if either 
1.00009 - z or 0.99999 - z replaced 1 - z . 
Co■bining this insight with th• ■antr1 •s1ct■1rd 
£rro,-An1ly1i1• so■■ti ■•• 1ll1y1 indtgn1tion, 
but not ■inaJ far ■or■ an that sub•ject SH C6l. 

Pre■1ture 1b1ndon■ent of• digit defiles other 
arith■etic operations too. "ultiplicatian is 
neither co■■utative nor ■onotonic on the Tl 59; 
try , w - w,. Division an the Tl Business 
Analyst 9et1 1 different quoti•nt for l/3 thin 
for 9/27. Doubl• precision division in BASIC 
an the IBN PC 1ll ■ges often that X/1 - X 
and 1.000 ... 0000 / 1.000 •.. 0001 ~ 1 



After learning hoN th••• things happen, Ne can 
l•1rn to look out for the■ and progr1■ around 
the■, though th•y iapose I deadening burden upon 
■1the■1tic1l thought. To lift that anus fro■ all 
of us, Ne ■ust persu•de the designers and 
builders of ca■puter 1rithaetics that ... 

1: aberrant designs can invalidate certain 
f1■ ili1r calculations perfar ■ed by ■ast 
other ••chines without any trouble; 

21 to ca■pens1te far aberrant arithaetic, 
saftNare aust beco■e ■ore ca■plicated, 
costly and unreliable; ind 

3: their custo■ers are 1w1re af these truths. 
<I•• not quite sure about ite■ 3.) 

THE AREA OF A TRlNa..E1 Here h a faailiar 
and 1tr1i9htfarward task that blows up when 
subtraction is 1berr1nt: Devise a pra9r1■ ta 
co■pute the area Atx,y,zJ af I triangle given 
the lengths x, y, z af its sides. The pragr1■ 
below will perfar• this calculation al ■ost as 
accurately as floating-paint ■ultiplic1tion 
division and square raat are perfar ■ed by the 
ca■puter it runs on only provided the ca■puter's 
subtraction is free fro■ the 1no■1lies ■entianed 
above. Consequently the pragra■ works correctly, 
•~d provably so despite roundoff, on an extre■ely 
wide range of ••chines: 

APPL£ Ill P1sc1l but aol IASJC; 8urraugh1 86500 1i11glt prKi1ian; 
D6 !IVBOOO; DEC PDP-11 &ltd YAI, 111d 10 end 20 1ingl1 precision; 
El.ISi 6400; H-P 3000, 9000, 9836, 85-87, ud 1ll b111dhtld 11chint1 
nctpt the hp-80; Hantywll 6000s 1811 l70 ud i1it1tors, 1nd rK. ·t 
18'1 PC BASIC 111d FORTRAN; IITEL 8087, 861330, 432; lltianal 16081; 
recent PRIii£ 11chinn; ZIL06 S8000; ••• 

But the progra• ■iscalculates the areas of sa■e 
needle-shaped triangles an those aachines that 
discard a digit pre■aturely during subtraction. 
A■ong those egregious ■achines are •.• 

CDC Cylltrs and 7600; Cray l; mly 18" PC IASIC; 11rly PRlltE in 
double precision; Tl nlcul1tan; UNIVAC 1108 111d successors; ..• 

Of caur1e, for each of those ■achines a ■ethod 
can be found ta co■pute Alx,y,zJ 11 accurately 
&s you like; but if the pragra■ ■ust use only 
the ■achine's native floating-point equip■ent 
then nobody knows I fast progra■ that can be 
proved to work an 111 ■achines, egregious or not. 
The cl11sical far■ula due to Heron of Alexandria, 
na■ely A(x,y,zJ = ((1(1-x> ls-y) (s-z)J where 
s = <x+y+zl/2, is nu■erically unstable far 
needle-shaped triangles regardless of whether 
every arith ■etic operation is correctly rounded. 
For exa■ple, here is 1n extre■e case worked out 
carrying just five significant deci ■alsa 

6iwea lrt I r• 100.01 , y r• '9.995 , z 1• 0.025 . Then 
I 1• (x♦ (y+zll/2 • (200.031/2 • 100.015 IUll round to titlltr 
S 1• 100.01 ar S 1• 100.02 to fiv. 1ig. ~K. Substituting s 
far I in lllran's·fcraula yitldl tither A• 0 or A• 1.5813 
rn,tetiv1ly, Mt tht carrKt A • 1.000025 •••• 

Evid•ntly Heron's far ■ula could be a very bad way 
to calculate, say, ratios of areas of nearly 
congruent needle-shaped trian9l•1. 

A goad procedure, nu■erically stable for all but 
egregious ■achines, is the followings 

Sort x, Y, z so that x ! y 1 z ; 
lf z < x-y then no such triangle exists; else 
A:• f(<x+ly+z))•<z-<x-y))•Cz+lx-y>)•lx+ly-z))J/4 

• • • IOII 'T R9IOYE PMENTl£SES ! ... 
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How can so innocuous an algorith• fail an several 
egregious aachines yet be provably successful on 
all the rest? Success depends upon the following 
easily proved ... 

Theorem: If p and q 
in the saae conventional 
and if 1/2 i p/q f 2 , 
representable exactly in 
p - q suffers exponent 

are represented exactly 
floating-point for■at, 

then p - q too is 
the sa■e far ■at, unless 
underflow. 

(Mt shall ignore 11ponent over/underf1011 here lest its c01pliuhons, 
llhich &rt 1void1ble, llffdltssly distnct us frOI our discuuion of 
roundoff prablt■s; besides, p - q cannot underflOII in 1rithaetic 
confor1ing to lht lltnt drifts of IEEE p754 and p854 • I 

The theore■ ■erely confir■s that subtraction is 
exact when a.ssive cancellation occurs. That is 
why each factor inside ({ ... J is co■puted 
correct to within a unit or tNo in its last digit 
kept, and A is not ■uch worse, on coaputers 
that subtract the way ■ost people expect the■ to. 
Egregious ■achines do ■uch Norse; they ■ isco■pute 
so■e of the differences the theore■ says they 
could calculate exactly. Natch what happens 
again in arith■etic to just five sig. dee.: 

Styles: cornet CDt 7600 Tl 59 Tl ft8A -·· ·-···· ·--·- -···· _.,.., ........ , 
y = 99.995 99.995 99.995 99.995 

I : 100.01 100.01 100.01 l00.0l 
y -+ 099.995 099. 99 50000 099.99 - 100.00 
1-y -+ 000.015 000.01 000.02 - 000.01_ 

z = 0.025 0.025 0.025 0.025 
z-lx-yl -+ 0.010 0.015 o.oos 0.015 

A·+ 1.0000 l.1456 0.74997 1.1457 
iS if I -+ 100.01 100.00~ 100.0t~ 100.0~ 

Digits dropped prt11t11r1ly have been replaced by underscores _ • 

So, so■e procedure better than the •good~ one 
above is needed to calculate reliably ratios of 
areas of nearly congruent needle-shaped triangles 
on egregious ■achines. Progra■■ers, poNerless to 
change these aachines and reluctant to write a 
different pragra■ for each of the■, ■ ight seek 
another •better• algorith• that Narks on all 
egregious ■achines as well as the rest. No such 
algarith ■ is knoNn. "v closest approach to it 
replaces every instance of a subtraction like 
p - q by a call ta a pra9r1■1ed function 
Diff{p,qJ de1i9ned to co■pute a satisfactory 
difference on all ■achines Nhether they jettison 
digits pre■aturely or not. Here is ■ y atte■pt: 

IHI Function Diff ty,11: ••• 11 y-1 •ith ld,q111te 1ccuncy. 
Rt1l v1lut1 y, 1 ; real d, e ; 
If lyl < l•I tllffl bt9in d 11: •1 ; 1 := -y; y := d tnd; 

ftN lyl l 111 I 

I 1= l•I I 
lllilt 1ignuCxJ • si,iutyJ 

•a bt9in d 1• 0.'3ty I d 1= y - d ; 
••• IOl'T da d := y - 0.53ty 

• r• • • d ; y := y - d 
1111til lyl i t 11tdlbilt; 

btur11 Diff :• y - 1 ead Diff. 



[ believe this progra■ Narks on all co■puter1 
built in North A■erica Nith hardNare floating­
point, egregious or not, exc,pt the CDC Cybers 
203 and 205 and ■avbe so■e old WANG ■achines. 
I doubt that it works with every i ■ ple■entation 
of floating-point in saftNare. I believe the 
•ultiplication by a ■agic nu■ber near 0.53 is 
unavoidable, and so is the necessity for a loop 
so■ewhat like the •while ... do ... until ... • 
loop in this progra■. And Nhen it does Nork, hoN 
shall •e decide Nhich adds and subtracts in 
other progra■s to replace by calls to Diff? If 
a progra■ like Diff is the cure, the disease 
•ust be horrible. 

In general, calculations near the singularities 
of functions of several variables are tricky at 
the best of ti ■es, so ■uch so that they are 
described in pejorative ter■s, like d19,n,rat1, 
ill-condition,d, ill-pos,d and unstablt, that 
tend to rub off onto Nhoever has to cope with 
the■. Ny dis■ay at the way ano■alou1 arith■etic 
aakes the trickiest calculations trickier, often 
tric~ier than I can handle, is not shared by 
people who see■ to think that only perverse 
calculations can be affected adversely, not the 
everyday world of dollars and cents. For their 
edification I turn noN to dollars and cents. 

FINAN::IAL CALClLAT0R81 Four of these, the 
hp-92, -37E, -38C and -12C , are used noN by 
several hundred thousand people to perfor■ 
calculations concerning loans, leases, ■ortgages, 
sinking funds, annuities, a ■ortisation schedules, 
depreciation, bonds, notes, net present value and 
internal rate of return of invest ■ents, and Truth 
in Lending regulations, aaong other things. The 
calculators Nere aicrocoded principally by Roy 
"artin £71, Dr. Dennis Har ■s [Bl and Rich Carone, 
with so■e help fro• ■e to overco■e ■athe■atical 
diffjcult1es. Business■en are oblivious ta these 
difficulties; to cope with, sa~. ■ortgages they 
need understand only the legends on five keys: 

[nl 
[ i ] 
[PVl 
CPIHJ 

[FVJ 

the nullb,r of ptriods, typiully 1011th1. 
the periodic intenst nte, entered 11 • perctnhgt. 
the Princip•I V1lu, of the aortg1gt It the 1hrt. 
the 11ount of ••ch of n 1q11l ptriodic P1yttels p1id It 
the End of 11ch period. C CBE&Jll itld [£ID] ire lttys too. I 
the Fin1l V1lue, or •B•llaon P1y1tt1t•, rH1inin9 to tit P•i• 
it the 111d of the n'" period. 

The signs of the cash-flows PY, P"T, FY tell us 
their directions, positive for inco■ ing and 
negative for outgoing. With this sign convention 
in 1ind, the business■an visualizes the sequence 
of cash-floNs in a aortgage transaction thus: 

PY PftT PftT PftT PIIT PftT PftT PIIT tFV 

-6-----♦-----+-

0 2 3 n-3 n-2 n-1 n tiN 

The saae picture, but Mith different signs, 
depicts a sinking fund Nith initial deposit PY, 
n regular pay■ents P"T, and an accu■ulated 
final value FY. The business■an need not knoN 
the equations that both transactions satisfy: 

H 

(1+xl" PY + g"(l+x) PNT + FY • 0 Nhere 
g"(z> :~ (l - z")/(1-z) and x :• i/100 
(The traubl11011 f1111ctian 9.<z> , 1ith Us rNOYilllt 1intul1rity 
•t z • 1 , has 1pp11rtcl 11rlitr in this piper 1ith 11 • 127 . I 

Financial calculators are designed to solve these 
equations for any one of the five variables n, 
i, PV, P"T, FV given values far the other four. 
At first sight this task seeas nontrivial only 
•hen the unknown is i , in which case a 
polyno■ial equation of degree n ■ust be solved; 
n can be huge. Actually, the task ■ust pose 
so■e challenge regardless of Nhich variable be 
unknoNn, as the next exa■ple will shoN. 

A Penny far your Thaughts. 
A bank retains a legal consultant Nhose thoughts 
are so valuable that she is paid for the■ at the 
rate of a penny per second, day and night. Lest 
the sound of pennies dropping distract her, they 
they are deposited into her account to accrete 
•ith interest at the rate of 101 per annu■ 
co■pounded every second. HoN ■uch will have 
accu■ulated after a year <365 days) ? 

Enter data1 
n := 60t60t24•365 
i := 10/n 

PY:= 0 
P"T := -0.01 

• 31 ,5361000 MC. ptr y11r, 
= 0.000 000 317 097 9198 1 ptr IK, 

= one cent ptr nc. to the b111t. 

Pressing CFVl should display one year's accretion 
but different financial calculators display 
different a■ounts: 

Calculators FY di splayed 
.............................. ._. "'"'"'"'"'"'"'"'"'"'"'"' 

21, 92, 37, 38, 12 • 331,667.oo • ., 
BA 293 S39. l 6on 
"BA 334 858. l 8sn 

58, sec, 59 331 ss9.38--... 
Tht 11111 digits ut not nar111ly displaytd, taut •re tler1 to 
indiut, h1111 11ny figurn the 11chines urry. 

Why is the best result displayed by the ■•chines 
that carry the fewest significant digits (10) in 
their data registers? Observing that erroneous 
results have lost ■ore than half the figures 
carried, we should suspect that certain ■1chines 
have subtractions and/or lag1rith ■s rather less 
accurate than the progra■■ers of their financial 
procedures expected; 1nd tests confir■ our 
suspicions. Besides the ano■alous subtractions 
uncovered above, Ne find that ln<0.9999995) is 
■ isc1lculated on those ■1chines as -s,.-7, not 
the correct -5.00000125,.-7, despite that they 
carry ■ore than ten sig. dee. HaNever, the oNner 
of such a calcul1tor ■ight not be so suspicious 
at first; later he ■ight check the consistency 
<but not the accur1cy) of a result by treating it 
as a datu■ and back-solving for sa■e other datu■. 
For instance, recalculating displays this: 

Calculators press Ci l And ••• ................................. ...................................................... 

27, 92, 37, 38 0.000 000 317100 
12 0.000 000 3t97i 
BA cahtonil 
"BA 0.000 000 3886 

58, sec, 59 0.000 000 3154 



If their 1ccur1cy is not i ■pressive, yet their 
speed is North I thought; Nhile perfor ■ing feNer 
thin about I dozen floating-point oper1tions per 
second, ■ost of these ••chines t1ke less than one 
or tNo dozen seconds to solve I polyno■ ial 

equ1ti0n here of degree n = 31,536 1 000. Ne 
shill return to this thought. 

A single so■eNhat 1rtifici1l sa■ple is not enough 
to de■onstrate ho• ■uch the probability of 
co■putatianal failure is infl1ted by 1no■alous 
arith■etic. But before dr1Ning further s1■ples, 
Ne should digress to reconsider the significance 
of •1rtificial• exa■ples. 

Equation-solving is an iter1tive process akin ta 
exploration. Regardless of ho• typical the data 
and solution ■ay be, the pith follaNed by the 
iteration fro• first guess to final result ■ay 
approach or enter regions that ire financially 
i ■plausible though ■atheaatically legiti ■ate and 
still infar ■ative. Therefore, pragra•s that do 
not alloN an equ1tion to be evaluated accurately 
over the Nidest do■ain on Nhich it ■akes sense 
■athe■atically ■ust cra■p an equation-solver's 
style, as the next exa■ple shoNs. 

Yield from a Risky Invest..ent. 
For an invest ■ent of -PY:= S 35,000,000 now, 
investors are pro■ ised n := 100 equal ■onthly 
install ■ents of an a■ount P"T yet to be agreed 
upon, but betNeen f 640,000 and t 1,000,000, 
plus a final pay■ent at the 1oo~h ■onth of 
FY 1= $ 100,000,000. HON does the yield i , 
reckoned in X per ■onth, vary Nith PNT? 

Tabulated in the first colu■n below ire selected 
values of PMT , with the corresponding yield in 
the second colu■n shown as displayed on any of 
the hp-92, -37E, -lBC or -12C after about a 
dozen seconds of calculation. The third column 
shoNs Nhat the Tl NBA displayed. 

P"T true i 1 i on the "BA 

·····-· ···-····' ..... _,_ ... ,_,.~ 

• 640,000 2.314053 2.314053 
650,000 2.335758 -1,.-,1 mrm6 
660,000 2.357528 2.357528 
800,000 2.669065 2.669065 1fter i long ti1e. 

1,000,000 3.135506 -2106.949 JUIUIG 

The blinking tiny nu■ber is a sy■ptoe of roundoff 
troubles. The other ano■alies could be caused by 
an unfortunate choice of iterative aethod for the 
equation to be solved. 

Bt:LYINB ECIUATltltl81 The custoHry iteration 
for solving any given equation f(xJ = 0 is 
Newtan·,- iteration: 

x~•• a= xk - f<xkJ/f'(xkJ far k = O, 1, 2, ••• 
shrtinCJ fro■ a suitable fi riit guess Ko • If it 
converges, the iteration nor ■ally converges 
quietly, ulti ■ately nearly doubling the nuaber 
of correct figures Nith each iteration, so that 
high accuracy does not cast very ■uch. But the 
financial equation above is abnoraal because, 
though a polyno■ ial equation in x = i/100 , its 
degree n can be so huge that the graph of the 
polyno■ ial is, for practical purposes, spiked 
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and/or stepped rather than ••oath. Consequently, 
Newton's iteration converges too sloNly if it 
converges at all. At first sight, the follaNing 
le■■ a ■akes the situation appear h~peless. 

Letnaill • Newton•s Iteration is Ubiquitous; 
if X is a continuous real function and if the 
ite"ration xk ♦ 1 1= X(xk> converges, fro• every 
starting point xo sufficiently close, to a 
root of the equation FfxJ = 0 , then the 
iteration ■ust be NeNton's iteration applied to 
an equation f(xJ = 0 equivalent to FfxJ = 0 
in the sense that both have the sa■e root. 

The proof, using f(xJ = exp( S dx/(x-XfxJ> > , 
is easy, The le■aa tells us not to bother trying 
iteration to solve an equation unless it can be 
transfor ■ed into an equivalent one Nell suited to 
solution by NeNton's iteration. What does MNell 
suited• aean? One ■eaning I discovered is this: 

Theorem: If f ( x > i s a di ff ere n c e f = u - v 
between tNo convex functions, one aonotone 
nondecreasing and another ■onotane nonincreasing 
throughout soae real interval, then Newton's 
iteration xk., := xk - f<xk}/f'(xkJ cannot 
dither; it ■ust either esc•pe fraD that interval 
or converge Nithin it, no ■atter •here therein 
the i\eration starts. 

This, the ■ost general sufficient condition knoHn 
for the convergence of Newton·s iteration applied 
to solve a real equation, Nas not easy t~ prove, 
but it was worth the effort. The financial 
equation above, Nhen it has just one financially 
Deaningful solution i , can always and easily 
be transforeed into the for• 

, •, ♦ C-sY-1 ♦ C-2Y•I ♦ c.,y-• ♦ Co : CaY ♦ CaY2 ♦ CsY2 ♦ • • • 

Nhere each c, is the aagnitude of a cash-flow 
and y is either l+x or 1/(l+xl , whichever 
ensures that Co> 0. This fora satisfies the 
theore• throughout the interval x > -1 , 
capturing all interest rates i > -100 t : no 
others make financial sense. NaN, applied to the 
transforaed equation, Newton·, iteration ■ ust 
converge fro■ every starting point. But not very 
fast if n far e~ceeds 1000. 

To cope with huge n on the hp-92 , Roy and 
approki ■ ated the root x af the financial 
equation asymptotically ( as n -t ml, and 
used the leading ter• as a first guess for the 
iteration, Despite having to recognize several 
cases, the approxiaation is quick and, when n 
is large enough that it ■ atters, accurate to ov&r 
five sig. dee. Therefore, nobody has to wait 
•orP than about a dozen seconds, long enough for 
fewer than 100 •ultiplications, after pressing 
[1J on the hp-92, -37E, ·38E or -38C no 
■atter how big n eay be. 

Dennis and I used related transfar ■ations to 
solve related equations for Internal Rates of 
Return on the hp-38E and C , Nhose CIRRl t.ev 
will cope with over 2000 cash-flows. Later, to 
cope with a revised version of the financial 
equation above that, unlike the original, aakes 
sensP when. n is not an integer, Rich and I 
used yet another transfor ■ation in the hp-12C ; 



we used ln(yJ instead of v as the independent 
variable in the equation above •ith ter ■ s c,y', 
and applied Newton's iteration to its logarith ■, 
Although each iteration cost no• ■ore ti ■e than 
before, the theore■ continued to guarantee 
convergence which was rapid fro■ every starting 
point regardless of n . Further details are not 
heeded to •ake •v point: 

Every day, hundreds of thousands of people 
employ powerful financial calculators th.at. 
are convenient., fast. and reliable because 
of Physical, Chemical, and now Nat.hea.t.icAl 
technology more intricate than they i111agine. 

Euphoric at the success of the hp-38E, Dennis 
Haras' •anager. Stan Nintz, hu■oured us by 
granting permission to devise a calculator with a 
[SOLVE] ket, despite that no ■arketing survey 
had revealed any de■and for such a thing, and 
subject to one proviso: ■ indful of his struggles 
with integrals in college, he charged us to 
devise an [INTEGRATE] key too. Thus was the 
hp-34C born. Its innovations have been exposed 
elsewhere cq,101. but not the ■athe ■ atical 

insight that ■ade a CSOLYEl key see• feasible. 
Here is the train of thought ... 

Suppose we are given an equation f(xJ = 0 to 
solve but not ■uch ti ■e to study it. Suppose we 
are willing to try Newton's iteration, perhaps 
because the Theore■ above is applicable or for 
lack of a better idea. We will have to write a 
progra• to co■pute f'(xJ as well as f(xJ , 
unless we choose to approxi ■ate the derivative by 
a difference quotient. This choice is tanta ■ount 
to approximating a tangent by a secant, •hence 
the iteration far ■ula gets its na■e, i.e. 
Secant. Iteration& 
• x •• , := x. - f<x.J<x 11 - X11-a>l(f(x.,J-fh11-1J>. 
If this iteration converges, then it is kno•n 
to converge usually slightly faster than Newton's 
unless calculating f(xJ and f'(xJ together 
costs less than about 45 l ■ore ti ■e than 
calculating f(xJ alone. But Nill the secant 
iteration converge? "ore to the paint, will the 
approxi ■ ation of a tangent by a secant leave 
intact whatever reasoning ■ ight have ■otivated 
recourse to NeNton·s iteration? Al ■ast surely 
YES! "ore precisely, I discovered the folloNing 

Phenomenons Suppose that NeNton·s iteration 
to solve the equation f(xJ = 0 converges fro■ 
ev~ry starting gue11 Nithin an interval ta a root 
therein. Then, unle11 f(xJ vanishes inside 
that interval Nithaut reversing sign there, the 
secant iteration ■u1t converge to the sa■e root 
fro■ every pair of starting guesses in that 
interval. 

The proof that this ■ust happen is extre■ely long 
and difficult partly because f(xJ/f'lxJ could 
oscillate pathologically in the neighbourhood of 
a root where bath f(xJ and f'(xJ vanished 
si ■ultaneausly. The phena■enan'1 i ■plicatian is 
i ■■ediate; the Secant Iteration provides as fir■ 
a foundation as NeNton·s for a general-purpas• 
equation solving progra■, but Nith no need for a 
derivative. So Ne created such a progra■ C9J , 
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and Tony Ridolfo ■icracoded it into the hp-34C 
under the CSOLYEl key Nith no scratch registers 
to spare. Later the sa■e progra■ Nas copied into 
the hp-lSC. To use it to solve ftxJ = 0 , 
folio• these three steps: 

- Enter into the calculator under, say, label [Al 
a progra• that evaluates f(xJ given any x . 
(Other labels can be used instead of CA) ., 

- Enter a guess or two at the desired root, the 
closer the better. 

- Press [SOLVE] CA] and see what happens••• 

If f(xJ changes sign anywhere, then CSOLVfl 
will surely locate such a place to within a few 
units in its tenth sig. dee. whenever 

flxJ is strictly ■onotonic, or 
f(xJ is convex, or concave, or 
lf(xJI has ~o nonzero local ■ ini ■u■, or 
f(xJ has different signs at two guesses. 

If both the last two conditions are violated, 
then CSOLVEJ ■av display an approxi ■ation to 
the location of a nonzero lacal ■ ini ■u• of lflxJI 
and signal that it could not find a change of 
sign. Under no circu■stances will CSOLVEJ run 
indefinitely; it al•ays finds sa■ething, even 
if soaet1 ■es the search takes a long ti ■e. Here 
is an exa■ple: 

e.<xJ := signu■ lx-NJ = +I if 
• 0 if 
= -1 if 

X ) N 
X = N 
X < N • 

-----------------+-----+--
------------+-------------------------- ➔ X 
------------ I I 

N Ko 

Try, say, N := 7 and first guesses x. := 101 
and x 1 : = 102. The pro9r1■ far 87(x J is this: 

LBL B 7 - ENTER ABS x-0? ~ RTN 
To enter the first guesses and solve 87(11J ~ O 
for x , press 101 ENTER 102 SOLYE B and Nait 
a ■ inute ta see x = 7.000000000 displayed after 
B7 lxJ has been sa■pled 45 ti ■es. <Ho• does 
[SOLVE] knoN which Nay to turn? See [9],I 
Changing N fro■ 7 to O extends the ti ■e to 
6 ■ in. after 361 sa■ples. Yet longer search 
ti ■es in difficult cases ■ ight have been lessened 
had a fe• eore than the five scratch registers 
allocated to CSOLVEJ been available·in the hp-
34C , but CINTESRATEJ consu■ed a lion's share. 

TIE l:INTEBRATEJ ICEV1 · Aaong innu■erable 
nu■erical quadrature procedures av~ilable in the 
literature and in co■puters, •hat distinguishes 
this one is its relative ease of use. Esti ■ating 

1 := Jxy f (t) dt 

on the hp-34C and hp-15C •ntails these steps: 

- Enter into the calculator under, say, label CA] 
a progr1■ that evaluates f(rJ given any x. 
(Other labels can be used instead of CAJ .) 

- Set the di1pl1y to lhON II a1ny digits of the 
integr.nd f H ■atter. ("ore an this belON,) 

- Put in the li ■its of integr1tion thus: 
y ENTER x 

- Press cs:i CAl and Nait for the results. 



Foreaost in the display, in the I-register, 
will be the estiaate of the desired integral 1 
behind it, in the Y-register, will be the 
uncertainty ,1 in 1 inherited fro• the 
tolerance allowed in f , Nore preciselv, the 
cs:1 kev esti ■ates not aerely 1 = Si f dt 
but actually I! iz c SI (f ! &f> dt •here all 
that is asserted about if is that flt>! if<tJ 
agrees •ith fCtJ in 111 digits displayed. 
&eoaetrically, the graph af f ! if is a ribbon, 
centred along the graph of f , containing 111 
graphs regarded 11 practically indistinguishable 
fro• that of f , The area under the graph of f 
is 1 , and is uncertain by til where 2~1 as 
the area of the ribbon. 

Here is I fa■ iliar exa■ple: 
l := U<x> :s S: exp(-t 1/2J dtl;<2•> . 

Since the integrand underflows past 10_.. ta zero 
when t > 22, replacing the upper li ■it • by 
22 discards nothing but converts the iapraper 
integral UtxJ into I proper one that any general 
purpose nu■erical quadrature pragr•• can evaluate 
easily. Designate this procedure •"ethod A• ; 
as we shall see, it will waste ■ost of its ti ■e 
sa ■pling the integrand at places where it 
contributes negligibly to the integral. Another 
procedure, designated •Nethod e• , substitutes 
s• = sin••( exp{-tl/2) J to transfor1 the i ■proper 

integral Q(xJ into a proper integral: 

1(1ir• (11pt-11/2H t a,., • I f( (1in(11J ♦ l) (1i11ts1J-l)/111 (1inl11m -I , 
0 • 

except if x < 0 calculate Q(xJ := 1 - Qt-xJ • 
Although the transfor ■ed integrand is finite 
everywhere, it does have two weak singularities: 

One is at s = O where an atte■pt to calculate 
ln O could stop the calculator, but it Nan't; 
the CS~l key is designed to avoid draNing 
11■ples of the integrand fro■ the ends of the 
r1nge of integration lest singularities that are 
otherwise easily integrable derail it there. 

The second is a re■ovable 0/0 type singularity 
th.t occurs when 1 1 = a/2 . It loaas near Nhen 
x is 10 tiny, and the upper li ■it of integration 
10 nearly i(n/2) , that 1• approaches a/2 
ne1r enough far sin 11 to round to very nearly 
1 ; then both sin s 1 - 1 and ln sins• 
will be seriously canta■inated by rounding error, 

Could that error reduce the integrand ta useless 
Junk 1= Roundoff/Roundoff? Nat an the hp-l4C 
nor hp-15C. The roundoff cancels itself; treat 
sin•• instead of s as the independent variable 
to see •hy. Therefore, the integrand will be 
evaluated accurately provided subtraction and 
logarith ■ are bath accurate to full •orking 
precision, as they are on these ■1chine1 but not 
sa■e others. 

·The pragra■s for ■ethads A and 8 are short 
enough ta shaw here: 

LBlA 22 I l 11+ l.k0 ftUYLSTl¼UYRTN 
lBl l 1• 2 CNS t e1p RTI 

LIL I RAD 6SB I SJI•• f 0 UY I 2 1 ST0 0 
Lk 2 EITER 11 SIN U LSTI I - f LSTI 2 + UY ¾ f I RTII 

Before they are run, the display should be set 
ta show just 11 ■any figures 11 are wanted. For 

19 

four significant figures, press [SCI. 3. ShoNn 
below far bath ■ethods and far a few ~alues of x 
are esti ■ates of the integral Q{xJ , and how 
often the integrand Nas sa■pled to get each, and 
the elapsed ti ■e. 

10 

l.96 

0 

Cll1J by lltthod A 
and by llethod 8 

7 .619810·24 !. 1710·28 
7.6199,o-24 ! 1810·28 

0.024998 ! 0.000006 
0.024998 ! 0.000006 

0.499999 ! 0.000045 
0.500003 ! 0.000146 

I 111ples 
I HIC)les 

127 
7 

127 
15 

63 
15 

sec. 
sec. 

227 
27 

227 
58 

J16 
58 

For higher accuracy, say 7 or 8 sig. dee., press 
[SCJl 7 before running the pragra1s; typical 
results for 1ethods A and 8 respectively are 

llalOJ = 0.4999999998 + 0.0000000047 at 255 SIIC)les in 444 sec. 
a.tOI = 0.5000000002 ~ 0.0000000135 It 63 weples in 216 stc. 

This exa■ple ■1kes it all seem easy. Actually, 
reliable and rapid nu•erical integration is still 
so■eNhat a black art, especially when combined 
with devious transfar ■atians to ta1e otherNise 
Mild or nearly iaproper integrals. Frequently 
these transfor ■ ations flirt with singularities. 
So■e singularities, designed to cancel each other 
har1lessly 1 Nill do just that despite roundoff. 
because the underlying arithmetic and ele■entary 

functions in the hp-34C and hp-15C have been 
iaple■ented so carefully. Other singularities 
cannot be re■oved but can be weakened enough to 
be tolerated by the [f~l key's quadrature 
pracedure ClOl ; and then even if thousands of 
sa■ples of the integrand have to be accu1ulated 
they Nill be added so accurately, because the 
calculators carry three extra digits for the 
purpose, that roundoff inside the quadrature 
procedure Nill not obscure the desired result. 

The user of these ■achines can re■ain blissfully 
unaware of details that, an so■e other co1puters, 
could bring grief to a pragra■ he thought was 
pretty clever. 

However, no integration procedure nor equation 
solver based exclusively upon a sa■pl1ng strategy 
can be foolproof. Ta understand why, consider a 
procedure that purports to acco■plish one of the 
following tasks for an arbitrary function f 
given only a progra• that calculates f(xJ for 
any given •rgu■ent x in sa■e specified range: 

Evaluate S f(tJ dt aver the given range. 
"ini ■ ize f(xJ aver the given range~ 
Find out •hether and where f(xJ a O. 

Ne shall test this procedure first upon a pragrae 
that returns always f(xJ 1a 1 but also prints 
out a record of its argu■ent x • Then for sa■e 
finite N •• shall know that the procedure drew 
11■ples flx 1J, flx 1 J, flxsJ, ••• , fCx .. ,J, ftx.J 
•hile atte■pting ta acco■plish the assigned task. 
Next let us test the procedure upon a second 
progra■ that returns 

fhJ 1• I • (c (1-111(1•11H1·1al ( • • • > C.-1 .. , I Cl·••>I 1 , 



Nhere c is chosen so big that f reverses sign 
■ore than t•ice. Since both functions f(x> 
return exactly the sa■e value far every 
sa ■ple drawn, the procedure ■ust deliv1r the 
saee result far bath functions; but na such 
result can be correct for both. 

Therefore the CS~l key ■ust be as fallible as 
all other sa■pling procedures. Spikes ar ju■ps 
or violent oscillations can precipitate failure. 
For exa ■ple, atte■pts to evaluate nu■erically 

So!oa <t-0.05) t•• exp<t/t) dt = -134.26994 ... 
too often deliver instead a very Nrong esti ■ate 
like +0.1359. That is the area under the graph 
of the integrand between t = 1 and ta 0,6 , 
an area shaped like a triangular sail. The graph 
practically coincides Nith the t-axis betNeen 
t = 0.6 and t = 0,016. Between t • o.016 
and t = 0.01 the graph is a sharp spike rising 
fro■ -1,075,246.9 at t = 0,01 up to -1.571 
at t = 0.012 , up to -0.0106 at t = 0.013 , 
and nearly zero thereafter. Therefore, ■ost of 
the integral lies in a narrow spike only 1/500~ft 
the width of the range of integration. Sa■pling 

is ■ost unlikely ta reveal that spike unless the 
saeples are very nu■eraus, as is the case only 
when high accuracy is desired. Evaluating the 
integral in the obvious way with l sig. dee. 
displayed <CSCIJ 2) on the hp-34C yields the 
expected misleading result +0.1357 ! 0.0003 
after 31 sa■ples. Nith 4 sig. dee. displayed 
([SCI] 3) the result is -134.26994 t 0.02 
after 2047 sa■ples, correct but costly. A ■ore 
econo■ ical Nay to evaluate this integral is as a 
su■ f 0~01 = S8:8P + fo~oas ; each ter ■ can be 
be evaluated separately and added later ta yield 
-134.270 t 0.022 after 126 sa■ples all told 
at CSCIJ 3. Neith•r this partitioning of the 
integral nor its necessity would be obvious ta 
so■eone •ho did not knoN what to look for; the 
cs:J key could ■ islead an uneducated user badly. 

THE CALCULATOR QlilER•s HANDBDCl(1 A ca■puter 
·is dee■ed Reliablt when its users are never 
surprised by saaething its designers ■ust later 
apologize for. How can designers and users who 
never Deet learn what to expect fro■ each other? 
Through education. That is the key to reliable 
coDputation. Exhorting aanufacturers to build 
reliable equip ■ent is •ere counsel of perfection 
unless they can learn how to design it at a 
tolerable cast. And then, as refined equip ■ent 
free fro■ avoidable anoaalies beco■es available, 
users aust be taught what to expect and ha• to 
e~ploit it. Obviously, expectations Nill be 
influenced, if not taught , by the 0Nner·s 
Handbook and whatever other docueents the 
ai•ariufacturer supplies ta i nfor ■ and indoctrinate 
the custoDer. Ca■■unicatian the other Nay is 
less obvious; only recently have saae 
■anufacturers co■e to appreciate haw auch they 
learn fro■ the Owner's Handbook before it is 
written, before the ■achine is designed. 

HoN should arith ■etic be designed? A siaple goal 
for ■ost of a calculator's arith ■etic functions 
would be easy to state Clll : 

Keep the error strictly s■aller than one ulp. 
<An ulp is one Unit in the Last Place.) 
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But this specification accoaplishes less than one 
■ ight reasonably desire; far instance it ensures 
neither the sign-sy■■etry of sin(xJ = -sint-xJ 
nor the ■onotonicity of fx. Neither is the goal 
easy to achieve; soaeti ■es it is i ■practical. 

Far exa■ple, recent hand-held He•lett-Packard 
calculators that accept and deliver data to 10 
sig. dee. produce tNo results, 

129n.9 -➔ 7.968419666,095 •nd 3201 ➔ 7.968419664 .. 95 , 
of •hich at least one (it is the latter> aust err 
by ■ore than one ulp. Only near the overflo• and 
underflow thresholds do the exponential functions 
go so far as t•a ulps wrong; ta keep their error 
below one ulp here taa Nould have required that 
inter ■ediate calculations be carried ta ■ore than 
the 13 sig. dee. actually carried 1n a few 
internal registers of these aachines. Would the 
cost and speed penalties paid to carry an extra 
figure be offset by noticeably enhanced accuracy? 
Not likely. And sa■e offensive inaccuracies 
Nauld persist even if twice as ■any figures were 
carried. Consider sinlnJ = 0. This equation 
presu■es that the sin{ •.. , procedure is giv1n 
exactly n = 3.14159 26535 89793 23846 26433 .... 
But, instead of n , the Cnl key delivers 
Cnl = 3.14159 2654 = n rounded to 10 sig. dee. 
only after Ne notice their difference will we 
recover froa our initial surprise at pressing the 
CSINJ ~ey and seeing CSINltCnJJ = -4.10,o-10 
instead of zero. Our second surprise is finding 
error in the 4tft instead of 1oeft ~ig. dee. of 
CSINl (Cn]J 'I- sintCnl> :: -0.00000 00004 10206 76153 1 •••• 
This gross error is due to the calculator's use 
internally of only 13 sig. dee. of n. Larger 
radian argu■ents incur larger errors; 

[SIN){[irJ aoW = +O. 79905 50814 I sin([1) 1014} = -0. 78387 •••• 
< Angles in Degrees incur no such errors; for 
instance CTANll 10' •, = -5.671281820 correctly 
for k = 2, 3, 4, 5, ... , 99 .> The only way to 
avoid such errors with large radian angles is to 
retain n to very high accuracy; over· 120 sig. 
dee. would be needed for these calculators. That 
extravagance is feasible and attractive in la~qe 
coaputers with large ae■ories [12] , but not in 
calculators. Besides, because uncertainties so 
s ■all as half an ulp in the input argu ■ents swa■ p 
the errors we have been discussing, these errors 
have al ■ost no iapact upon the scientific and 
engineering calculations far which calculators 
were designed. What little i ■pact aight re■ain 
is further attenuated by the preservation, ta 
within an ulp or two on these ■ achines regardless 
of haw big x aay be, of identities like 
sin(2xJ = 2 sinlxJ costxJ that do not involve n 
explicitly. Therefore errors caused by not using 
exactly n , and the convoluted excuses for 
thea, are tolerable; for ■ore details see C6J. 

Intolerance would not st ■plify the situation 
■uch. Suppose •e insisted upon Perfection and 
found it,- a ■achine whose every arithaetic 
function rounds correctly ta within half an ulp. 
(This is feasible for algebraic functions but 
i ■practical for exponential and transcendental 
functions,> Mould this Perf•ctian preclude 
arith■etic surprises? Regardless of~the breadth 
of our experience, NO. For ex••ple, ••ny an 
inexperienced calcul•tor user Nould continue ta 



be surprised th1t <(x>• = x is often spoiled by 
roundoff; on deci ■1l ■1chine1 viol1tions abound 
for 1 < x < 10 and 25 < x < 100 but none lie 
in 10 f xi 25. Dn the other hand, experienced 
cynics, expecting nothing to survive roundoff, 
■ust be surpri1ed to discover, on binary and 
quaternary ■achines but not on those with larger 
radix, that despite roundoff (<x•> = txl for 
all x unless x• over/underflows. These 
surprises can be confir ■ed first by experi ■ent, 
then by si ■ple proofs. Recent results of Harry 
Dia■ond C13l suggest that surprises like these 
■ust pervade correctly rounded arithaetic. Yet 
so■ething worse lurks there. 

Correctly rounded arith■etic conceals ano■alies 
so rare that no conscientious progra■■er could 
reasonably be expected to discover the■. Ne do 
not expect such a progra■■er to prove his every 
progra ■ correct; doing so ■ ight entail a proof 
as difficult as that of the Four Colour Theore ■ 
for planar aaps. Alternatively, the progra■■er 
■ ight be forced to insert defensive code to cope 
with eventualities that al ■ost never happen, if 
they can happen at all. Either way slows down 
the prograa1er; and defensive progra■■ ing slows 
doNn the progra• too. Besides, whatever causes 
errors in progra■s also causes errors in proofs. 
Therefore every progra• ■ust be run through tests 
upon saaple data drawn reasonably denselv from 
its do■ain. But so■e ano■alies are too rare to 
be caught by that kind of test. For instance, 
consider a function f(xJ := r - sin(xJ that 
figures in proble■ 2 on p. 12 of P. Henrici ·s 
book [14] . f'(xJ = 2 sin2 (x/2J ! 0, so fix) 
■ust be aonotone non-decreasing. Can the sa ■e be 
said for Fix) := x - SIN(x) where SIN(xJ is 
sin(xJ correctly rounded? Yes, everv•here 
except at a scattered handful of exceptions, each 
an accident of radix and wordsize. For instance, 
when rounding to 6 sig. dee. the sole exception 
is at x = 0.100167; to 5 sig. dee. it is at 
x = 0.010000 to 4 sig. dee., no•here: 

X sinlxJ SIN(JiJ F<xJ 
...,._,._,4','l,'\,111, ... "'"'"'"'"'"'"'"'"'"'"'"'"' ...... 4'1, ... 1111,,"' ..... " ............ "..,""''\, 
0.100167 0.09999958095 0.0999996 0.001)1674 
0.100168 0.1000005759 0.100001 0.0001670 

0.010000 0.009999833334 0.0099999 0.0000002 
0.010001 0.01000083328 0.010001 0 

So, unco■pro~ising adherence to the most rigorous 
rules for approx1aate arith ■etic will not protect 
a co■puter from unpleasant surprises. Apparently 
the approxi ■ation of the cont1nuu• bv a discrete 
set aust introduce so■e irreducible quantum of 
noise into ■athe•atical thought, as well as into 
computed results, and we don't know how big that 
quantum is. If Ne have to tolerate this unknown 
noise, we might as Nell tolerate a little ■ore. 
Tolerance grants the designer of a co■puter's 
atithmetic not carte blanche for arith ■etic 
anarchy but rather his ■andate: 

Keep both noise and cost tolerably small, 
the smaller the better. 

Tolerable to whoa? To the custo■er, to who• the 
designer would rather not have to apologize for 
unfortunate consequences of a co■pro■ise that mav 
have been unnecessary. Thus do we circle back to 
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the real world, where Science c1n tell us how to 
do it, or not to try, but not what to do. The 
designer of co■puter 1rith ■etic ■ ust be guided in 
his choices by so■ething ■ore than ■athematics: 

Design arithmetic functians in such a 
Nay that al1D0st na user need know enore 
about them than the designer is proud 
to explain in the Owner·s Handbook. 

If the handbook says nothing ■ uch about the 
accuracy of the functions, then they had better 
be so accurate that nothing ■uch need be said. 
Such is the case for 111 financial functions and 
all ele■entary real functions of one or two real 
1rgu■ents on recent Hewlett-Packard hand-held 
calculators. Rational oper1tions (+, -, x, fl 
and fi are correctlv rounded to within half an 
ulp; the logarithas and inverse trigonometric 
and inverse hyperbolic functions are al ■ost as 
good. No errors worse than the subtle ones shown 
above afflict trigonometric functions of radians, 
and exponential, hyperbolic and gaaaa functions. 
( The [1!l key delivers x• = rcx+ll for non­
integers on the hp-34C and hp-l5C .> So little 
worse than best possible are these errors that no 
■ention of them appears in the Owner's Handbook, 
though an auxiliary handbook describes the• fullv 
in a chapter [6] destined to be forgotten as soon 
as it is read. On the other hand the cr+J kev, 
used to calculate standard deviations and perform 
linear regression upon pairs (1 1 , y1 ) , uses 
algorithas chosen ■ore for compatibility with 
past practice and for speed than for nu ■erical 

infallibility, and gives unreliable results Nhen 
all the data x1 agree in their first several 
sig. dee. The Owner's Handboo~s supply a sieple 
and efficient reaedy; te■porarily oait redundant 
leading digits. In other Nords, when all data 
are verv close to their ■ean, subtract an 
appro~iaate aean fro• them before entering them. 

So far, the Owner's Handbool has been depicted 
as ■ore a contractual than tutorial docu~ent. lt 
tells the customer •hat he has bought, offering 
advice only wnen it is brief and necessary to 
avoid misunderstanding. The manufacturer of the 
coDputer is not obliged to teach the custoeer how 
to co~pute. That policy see■ed sound until 1t 
collided with the hp-34C whose powerful cs:1 
and (SOLVE) kevs invite abuse. Where would the 
custo~er learn how to use those ~e~s reliably? 
Not from standard texts on Nu~er1cai Analysis ; 
they tend to drown the reader in 4oraulas none of 
which match the calculator's algorithms. ~ardly 
any tett e~plainf how to recognize wild integrals 
and tame them, or what to do when an equat1on­
solvi1,g iteration finds no root. Whether tt,ese 
be rare pathologies or not, the~ ~ust happen 
dailv to at least several among the hundreds of 
thousdnds of users of the calculator. Where 
woulc blame for these pathologies coae to rest-

Robert Barkan and ~anL Schroeder wrote ■ost of 
the Owner's Handbool for the hp-34C. Thev 
were not confident that they could reverse a long 
standing polic~ ~gainst tutorial ~atter in the 
handbook when they decidea to include two ertra 
ch~pteri, one on integration and one o~ eQuet10~ 
solv1r-g. Each thacter discusses its subJect ·s 
pat~olog1es with exaaples worked o~t o~ the 
calculator, but the d1scuss100 1s otherw1s~ 



independent of the calculator·s particulars; 
these chapters, like the subsequent articles [9] 
and [10], aight •ell have been written for a text 
on numerical aethods. The chapters constitute 
part of an appendix at the end of the handbook so 
that nobody will think he has to read the■ before 
using the calculator. Indications are that 
everyone who uses the Cf:l 1nd [SOLVE) keys 
has read those chapters and appreciates the■. 

Soaething else was needed for the hp-lSC. The 
user of this sli• (128■•• x 80■•• x 15■■ .> 
shirt-pocket calculator can, in a single key­
stroke, atte■pt to invert a singular aatrix, or 
evaluate a coaplex analytic function at a slit­
d1sc0ntinuity in its doaain. Tutorial chapters 
for this ■achine could a ■ount ta a text covering 
two years of college ■athematics for engineers, 
leaving out only vector calculus (divs, qrads and 
curls). Our inclination to eabed such a text 1n 
the Owner• s Handbool ••as def 1 ected by a prudent 
■ arketing specialist who explained to us •.. 

0 The Intimidation Factor: 
A potential custoaer, wishing to purchase an 
advanced stientific shirt-pocket calculator, 
peeks into the box and sees nestled there a 
s110 calculator beside a very thick book . ••• 0 

Instead we put tutorial aatter into a second book 
Cl~J that a calculator owner could buy later. 

CONPLEX NUNBERS AND NATRICES1 The hp-lSC 
1s d1st1nguished fro■ all previous calculators by 
1ts treat•ent of coaplex nu ■bers and aatrices as 
arithmetic abjects in their own right C16J rather 
than as eere aggregates of nuebers. The rational 
operat.ion keys C+J, [-J, [x), t+l and Cl/x] act 
upon complex nuabers or upon aatrix operands just 
dS they act upon real nu■bers: other keys like 
[(lll, Cy•}, CSINl, CCOSH·•J, etc. calculate their 
analytic functions of coaplex as well as real 
nuabers. The CABS] key delivers lxl for real 
or complex x; other key strokes deliver the 
determinant. and various norms of a eatrix. Of 
course, earlier calculators and coeputers can be 
programeed to perfore siailar operations, albeit 
not so easily nor so accurately. The hp-15C 
takes the tediu■ out of these operations; 1n a 
small package it offers soee of Fortran's 
convenient handling of coaplex arithaetic, soee 
of APL's convenient handling of array arithaetic. 
Teachers see ■are than ■ere convenience there; 
students using the hp-15C can experi ■ent Nith 
powerful abstractions and le&rn their value 
before having to learn ho• to iapleeent the■• 

To illustrate the value of convenient coeplex 
arith ■etic, let us apply it to three probleas in 
"atheaatical Physics, •11 sharing the following 
figure in the <x,y) plane: 

y 
t 

y=2 U=n ---------+--------- U=n --------
y=1 U=O ---------t 

I 
y=O - t--------- U=O --------➔ X 

x=O 
A Slab, i Strip, a Channel. 

Preble■ 1. The figure sho•s the cross section of 
a large aetal slab whose thickness doubles just 
as a straight line is crossed. The slab's flat 
upper surface is kept at a constant te■perature 
U = n • The 1 ower surface, Ni th the step, is 
kept at a constant te■perature U • O. How does 
the teaperature U<x,y) vary inside the slab? 

Proble■ 2. "aterial of unifar ■ resistivity and 
thickness is laid down in a very long strip whose 
width doubles at the step shown in the figure. 
An electric cu_rrent passes through the strip; 
how aust the voltage Y(x,y) vary in the strip? 

Preble• 3. The figure looks doNn upon a long 
channel of constant depth Nhose width doubles at 
the step. Nater flows sloNly ilong the channel. 
Floating in the water is a tiny cork chip; what 
path Must it follow? The path, a "strea• line", 
is a level curve of a •strea■ function• U<x,y>. 

UCx,y) and V(x,y) both satisfy the sa■e partial 
differenti&l equation, -Laplace's equation 

a2u,ax 2 + a2u,ay 2 = 0 :: a2v,ax2 + a2v,ay:1 ' 
but Nith different boundary conditions. U takes 
boundary values shoNn in the figure. The noraal 
derivative of Y vanishes upon the boundaries 
shown in the figure, and Y/x tends to a li ■ it 
as x ➔ m and to twice that lieit as x ➔ -m. 

Engineering students are usually taught a finite 
difference or finite eleeent ■ethod to calcuate 
U nu■erically. A ■esh is laid upon the strip to 
partition it into aany tiny cells. To each cell 
corresponds an equation saying that U therein 
approxi ■ ates a weighted average of its values in 
neighbouring cells. The solution of this systea 
of equations approxi ■ates U. The usual way to 
iaprove accuracy is to refine the ■esh, thereby 
increasing the nuaber of equations to be solved. 
Because the solution U has a singularity at the 
intruding corner (at x•O, y=l) , it Nill not be 
approiiaated Nell near there unless the ■esh near 
there is refined. Therefore, calculating U 
this way ■ust be tedious. If Nathe■atics be the 
Art of Calculation without Coeputation, this is 
not "atheaatics; it is ■ore like Si ■ulation. 

Tabla 11 Paint■ he 1 :r:> an the Straa■ Lina u -0.01 . 
U: 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Y: -1.6 -1.2 -o.e -0.4 -0.2 -o. 1 0 0.1 0.2 0.4 o.e 1.2 1.4 1.6 
x: -0.3680 -0.2540 -0.1480 -0.0566 -0.0209 -0.0075 0.0002 0.0012 0.0018 0.0028 0.0053 0.0118 0.1367 0.5248 
y: 1.0029 1.0028 1.0025 1.0020 1.0015 1.oou 1.0002 0.9921 0.9769 0.9307 o.m4 0.4636 0.0448 0.0130 
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The classical ■1the■atic1l solution of the three 
prable~s e■ploys caaplex variables and confar■al 

transforaation: Associate position in the plane 
•ith the ca1plex variable z :; x + ry and let 
w(zl :; V + rU be co■posed fro■ the solutions 
U<x,yJ and VCx,y> of the three problems. Here 
r• c -1 . Rather than express w in ter ■s of 
z , we shall express z as a function of w, 
as is convenient for platting level curves along 
which either U is constant or V is constant 
in the z pl1ne. It turns out that 

z ;: < 2 cosh-'<<2,•-5J/lJ - cosh-1 ((5-S,◄J/lJ )/K. 

To type this expression onto the page takes about 
t•ice as ■any keystrokes (72 vs. 38) as ta enter 
the progra■ that calculates it into the hp-15C 

LIL C e• ENTER ENTER+ 5 - l ¼ CUSH·• ENTER+ 
5 ENTER 8 Rt¼ - 3 ¼ CUSH-• - n ¼ RTN 

To plat strea■ lines, curves along •hich U is 
constant, use the pr09ra■ as follows. Choose a 
constant value between O and n for U. As V 
runs fro• -e to +4 , say, so does w :; V + rU 
run along a horizontal line seg■ent in the w 
plane whose i ■ age in the z plane is the desired 
strea■ line. A point z :; x + ry an that curve 
is located by pressing keys thus: 

rEYSTROKES IWERATJON PERFOflllED DISPLAY 
r CENTER] u Cfl m Cre1h • s r + rl r c 

Cf) [Cl C.lcul1te z :: 1 + ry I c 

Cf] [(ill lilpl1y i11gin1ry p1rt y c 
nt11 1nnwici1tor •c• indicatts .tien anly one p1rt, rt1l 

or i11gin1ry, of i tCllpltx v1lue is being displ1yed. l 

For exa■ple, Table 1 shows how the strea■ line 
U a 0.01 bends around the intruding corner. 
Each point costs about 15 seconds to calculate 
and plot on graph paper, 10 tediua has not been 
banished entirely; so■e ti ■e ■ust pass before 
inexpensive shirt-pocket calculators will be able 
to display a plot of strea• lines auto■atically. 
On the other hand, soae ti ■e ■ust pass before 
co■puters capable of driving graphics screens or 
pen-plotters can be expected to possess as full a 
set of co■plex elementary functions as has the 
hp-1SC. Only recently have such functions begun 
to.appear in a few APL installations. Far over 
twenty years, full i ■ple■entations of Fortran 
have included co■plex arith ■etic too, but not all 
the ele■entary functions; for instlnce, cosh-• 
is ■ issing. Therefore, the for■ula for z 
above would have to be transfor ■ed by the little 
known substitution 

cosh-•<qJ • 2 lnl f((q+1J/2) + f((q-lJ/2) J 
into so■ething expre11ible in Fortran; -

z s ,2,., la( ,c,•n, (f(t••ll+f(tL41J• I (2f(tLU ♦f(t"-4U J • 
Confir■ ing this transfar ■atian requires, besides 
tedious algebra, c1reful analysis ta check that 
it ■aps boundary values correctly. Such checking 
is nontrivial because f1■ iliar for ■ulas valid for 
real functions frequently fail for the principal 
branches of ■ulti-valued co■plex analytic 

. functions [17]. For inst1nce, far■ulas like 

(Cxy) a (x (y , ln(xyJ • ln(x} + lnlyJ and 
cosh·•txJ • ln(x + ((x•-1JJ , valid when x and 
y are real and positive, ■av fail when x and 
y are co■plex in the left half-plane. Noreoier, 
rounding errors can ruin for ■ulas that would be 
correct otherwise, as h1ppens to the substitution 
for cosh-• <q I above •hen q i I nHr t1 
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Foraulas robust in the face of roundoff are hard 
to find; the following instance is used in the 
hp-lSC tc calculate r + rs := cosh·•<qJ 

r := sinh·I( Rl( t'(q+ll 7'<'M> J ) and 
s :; 2 arctanC Ia, t'<q-11 ) I R1( t'Cq+ll J I • 

Here the overscare signifies Co•plex Conjugate. 
.Fortunately, recondite for ■ulas like these have 
been found for all the ele■entary functions, a"d 
Dr. Joe Tanzini painstakingly ■ icroprogra ■■ ed 
the■ into the hp-lJC . 

Do not be ■ isled by the foregoing illustrations 
into thinking either that co■plex variables are 
tric,y, or that they will ever supplant f1n1te 
ele■ents. On the contrary, co■plex variables are 
as easy to use as real when i ■ ple■ented properly. 
And they supple■ent rather than supplant other 
nu■erical procedures. Experience with coaplex 
variables builds experience with conforaal 
transfor ■ations that straighten corners, and with 
similar techniques that re■ove sin9ular1t1es 
analytically before they e•barrass naive nuaerical 
■ethods. Helping students and teachers acquire 
and pro•ulgate that experience is a part of the 
hp-15C's ■ ission that I hope will soon be picked 
up by other coaputers, with bigger displays, 
capable of exhibiting confar ■al transforaations 
graphically, 

Display li ■ itations appear also to inhibit ■atrix 
~arith■etic on a calculator, but appearances are 
i 11 usor v. People rarely (perhaps too rarely I 
pay attention to va,ues generated in inter ■ed1ate 
calculations; and even when a displayed value 1s 
exa ■ ined it serves at least as often to confir• 
that the correct variable has been accessed as to 
check •hether its value is correct. Evidently a 
variable's na■e •eans ■ore than its value. This 
observation led ■e to propose ta Dennis Har ■ s and 
Rich Carone that a calculator be built to display 
Descriptors instead af values for matrices. 
Nhereas a calculator ·s scalar variables are na■ed 
by their addresses, whereby Ne locate their 
values in ■e■ory, every ■atrix variable could be 
addressed by its na■e, each linked ta a pointer 
to an otherwise anony■ous array of values. This 
sche•e requires dyna■ ic ■e■ory ■anage■ent, which 
relieves the user of the hp-l5C of any need to 
lno• where in ■e■ory reside his ■atrices <or the 
auxiliary stack far coaplex variables, or scratch 
space for the [SOLYEJ and CSeJ keys.> The 
i ■ple■entation of dyna■ic ■e■arv ■anageaent and 
■atrix input/output for the hp-15C fell to Eric 
Evett; Paul "cClellan ■icrocoded the aatrix 
arith■etic operations. Details appear in (151 
and [16l, so an exa■ple here will suffice to 
sho" hoN e1sy they have ■ade ■atrix ca■putations. 

Consider this 4x4 ■1trix A and its inverse: 

I 
6 -l ·3 l 

I· I 
-5 -6 23 

2i I · A= ·2 O I 3 A·•• ·11 -13 50 
2 -1 0 I -7 -8 31 12 

-3 2 -I 0 -1 -J 5 2 

These keystrokes enter A into the hp-15C : 
4 ENTER DIN A Dtclut that A is 414 • 
USEI MTRII 1 lnitializt 1111• thrOllgh 11trix. 
6 STOA l CHS STD A l DIS STD A l STD A 
2 CHS STOA 0 STD A l STD A l STD A 
2 STD A l CHS STO A 0 STD A l STD A 
3 CHS STD A 2 STD A l CHS STD A 0 STD A 



Each tiae CSTOJ [Al is pressed during this •alk 
through the matrix A, •c A 1,J J• displays 
■oaentarily to tell the user which eleaent of 
which •atrix is being altered. At the end of the 
walk, after •c A 4,4 J• has been seen, all 
ele■ents of A have received their values. 
This ~nput takes about 40 sec. 

coapute C : • A-• : The next few ~eystrokes 
RESIA.T C Tells hp-l5C llhere to put A-•. 
RCL ftATRIX A 
[l/rl 

See [ A 4 4 J displayed. 
Set [ running 1 for ll sec., 
then CC 4 41. 

The displayed descriptor tells the user that a 
4x4 ■atrix C resulted fro■ the last operation 
and is now ready for the next. To view the 16 
ele•ents of C, press CRCLJ [CJ 16 ti ■es. 
Each ti ■e, •[ C 1,J J• will display for a 
•o■ent, and then the value of c,, , where the 
indices i,J advance i~ lexicographic order fro■ 
1,1 to 4,4. This walk takes about half a 
■ inute, or t•o •inutes if the ele■ents are copied 
onto paper, and shows 

I 
-5.000000049 -6.000000059 23.00000022 9.000000085 

C = -11.00000011 ·13.00000013 50,00000048 20.00000019 
-7.000000067 -8.000000080 31.00000030 12.00000012 
-1, 000000011 • l.000000013 5. 000000048 2. 0000000 l 9 

A syste■ of linear equations Ad= b can be 
salved for d = A-•b without calculating A-• , 
Instead, use the C¼l key thus; press 

RESULT D RCL NATRIX 8 RCL NATRIX A 
to display the descriptor of the solution 
calculated faster and ■are accurately. 

[¼] 

d 

How accurate is C? Were it not obvious, we 
would have ta averesti ■ate the loss of accuracy 
by ca•put i ng a candi ti an nu■ber 1A-•1 IAI ; the 
nor• 1 ... 1 here can be any of three built into 
the hp-lSC. The row-su• nora, "atrix 
Operation 17, is invoked thust 

RCL NATRIX C NATRIX 7 
RCL NATRIX A NATRIX 7 
[ X • 

IA-11 * ICI = 94. 
IAI • 11. 
ICI IAI = 1034. 

This indicates that so■ewhat less than 1034 ulps 
was last to roundoff; the reasoning is explained 
in the chapters on ■atrix operations and errors 
in [15). Also explained there is how to i ■prave 
the accuracy of d by It,rativt Refin,a,nt; the 
residual c = b - Ad is calculated in one step 
by Natrix Operation 16, and the solution e of 
Ae = c added to d. In this process, as in 
matrix aultiplicatian and inversion, the hp-lSC 
fares better than ■ ight be expected of a ••chine 
that carries ten sig. dee. For exa■ple, let E 
be a multiple of the notorious Hilbert ■atrix: 

EaJ := 360360/(i+j-l) far 1 i i,j i 8. The 
constant 360360 ensures that every ele•ent of 
Eis an integer, hence exact, and Bx8 is as 
large a ■atrix as fits in the calculator. In 
under 90 sec., it gets E-• correct ta rough! y 
three sig. dee., three aare than are expected in 
vi H of 1e-•1 IEI > 10'° . This extra accuracy 
is no accident with ill-conditioned ■atrices like 
E, prone to systeaatic cancellation, but is due 
to extra-precise accu■ulation of scalar products 
to 13 sig. dee. during ■atrix operations. 

The hp-lSC does not refuse to invert a singular 
matrix A but instEad inverts so■e nearby nearly 
indistinguishable A+6A: since ltA+t.A>-•I ■ust 
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be huge, bigger than I/It.Al , -the nature of A 
is revealed. Because of this policy, one of the 
solutions d of a consistent syste■ Ad= b 
•ill alNays be delivered Nith ldl not ■uch 
bigger than it has to be. 

Least squares proble■s can be solved on the hp-
15C by using the nar ■al equations and si ■ple 

progra■s, or by •ore robust pragra■s based upon 
orthogonal factorization techniques like those in 
the book [18] by Lawson and Hanson, especially 
an pp. 66, 208-212, and 275. Progra■s of both 
kinds written by Paul NcClellan appear in ch, 4 
of C15l together with advice an when to use the■• 
One of the■ can solve least squares prable■s Nith 
linear constraints and perfara linear regression 
upon up to five independent variables with any 
arbitrarily large nuaber of observations. 

With aachines like the hp-lSC in their shirt­
packets, students of engineering, aathe■atics, 

science or statistics can practise what we preach 
in the first t•a years of college, ever ■ore 
confident that what we teach will, as it should, 
serve the■ throughout their careers, 

THE INTEL 18087 t Dr. John F. Pal ■er, a 
numerical analyst working far Intel in 1975, 
discerned the invidious possibility that tMO 
different coaputer syste■s inside one s•all box 
bearing the logo u1nte1• •ight be unable ta 
work upon nu■erical data in a shared ■e■ary for 
lack of a ca■•on format. He was asked to deal 
with this prablea, and he asked ■eta help hi ■ 
design "the vtry best arith ■eticu that could be 
i ■pleaented upon all the diverse ■ icroprocessors 
Intel was planning. 

We chose binary for ■ats with an i ■plicit leading 
bit, very like [. Bennet Goldberg's variation 
[19] 1 so the 32-bit Singl, and 64-bit Doublt 
for ■ats have ranges and precisions usually better 
and never ■uch worse than any for ■ats availa~le 
elsewhere in ca•parable wardsizes. An Ext,ndtd 
for ■at as wide as we dared (80 bits> was included 
to serve the sa■e support role as the 13-deci ■al 
internal far•at serves in Hewlett-Packard's 10-
deci ■al calculators· (their 1~-digit calculators 
use 15 digits>. The tightest possible rounding, 
statistically unbiased, was specified for the 
arithmetic operations +, -, x, ¼, ; because we 
kne• ha• and why. Finally, Ne provided ~m and 
a •Hot-a-#u■ber• sy■bal (Ha#> because they are so 
valuable ta those •ha have used the• an the few 
caaputer architectures that include such things. 
They turn ca■puter arith ■etic into a syste■ that 
is foraally closed: every arith■etic operation, 
~alid or not, now produces a result and also, 
whenever the operation is exceptional, a signal. 
The signal, called a flag, warns a progra■ when 
a subprogra■ ·s result, if not obviously wrong, is 
questionable because an unpre■editated arith ■etic 
exception aay have occurred. Therefore, closure 
is no ■ere ■athe■atical frill; no• co■putatian 
can proceed after an isolated invalid datu■ or a 
•istake rather than have to hang up and leave, 
say, the control surfaces of an aircraft stuck 
in an unusual position. 

Our design •as not so ■uch new as eclectic; we 
chose the best that we could ■ake work together 
in a syste■ about which no user has ta learn ■ore 
thar, .-i 11 aatter to hi••. 

Shortlt after the design was announced [201 its 
single and double far ■ats <but not its exception 
handling> appeared in a floating-paint slave­
processor chip, the Intel 8232, second-sourced 



•s the AND 9512. Another i ■pleaentatian used up 
al ■ost a third of the aicrocode in the Intel 432 
■ icroprocessor. So far, the aost a ■bitious and 
aost Nidely known i ■ple■entation is Intel's 8087 
coprocessor chip [21] that widens the instruction 
set of 8086 and 8088 ■ icroprocessors to include 
floating point arith■etic. Its features, listed 
in this paper's abstract and explained elsewhere 
[22 - 251, deserve only a few coaaents here. 

like Hewlett-Packard's ele■entary transcendental 
functions in its recent calculators, Intel's are 
accurate to within an ulp or two, but that ulp 
is in the 64'~ sig. bit, beyond 18 sig. dee. 
Both the calculators and the i8087 achieve their 
accuracies via digit-by-digit ■ethods C26l that 
generate ln(l+x>, exp(x>-1, tan<x> and arctan(xl 
quickly and correct to 64 sig. bits in the iBOB7, 
13 sig. dee. in h-p calculators. Then si ■plR but 
unobvious prograas produce the other ele■entary 
functions accurately fro■ those four. Intel's 
progra■ s were written by Steve Bau■el with ay 
help, and appear in the CEL <Coaaon Eleaentary 
function Library> in R"X-86 on the 86/330A. 
Their accuracies surpass crafty prograas by Cody 
and Waite [27] run on less refined arith■etics. 

Nuaerical progra■s that will run correctly on a 
coaputer after rec01pilation fro■ so■e standard 
language like Fortran, or after so■e other almost 
aindless translation, are called Iaportable to 
that co■puter. The i8087 confers iaportabil1ty 
upon al ■ost every progra• that runs upon several 
if not all diverse coaputer arithaetics. Indeed, 
experience [28) indicates that Portable progra■ s, 
those designed to run universally, can be aade 
siapler, shorter and faster when adapted to run 
on an i80B7. For two years the aain obstacle to 
its use has been a dearth of co■pilers that Nould 
generate code to exploit it in the ■any co■puters 
that have one, aaong the■ the 18" PC. Except 
Intel's, those early compilers that served the 
i8087 hedged against its possible unavailability 
by using only whatever subset of its capabilities 
could be e■ulated easily in software. Now that 
the chip is abundant such a policy is no longer 
econo■ ical, and language processors that use the 
chip efficiently are or soon will be available 
for APL, C, Forth, Fortran and Pascal, and with 
several operating syste■s. I have obtained good 
results fro• Intel's Fortran running in R"X-86 
on an Intel 861330A, and from APL•PLUS"'IPC by 
STSC Inc. on an 18" PC• and the latest versions 
of Fortran on the IB" PC are getting pretty good. 

Tl£ PROPOSED IEEE 8TANDARD1 "atheaatical 
crafts■anship can be shared as co■puter software 
designed to be used conveniently by people a■ong 
who• ■01t will understand its ■atheaatics little 
better than 1ost ■otorists understand their cars 
drive trains. But nuaerous obstacles i ■pede the 
disse■ination a■ong co1puters of progra■ s as easy 
to use as are the keys of calculators discussed 
above. One of those obstacles is grrtuitous: 
coaputer arithaetics are too diverse and, as we 
have seen earlier in this paper, occasionally too 
capricious to allow progra■s so delicate as those 
in the calculators to be copied ■ indlessly onto 
other aachi"es with no risk of aalfunction. 
Portable prograas de1and crafts■anship of another 
kind, capable of coping with the vagaries of 
co■puters and co1pilers without sacrificing too 
1uch accur•cy, 1peed ar convenience. A■ong the 
•■and■ents to that crafts1anship are the EISPACK 
C29l, LINPACK [30] and PORT (31] libraries of 
Fortran codes. So■e portable libraries are less 
satisfactory; the portable eleaentary functions 
coded in C in the UNIX"' syste1 are slow and 
inaccurate, and tend to be replaced by progra■s 
(often unnecessarily in asse■bly language) that 
■ay be worse but ought to be at least as good as 
those in the book C27l by Cody and Naite if 
chosen properly for the ■achine. Coa■ercially 
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distributed libraries like l"SL's Cl2, l3l and 
NAG's [34) ■ust forego• ■easure of portability 
to regain reliability and speed; these libraries 
are distributed in versions each tuned to the one 
c01puter •nd co•piler on which it will run. They 
•re not available for co■puter svste■ s too unlike 
others and too little used to repay the cost of 
putting together and ■aintaining another version. 

I would like to believe that these considerations 
weighed upon all our ainds when, responding to 
Dr. Robert 6. Stewart's invitation late in 1977, 
we convened to draft I floating-point arithaetic 
standard. Intel ·s plans to build the i8087 also 
influenced us, if only by lending credibility to 
the otherwise utopian •KCS proposal• advocated 
by ■yself, Jeroae T. Coonen and Prof. Harold S. 
Stone, and derived fro■ the Intel design by 
refineaent and extension [3Sl. laple■entations 
[36, 37), analyses (35, 38, 39] and especially 
a ■end ■ents and si ■plifications by Coonen led in 
19B0 to the tentative adoption C40l of the KCS 
proposal, despite its unusu•l features, as the 
basis of a draft IEEE standard p754. Its ■ast 
controversial feature Nas Gradual Und,rfloN, a 
scheme iaplicit in Goldberg's variation Cl9l but 
exploited hitherto by •l ■ost nobody but ■e C4ll. 
This sche■e enforces a kind of closure property 
described precisely by insisting that the Theore• 
about p - q , cited above while discussing the 
area of triangles, be true without the clause 

• unless p - q suffers exponent underfloN, • 
Consequently, the calculated valbe of p - q is 
zero just when p = q . Nore i ■portant, gradual 
under~low differs fro• the usual sche■es because 
it al ■ost never (but, alas, not never> generates 
■ore nuaerical uncertainty than roundoff does, so 
it enhances the provable Cll-41) reliability of· 
■any equation-solving codes, 11ong others. But 
it costs so■ething to i ■ple■ ent, so it re1ains 
controversial even if euch ado about very little. 

P7S4, like the i80B7, is a closed arithaetic 
svste• that, by default, supplies a result and 
raises a flag for every exceptional arith ■etic 
operation. The default results are these: 

EMception Type 
Invalid Operation 
Overflow 
Divide-by-Zero 
Underflow 
Inexact 

Default Result 
NaN (Not a Nuaber> 
tm and signal Inexact too 
+m exactly 
Gradual ➔ subnor•al nu ■bers 
Correctly rounded result 

Of course, exceptions are bv nature ini ■ ical to 
any single preselected default result. NaN ■av 
be the best single response to 010 or mtm or 
((-3>; but APL progra11ers expect o,o = 1 , 
and others ■ay prefer to stop on that occasion. 
P754 does allow the i ■ple■entor, at his option. 
to provide Traps whereby a user ■av select such 
non-default responses to exceptions as he likes. 
Also, NaNs ■ay be used for uninitialized and/or 
aissing data, and for retrospective diagnostics. 
And the i ■ pleaentor is obliged to offer the user 
a choice of four roundin9 algorith•s in case the 
default is unsatisfactory. A discussion of these 
features would burst beyond the space allowed for 
this paper, so a few final coa■ents ■ust· suffice. 

Despite a residuum of controversy and uncertainty 
about how higher-level languages will interface 
to its unusual features tlS, 42-461, p754 has 
been adopted by surprisingly ■any ■anufacturers, 
with co•plete i ■ ple■entations ranging in speed 
fro• about a thousand floating-point operations 
per second in an Apple Ill [47) to three million 
in an ELXSJ 6400 t48l, Nith others li~e Intel, 
Hewlett-Packard C49l, National Semiconductor, 
Motorola and Zilog C42l in between, to aention 
only the best known firms. However p754 is not 
an official standard; although its final draft 
(110> was finished in Dec. 1982, it has not been 
endorsed vet by the IEEE , nor is it available 
yet fro■ what aust ulti ■atelv be its source: 



IEEE, 34SE.471"St., NewYork NV1001_7. 
An earlier draft 18 [4OJ Nas no sooner published 
for public co■•ent than it •as ad~pted off~ci~llv 
bv the International Electrotechn1cal Coa■ 1ss10n 
in Gene~a, but that is an inferior version, ■uch 
harder to understand and to iaple■ent; don't use 
Jt. Draft 110 of p754 is available now fro■ 

Richard ~arpinski, UCSF U-76, 
San Francisco, Calif. 94143 

Available fro• this sa~e source is draft 11 of a 
proposal p854 CSOJ that generalizes p754 fro■ 
binary arithaet1c ta deci ■al and allows other 
word-sizes than just 32 or 64 bits. Like a ■ uch 
earlier proposal [511, p854 looks forward to the 
day when the nu■bers hu■ans see will be the 
nu■bers they deserve. 
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