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ABSTRACT: Siaplicity is a Virtue; yet we
continue to cras ever sore coaplicated circuits
ever aore densely into silicon chips, hoping all
the while that their 1nternal cosplexity will
promote simplicity of use. This paper exhibits
how well that hope has been fulfilled by several
inexpensive devices widely used nowadays for
numerical comsputation. One of thea is the
Hewlett-Packard hp-15C programsable shirt-
pocket calculator, on which only a few keys need
be pressed to perform tasks like these:

Real and Cosplex aritheetic, including the elesentary transcendental
functions and their inverses; Matrix aritheetic including inverse,
transpose, determinant, residual, noras, prospted input/output and
cosplex-real conversion; Solve an equation and evaluate an Integral
nuserically; sieple statistics; [ and cosbinatorial functions; ...
For instance, a stroke of its ([1/X] key inverts
an Bx8 matrix of 10-sig.-dec. nuambers in 90 sec.
This calculator costs under $100 by mail-order.

Mathenatically dense circuitry is also found in
intel's 8087 coprocessor chip, currently priced
below $200, which has for two years augsented
the instruction rapertoire of the 8086 and 8088
microcomputer chips to cope with ...

Three binary floating-point forsats 32, 44 and B bits wide; three
binary integer foraats 14, 32 and &4 bits wide; 18-digit BCDecisal
integers; rational arithsetic, square root, forsat conversion and
exception handling all in conforaity with p734, the proposed IEEE
aritheetic stindard (see “Computer® MNar. I, 1981); the kernels of
transcendental functions exp, log, tan and arctan; and an internal
stack of eight registers each B0 bits wide.

For instance, the 8087 has been used to invert
o 106x190 matrix of 64-bit floating-point nuambers
in 90 sec. Among the machines that can use this
chip are the widely distributed IBM Personal
Computers, each containing a socket already wired
for an B087. Several other msanufacturers now
produce arithmetic engines that, like the 8087,
conform to the proposed IEEE arithaetic standard,
50 software that exploits its refined arithaetic
properties should be widespread soon.

As sophisticated mathematical operations coame
into use ever more widely, wmatheaatical
proficiency appears to rise; in a sense it
actually declines. Coaputations formerly
reserved for experts lie now within reach of
whoever might benefit from them regardiess of how
little mathematics he understands; and that
jittle is more likely to have been gleaned from
handbooks for calculators and personal coaputers
thon from professars. This trend is pronounced
among users of financial calculators like the
hp-12C., Such trends ought to affect what and how
we teach, as well as how we use mathematics,
regardiess of whether large fast coaputers,
hitherto dedicated mostly to speed, ever catch up
with scme smaller machines’ progress towards
mathematical robustness and convenience.
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INTRODUCTIONs As a schoolboy in Toranto I was
taught to cherish each advance in Science in so
far as it enabled us to know aore while obliging
us to memorize less. By that criterion, albeit
oversimplified, the technological advances that
now rain coaputer hardware and software upon us
do not yet constitute an advance in Science, not
so long as they are accompanied by a hail of
needless inconsistencies and incompatibilities.
Hardest to explain, in devices presumably
dedicated to nueerical computation, are the
arithmetical anomalies that arise from defective
nathesatical doctrines rather than froa sere
oversights. For instance, the following table
was printed out by VisiCorp’'s spread-sheet
program called *VisiCalc 1.10" run on an IBM
Fersonal Coaputer :

A B $ A3 C=30 A-C WZ-C+an2

100 33.333IIIIIIT 999999999999 00000001 . 0000000001
1000 33333333333 999.99999999 .00000001 00000003
10600 3333.33IIIIIT  9999.99999999  .000001 00000001

100000  333IL.ITIIIII §9999.999999 000001 000001
1000000 333333 IIIIIT 999999, 999999 0001 +000001

10000000  33I3IIT. 33T 9999999.9999 0001 .8001
100000000 33333333.3333 99999999 9999 01 .0001
1000000000  33ITIITILIT 999999999, 99 .01 .01

Perhaps roundoff could account plausibly for the
second coluan’s jaggedness; but how can errors
in the fourth column be reconciled with carrect
values in the fifth? Imagine explaining them to
a Computer Science class in programaing: .
"To calculate (A - C) weuch more accurately
evaluate (A/2 - C + A/2) instead because ..."
Since a far-fetched explanation is undignified,
one might prefer to believe these anomalies are
inconsequential and need no explanation. That
belief induced some anonyaous prograaser to deea
them acceptable as a side-effect of a shortened
and faster prograe that perforas arithmetic for
VisiCale in radix 100 instead of 10 and drops
a digit prematurely. Actually, the prograa is
only ieperceptibly shorter and faster, but its

-anomalies are sanifest and, as examples below

will show, malignant. Fortunately, a wide range
of calculators and cosputers, especially thaose
that confore to the [EEE's proposed standards
p754 and pB54 for floating-point aritheetic, do
not suéfer from paradaxical roundoff like that
displayed above. Those machines and standards
are part of what this paper is about.

Anomalies generally undereine economical thought,
thereby underaining the integrity of software and
inflating its cost. The worst anosalies can be
kept out of coamputers. When they do intrude they
are not always accidental; too often they follow
fros design decisions induced by misconceptions
widely taught as rules of thumd about what to
neglect in approxisate coaputation. Refutations
of those misconceptions abound in the literature
(1,2,2,4,5,61 but cannot help someone who has
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not read thea, who believes every elementary
subject sust be obvious, and whose esathesatical
experience is too narrow to support sound
judgaents. Here is another dosain where our
failure to teach mathematics effectively to a
past generation comes home to roost.

I do not allege that mathematical education has
failed entirely, For most, education succeeds as
soon as they can follow a formula chosen for thea
by Experience or Authority. A few, captivated by
the beauty or abstractness of the subject,
espouse matheeatics to escape the sundane, and
then need little help from the likes of se. But
many who endure two years of College Mathesatics
do so in the hope that it will help thea explore
and conquer other domains. They would crown
Mathematics “Queen of the Sciences® amore for
her power to illuminate her applications than for
her beauty or abstractness. Alas, they lack the
mathematical experience out of which grow first
the abstractions and then the conviction that
these are the source of illuaination. Lacking
too is time we can spend together exploring
exanples instead of exchanging mere formalities.
So, when I try in class to illusinate for thes
the power and the beauty of the subject I love,
abstractions that sum up lifetimes of experience
turn to chalk dust faster than ay students can
copy, auch less learn. What will defend thea
against me and my kind?

Rather than have to copy the received word,
students are entitled to experiment with
mathesatical phenosena, discover more of thes,
and then read how our predecessors discovered
even more. Students need inexpensive apparatus
analogous to the instruments and glassware in
Physics and Chemistry laboratories, but designed
to combat the drudgery that inhibits exploration.
This role is the first that I envisaged for the
hp-15C shirt-pocket calculator when it was being
designed. Later, aaong students who find it
helpful for their Engineering and Science
assignments, I hoped a few might wonder how it
works and why; sose of these would becoese
computer scientists and applied eathematicians
all the more coafortable with iaportant ideas and
techniques for having encountered thee in their
own calculators. Those ideas are part of what
this paper is about

This paper does not say just that casputers are
smaller, cheaper, faster and more capacious. It
tells how some machines convey sathematical ideas
to a far wider audience than used to benefit from
theam. What Archieedes wrote in sand® could be
read by only a few before it blew away. Written
on paper, his ideas have been read by myriads and
will be read by ayriads sore. When written into
silicon chips, his ideas and their cousins serve
the aeeds of hundreds of thousands now, and soo0n

WHO'8 TO BLAME? Conventional wisdos says that
in those rare and pathological instances when
computed results are found to be wrong because of
roundoff, the right results can always be gotten
by recomsputation, either carrying more figures in
what is otherwise the same procedure as before,
or via a different and more “stable® numerical
algorithm that could be very hard to find. This
conventional wisdom begs three questions:
How can anybody tell when and why
results are wrong?
Who is responsible for finding and
correcting wrong results?
Will carrying more figures always
attenuate roundoff?

The same imperatives that move us to share
scientific knowledge force us to share computer
software. When we share knowledge we share an
understanding that leaves intact each individual’s
responsibility for the consequences of the use of
that knowledge. But when we share software,
responsibility diffuses; were you obliged to
understand in detail the program you got from me,
you might as well have written it yourself, I¢
you pay me for a program that I let you believe
correct, but it misleads you into misdirecting a
client, who should be held responsible?

Inagine a courtrooa scene wherein four of us are
eabroiled in a lawsuit brought, despite customary
disclaimers, by your client. The amanufacturer of
your computer is the fourth party.

In my defence I prove that, on all reasonable
computers, wy program copes properly with all
data in a reasonable domain and delivers at least
half as many correct leading significant figures
as the computer carries. You prove that your
input data is reasonable and the output, though
wrong, 60 plausible that you had no reason to
withhold it from your client, who would have
been happy with results half as accurate as !
promised. The computer manufacturer’'s testimony
affirms conventional wisdom: First, ay prograns
is defective because it uses algorithes generally
regarded as “Numerically Unstable" and fails to
take account of the computer ‘s special features .
Second, you are remiss for using hardware and
software less accurate than you should have known
you needed and could have bought. The judge 1s
baffled by expert testimony; whoa will he blame?

All the testimony in this scenarioc could be true.
Lest you think a contradiction must lurk in it
somewhere, here is an example drawn from [3] and
designed to undermine faith in the foregoing kind
of conventional wisdom. @A program is needed to
coapute a polynomial §(x) of degree 504 defined
by composition thus:

hiy) 3= ( 1/3 - y )#( 3 + 3.45#y ) 3

glz) = 1 + 2 ¢ 22 ¢ 23 ¢+ ,,. ¢ 2198 4 2126 ;

fi(x) = glh(x?)) for all x| < 1/93 .
The program aust run fast, the faster the better.

2 #1,

sillions. (* Sand is mostly Silicon Dioxide.}
My prograe runs fast because it computes
glz) := (1 -2 )/t -2 if
3= 127 otherwise.
13
em—




On machines whose arithmetic is decimal (or
hexadecimal, but not binary) I save space and
tise by omitting to test whether 2 = 1 ; since
rounding 1/3 to 0,3333...3333 gquarantees that
z 3= hiy) ¢ 1 for all y :=x2)> 0, 1 know
giz) := (1 - 22 )/( 1 -2 ) is always safe.

When 2 is very close to 1 ey progras say look
like just another fast way to calculate not g(z)
but Junk := Roundoff/Roundoff . However, tests
reveal and proof confiras that ay progras cannot
lose sore than about hal$ the significant figures
carried on any machine whose every rational
arithsetic operation introduces into its last
significant digit delivered no more error than if
the result had been chopped or correctly rounded
or even rounded up by as auch as 0.9 of a unit
in its last digit. The prograas works correctly
regardless of whether 233 g5 calculated by
repeated squaring thus ...

2% 1= 282 § 24 13 z3sz? 5 20 1= 424

2816 gz zl’z. H 23 := z!.{zl‘ ; 288 o= z“.z’l ;

2127 1z zazRez042% 7083200 5
or from the foreula 2%27 g= exp(127+#in(z))
by many calculators, provided exp and 1n
suffer no worse error than ay program allows for
each rational operation. Since it does not need
“correctly rounded” arithmetic, =y prograa runs
properly on IBM 370°'s and early DEC PDP-11's
as well as on sachines that round very carefully,
as do DEC VAX's and recent H-P wmachines and
those that conform to the rigours of the proposed
[EEE floating-point standards p754 and p8SA4.

used

But ay program fails on CDC Cybers and UNIVAC
1108°s and TI calculators, among others, Here
is a table reporting results from a saspling of
machines that perfora only decimal aritheetic:

Nases of Sig. Dec. Calculated
Calculators carried £(0)
BRVHKAVHVNHVNS Lo T2 1Y VRV
hp-10C,11C,12C,15C, 15C,19C,22 |

27,29C, 316,326, 33E/C, 34 > 10 127.00

37€,306/C, 41C,67,91,92,97 |
hp-75,85,85,87 12 127.000
hp-21,25,35,45,55,65 10 127, ¢
Coascdore SR414SR 12 121, ¢
hp-80 Financial 10 13.

TI Business fAnalyst, SR-39,40 i1 100,
Cossodore SR4190,519%0 12 12
Coasodore SR1400, TI-XDA 12 0/0 Error
11 §R-52,56,51-11 12-13 18,
T1 §8-50,504,51,514,58,58C, 59 13 14,
Nonroe 326 13 12.
VisiCalc 1.10 on the BN PC 12 14,

The two entries sarked ¢ are the right answers for the wrong
reasons, not proof of aritheetic quality.

Evidently this computation’s accuracy depends not
just on how sany figures are carried but also on
the manner in which figures are discarded. But
the results seea to cry out for a value judgaent:
Faulty Brand X calculators? Or a pathological
prograe rigged to cast undeserved aspersions?
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I adait that, on all computers, ay prograem is
less accurate and not a lot faster than others
that coapute g(z) froa expressions like
(142) (1422) (1429 (1+429) (14218) (14232) (14244)
Similar scheses work for ga.(z) 3= (1 - z20)/(1-2)
when n is an arbitrary integer instead of 127,
though they are not so obvious; one such scheae
figures in financial calculations in the portable
work-sheet computer “"HWorkSlate" just introduced
by Convergent Technologies Inc. When n is not
an integer the problea becomses truly interesting;
see (3] and (6). But the possibility that g(z)
might be computed on all aachines by soae other
scheme better than ay short progras, even if no
better scheme were visible yet, inhibits fair-
minded folks from uttering preamature condesnation
and distracts thea froa the important question:
If a simple program works and is proved
mathematically always to work well enough
on all but a few commercially significant
computers, who should bear the onus of
adapting it to the aberrant machines?
In the past, the onus has fallen amostly upon the
owners of aberrant machines or upon the creator
of the progras, rather than upon the creators of
aberrant arithmetics., The future is unlikely to
be different.

For the present, our best defence against
arithesetic anosalies is sose awareness of how
certain computers generate thea. The arithaetic
aberration aost coemon among computers, the one
respansible for most of the anomalies exhibited
sa far in this paper, arises when a digit is
jettisoned presaturely from the right-hand side
of an internal register during an arithaetic

operation. For example, consider the subtraction
d :=1 -2 carried to five significant decimals
with 2 = 0.99999 but otherwise perforeed as
four machines do it:
Styles: correct CoC 7400 115 11 MBA
s 0.99999 0.99999 0.99999 0.99999
1= 1.0000 1.0000 00000  1.0000 1.0000
1-31s 0.99999 0.9999 90000  0,9999_ 1.0000_
{-1= 0.00001 0.0000 10600  0.000t_ 0.0000_

- 0.00001 0.0000 0.0001
d= 1.040-5 0 1.040-4 0

Digits dropped presaturely have beeo replaced by underscores __ .

CRAYs' and UNIVAC 11XXs® subtractions reseable
in binary the TI 59°'s in decimal. CDC's Cyber
205 differs from all the above; it say allege
z-13204#1-2. Although these disparities
seea perverse, they are no worse than if either
1.00009 - 2z or 0.99999 - z replaced | -z .
Coabining this insight with the mantra “Backward
Error-Analysis" sometimes allays indignation,
but not aine; for sore on that subject see (61,

Presature abandonaent of a digit defiles other
aritheetic operations too. Multiplication is
neither cosautative nor monotonic on the TI 39 ;
try ex-nmre . Division on the TI Business
fnalyst gets a different quotient for 1/3 than
for 9/27 . Double precision division in BASIC
on the [IBM PC alleges often that X/t & X
and 1.000...0000 / 1,000...0001 > 1t .



After learning how these things happen, we can
learn to look out for thea and prograa around

thea, though they impose a deadening burden upon
smathesatical thought. To liét that onus froe all
of us, we esust persuade the designers and

builders of cosputer arithaetics that ...

1: aberrant designs can invalidate certain
fasiliar calculations perforaed by most
other sachines without any trouble;

2: to cospensate for aberrant aritheetic,
software aust becose sore cosplicated,
costly and unreliable; and

3: their customers are aware of these truths.
(1 am not quite sure about itea 3.)

THE AREA OF A TRIANGLE: Here is a familiar
and straightforward task that blows up when
subtraction is aberrant: Devise a prograas to
compute the area A(x,y,z) of a triangle given
the lengths «x, y, 2z of its sides. The progras
below will perfora this calculation aleost as
accurately as floating-point wmultiplication,
division and square root are perforaed by the
computer it runs on only provided the computer’s
subtraction is free froe the anomalies sentioned
above. Consequently the progras works correctly,
and provably so despite roundoff, on an extreaely
wide range of machines:

APPLE I1] Pascal tut mot BASIC; Burroughs BAS00 single precision;
06 MVB000; DEC PDP-11 and VAX, and 10 and 20 single precision;
ELIST 6400; H-P J00O, 9000, 9834, 85-87, and all handheld sachines
except the hp-80; Honeywell 40003 IBM 370 and imitators, and rec. ‘t
1BM PC BASIC and FORTRAN; INTEL 8087, 84/330, 432; MNational 16081;
recent PRINE sachines; 1IL0S 58000; ...

But the program amiscalculates the areas of soae
needle-shaped triangles on those machines that
discard a digit prematurely during subtraction.
Among those egregious machines are ...
COC Cybers and 7600; Cray I; early IBM PC BASIC; early PRI in
double precision; TI calculators; UNIVAC 1108 and successors; ...
0f course, for each of those sachines a sethod
can be found to compute A(x,y,2) as accurately
as you like; but if the program aust use only
the eachine‘'s native floating-point equipaent
then nobody knows a fast prograa that can be
proved to work on all machines, egregious or not.
The classical formula due to Heron of Alexandria,
namely  A(x,y,2) = ¢(s(s-x)(s-y)(5-2)) where
$ = (x+y+2)/2 , 1is nuserically unstable for
needle-shaped triangles regardless of whether
every arithsetic operation is correctly rounded.
For example, here is an extreae case worked out
carrying just five significant decimals:

Given are x := 200.01 , y 1= %.95, 220025 . Then

s 3= (x¢dye2))/2 = (200.03)/2 = 100,015 eust round to either

S 3= 100.01 or § 3= 100.02 to five sig. dec, Substituting §

for s in Heron‘s forsula yields either A2 0 or 4 = 1,5813

respectively, oot the correct 4 = 1.000025... .
Evidently Heron‘'s foraula could be a very bad way
to calculate, say, ratios of areas of nearly
congruent needle-shaped triangles.

A good procedure, nuserically stable for all but
egregious sachines, is the following:

Sort x, y, 2 so that x >y >z 3

If 2z ¢ x-y then no such triangle exists ; else

A e f(xely+sz))a(z=(x-y)) (24 (x-y))o(x+({y~2)))/4
«os DON'T REMOVE PARENTHESES! ...
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How can so innocuous an algorithe fail on several
egregious machines yet be provably successful on
all the rest? Success depends upon the following
easily proved ...

Theorem: 1¢ p and q are represented exactly
in the same conventional floating-point foramat,
and if 112 { p/g ¢ 2, then p - q too is
representable exactly in the same format, unless
P - q suffers exponent underflow.

(We shall ignore exponent over/underflow here lest its cosplications,
which are avoidable, needlessly distract us fros our discussion of
roundoff probleas; besides, p - q cannot underflom in aritheetic
conforeing to the latest drafts of IEEE p754 and p8S4 .)

The theorea merely confirms that subtraction is
exact when massive cancellation occurs. That is
why each factor inside ( ... ) is coaputed
correct to within a unit or two in its last digit
kept, and A is not auch worse, on cosputers
that subtract the way most people expect thea to.
Egregious machines do auch worse; they miscompute
sose of the differences the theorea says they
could calculate exactly. MHatch what happens
again in arithaetic to just five sig. dec.:

Styles: correct CBC 7600 s TI MBA
ys 99.995 §9.995 99.995 9.995
x= 100.01 100.01 100.01 160,01
y ) 099,995 099.99 50000 099.99_ 100.00_
x-y ¥ 000,015 000.01 000.02_ 000.01 _
1® 0.025 0.025 0.025 0.025
2-(x=y) - 0,010 0,015 0.005 0.015
[ ) 1.0000 1.1456 0.74997 1.1457
as if x -3 100,01 100. 003 100,013 109. 005

Digits dropped presaturely have been replaced by underscores _ .

So, some procedure better than the “good" one
above is needed to calculate reliably ratios of
areas of nearly congruent needle-shaped triangles
on egregious machines. Prograssers, powerless to
change these machines and reluctant to write a
different progras for each of them, aight seek
another “better® algoritha that works on all
egregious machines as well as the rest. No such
algorithm is known. My closest approach to it
replaces every instance of a subtraction like
p-q by acall to a prograased function
Diff(p,q) designed to coepute a satisfactory
difference on all sachines whether they jettison
digits prematurely or not. Here is ay atteapt:

Real Function Diff(y,x): ... = y=r with adequate accuracy.
Real values y, x 3 real d, e}
1f Iyl ¢ Ix} then begin d = -xj x:=-yj y:=d end;
e 00w lyl 2 Il
e = (x|}
While signus(x) s sigrus(y)
fo begin d t=0.538y § dizy-4d;
v BON'T do d 22y - 0530y !
gisx-d} ysy-d
entil |yl { o endwhile;
Return Diff sz y - x end Diff.




I believe this progras works on all coaputers
built in North America with hardware ¢loating-
point, egregious or not, except the CDC Cybers
203 and 205 and saybe some old WANG6 wmachines.
I daubt that it works with every iaplementation
of floating-point in software. I believe the
multiplication by a sagic nuaber near 0,33 is
unavoidable, and so is the necessity for a loop
soaewhat like the *While ... do ... until ...*
loop in this program. And when it does work, how
shall we decide which adds and subtracts in
other prograes to replace by calls to Diff ? I¢
a program like Diff is the cure, the disease
must be horrible.

In general, calculations near the singularities
of functions of several variables are tricky at
the best of tises, so auch so that they are
described in pejorative teras, like degenerate,
ill-conditioned, ill-posed and unstable, that
tend to rub off onto whoever has to cope with
thea. My dismay at the way anosalous aritheetic
makes the trickiest calculations trickier, oftaen
trickier than I can handle, is not shared by
people who seea to think that only perverse
calculations can be affected adversely, not the
everyday world of dollars and cents, For their
edification I turn now to dallars and cents.

FINANCIAL CALCULATORB: Four of these, the
hp-92, -37€, -38C and -12C , are used now by
several hundred thousand people to perfora
calculations concerning loans, leases, smortgages,
sinking funds, annuities, amortisation schedules,
depreciation, bonds, notes, net present value and
internal rate of return of investsents, and Truth
in lLending regulations, among other things. The
calculators were aicrocoded principally by Roy
Martin [7), Dr. Dennis Haras [B) and Rich Carone,
with some help from ae to overcose sathematical
difficulties. Businessmen are oblivious to these
difficulties; to cope with, sav, mortgages they
need understand only the legends on five keys:

{n] the nusber of periods, typically sonths.

(il the periodic interest rate, entered as a percentage.

(PV]  the Principal Value of the sortgage at the start.

(PMT] the asount of each of n equal periodic PayMenTs paid at
the End of each period. ( [BEGIN] and (EMD] are keys too.)

[FV] the Final Value, or *Balloon Paysent®, resaining to be paid

at the end of the at* period.

The signs of the cash-flows PV, PHT, FV tell us
their directions, positive for incoming and
negative for outgoing. With this sign convention
in aind, the businesssan visualizes the sequence
of cash-flows in a mortgage transaction thus:

4 PaY

PNT  PHT ... PNT  PNT  PNT PNT+FV

+ + + + 4 "y )
+ ose + + + +

1 2 3 -3 n-2 n-l n tise

© ¢+ <

The same picture, but with different signs,
depicts a sinking fund with initial deposit
n regular payaents PMT , and an accusulated
final value FV . The businessman need not know
the equations that both transactions satisfy:

PV ,
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(1+4x)™ PV ¢+  ga(1+x) PAT ¢+ FV = 0 where
galz) 2= (1 - ™)/ (1-2) and x t3 /100 .
(The troublesose function ga(z) , with its resevable siagularity
at 231, has appeared earlier in this paper with n = 127 .)

Financial calculators are designed to solve these
equations for any one of the five variables n,
i, PV, PHNT, FV given values for the other four.
At first sight this task seeas nontrivial only
when the unknown is i , in which case a
polynosial equation of degree n aust be solved;
n can be huge. Actually, the task msust pose
some challenge regardless of which variable be
unknown, as the next exaaple will show.

A Penny for your Thoughts.
A bank retains a legal consultant whose thoughts
are so valuable that she is paid for thems at the
rate of a penny per second, day and aight. Lest
the sound of pennies dropping distract her, they
they are deposited into her account to accrete
with interest at the rate of 10X per annua
cospounded every second. How auch will have
accusulated after a year (345 days) ?

Enter data:

n = 086082483565 = 31,535,000 sec. per yeir.

i := 10/n = 0,000 000 317 097 9198 I per sec.
PV := 0
PMT := -0.01 = one cent per sac. to the bank.

Pressing [FV] should display one year’'s accretion
but different financial calculators display
different amounts:

Calculators FV displayed
LT T 2T 1) LTI T L
27, 92, 37, 38, 12 $ 331,667,004
84 293 539.1603s
NBA 334 858.183r;

58, 58C, 59 331 559.383a40

The ssall digits are not norsally displayed, but are here to
indicate how sany figures the sachines carry.

Why is the best result displayed by the machines
that carry the fewest significant digits (10) in
their data registers? Observing that erroneous
results have lost sore than half the figures
carried, we should suspect that certain machines
have subtractions and/or logarithas rather less
accurate than the prograsmers of their financial
procedures expected; and tests confirs our
suspicions. Besides the anomalous subtractions
uncovered above, we find that 1n(0.9999995) is
miscalculated on those machines as -5,-7 , not
the correct -5.00000125,-7 , despite that they
carry more than ten sig. dec. However, the owner
of such a calculater might not be so suspicious
at first; later he might check the consisteacy
(but not the accuracy) of a result by treating it
as a datua and back-solving for some other datua.
For instance, recalculating i displays this:

Calculators

avavsessvns

27, 92, 37, 38

press (il and see ...

LA LI AL LTI LT YL Y )

0.000 000 317100

12 0.000 000 31973
BA catatonia
MBA 0.000 000 3886

s8, s8cC, 59 0.000 000 3154



14 their accuracy is not impressive, yet their
speed is worth a thought; while performaing fewer
than about a dozen floating-point operations per
second, most of these sachines take less than one
or two dozen seconds to solve a polynoaial
equation here of degree n = 31,536,000, We
shall return to this thought.

A single somewhat artificial sample is not enough
to demonstrate how such the probability of
cosputational failure is inflated by anomalous
aritheetic. But before drawing further samples,
we should digress to reconsider the significance
of “artificial™ exasples.

Equation-solving is an iterative process akin to
exploration. Regardless of how typical the data
and solution may be, the path followed by the
iteration froa first guess to final result may
approach or enter regions that are financially
isplausible though mathematically legitimate and
still informative. Therefore, prograss that do
not allow an equation to be evaluated accurately
over the widest domain on which it makes sense
sathesatically eust cramp an equation-solver's
style, as the next example shows.

Yield from a Risky Investment.

For an investsent of -PV := ¢ 35,000,000 now,
investors are prosised n := 100 equal sonthly
installments of an amount PMT yet to be agreed
upon, but between $ 640,000 and $ 1,000,000 ,
plus a final payment at the 100¢™ aonth of

FV := ¢ 100,000,000 . How does the yield i ,
reckoned in % per amonth, vary with PHT ?

Tabulated in the first columan below are selected
values of PMT , with the corresponding yield in
the second coluan shown as displayed on any of
the hp-92, -37E, -38C or ~12C a¢ter about a
dozen seconds of calculation. The third column
shows what the TI MBA displayed.

PNT true il i on the MBA
LI 1112 1]
$ 540,000 2,314053 2,314053

650,000 2.335758 ~130-97  DLINKING

460,000 2.357528 2.357528

800,000 2,569065 2.689065 after a long tiee.
1,000,000 3. 135506 =2106.949 BLIEXING

The blinking tiny number is a syaptom of roundoff
troubles. The other anomalies could be caused by
an unfortunate choice of iterative msethod for the
equation to be solved.

SOLVING EQUATIONS:
for solving any given equation
Newton's iteration:

Xmes 3% Xo = Fxu)/f'(xy) for k =
starting from a suitable first guess
converges,
quickly,

The customary iteration
fl(x) = 0 is

0, 1, 2, ...
xe . If it
the iteration normally converges
ultisately nearly doubling the nusber
of correct figures with each iteration, so that
high accuracy does not cost very such. But the
financial equation above is abnormal because,
though a polynosial equation in x = i/§00 , its
degree n can be so huge that the graph of the
polynomial is, for practical purposes, spiked
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and/or stepped rather than sesooth. Consequently,
Newton‘s iteration converges too slowly if it
converges at all, At first sight, the following
leana makes the situation appear hopeless.

Lemma: "Newton’'s Iteration is Ubiquitous;

if X is a continuous real function and if the
iteration xues 3= X(x,) converges, froe every
starting point xo sufficiently close, to a
root of the equation F(x) =0 then the
iteration sust be Newton‘'s iteration applied to
an equation $(x) = 0 equivalent to F(x) =0
in the sense that both have the same root.

The proof, wusing #£(x) = exp( § dx/(x-X(x)) ) ,
is easy. The leama tells us not to bother trying
iteration to solve an equation unless it can be
transformed into an equivalent one well suited to
solution by Newton's iteration. What does “well
suited” waean? One seaning I discovered is this:

Theorem: 1f f(x) is a difference ¢ = u - v
between two convex functions, one sonotone
nondecreasing and another monotone nonincreasing

throughout some real interval, then Newton's
iteration xue: = x« - f(xu)/f'(xe) cannot
dither; it must either escape from that interval

or converge within it, no matter where therein

the iteration starts.

This, the most general sufficient condition known
for the convergence of Newton's iteration applied
to solve a real equation, was not easy tuv prave,
but it was worth the effort. The financial
equation above, when it has just one financially
seaningful solution i , can always and easily
be transformed into the fors

vee HCaY 3 4 Coay 2 4 Y2 4 Co = Cay ¢ Cay? ¢ Caydt ..

where each c; is the sagnitude of a cash-flow
and y is either 1+x or 1/(1+x) , whichever
ensures that co > 0 . This fora satisfies the

theores throughout the interval «x > -1 ,
capturing all interest rates i > -100 ¥ ; no
others make financial sense. Now, applied to the
transforeed equation, Newton's iteration aust
converge from every starting point. But not very
fast if n far exceeds 1000 .

on the hp-92 , Roy and I
approxisated the root x of the financial
gquation asymptotically ( as n -> © 1}, and
used the leading term as a first guess for the
iteration. Despite having to recognize several
cases, the approximation is quick and, when n
is large enough that it eatters, accurate to over
five sig. dec. Therefore, nobody has to wait
more than about a dozen seconds, long enouph for
fewer than 100 multiplications, after pressing
[i) on thke hp-92, -37€, -3BE or -38C , no
matter how big n weay be.

Te cope with huge n

Dennis and I used related transformsations to
solve related equations for Internal Rates of
Return on the hp-38E and C , whose U[IRR] key
will cope with over 2000 cash-flows. Later, to
cope with a revised version of the financial
equation above that, wunlike the original, wmakes
sense when. n is not an integer, Rich and I
vused yet another transformation in the hp-12C ;



we used In(y) instead of vy as the independent
variable in the equation above with teras csy?
and applied Newton's jteration ta its logaritha,
Although each iteration cost now more time than
before, the theorem continued to guarantee
convergence which was rapid froa every starting
point regardless of n . Further details are not
needed to make ay point:

Every day, hundreds of thousands of people
employ powerful financial calculators that
are convenient, fast and reliable because
of Physical, Chemical, and now Mathematical
technology more intricate than they imagine.

Euphoric at the success of the hp-38E , Dennis
Haras' w®anager, Stan Mintz, humoured us by
granting peraission to devise a calculator with a
[SOLVE] key, despite that no marketing survey
had revealed any demand for such a thing, and
subject to one proviso: mindful of his struggles
with integrals in college, he charged us to
devise an [INTEGRATE] key too. Thus was the
hp-34C barn. Its innovations have been exposed
elsewhere {9,10]), but not the mathesatical
insight that made a (SOLVE] key seea feasible.
Here is the train of thought ...

Suppose we are given an equation f(x) =0 to
solve but not euch tise to study it. Suppose we
are willing to try Newton's iteration, perhaps
because the Theorea above is applicable or for
lack of a better idea. We will have to write a
program to compute +¢'(x) as well as f(x) ,
unless we choose to approximate the derivative by
a difference quotient. This choice is tantamount
to approximating a tangent by a secant, whence
the iteration foraula gets its name, i.e.
Secant Iteration:

T Xuey 35 Xp = Flxe)(ny = Xpagd /7 ($(xy)=F(%Xpar))

If this iteration converges, then it is known

to converge usually slightly faster than Newton's
unless calculating #(x) and +¢'(x) together
costs less than about 45 % weore time than
calculating #(x) alone. But will the secant
iteration converge? More to the point, will the
approximation of a tangent by a secant leave
intact whatever reasoning aight have motivated
recourse to Newton’s iteration? Alaost surely

YES! More precisely, 1 discovered the following A

Phenomenon: Suppose that Newton’s iteration
to solve the equation f(x) = 0 converges froa
every starting guess within an interval to a root
therein., Then, unless +¢(x) vanishes inside
that interval without reversing sign there, the
secant iteration sust converge to the same root
from every pair of starting guesses in that
interval.

The proof that this sust happen is extreaely long
and difficult partly because #f(x)/f'(x) could
oscillate pathologically in the neighbourhood of
a root where both f(x) and ¢'(x) vanished
sisultaneously. The phenomencn’s iaplication is
iemediate; the Secant Iteration provides as firas
a foundation as MNewton‘'s for a general-purpose
equation solving prograas, but with no need for a
derivative. So we created such a prograa (91 ,

and Tony Ridolfo aicrocoded it into the hp-34C
under the [SOLVE] key with no scratch registers
to spare. Later the same program was copied into
the hp-1SC. To use it to solve #(x} =0 ,
follow these three steps:

- Enter into the calculator under, say, label [A]
a program that evaluates f(x} given any x .
(Other labels can be used instead of [A) .)

- Enter a guess or two at the desired root, the
closer the better.

- Press [SOLVE) [A] and see what happens ...

I¢ {(x) changes sign anywhere, then [SOLVE]
will surely locate such a place to within a few
units in its tenth sig. dec. whenever ...

-- fi{x) 1is strictly sonotonic, or

-- §{x) is convex, or concave, or

== 1¥(x}|1 has no nonzero local minimua, or

-- $(x) has different signs at two guesses.

If both the last two conditions are violated,
then [SOLVE) wmay display an approximation to
the location of a nonzero local einimus of [(f(x)|
and signal that it could not find a change of
sign, Under no circuastances will (SOLVE] run
indefinitely; it always finds something, even
if sometimes the search takes a long time. Here
is an example:

Bu(x) := signua(x-N) = +1 if «x

Try, say, N :=7 and first guesses x, ¢= 101
and x4 := 102. The program for By(x) is this:
LBL B 7 - ENTER ABS «x#0? + RTN
To enter the first guesses and solve By(x) = 0
for x , press 101 ENTER 102 SOLVE B  and wait
a minute to see x = 7.000000000 displayed after
By(x) has been sampled 45 times. (How does
[SOLVE) know which way to turn? See (91.)
Changing N from 7 to 0 extends the tiame to
b6 ain. after 341 samples. Yet longer search
times in difficult cases might have been lessened
had a few more than the five scratch registers
allocated to [SOLVE] been available in the hp-
34C , but (INTEBRATE] consumed a lion’s share.

THE C(INTEBRATE] KEYs  Asong innuaserable

numerical quadrature procedures available in the
literature and in computers, what distinguishes
this one is its relative ease of use. Estisating

x
l 3= I f(t) dt
\
on the hp-34C and hp-1SC entails these steps:

Enter into the calculatar under, say, label [A]
a prograe that evaluates {f(x) given any x .
(Other labels can be used instead of [A) .)
Set the display to show as many digits of the
integrand f as satter. (More on this below.)
Put in the lisits of integration thus:

ENTER x
- Press ($¥%) [A) and wait for the results. ...



Foresost in the display, in the X-register,
will be the estimate of the desired integral 17 ;
behind it, in the Y-register, will be the
uncertainty §J in I inherited fros the
tolerance allowed in ¢ . More precisely, the
[§2) key estimates not aserely I = §} § dt

but actually I ¢ &I = §§ (§ ¢ §f) dt where all
that is asserted about {&f is that f(t) ¢ §fct)
agrees with f(t) in all digits displayed.
Geoametrically, the graph of f #+ §¢ is a ribbon,
centred along the graph of ¢ , containing all
graphs regarded as practically indistinguishable
froa that of f . The area under the graph of ¢
is I , and is uncertain by +§] where 241 1is
the area of the ribbon.

Here is a familiar exasple:

I 22 Q(x) 3= §@ exp(-t?/2) dt/¥(2x) .
Since the integrand underflows past 10-** to zero
when t > 22 , replacing the upper lisit & by
22 discards nothing but converts the isproper
integral @(x) into a proper one that any general
purpose nuserical quadrature program can evaluate
easily. Designate this procedure “Hethod A" ;
as we shall see, it will waste most of its time
sampling the integrand at places where it
contributes negligibly to the integral. Another
procedure, designated “Method B* , substitutes
82 = sin*'( exp(-t2/2) ) to transfora the isproper
integral Q(x) into a proper integral:

(sin=2{exp(-x2/2)))
Q) = j' s flisin(s2)+1) (sin(52)-1)/]alsin(s2))) ¢5 ,
X
except if x < 0 calculate @Q(x) = - @(-x) .
Although the transforsed integrand is finite
everywhere, it does have two weak singularities:

One is at s = 0 where an attespt to calculate
1n 0 could stop the calculator, but it won't;
the (§¥) key is designed to avoid drawing
saaples of the integrand from the ends of the
range of integration lest singularities that are
otherwise easily integrable derail it there.

The second is a removable 0/0 type singularity
that occurs when s2 = x/2 . It looas near when
x is so tiny, and the upper limit of integration

s0 nearly ¢(r/2) , that s? approaches =x/2
near enough for sin s to round to very nearly
1 ;3 then both sin 82 - 1| and In sin s2

will be seriously contamsinated by rounding error.

Could that error reduce the integrand to useless
Junk 1= Roundoff/Roundoff ?  Not on the hp-34C
nor hp-15C. The roundoff cancels itself; treat
sin s* instead of s as the independent variable
to see why., Therefore, the integrand will be
evaluated accurately provided subtraction and
logariths are both accurate to full working
precision, as they are on these sachines but not
soae others.
‘The prograas for sethods A and B
enough to show here:
LBLA 22 f1 wu¢ LBLO ¢#XK2YLSTY & Y RTN
LBL 1 X*ZCHS ¢ exp RTN
LBL D RAD 6SB 1 SIN-*70X2Y §2 » 6T0OC
LBL 2 ENTER X® SIN LM LSTY 1 - + LSTX 2 ¢ XY ¢ ¢ x RTM
Before they are run, the display should be set
to show just as many figures as are wanted. For

are short
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four significant figures, press ([SCI. 3 . Shown
below for both methods and for a few values of «x
are estimates of the integral 8(x) , and how

often the integrand was sampled to get each, and
the elapsed tise.

X Q(x) by HMethod A § samples sec.
m=meee and by Method B ¢t sagples sec.

10 7.6198,0-24 ¢ 17,0-28 127 227
—— 7.6199,0-24 4 18,0-28 7 27
1.98 0.024998 ¢ 0.000006 127 7
———— 0.024998 + 0.000006 15 38

4 0.499999 + 0.000045 83 116
————ee 0.500003 ¢ 0.000148 15 58

For higher accuracy, say 7 or 8 sig. dec., press
[SCI1 7 before running the programs; typical

results for methods R and B respectively are
0a00) = 0,4999999998 + 0.0000000047 at 255 sasples in 444 sec.
Qs(0) = 0.5000000002 ¢ 0.0000000135 at &3 sasples in 216 sec.

This example sakes it all seenm easy. Actually,
reliable and rapid numerical integration is still
somewhat a black art, especially when combined
with devious transformations to tame otherwise
wild or nearly improper integrals. Frequently
these transformations flirt with singularities.
Soee singularities, designed to cancel each other
harmlessly, will do just that despite roundoff .
because the underlying aritheetic and eleaentary
functions in the hp-34C and hp-15C have been
ispleaented so carefully. Other singularities
cannot be reesoved but can be weakened enough to
be tolerated by the [§¥) key’'s quadrature
procedure [10] ;3 and then even if thousands of
saaples of the integrand have to be accuaulated
they will be added so accurately, because the
calculators carry three extra digits for the
purpose, that roundoff inside the quadrature
procedure will not obscure the desired result.

The user of these sachines can remain blissfully
unaware of details that, on sose other cosputers,
could bring grief to a program he thought was
pretty clever.

However, no integration procedure nor equation
solver based exclusively upaon a saapling strategy
can be foolproof. To understand why, consider a
procedure that purports to accosplish one of the
following tasks for an arbitrary function ¢

given only a prograa that calculates ¢(x) for

any given arguaent x in sose specified range:
-- Evaluate § §(t) dt  over the given range.
-- Minimize §f(x) over the given range.

Find out whether and where ¢f(x) = 0 .

We shall test this procedure first upon a progranm
that returns always +¢(x) := 1 but also prints
out a record of its arguaent x . Then for some
finite N we shall know that the procedure drew
sasples f(xy), fixa), $(x3)y eouy f(xuy?, §(xul
while atteapting to accomplish the assigned task.
Next let us test the procedure upon a second
prograa that returns

flx) 12 1 = {clx-xy) (x-xg) (x-ug) { vo0 ) N=Npyey) (x-X0)}2




where ¢ is chosen so big that f reverses sign
esore than twice. Since both functions #£(x)
return exactly the same value 1 for every
sample drawn, the procedure sust deliver the
saee result for both functions; but no such
result can be correct for both,

Therefore the ([§}]1 key aust be as fallible as
all other sampling procedures. Spikes or jumps
or violent oscillations can precipitate failure.
For example, attempts to evaluate nuserically
Solos (t-0.05) t1® exp(i/t) dt = -134,26994...
too often deliver instead a very wrong estisate
like +0.1359 . That is the area under the graph
of the integrand hetween t =1 and t = 0,6 ,
an area shaped like a trianqular sail. The graph
practically coincides with the t-axis between
t =0.6 and t = 0.016 . Between t = 0.01¢é
and t = 0,01 the graph is a sharp spike rising
from -1,075,246.9 at t = 0.01 up to -1.571
at t = 0.012 , up to -0.0106 at t = 0.013 ,
and nearly zero thereafter. Therefore, most of
the integral lies in a narrow spike only 1/500¢"
the width of the range of integration. Sampling
is sost unlikely to reveal that spike unless the
samples are very nuaerous, as is the case only
when high accuracy is desired. Evaluating the
integral in the obvious way with 3 sig. dec.
displayed ([SCIJ 2) on the hp-34C yields the
expected misleading result +0.1357 ¢+ 0.0003
after 31 samples. With 4 sig. dec. displayed
([SCI1 3) the result is -134,26994 ¢+ 0.02
after 2047 samples, correct but costly. A amore
economical way to evaluate this integral is as a
sum  Solar = J8:B1% + foloss 5 each tera can be
be evaluated separately and added later to yield
-134.270 ¢+ 0.022 after 126 gamples all told
at (SCI) 3 . Neither this partitioning of the
integral nor its necessity would be obvious to
someone who did not know what to look for; the
[§3) key could aislead an uneducated user badly.

THE CALCULATOR OWNER'S HANDBOOK: A cosputer
-is deemed Reliable when its wusers are never
surprised by something its designers wsust later
apologize for. How can designers and users who
never meet learn what to expect from each other?
Through education. That is the key to reliable
computation. Exhorting manufacturers to build
reliable equipesent is mere counsel aof perfection
unless they can learn how to design it at a
tolerable cost. And then, as refined equipsent
free from avoidable anomalies becomes available,
users aust be taught what to expect and haw to
exploit it, Obviously, expectations will be
influenced, if not taught , by the Owner's
Handbock and whatever other documents the
manufacturer supplies to infors and indoctrinate
the customer. Communication the other way is
less obvious; anly recently have some
manufacturers come to appreciate how such they
learn from the Owner‘s Handbook before it is
written, before the machine is designed.

How should arithaetic be designed? A siasple goal
for most of a calculator’'s arithaetic functions
would be easy to state (11] :
¥eep the error strictly ssaller than one ulp.
(An ulp 1is one Unit in the Last Place.)

But this specification accomplishes less than one
aight reasonably desire; for instance it ensures
neither the sign-symsetry of sin(x) = -sin(-x)
nor the monotonicity of ¢x. Neither is the goal
easy to achieve; soaetises it is impractical.
For example, recent hand-held Hewlett-Packard
calculators that accept and deliver data to 10
sig. dec. produce two results,

T2933.8 =) 7.958419686,095 and 329 -3 7,968419654,495 ,
of which at least one (it is the latter) sust err
by aore than one ulp. Only near the overflow and
underflow thresholds do the exponential functions
go so far as two ulps wrong; to keep their error
below one ulp here too would have required that
interaediate calculations be carried to more than
the 13 sig. dec. actually carried in a few
internal registers of these machines. Would the
cost and speed penalties paid to carry an extra
figure be offset by noticeably enhanced accuracy?
Not likely. And some offensive inaccuracies
would persist even if twice as aany fiqures were
carried. Consider sin{r) = 0 . This equation
presuses that the sin(...) procedure is given
exactly n = 3.14159 24535 89793 23846 26433... .
But, instead of n , the ([n)] key delivers
(r) = 3.14159 2454 = n rounded to 10 sig. dec. ;
only aftter we notice their difference will we
recover froe our initial surprise at pressing the
[SINI Fkey and seeing ([SINI([n]) = -4.10,,~10
instead of zero. Our second surprige is finding
error in the 4*~ instead of 10" sig. dec. of
(SIN)(tr]) # sin(lnd) = -0.00000 00004 10206 78153 7... .
This gross error is due to the calculator’'s use
internally of only 13 sig. dec. of n . Larger
radian arguments incur larger errors;

[SINI([x] 4ol4) = +0.79905 50814 # sin(In) ,o14) = -0.76367... .
( Angles in Degrees incur no such errors; for
ingtance [TANI( 10* *) = -5,471281820 correctly
for k =2,3, 4,5, ..., 99 .) The only way to
avoid such errors with large radian angles is to
retain n to very high accuracy; over 120 sig.
dec. would be needed for these calculators., That
extravagance is feasible and attractive in la-ge
coaputers with large mesories [12] , but not in
calculators. Besides, because uncertainties so
small as half an ulp in the input argumsents swamp
the errors we have been discussing, these errors
have almost no impact upon the scientific and
engineering calculations for which calculators
were designed. What little impact might reaain
is further attenuated by the preservation, to
within an ulp or two on these machines regardless
of how big x wmay be, of identities like
sin(2x) = 2 sin(x) cos(x) that do not involve n
explicitly., Therefore errors caused by not using
exactly n , and the convaluted excuses for
thea, are tolerable; for more details see (41].

Intolerance would not simplify the situation
such. Suppose we insisted upon Perfection and
found it,- a machine whose every arithasetic
function rounds correctly to within half an ulp.
(This is feasible for algebraic functions but
ispractical for exponential and transcendental
functions.) Would this Perfection preclude
aritheetic surprises? Regardless of the breadth
of our experience, NO . For exaaple, sany an
inexperienced calculator user would continue to



be surprised that (¥x)2 = x is often spoiled by
roundoff; on decimal sachines violations abound
for 1 < x (10 and 25 < x ¢ 100 but none lie
in 10 ¢ x ¢ 25 . On the other hand, experienced
cynics, expecting nothing to survive roundoff,
aust be surprised to discover, on binary and
quaternary machines but not on those with larger
radix, that despite roundoff r(x?) = |x| for
all x wunless x? over/underflows, These
surprises can be confirmed first by experieent,
then by siaple proofs. Recent results of Harry
Diamond (131 suggest that surprises like these
aust pervade correctly rounded arithsetic. VYet
sosething worse lurks there.

Correctly rounded arithmetic conceals anoamalies
so rare that no conscientious prograsmser could
reasonably be expected to discover thea. WNe do
not expect such a programeer to prove his every
programs correct; doing so aight entail a proof
as difficult as that of the Four Colour Theoream
for planar maps. Alternatively, the prograsmer
aight be forced to insert defensive code to cope
with eventualities that almost never happen, if
they can happen at all. Either way slows down
the prograsmer; and defensive programsaing slows
down the progras too. Besides, whatever causes
errors in programes also causes errors in proofs.
Therefore every program sust be run through tests
upon sasple data drawn reasonably densely froas
its domain. But sose anomalies are too rare to
be caught by that kind of test. For instance,
consider a function fi(x) = x - sin(x) that
figures in problee 2 on p. 12 of P. Henrici's
book [14] . ¢'(x) = 2 sin?(x/2) > 0 , so $i(x)
sust be monotone non-decreasing. Can the same be
said for F(x) := x - SIN(x) where SIN(x) is
sin(x) correctly rounded ? Yes, everywhere
except at @ scattered handful of exceptions, each
an accident of radix and wordsize. For instance,
when rounding to 6 sig. dec. the sole exception

is at x = 0.100167 ; to 5 sig. dec. it is at
x = 0.010000 ; to 4 sig. dec., nowhere:
x sin(x) SIN(x) F(x)

AR L L AL AL L L L LD LY L ThAYY YNy LA AL L L L L 24
0.100367  0.09999958095 0.0999996 0.00014674
0.100168  0.1000005759 0.100001 0.0001670
0.010000  0,009999833334  0.0099998  (.0000002
0.010001  0.01000083328 0.010001 0

So, uncompromising adherence to the most rigorous
rules for approxieate aritheetic will not protect
a computer from unpleasant surprises. Apparently
the approxisation of the continuuma by 3 discrete
set must introduce soame irreducible quantum of
noise into mathematical thought, as well as into
computed results, and we don‘t know how big that
quantum is. If we have to tolerate this unknown
npise, we might as well tolerate a little sore.
Tolerance grants the designer of a computer’s
atitheetic not carte dlanche for arithmetic
anarchy but rather his sandate:

Keep both noise and cost tolerably small,

the smaller the better.

Toleradle to whoa? To the custoser, to whos the
designer would rather not have to apologize for
unfortunate consequences of a coapromise that may
have been unnecessary. Thus do we circle back to
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the real world, where Science can tell us how to
do it, or not to try, but not what to do. The
designer of coaputer arithmetic aust be guided in
his choices by something sore than sathematics:
Design arithmetic functions in such a
way that almost no user need know more
about them than the designer is proud
to explain in the Owner’s Handbook.
1f the handbook says nothing much about the
accuracy of the functions, then they had better
be so accurate that nothing much need be said.
Such is the case for all financial functions and
all eleaentary real functions of one or two real
arguaents on recent Hewlett-Packard hand-held
calculators, Rational operations (+, -, x, %}
and ¢x are correctly rounded to within half an
ulp; the logarithes and inverse trigonometric
and inverse hyperbolic functions are alaost as
good. No errors worse than the subtle ones shown
above a¢éflict trigonoeetric functions of radians,
and exponential, hyperbolic and gamma functions.
( The [x') key delivers «x! = [(x+l) ¢{or non-
integers on the hp-34C and hp-t5C .) So little
worse than best possible are these errors that no
aention of then appears in the Owner ‘s Handbook,
though an auxiliary handbook describes thea fully
in a chapter (4) destined to be forgotten as soon
as it is read. On the other hand the [L+] kevy,
used to calculate standard deviations and perfora
linear regression upon pairs (x,, y,) , uses
algorithes chosen more for compatibility with
past practice and for speed than for nuamerical

infallibility, and gives unreliable results when
all the data x, agree in their first several
sig., dec. The Owner’'s Handbooks supply a simple

and efficient remedy: teaporarily omit redundant
leading digits. In other words, when all data
are very close to their aean, subtract an
approximate eean from them before entering thea.

So far, the Owner’'s Handbook has been depicted
as more a contractual than tutorial document. It
tells the customer what he has bought, offering
advice only wnen it is brief and necessarv to
avoid misunderstanding. The eanufacturer of the
computer is not obliged to teach the custoser how
to conpute. That policy seemed sound until 1t
collided with the hp-34C whose powerful [§3}]
and {SOLVE] keys invite abuse. Where would the
customer learn how to use those reys reliably?
Not from standard texts on Numericai Analysis 3
they tend to drown the reader in foreulas none of
which match the calculator’s algorithms. Hardly
any text explaine how to recognize wild integrals
and tame them, or what to do when an equation-
solviug iteration finds no root. Whether these
be rare pathologies or not, thev must happen
daily to at least several among the hundreds ot
thoussnds of users of the calculator. Where
woulc blame for these pathologies come to rest”

Robert Barkan and Hank Schroeder wrote most of
the Owner s Handbtook for the hp-34C . Thev
were not confident that they could reverse a long
standing policy against tutorial matter in the

handbook when they decideo to include two extra
chapters, one on i1ntegration and one on equéation
salvirg. Each chapter discusses its subject's

patrologies with examples worked ouvt on the
calculator, but the discussion 15 otherwise



independent of the calculator s particulars;
these chapters, like the subsequent articles (9]
and (101, aight well have been written for a text
on nuserical methods. The chapters constitute
part of an appendix at the end of the handbook so
that nobody will think he has to read them before
using the calculator. Indications are that
everyone who uses the [§}] and [SOLVE] keys
has read those chapters and appreciates thea.

Samething else was needed for the hp-15C . The
user of this slis (128na. x 80ma. x 15am.)
shirt-pocket calculator can, in a single key-
stroke, attempt to invert a singular matrix, or

evaluate a complex analytic function at a slit-
discontinuity in its domain. Tutorial chapters
far this machine could amount to a text covering
two years of college mathematics for engineers,
leaving out only vector calculus (divs, arads and
curls). QOur inclination to embed such a text an
the Owner's Handbook was deflected by a prudent
marketing specialist who explained to us ...

“The Intimidation Factor:

A potential customer, wishing to purchase an

advanced scientific shirt-pocket calculator,

peeks into the box and sees nestled there a

slina calculator beside a very thick book. ..."
Instead we put tutorial matter into a second book
{151 that a calculator owner could buy later.

COMPLEX NUMBERS AND MATRICES: The hp-15C
1s distinguished froms all previous calculators by
its treatment of complex nuabers and matrices as
arithmetic objects in their own right (161 rather
than as mere aggreqgates of numbers. The rational
operation keys (+1, (-3, [x), [+] and (1/x]1 act
upon coeplex numbers or upon matrix operands just
¢s they act upon real numbers: other keys like
(¥x1, Cy®*), [SIN), [COSH-'), etc. calculate their
analytic functions of complex as well as real
numabers. The (ABS] key delivers (x| ¢for real
or complex x ;3 other key strokes deliver the
determinant and various nores of a matrix. Of
course, earlier calculators and computers can be
programmed to perfora similar operations, albeit
not so easily nor so accurately. The hp-15C
takes the tedium out of these operations; 1in a
small package it offers some of Fortran’s
convenient handling of complex arithmetic, soae
of APL's convenient handling of array arithaetic.
Teachers see more than msere convenience there;
students using the hp-15C can experisent with
power ful abstractions and learn their value
before having to learn how to implesent thes.

To illustrate the value of convenient complex
arithmetic, let us apply it to three probleas in
Mathematical Physics, all sharing the following

A
?
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A Slab, a Strip, a Channel.

Problem 1. The figure shows the cross section of
a large ametal slab whose thickness doubles just
as a straight line is crossed. The slab’s flat
upper surface is kept at a constant temperature
U=mn. The lower surface, with the step, is
kept at a constant temperature U = 0 . How does
the temperature VU{x,y) vary inside the slab?

Probles 2. Material of uniforms resistivity and
thickness is laid down in a very long strip whose
width doubles at the step shown in the figure.

An electric current passes through the strip;

how aust the voltage V(x,y) vary in the strip?

Problem 3. The figure looks down upon a long
channel of constant depth whose width doubles at
the step. Water flows slowly along the channel.
Floating in the water is a tiny cork chip; what
path must it follow? The path, a “streas line®,
is a level curve of a “"stream function” Ulx,y).

Ulx,y) and Vix,y) both satisfy the same partial
differential equation, -Laplace’'s equation
A3/3x2 + JW/Jy? = 0 = IW/Ix? + IW/3y? |
but with different boundary conditions. U takes
boundary values shown in the figure. The noramal
derivative of V vanishes upon the boundaries
shown in the figure, and V/x tends to a liamit
as x —> @ and to twice that lieit as x = -p .,

Engineering students are usually taught a finite
difference or finite eleaent method to calcuate

U numerically. A mesh is laid upon the strip to
partition it into many tiny cells. To each cell
corresponds an equation saying that U therein
approximates a weighted average of its values in
neighbouring cells. The solution of this systea
of equations approximates U . The usual way to
imprave accuracy is to refine the mesh, thereby
increasing the nusber of equations to be solved.
Because the solution U has a singularity at the
intruding corner (at x=20, y=1) , it will not be
approximated well near there unless the mesh near
there is refined. Therefore, calculating U
this way aust be tedious. [f Mathematics be the
Art of Calculation without Computation, this is
not Mathemsatics; it is sore like Simulation.

figqure in the (x,y) planes

Table 1: Points (x,y) on the Stream Line U = 0.031 .
Us 0,01 0.01 0,01 0.01 0.01 0.0t 0.0t 0.08 0.01 0.01 0.01 0.01 0.0 0,04
Ve -1, -1.2 -0.8 -0.4 -0.2 -0.1 0 0.1 0.2 0.4 0.8 1.2 1.4 1.6
x: <-0.3680 -0.2540 -0.1480 <0,0566 -0.0209 -0.0075 0.0002 0.0012 0.0018 0.0028 0.0053 0.0118 0.1367 0.5248
y:  1.0029 1.0028 1.0025 1.0020 1.0015 1.0011 1.0002 0.9921 0.9769 0.9307 0.7724 0.4635 0.0448 0.0130
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The classical esathematical solution of the three
problees eaploys complex variables and conforeal
transforaation: Associate position in the plane
with the cosplex variable 2 := x + 1ty and let
w(z) ¢= V ¢+ U be composed froa the solutions
U(x,y) and V(x,y) of the three probless. Here
t2 = -1 , Rather than express w in teras of

z 4, we shall express z as a function of w ,
as is convenient for plotting level curves along
which either U is constant or V is constant
in the 2z plane. It turns out that

( 2 cosh='((2e%-5)/3) - cosh-*((5-8e~%)/3) )/n.

To type this expression onto the page takes about
twice as esany keystrokes (72 vs., 38) as to enter
the prograa that calculates it into the hp-15C :

LBL C e ENTER ENTER + 5 - 3 # COSH-' ENTER +

S ENTER B Rt ¢+ - 3 4 COSH-* - n % RTN

To plot stream lines, curves along which U is
constant, use the progras as follows. Choose a
constant value between O and m for U . As V
runs froe -8 to +4 , say, 50 does w = V + U
run along a horizontal line segament in the w
plane whose image in the z plane is the desired
stream line. A point 2 := x + 1y on that curve
is located by pressing keys thus:

2 &

YSTROKES OPERATION PERFORNED pISPLAY
¥ LENTER) ¢ (£} (1) Create weV + o0 Ve
{f] () Calculate 2z =12 + ¢y X
(#] {(i)] Bisplay isaginary part Ye

(The annunciator °c*® indicates when only one part, real
or isaginary, of a cosplex value is being displayed.)

For example, Table 1| shows how the stream line
U = 0.01 bends around the intruding corner.
Each point costs about 15 seconds to calculate
and plot on graph paper, so tediua has not been
banished entirely; some tisme aust pass before
inexpensive shirt-pocket calculators will be able
to display a plot of stream lines automatically.
On the other hand, some time must pass before
computers capable of driving graphics screens or
pen-plotters can be expected to possess as full a
set of coeplex elementary functions as has the
hp-15C . Only recently have such functions begun
to.appear in a few APL installations. For over
twenty years, full implementations of Fortran
have included coaplex arithmetic too, but not all
the elesentary functions; for instance, cosh-?
is aissing. Therefore, the forsula for 2
above would have to be transformsed by the little
known substitution

cosh-t(q) = 2 In( ¢1(q+1)/2) + ¢((q-1)/2) )
into sosething expressible in Fortran;

2 = (2/r) Ial ¢le%/3) (Flav-1)¢f(e®4))2 [ (27 (e%-1)¢f(e™-4)) ) .
Confirming this transforsation requires, besides
tedious algebra, careful analysis to check that
it saps boundary values correctly. Such checking
is nontrivial because familiar foreulas valid for
real functions frequently fail for the principal
branches of sulti-valued cosplex analytic

.functions [17). For instance, foraulas like

fixy) = ¢x fy , lnl(xy) = la(x) + In(y) and

cosh-*{x) = In(x + ¢¥(x2-1)) , valid when x and
y are real and positive, may fail when x and
y are coaplex in the left half-plane. MNoreover,

rounding errors can ruin foraulas that would be
correct otherwise, as happens to the substitution
for cosh-t'(q} above when q is near i .
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Foraulas robust in the face of roundoff are hard
to find: the following instance is used in the
hp-15C tc calculate r + s 3= cosh-t(g)

r := sinh-*( Re{( y(q+1) y{g-1) ) ) and

s 1= 2 arctan( Is( ¢(g-1) ) / Re( ¥(q+1) ) ) ,
Here the overscore signifies Complex Conjugate.
Fortunately, recondite formulas like these have
been found for all the elementary functions, and
Dr. Joe Tanzini painstakingly microprograamed
thea into the hp-13C .

Do not be misled by the foregoing illustrations
into thinking either that complex variables are
tricky, or that they will ever supplant fimite
elements. On the contrary, compiex variables are
as easy to use as real when isplemented properly.
And they supplement rather than supplant other
nuserical procedures. Experience with coaplex
variables builds experience with conformal
transformations that straighten corners, and with
similar techniques that remove singularities
analytically before they eabarrass naive numerical
aethods. Helping students and teachers acquire
and promulgate that experience is a part of the
hp-135C°s mission that I hope will soon be picked
up by other coaputers, with bigger displays,
capable of exhibiting conformal transformations
graphically.

Display limitations appear also to inhibit matrix
.aritheetic on a calculator, but appearances are
illusory. People rarely (perhaps too rarely)
pay attention to va.ues generated in intersediate
calculations; and even when a displayed value 15
exasined it serves at least as often to confirm
that the correct variable has been accessed as to
check whether its value is correct. Evidently a
variable’s name seans aore than its value. This
observation led me to propose to Dennis Haras and
Rich Carone that a calculator be built to display
Descriptors instead of values for matrices.
Whereas a calculator 's scalar variables are naaed
by their addresses, whereby we locate their
values in aemory, every matrix variable could be
addressed by its name, each linked to a pointer
to an otherwise anonymous array of values. This
scheae requires dynamic memory manageaent, which
relieves the user of the hp-1SC of any need to
know where in mesory reside his matrices (or the
auxiliary stack for coaplex variables, or scratch
space for the ([SOLVEY and (§}1 keys.) The
isplementation of dynasic memory manageaent and
aatrix input/output for the hp-1SC €ell to Eric
Evett; Paul McClellan weicrocoded the matrix
arithaetic operations. Details appear in (15]
and [16], so an exaeple here will suffice to
show how easy they have made satrix cosputations.

Consider this 4x4 matrix A and its inverse:

6 -1 -3 | -5 <4 3 9
A=z1-2 0 | 3 |3 At=]-1] -13 S0 2
2-1 01 -7 -8 U 12
=3 2 - 0 -1 <1 § 2
These keystrokes enter A into the hp-ISC :
4 ENTER DIN A voo Declare that A is x4,
USER MATRIX 1 oo Initialize walk through eatrix.
[ 510 A i CHS STO A 3 CHS STO A 1 S04
2CHS 810 A 0 S10 A 1 S10 A 3 sto4
2 810 & 1 CHS STO A 0 §T0 A 1 5704
3 CHS STO A 2 ST0 A 1 CHS STO A 0 STOA



Each time (STO) (A] is pressed during this walk
through the matrix A, "{ A i,j 1* displays
apaentarily to tell the user which element of
which eatrix is being altered. At the end of the
walk, after "l A 4,4 1" has been seen, all
elements of A have received their values.

This input takes about 40 sec.

The next few keystrokes compute C := A :

RESRT C oo Tells hp-1SC where to put A”L.
RCL MATRIX A o See [A 4 4] displayed.
(1/x) +eo See [ running 3 for 11 sec.,

.. then [C 4 4.
The displayed descriptor tells the user that a
4x4 matrix C resulted from the last operation
and is now ready for the next. To view the 16

elements of C , press C(RCL) [C) 16 times.
Each tise, *C C i,j 1" will display for a
noment, and then the value of C,, , where the

indices i,j advance im lexicographic order froa
1,1 to 4,8 . This walk takes about half a
minute, or two minutes if the elements are copied

onto paper, and showus
=5,000000049 -5,000000059  23.00000022  9.,000000085
C = | -11.00000011 -13.00000013  50,00000048  20.0000001%
-7.000000067 -8.000000080  31.00000030  12,00000012
-1,000000011 -1.000000013  5.000000048  2.000000019

A systea of linear equations Ad = b can be
solved for d = A™'b without calculating A,
Instead. wuse the (%] key thus; press

RESULT D RCL MATRIX B RCL MATRIX A [+l
to display the descriptor of the solution d
calculated faster and more accurately.

How accurate is C ? Were it not obvious, we
would have to overestimate the loss of accuracy

by computing a conditiaon nusber A=t} JAK ; the
nora fl...0 here can be any of three built into
the hp-15C . The row-sua nora, Matrix

Operation #7, is invoked thus:

- RCL MATRIX C MATRIX 7
RCL MATRIX A MATRIX 7
[x"

A=l 3 ICH = 94,
1Al = 11,
1Ch 1AD = 1034,

“se
LY

LY

This i1ndicates that somewhat less than 1034 ulps
was lost to roundoff; the reasoning is explained
in the chapters on matrix operations and errors
in [15). Also explained there is how to isprove
the accuracy of d by lterative Refinement; the
residual € = b - Ad is calculated in one step

by Matrix Operation #4, and the solution e of
Ae = ¢ added to d . In this process, as in
osatrix multiplication and inversion, the hp-15C

fares better than might be expected of a machine

that carries ten sig. dec. For example, let E
be a oultiple of the notorious Hilbert matrix:
Ei, 2= 360360/(i+j-1) ¢ar 1 ¢ i,j ( 8. The

constant 360350 ensures that every eleoent of
E is an integer, hence exact, and B8x8 is as
large a matrix as fits in the calculator. In
under 90 sec., it gets E-* correct to roughly
three sig. dec., three more than are expected in
view of JE-' NEF > 10* ., This extra accuracy
is no accident with ill-conditioned matrices like
E , prone to systesatic cancellation, but is due
to extra-precise accumulation of scalar products
to 13 sig. dec. during eatrix operations.

The hp-15C does not refuse to invert a singular
oatrix A but instead inverts some nearby nearly
indistinguishable A+AA ; since J(A+4A)-'] asust
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be huge, bigger than 1/014A) , the nature of A
is revealed., Because of this policy, one of the
solutions d of a consistent systea Ad = b

will always be delivered with Jdl not auch

bigger than it has to be.

Least squares problems can be solved aon the
1SC by using the normal equations and siaple
programs, or by more robust prograas based upon
orthogonal factorization techniques like those in
the book [18) by Lawson and Hanson, especially
on pp. &6, 20B-212, and 275. Programes of both
kinds written by Paul McClellan appear in ch, 4
of (15) together with advice on when to use thea.
One of thea can solve least squares probless with
linear constraints and perform linear regression
upon up to five independent variables with any
arbitrarily large number of observations.

hp~

With eachines like the hp-1SC in their shirt-

pockets, students of engineering, eathesatics,
science or statistics can practise what we preach
in the first two years of college, ever more

confident that what we teach will,
serve them throughout their careers.

as it should,

THE INTEL 16087 Dr. John F. Palmer, a
numerical analyst working for Intel in 197§,
discerned the invidious passibility that two
different computer systemas inside one small box
bearing the logo “Intel” awight be unable to
work upon numerical data in a shared memory for
lack of a common format. He was asked to deal
with this problem, and he asked mae to help hia
design “"the very best arithmetic® that could be
iaplenented upon all the diverse sicroprocessors
Intel was planning.

We chose binary foraats with an implicit leading
bit, very like I. Bennet Goldberg's variation
{19), so the 32-bit Single and b4-bit Doubdle
formats have ranges and precisions usually better
and never auch worse than any formats availahle
elsewhere in comparable wordsizes. An Extended
format as wide as we dared (80 bits) was included
to serve the same support role as the 13-deciaal
internal format serves in Hewlett-Packard's 10-
decimal calculators (their 12-digit calculators
use 15 digits). The tightest possible rounding,
statistically unbiased, was specified for the
aritheetic operations +, -, x, ¢, ¥ because we
knew how and why. Finally, we provided #+@ and
a "Not-a-Number® syabol (NaN) because they are so
valuable to those who have used thea on the few
comaputer 